* config/epiphany/epiphany.md (GPR_1): New constant.
[official-gcc.git] / gcc / rtlanal.c
blobb19868579a87f54ad48ee847618d434a6360995f
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
76 DESTINATION. */
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
86 int
87 rtx_unstable_p (const_rtx x)
89 const RTX_CODE code = GET_CODE (x);
90 int i;
91 const char *fmt;
93 switch (code)
95 case MEM:
96 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98 case CONST:
99 CASE_CONST_ANY:
100 case SYMBOL_REF:
101 case LABEL_REF:
102 return 0;
104 case REG:
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
109 return 0;
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
114 return 0;
115 return 1;
117 case ASM_OPERANDS:
118 if (MEM_VOLATILE_P (x))
119 return 1;
121 /* Fall through. */
123 default:
124 break;
127 fmt = GET_RTX_FORMAT (code);
128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
129 if (fmt[i] == 'e')
131 if (rtx_unstable_p (XEXP (x, i)))
132 return 1;
134 else if (fmt[i] == 'E')
136 int j;
137 for (j = 0; j < XVECLEN (x, i); j++)
138 if (rtx_unstable_p (XVECEXP (x, i, j)))
139 return 1;
142 return 0;
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
152 bool
153 rtx_varies_p (const_rtx x, bool for_alias)
155 RTX_CODE code;
156 int i;
157 const char *fmt;
159 if (!x)
160 return 0;
162 code = GET_CODE (x);
163 switch (code)
165 case MEM:
166 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
168 case CONST:
169 CASE_CONST_ANY:
170 case SYMBOL_REF:
171 case LABEL_REF:
172 return 0;
174 case REG:
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
178 for pseudos. */
179 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
182 return 0;
183 if (x == pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
189 return 0;
190 return 1;
192 case LO_SUM:
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
197 || rtx_varies_p (XEXP (x, 1), for_alias);
199 case ASM_OPERANDS:
200 if (MEM_VOLATILE_P (x))
201 return 1;
203 /* Fall through. */
205 default:
206 break;
209 fmt = GET_RTX_FORMAT (code);
210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
211 if (fmt[i] == 'e')
213 if (rtx_varies_p (XEXP (x, i), for_alias))
214 return 1;
216 else if (fmt[i] == 'E')
218 int j;
219 for (j = 0; j < XVECLEN (x, i); j++)
220 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
221 return 1;
224 return 0;
227 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
228 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
229 whether nonzero is returned for unaligned memory accesses on strict
230 alignment machines. */
232 static int
233 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
234 enum machine_mode mode, bool unaligned_mems)
236 enum rtx_code code = GET_CODE (x);
238 if (STRICT_ALIGNMENT
239 && unaligned_mems
240 && GET_MODE_SIZE (mode) != 0)
242 HOST_WIDE_INT actual_offset = offset;
243 #ifdef SPARC_STACK_BOUNDARY_HACK
244 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
245 the real alignment of %sp. However, when it does this, the
246 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
247 if (SPARC_STACK_BOUNDARY_HACK
248 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
249 actual_offset -= STACK_POINTER_OFFSET;
250 #endif
252 if (actual_offset % GET_MODE_SIZE (mode) != 0)
253 return 1;
256 switch (code)
258 case SYMBOL_REF:
259 if (SYMBOL_REF_WEAK (x))
260 return 1;
261 if (!CONSTANT_POOL_ADDRESS_P (x))
263 tree decl;
264 HOST_WIDE_INT decl_size;
266 if (offset < 0)
267 return 1;
268 if (size == 0)
269 size = GET_MODE_SIZE (mode);
270 if (size == 0)
271 return offset != 0;
273 /* If the size of the access or of the symbol is unknown,
274 assume the worst. */
275 decl = SYMBOL_REF_DECL (x);
277 /* Else check that the access is in bounds. TODO: restructure
278 expr_size/tree_expr_size/int_expr_size and just use the latter. */
279 if (!decl)
280 decl_size = -1;
281 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
282 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
283 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
284 : -1);
285 else if (TREE_CODE (decl) == STRING_CST)
286 decl_size = TREE_STRING_LENGTH (decl);
287 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
288 decl_size = int_size_in_bytes (TREE_TYPE (decl));
289 else
290 decl_size = -1;
292 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
295 return 0;
297 case LABEL_REF:
298 return 0;
300 case REG:
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
303 || x == stack_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
306 return 0;
307 /* All of the virtual frame registers are stack references. */
308 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
309 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
310 return 0;
311 return 1;
313 case CONST:
314 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
315 mode, unaligned_mems);
317 case PLUS:
318 /* An address is assumed not to trap if:
319 - it is the pic register plus a constant. */
320 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
321 return 0;
323 /* - or it is an address that can't trap plus a constant integer,
324 with the proper remainder modulo the mode size if we are
325 considering unaligned memory references. */
326 if (CONST_INT_P (XEXP (x, 1))
327 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
328 size, mode, unaligned_mems))
329 return 0;
331 return 1;
333 case LO_SUM:
334 case PRE_MODIFY:
335 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
336 mode, unaligned_mems);
338 case PRE_DEC:
339 case PRE_INC:
340 case POST_DEC:
341 case POST_INC:
342 case POST_MODIFY:
343 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
344 mode, unaligned_mems);
346 default:
347 break;
350 /* If it isn't one of the case above, it can cause a trap. */
351 return 1;
354 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
357 rtx_addr_can_trap_p (const_rtx x)
359 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
362 /* Return true if X is an address that is known to not be zero. */
364 bool
365 nonzero_address_p (const_rtx x)
367 const enum rtx_code code = GET_CODE (x);
369 switch (code)
371 case SYMBOL_REF:
372 return !SYMBOL_REF_WEAK (x);
374 case LABEL_REF:
375 return true;
377 case REG:
378 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
379 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
380 || x == stack_pointer_rtx
381 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
382 return true;
383 /* All of the virtual frame registers are stack references. */
384 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
385 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
386 return true;
387 return false;
389 case CONST:
390 return nonzero_address_p (XEXP (x, 0));
392 case PLUS:
393 /* Handle PIC references. */
394 if (XEXP (x, 0) == pic_offset_table_rtx
395 && CONSTANT_P (XEXP (x, 1)))
396 return true;
397 return false;
399 case PRE_MODIFY:
400 /* Similar to the above; allow positive offsets. Further, since
401 auto-inc is only allowed in memories, the register must be a
402 pointer. */
403 if (CONST_INT_P (XEXP (x, 1))
404 && INTVAL (XEXP (x, 1)) > 0)
405 return true;
406 return nonzero_address_p (XEXP (x, 0));
408 case PRE_INC:
409 /* Similarly. Further, the offset is always positive. */
410 return true;
412 case PRE_DEC:
413 case POST_DEC:
414 case POST_INC:
415 case POST_MODIFY:
416 return nonzero_address_p (XEXP (x, 0));
418 case LO_SUM:
419 return nonzero_address_p (XEXP (x, 1));
421 default:
422 break;
425 /* If it isn't one of the case above, might be zero. */
426 return false;
429 /* Return 1 if X refers to a memory location whose address
430 cannot be compared reliably with constant addresses,
431 or if X refers to a BLKmode memory object.
432 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
433 zero, we are slightly more conservative. */
435 bool
436 rtx_addr_varies_p (const_rtx x, bool for_alias)
438 enum rtx_code code;
439 int i;
440 const char *fmt;
442 if (x == 0)
443 return 0;
445 code = GET_CODE (x);
446 if (code == MEM)
447 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
449 fmt = GET_RTX_FORMAT (code);
450 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
451 if (fmt[i] == 'e')
453 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
454 return 1;
456 else if (fmt[i] == 'E')
458 int j;
459 for (j = 0; j < XVECLEN (x, i); j++)
460 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
461 return 1;
463 return 0;
466 /* Return the CALL in X if there is one. */
469 get_call_rtx_from (rtx x)
471 if (INSN_P (x))
472 x = PATTERN (x);
473 if (GET_CODE (x) == PARALLEL)
474 x = XVECEXP (x, 0, 0);
475 if (GET_CODE (x) == SET)
476 x = SET_SRC (x);
477 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
478 return x;
479 return NULL_RTX;
482 /* Return the value of the integer term in X, if one is apparent;
483 otherwise return 0.
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
487 HOST_WIDE_INT
488 get_integer_term (const_rtx x)
490 if (GET_CODE (x) == CONST)
491 x = XEXP (x, 0);
493 if (GET_CODE (x) == MINUS
494 && CONST_INT_P (XEXP (x, 1)))
495 return - INTVAL (XEXP (x, 1));
496 if (GET_CODE (x) == PLUS
497 && CONST_INT_P (XEXP (x, 1)))
498 return INTVAL (XEXP (x, 1));
499 return 0;
502 /* If X is a constant, return the value sans apparent integer term;
503 otherwise return 0.
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x)
509 if (GET_CODE (x) != CONST)
510 return 0;
511 x = XEXP (x, 0);
512 if (GET_CODE (x) == PLUS
513 && CONST_INT_P (XEXP (x, 1)))
514 return XEXP (x, 0);
515 else if (GET_CODE (x) == MINUS
516 && CONST_INT_P (XEXP (x, 1)))
517 return XEXP (x, 0);
518 return 0;
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
524 bool
525 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
527 tree decl;
529 if (GET_CODE (symbol) != SYMBOL_REF)
530 return false;
532 if (offset == 0)
533 return true;
535 if (offset > 0)
537 if (CONSTANT_POOL_ADDRESS_P (symbol)
538 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
539 return true;
541 decl = SYMBOL_REF_DECL (symbol);
542 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
543 return true;
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
547 && SYMBOL_REF_BLOCK (symbol)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
549 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
550 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
551 return true;
553 return false;
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
559 void
560 split_const (rtx x, rtx *base_out, rtx *offset_out)
562 if (GET_CODE (x) == CONST)
564 x = XEXP (x, 0);
565 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
567 *base_out = XEXP (x, 0);
568 *offset_out = XEXP (x, 1);
569 return;
572 *base_out = x;
573 *offset_out = const0_rtx;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x, const_rtx find, int count_dest)
582 int i, j;
583 enum rtx_code code;
584 const char *format_ptr;
585 int count;
587 if (x == find)
588 return 1;
590 code = GET_CODE (x);
592 switch (code)
594 case REG:
595 CASE_CONST_ANY:
596 case SYMBOL_REF:
597 case CODE_LABEL:
598 case PC:
599 case CC0:
600 return 0;
602 case EXPR_LIST:
603 count = count_occurrences (XEXP (x, 0), find, count_dest);
604 if (XEXP (x, 1))
605 count += count_occurrences (XEXP (x, 1), find, count_dest);
606 return count;
608 case MEM:
609 if (MEM_P (find) && rtx_equal_p (x, find))
610 return 1;
611 break;
613 case SET:
614 if (SET_DEST (x) == find && ! count_dest)
615 return count_occurrences (SET_SRC (x), find, count_dest);
616 break;
618 default:
619 break;
622 format_ptr = GET_RTX_FORMAT (code);
623 count = 0;
625 for (i = 0; i < GET_RTX_LENGTH (code); i++)
627 switch (*format_ptr++)
629 case 'e':
630 count += count_occurrences (XEXP (x, i), find, count_dest);
631 break;
633 case 'E':
634 for (j = 0; j < XVECLEN (x, i); j++)
635 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
636 break;
639 return count;
643 /* Return TRUE if OP is a register or subreg of a register that
644 holds an unsigned quantity. Otherwise, return FALSE. */
646 bool
647 unsigned_reg_p (rtx op)
649 if (REG_P (op)
650 && REG_EXPR (op)
651 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
652 return true;
654 if (GET_CODE (op) == SUBREG
655 && SUBREG_PROMOTED_UNSIGNED_P (op))
656 return true;
658 return false;
662 /* Nonzero if register REG appears somewhere within IN.
663 Also works if REG is not a register; in this case it checks
664 for a subexpression of IN that is Lisp "equal" to REG. */
667 reg_mentioned_p (const_rtx reg, const_rtx in)
669 const char *fmt;
670 int i;
671 enum rtx_code code;
673 if (in == 0)
674 return 0;
676 if (reg == in)
677 return 1;
679 if (GET_CODE (in) == LABEL_REF)
680 return reg == XEXP (in, 0);
682 code = GET_CODE (in);
684 switch (code)
686 /* Compare registers by number. */
687 case REG:
688 return REG_P (reg) && REGNO (in) == REGNO (reg);
690 /* These codes have no constituent expressions
691 and are unique. */
692 case SCRATCH:
693 case CC0:
694 case PC:
695 return 0;
697 CASE_CONST_ANY:
698 /* These are kept unique for a given value. */
699 return 0;
701 default:
702 break;
705 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
706 return 1;
708 fmt = GET_RTX_FORMAT (code);
710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
712 if (fmt[i] == 'E')
714 int j;
715 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
716 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
717 return 1;
719 else if (fmt[i] == 'e'
720 && reg_mentioned_p (reg, XEXP (in, i)))
721 return 1;
723 return 0;
726 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
727 no CODE_LABEL insn. */
730 no_labels_between_p (const_rtx beg, const_rtx end)
732 rtx p;
733 if (beg == end)
734 return 0;
735 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
736 if (LABEL_P (p))
737 return 0;
738 return 1;
741 /* Nonzero if register REG is used in an insn between
742 FROM_INSN and TO_INSN (exclusive of those two). */
745 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
747 rtx insn;
749 if (from_insn == to_insn)
750 return 0;
752 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
753 if (NONDEBUG_INSN_P (insn)
754 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
755 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
756 return 1;
757 return 0;
760 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
761 is entirely replaced by a new value and the only use is as a SET_DEST,
762 we do not consider it a reference. */
765 reg_referenced_p (const_rtx x, const_rtx body)
767 int i;
769 switch (GET_CODE (body))
771 case SET:
772 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
773 return 1;
775 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
776 of a REG that occupies all of the REG, the insn references X if
777 it is mentioned in the destination. */
778 if (GET_CODE (SET_DEST (body)) != CC0
779 && GET_CODE (SET_DEST (body)) != PC
780 && !REG_P (SET_DEST (body))
781 && ! (GET_CODE (SET_DEST (body)) == SUBREG
782 && REG_P (SUBREG_REG (SET_DEST (body)))
783 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
784 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
785 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
786 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
787 && reg_overlap_mentioned_p (x, SET_DEST (body)))
788 return 1;
789 return 0;
791 case ASM_OPERANDS:
792 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
793 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
794 return 1;
795 return 0;
797 case CALL:
798 case USE:
799 case IF_THEN_ELSE:
800 return reg_overlap_mentioned_p (x, body);
802 case TRAP_IF:
803 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
805 case PREFETCH:
806 return reg_overlap_mentioned_p (x, XEXP (body, 0));
808 case UNSPEC:
809 case UNSPEC_VOLATILE:
810 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
811 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
812 return 1;
813 return 0;
815 case PARALLEL:
816 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
817 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
818 return 1;
819 return 0;
821 case CLOBBER:
822 if (MEM_P (XEXP (body, 0)))
823 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
824 return 1;
825 return 0;
827 case COND_EXEC:
828 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
829 return 1;
830 return reg_referenced_p (x, COND_EXEC_CODE (body));
832 default:
833 return 0;
837 /* Nonzero if register REG is set or clobbered in an insn between
838 FROM_INSN and TO_INSN (exclusive of those two). */
841 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
843 const_rtx insn;
845 if (from_insn == to_insn)
846 return 0;
848 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
849 if (INSN_P (insn) && reg_set_p (reg, insn))
850 return 1;
851 return 0;
854 /* Internals of reg_set_between_p. */
856 reg_set_p (const_rtx reg, const_rtx insn)
858 /* We can be passed an insn or part of one. If we are passed an insn,
859 check if a side-effect of the insn clobbers REG. */
860 if (INSN_P (insn)
861 && (FIND_REG_INC_NOTE (insn, reg)
862 || (CALL_P (insn)
863 && ((REG_P (reg)
864 && REGNO (reg) < FIRST_PSEUDO_REGISTER
865 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
866 GET_MODE (reg), REGNO (reg)))
867 || MEM_P (reg)
868 || find_reg_fusage (insn, CLOBBER, reg)))))
869 return 1;
871 return set_of (reg, insn) != NULL_RTX;
874 /* Similar to reg_set_between_p, but check all registers in X. Return 0
875 only if none of them are modified between START and END. Return 1 if
876 X contains a MEM; this routine does use memory aliasing. */
879 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
881 const enum rtx_code code = GET_CODE (x);
882 const char *fmt;
883 int i, j;
884 rtx insn;
886 if (start == end)
887 return 0;
889 switch (code)
891 CASE_CONST_ANY:
892 case CONST:
893 case SYMBOL_REF:
894 case LABEL_REF:
895 return 0;
897 case PC:
898 case CC0:
899 return 1;
901 case MEM:
902 if (modified_between_p (XEXP (x, 0), start, end))
903 return 1;
904 if (MEM_READONLY_P (x))
905 return 0;
906 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
907 if (memory_modified_in_insn_p (x, insn))
908 return 1;
909 return 0;
910 break;
912 case REG:
913 return reg_set_between_p (x, start, end);
915 default:
916 break;
919 fmt = GET_RTX_FORMAT (code);
920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
922 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
923 return 1;
925 else if (fmt[i] == 'E')
926 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
927 if (modified_between_p (XVECEXP (x, i, j), start, end))
928 return 1;
931 return 0;
934 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
935 of them are modified in INSN. Return 1 if X contains a MEM; this routine
936 does use memory aliasing. */
939 modified_in_p (const_rtx x, const_rtx insn)
941 const enum rtx_code code = GET_CODE (x);
942 const char *fmt;
943 int i, j;
945 switch (code)
947 CASE_CONST_ANY:
948 case CONST:
949 case SYMBOL_REF:
950 case LABEL_REF:
951 return 0;
953 case PC:
954 case CC0:
955 return 1;
957 case MEM:
958 if (modified_in_p (XEXP (x, 0), insn))
959 return 1;
960 if (MEM_READONLY_P (x))
961 return 0;
962 if (memory_modified_in_insn_p (x, insn))
963 return 1;
964 return 0;
965 break;
967 case REG:
968 return reg_set_p (x, insn);
970 default:
971 break;
974 fmt = GET_RTX_FORMAT (code);
975 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
977 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
978 return 1;
980 else if (fmt[i] == 'E')
981 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
982 if (modified_in_p (XVECEXP (x, i, j), insn))
983 return 1;
986 return 0;
989 /* Helper function for set_of. */
990 struct set_of_data
992 const_rtx found;
993 const_rtx pat;
996 static void
997 set_of_1 (rtx x, const_rtx pat, void *data1)
999 struct set_of_data *const data = (struct set_of_data *) (data1);
1000 if (rtx_equal_p (x, data->pat)
1001 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1002 data->found = pat;
1005 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1006 (either directly or via STRICT_LOW_PART and similar modifiers). */
1007 const_rtx
1008 set_of (const_rtx pat, const_rtx insn)
1010 struct set_of_data data;
1011 data.found = NULL_RTX;
1012 data.pat = pat;
1013 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1014 return data.found;
1017 /* This function, called through note_stores, collects sets and
1018 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1019 by DATA. */
1020 void
1021 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1023 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1024 if (REG_P (x) && HARD_REGISTER_P (x))
1025 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1028 /* Examine INSN, and compute the set of hard registers written by it.
