libgo: update to Go 1.6.1 release
[official-gcc.git] / libgo / go / crypto / ecdsa / ecdsa.go
blobe54488c9cf6b699d4d8d5716101d278218400b06
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6 // defined in FIPS 186-3.
7 //
8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by
9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions.
11 package ecdsa
13 // References:
14 // [NSA]: Suite B implementer's guide to FIPS 186-3,
15 // http://www.nsa.gov/ia/_files/ecdsa.pdf
16 // [SECG]: SECG, SEC1
17 // http://www.secg.org/sec1-v2.pdf
19 import (
20 "crypto"
21 "crypto/aes"
22 "crypto/cipher"
23 "crypto/elliptic"
24 "crypto/sha512"
25 "encoding/asn1"
26 "errors"
27 "io"
28 "math/big"
31 // A invertible implements fast inverse mod Curve.Params().N
32 type invertible interface {
33 // Inverse returns the inverse of k in GF(P)
34 Inverse(k *big.Int) *big.Int
37 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
38 type combinedMult interface {
39 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
42 const (
43 aesIV = "IV for ECDSA CTR"
46 // PublicKey represents an ECDSA public key.
47 type PublicKey struct {
48 elliptic.Curve
49 X, Y *big.Int
52 // PrivateKey represents a ECDSA private key.
53 type PrivateKey struct {
54 PublicKey
55 D *big.Int
58 type ecdsaSignature struct {
59 R, S *big.Int
62 // Public returns the public key corresponding to priv.
63 func (priv *PrivateKey) Public() crypto.PublicKey {
64 return &priv.PublicKey
67 // Sign signs msg with priv, reading randomness from rand. This method is
68 // intended to support keys where the private part is kept in, for example, a
69 // hardware module. Common uses should use the Sign function in this package
70 // directly.
71 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
72 r, s, err := Sign(rand, priv, msg)
73 if err != nil {
74 return nil, err
77 return asn1.Marshal(ecdsaSignature{r, s})
80 var one = new(big.Int).SetInt64(1)
82 // randFieldElement returns a random element of the field underlying the given
83 // curve using the procedure given in [NSA] A.2.1.
84 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
85 params := c.Params()
86 b := make([]byte, params.BitSize/8+8)
87 _, err = io.ReadFull(rand, b)
88 if err != nil {
89 return
92 k = new(big.Int).SetBytes(b)
93 n := new(big.Int).Sub(params.N, one)
94 k.Mod(k, n)
95 k.Add(k, one)
96 return
99 // GenerateKey generates a public and private key pair.
100 func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
101 k, err := randFieldElement(c, rand)
102 if err != nil {
103 return
106 priv = new(PrivateKey)
107 priv.PublicKey.Curve = c
108 priv.D = k
109 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
110 return
113 // hashToInt converts a hash value to an integer. There is some disagreement
114 // about how this is done. [NSA] suggests that this is done in the obvious
115 // manner, but [SECG] truncates the hash to the bit-length of the curve order
116 // first. We follow [SECG] because that's what OpenSSL does. Additionally,
117 // OpenSSL right shifts excess bits from the number if the hash is too large
118 // and we mirror that too.
119 func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
120 orderBits := c.Params().N.BitLen()
121 orderBytes := (orderBits + 7) / 8
122 if len(hash) > orderBytes {
123 hash = hash[:orderBytes]
126 ret := new(big.Int).SetBytes(hash)
127 excess := len(hash)*8 - orderBits
128 if excess > 0 {
129 ret.Rsh(ret, uint(excess))
131 return ret
134 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
135 // This has better constant-time properties than Euclid's method (implemented
136 // in math/big.Int.ModInverse) although math/big itself isn't strictly
137 // constant-time so it's not perfect.
138 func fermatInverse(k, N *big.Int) *big.Int {
139 two := big.NewInt(2)
140 nMinus2 := new(big.Int).Sub(N, two)
141 return new(big.Int).Exp(k, nMinus2, N)
144 var errZeroParam = errors.New("zero parameter")
146 // Sign signs an arbitrary length hash (which should be the result of hashing a
147 // larger message) using the private key, priv. It returns the signature as a
148 // pair of integers. The security of the private key depends on the entropy of
149 // rand.
150 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
151 // Get max(log2(q) / 2, 256) bits of entropy from rand.
152 entropylen := (priv.Curve.Params().BitSize + 7) / 16
153 if entropylen > 32 {
154 entropylen = 32
156 entropy := make([]byte, entropylen)
157 _, err = io.ReadFull(rand, entropy)
158 if err != nil {
159 return
162 // Initialize an SHA-512 hash context; digest ...
163 md := sha512.New()
164 md.Write(priv.D.Bytes()) // the private key,
165 md.Write(entropy) // the entropy,
166 md.Write(hash) // and the input hash;
167 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
168 // which is an indifferentiable MAC.
170 // Create an AES-CTR instance to use as a CSPRNG.
171 block, err := aes.NewCipher(key)
172 if err != nil {
173 return nil, nil, err
176 // Create a CSPRNG that xors a stream of zeros with
177 // the output of the AES-CTR instance.
178 csprng := cipher.StreamReader{
179 R: zeroReader,
180 S: cipher.NewCTR(block, []byte(aesIV)),
183 // See [NSA] 3.4.1
184 c := priv.PublicKey.Curve
185 N := c.Params().N
186 if N.Sign() == 0 {
187 return nil, nil, errZeroParam
189 var k, kInv *big.Int
190 for {
191 for {
192 k, err = randFieldElement(c, csprng)
193 if err != nil {
194 r = nil
195 return
198 if in, ok := priv.Curve.(invertible); ok {
199 kInv = in.Inverse(k)
200 } else {
201 kInv = fermatInverse(k, N) // N != 0
204 r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
205 r.Mod(r, N)
206 if r.Sign() != 0 {
207 break
211 e := hashToInt(hash, c)
212 s = new(big.Int).Mul(priv.D, r)
213 s.Add(s, e)
214 s.Mul(s, kInv)
215 s.Mod(s, N) // N != 0
216 if s.Sign() != 0 {
217 break
221 return
224 // Verify verifies the signature in r, s of hash using the public key, pub. Its
225 // return value records whether the signature is valid.
226 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
227 // See [NSA] 3.4.2
228 c := pub.Curve
229 N := c.Params().N
231 if r.Sign() == 0 || s.Sign() == 0 {
232 return false
234 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
235 return false
237 e := hashToInt(hash, c)
239 var w *big.Int
240 if in, ok := c.(invertible); ok {
241 w = in.Inverse(s)
242 } else {
243 w = new(big.Int).ModInverse(s, N)
246 u1 := e.Mul(e, w)
247 u1.Mod(u1, N)
248 u2 := w.Mul(r, w)
249 u2.Mod(u2, N)
251 // Check if implements S1*g + S2*p
252 var x, y *big.Int
253 if opt, ok := c.(combinedMult); ok {
254 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
255 } else {
256 x1, y1 := c.ScalarBaseMult(u1.Bytes())
257 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
258 x, y = c.Add(x1, y1, x2, y2)
261 if x.Sign() == 0 && y.Sign() == 0 {
262 return false
264 x.Mod(x, N)
265 return x.Cmp(r) == 0
268 type zr struct {
269 io.Reader
272 // Read replaces the contents of dst with zeros.
273 func (z *zr) Read(dst []byte) (n int, err error) {
274 for i := range dst {
275 dst[i] = 0
277 return len(dst), nil
280 var zeroReader = &zr{}