2014-01-24 Ed Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / gcse.c
blobeff3715c49f5022c1ccaf92722b6f7dccedad8c2
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hash-table.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
189 **********************
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202 It was found doing copy propagation between each pass enables further
203 substitutions.
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
213 **********************
215 The steps for PRE are:
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219 2) Perform the data flow analysis for PRE.
221 3) Delete the redundant instructions
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
244 /* GCSE global vars. */
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
257 /* Hash table of expressions. */
259 struct expr
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
294 struct occr
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
309 typedef struct occr *occr_t;
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
320 struct hash_table_d
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
326 /* Size of the hash table, in elements. */
327 unsigned int size;
329 /* Number of hash table elements. */
330 unsigned int n_elems;
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
345 struct ls_expr
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
362 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
370 /* Hashtable helpers. */
371 inline hashval_t
372 pre_ldst_expr_hasher::hash (const value_type *x)
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
379 static int expr_equiv_p (const_rtx, const_rtx);
381 inline bool
382 pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
388 /* Hashtable for the load/store memory refs. */
389 static hash_table <pre_ldst_expr_hasher> pre_ldst_table;
391 /* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
394 static regset reg_set_bitmap;
396 /* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
398 static vec<rtx> *modify_mem_list;
399 static bitmap modify_mem_list_set;
401 typedef struct modify_pair_s
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405 } modify_pair;
408 /* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
410 static vec<modify_pair> *canon_modify_mem_list;
412 /* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414 static bitmap blocks_with_calls;
416 /* Various variables for statistics gathering. */
418 /* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421 static int bytes_used;
423 /* GCSE substitutions made. */
424 static int gcse_subst_count;
425 /* Number of copy instructions created. */
426 static int gcse_create_count;
428 /* Doing code hoisting. */
429 static bool doing_code_hoisting_p = false;
431 /* For available exprs */
432 static sbitmap *ae_kill;
434 /* Data stored for each basic block. */
435 struct bb_data
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
451 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
453 static basic_block curr_bb;
455 /* Current register pressure for each pressure class. */
456 static int curr_reg_pressure[N_REG_CLASSES];
459 static void compute_can_copy (void);
460 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
462 static void *gcse_alloc (unsigned long);
463 static void alloc_gcse_mem (void);
464 static void free_gcse_mem (void);
465 static void hash_scan_insn (rtx, struct hash_table_d *);
466 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
467 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
468 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
469 static int want_to_gcse_p (rtx, int *);
470 static int oprs_unchanged_p (const_rtx, const_rtx, int);
471 static int oprs_anticipatable_p (const_rtx, const_rtx);
472 static int oprs_available_p (const_rtx, const_rtx);
473 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
474 struct hash_table_d *);
475 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
476 static void record_last_reg_set_info (rtx, int);
477 static void record_last_mem_set_info (rtx);
478 static void record_last_set_info (rtx, const_rtx, void *);
479 static void compute_hash_table (struct hash_table_d *);
480 static void alloc_hash_table (struct hash_table_d *);
481 static void free_hash_table (struct hash_table_d *);
482 static void compute_hash_table_work (struct hash_table_d *);
483 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
484 static void compute_transp (const_rtx, int, sbitmap *);
485 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
486 struct hash_table_d *);
487 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
488 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
489 static void canon_list_insert (rtx, const_rtx, void *);
490 static void alloc_pre_mem (int, int);
491 static void free_pre_mem (void);
492 static struct edge_list *compute_pre_data (void);
493 static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
495 static void insert_insn_end_basic_block (struct expr *, basic_block);
496 static void pre_insert_copy_insn (struct expr *, rtx);
497 static void pre_insert_copies (void);
498 static int pre_delete (void);
499 static int pre_gcse (struct edge_list *);
500 static int one_pre_gcse_pass (void);
501 static void add_label_notes (rtx, rtx);
502 static void alloc_code_hoist_mem (int, int);
503 static void free_code_hoist_mem (void);
504 static void compute_code_hoist_vbeinout (void);
505 static void compute_code_hoist_data (void);
506 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
508 int *, bitmap, rtx);
509 static int hoist_code (void);
510 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
511 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
512 static int one_code_hoisting_pass (void);
513 static rtx process_insert_insn (struct expr *);
514 static int pre_edge_insert (struct edge_list *, struct expr **);
515 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517 static struct ls_expr * ldst_entry (rtx);
518 static void free_ldst_entry (struct ls_expr *);
519 static void free_ld_motion_mems (void);
520 static void print_ldst_list (FILE *);
521 static struct ls_expr * find_rtx_in_ldst (rtx);
522 static int simple_mem (const_rtx);
523 static void invalidate_any_buried_refs (rtx);
524 static void compute_ld_motion_mems (void);
525 static void trim_ld_motion_mems (void);
526 static void update_ld_motion_stores (struct expr *);
527 static void clear_modify_mem_tables (void);
528 static void free_modify_mem_tables (void);
529 static rtx gcse_emit_move_after (rtx, rtx, rtx);
530 static bool is_too_expensive (const char *);
532 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
533 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
535 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
538 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
541 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
544 /* Misc. utilities. */
546 #define can_copy \
547 (this_target_gcse->x_can_copy)
548 #define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
551 /* Compute which modes support reg/reg copy operations. */
553 static void
554 compute_can_copy (void)
556 int i;
557 #ifndef AVOID_CCMODE_COPIES
558 rtx reg, insn;
559 #endif
560 memset (can_copy, 0, NUM_MACHINE_MODES);
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
564 if (GET_MODE_CLASS (i) == MODE_CC)
566 #ifdef AVOID_CCMODE_COPIES
567 can_copy[i] = 0;
568 #else
569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
571 if (recog (PATTERN (insn), insn, NULL) >= 0)
572 can_copy[i] = 1;
573 #endif
575 else
576 can_copy[i] = 1;
578 end_sequence ();
581 /* Returns whether the mode supports reg/reg copy operations. */
583 bool
584 can_copy_p (enum machine_mode mode)
586 if (! can_copy_init_p)
588 compute_can_copy ();
589 can_copy_init_p = true;
592 return can_copy[mode] != 0;
595 /* Cover function to xmalloc to record bytes allocated. */
597 static void *
598 gmalloc (size_t size)
600 bytes_used += size;
601 return xmalloc (size);
604 /* Cover function to xcalloc to record bytes allocated. */
606 static void *
607 gcalloc (size_t nelem, size_t elsize)
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
613 /* Cover function to obstack_alloc. */
615 static void *
616 gcse_alloc (unsigned long size)
618 bytes_used += size;
619 return obstack_alloc (&gcse_obstack, size);
622 /* Allocate memory for the reg/memory set tracking tables.