1029 Store it in *PSET. Should only be called after reload. */
1030 void
1031 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1033 rtx link;
1035 CLEAR_HARD_REG_SET (*pset);
1036 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1037 if (CALL_P (insn))
1038 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1039 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1040 if (REG_NOTE_KIND (link) == REG_INC)
1041 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1044 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1045 static int
1046 record_hard_reg_uses_1 (rtx *px, void *data)
1048 rtx x = *px;
1049 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1051 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1053 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1054 while (nregs-- > 0)
1055 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1057 return 0;
1060 /* Like record_hard_reg_sets, but called through note_uses. */
1061 void
1062 record_hard_reg_uses (rtx *px, void *data)
1064 for_each_rtx (px, record_hard_reg_uses_1, data);
1067 /* Given an INSN, return a SET expression if this insn has only a single SET.
1068 It may also have CLOBBERs, USEs, or SET whose output
1069 will not be used, which we ignore. */
1072 single_set_2 (const_rtx insn, const_rtx pat)
1074 rtx set = NULL;
1075 int set_verified = 1;
1076 int i;
1078 if (GET_CODE (pat) == PARALLEL)
1080 for (i = 0; i < XVECLEN (pat, 0); i++)
1082 rtx sub = XVECEXP (pat, 0, i);
1083 switch (GET_CODE (sub))
1085 case USE:
1086 case CLOBBER:
1087 break;
1089 case SET:
1090 /* We can consider insns having multiple sets, where all
1091 but one are dead as single set insns. In common case
1092 only single set is present in the pattern so we want
1093 to avoid checking for REG_UNUSED notes unless necessary.
1095 When we reach set first time, we just expect this is
1096 the single set we are looking for and only when more
1097 sets are found in the insn, we check them. */
1098 if (!set_verified)
1100 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1101 && !side_effects_p (set))
1102 set = NULL;
1103 else
1104 set_verified = 1;
1106 if (!set)
1107 set = sub, set_verified = 0;
1108 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1109 || side_effects_p (sub))
1110 return NULL_RTX;
1111 break;
1113 default:
1114 return NULL_RTX;
1118 return set;
1121 /* Given an INSN, return nonzero if it has more than one SET, else return
1122 zero. */
1125 multiple_sets (const_rtx insn)
1127 int found;
1128 int i;
1130 /* INSN must be an insn. */
1131 if (! INSN_P (insn))
1132 return 0;
1134 /* Only a PARALLEL can have multiple SETs. */
1135 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1137 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1138 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1140 /* If we have already found a SET, then return now. */
1141 if (found)
1142 return 1;
1143 else
1144 found = 1;
1148 /* Either zero or one SET. */
1149 return 0;
1152 /* Return nonzero if the destination of SET equals the source
1153 and there are no side effects. */
1156 set_noop_p (const_rtx set)
1158 rtx src = SET_SRC (set);
1159 rtx dst = SET_DEST (set);
1161 if (dst == pc_rtx && src == pc_rtx)
1162 return 1;
1164 if (MEM_P (dst) && MEM_P (src))
1165 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1167 if (GET_CODE (dst) == ZERO_EXTRACT)
1168 return rtx_equal_p (XEXP (dst, 0), src)
1169 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1170 && !side_effects_p (src);
1172 if (GET_CODE (dst) == STRICT_LOW_PART)
1173 dst = XEXP (dst, 0);
1175 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1177 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1178 return 0;
1179 src = SUBREG_REG (src);
1180 dst = SUBREG_REG (dst);
1183 return (REG_P (src) && REG_P (dst)
1184 && REGNO (src) == REGNO (dst));
1187 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1188 value to itself. */
1191 noop_move_p (const_rtx insn)
1193 rtx pat = PATTERN (insn);
1195 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1196 return 1;
1198 /* Insns carrying these notes are useful later on. */
1199 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1200 return 0;
1202 if (GET_CODE (pat) == SET && set_noop_p (pat))
1203 return 1;
1205 if (GET_CODE (pat) == PARALLEL)
1207 int i;
1208 /* If nothing but SETs of registers to themselves,
1209 this insn can also be deleted. */
1210 for (i = 0; i < XVECLEN (pat, 0); i++)
1212 rtx tem = XVECEXP (pat, 0, i);
1214 if (GET_CODE (tem) == USE
1215 || GET_CODE (tem) == CLOBBER)
1216 continue;
1218 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1219 return 0;
1222 return 1;
1224 return 0;
1228 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1229 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1230 If the object was modified, if we hit a partial assignment to X, or hit a
1231 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1232 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1233 be the src. */
1236 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1238 rtx p;
1240 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1241 p = PREV_INSN (p))
1242 if (INSN_P (p))
1244 rtx set = single_set (p);
1245 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1247 if (set && rtx_equal_p (x, SET_DEST (set)))
1249 rtx src = SET_SRC (set);
1251 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1252 src = XEXP (note, 0);
1254 if ((valid_to == NULL_RTX
1255 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1256 /* Reject hard registers because we don't usually want
1257 to use them; we'd rather use a pseudo. */
1258 && (! (REG_P (src)
1259 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1261 *pinsn = p;
1262 return src;
1266 /* If set in non-simple way, we don't have a value. */
1267 if (reg_set_p (x, p))
1268 break;
1271 return x;
1274 /* Return nonzero if register in range [REGNO, ENDREGNO)
1275 appears either explicitly or implicitly in X
1276 other than being stored into.
1278 References contained within the substructure at LOC do not count.
1279 LOC may be zero, meaning don't ignore anything. */
1282 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1283 rtx *loc)
1285 int i;
1286 unsigned int x_regno;
1287 RTX_CODE code;
1288 const char *fmt;
1290 repeat:
1291 /* The contents of a REG_NONNEG note is always zero, so we must come here
1292 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1293 if (x == 0)
1294 return 0;
1296 code = GET_CODE (x);
1298 switch (code)
1300 case REG:
1301 x_regno = REGNO (x);
1303 /* If we modifying the stack, frame, or argument pointer, it will
1304 clobber a virtual register. In fact, we could be more precise,
1305 but it isn't worth it. */
1306 if ((x_regno == STACK_POINTER_REGNUM
1307 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1308 || x_regno == ARG_POINTER_REGNUM
1309 #endif
1310 || x_regno == FRAME_POINTER_REGNUM)
1311 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1312 return 1;
1314 return endregno > x_regno && regno < END_REGNO (x);
1316 case SUBREG:
1317 /* If this is a SUBREG of a hard reg, we can see exactly which
1318 registers are being modified. Otherwise, handle normally. */
1319 if (REG_P (SUBREG_REG (x))
1320 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1322 unsigned int inner_regno = subreg_regno (x);
1323 unsigned int inner_endregno
1324 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1325 ? subreg_nregs (x) : 1);
1327 return endregno > inner_regno && regno < inner_endregno;
1329 break;
1331 case CLOBBER:
1332 case SET:
1333 if (&SET_DEST (x) != loc
1334 /* Note setting a SUBREG counts as referring to the REG it is in for
1335 a pseudo but not for hard registers since we can
1336 treat each word individually. */
1337 && ((GET_CODE (SET_DEST (x)) == SUBREG
1338 && loc != &SUBREG_REG (SET_DEST (x))
1339 && REG_P (SUBREG_REG (SET_DEST (x)))
1340 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1341 && refers_to_regno_p (regno, endregno,
1342 SUBREG_REG (SET_DEST (x)), loc))
1343 || (!REG_P (SET_DEST (x))
1344 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1345 return 1;
1347 if (code == CLOBBER || loc == &SET_SRC (x))
1348 return 0;
1349 x = SET_SRC (x);
1350 goto repeat;
1352 default:
1353 break;
1356 /* X does not match, so try its subexpressions. */
1358 fmt = GET_RTX_FORMAT (code);
1359 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1361 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1363 if (i == 0)
1365 x = XEXP (x, 0);
1366 goto repeat;
1368 else
1369 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1370 return 1;
1372 else if (fmt[i] == 'E')
1374 int j;
1375 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1376 if (loc != &XVECEXP (x, i, j)
1377 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1378 return 1;
1381 return 0;
1384 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1385 we check if any register number in X conflicts with the relevant register
1386 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1387 contains a MEM (we don't bother checking for memory addresses that can't
1388 conflict because we expect this to be a rare case. */
1391 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1393 unsigned int regno, endregno;
1395 /* If either argument is a constant, then modifying X can not
1396 affect IN. Here we look at IN, we can profitably combine
1397 CONSTANT_P (x) with the switch statement below. */
1398 if (CONSTANT_P (in))
1399 return 0;
1401 recurse:
1402 switch (GET_CODE (x))
1404 case STRICT_LOW_PART:
1405 case ZERO_EXTRACT:
1406 case SIGN_EXTRACT:
1407 /* Overly conservative. */
1408 x = XEXP (x, 0);
1409 goto recurse;
1411 case SUBREG:
1412 regno = REGNO (SUBREG_REG (x));
1413 if (regno < FIRST_PSEUDO_REGISTER)
1414 regno = subreg_regno (x);
1415 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1416 ? subreg_nregs (x) : 1);
1417 goto do_reg;
1419 case REG:
1420 regno = REGNO (x);
1421 endregno = END_REGNO (x);
1422 do_reg:
1423 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1425 case MEM:
1427 const char *fmt;
1428 int i;
1430 if (MEM_P (in))
1431 return 1;
1433 fmt = GET_RTX_FORMAT (GET_CODE (in));
1434 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1435 if (fmt[i] == 'e')
1437 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1438 return 1;
1440 else if (fmt[i] == 'E')
1442 int j;
1443 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1444 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1445 return 1;
1448 return 0;
1451 case SCRATCH:
1452 case PC:
1453 case CC0:
1454 return reg_mentioned_p (x, in);
1456 case PARALLEL:
1458 int i;
1460 /* If any register in here refers to it we return true. */
1461 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1462 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1463 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1464 return 1;
1465 return 0;
1468 default:
1469 gcc_assert (CONSTANT_P (x));
1470 return 0;
1474 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1475 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1476 ignored by note_stores, but passed to FUN.
1478 FUN receives three arguments:
1479 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1480 2. the SET or CLOBBER rtx that does the store,
1481 3. the pointer DATA provided to note_stores.
1483 If the item being stored in or clobbered is a SUBREG of a hard register,
1484 the SUBREG will be passed. */
1486 void
1487 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1489 int i;
1491 if (GET_CODE (x) == COND_EXEC)
1492 x = COND_EXEC_CODE (x);
1494 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1496 rtx dest = SET_DEST (x);
1498 while ((GET_CODE (dest) == SUBREG
1499 && (!REG_P (SUBREG_REG (dest))
1500 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1501 || GET_CODE (dest) == ZERO_EXTRACT
1502 || GET_CODE (dest) == STRICT_LOW_PART)
1503 dest = XEXP (dest, 0);
1505 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1506 each of whose first operand is a register. */
1507 if (GET_CODE (dest) == PARALLEL)
1509 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1510 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1511 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1513 else
1514 (*fun) (dest, x, data);
1517 else if (GET_CODE (x) == PARALLEL)
1518 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1519 note_stores (XVECEXP (x, 0, i), fun, data);
1522 /* Like notes_stores, but call FUN for each expression that is being
1523 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1524 FUN for each expression, not any interior subexpressions. FUN receives a
1525 pointer to the expression and the DATA passed to this function.
1527 Note that this is not quite the same test as that done in reg_referenced_p
1528 since that considers something as being referenced if it is being
1529 partially set, while we do not. */
1531 void
1532 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1534 rtx body = *pbody;
1535 int i;
1537 switch (GET_CODE (body))
1539 case COND_EXEC:
1540 (*fun) (&COND_EXEC_TEST (body), data);
1541 note_uses (&COND_EXEC_CODE (body), fun, data);
1542 return;
1544 case PARALLEL:
1545 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1546 note_uses (&XVECEXP (body, 0, i), fun, data);
1547 return;
1549 case SEQUENCE:
1550 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1551 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1552 return;
1554 case USE:
1555 (*fun) (&XEXP (body, 0), data);
1556 return;
1558 case ASM_OPERANDS:
1559 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1560 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1561 return;
1563 case TRAP_IF:
1564 (*fun) (&TRAP_CONDITION (body), data);
1565 return;
1567 case PREFETCH:
1568 (*fun) (&XEXP (body, 0), data);
1569 return;
1571 case UNSPEC:
1572 case UNSPEC_VOLATILE:
1573 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1574 (*fun) (&XVECEXP (body, 0, i), data);
1575 return;
1577 case CLOBBER:
1578 if (MEM_P (XEXP (body, 0)))
1579 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1580 return;
1582 case SET:
1584 rtx dest = SET_DEST (body);
1586 /* For sets we replace everything in source plus registers in memory
1587 expression in store and operands of a ZERO_EXTRACT. */
1588 (*fun) (&SET_SRC (body), data);
1590 if (GET_CODE (dest) == ZERO_EXTRACT)
1592 (*fun) (&XEXP (dest, 1), data);
1593 (*fun) (&XEXP (dest, 2), data);
1596 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1597 dest = XEXP (dest, 0);
1599 if (MEM_P (dest))
1600 (*fun) (&XEXP (dest, 0), data);
1602 return;
1604 default:
1605 /* All the other possibilities never store. */
1606 (*fun) (pbody, data);
1607 return;
1611 /* Return nonzero if X's old contents don't survive after INSN.
1612 This will be true if X is (cc0) or if X is a register and
1613 X dies in INSN or because INSN entirely sets X.
1615 "Entirely set" means set directly and not through a SUBREG, or
1616 ZERO_EXTRACT, so no trace of the old contents remains.
1617 Likewise, REG_INC does not count.
1619 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1620 but for this use that makes no difference, since regs don't overlap
1621 during their lifetimes. Therefore, this function may be used
1622 at any time after deaths have been computed.
1624 If REG is a hard reg that occupies multiple machine registers, this
1625 function will only return 1 if each of those registers will be replaced
1626 by INSN. */
1629 dead_or_set_p (const_rtx insn, const_rtx x)
1631 unsigned int regno, end_regno;
1632 unsigned int i;
1634 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1635 if (GET_CODE (x) == CC0)
1636 return 1;
1638 gcc_assert (REG_P (x));
1640 regno = REGNO (x);
1641 end_regno = END_REGNO (x);
1642 for (i = regno; i < end_regno; i++)
1643 if (! dead_or_set_regno_p (insn, i))
1644 return 0;
1646 return 1;
1649 /* Return TRUE iff DEST is a register or subreg of a register and
1650 doesn't change the number of words of the inner register, and any
1651 part of the register is TEST_REGNO. */
1653 static bool
1654 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1656 unsigned int regno, endregno;
1658 if (GET_CODE (dest) == SUBREG
1659 && (((GET_MODE_SIZE (GET_MODE (dest))
1660 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1661 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1662 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1663 dest = SUBREG_REG (dest);
1665 if (!REG_P (dest))
1666 return false;
1668 regno = REGNO (dest);
1669 endregno = END_REGNO (dest);
1670 return (test_regno >= regno && test_regno < endregno);
1673 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1674 any member matches the covers_regno_no_parallel_p criteria. */
1676 static bool
1677 covers_regno_p (const_rtx dest, unsigned int test_regno)
1679 if (GET_CODE (dest) == PARALLEL)
1681 /* Some targets place small structures in registers for return
1682 values of functions, and those registers are wrapped in
1683 PARALLELs that we may see as the destination of a SET. */
1684 int i;
1686 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1688 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1689 if (inner != NULL_RTX
1690 && covers_regno_no_parallel_p (inner, test_regno))
1691 return true;
1694 return false;
1696 else
1697 return covers_regno_no_parallel_p (dest, test_regno);
1700 /* Utility function for dead_or_set_p to check an individual register. */
1703 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1705 const_rtx pattern;
1707 /* See if there is a death note for something that includes TEST_REGNO. */
1708 if (find_regno_note (insn, REG_DEAD, test_regno))
1709 return 1;
1711 if (CALL_P (insn)
1712 && find_regno_fusage (insn, CLOBBER, test_regno))
1713 return 1;
1715 pattern = PATTERN (insn);
1717 /* If a COND_EXEC is not executed, the value survives. */
1718 if (GET_CODE (pattern) == COND_EXEC)
1719 return 0;
1721 if (GET_CODE (pattern) == SET)
1722 return covers_regno_p (SET_DEST (pattern), test_regno);
1723 else if (GET_CODE (pattern) == PARALLEL)
1725 int i;
1727 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1729 rtx body = XVECEXP (pattern, 0, i);
1731 if (GET_CODE (body) == COND_EXEC)
1732 body = COND_EXEC_CODE (body);
1734 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1735 && covers_regno_p (SET_DEST (body), test_regno))
1736 return 1;
1740 return 0;
1743 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1744 If DATUM is nonzero, look for one whose datum is DATUM. */
1747 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1749 rtx link;
1751 gcc_checking_assert (insn);
1753 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1754 if (! INSN_P (insn))
1755 return 0;
1756 if (datum == 0)
1758 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1759 if (REG_NOTE_KIND (link) == kind)
1760 return link;
1761 return 0;
1764 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1765 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1766 return link;
1767 return 0;
1770 /* Return the reg-note of kind KIND in insn INSN which applies to register
1771 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1772 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1773 it might be the case that the note overlaps REGNO. */
1776 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1778 rtx link;
1780 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1781 if (! INSN_P (insn))
1782 return 0;
1784 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1785 if (REG_NOTE_KIND (link) == kind
1786 /* Verify that it is a register, so that scratch and MEM won't cause a
1787 problem here. */
1788 && REG_P (XEXP (link, 0))
1789 && REGNO (XEXP (link, 0)) <= regno
1790 && END_REGNO (XEXP (link, 0)) > regno)
1791 return link;
1792 return 0;
1795 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1796 has such a note. */
1799 find_reg_equal_equiv_note (const_rtx insn)
1801 rtx link;
1803 if (!INSN_P (insn))
1804 return 0;
1806 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1807 if (REG_NOTE_KIND (link) == REG_EQUAL
1808 || REG_NOTE_KIND (link) == REG_EQUIV)
1810 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1811 insns that have multiple sets. Checking single_set to
1812 make sure of this is not the proper check, as explained
1813 in the comment in set_unique_reg_note.