623 This is called at the start of each pass. */
625 static void
626 alloc_gcse_mem (void)
628 /* Allocate vars to track sets of regs. */
629 reg_set_bitmap = ALLOC_REG_SET (NULL);
631 /* Allocate array to keep a list of insns which modify memory in each
632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
638 last_basic_block_for_fn (cfun));
639 modify_mem_list_set = BITMAP_ALLOC (NULL);
640 blocks_with_calls = BITMAP_ALLOC (NULL);
643 /* Free memory allocated by alloc_gcse_mem. */
645 static void
646 free_gcse_mem (void)
648 FREE_REG_SET (reg_set_bitmap);
650 free_modify_mem_tables ();
651 BITMAP_FREE (modify_mem_list_set);
652 BITMAP_FREE (blocks_with_calls);
655 /* Compute the local properties of each recorded expression.
657 Local properties are those that are defined by the block, irrespective of
658 other blocks.
660 An expression is transparent in a block if its operands are not modified
661 in the block.
663 An expression is computed (locally available) in a block if it is computed
664 at least once and expression would contain the same value if the
665 computation was moved to the end of the block.
667 An expression is locally anticipatable in a block if it is computed at
668 least once and expression would contain the same value if the computation
669 was moved to the beginning of the block.
671 We call this routine for pre and code hoisting. They all compute
672 basically the same information and thus can easily share this code.
674 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
675 properties. If NULL, then it is not necessary to compute or record that
676 particular property.
678 TABLE controls which hash table to look at. */
680 static void
681 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
682 struct hash_table_d *table)
684 unsigned int i;
686 /* Initialize any bitmaps that were passed in. */
687 if (transp)
689 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
692 if (comp)
693 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
694 if (antloc)
695 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
697 for (i = 0; i < table->size; i++)
699 struct expr *expr;
701 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
703 int indx = expr->bitmap_index;
704 struct occr *occr;
706 /* The expression is transparent in this block if it is not killed.
707 We start by assuming all are transparent [none are killed], and
708 then reset the bits for those that are. */
709 if (transp)
710 compute_transp (expr->expr, indx, transp);
712 /* The occurrences recorded in antic_occr are exactly those that
713 we want to set to nonzero in ANTLOC. */
714 if (antloc)
715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
724 /* The occurrences recorded in avail_occr are exactly those that
725 we want to set to nonzero in COMP. */
726 if (comp)
727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
743 /* Hash table support. */
745 struct reg_avail_info
747 basic_block last_bb;
748 int first_set;
749 int last_set;
752 static struct reg_avail_info *reg_avail_info;
753 static basic_block current_bb;
755 /* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
758 static int
759 want_to_gcse_p (rtx x, int *max_distance_ptr)
761 #ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767 #endif
769 /* GCSE'ing constants:
771 We do not specifically distinguish between constant and non-constant
772 expressions in PRE and Hoist. We use set_src_cost below to limit
773 the maximum distance simple expressions can travel.
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
787 switch (GET_CODE (x))
789 case REG:
790 case SUBREG:
791 case CALL:
792 return 0;
794 CASE_CONST_ANY:
795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
799 /* FALLTHRU */
801 default:
802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
805 int cost;
806 int max_distance;
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
810 cost = set_src_cost (x, 0);
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
818 gcc_assert (max_distance > 0);
820 else
821 max_distance = 0;
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
827 return can_assign_to_reg_without_clobbers_p (x);
831 /* Used internally by can_assign_to_reg_without_clobbers_p. */
833 static GTY(()) rtx test_insn;
835 /* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
847 bool
848 can_assign_to_reg_without_clobbers_p (rtx x)
850 int num_clobbers = 0;
851 int icode;
853 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
854 if (general_operand (x, GET_MODE (x)))
855 return 1;
856 else if (GET_MODE (x) == VOIDmode)
857 return 0;
859 /* Otherwise, check if we can make a valid insn from it. First initialize
860 our test insn if we haven't already. */
861 if (test_insn == 0)
863 test_insn
864 = make_insn_raw (gen_rtx_SET (VOIDmode,
865 gen_rtx_REG (word_mode,
866 FIRST_PSEUDO_REGISTER * 2),
867 const0_rtx));
868 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
871 /* Now make an insn like the one we would make when GCSE'ing and see if
872 valid. */
873 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
874 SET_SRC (PATTERN (test_insn)) = x;
876 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
877 if (icode < 0)
878 return false;
880 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
881 return false;
883 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
884 return false;
886 return true;
889 /* Return nonzero if the operands of expression X are unchanged from the
890 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
891 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
893 static int
894 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
896 int i, j;
897 enum rtx_code code;
898 const char *fmt;
900 if (x == 0)
901 return 1;
903 code = GET_CODE (x);
904 switch (code)
906 case REG:
908 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
910 if (info->last_bb != current_bb)
911 return 1;
912 if (avail_p)
913 return info->last_set < DF_INSN_LUID (insn);
914 else
915 return info->first_set >= DF_INSN_LUID (insn);
918 case MEM:
919 if (! flag_gcse_lm
920 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
921 x, avail_p))
922 return 0;
923 else
924 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
926 case PRE_DEC:
927 case PRE_INC:
928 case POST_DEC:
929 case POST_INC:
930 case PRE_MODIFY:
931 case POST_MODIFY:
932 return 0;
934 case PC:
935 case CC0: /*FIXME*/
936 case CONST:
937 CASE_CONST_ANY:
938 case SYMBOL_REF:
939 case LABEL_REF:
940 case ADDR_VEC:
941 case ADDR_DIFF_VEC:
942 return 1;
944 default:
945 break;
948 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
950 if (fmt[i] == 'e')
952 /* If we are about to do the last recursive call needed at this
953 level, change it into iteration. This function is called enough
954 to be worth it. */
955 if (i == 0)
956 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
958 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
959 return 0;
961 else if (fmt[i] == 'E')
962 for (j = 0; j < XVECLEN (x, i); j++)
963 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
964 return 0;
967 return 1;
970 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
972 struct mem_conflict_info
974 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
975 see if a memory store conflicts with this memory load. */
976 const_rtx mem;
978 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
979 references. */
980 bool conflict;
983 /* DEST is the output of an instruction. If it is a memory reference and
984 possibly conflicts with the load found in DATA, then communicate this
985 information back through DATA. */
987 static void
988 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
989 void *data)
991 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
993 while (GET_CODE (dest) == SUBREG
994 || GET_CODE (dest) == ZERO_EXTRACT
995 || GET_CODE (dest) == STRICT_LOW_PART)
996 dest = XEXP (dest, 0);
998 /* If DEST is not a MEM, then it will not conflict with the load. Note
999 that function calls are assumed to clobber memory, but are handled
1000 elsewhere. */
1001 if (! MEM_P (dest))
1002 return;
1004 /* If we are setting a MEM in our list of specially recognized MEMs,
1005 don't mark as killed this time. */
1006 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1008 if (!find_rtx_in_ldst (dest))
1009 mci->conflict = true;
1010 return;
1013 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1014 mci->conflict = true;
1017 /* Return nonzero if the expression in X (a memory reference) is killed
1018 in block BB before or after the insn with the LUID in UID_LIMIT.
1019 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1020 before UID_LIMIT.
1022 To check the entire block, set UID_LIMIT to max_uid + 1 and
1023 AVAIL_P to 0. */
1025 static int
1026 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1027 int avail_p)
1029 vec<rtx> list = modify_mem_list[bb->index];
1030 rtx setter;
1031 unsigned ix;
1033 /* If this is a readonly then we aren't going to be changing it. */
1034 if (MEM_READONLY_P (x))
1035 return 0;
1037 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1039 struct mem_conflict_info mci;
1041 /* Ignore entries in the list that do not apply. */
1042 if ((avail_p
1043 && DF_INSN_LUID (setter) < uid_limit)
1044 || (! avail_p
1045 && DF_INSN_LUID (setter) > uid_limit))
1046 continue;
1048 /* If SETTER is a call everything is clobbered. Note that calls
1049 to pure functions are never put on the list, so we need not
1050 worry about them. */
1051 if (CALL_P (setter))
1052 return 1;
1054 /* SETTER must be an INSN of some kind that sets memory. Call
1055 note_stores to examine each hunk of memory that is modified. */
1056 mci.mem = x;
1057 mci.conflict = false;
1058 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1059 if (mci.conflict)
1060 return 1;
1062 return 0;
1065 /* Return nonzero if the operands of expression X are unchanged from
1066 the start of INSN's basic block up to but not including INSN. */
1068 static int
1069 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1071 return oprs_unchanged_p (x, insn, 0);
1074 /* Return nonzero if the operands of expression X are unchanged from
1075 INSN to the end of INSN's basic block. */
1077 static int
1078 oprs_available_p (const_rtx x, const_rtx insn)
1080 return oprs_unchanged_p (x, insn, 1);
1083 /* Hash expression X.
1085 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1086 indicating if a volatile operand is found or if the expression contains
1087 something we don't want to insert in the table. HASH_TABLE_SIZE is
1088 the current size of the hash table to be probed. */
1090 static unsigned int
1091 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1092 int hash_table_size)
1094 unsigned int hash;
1096 *do_not_record_p = 0;
1098 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1099 return hash % hash_table_size;
1102 /* Return nonzero if exp1 is equivalent to exp2. */
1104 static int
1105 expr_equiv_p (const_rtx x, const_rtx y)
1107 return exp_equiv_p (x, y, 0, true);
1110 /* Insert expression X in INSN in the hash TABLE.
1111 If it is already present, record it as the last occurrence in INSN's
1112 basic block.
1114 MODE is the mode of the value X is being stored into.
1115 It is only used if X is a CONST_INT.
1117 ANTIC_P is nonzero if X is an anticipatable expression.
1118 AVAIL_P is nonzero if X is an available expression.
1120 MAX_DISTANCE is the maximum distance in instructions this expression can
1121 be moved. */
1123 static void
1124 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1125 int avail_p, int max_distance, struct hash_table_d *table)
1127 int found, do_not_record_p;
1128 unsigned int hash;
1129 struct expr *cur_expr, *last_expr = NULL;
1130 struct occr *antic_occr, *avail_occr;
1132 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1134 /* Do not insert expression in table if it contains volatile operands,
1135 or if hash_expr determines the expression is something we don't want
1136 to or can't handle. */
1137 if (do_not_record_p)
1138 return;
1140 cur_expr = table->table[hash];
1141 found = 0;
1143 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1145 /* If the expression isn't found, save a pointer to the end of
1146 the list. */
1147 last_expr = cur_expr;
1148 cur_expr = cur_expr->next_same_hash;
1151 if (! found)
1153 cur_expr = GOBNEW (struct expr);
1154 bytes_used += sizeof (struct expr);
1155 if (table->table[hash] == NULL)
1156 /* This is the first pattern that hashed to this index. */
1157 table->table[hash] = cur_expr;
1158 else
1159 /* Add EXPR to end of this hash chain. */
1160 last_expr->next_same_hash = cur_expr;
1162 /* Set the fields of the expr element. */
1163 cur_expr->expr = x;
1164 cur_expr->bitmap_index = table->n_elems++;
1165 cur_expr->next_same_hash = NULL;
1166 cur_expr->antic_occr = NULL;
1167 cur_expr->avail_occr = NULL;
1168 gcc_assert (max_distance >= 0);
1169 cur_expr->max_distance = max_distance;
1171 else
1172 gcc_assert (cur_expr->max_distance == max_distance);
1174 /* Now record the occurrence(s). */
1175 if (antic_p)
1177 antic_occr = cur_expr->antic_occr;
1179 if (antic_occr
1180 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1181 antic_occr = NULL;
1183 if (antic_occr)
1184 /* Found another instance of the expression in the same basic block.
1185 Prefer the currently recorded one. We want the first one in the
1186 block and the block is scanned from start to end. */
1187 ; /* nothing to do */
1188 else
1190 /* First occurrence of this expression in this basic block. */
1191 antic_occr = GOBNEW (struct occr);
1192 bytes_used += sizeof (struct occr);
1193 antic_occr->insn = insn;
1194 antic_occr->next = cur_expr->antic_occr;
1195 antic_occr->deleted_p = 0;
1196 cur_expr->antic_occr = antic_occr;
1200 if (avail_p)
1202 avail_occr = cur_expr->avail_occr;
1204 if (avail_occr
1205 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1207 /* Found another instance of the expression in the same basic block.
1208 Prefer this occurrence to the currently recorded one. We want
1209 the last one in the block and the block is scanned from start
1210 to end. */
1211 avail_occr->insn = insn;
1213 else
1215 /* First occurrence of this expression in this basic block. */
1216 avail_occr = GOBNEW (struct occr);
1217 bytes_used += sizeof (struct occr);
1218 avail_occr->insn = insn;
1219 avail_occr->next = cur_expr->avail_occr;
1220 avail_occr->deleted_p = 0;
1221 cur_expr->avail_occr = avail_occr;
1226 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1228 static void
1229 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1231 rtx src = SET_SRC (set);
1232 rtx dest = SET_DEST (set);
1233 rtx note;
1235 if (GET_CODE (src) == CALL)
1236 hash_scan_call (src, insn, table);
1238 else if (REG_P (dest))
1240 unsigned int regno = REGNO (dest);
1241 int max_distance = 0;
1243 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1245 This allows us to do a single GCSE pass and still eliminate
1246 redundant constants, addresses or other expressions that are
1247 constructed with multiple instructions.
1249 However, keep the original SRC if INSN is a simple reg-reg move.
1250 In this case, there will almost always be a REG_EQUAL note on the
1251 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1252 for INSN, we miss copy propagation opportunities and we perform the
1253 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1254 do more than one PRE GCSE pass.