1815 This should be changed into an assert. */
1816 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1817 return 0;
1818 return link;
1820 return NULL;
1823 /* Check whether INSN is a single_set whose source is known to be
1824 equivalent to a constant. Return that constant if so, otherwise
1825 return null. */
1828 find_constant_src (const_rtx insn)
1830 rtx note, set, x;
1832 set = single_set (insn);
1833 if (set)
1835 x = avoid_constant_pool_reference (SET_SRC (set));
1836 if (CONSTANT_P (x))
1837 return x;
1840 note = find_reg_equal_equiv_note (insn);
1841 if (note && CONSTANT_P (XEXP (note, 0)))
1842 return XEXP (note, 0);
1844 return NULL_RTX;
1847 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1848 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1851 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1853 /* If it's not a CALL_INSN, it can't possibly have a
1854 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1855 if (!CALL_P (insn))
1856 return 0;
1858 gcc_assert (datum);
1860 if (!REG_P (datum))
1862 rtx link;
1864 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1865 link;
1866 link = XEXP (link, 1))
1867 if (GET_CODE (XEXP (link, 0)) == code
1868 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1869 return 1;
1871 else
1873 unsigned int regno = REGNO (datum);
1875 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1876 to pseudo registers, so don't bother checking. */
1878 if (regno < FIRST_PSEUDO_REGISTER)
1880 unsigned int end_regno = END_HARD_REGNO (datum);
1881 unsigned int i;
1883 for (i = regno; i < end_regno; i++)
1884 if (find_regno_fusage (insn, code, i))
1885 return 1;
1889 return 0;
1892 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1893 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1896 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1898 rtx link;
1900 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1901 to pseudo registers, so don't bother checking. */
1903 if (regno >= FIRST_PSEUDO_REGISTER
1904 || !CALL_P (insn) )
1905 return 0;
1907 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1909 rtx op, reg;
1911 if (GET_CODE (op = XEXP (link, 0)) == code
1912 && REG_P (reg = XEXP (op, 0))
1913 && REGNO (reg) <= regno
1914 && END_HARD_REGNO (reg) > regno)
1915 return 1;
1918 return 0;
1922 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1923 stored as the pointer to the next register note. */
1926 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1928 rtx note;
1930 switch (kind)
1932 case REG_CC_SETTER:
1933 case REG_CC_USER:
1934 case REG_LABEL_TARGET:
1935 case REG_LABEL_OPERAND:
1936 case REG_TM:
1937 /* These types of register notes use an INSN_LIST rather than an
1938 EXPR_LIST, so that copying is done right and dumps look
1939 better. */
1940 note = alloc_INSN_LIST (datum, list);
1941 PUT_REG_NOTE_KIND (note, kind);
1942 break;
1944 default:
1945 note = alloc_EXPR_LIST (kind, datum, list);
1946 break;
1949 return note;
1952 /* Add register note with kind KIND and datum DATUM to INSN. */
1954 void
1955 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1957 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1960 /* Remove register note NOTE from the REG_NOTES of INSN. */
1962 void
1963 remove_note (rtx insn, const_rtx note)
1965 rtx link;
1967 if (note == NULL_RTX)
1968 return;
1970 if (REG_NOTES (insn) == note)
1971 REG_NOTES (insn) = XEXP (note, 1);
1972 else
1973 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1974 if (XEXP (link, 1) == note)
1976 XEXP (link, 1) = XEXP (note, 1);
1977 break;
1980 switch (REG_NOTE_KIND (note))
1982 case REG_EQUAL:
1983 case REG_EQUIV:
1984 df_notes_rescan (insn);
1985 break;
1986 default:
1987 break;
1991 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1993 void
1994 remove_reg_equal_equiv_notes (rtx insn)
1996 rtx *loc;
1998 loc = &REG_NOTES (insn);
1999 while (*loc)
2001 enum reg_note kind = REG_NOTE_KIND (*loc);
2002 if (kind == REG_EQUAL || kind == REG_EQUIV)
2003 *loc = XEXP (*loc, 1);
2004 else
2005 loc = &XEXP (*loc, 1);
2009 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2011 void
2012 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2014 df_ref eq_use;
2016 if (!df)
2017 return;
2019 /* This loop is a little tricky. We cannot just go down the chain because
2020 it is being modified by some actions in the loop. So we just iterate
2021 over the head. We plan to drain the list anyway. */
2022 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2024 rtx insn = DF_REF_INSN (eq_use);
2025 rtx note = find_reg_equal_equiv_note (insn);
2027 /* This assert is generally triggered when someone deletes a REG_EQUAL
2028 or REG_EQUIV note by hacking the list manually rather than calling
2029 remove_note. */
2030 gcc_assert (note);
2032 remove_note (insn, note);
2036 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2037 return 1 if it is found. A simple equality test is used to determine if
2038 NODE matches. */
2041 in_expr_list_p (const_rtx listp, const_rtx node)
2043 const_rtx x;
2045 for (x = listp; x; x = XEXP (x, 1))
2046 if (node == XEXP (x, 0))
2047 return 1;
2049 return 0;
2052 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2053 remove that entry from the list if it is found.
2055 A simple equality test is used to determine if NODE matches. */
2057 void
2058 remove_node_from_expr_list (const_rtx node, rtx *listp)
2060 rtx temp = *listp;
2061 rtx prev = NULL_RTX;
2063 while (temp)
2065 if (node == XEXP (temp, 0))
2067 /* Splice the node out of the list. */
2068 if (prev)
2069 XEXP (prev, 1) = XEXP (temp, 1);
2070 else
2071 *listp = XEXP (temp, 1);
2073 return;
2076 prev = temp;
2077 temp = XEXP (temp, 1);
2081 /* Nonzero if X contains any volatile instructions. These are instructions
2082 which may cause unpredictable machine state instructions, and thus no
2083 instructions or register uses should be moved or combined across them.
2084 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2087 volatile_insn_p (const_rtx x)
2089 const RTX_CODE code = GET_CODE (x);
2090 switch (code)
2092 case LABEL_REF:
2093 case SYMBOL_REF:
2094 case CONST:
2095 CASE_CONST_ANY:
2096 case CC0:
2097 case PC:
2098 case REG:
2099 case SCRATCH:
2100 case CLOBBER:
2101 case ADDR_VEC:
2102 case ADDR_DIFF_VEC:
2103 case CALL:
2104 case MEM:
2105 return 0;
2107 case UNSPEC_VOLATILE:
2108 return 1;
2110 case ASM_INPUT:
2111 case ASM_OPERANDS:
2112 if (MEM_VOLATILE_P (x))
2113 return 1;
2115 default:
2116 break;
2119 /* Recursively scan the operands of this expression. */
2122 const char *const fmt = GET_RTX_FORMAT (code);
2123 int i;
2125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2127 if (fmt[i] == 'e')
2129 if (volatile_insn_p (XEXP (x, i)))
2130 return 1;
2132 else if (fmt[i] == 'E')
2134 int j;
2135 for (j = 0; j < XVECLEN (x, i); j++)
2136 if (volatile_insn_p (XVECEXP (x, i, j)))
2137 return 1;
2141 return 0;
2144 /* Nonzero if X contains any volatile memory references
2145 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2148 volatile_refs_p (const_rtx x)
2150 const RTX_CODE code = GET_CODE (x);
2151 switch (code)
2153 case LABEL_REF:
2154 case SYMBOL_REF:
2155 case CONST:
2156 CASE_CONST_ANY:
2157 case CC0:
2158 case PC:
2159 case REG:
2160 case SCRATCH:
2161 case CLOBBER:
2162 case ADDR_VEC:
2163 case ADDR_DIFF_VEC:
2164 return 0;
2166 case UNSPEC_VOLATILE:
2167 return 1;
2169 case MEM:
2170 case ASM_INPUT:
2171 case ASM_OPERANDS:
2172 if (MEM_VOLATILE_P (x))
2173 return 1;
2175 default:
2176 break;
2179 /* Recursively scan the operands of this expression. */
2182 const char *const fmt = GET_RTX_FORMAT (code);
2183 int i;
2185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2187 if (fmt[i] == 'e')
2189 if (volatile_refs_p (XEXP (x, i)))
2190 return 1;
2192 else if (fmt[i] == 'E')
2194 int j;
2195 for (j = 0; j < XVECLEN (x, i); j++)
2196 if (volatile_refs_p (XVECEXP (x, i, j)))
2197 return 1;
2201 return 0;
2204 /* Similar to above, except that it also rejects register pre- and post-
2205 incrementing. */
2208 side_effects_p (const_rtx x)
2210 const RTX_CODE code = GET_CODE (x);
2211 switch (code)
2213 case LABEL_REF:
2214 case SYMBOL_REF:
2215 case CONST:
2216 CASE_CONST_ANY:
2217 case CC0:
2218 case PC:
2219 case REG:
2220 case SCRATCH:
2221 case ADDR_VEC:
2222 case ADDR_DIFF_VEC:
2223 case VAR_LOCATION:
2224 return 0;
2226 case CLOBBER:
2227 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2228 when some combination can't be done. If we see one, don't think
2229 that we can simplify the expression. */
2230 return (GET_MODE (x) != VOIDmode);
2232 case PRE_INC:
2233 case PRE_DEC:
2234 case POST_INC:
2235 case POST_DEC:
2236 case PRE_MODIFY:
2237 case POST_MODIFY:
2238 case CALL:
2239 case UNSPEC_VOLATILE:
2240 return 1;
2242 case MEM:
2243 case ASM_INPUT:
2244 case ASM_OPERANDS:
2245 if (MEM_VOLATILE_P (x))
2246 return 1;
2248 default:
2249 break;
2252 /* Recursively scan the operands of this expression. */
2255 const char *fmt = GET_RTX_FORMAT (code);
2256 int i;
2258 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2260 if (fmt[i] == 'e')
2262 if (side_effects_p (XEXP (x, i)))
2263 return 1;
2265 else if (fmt[i] == 'E')
2267 int j;
2268 for (j = 0; j < XVECLEN (x, i); j++)
2269 if (side_effects_p (XVECEXP (x, i, j)))
2270 return 1;
2274 return 0;
2277 /* Return nonzero if evaluating rtx X might cause a trap.
2278 FLAGS controls how to consider MEMs. A nonzero means the context
2279 of the access may have changed from the original, such that the
2280 address may have become invalid. */
2283 may_trap_p_1 (const_rtx x, unsigned flags)
2285 int i;
2286 enum rtx_code code;
2287 const char *fmt;
2289 /* We make no distinction currently, but this function is part of
2290 the internal target-hooks ABI so we keep the parameter as
2291 "unsigned flags". */
2292 bool code_changed = flags != 0;
2294 if (x == 0)
2295 return 0;
2296 code = GET_CODE (x);
2297 switch (code)
2299 /* Handle these cases quickly. */
2300 CASE_CONST_ANY:
2301 case SYMBOL_REF:
2302 case LABEL_REF:
2303 case CONST:
2304 case PC:
2305 case CC0:
2306 case REG:
2307 case SCRATCH:
2308 return 0;
2310 case UNSPEC:
2311 return targetm.unspec_may_trap_p (x, flags);
2313 case UNSPEC_VOLATILE:
2314 case ASM_INPUT:
2315 case TRAP_IF:
2316 return 1;
2318 case ASM_OPERANDS:
2319 return MEM_VOLATILE_P (x);
2321 /* Memory ref can trap unless it's a static var or a stack slot. */
2322 case MEM:
2323 /* Recognize specific pattern of stack checking probes. */
2324 if (flag_stack_check
2325 && MEM_VOLATILE_P (x)
2326 && XEXP (x, 0) == stack_pointer_rtx)
2327 return 1;
2328 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2329 reference; moving it out of context such as when moving code
2330 when optimizing, might cause its address to become invalid. */
2331 code_changed
2332 || !MEM_NOTRAP_P (x))
2334 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2335 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2336 GET_MODE (x), code_changed);
2339 return 0;
2341 /* Division by a non-constant might trap. */
2342 case DIV:
2343 case MOD:
2344 case UDIV:
2345 case UMOD:
2346 if (HONOR_SNANS (GET_MODE (x)))
2347 return 1;
2348 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2349 return flag_trapping_math;
2350 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2351 return 1;
2352 break;
2354 case EXPR_LIST:
2355 /* An EXPR_LIST is used to represent a function call. This
2356 certainly may trap. */
2357 return 1;
2359 case GE:
2360 case GT:
2361 case LE:
2362 case LT:
2363 case LTGT:
2364 case COMPARE:
2365 /* Some floating point comparisons may trap. */
2366 if (!flag_trapping_math)
2367 break;
2368 /* ??? There is no machine independent way to check for tests that trap
2369 when COMPARE is used, though many targets do make this distinction.
2370 For instance, sparc uses CCFPE for compares which generate exceptions
2371 and CCFP for compares which do not generate exceptions. */
2372 if (HONOR_NANS (GET_MODE (x)))
2373 return 1;
2374 /* But often the compare has some CC mode, so check operand
2375 modes as well. */
2376 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2377 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2378 return 1;
2379 break;
2381 case EQ:
2382 case NE:
2383 if (HONOR_SNANS (GET_MODE (x)))
2384 return 1;
2385 /* Often comparison is CC mode, so check operand modes. */
2386 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2387 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2388 return 1;
2389 break;
2391 case FIX:
2392 /* Conversion of floating point might trap. */
2393 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2394 return 1;
2395 break;
2397 case NEG:
2398 case ABS:
2399 case SUBREG:
2400 /* These operations don't trap even with floating point. */
2401 break;
2403 default:
2404 /* Any floating arithmetic may trap. */
2405 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2406 return 1;
2409 fmt = GET_RTX_FORMAT (code);
2410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2412 if (fmt[i] == 'e')
2414 if (may_trap_p_1 (XEXP (x, i), flags))
2415 return 1;
2417 else if (fmt[i] == 'E')
2419 int j;
2420 for (j = 0; j < XVECLEN (x, i); j++)
2421 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2422 return 1;
2425 return 0;
2428 /* Return nonzero if evaluating rtx X might cause a trap. */
2431 may_trap_p (const_rtx x)
2433 return may_trap_p_1 (x, 0);
2436 /* Same as above, but additionally return nonzero if evaluating rtx X might
2437 cause a fault. We define a fault for the purpose of this function as a
2438 erroneous execution condition that cannot be encountered during the normal
2439 execution of a valid program; the typical example is an unaligned memory
2440 access on a strict alignment machine. The compiler guarantees that it
2441 doesn't generate code that will fault from a valid program, but this
2442 guarantee doesn't mean anything for individual instructions. Consider
2443 the following example:
2445 struct S { int d; union { char *cp; int *ip; }; };
2447 int foo(struct S *s)
2449 if (s->d == 1)
2450 return *s->ip;
2451 else
2452 return *s->cp;
2455 on a strict alignment machine. In a valid program, foo will never be
2456 invoked on a structure for which d is equal to 1 and the underlying
2457 unique field of the union not aligned on a 4-byte boundary, but the
2458 expression *s->ip might cause a fault if considered individually.