1256 Note that this does not impede profitable constant propagations. We
1257 "look through" reg-reg sets in lookup_avail_set. */
1258 note = find_reg_equal_equiv_note (insn);
1259 if (note != 0
1260 && REG_NOTE_KIND (note) == REG_EQUAL
1261 && !REG_P (src)
1262 && want_to_gcse_p (XEXP (note, 0), NULL))
1263 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1265 /* Only record sets of pseudo-regs in the hash table. */
1266 if (regno >= FIRST_PSEUDO_REGISTER
1267 /* Don't GCSE something if we can't do a reg/reg copy. */
1268 && can_copy_p (GET_MODE (dest))
1269 /* GCSE commonly inserts instruction after the insn. We can't
1270 do that easily for EH edges so disable GCSE on these for now. */
1271 /* ??? We can now easily create new EH landing pads at the
1272 gimple level, for splitting edges; there's no reason we
1273 can't do the same thing at the rtl level. */
1274 && !can_throw_internal (insn)
1275 /* Is SET_SRC something we want to gcse? */
1276 && want_to_gcse_p (src, &max_distance)
1277 /* Don't CSE a nop. */
1278 && ! set_noop_p (set)
1279 /* Don't GCSE if it has attached REG_EQUIV note.
1280 At this point this only function parameters should have
1281 REG_EQUIV notes and if the argument slot is used somewhere
1282 explicitly, it means address of parameter has been taken,
1283 so we should not extend the lifetime of the pseudo. */
1284 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1286 /* An expression is not anticipatable if its operands are
1287 modified before this insn or if this is not the only SET in
1288 this insn. The latter condition does not have to mean that
1289 SRC itself is not anticipatable, but we just will not be
1290 able to handle code motion of insns with multiple sets. */
1291 int antic_p = oprs_anticipatable_p (src, insn)
1292 && !multiple_sets (insn);
1293 /* An expression is not available if its operands are
1294 subsequently modified, including this insn. It's also not
1295 available if this is a branch, because we can't insert
1296 a set after the branch. */
1297 int avail_p = (oprs_available_p (src, insn)
1298 && ! JUMP_P (insn));
1300 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1301 max_distance, table);
1304 /* In case of store we want to consider the memory value as available in
1305 the REG stored in that memory. This makes it possible to remove
1306 redundant loads from due to stores to the same location. */
1307 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1309 unsigned int regno = REGNO (src);
1310 int max_distance = 0;
1312 /* Only record sets of pseudo-regs in the hash table. */
1313 if (regno >= FIRST_PSEUDO_REGISTER
1314 /* Don't GCSE something if we can't do a reg/reg copy. */
1315 && can_copy_p (GET_MODE (src))
1316 /* GCSE commonly inserts instruction after the insn. We can't
1317 do that easily for EH edges so disable GCSE on these for now. */
1318 && !can_throw_internal (insn)
1319 /* Is SET_DEST something we want to gcse? */
1320 && want_to_gcse_p (dest, &max_distance)
1321 /* Don't CSE a nop. */
1322 && ! set_noop_p (set)
1323 /* Don't GCSE if it has attached REG_EQUIV note.
1324 At this point this only function parameters should have
1325 REG_EQUIV notes and if the argument slot is used somewhere
1326 explicitly, it means address of parameter has been taken,
1327 so we should not extend the lifetime of the pseudo. */
1328 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1329 || ! MEM_P (XEXP (note, 0))))
1331 /* Stores are never anticipatable. */
1332 int antic_p = 0;
1333 /* An expression is not available if its operands are
1334 subsequently modified, including this insn. It's also not
1335 available if this is a branch, because we can't insert
1336 a set after the branch. */
1337 int avail_p = oprs_available_p (dest, insn)
1338 && ! JUMP_P (insn);
1340 /* Record the memory expression (DEST) in the hash table. */
1341 insert_expr_in_table (dest, GET_MODE (dest), insn,
1342 antic_p, avail_p, max_distance, table);
1347 static void
1348 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1349 struct hash_table_d *table ATTRIBUTE_UNUSED)
1351 /* Currently nothing to do. */
1354 static void
1355 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1356 struct hash_table_d *table ATTRIBUTE_UNUSED)
1358 /* Currently nothing to do. */
1361 /* Process INSN and add hash table entries as appropriate. */
1363 static void
1364 hash_scan_insn (rtx insn, struct hash_table_d *table)
1366 rtx pat = PATTERN (insn);
1367 int i;
1369 /* Pick out the sets of INSN and for other forms of instructions record
1370 what's been modified. */
1372 if (GET_CODE (pat) == SET)
1373 hash_scan_set (pat, insn, table);
1375 else if (GET_CODE (pat) == CLOBBER)
1376 hash_scan_clobber (pat, insn, table);
1378 else if (GET_CODE (pat) == CALL)
1379 hash_scan_call (pat, insn, table);
1381 else if (GET_CODE (pat) == PARALLEL)
1382 for (i = 0; i < XVECLEN (pat, 0); i++)
1384 rtx x = XVECEXP (pat, 0, i);
1386 if (GET_CODE (x) == SET)
1387 hash_scan_set (x, insn, table);
1388 else if (GET_CODE (x) == CLOBBER)
1389 hash_scan_clobber (x, insn, table);
1390 else if (GET_CODE (x) == CALL)
1391 hash_scan_call (x, insn, table);
1395 /* Dump the hash table TABLE to file FILE under the name NAME. */
1397 static void
1398 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1400 int i;
1401 /* Flattened out table, so it's printed in proper order. */
1402 struct expr **flat_table;
1403 unsigned int *hash_val;
1404 struct expr *expr;
1406 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1407 hash_val = XNEWVEC (unsigned int, table->n_elems);
1409 for (i = 0; i < (int) table->size; i++)
1410 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1412 flat_table[expr->bitmap_index] = expr;
1413 hash_val[expr->bitmap_index] = i;
1416 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1417 name, table->size, table->n_elems);
1419 for (i = 0; i < (int) table->n_elems; i++)
1420 if (flat_table[i] != 0)
1422 expr = flat_table[i];
1423 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1424 expr->bitmap_index, hash_val[i], expr->max_distance);
1425 print_rtl (file, expr->expr);
1426 fprintf (file, "\n");
1429 fprintf (file, "\n");
1431 free (flat_table);
1432 free (hash_val);
1435 /* Record register first/last/block set information for REGNO in INSN.
1437 first_set records the first place in the block where the register
1438 is set and is used to compute "anticipatability".
1440 last_set records the last place in the block where the register
1441 is set and is used to compute "availability".
1443 last_bb records the block for which first_set and last_set are
1444 valid, as a quick test to invalidate them. */
1446 static void
1447 record_last_reg_set_info (rtx insn, int regno)
1449 struct reg_avail_info *info = &reg_avail_info[regno];
1450 int luid = DF_INSN_LUID (insn);
1452 info->last_set = luid;
1453 if (info->last_bb != current_bb)
1455 info->last_bb = current_bb;
1456 info->first_set = luid;
1460 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1461 Note we store a pair of elements in the list, so they have to be
1462 taken off pairwise. */
1464 static void
1465 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1466 void * v_insn)
1468 rtx dest_addr, insn;
1469 int bb;
1470 modify_pair pair;
1472 while (GET_CODE (dest) == SUBREG
1473 || GET_CODE (dest) == ZERO_EXTRACT
1474 || GET_CODE (dest) == STRICT_LOW_PART)
1475 dest = XEXP (dest, 0);
1477 /* If DEST is not a MEM, then it will not conflict with a load. Note
1478 that function calls are assumed to clobber memory, but are handled
1479 elsewhere. */
1481 if (! MEM_P (dest))
1482 return;
1484 dest_addr = get_addr (XEXP (dest, 0));
1485 dest_addr = canon_rtx (dest_addr);
1486 insn = (rtx) v_insn;
1487 bb = BLOCK_FOR_INSN (insn)->index;
1489 pair.dest = dest;
1490 pair.dest_addr = dest_addr;
1491 canon_modify_mem_list[bb].safe_push (pair);
1494 /* Record memory modification information for INSN. We do not actually care
1495 about the memory location(s) that are set, or even how they are set (consider
1496 a CALL_INSN). We merely need to record which insns modify memory. */
1498 static void
1499 record_last_mem_set_info (rtx insn)
1501 int bb;
1503 if (! flag_gcse_lm)
1504 return;
1506 /* load_killed_in_block_p will handle the case of calls clobbering
1507 everything. */
1508 bb = BLOCK_FOR_INSN (insn)->index;
1509 modify_mem_list[bb].safe_push (insn);
1510 bitmap_set_bit (modify_mem_list_set, bb);
1512 if (CALL_P (insn))
1513 bitmap_set_bit (blocks_with_calls, bb);
1514 else
1515 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1518 /* Called from compute_hash_table via note_stores to handle one
1519 SET or CLOBBER in an insn. DATA is really the instruction in which
1520 the SET is taking place. */
1522 static void
1523 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1525 rtx last_set_insn = (rtx) data;
1527 if (GET_CODE (dest) == SUBREG)
1528 dest = SUBREG_REG (dest);
1530 if (REG_P (dest))
1531 record_last_reg_set_info (last_set_insn, REGNO (dest));
1532 else if (MEM_P (dest)
1533 /* Ignore pushes, they clobber nothing. */
1534 && ! push_operand (dest, GET_MODE (dest)))
1535 record_last_mem_set_info (last_set_insn);
1538 /* Top level function to create an expression hash table.
1540 Expression entries are placed in the hash table if
1541 - they are of the form (set (pseudo-reg) src),
1542 - src is something we want to perform GCSE on,
1543 - none of the operands are subsequently modified in the block
1545 Currently src must be a pseudo-reg or a const_int.
1547 TABLE is the table computed. */
1549 static void
1550 compute_hash_table_work (struct hash_table_d *table)
1552 int i;
1554 /* re-Cache any INSN_LIST nodes we have allocated. */
1555 clear_modify_mem_tables ();
1556 /* Some working arrays used to track first and last set in each block. */
1557 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1559 for (i = 0; i < max_reg_num (); ++i)
1560 reg_avail_info[i].last_bb = NULL;
1562 FOR_EACH_BB_FN (current_bb, cfun)
1564 rtx insn;
1565 unsigned int regno;
1567 /* First pass over the instructions records information used to
1568 determine when registers and memory are first and last set. */
1569 FOR_BB_INSNS (current_bb, insn)
1571 if (!NONDEBUG_INSN_P (insn))
1572 continue;
1574 if (CALL_P (insn))
1576 hard_reg_set_iterator hrsi;
1577 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1578 0, regno, hrsi)
1579 record_last_reg_set_info (insn, regno);
1581 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1582 record_last_mem_set_info (insn);
1585 note_stores (PATTERN (insn), record_last_set_info, insn);
1588 /* The next pass builds the hash table. */
1589 FOR_BB_INSNS (current_bb, insn)
1590 if (NONDEBUG_INSN_P (insn))
1591 hash_scan_insn (insn, table);
1594 free (reg_avail_info);
1595 reg_avail_info = NULL;
1598 /* Allocate space for the set/expr hash TABLE.
1599 It is used to determine the number of buckets to use. */
1601 static void
1602 alloc_hash_table (struct hash_table_d *table)
1604 int n;
1606 n = get_max_insn_count ();
1608 table->size = n / 4;
1609 if (table->size < 11)
1610 table->size = 11;
1612 /* Attempt to maintain efficient use of hash table.
1613 Making it an odd number is simplest for now.
1614 ??? Later take some measurements. */
1615 table->size |= 1;
1616 n = table->size * sizeof (struct expr *);
1617 table->table = GNEWVAR (struct expr *, n);
1620 /* Free things allocated by alloc_hash_table. */
1622 static void
1623 free_hash_table (struct hash_table_d *table)
1625 free (table->table);
1628 /* Compute the expression hash table TABLE. */
1630 static void
1631 compute_hash_table (struct hash_table_d *table)
1633 /* Initialize count of number of entries in hash table. */
1634 table->n_elems = 0;
1635 memset (table->table, 0, table->size * sizeof (struct expr *));
1637 compute_hash_table_work (table);
1640 /* Expression tracking support. */
1642 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1643 static void
1644 clear_modify_mem_tables (void)
1646 unsigned i;
1647 bitmap_iterator bi;
1649 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1651 modify_mem_list[i].release ();
1652 canon_modify_mem_list[i].release ();
1654 bitmap_clear (modify_mem_list_set);
1655 bitmap_clear (blocks_with_calls);
1658 /* Release memory used by modify_mem_list_set. */
1660 static void
1661 free_modify_mem_tables (void)
1663 clear_modify_mem_tables ();
1664 free (modify_mem_list);
1665 free (canon_modify_mem_list);
1666 modify_mem_list = 0;
1667 canon_modify_mem_list = 0;
1670 /* For each block, compute whether X is transparent. X is either an
1671 expression or an assignment [though we don't care which, for this context
1672 an assignment is treated as an expression]. For each block where an
1673 element of X is modified, reset the INDX bit in BMAP. */
1675 static void
1676 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1678 int i, j;
1679 enum rtx_code code;
1680 const char *fmt;
1682 /* repeat is used to turn tail-recursion into iteration since GCC
1683 can't do it when there's no return value. */
1684 repeat:
1686 if (x == 0)
1687 return;
1689 code = GET_CODE (x);
1690 switch (code)
1692 case REG:
1694 df_ref def;
1695 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1696 def;
1697 def = DF_REF_NEXT_REG (def))
1698 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1701 return;
1703 case MEM:
1704 if (! MEM_READONLY_P (x))
1706 bitmap_iterator bi;
1707 unsigned bb_index;
1708 rtx x_addr;
1710 x_addr = get_addr (XEXP (x, 0));
1711 x_addr = canon_rtx (x_addr);
1713 /* First handle all the blocks with calls. We don't need to
1714 do any list walking for them. */
1715 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1717 bitmap_clear_bit (bmap[bb_index], indx);
1720 /* Now iterate over the blocks which have memory modifications
1721 but which do not have any calls. */
1722 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1723 blocks_with_calls,
1724 0, bb_index, bi)
1726 vec<modify_pair> list
1727 = canon_modify_mem_list[bb_index];
1728 modify_pair *pair;
1729 unsigned ix;
1731 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1733 rtx dest = pair->dest;
1734 rtx dest_addr = pair->dest_addr;
1736 if (canon_true_dependence (dest, GET_MODE (dest),
1737 dest_addr, x, x_addr))
1738 bitmap_clear_bit (bmap[bb_index], indx);
1743 x = XEXP (x, 0);
1744 goto repeat;
1746 case PC:
1747 case CC0: /*FIXME*/
1748 case CONST:
1749 CASE_CONST_ANY:
1750 case SYMBOL_REF:
1751 case LABEL_REF:
1752 case ADDR_VEC:
1753 case ADDR_DIFF_VEC:
1754 return;
1756 default:
1757 break;
1760 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1762 if (fmt[i] == 'e')
1764 /* If we are about to do the last recursive call
1765 needed at this level, change it into iteration.