2460 At the RTL level, potentially problematic expressions will almost always
2461 verify may_trap_p; for example, the above dereference can be emitted as
2462 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2463 However, suppose that foo is inlined in a caller that causes s->cp to
2464 point to a local character variable and guarantees that s->d is not set
2465 to 1; foo may have been effectively translated into pseudo-RTL as:
2467 if ((reg:SI) == 1)
2468 (set (reg:SI) (mem:SI (%fp - 7)))
2469 else
2470 (set (reg:QI) (mem:QI (%fp - 7)))
2472 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2473 memory reference to a stack slot, but it will certainly cause a fault
2474 on a strict alignment machine. */
2477 may_trap_or_fault_p (const_rtx x)
2479 return may_trap_p_1 (x, 1);
2482 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2483 i.e., an inequality. */
2486 inequality_comparisons_p (const_rtx x)
2488 const char *fmt;
2489 int len, i;
2490 const enum rtx_code code = GET_CODE (x);
2492 switch (code)
2494 case REG:
2495 case SCRATCH:
2496 case PC:
2497 case CC0:
2498 CASE_CONST_ANY:
2499 case CONST:
2500 case LABEL_REF:
2501 case SYMBOL_REF:
2502 return 0;
2504 case LT:
2505 case LTU:
2506 case GT:
2507 case GTU:
2508 case LE:
2509 case LEU:
2510 case GE:
2511 case GEU:
2512 return 1;
2514 default:
2515 break;
2518 len = GET_RTX_LENGTH (code);
2519 fmt = GET_RTX_FORMAT (code);
2521 for (i = 0; i < len; i++)
2523 if (fmt[i] == 'e')
2525 if (inequality_comparisons_p (XEXP (x, i)))
2526 return 1;
2528 else if (fmt[i] == 'E')
2530 int j;
2531 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2532 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2533 return 1;
2537 return 0;
2540 /* Replace any occurrence of FROM in X with TO. The function does
2541 not enter into CONST_DOUBLE for the replace.
2543 Note that copying is not done so X must not be shared unless all copies
2544 are to be modified. */
2547 replace_rtx (rtx x, rtx from, rtx to)
2549 int i, j;
2550 const char *fmt;
2552 if (x == from)
2553 return to;
2555 /* Allow this function to make replacements in EXPR_LISTs. */
2556 if (x == 0)
2557 return 0;
2559 if (GET_CODE (x) == SUBREG)
2561 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2563 if (CONST_INT_P (new_rtx))
2565 x = simplify_subreg (GET_MODE (x), new_rtx,
2566 GET_MODE (SUBREG_REG (x)),
2567 SUBREG_BYTE (x));
2568 gcc_assert (x);
2570 else
2571 SUBREG_REG (x) = new_rtx;
2573 return x;
2575 else if (GET_CODE (x) == ZERO_EXTEND)
2577 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2579 if (CONST_INT_P (new_rtx))
2581 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2582 new_rtx, GET_MODE (XEXP (x, 0)));
2583 gcc_assert (x);
2585 else
2586 XEXP (x, 0) = new_rtx;
2588 return x;
2591 fmt = GET_RTX_FORMAT (GET_CODE (x));
2592 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2594 if (fmt[i] == 'e')
2595 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2596 else if (fmt[i] == 'E')
2597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2598 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2601 return x;
2604 /* Replace occurrences of the old label in *X with the new one.
2605 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2608 replace_label (rtx *x, void *data)
2610 rtx l = *x;
2611 rtx old_label = ((replace_label_data *) data)->r1;
2612 rtx new_label = ((replace_label_data *) data)->r2;
2613 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2615 if (l == NULL_RTX)
2616 return 0;
2618 if (GET_CODE (l) == SYMBOL_REF
2619 && CONSTANT_POOL_ADDRESS_P (l))
2621 rtx c = get_pool_constant (l);
2622 if (rtx_referenced_p (old_label, c))
2624 rtx new_c, new_l;
2625 replace_label_data *d = (replace_label_data *) data;
2627 /* Create a copy of constant C; replace the label inside
2628 but do not update LABEL_NUSES because uses in constant pool
2629 are not counted. */
2630 new_c = copy_rtx (c);
2631 d->update_label_nuses = false;
2632 for_each_rtx (&new_c, replace_label, data);
2633 d->update_label_nuses = update_label_nuses;
2635 /* Add the new constant NEW_C to constant pool and replace
2636 the old reference to constant by new reference. */
2637 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2638 *x = replace_rtx (l, l, new_l);
2640 return 0;
2643 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2644 field. This is not handled by for_each_rtx because it doesn't
2645 handle unprinted ('0') fields. */
2646 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2647 JUMP_LABEL (l) = new_label;
2649 if ((GET_CODE (l) == LABEL_REF
2650 || GET_CODE (l) == INSN_LIST)
2651 && XEXP (l, 0) == old_label)
2653 XEXP (l, 0) = new_label;
2654 if (update_label_nuses)
2656 ++LABEL_NUSES (new_label);
2657 --LABEL_NUSES (old_label);
2659 return 0;
2662 return 0;
2665 /* When *BODY is equal to X or X is directly referenced by *BODY
2666 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2667 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2669 static int
2670 rtx_referenced_p_1 (rtx *body, void *x)
2672 rtx y = (rtx) x;
2674 if (*body == NULL_RTX)
2675 return y == NULL_RTX;
2677 /* Return true if a label_ref *BODY refers to label Y. */
2678 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2679 return XEXP (*body, 0) == y;
2681 /* If *BODY is a reference to pool constant traverse the constant. */
2682 if (GET_CODE (*body) == SYMBOL_REF
2683 && CONSTANT_POOL_ADDRESS_P (*body))
2684 return rtx_referenced_p (y, get_pool_constant (*body));
2686 /* By default, compare the RTL expressions. */
2687 return rtx_equal_p (*body, y);
2690 /* Return true if X is referenced in BODY. */
2693 rtx_referenced_p (rtx x, rtx body)
2695 return for_each_rtx (&body, rtx_referenced_p_1, x);
2698 /* If INSN is a tablejump return true and store the label (before jump table) to
2699 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2701 bool
2702 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2704 rtx label, table;
2706 if (!JUMP_P (insn))
2707 return false;
2709 label = JUMP_LABEL (insn);
2710 if (label != NULL_RTX && !ANY_RETURN_P (label)
2711 && (table = next_active_insn (label)) != NULL_RTX
2712 && JUMP_TABLE_DATA_P (table))
2714 if (labelp)
2715 *labelp = label;
2716 if (tablep)
2717 *tablep = table;
2718 return true;
2720 return false;
2723 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2724 constant that is not in the constant pool and not in the condition
2725 of an IF_THEN_ELSE. */
2727 static int
2728 computed_jump_p_1 (const_rtx x)
2730 const enum rtx_code code = GET_CODE (x);
2731 int i, j;
2732 const char *fmt;
2734 switch (code)
2736 case LABEL_REF:
2737 case PC:
2738 return 0;
2740 case CONST:
2741 CASE_CONST_ANY:
2742 case SYMBOL_REF:
2743 case REG:
2744 return 1;
2746 case MEM:
2747 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2748 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2750 case IF_THEN_ELSE:
2751 return (computed_jump_p_1 (XEXP (x, 1))
2752 || computed_jump_p_1 (XEXP (x, 2)));
2754 default:
2755 break;
2758 fmt = GET_RTX_FORMAT (code);
2759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2761 if (fmt[i] == 'e'
2762 && computed_jump_p_1 (XEXP (x, i)))
2763 return 1;
2765 else if (fmt[i] == 'E')
2766 for (j = 0; j < XVECLEN (x, i); j++)
2767 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2768 return 1;
2771 return 0;
2774 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2776 Tablejumps and casesi insns are not considered indirect jumps;
2777 we can recognize them by a (use (label_ref)). */
2780 computed_jump_p (const_rtx insn)
2782 int i;
2783 if (JUMP_P (insn))
2785 rtx pat = PATTERN (insn);
2787 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2788 if (JUMP_LABEL (insn) != NULL)
2789 return 0;
2791 if (GET_CODE (pat) == PARALLEL)
2793 int len = XVECLEN (pat, 0);
2794 int has_use_labelref = 0;
2796 for (i = len - 1; i >= 0; i--)
2797 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2798 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2799 == LABEL_REF))
2800 has_use_labelref = 1;
2802 if (! has_use_labelref)
2803 for (i = len - 1; i >= 0; i--)
2804 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2805 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2806 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2807 return 1;
2809 else if (GET_CODE (pat) == SET
2810 && SET_DEST (pat) == pc_rtx
2811 && computed_jump_p_1 (SET_SRC (pat)))
2812 return 1;
2814 return 0;
2817 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2818 calls. Processes the subexpressions of EXP and passes them to F. */
2819 static int
2820 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2822 int result, i, j;
2823 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2824 rtx *x;
2826 for (; format[n] != '\0'; n++)
2828 switch (format[n])
2830 case 'e':
2831 /* Call F on X. */
2832 x = &XEXP (exp, n);
2833 result = (*f) (x, data);
2834 if (result == -1)
2835 /* Do not traverse sub-expressions. */
2836 continue;
2837 else if (result != 0)
2838 /* Stop the traversal. */
2839 return result;
2841 if (*x == NULL_RTX)
2842 /* There are no sub-expressions. */
2843 continue;
2845 i = non_rtx_starting_operands[GET_CODE (*x)];
2846 if (i >= 0)
2848 result = for_each_rtx_1 (*x, i, f, data);
2849 if (result != 0)
2850 return result;
2852 break;
2854 case 'V':
2855 case 'E':
2856 if (XVEC (exp, n) == 0)
2857 continue;
2858 for (j = 0; j < XVECLEN (exp, n); ++j)
2860 /* Call F on X. */
2861 x = &XVECEXP (exp, n, j);
2862 result = (*f) (x, data);
2863 if (result == -1)
2864 /* Do not traverse sub-expressions. */
2865 continue;
2866 else if (result != 0)
2867 /* Stop the traversal. */
2868 return result;
2870 if (*x == NULL_RTX)
2871 /* There are no sub-expressions. */
2872 continue;
2874 i = non_rtx_starting_operands[GET_CODE (*x)];
2875 if (i >= 0)
2877 result = for_each_rtx_1 (*x, i, f, data);
2878 if (result != 0)
2879 return result;
2882 break;
2884 default:
2885 /* Nothing to do. */
2886 break;
2890 return 0;
2893 /* Traverse X via depth-first search, calling F for each
2894 sub-expression (including X itself). F is also passed the DATA.
2895 If F returns -1, do not traverse sub-expressions, but continue
2896 traversing the rest of the tree. If F ever returns any other
2897 nonzero value, stop the traversal, and return the value returned
2898 by F. Otherwise, return 0. This function does not traverse inside
2899 tree structure that contains RTX_EXPRs, or into sub-expressions
2900 whose format code is `0' since it is not known whether or not those
2901 codes are actually RTL.
2903 This routine is very general, and could (should?) be used to
2904 implement many of the other routines in this file. */
2907 for_each_rtx (rtx *x, rtx_function f, void *data)
2909 int result;
2910 int i;
2912 /* Call F on X. */
2913 result = (*f) (x, data);
2914 if (result == -1)
2915 /* Do not traverse sub-expressions. */
2916 return 0;
2917 else if (result != 0)
2918 /* Stop the traversal. */
2919 return result;
2921 if (*x == NULL_RTX)
2922 /* There are no sub-expressions. */
2923 return 0;
2925 i = non_rtx_starting_operands[GET_CODE (*x)];
2926 if (i < 0)
2927 return 0;
2929 return for_each_rtx_1 (*x, i, f, data);
2934 /* Data structure that holds the internal state communicated between
2935 for_each_inc_dec, for_each_inc_dec_find_mem and
2936 for_each_inc_dec_find_inc_dec. */
2938 struct for_each_inc_dec_ops {
2939 /* The function to be called for each autoinc operation found. */
2940 for_each_inc_dec_fn fn;
2941 /* The opaque argument to be passed to it. */
2942 void *arg;
2943 /* The MEM we're visiting, if any. */
2944 rtx mem;
2947 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2949 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2950 operands of the equivalent add insn and pass the result to the
2951 operator specified by *D. */
2953 static int
2954 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2956 rtx x = *r;
2957 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2959 switch (GET_CODE (x))
2961 case PRE_INC:
2962 case POST_INC:
2964 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2965 rtx r1 = XEXP (x, 0);
2966 rtx c = gen_int_mode (size, GET_MODE (r1));
2967 return data->fn (data->mem, x, r1, r1, c, data->arg);
2970 case PRE_DEC:
2971 case POST_DEC:
2973 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2974 rtx r1 = XEXP (x, 0);
2975 rtx c = gen_int_mode (-size, GET_MODE (r1));
2976 return data->fn (data->mem, x, r1, r1, c, data->arg);
2979 case PRE_MODIFY:
2980 case POST_MODIFY:
2982 rtx r1 = XEXP (x, 0);
2983 rtx add = XEXP (x, 1);
2984 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2987 case MEM:
2989 rtx save = data->mem;
2990 int ret = for_each_inc_dec_find_mem (r, d);
2991 data->mem = save;
2992 return ret;
2995 default:
2996 return 0;
3000 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3001 address, extract the operands of the equivalent add insn and pass
3002 the result to the operator specified by *D. */
3004 static int
3005 for_each_inc_dec_find_mem (rtx *r, void *d)
3007 rtx x = *r;
3008 if (x != NULL_RTX && MEM_P (x))
3010 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3011 int result;
3013 data->mem = x;
3015 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3016 data);
3017 if (result)
3018 return result;
3020 return -1;
3022 return 0;
3025 /* Traverse *X looking for MEMs, and for autoinc operations within
3026 them. For each such autoinc operation found, call FN, passing it
3027 the innermost enclosing MEM, the operation itself, the RTX modified
3028 by the operation, two RTXs (the second may be NULL) that, once
3029 added, represent the value to be held by the modified RTX
3030 afterwards, and ARG. FN is to return -1 to skip looking for other
3031 autoinc operations within the visited operation, 0 to continue the
3032 traversal, or any other value to have it returned to the caller of
3033 for_each_inc_dec. */
3036 for_each_inc_dec (rtx *x,
3037 for_each_inc_dec_fn fn,
3038 void *arg)
3040 struct for_each_inc_dec_ops data;
3042 data.fn = fn;
3043 data.arg = arg;
3044 data.mem = NULL;
3046 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3050 /* Searches X for any reference to REGNO, returning the rtx of the
3051 reference found if any. Otherwise, returns NULL_RTX. */
3054 regno_use_in (unsigned int regno, rtx x)
3056 const char *fmt;
3057 int i, j;
3058 rtx tem;
3060 if (REG_P (x) && REGNO (x) == regno)
3061 return x;
3063 fmt = GET_RTX_FORMAT (GET_CODE (x));
3064 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3066 if (fmt[i] == 'e')
3068 if ((tem = regno_use_in (regno, XEXP (x, i))))
3069 return tem;
3071 else if (fmt[i] == 'E')
3072 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3073 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3074 return tem;
3077 return NULL_RTX;
3080 /* Return a value indicating whether OP, an operand of a commutative
3081 operation, is preferred as the first or second operand. The higher
3082 the value, the stronger the preference for being the first operand.
3083 We use negative values to indicate a preference for the first operand
3084 and positive values for the second operand. */
3087 commutative_operand_precedence (rtx op)
3089 enum rtx_code code = GET_CODE (op);
3091 /* Constants always come the second operand. Prefer "nice" constants. */
3092 if (code == CONST_INT)
3093 return -8;
3094 if (code == CONST_DOUBLE)
3095 return -7;
3096 if (code == CONST_FIXED)
3097 return -7;
3098 op = avoid_constant_pool_reference (op);
3099 code = GET_CODE (op);
3101 switch (GET_RTX_CLASS (code))
3103 case RTX_CONST_OBJ:
3104 if (code == CONST_INT)
3105 return -6;
3106 if (code == CONST_DOUBLE)
3107 return -5;
3108 if (code == CONST_FIXED)
3109 return -5;
3110 return -4;
3112 case RTX_EXTRA:
3113 /* SUBREGs of objects should come second. */
3114 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3115 return -3;
3116 return 0;
3118 case RTX_OBJ:
3119 /* Complex expressions should be the first, so decrease priority
3120 of objects. Prefer pointer objects over non pointer objects. */
3121 if ((REG_P (op) && REG_POINTER (op))
3122 || (MEM_P (op) && MEM_POINTER (op)))
3123 return -1;
3124 return -2;
3126 case RTX_COMM_ARITH:
3127 /* Prefer operands that are themselves commutative to be first.
3128 This helps to make things linear. In particular,
3129 (and (and (reg) (reg)) (not (reg))) is canonical. */
3130 return 4;
3132 case RTX_BIN_ARITH:
3133 /* If only one operand is a binary expression, it will be the first
3134 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3135 is canonical, although it will usually be further simplified. */
3136 return 2;
3138 case RTX_UNARY:
3139 /* Then prefer NEG and NOT. */
3140 if (code == NEG || code == NOT)
3141 return 1;
3143 default:
3144 return 0;
3148 /* Return 1 iff it is necessary to swap operands of commutative operation
3149 in order to canonicalize expression. */
3151 bool
3152 swap_commutative_operands_p (rtx x, rtx y)
3154 return (commutative_operand_precedence (x)
3155 < commutative_operand_precedence (y));
3158 /* Return 1 if X is an autoincrement side effect and the register is
3159 not the stack pointer. */
3161 auto_inc_p (const_rtx x)
3163 switch (GET_CODE (x))
3165 case PRE_INC:
3166 case POST_INC:
3167 case PRE_DEC:
3168 case POST_DEC:
3169 case PRE_MODIFY:
3170 case POST_MODIFY:
3171 /* There are no REG_INC notes for SP. */
3172 if (XEXP (x, 0) != stack_pointer_rtx)
3173 return 1;
3174 default:
3175 break;
3177 return 0;
3180 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3182 loc_mentioned_in_p (rtx *loc, const_rtx in)
3184 enum rtx_code code;
3185 const char *fmt;
3186 int i, j;
3188 if (!in)
3189 return 0;
3191 code = GET_CODE (in);
3192 fmt = GET_RTX_FORMAT (code);
3193 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3195 if (fmt[i] == 'e')
3197 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3198 return 1;
3200 else if (fmt[i] == 'E')
3201 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3202 if (loc == &XVECEXP (in, i, j)
3203 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3204 return 1;
3206 return 0;
3209 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3210 and SUBREG_BYTE, return the bit offset where the subreg begins
3211 (counting from the least significant bit of the operand). */
3213 unsigned int
3214 subreg_lsb_1 (enum machine_mode outer_mode,
3215 enum machine_mode inner_mode,
3216 unsigned int subreg_byte)
3218 unsigned int bitpos;
3219 unsigned int byte;
3220 unsigned int word;
3222 /* A paradoxical subreg begins at bit position 0. */
3223 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3224 return 0;
3226 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3227 /* If the subreg crosses a word boundary ensure that
3228 it also begins and ends on a word boundary. */
3229 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3230 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3231 && (subreg_byte % UNITS_PER_WORD
3232 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3234 if (WORDS_BIG_ENDIAN)
3235 word = (GET_MODE_SIZE (inner_mode)
3236 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3237 else
3238 word = subreg_byte / UNITS_PER_WORD;
3239 bitpos = word * BITS_PER_WORD;
3241 if (BYTES_BIG_ENDIAN)
3242 byte = (GET_MODE_SIZE (inner_mode)
3243 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3244 else
3245 byte = subreg_byte % UNITS_PER_WORD;
3246 bitpos += byte * BITS_PER_UNIT;
3248 return bitpos;
3251 /* Given a subreg X, return the bit offset where the subreg begins
3252 (counting from the least significant bit of the reg). */
3254 unsigned int
3255 subreg_lsb (const_rtx x)
3257 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3258 SUBREG_BYTE (x));
3261 /* Fill in information about a subreg of a hard register.