1766 This function is called enough to be worth it. */
1767 if (i == 0)
1769 x = XEXP (x, i);
1770 goto repeat;
1773 compute_transp (XEXP (x, i), indx, bmap);
1775 else if (fmt[i] == 'E')
1776 for (j = 0; j < XVECLEN (x, i); j++)
1777 compute_transp (XVECEXP (x, i, j), indx, bmap);
1781 /* Compute PRE+LCM working variables. */
1783 /* Local properties of expressions. */
1785 /* Nonzero for expressions that are transparent in the block. */
1786 static sbitmap *transp;
1788 /* Nonzero for expressions that are computed (available) in the block. */
1789 static sbitmap *comp;
1791 /* Nonzero for expressions that are locally anticipatable in the block. */
1792 static sbitmap *antloc;
1794 /* Nonzero for expressions where this block is an optimal computation
1795 point. */
1796 static sbitmap *pre_optimal;
1798 /* Nonzero for expressions which are redundant in a particular block. */
1799 static sbitmap *pre_redundant;
1801 /* Nonzero for expressions which should be inserted on a specific edge. */
1802 static sbitmap *pre_insert_map;
1804 /* Nonzero for expressions which should be deleted in a specific block. */
1805 static sbitmap *pre_delete_map;
1807 /* Allocate vars used for PRE analysis. */
1809 static void
1810 alloc_pre_mem (int n_blocks, int n_exprs)
1812 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1813 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1814 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1816 pre_optimal = NULL;
1817 pre_redundant = NULL;
1818 pre_insert_map = NULL;
1819 pre_delete_map = NULL;
1820 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1822 /* pre_insert and pre_delete are allocated later. */
1825 /* Free vars used for PRE analysis. */
1827 static void
1828 free_pre_mem (void)
1830 sbitmap_vector_free (transp);
1831 sbitmap_vector_free (comp);
1833 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1835 if (pre_optimal)
1836 sbitmap_vector_free (pre_optimal);
1837 if (pre_redundant)
1838 sbitmap_vector_free (pre_redundant);
1839 if (pre_insert_map)
1840 sbitmap_vector_free (pre_insert_map);
1841 if (pre_delete_map)
1842 sbitmap_vector_free (pre_delete_map);
1844 transp = comp = NULL;
1845 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1848 /* Remove certain expressions from anticipatable and transparent
1849 sets of basic blocks that have incoming abnormal edge.
1850 For PRE remove potentially trapping expressions to avoid placing
1851 them on abnormal edges. For hoisting remove memory references that
1852 can be clobbered by calls. */
1854 static void
1855 prune_expressions (bool pre_p)
1857 sbitmap prune_exprs;
1858 struct expr *expr;
1859 unsigned int ui;
1860 basic_block bb;
1862 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1863 bitmap_clear (prune_exprs);
1864 for (ui = 0; ui < expr_hash_table.size; ui++)
1866 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1868 /* Note potentially trapping expressions. */
1869 if (may_trap_p (expr->expr))
1871 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1872 continue;
1875 if (!pre_p && MEM_P (expr->expr))
1876 /* Note memory references that can be clobbered by a call.
1877 We do not split abnormal edges in hoisting, so would
1878 a memory reference get hoisted along an abnormal edge,
1879 it would be placed /before/ the call. Therefore, only
1880 constant memory references can be hoisted along abnormal
1881 edges. */
1883 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1884 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1885 continue;
1887 if (MEM_READONLY_P (expr->expr)
1888 && !MEM_VOLATILE_P (expr->expr)
1889 && MEM_NOTRAP_P (expr->expr))
1890 /* Constant memory reference, e.g., a PIC address. */
1891 continue;
1893 /* ??? Optimally, we would use interprocedural alias
1894 analysis to determine if this mem is actually killed
1895 by this call. */
1897 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1902 FOR_EACH_BB_FN (bb, cfun)
1904 edge e;
1905 edge_iterator ei;
1907 /* If the current block is the destination of an abnormal edge, we
1908 kill all trapping (for PRE) and memory (for hoist) expressions
1909 because we won't be able to properly place the instruction on
1910 the edge. So make them neither anticipatable nor transparent.
1911 This is fairly conservative.
1913 ??? For hoisting it may be necessary to check for set-and-jump
1914 instructions here, not just for abnormal edges. The general problem
1915 is that when an expression cannot not be placed right at the end of
1916 a basic block we should account for any side-effects of a subsequent
1917 jump instructions that could clobber the expression. It would
1918 be best to implement this check along the lines of
1919 should_hoist_expr_to_dom where the target block is already known
1920 and, hence, there's no need to conservatively prune expressions on
1921 "intermediate" set-and-jump instructions. */
1922 FOR_EACH_EDGE (e, ei, bb->preds)
1923 if ((e->flags & EDGE_ABNORMAL)
1924 && (pre_p || CALL_P (BB_END (e->src))))
1926 bitmap_and_compl (antloc[bb->index],
1927 antloc[bb->index], prune_exprs);
1928 bitmap_and_compl (transp[bb->index],
1929 transp[bb->index], prune_exprs);
1930 break;
1934 sbitmap_free (prune_exprs);
1937 /* It may be necessary to insert a large number of insns on edges to
1938 make the existing occurrences of expressions fully redundant. This
1939 routine examines the set of insertions and deletions and if the ratio
1940 of insertions to deletions is too high for a particular expression, then
1941 the expression is removed from the insertion/deletion sets.