3262 xregno - A regno of an inner hard subreg_reg (or what will become one).
3263 xmode - The mode of xregno.
3264 offset - The byte offset.
3265 ymode - The mode of a top level SUBREG (or what may become one).
3266 info - Pointer to structure to fill in. */
3267 void
3268 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3269 unsigned int offset, enum machine_mode ymode,
3270 struct subreg_info *info)
3272 int nregs_xmode, nregs_ymode;
3273 int mode_multiple, nregs_multiple;
3274 int offset_adj, y_offset, y_offset_adj;
3275 int regsize_xmode, regsize_ymode;
3276 bool rknown;
3278 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3280 rknown = false;
3282 /* If there are holes in a non-scalar mode in registers, we expect
3283 that it is made up of its units concatenated together. */
3284 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3286 enum machine_mode xmode_unit;
3288 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3289 if (GET_MODE_INNER (xmode) == VOIDmode)
3290 xmode_unit = xmode;
3291 else
3292 xmode_unit = GET_MODE_INNER (xmode);
3293 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3294 gcc_assert (nregs_xmode
3295 == (GET_MODE_NUNITS (xmode)
3296 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3297 gcc_assert (hard_regno_nregs[xregno][xmode]
3298 == (hard_regno_nregs[xregno][xmode_unit]
3299 * GET_MODE_NUNITS (xmode)));
3301 /* You can only ask for a SUBREG of a value with holes in the middle
3302 if you don't cross the holes. (Such a SUBREG should be done by
3303 picking a different register class, or doing it in memory if
3304 necessary.) An example of a value with holes is XCmode on 32-bit
3305 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3306 3 for each part, but in memory it's two 128-bit parts.
3307 Padding is assumed to be at the end (not necessarily the 'high part')
3308 of each unit. */
3309 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3310 < GET_MODE_NUNITS (xmode))
3311 && (offset / GET_MODE_SIZE (xmode_unit)
3312 != ((offset + GET_MODE_SIZE (ymode) - 1)
3313 / GET_MODE_SIZE (xmode_unit))))
3315 info->representable_p = false;
3316 rknown = true;
3319 else
3320 nregs_xmode = hard_regno_nregs[xregno][xmode];
3322 nregs_ymode = hard_regno_nregs[xregno][ymode];
3324 /* Paradoxical subregs are otherwise valid. */
3325 if (!rknown
3326 && offset == 0
3327 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3329 info->representable_p = true;
3330 /* If this is a big endian paradoxical subreg, which uses more
3331 actual hard registers than the original register, we must
3332 return a negative offset so that we find the proper highpart
3333 of the register. */
3334 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3335 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3336 info->offset = nregs_xmode - nregs_ymode;
3337 else
3338 info->offset = 0;
3339 info->nregs = nregs_ymode;
3340 return;
3343 /* If registers store different numbers of bits in the different
3344 modes, we cannot generally form this subreg. */
3345 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3346 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3347 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3348 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3350 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3351 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3352 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3354 info->representable_p = false;
3355 info->nregs
3356 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3357 info->offset = offset / regsize_xmode;
3358 return;
3360 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3362 info->representable_p = false;
3363 info->nregs
3364 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3365 info->offset = offset / regsize_xmode;
3366 return;
3370 /* Lowpart subregs are otherwise valid. */
3371 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3373 info->representable_p = true;
3374 rknown = true;
3376 if (offset == 0 || nregs_xmode == nregs_ymode)
3378 info->offset = 0;
3379 info->nregs = nregs_ymode;
3380 return;
3384 /* This should always pass, otherwise we don't know how to verify
3385 the constraint. These conditions may be relaxed but
3386 subreg_regno_offset would need to be redesigned. */
3387 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3388 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3390 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3391 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3393 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3394 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3395 HOST_WIDE_INT off_low = offset & (ysize - 1);
3396 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3397 offset = (xsize - ysize - off_high) | off_low;
3399 /* The XMODE value can be seen as a vector of NREGS_XMODE
3400 values. The subreg must represent a lowpart of given field.
3401 Compute what field it is. */
3402 offset_adj = offset;
3403 offset_adj -= subreg_lowpart_offset (ymode,
3404 mode_for_size (GET_MODE_BITSIZE (xmode)
3405 / nregs_xmode,
3406 MODE_INT, 0));
3408 /* Size of ymode must not be greater than the size of xmode. */
3409 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3410 gcc_assert (mode_multiple != 0);
3412 y_offset = offset / GET_MODE_SIZE (ymode);
3413 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3414 nregs_multiple = nregs_xmode / nregs_ymode;
3416 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3417 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3419 if (!rknown)
3421 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3422 rknown = true;
3424 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3425 info->nregs = nregs_ymode;
3428 /* This function returns the regno offset of a subreg expression.
3429 xregno - A regno of an inner hard subreg_reg (or what will become one).
3430 xmode - The mode of xregno.
3431 offset - The byte offset.
3432 ymode - The mode of a top level SUBREG (or what may become one).
3433 RETURN - The regno offset which would be used. */
3434 unsigned int
3435 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3436 unsigned int offset, enum machine_mode ymode)
3438 struct subreg_info info;
3439 subreg_get_info (xregno, xmode, offset, ymode, &info);
3440 return info.offset;
3443 /* This function returns true when the offset is representable via
3444 subreg_offset in the given regno.
3445 xregno - A regno of an inner hard subreg_reg (or what will become one).
3446 xmode - The mode of xregno.
3447 offset - The byte offset.
3448 ymode - The mode of a top level SUBREG (or what may become one).
3449 RETURN - Whether the offset is representable. */
3450 bool
3451 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3452 unsigned int offset, enum machine_mode ymode)
3454 struct subreg_info info;
3455 subreg_get_info (xregno, xmode, offset, ymode, &info);
3456 return info.representable_p;
3459 /* Return the number of a YMODE register to which
3461 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3463 can be simplified. Return -1 if the subreg can't be simplified.
3465 XREGNO is a hard register number. */
3468 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3469 unsigned int offset, enum machine_mode ymode)
3471 struct subreg_info info;
3472 unsigned int yregno;
3474 #ifdef CANNOT_CHANGE_MODE_CLASS
3475 /* Give the backend a chance to disallow the mode change. */
3476 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3477 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3478 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3479 /* We can use mode change in LRA for some transformations. */
3480 && ! lra_in_progress)
3481 return -1;
3482 #endif
3484 /* We shouldn't simplify stack-related registers. */
3485 if ((!reload_completed || frame_pointer_needed)
3486 && xregno == FRAME_POINTER_REGNUM)
3487 return -1;
3489 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3490 && xregno == ARG_POINTER_REGNUM)
3491 return -1;
3493 if (xregno == STACK_POINTER_REGNUM
3494 /* We should convert hard stack register in LRA if it is
3495 possible. */
3496 && ! lra_in_progress)
3497 return -1;
3499 /* Try to get the register offset. */
3500 subreg_get_info (xregno, xmode, offset, ymode, &info);
3501 if (!info.representable_p)
3502 return -1;
3504 /* Make sure that the offsetted register value is in range. */
3505 yregno = xregno + info.offset;
3506 if (!HARD_REGISTER_NUM_P (yregno))
3507 return -1;
3509 /* See whether (reg:YMODE YREGNO) is valid.
3511 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3512 This is a kludge to work around how complex FP arguments are passed
3513 on IA-64 and should be fixed. See PR target/49226. */
3514 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3515 && HARD_REGNO_MODE_OK (xregno, xmode))
3516 return -1;
3518 return (int) yregno;
3521 /* Return the final regno that a subreg expression refers to. */
3522 unsigned int
3523 subreg_regno (const_rtx x)
3525 unsigned int ret;
3526 rtx subreg = SUBREG_REG (x);
3527 int regno = REGNO (subreg);
3529 ret = regno + subreg_regno_offset (regno,
3530 GET_MODE (subreg),
3531 SUBREG_BYTE (x),
3532 GET_MODE (x));
3533 return ret;
3537 /* Return the number of registers that a subreg expression refers
3538 to. */
3539 unsigned int
3540 subreg_nregs (const_rtx x)
3542 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3545 /* Return the number of registers that a subreg REG with REGNO
3546 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3547 changed so that the regno can be passed in. */
3549 unsigned int
3550 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3552 struct subreg_info info;
3553 rtx subreg = SUBREG_REG (x);
3555 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3556 &info);
3557 return info.nregs;
3561 struct parms_set_data
3563 int nregs;
3564 HARD_REG_SET regs;
3567 /* Helper function for noticing stores to parameter registers. */
3568 static void
3569 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3571 struct parms_set_data *const d = (struct parms_set_data *) data;
3572 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3573 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3575 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3576 d->nregs--;
3580 /* Look backward for first parameter to be loaded.
3581 Note that loads of all parameters will not necessarily be
3582 found if CSE has eliminated some of them (e.g., an argument
3583 to the outer function is passed down as a parameter).
3584 Do not skip BOUNDARY. */
3586 find_first_parameter_load (rtx call_insn, rtx boundary)
3588 struct parms_set_data parm;
3589 rtx p, before, first_set;
3591 /* Since different machines initialize their parameter registers
3592 in different orders, assume nothing. Collect the set of all
3593 parameter registers. */
3594 CLEAR_HARD_REG_SET (parm.regs);
3595 parm.nregs = 0;
3596 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3597 if (GET_CODE (XEXP (p, 0)) == USE
3598 && REG_P (XEXP (XEXP (p, 0), 0)))
3600 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3602 /* We only care about registers which can hold function
3603 arguments. */
3604 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3605 continue;
3607 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3608 parm.nregs++;
3610 before = call_insn;
3611 first_set = call_insn;
3613 /* Search backward for the first set of a register in this set. */
3614 while (parm.nregs && before != boundary)
3616 before = PREV_INSN (before);
3618 /* It is possible that some loads got CSEed from one call to
3619 another. Stop in that case. */
3620 if (CALL_P (before))
3621 break;
3623 /* Our caller needs either ensure that we will find all sets
3624 (in case code has not been optimized yet), or take care
3625 for possible labels in a way by setting boundary to preceding
3626 CODE_LABEL. */
3627 if (LABEL_P (before))
3629 gcc_assert (before == boundary);
3630 break;
3633 if (INSN_P (before))
3635 int nregs_old = parm.nregs;
3636 note_stores (PATTERN (before), parms_set, &parm);
3637 /* If we found something that did not set a parameter reg,
3638 we're done. Do not keep going, as that might result
3639 in hoisting an insn before the setting of a pseudo
3640 that is used by the hoisted insn. */
3641 if (nregs_old != parm.nregs)
3642 first_set = before;
3643 else
3644 break;
3647 return first_set;
3650 /* Return true if we should avoid inserting code between INSN and preceding
3651 call instruction. */
3653 bool
3654 keep_with_call_p (const_rtx insn)
3656 rtx set;
3658 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3660 if (REG_P (SET_DEST (set))
3661 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3662 && fixed_regs[REGNO (SET_DEST (set))]
3663 && general_operand (SET_SRC (set), VOIDmode))
3664 return true;
3665 if (REG_P (SET_SRC (set))
3666 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3667 && REG_P (SET_DEST (set))
3668 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3669 return true;
3670 /* There may be a stack pop just after the call and before the store
3671 of the return register. Search for the actual store when deciding
3672 if we can break or not. */
3673 if (SET_DEST (set) == stack_pointer_rtx)
3675 /* This CONST_CAST is okay because next_nonnote_insn just
3676 returns its argument and we assign it to a const_rtx
3677 variable. */
3678 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3679 if (i2 && keep_with_call_p (i2))
3680 return true;
3683 return false;
3686 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3687 to non-complex jumps. That is, direct unconditional, conditional,
3688 and tablejumps, but not computed jumps or returns. It also does
3689 not apply to the fallthru case of a conditional jump. */
3691 bool
3692 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3694 rtx tmp = JUMP_LABEL (jump_insn);
3696 if (label == tmp)
3697 return true;
3699 if (tablejump_p (jump_insn, NULL, &tmp))
3701 rtvec vec = XVEC (PATTERN (tmp),
3702 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3703 int i, veclen = GET_NUM_ELEM (vec);
3705 for (i = 0; i < veclen; ++i)
3706 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3707 return true;
3710 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3711 return true;
3713 return false;
3717 /* Return an estimate of the cost of computing rtx X.
3718 One use is in cse, to decide which expression to keep in the hash table.
3719 Another is in rtl generation, to pick the cheapest way to multiply.
3720 Other uses like the latter are expected in the future.
3722 X appears as operand OPNO in an expression with code OUTER_CODE.
3723 SPEED specifies whether costs optimized for speed or size should
3724 be returned. */
3727 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3729 int i, j;
3730 enum rtx_code code;
3731 const char *fmt;
3732 int total;
3733 int factor;
3735 if (x == 0)
3736 return 0;
3738 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3739 many insns, taking N times as long. */
3740 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3741 if (factor == 0)
3742 factor = 1;
3744 /* Compute the default costs of certain things.
3745 Note that targetm.rtx_costs can override the defaults. */
3747 code = GET_CODE (x);
3748 switch (code)
3750 case MULT:
3751 /* Multiplication has time-complexity O(N*N), where N is the
3752 number of units (translated from digits) when using
3753 schoolbook long multiplication. */
3754 total = factor * factor * COSTS_N_INSNS (5);
3755 break;
3756 case DIV:
3757 case UDIV:
3758 case MOD:
3759 case UMOD:
3760 /* Similarly, complexity for schoolbook long division. */
3761 total = factor * factor * COSTS_N_INSNS (7);
3762 break;
3763 case USE:
3764 /* Used in combine.c as a marker. */
3765 total = 0;
3766 break;
3767 case SET:
3768 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3769 the mode for the factor. */
3770 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3771 if (factor == 0)
3772 factor = 1;
3773 /* Pass through. */
3774 default:
3775 total = factor * COSTS_N_INSNS (1);
3778 switch (code)
3780 case REG:
3781 return 0;
3783 case SUBREG:
3784 total = 0;
3785 /* If we can't tie these modes, make this expensive. The larger
3786 the mode, the more expensive it is. */
3787 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3788 return COSTS_N_INSNS (2 + factor);
3789 break;
3791 default:
3792 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3793 return total;
3794 break;
3797 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3798 which is already in total. */
3800 fmt = GET_RTX_FORMAT (code);
3801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3802 if (fmt[i] == 'e')
3803 total += rtx_cost (XEXP (x, i), code, i, speed);
3804 else if (fmt[i] == 'E')
3805 for (j = 0; j < XVECLEN (x, i); j++)
3806 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3808 return total;
3811 /* Fill in the structure C with information about both speed and size rtx
3812 costs for X, which is operand OPNO in an expression with code OUTER. */
3814 void
3815 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3816 struct full_rtx_costs *c)
3818 c->speed = rtx_cost (x, outer, opno, true);
3819 c->size = rtx_cost (x, outer, opno, false);
3823 /* Return cost of address expression X.
3824 Expect that X is properly formed address reference.
3826 SPEED parameter specify whether costs optimized for speed or size should
3827 be returned. */
3830 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3832 /* We may be asked for cost of various unusual addresses, such as operands
3833 of push instruction. It is not worthwhile to complicate writing
3834 of the target hook by such cases. */
3836 if (!memory_address_addr_space_p (mode, x, as))
3837 return 1000;
3839 return targetm.address_cost (x, mode, as, speed);
3842 /* If the target doesn't override, compute the cost as with arithmetic. */
3845 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
3847 return rtx_cost (x, MEM, 0, speed);
3851 unsigned HOST_WIDE_INT
3852 nonzero_bits (const_rtx x, enum machine_mode mode)
3854 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3857 unsigned int
3858 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3860 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3863 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3864 It avoids exponential behavior in nonzero_bits1 when X has
3865 identical subexpressions on the first or the second level. */
3867 static unsigned HOST_WIDE_INT
3868 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3869 enum machine_mode known_mode,
3870 unsigned HOST_WIDE_INT known_ret)
3872 if (x == known_x && mode == known_mode)
3873 return known_ret;
3875 /* Try to find identical subexpressions. If found call
3876 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3877 precomputed value for the subexpression as KNOWN_RET. */
3879 if (ARITHMETIC_P (x))
3881 rtx x0 = XEXP (x, 0);
3882 rtx x1 = XEXP (x, 1);
3884 /* Check the first level. */
3885 if (x0 == x1)
3886 return nonzero_bits1 (x, mode, x0, mode,
3887 cached_nonzero_bits (x0, mode, known_x,
3888 known_mode, known_ret));
3890 /* Check the second level. */
3891 if (ARITHMETIC_P (x0)
3892 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3893 return nonzero_bits1 (x, mode, x1, mode,
3894 cached_nonzero_bits (x1, mode, known_x,
3895 known_mode, known_ret));
3897 if (ARITHMETIC_P (x1)
3898 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3899 return nonzero_bits1 (x, mode, x0, mode,
3900 cached_nonzero_bits (x0, mode, known_x,
3901 known_mode, known_ret));
3904 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3907 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3908 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3909 is less useful. We can't allow both, because that results in exponential
3910 run time recursion. There is a nullstone testcase that triggered
3911 this. This macro avoids accidental uses of num_sign_bit_copies. */
3912 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3914 /* Given an expression, X, compute which bits in X can be nonzero.