1943 N_ELEMS is the number of elements in the hash table. */
1945 static void
1946 prune_insertions_deletions (int n_elems)
1948 sbitmap_iterator sbi;
1949 sbitmap prune_exprs;
1951 /* We always use I to iterate over blocks/edges and J to iterate over
1952 expressions. */
1953 unsigned int i, j;
1955 /* Counts for the number of times an expression needs to be inserted and
1956 number of times an expression can be removed as a result. */
1957 int *insertions = GCNEWVEC (int, n_elems);
1958 int *deletions = GCNEWVEC (int, n_elems);
1960 /* Set of expressions which require too many insertions relative to
1961 the number of deletions achieved. We will prune these out of the
1962 insertion/deletion sets. */
1963 prune_exprs = sbitmap_alloc (n_elems);
1964 bitmap_clear (prune_exprs);
1966 /* Iterate over the edges counting the number of times each expression
1967 needs to be inserted. */
1968 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1970 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1971 insertions[j]++;
1974 /* Similarly for deletions, but those occur in blocks rather than on
1975 edges. */
1976 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1978 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1979 deletions[j]++;
1982 /* Now that we have accurate counts, iterate over the elements in the
1983 hash table and see if any need too many insertions relative to the
1984 number of evaluations that can be removed. If so, mark them in
1985 PRUNE_EXPRS. */
1986 for (j = 0; j < (unsigned) n_elems; j++)
1987 if (deletions[j]
1988 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1989 bitmap_set_bit (prune_exprs, j);
1991 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1992 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1994 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1995 bitmap_clear_bit (pre_insert_map[i], j);
1997 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1998 bitmap_clear_bit (pre_delete_map[i], j);
2001 sbitmap_free (prune_exprs);
2002 free (insertions);
2003 free (deletions);
2006 /* Top level routine to do the dataflow analysis needed by PRE. */
2008 static struct edge_list *
2009 compute_pre_data (void)
2011 struct edge_list *edge_list;
2012 basic_block bb;
2014 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2015 prune_expressions (true);
2016 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
2018 /* Compute ae_kill for each basic block using:
2020 ~(TRANSP | COMP)
2023 FOR_EACH_BB_FN (bb, cfun)
2025 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2026 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
2029 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2030 ae_kill, &pre_insert_map, &pre_delete_map);
2031 sbitmap_vector_free (antloc);
2032 antloc = NULL;
2033 sbitmap_vector_free (ae_kill);
2034 ae_kill = NULL;
2036 prune_insertions_deletions (expr_hash_table.n_elems);
2038 return edge_list;
2041 /* PRE utilities */
2043 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2044 block BB.
2046 VISITED is a pointer to a working buffer for tracking which BB's have
2047 been visited. It is NULL for the top-level call.
2049 We treat reaching expressions that go through blocks containing the same
2050 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2051 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2052 2 as not reaching. The intent is to improve the probability of finding
2053 only one reaching expression and to reduce register lifetimes by picking
2054 the closest such expression. */
2056 static int
2057 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2058 basic_block bb, char *visited)
2060 edge pred;
2061 edge_iterator ei;
2063 FOR_EACH_EDGE (pred, ei, bb->preds)
2065 basic_block pred_bb = pred->src;
2067 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2068 /* Has predecessor has already been visited? */
2069 || visited[pred_bb->index])
2070 ;/* Nothing to do. */
2072 /* Does this predecessor generate this expression? */
2073 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2075 /* Is this the occurrence we're looking for?
2076 Note that there's only one generating occurrence per block
2077 so we just need to check the block number. */
2078 if (occr_bb == pred_bb)
2079 return 1;
2081 visited[pred_bb->index] = 1;
2083 /* Ignore this predecessor if it kills the expression. */
2084 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2085 visited[pred_bb->index] = 1;
2087 /* Neither gen nor kill. */
2088 else
2090 visited[pred_bb->index] = 1;
2091 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2092 return 1;
2096 /* All paths have been checked. */
2097 return 0;
2100 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2101 memory allocated for that function is returned. */
2103 static int
2104 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2106 int rval;
2107 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
2109 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2111 free (visited);
2112 return rval;
2115 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2117 static rtx
2118 process_insert_insn (struct expr *expr)
2120 rtx reg = expr->reaching_reg;
2121 /* Copy the expression to make sure we don't have any sharing issues. */
2122 rtx exp = copy_rtx (expr->expr);
2123 rtx pat;
2125 start_sequence ();
2127 /* If the expression is something that's an operand, like a constant,
2128 just copy it to a register. */
2129 if (general_operand (exp, GET_MODE (reg)))
2130 emit_move_insn (reg, exp);
2132 /* Otherwise, make a new insn to compute this expression and make sure the
2133 insn will be recognized (this also adds any needed CLOBBERs). */
2134 else
2136 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2138 if (insn_invalid_p (insn, false))
2139 gcc_unreachable ();
2142 pat = get_insns ();
2143 end_sequence ();
2145 return pat;
2148 /* Add EXPR to the end of basic block BB.
2150 This is used by both the PRE and code hoisting. */
2152 static void
2153 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2155 rtx insn = BB_END (bb);
2156 rtx new_insn;
2157 rtx reg = expr->reaching_reg;
2158 int regno = REGNO (reg);
2159 rtx pat, pat_end;
2161 pat = process_insert_insn (expr);
2162 gcc_assert (pat && INSN_P (pat));
2164 pat_end = pat;
2165 while (NEXT_INSN (pat_end) != NULL_RTX)
2166 pat_end = NEXT_INSN (pat_end);
2168 /* If the last insn is a jump, insert EXPR in front [taking care to
2169 handle cc0, etc. properly]. Similarly we need to care trapping
2170 instructions in presence of non-call exceptions. */
2172 if (JUMP_P (insn)
2173 || (NONJUMP_INSN_P (insn)
2174 && (!single_succ_p (bb)
2175 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2177 #ifdef HAVE_cc0
2178 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2179 if cc0 isn't set. */
2180 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2181 if (note)
2182 insn = XEXP (note, 0);
2183 else
2185 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2186 if (maybe_cc0_setter
2187 && INSN_P (maybe_cc0_setter)
2188 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2189 insn = maybe_cc0_setter;
2191 #endif
2192 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2193 new_insn = emit_insn_before_noloc (pat, insn, bb);
2196 /* Likewise if the last insn is a call, as will happen in the presence
2197 of exception handling. */
2198 else if (CALL_P (insn)
2199 && (!single_succ_p (bb)
2200 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2202 /* Keeping in mind targets with small register classes and parameters
2203 in registers, we search backward and place the instructions before
2204 the first parameter is loaded. Do this for everyone for consistency
2205 and a presumption that we'll get better code elsewhere as well. */
2207 /* Since different machines initialize their parameter registers
2208 in different orders, assume nothing. Collect the set of all
2209 parameter registers. */
2210 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2212 /* If we found all the parameter loads, then we want to insert
2213 before the first parameter load.