3915 We don't care about bits outside of those defined in MODE.
3917 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3918 an arithmetic operation, we can do better. */
3920 static unsigned HOST_WIDE_INT
3921 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3922 enum machine_mode known_mode,
3923 unsigned HOST_WIDE_INT known_ret)
3925 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3926 unsigned HOST_WIDE_INT inner_nz;
3927 enum rtx_code code;
3928 enum machine_mode inner_mode;
3929 unsigned int mode_width = GET_MODE_PRECISION (mode);
3931 /* For floating-point and vector values, assume all bits are needed. */
3932 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3933 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3934 return nonzero;
3936 /* If X is wider than MODE, use its mode instead. */
3937 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3939 mode = GET_MODE (x);
3940 nonzero = GET_MODE_MASK (mode);
3941 mode_width = GET_MODE_PRECISION (mode);
3944 if (mode_width > HOST_BITS_PER_WIDE_INT)
3945 /* Our only callers in this case look for single bit values. So
3946 just return the mode mask. Those tests will then be false. */
3947 return nonzero;
3949 #ifndef WORD_REGISTER_OPERATIONS
3950 /* If MODE is wider than X, but both are a single word for both the host
3951 and target machines, we can compute this from which bits of the
3952 object might be nonzero in its own mode, taking into account the fact
3953 that on many CISC machines, accessing an object in a wider mode
3954 causes the high-order bits to become undefined. So they are
3955 not known to be zero. */
3957 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3958 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3959 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3960 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3962 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3963 known_x, known_mode, known_ret);
3964 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3965 return nonzero;
3967 #endif
3969 code = GET_CODE (x);
3970 switch (code)
3972 case REG:
3973 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3974 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3975 all the bits above ptr_mode are known to be zero. */
3976 /* As we do not know which address space the pointer is referring to,
3977 we can do this only if the target does not support different pointer
3978 or address modes depending on the address space. */
3979 if (target_default_pointer_address_modes_p ()
3980 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3981 && REG_POINTER (x))
3982 nonzero &= GET_MODE_MASK (ptr_mode);
3983 #endif
3985 /* Include declared information about alignment of pointers. */
3986 /* ??? We don't properly preserve REG_POINTER changes across
3987 pointer-to-integer casts, so we can't trust it except for
3988 things that we know must be pointers. See execute/960116-1.c. */
3989 if ((x == stack_pointer_rtx
3990 || x == frame_pointer_rtx
3991 || x == arg_pointer_rtx)
3992 && REGNO_POINTER_ALIGN (REGNO (x)))
3994 unsigned HOST_WIDE_INT alignment
3995 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3997 #ifdef PUSH_ROUNDING
3998 /* If PUSH_ROUNDING is defined, it is possible for the
3999 stack to be momentarily aligned only to that amount,
4000 so we pick the least alignment. */
4001 if (x == stack_pointer_rtx && PUSH_ARGS)
4002 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4003 alignment);
4004 #endif
4006 nonzero &= ~(alignment - 1);
4010 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4011 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4012 known_mode, known_ret,
4013 &nonzero_for_hook);
4015 if (new_rtx)
4016 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4017 known_mode, known_ret);
4019 return nonzero_for_hook;
4022 case CONST_INT:
4023 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4024 /* If X is negative in MODE, sign-extend the value. */
4025 if (INTVAL (x) > 0
4026 && mode_width < BITS_PER_WORD
4027 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4028 != 0)
4029 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4030 #endif
4032 return UINTVAL (x);
4034 case MEM:
4035 #ifdef LOAD_EXTEND_OP
4036 /* In many, if not most, RISC machines, reading a byte from memory
4037 zeros the rest of the register. Noticing that fact saves a lot
4038 of extra zero-extends. */
4039 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4040 nonzero &= GET_MODE_MASK (GET_MODE (x));
4041 #endif
4042 break;
4044 case EQ: case NE:
4045 case UNEQ: case LTGT:
4046 case GT: case GTU: case UNGT:
4047 case LT: case LTU: case UNLT:
4048 case GE: case GEU: case UNGE:
4049 case LE: case LEU: case UNLE:
4050 case UNORDERED: case ORDERED:
4051 /* If this produces an integer result, we know which bits are set.
4052 Code here used to clear bits outside the mode of X, but that is
4053 now done above. */
4054 /* Mind that MODE is the mode the caller wants to look at this
4055 operation in, and not the actual operation mode. We can wind
4056 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4057 that describes the results of a vector compare. */
4058 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4059 && mode_width <= HOST_BITS_PER_WIDE_INT)
4060 nonzero = STORE_FLAG_VALUE;
4061 break;
4063 case NEG:
4064 #if 0
4065 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4066 and num_sign_bit_copies. */
4067 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4068 == GET_MODE_PRECISION (GET_MODE (x)))
4069 nonzero = 1;
4070 #endif
4072 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4073 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4074 break;
4076 case ABS:
4077 #if 0
4078 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4079 and num_sign_bit_copies. */
4080 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4081 == GET_MODE_PRECISION (GET_MODE (x)))
4082 nonzero = 1;
4083 #endif
4084 break;
4086 case TRUNCATE:
4087 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4088 known_x, known_mode, known_ret)
4089 & GET_MODE_MASK (mode));
4090 break;
4092 case ZERO_EXTEND:
4093 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4094 known_x, known_mode, known_ret);
4095 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4096 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4097 break;
4099 case SIGN_EXTEND:
4100 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4101 Otherwise, show all the bits in the outer mode but not the inner
4102 may be nonzero. */
4103 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4104 known_x, known_mode, known_ret);
4105 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4107 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4108 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4109 inner_nz |= (GET_MODE_MASK (mode)
4110 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4113 nonzero &= inner_nz;
4114 break;
4116 case AND:
4117 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4118 known_x, known_mode, known_ret)
4119 & cached_nonzero_bits (XEXP (x, 1), mode,
4120 known_x, known_mode, known_ret);
4121 break;
4123 case XOR: case IOR:
4124 case UMIN: case UMAX: case SMIN: case SMAX:
4126 unsigned HOST_WIDE_INT nonzero0
4127 = cached_nonzero_bits (XEXP (x, 0), mode,
4128 known_x, known_mode, known_ret);
4130 /* Don't call nonzero_bits for the second time if it cannot change
4131 anything. */
4132 if ((nonzero & nonzero0) != nonzero)
4133 nonzero &= nonzero0
4134 | cached_nonzero_bits (XEXP (x, 1), mode,
4135 known_x, known_mode, known_ret);
4137 break;
4139 case PLUS: case MINUS:
4140 case MULT:
4141 case DIV: case UDIV:
4142 case MOD: case UMOD:
4143 /* We can apply the rules of arithmetic to compute the number of
4144 high- and low-order zero bits of these operations. We start by
4145 computing the width (position of the highest-order nonzero bit)
4146 and the number of low-order zero bits for each value. */
4148 unsigned HOST_WIDE_INT nz0
4149 = cached_nonzero_bits (XEXP (x, 0), mode,
4150 known_x, known_mode, known_ret);
4151 unsigned HOST_WIDE_INT nz1
4152 = cached_nonzero_bits (XEXP (x, 1), mode,
4153 known_x, known_mode, known_ret);
4154 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4155 int width0 = floor_log2 (nz0) + 1;
4156 int width1 = floor_log2 (nz1) + 1;
4157 int low0 = floor_log2 (nz0 & -nz0);
4158 int low1 = floor_log2 (nz1 & -nz1);
4159 unsigned HOST_WIDE_INT op0_maybe_minusp
4160 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4161 unsigned HOST_WIDE_INT op1_maybe_minusp
4162 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4163 unsigned int result_width = mode_width;
4164 int result_low = 0;
4166 switch (code)
4168 case PLUS:
4169 result_width = MAX (width0, width1) + 1;
4170 result_low = MIN (low0, low1);
4171 break;
4172 case MINUS:
4173 result_low = MIN (low0, low1);
4174 break;
4175 case MULT:
4176 result_width = width0 + width1;
4177 result_low = low0 + low1;
4178 break;
4179 case DIV:
4180 if (width1 == 0)
4181 break;
4182 if (!op0_maybe_minusp && !op1_maybe_minusp)
4183 result_width = width0;
4184 break;
4185 case UDIV:
4186 if (width1 == 0)
4187 break;
4188 result_width = width0;
4189 break;
4190 case MOD:
4191 if (width1 == 0)
4192 break;
4193 if (!op0_maybe_minusp && !op1_maybe_minusp)
4194 result_width = MIN (width0, width1);
4195 result_low = MIN (low0, low1);
4196 break;
4197 case UMOD:
4198 if (width1 == 0)
4199 break;
4200 result_width = MIN (width0, width1);
4201 result_low = MIN (low0, low1);
4202 break;
4203 default:
4204 gcc_unreachable ();
4207 if (result_width < mode_width)
4208 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4210 if (result_low > 0)
4211 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4213 break;
4215 case ZERO_EXTRACT:
4216 if (CONST_INT_P (XEXP (x, 1))
4217 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4218 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4219 break;
4221 case SUBREG:
4222 /* If this is a SUBREG formed for a promoted variable that has
4223 been zero-extended, we know that at least the high-order bits
4224 are zero, though others might be too. */
4226 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4227 nonzero = GET_MODE_MASK (GET_MODE (x))
4228 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4229 known_x, known_mode, known_ret);
4231 inner_mode = GET_MODE (SUBREG_REG (x));
4232 /* If the inner mode is a single word for both the host and target
4233 machines, we can compute this from which bits of the inner
4234 object might be nonzero. */
4235 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4236 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4238 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4239 known_x, known_mode, known_ret);
4241 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4242 /* If this is a typical RISC machine, we only have to worry
4243 about the way loads are extended. */
4244 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4245 ? val_signbit_known_set_p (inner_mode, nonzero)
4246 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4247 || !MEM_P (SUBREG_REG (x)))
4248 #endif
4250 /* On many CISC machines, accessing an object in a wider mode
4251 causes the high-order bits to become undefined. So they are
4252 not known to be zero. */
4253 if (GET_MODE_PRECISION (GET_MODE (x))
4254 > GET_MODE_PRECISION (inner_mode))
4255 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4256 & ~GET_MODE_MASK (inner_mode));
4259 break;
4261 case ASHIFTRT:
4262 case LSHIFTRT:
4263 case ASHIFT:
4264 case ROTATE:
4265 /* The nonzero bits are in two classes: any bits within MODE
4266 that aren't in GET_MODE (x) are always significant. The rest of the
4267 nonzero bits are those that are significant in the operand of
4268 the shift when shifted the appropriate number of bits. This
4269 shows that high-order bits are cleared by the right shift and
4270 low-order bits by left shifts. */
4271 if (CONST_INT_P (XEXP (x, 1))
4272 && INTVAL (XEXP (x, 1)) >= 0
4273 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4274 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4276 enum machine_mode inner_mode = GET_MODE (x);
4277 unsigned int width = GET_MODE_PRECISION (inner_mode);
4278 int count = INTVAL (XEXP (x, 1));
4279 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4280 unsigned HOST_WIDE_INT op_nonzero
4281 = cached_nonzero_bits (XEXP (x, 0), mode,
4282 known_x, known_mode, known_ret);
4283 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4284 unsigned HOST_WIDE_INT outer = 0;
4286 if (mode_width > width)
4287 outer = (op_nonzero & nonzero & ~mode_mask);
4289 if (code == LSHIFTRT)
4290 inner >>= count;
4291 else if (code == ASHIFTRT)
4293 inner >>= count;
4295 /* If the sign bit may have been nonzero before the shift, we
4296 need to mark all the places it could have been copied to
4297 by the shift as possibly nonzero. */
4298 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4299 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4300 << (width - count);
4302 else if (code == ASHIFT)
4303 inner <<= count;
4304 else
4305 inner = ((inner << (count % width)
4306 | (inner >> (width - (count % width)))) & mode_mask);
4308 nonzero &= (outer | inner);
4310 break;
4312 case FFS:
4313 case POPCOUNT:
4314 /* This is at most the number of bits in the mode. */
4315 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4316 break;
4318 case CLZ:
4319 /* If CLZ has a known value at zero, then the nonzero bits are
4320 that value, plus the number of bits in the mode minus one. */
4321 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4322 nonzero
4323 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4324 else
4325 nonzero = -1;
4326 break;
4328 case CTZ:
4329 /* If CTZ has a known value at zero, then the nonzero bits are
4330 that value, plus the number of bits in the mode minus one. */
4331 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4332 nonzero
4333 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4334 else
4335 nonzero = -1;
4336 break;
4338 case CLRSB:
4339 /* This is at most the number of bits in the mode minus 1. */
4340 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4341 break;
4343 case PARITY:
4344 nonzero = 1;
4345 break;
4347 case IF_THEN_ELSE:
4349 unsigned HOST_WIDE_INT nonzero_true
4350 = cached_nonzero_bits (XEXP (x, 1), mode,
4351 known_x, known_mode, known_ret);
4353 /* Don't call nonzero_bits for the second time if it cannot change
4354 anything. */
4355 if ((nonzero & nonzero_true) != nonzero)
4356 nonzero &= nonzero_true
4357 | cached_nonzero_bits (XEXP (x, 2), mode,
4358 known_x, known_mode, known_ret);
4360 break;
4362 default:
4363 break;
4366 return nonzero;
4369 /* See the macro definition above. */
4370 #undef cached_num_sign_bit_copies
4373 /* The function cached_num_sign_bit_copies is a wrapper around
4374 num_sign_bit_copies1. It avoids exponential behavior in
4375 num_sign_bit_copies1 when X has identical subexpressions on the
4376 first or the second level. */
4378 static unsigned int
4379 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4380 enum machine_mode known_mode,
4381 unsigned int known_ret)
4383 if (x == known_x && mode == known_mode)
4384 return known_ret;
4386 /* Try to find identical subexpressions. If found call
4387 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4388 the precomputed value for the subexpression as KNOWN_RET. */
4390 if (ARITHMETIC_P (x))
4392 rtx x0 = XEXP (x, 0);
4393 rtx x1 = XEXP (x, 1);
4395 /* Check the first level. */
4396 if (x0 == x1)
4397 return
4398 num_sign_bit_copies1 (x, mode, x0, mode,
4399 cached_num_sign_bit_copies (x0, mode, known_x,
4400 known_mode,
4401 known_ret));
4403 /* Check the second level. */
4404 if (ARITHMETIC_P (x0)
4405 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4406 return
4407 num_sign_bit_copies1 (x, mode, x1, mode,
4408 cached_num_sign_bit_copies (x1, mode, known_x,
4409 known_mode,
4410 known_ret));
4412 if (ARITHMETIC_P (x1)
4413 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4414 return
4415 num_sign_bit_copies1 (x, mode, x0, mode,
4416 cached_num_sign_bit_copies (x0, mode, known_x,
4417 known_mode,
4418 known_ret));
4421 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4424 /* Return the number of bits at the high-order end of X that are known to
4425 be equal to the sign bit. X will be used in mode MODE; if MODE is
4426 VOIDmode, X will be used in its own mode. The returned value will always
4427 be between 1 and the number of bits in MODE. */
4429 static unsigned int
4430 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4431 enum machine_mode known_mode,
4432 unsigned int known_ret)
4434 enum rtx_code code = GET_CODE (x);
4435 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4436 int num0, num1, result;
4437 unsigned HOST_WIDE_INT nonzero;
4439 /* If we weren't given a mode, use the mode of X. If the mode is still
4440 VOIDmode, we don't know anything. Likewise if one of the modes is
4441 floating-point. */
4443 if (mode == VOIDmode)
4444 mode = GET_MODE (x);
4446 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4447 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4448 return 1;
4450 /* For a smaller object, just ignore the high bits. */
4451 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4453 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4454 known_x, known_mode, known_ret);
4455 return MAX (1,
4456 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4459 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4461 #ifndef WORD_REGISTER_OPERATIONS
4462 /* If this machine does not do all register operations on the entire
4463 register and MODE is wider than the mode of X, we can say nothing
4464 at all about the high-order bits. */
4465 return 1;
4466 #else
4467 /* Likewise on machines that do, if the mode of the object is smaller
4468 than a word and loads of that size don't sign extend, we can say
4469 nothing about the high order bits. */
4470 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4471 #ifdef LOAD_EXTEND_OP
4472 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4473 #endif
4475 return 1;
4476 #endif
4479 switch (code)
4481 case REG:
4483 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4484 /* If pointers extend signed and this is a pointer in Pmode, say that
4485 all the bits above ptr_mode are known to be sign bit copies. */
4486 /* As we do not know which address space the pointer is referring to,
4487 we can do this only if the target does not support different pointer
4488 or address modes depending on the address space. */
4489 if (target_default_pointer_address_modes_p ()
4490 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4491 && mode == Pmode && REG_POINTER (x))
4492 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4493 #endif
4496 unsigned int copies_for_hook = 1, copies = 1;
4497 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4498 known_mode, known_ret,
4499 &copies_for_hook);
4501 if (new_rtx)
4502 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4503 known_mode, known_ret);
4505 if (copies > 1 || copies_for_hook > 1)
4506 return MAX (copies, copies_for_hook);
4508 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4510 break;
4512 case MEM:
4513 #ifdef LOAD_EXTEND_OP
4514 /* Some RISC machines sign-extend all loads of smaller than a word. */
4515 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4516 return MAX (1, ((int) bitwidth
4517 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4518 #endif
4519 break;
4521 case CONST_INT:
4522 /* If the constant is negative, take its 1's complement and remask.
4523 Then see how many zero bits we have. */
4524 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4525 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4526 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4527 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4529 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4531 case SUBREG:
4532 /* If this is a SUBREG for a promoted object that is sign-extended
4533 and we are looking at it in a wider mode, we know that at least the
4534 high-order bits are known to be sign bit copies. */
4536 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4538 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4539 known_x, known_mode, known_ret);
4540 return MAX ((int) bitwidth
4541 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4542 num0);
4545 /* For a smaller object, just ignore the high bits. */
4546 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4548 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4549 known_x, known_mode, known_ret);
4550 return MAX (1, (num0
4551 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4552 - bitwidth)));
4555 #ifdef WORD_REGISTER_OPERATIONS
4556 #ifdef LOAD_EXTEND_OP
4557 /* For paradoxical SUBREGs on machines where all register operations
4558 affect the entire register, just look inside. Note that we are
4559 passing MODE to the recursive call, so the number of sign bit copies
4560 will remain relative to that mode, not the inner mode. */
4562 /* This works only if loads sign extend. Otherwise, if we get a
4563 reload for the inner part, it may be loaded from the stack, and
4564 then we lose all sign bit copies that existed before the store
4565 to the stack. */
4567 if (paradoxical_subreg_p (x)
4568 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4569 && MEM_P (SUBREG_REG (x)))
4570 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4571 known_x, known_mode, known_ret);
4572 #endif
4573 #endif
4574 break;
4576 case SIGN_EXTRACT:
4577 if (CONST_INT_P (XEXP (x, 1)))
4578 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4579 break;
4581 case SIGN_EXTEND:
4582 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4583 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4584 known_x, known_mode, known_ret));
4586 case TRUNCATE:
4587 /* For a smaller object, just ignore the high bits. */
4588 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4589 known_x, known_mode, known_ret);
4590 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4591 - bitwidth)));
4593 case NOT:
4594 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4595 known_x, known_mode, known_ret);
4597 case ROTATE: case ROTATERT:
4598 /* If we are rotating left by a number of bits less than the number
4599 of sign bit copies, we can just subtract that amount from the
4600 number. */
4601 if (CONST_INT_P (XEXP (x, 1))
4602 && INTVAL (XEXP (x, 1)) >= 0
4603 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4605 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4606 known_x, known_mode, known_ret);
4607 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4608 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4610 break;
4612 case NEG:
4613 /* In general, this subtracts one sign bit copy. But if the value
4614 is known to be positive, the number of sign bit copies is the
4615 same as that of the input. Finally, if the input has just one bit
4616 that might be nonzero, all the bits are copies of the sign bit. */
4617 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4618 known_x, known_mode, known_ret);
4619 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4620 return num0 > 1 ? num0 - 1 : 1;
4622 nonzero = nonzero_bits (XEXP (x, 0), mode);
4623 if (nonzero == 1)
4624 return bitwidth;
4626 if (num0 > 1
4627 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4628 num0--;
4630 return num0;
4632 case IOR: case AND: case XOR:
4633 case SMIN: case SMAX: case UMIN: case UMAX:
4634 /* Logical operations will preserve the number of sign-bit copies.
4635 MIN and MAX operations always return one of the operands. */
4636 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4637 known_x, known_mode, known_ret);
4638 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4639 known_x, known_mode, known_ret);
4641 /* If num1 is clearing some of the top bits then regardless of
4642 the other term, we are guaranteed to have at least that many
4643 high-order zero bits. */
4644 if (code == AND
4645 && num1 > 1
4646 && bitwidth <= HOST_BITS_PER_WIDE_INT
4647 && CONST_INT_P (XEXP (x, 1))
4648 && (UINTVAL (XEXP (x, 1))
4649 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4650 return num1;
4652 /* Similarly for IOR when setting high-order bits. */
4653 if (code == IOR
4654 && num1 > 1
4655 && bitwidth <= HOST_BITS_PER_WIDE_INT
4656 && CONST_INT_P (XEXP (x, 1))
4657 && (UINTVAL (XEXP (x, 1))
4658 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4659 return num1;
4661 return MIN (num0, num1);
4663 case PLUS: case MINUS:
4664 /* For addition and subtraction, we can have a 1-bit carry. However,
4665 if we are subtracting 1 from a positive number, there will not
4666 be such a carry. Furthermore, if the positive number is known to
4667 be 0 or 1, we know the result is either -1 or 0. */
4669 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4670 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4672 nonzero = nonzero_bits (XEXP (x, 0), mode);
4673 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4674 return (nonzero == 1 || nonzero == 0 ? bitwidth
4675 : bitwidth - floor_log2 (nonzero) - 1);
4678 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4679 known_x, known_mode, known_ret);
4680 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4681 known_x, known_mode, known_ret);
4682 result = MAX (1, MIN (num0, num1) - 1);
4684 return result;
4686 case MULT:
4687 /* The number of bits of the product is the sum of the number of
4688 bits of both terms. However, unless one of the terms if known
4689 to be positive, we must allow for an additional bit since negating
4690 a negative number can remove one sign bit copy. */
4692 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4693 known_x, known_mode, known_ret);
4694 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4695 known_x, known_mode, known_ret);
4697 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4698 if (result > 0
4699 && (bitwidth > HOST_BITS_PER_WIDE_INT
4700 || (((nonzero_bits (XEXP (x, 0), mode)
4701 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4702 && ((nonzero_bits (XEXP (x, 1), mode)
4703 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4704 != 0))))
4705 result--;
4707 return MAX (1, result);
4709 case UDIV:
4710 /* The result must be <= the first operand. If the first operand
4711 has the high bit set, we know nothing about the number of sign
4712 bit copies. */
4713 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4714 return 1;
4715 else if ((nonzero_bits (XEXP (x, 0), mode)
4716 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4717 return 1;
4718 else
4719 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4720 known_x, known_mode, known_ret);
4722 case UMOD:
4723 /* The result must be <= the second operand. If the second operand
4724 has (or just might have) the high bit set, we know nothing about
4725 the number of sign bit copies. */
4726 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4727 return 1;
4728 else if ((nonzero_bits (XEXP (x, 1), mode)
4729 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4730 return 1;
4731 else
4732 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4733 known_x, known_mode, known_ret);
4735 case DIV:
4736 /* Similar to unsigned division, except that we have to worry about
4737 the case where the divisor is negative, in which case we have
4738 to add 1. */
4739 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4740 known_x, known_mode, known_ret);
4741 if (result > 1
4742 && (bitwidth > HOST_BITS_PER_WIDE_INT
4743 || (nonzero_bits (XEXP (x, 1), mode)
4744 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4745 result--;
4747 return result;
4749 case MOD:
4750 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4751 known_x, known_mode, known_ret);
4752 if (result > 1
4753 && (bitwidth > HOST_BITS_PER_WIDE_INT
4754 || (nonzero_bits (XEXP (x, 1), mode)
4755 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4756 result--;
4758 return result;
4760 case ASHIFTRT:
4761 /* Shifts by a constant add to the number of bits equal to the
4762 sign bit. */
4763 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4764 known_x, known_mode, known_ret);
4765 if (CONST_INT_P (XEXP (x, 1))
4766 && INTVAL (XEXP (x, 1)) > 0
4767 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4768 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4770 return num0;
4772 case ASHIFT:
4773 /* Left shifts destroy copies. */
4774 if (!CONST_INT_P (XEXP (x, 1))
4775 || INTVAL (XEXP (x, 1)) < 0
4776 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4777 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4778 return 1;
4780 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4781 known_x, known_mode, known_ret);
4782 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4784 case IF_THEN_ELSE:
4785 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4786 known_x, known_mode, known_ret);
4787 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4788 known_x, known_mode, known_ret);
4789 return MIN (num0, num1);
4791 case EQ: case NE: case GE: case GT: case LE: case LT:
4792 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4793 case GEU: case GTU: case LEU: case LTU:
4794 case UNORDERED: case ORDERED:
4795 /* If the constant is negative, take its 1's complement and remask.
4796 Then see how many zero bits we have. */
4797 nonzero = STORE_FLAG_VALUE;
4798 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4799 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4800 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4802 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4804 default:
4805 break;
4808 /* If we haven't been able to figure it out by one of the above rules,
4809 see if some of the high-order bits are known to be zero. If so,
4810 count those bits and return one less than that amount. If we can't
4811 safely compute the mask for this mode, always return BITWIDTH. */
4813 bitwidth = GET_MODE_PRECISION (mode);
4814 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4815 return 1;
4817 nonzero = nonzero_bits (x, mode);
4818 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4819 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4822 /* Calculate the rtx_cost of a single instruction. A return value of
4823 zero indicates an instruction pattern without a known cost. */
4826 insn_rtx_cost (rtx pat, bool speed)
4828 int i, cost;
4829 rtx set;
4831 /* Extract the single set rtx from the instruction pattern.
4832 We can't use single_set since we only have the pattern. */
4833 if (GET_CODE (pat) == SET)
4834 set = pat;
4835 else if (GET_CODE (pat) == PARALLEL)
4837 set = NULL_RTX;
4838 for (i = 0; i < XVECLEN (pat, 0); i++)
4840 rtx x = XVECEXP (pat, 0, i);
4841 if (GET_CODE (x) == SET)
4843 if (set)
4844 return 0;
4845 set = x;
4848 if (!set)
4849 return 0;
4851 else
4852 return 0;
4854 cost = set_src_cost (SET_SRC (set), speed);
4855 return cost > 0 ? cost : COSTS_N_INSNS (1);
4858 /* Given an insn INSN and condition COND, return the condition in a
4859 canonical form to simplify testing by callers. Specifically:
4861 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4862 (2) Both operands will be machine operands; (cc0) will have been replaced.
4863 (3) If an operand is a constant, it will be the second operand.
4864 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4865 for GE, GEU, and LEU.
4867 If the condition cannot be understood, or is an inequality floating-point
4868 comparison which needs to be reversed, 0 will be returned.
4870 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4872 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4873 insn used in locating the condition was found. If a replacement test
4874 of the condition is desired, it should be placed in front of that
4875 insn and we will be sure that the inputs are still valid.
4877 If WANT_REG is nonzero, we wish the condition to be relative to that
4878 register, if possible. Therefore, do not canonicalize the condition
4879 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4880 to be a compare to a CC mode register.
4882 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4883 and at INSN. */
4886 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4887 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4889 enum rtx_code code;
4890 rtx prev = insn;
4891 const_rtx set;
4892 rtx tem;
4893 rtx op0, op1;
4894 int reverse_code = 0;
4895 enum machine_mode mode;
4896 basic_block bb = BLOCK_FOR_INSN (insn);
4898 code = GET_CODE (cond);
4899 mode = GET_MODE (cond);
4900 op0 = XEXP (cond, 0);
4901 op1 = XEXP (cond, 1);
4903 if (reverse)
4904 code = reversed_comparison_code (cond, insn);
4905 if (code == UNKNOWN)
4906 return 0;
4908 if (earliest)
4909 *earliest = insn;
4911 /* If we are comparing a register with zero, see if the register is set
4912 in the previous insn to a COMPARE or a comparison operation. Perform
4913 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4914 in cse.c */
4916 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4917 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4918 && op1 == CONST0_RTX (GET_MODE (op0))
4919 && op0 != want_reg)
4921 /* Set nonzero when we find something of interest. */
4922 rtx x = 0;
4924 #ifdef HAVE_cc0
4925 /* If comparison with cc0, import actual comparison from compare
4926 insn. */
4927 if (op0 == cc0_rtx)
4929 if ((prev = prev_nonnote_insn (prev)) == 0
4930 || !NONJUMP_INSN_P (prev)
4931 || (set = single_set (prev)) == 0
4932 || SET_DEST (set) != cc0_rtx)
4933 return 0;
4935 op0 = SET_SRC (set);
4936 op1 = CONST0_RTX (GET_MODE (op0));
4937 if (earliest)
4938 *earliest = prev;
4940 #endif
4942 /* If this is a COMPARE, pick up the two things being compared. */
4943 if (GET_CODE (op0) == COMPARE)
4945 op1 = XEXP (op0, 1);
4946 op0 = XEXP (op0, 0);
4947 continue;
4949 else if (!REG_P (op0))
4950 break;
4952 /* Go back to the previous insn. Stop if it is not an INSN. We also
4953 stop if it isn't a single set or if it has a REG_INC note because
4954 we don't want to bother dealing with it. */
4956 prev = prev_nonnote_nondebug_insn (prev);
4958 if (prev == 0
4959 || !NONJUMP_INSN_P (prev)
4960 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4961 /* In cfglayout mode, there do not have to be labels at the
4962 beginning of a block, or jumps at the end, so the previous
4963 conditions would not stop us when we reach bb boundary. */
4964 || BLOCK_FOR_INSN (prev) != bb)
4965 break;
4967 set = set_of (op0, prev);
4969 if (set
4970 && (GET_CODE (set) != SET
4971 || !rtx_equal_p (SET_DEST (set), op0)))
4972 break;
4974 /* If this is setting OP0, get what it sets it to if it looks
4975 relevant. */
4976 if (set)
4978 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4979 #ifdef FLOAT_STORE_FLAG_VALUE
4980 REAL_VALUE_TYPE fsfv;
4981 #endif
4983 /* ??? We may not combine comparisons done in a CCmode with
4984 comparisons not done in a CCmode. This is to aid targets
4985 like Alpha that have an IEEE compliant EQ instruction, and
4986 a non-IEEE compliant BEQ instruction. The use of CCmode is
4987 actually artificial, simply to prevent the combination, but
4988 should not affect other platforms.
4990 However, we must allow VOIDmode comparisons to match either
4991 CCmode or non-CCmode comparison, because some ports have
4992 modeless comparisons inside branch patterns.
4994 ??? This mode check should perhaps look more like the mode check
4995 in simplify_comparison in combine. */
4997 if ((GET_CODE (SET_SRC (set)) == COMPARE
4998 || (((code == NE
4999 || (code == LT
5000 && val_signbit_known_set_p (inner_mode,
5001 STORE_FLAG_VALUE))
5002 #ifdef FLOAT_STORE_FLAG_VALUE
5003 || (code == LT
5004 && SCALAR_FLOAT_MODE_P (inner_mode)
5005 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5006 REAL_VALUE_NEGATIVE (fsfv)))
5007 #endif
5009 && COMPARISON_P (SET_SRC (set))))
5010 && (((GET_MODE_CLASS (mode) == MODE_CC)
5011 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5012 || mode == VOIDmode || inner_mode == VOIDmode))
5013 x = SET_SRC (set);
5014 else if (((code == EQ
5015 || (code == GE
5016 && val_signbit_known_set_p (inner_mode,
5017 STORE_FLAG_VALUE))
5018 #ifdef FLOAT_STORE_FLAG_VALUE
5019 || (code == GE
5020 && SCALAR_FLOAT_MODE_P (inner_mode)
5021 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5022 REAL_VALUE_NEGATIVE (fsfv)))
5023 #endif
5025 && COMPARISON_P (SET_SRC (set))
5026 && (((GET_MODE_CLASS (mode) == MODE_CC)
5027 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5028 || mode == VOIDmode || inner_mode == VOIDmode))
5031 reverse_code = 1;
5032 x = SET_SRC (set);
5034 else
5035 break;
5038 else if (reg_set_p (op0, prev))
5039 /* If this sets OP0, but not directly, we have to give up. */
5040 break;
5042 if (x)
5044 /* If the caller is expecting the condition to be valid at INSN,
5045 make sure X doesn't change before INSN. */
5046 if (valid_at_insn_p)
5047 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5048 break;
5049 if (COMPARISON_P (x))
5050 code = GET_CODE (x);
5051 if (reverse_code)
5053 code = reversed_comparison_code (x, prev);
5054 if (code == UNKNOWN)
5055 return 0;
5056 reverse_code = 0;
5059 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5060 if (earliest)
5061 *earliest = prev;
5065 /* If constant is first, put it last. */
5066 if (CONSTANT_P (op0))
5067 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5069 /* If OP0 is the result of a comparison, we weren't able to find what
5070 was really being compared, so fail. */
5071 if (!allow_cc_mode
5072 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5073 return 0;
5075 /* Canonicalize any ordered comparison with integers involving equality
5076 if we can do computations in the relevant mode and we do not
5077 overflow. */
5079 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5080 && CONST_INT_P (op1)
5081 && GET_MODE (op0) != VOIDmode
5082 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5084 HOST_WIDE_INT const_val = INTVAL (op1);
5085 unsigned HOST_WIDE_INT uconst_val = const_val;
5086 unsigned HOST_WIDE_INT max_val
5087 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5089 switch (code)
5091 case LE:
5092 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5093 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5094 break;
5096 /* When cross-compiling, const_val might be sign-extended from
5097 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5098 case GE:
5099 if ((const_val & max_val)
5100 != ((unsigned HOST_WIDE_INT) 1
5101 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5102 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5103 break;
5105 case LEU:
5106 if (uconst_val < max_val)
5107 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5108 break;
5110 case GEU:
5111 if (uconst_val != 0)
5112 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5113 break;
5115 default:
5116 break;
5120 /* Never return CC0; return zero instead. */
5121 if (CC0_P (op0))
5122 return 0;
5124 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5127 /* Given a jump insn JUMP, return the condition that will cause it to branch
5128 to its JUMP_LABEL. If the condition cannot be understood, or is an
5129 inequality floating-point comparison which needs to be reversed, 0 will
5130 be returned.
5132 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5133 insn used in locating the condition was found. If a replacement test
5134 of the condition is desired, it should be placed in front of that
5135 insn and we will be sure that the inputs are still valid. If EARLIEST
5136 is null, the returned condition will be valid at INSN.
5138 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5139 compare CC mode register.
5141 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5144 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5146 rtx cond;
5147 int reverse;
5148 rtx set;
5150 /* If this is not a standard conditional jump, we can't parse it. */
5151 if (!JUMP_P (jump)
5152 || ! any_condjump_p (jump))
5153 return 0;
5154 set = pc_set (jump);
5156 cond = XEXP (SET_SRC (set), 0);
5158 /* If this branches to JUMP_LABEL when the condition is false, reverse
5159 the condition. */
5160 reverse
5161 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5162 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5164 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5165 allow_cc_mode, valid_at_insn_p);
5168 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5169 TARGET_MODE_REP_EXTENDED.
5171 Note that we assume that the property of
5172 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5173 narrower than mode B. I.e., if A is a mode narrower than B then in
5174 order to be able to operate on it in mode B, mode A needs to
5175 satisfy the requirements set by the representation of mode B. */
5177 static void
5178 init_num_sign_bit_copies_in_rep (void)
5180 enum machine_mode mode, in_mode;
5182 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5183 in_mode = GET_MODE_WIDER_MODE (mode))
5184 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5185 mode = GET_MODE_WIDER_MODE (mode))
5187 enum machine_mode i;
5189 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5190 extends to the next widest mode. */
5191 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5192 || GET_MODE_WIDER_MODE (mode) == in_mode);
5194 /* We are in in_mode. Count how many bits outside of mode
5195 have to be copies of the sign-bit. */
5196 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5198 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5200 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5201 /* We can only check sign-bit copies starting from the
5202 top-bit. In order to be able to check the bits we
5203 have already seen we pretend that subsequent bits
5204 have to be sign-bit copies too. */
5205 || num_sign_bit_copies_in_rep [in_mode][mode])
5206 num_sign_bit_copies_in_rep [in_mode][mode]
5207 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5212 /* Suppose that truncation from the machine mode of X to MODE is not a
5213 no-op. See if there is anything special about X so that we can
5214 assume it already contains a truncated value of MODE. */
5216 bool
5217 truncated_to_mode (enum machine_mode mode, const_rtx x)
5219 /* This register has already been used in MODE without explicit
5220 truncation. */
5221 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5222 return true;
5224 /* See if we already satisfy the requirements of MODE. If yes we
5225 can just switch to MODE. */
5226 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5227 && (num_sign_bit_copies (x, GET_MODE (x))
5228 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5229 return true;
5231 return false;
5234 /* Initialize non_rtx_starting_operands, which is used to speed up
5235 for_each_rtx. */
5236 void
5237 init_rtlanal (void)
5239 int i;
5240 for (i = 0; i < NUM_RTX_CODE; i++)
5242 const char *format = GET_RTX_FORMAT (i);
5243 const char *first = strpbrk (format, "eEV");
5244 non_rtx_starting_operands[i] = first ? first - format : -1;
5247 init_num_sign_bit_copies_in_rep ();
5250 /* Check whether this is a constant pool constant. */
5251 bool
5252 constant_pool_constant_p (rtx x)
5254 x = avoid_constant_pool_reference (x);
5255 return CONST_DOUBLE_P (x);
5258 /* If M is a bitmask that selects a field of low-order bits within an item but
5259 not the entire word, return the length of the field. Return -1 otherwise.
5260 M is used in machine mode MODE. */
5263 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5265 if (mode != VOIDmode)
5267 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5268 return -1;
5269 m &= GET_MODE_MASK (mode);
5272 return exact_log2 (m + 1);
5275 /* Return the mode of MEM's address. */
5277 enum machine_mode
5278 get_address_mode (rtx mem)
5280 enum machine_mode mode;
5282 gcc_assert (MEM_P (mem));
5283 mode = GET_MODE (XEXP (mem, 0));
5284 if (mode != VOIDmode)
5285 return mode;
5286 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5289 /* Split up a CONST_DOUBLE or integer constant rtx
5290 into two rtx's for single words,
5291 storing in *FIRST the word that comes first in memory in the target
5292 and in *SECOND the other. */
5294 void
5295 split_double (rtx value, rtx *first, rtx *second)
5297 if (CONST_INT_P (value))
5299 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5301 /* In this case the CONST_INT holds both target words.
5302 Extract the bits from it into two word-sized pieces.
5303 Sign extend each half to HOST_WIDE_INT. */
5304 unsigned HOST_WIDE_INT low, high;
5305 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5306 unsigned bits_per_word = BITS_PER_WORD;
5308 /* Set sign_bit to the most significant bit of a word. */
5309 sign_bit = 1;
5310 sign_bit <<= bits_per_word - 1;
5312 /* Set mask so that all bits of the word are set. We could
5313 have used 1 << BITS_PER_WORD instead of basing the
5314 calculation on sign_bit. However, on machines where
5315 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5316 compiler warning, even though the code would never be
5317 executed. */
5318 mask = sign_bit << 1;
5319 mask--;
5321 /* Set sign_extend as any remaining bits. */
5322 sign_extend = ~mask;
5324 /* Pick the lower word and sign-extend it. */
5325 low = INTVAL (value);
5326 low &= mask;
5327 if (low & sign_bit)
5328 low |= sign_extend;
5330 /* Pick the higher word, shifted to the least significant
5331 bits, and sign-extend it. */
5332 high = INTVAL (value);
5333 high >>= bits_per_word - 1;
5334 high >>= 1;
5335 high &= mask;
5336 if (high & sign_bit)
5337 high |= sign_extend;
5339 /* Store the words in the target machine order. */
5340 if (WORDS_BIG_ENDIAN)
5342 *first = GEN_INT (high);
5343 *second = GEN_INT (low);
5345 else
5347 *first = GEN_INT (low);
5348 *second = GEN_INT (high);
5351 else
5353 /* The rule for using CONST_INT for a wider mode
5354 is that we regard the value as signed.
5355 So sign-extend it. */
5356 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5357 if (WORDS_BIG_ENDIAN)
5359 *first = high;
5360 *second = value;
5362 else
5364 *first = value;
5365 *second = high;
5369 else if (!CONST_DOUBLE_P (value))
5371 if (WORDS_BIG_ENDIAN)
5373 *first = const0_rtx;
5374 *second = value;
5376 else
5378 *first = value;
5379 *second = const0_rtx;
5382 else if (GET_MODE (value) == VOIDmode
5383 /* This is the old way we did CONST_DOUBLE integers. */
5384 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5386 /* In an integer, the words are defined as most and least significant.
5387 So order them by the target's convention. */
5388 if (WORDS_BIG_ENDIAN)
5390 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5391 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5393 else
5395 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5396 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5399 else
5401 REAL_VALUE_TYPE r;
5402 long l[2];
5403 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5405 /* Note, this converts the REAL_VALUE_TYPE to the target's
5406 format, splits up the floating point double and outputs
5407 exactly 32 bits of it into each of l[0] and l[1] --
5408 not necessarily BITS_PER_WORD bits. */
5409 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5411 /* If 32 bits is an entire word for the target, but not for the host,
5412 then sign-extend on the host so that the number will look the same
5413 way on the host that it would on the target. See for instance
5414 simplify_unary_operation. The #if is needed to avoid compiler
5415 warnings. */
5417 #if HOST_BITS_PER_LONG > 32
5418 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5420 if (l[0] & ((long) 1 << 31))
5421 l[0] |= ((long) (-1) << 32);
5422 if (l[1] & ((long) 1 << 31))
5423 l[1] |= ((long) (-1) << 32);
5425 #endif
5427 *first = GEN_INT (l[0]);
5428 *second = GEN_INT (l[1]);
5432 /* Strip outer address "mutations" from LOC and return a pointer to the
5433 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5434 stripped expression there.
5436 "Mutations" either convert between modes or apply some kind of
5437 alignment. */
5439 rtx *
5440 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5442 for (;;)
5444 enum rtx_code code = GET_CODE (*loc);
5445 if (GET_RTX_CLASS (code) == RTX_UNARY)
5446 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5447 used to convert between pointer sizes. */
5448 loc = &XEXP (*loc, 0);
5449 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5450 /* (and ... (const_int -X)) is used to align to X bytes. */
5451 loc = &XEXP (*loc, 0);
5452 else if (code == SUBREG
5453 && !OBJECT_P (SUBREG_REG (*loc))
5454 && subreg_lowpart_p (*loc))
5455 /* (subreg (operator ...) ...) inside and is used for mode
5456 conversion too. */
5457 loc = &SUBREG_REG (*loc);
5458 else
5459 return loc;
5460 if (outer_code)
5461 *outer_code = code;
5465 /* Return true if X must be a base rather than an index. */
5467 static bool
5468 must_be_base_p (rtx x)
5470 return GET_CODE (x) == LO_SUM;
5473 /* Return true if X must be an index rather than a base. */
5475 static bool
5476 must_be_index_p (rtx x)
5478 return GET_CODE (x) == MULT || GET_CODE (x) == ASHIFT;
5481 /* Set the segment part of address INFO to LOC, given that INNER is the
5482 unmutated value. */
5484 static void
5485 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5487 gcc_checking_assert (GET_CODE (*inner) == UNSPEC);
5489 gcc_assert (!info->segment);
5490 info->segment = loc;
5491 info->segment_term = inner;
5494 /* Set the base part of address INFO to LOC, given that INNER is the
5495 unmutated value. */
5497 static void
5498 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5500 if (GET_CODE (*inner) == LO_SUM)
5501 inner = strip_address_mutations (&XEXP (*inner, 0));
5502 gcc_checking_assert (REG_P (*inner)
5503 || MEM_P (*inner)
5504 || GET_CODE (*inner) == SUBREG);
5506 gcc_assert (!info->base);
5507 info->base = loc;
5508 info->base_term = inner;
5511 /* Set the index part of address INFO to LOC, given that INNER is the
5512 unmutated value. */
5514 static void
5515 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5517 if ((GET_CODE (*inner) == MULT || GET_CODE (*inner) == ASHIFT)
5518 && CONSTANT_P (XEXP (*inner, 1)))
5519 inner = strip_address_mutations (&XEXP (*inner, 0));
5520 gcc_checking_assert (REG_P (*inner)
5521 || MEM_P (*inner)
5522 || GET_CODE (*inner) == SUBREG);
5524 gcc_assert (!info->index);
5525 info->index = loc;
5526 info->index_term = inner;
5529 /* Set the displacement part of address INFO to LOC, given that INNER
5530 is the constant term. */
5532 static void
5533 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5535 gcc_checking_assert (CONSTANT_P (*inner));
5537 gcc_assert (!info->disp);
5538 info->disp = loc;
5539 info->disp_term = inner;
5542 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5543 rest of INFO accordingly. */
5545 static void
5546 decompose_incdec_address (struct address_info *info)
5548 info->autoinc_p = true;
5550 rtx *base = &XEXP (*info->inner, 0);
5551 set_address_base (info, base, base);
5552 gcc_checking_assert (info->base == info->base_term);
5554 /* These addresses are only valid when the size of the addressed
5555 value is known. */
5556 gcc_checking_assert (info->mode != VOIDmode);
5559 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5560 of INFO accordingly. */
5562 static void
5563 decompose_automod_address (struct address_info *info)
5565 info->autoinc_p = true;
5567 rtx *base = &XEXP (*info->inner, 0);
5568 set_address_base (info, base, base);
5569 gcc_checking_assert (info->base == info->base_term);
5571 rtx plus = XEXP (*info->inner, 1);
5572 gcc_assert (GET_CODE (plus) == PLUS);
5574 info->base_term2 = &XEXP (plus, 0);
5575 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5577 rtx *step = &XEXP (plus, 1);
5578 rtx *inner_step = strip_address_mutations (step);
5579 if (CONSTANT_P (*inner_step))
5580 set_address_disp (info, step, inner_step);
5581 else
5582 set_address_index (info, step, inner_step);
5585 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5586 values in [PTR, END). Return a pointer to the end of the used array. */
5588 static rtx **
5589 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5591 rtx x = *loc;
5592 if (GET_CODE (x) == PLUS)
5594 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5595 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5597 else
5599 gcc_assert (ptr != end);
5600 *ptr++ = loc;
5602 return ptr;
5605 /* Evaluate the likelihood of X being a base or index value, returning
5606 positive if it is likely to be a base, negative if it is likely to be
5607 an index, and 0 if we can't tell. Make the magnitude of the return
5608 value reflect the amount of confidence we have in the answer.
5610 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5612 static int
5613 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5614 enum rtx_code outer_code, enum rtx_code index_code)
5616 /* See whether we can be certain. */
5617 if (must_be_base_p (x))
5618 return 3;
5619 if (must_be_index_p (x))
5620 return -3;
5622 /* Believe *_POINTER unless the address shape requires otherwise. */
5623 if (REG_P (x) && REG_POINTER (x))
5624 return 2;
5625 if (MEM_P (x) && MEM_POINTER (x))
5626 return 2;
5628 if (REG_P (x) && HARD_REGISTER_P (x))
5630 /* X is a hard register. If it only fits one of the base
5631 or index classes, choose that interpretation. */
5632 int regno = REGNO (x);
5633 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5634 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5635 if (base_p != index_p)
5636 return base_p ? 1 : -1;
5638 return 0;
5641 /* INFO->INNER describes a normal, non-automodified address.
5642 Fill in the rest of INFO accordingly. */
5644 static void
5645 decompose_normal_address (struct address_info *info)
5647 /* Treat the address as the sum of up to four values. */
5648 rtx *ops[4];
5649 size_t n_ops = extract_plus_operands (info->inner, ops,
5650 ops + ARRAY_SIZE (ops)) - ops;
5652 /* If there is more than one component, any base component is in a PLUS. */
5653 if (n_ops > 1)
5654 info->base_outer_code = PLUS;
5656 /* Separate the parts that contain a REG or MEM from those that don't.
5657 Record the latter in INFO and leave the former in OPS. */
5658 rtx *inner_ops[4];
5659 size_t out = 0;
5660 for (size_t in = 0; in < n_ops; ++in)
5662 rtx *loc = ops[in];
5663 rtx *inner = strip_address_mutations (loc);
5664 if (CONSTANT_P (*inner))
5665 set_address_disp (info, loc, inner);
5666 else if (GET_CODE (*inner) == UNSPEC)
5667 set_address_segment (info, loc, inner);
5668 else
5670 ops[out] = loc;
5671 inner_ops[out] = inner;
5672 ++out;
5676 /* Classify the remaining OPS members as bases and indexes. */
5677 if (out == 1)
5679 /* Assume that the remaining value is a base unless the shape
5680 requires otherwise. */
5681 if (!must_be_index_p (*inner_ops[0]))
5682 set_address_base (info, ops[0], inner_ops[0]);
5683 else
5684 set_address_index (info, ops[0], inner_ops[0]);
5686 else if (out == 2)
5688 /* In the event of a tie, assume the base comes first. */
5689 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5690 GET_CODE (*ops[1]))
5691 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5692 GET_CODE (*ops[0])))
5694 set_address_base (info, ops[0], inner_ops[0]);
5695 set_address_index (info, ops[1], inner_ops[1]);
5697 else
5699 set_address_base (info, ops[1], inner_ops[1]);
5700 set_address_index (info, ops[0], inner_ops[0]);
5703 else
5704 gcc_assert (out == 0);
5707 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5708 or VOIDmode if not known. AS is the address space associated with LOC.
5709 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5711 void
5712 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5713 addr_space_t as, enum rtx_code outer_code)
5715 memset (info, 0, sizeof (*info));
5716 info->mode = mode;
5717 info->as = as;
5718 info->addr_outer_code = outer_code;
5719 info->outer = loc;
5720 info->inner = strip_address_mutations (loc, &outer_code);
5721 info->base_outer_code = outer_code;
5722 switch (GET_CODE (*info->inner))
5724 case PRE_DEC:
5725 case PRE_INC:
5726 case POST_DEC:
5727 case POST_INC:
5728 decompose_incdec_address (info);
5729 break;
5731 case PRE_MODIFY:
5732 case POST_MODIFY:
5733 decompose_automod_address (info);
5734 break;
5736 default:
5737 decompose_normal_address (info);
5738 break;
5742 /* Describe address operand LOC in INFO. */
5744 void
5745 decompose_lea_address (struct address_info *info, rtx *loc)
5747 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5750 /* Describe the address of MEM X in INFO. */
5752 void
5753 decompose_mem_address (struct address_info *info, rtx x)
5755 gcc_assert (MEM_P (x));
5756 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5757 MEM_ADDR_SPACE (x), MEM);
5760 /* Update INFO after a change to the address it describes. */
5762 void
5763 update_address (struct address_info *info)
5765 decompose_address (info, info->outer, info->mode, info->as,
5766 info->addr_outer_code);
5769 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5770 more complicated than that. */
5772 HOST_WIDE_INT
5773 get_index_scale (const struct address_info *info)
5775 rtx index = *info->index;
5776 if (GET_CODE (index) == MULT
5777 && CONST_INT_P (XEXP (index, 1))
5778 && info->index_term == &XEXP (index, 0))
5779 return INTVAL (XEXP (index, 1));
5781 if (GET_CODE (index) == ASHIFT
5782 && CONST_INT_P (XEXP (index, 1))
5783 && info->index_term == &XEXP (index, 0))
5784 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
5786 if (info->index == info->index_term)
5787 return 1;
5789 return 0;
5792 /* Return the "index code" of INFO, in the form required by
5793 ok_for_base_p_1. */
5795 enum rtx_code
5796 get_index_code (const struct address_info *info)
5798 if (info->index)
5799 return GET_CODE (*info->index);
5801 if (info->disp)
5802 return GET_CODE (*info->disp);
5804 return SCRATCH;