2215 If we did not find all the parameter loads, then we might have
2216 stopped on the head of the block, which could be a CODE_LABEL.
2217 If we inserted before the CODE_LABEL, then we would be putting
2218 the insn in the wrong basic block. In that case, put the insn
2219 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2220 while (LABEL_P (insn)
2221 || NOTE_INSN_BASIC_BLOCK_P (insn))
2222 insn = NEXT_INSN (insn);
2224 new_insn = emit_insn_before_noloc (pat, insn, bb);
2226 else
2227 new_insn = emit_insn_after_noloc (pat, insn, bb);
2229 while (1)
2231 if (INSN_P (pat))
2232 add_label_notes (PATTERN (pat), new_insn);
2233 if (pat == pat_end)
2234 break;
2235 pat = NEXT_INSN (pat);
2238 gcse_create_count++;
2240 if (dump_file)
2242 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2243 bb->index, INSN_UID (new_insn));
2244 fprintf (dump_file, "copying expression %d to reg %d\n",
2245 expr->bitmap_index, regno);
2249 /* Insert partially redundant expressions on edges in the CFG to make
2250 the expressions fully redundant. */
2252 static int
2253 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2255 int e, i, j, num_edges, set_size, did_insert = 0;
2256 sbitmap *inserted;
2258 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2259 if it reaches any of the deleted expressions. */
2261 set_size = pre_insert_map[0]->size;
2262 num_edges = NUM_EDGES (edge_list);
2263 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2264 bitmap_vector_clear (inserted, num_edges);
2266 for (e = 0; e < num_edges; e++)
2268 int indx;
2269 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2271 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2273 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2275 for (j = indx;
2276 insert && j < (int) expr_hash_table.n_elems;
2277 j++, insert >>= 1)
2278 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2280 struct expr *expr = index_map[j];
2281 struct occr *occr;
2283 /* Now look at each deleted occurrence of this expression. */
2284 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2286 if (! occr->deleted_p)
2287 continue;
2289 /* Insert this expression on this edge if it would
2290 reach the deleted occurrence in BB. */
2291 if (!bitmap_bit_p (inserted[e], j))
2293 rtx insn;
2294 edge eg = INDEX_EDGE (edge_list, e);
2296 /* We can't insert anything on an abnormal and
2297 critical edge, so we insert the insn at the end of
2298 the previous block. There are several alternatives
2299 detailed in Morgans book P277 (sec 10.5) for
2300 handling this situation. This one is easiest for
2301 now. */
2303 if (eg->flags & EDGE_ABNORMAL)
2304 insert_insn_end_basic_block (index_map[j], bb);
2305 else
2307 insn = process_insert_insn (index_map[j]);
2308 insert_insn_on_edge (insn, eg);
2311 if (dump_file)
2313 fprintf (dump_file, "PRE: edge (%d,%d), ",
2314 bb->index,
2315 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2316 fprintf (dump_file, "copy expression %d\n",
2317 expr->bitmap_index);
2320 update_ld_motion_stores (expr);
2321 bitmap_set_bit (inserted[e], j);
2322 did_insert = 1;
2323 gcse_create_count++;
2330 sbitmap_vector_free (inserted);
2331 return did_insert;
2334 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2335 Given "old_reg <- expr" (INSN), instead of adding after it
2336 reaching_reg <- old_reg
2337 it's better to do the following:
2338 reaching_reg <- expr
2339 old_reg <- reaching_reg
2340 because this way copy propagation can discover additional PRE
2341 opportunities. But if this fails, we try the old way.
2342 When "expr" is a store, i.e.
2343 given "MEM <- old_reg", instead of adding after it
2344 reaching_reg <- old_reg
2345 it's better to add it before as follows:
2346 reaching_reg <- old_reg
2347 MEM <- reaching_reg. */
2349 static void
2350 pre_insert_copy_insn (struct expr *expr, rtx insn)
2352 rtx reg = expr->reaching_reg;
2353 int regno = REGNO (reg);
2354 int indx = expr->bitmap_index;
2355 rtx pat = PATTERN (insn);
2356 rtx set, first_set, new_insn;
2357 rtx old_reg;
2358 int i;
2360 /* This block matches the logic in hash_scan_insn. */
2361 switch (GET_CODE (pat))
2363 case SET:
2364 set = pat;
2365 break;
2367 case PARALLEL:
2368 /* Search through the parallel looking for the set whose
2369 source was the expression that we're interested in. */
2370 first_set = NULL_RTX;
2371 set = NULL_RTX;
2372 for (i = 0; i < XVECLEN (pat, 0); i++)
2374 rtx x = XVECEXP (pat, 0, i);
2375 if (GET_CODE (x) == SET)
2377 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2378 may not find an equivalent expression, but in this
2379 case the PARALLEL will have a single set. */
2380 if (first_set == NULL_RTX)
2381 first_set = x;
2382 if (expr_equiv_p (SET_SRC (x), expr->expr))
2384 set = x;
2385 break;
2390 gcc_assert (first_set);
2391 if (set == NULL_RTX)
2392 set = first_set;
2393 break;
2395 default:
2396 gcc_unreachable ();
2399 if (REG_P (SET_DEST (set)))
2401 old_reg = SET_DEST (set);
2402 /* Check if we can modify the set destination in the original insn. */
2403 if (validate_change (insn, &SET_DEST (set), reg, 0))
2405 new_insn = gen_move_insn (old_reg, reg);
2406 new_insn = emit_insn_after (new_insn, insn);
2408 else
2410 new_insn = gen_move_insn (reg, old_reg);
2411 new_insn = emit_insn_after (new_insn, insn);
2414 else /* This is possible only in case of a store to memory. */
2416 old_reg = SET_SRC (set);
2417 new_insn = gen_move_insn (reg, old_reg);
2419 /* Check if we can modify the set source in the original insn. */
2420 if (validate_change (insn, &SET_SRC (set), reg, 0))
2421 new_insn = emit_insn_before (new_insn, insn);
2422 else
2423 new_insn = emit_insn_after (new_insn, insn);
2426 gcse_create_count++;
2428 if (dump_file)
2429 fprintf (dump_file,
2430 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2431 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2432 INSN_UID (insn), regno);
2435 /* Copy available expressions that reach the redundant expression
2436 to `reaching_reg'. */
2438 static void
2439 pre_insert_copies (void)
2441 unsigned int i, added_copy;
2442 struct expr *expr;
2443 struct occr *occr;
2444 struct occr *avail;
2446 /* For each available expression in the table, copy the result to
2447 `reaching_reg' if the expression reaches a deleted one.
2449 ??? The current algorithm is rather brute force.
2450 Need to do some profiling. */
2452 for (i = 0; i < expr_hash_table.size; i++)
2453 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2455 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2456 we don't want to insert a copy here because the expression may not
2457 really be redundant. So only insert an insn if the expression was
2458 deleted. This test also avoids further processing if the
2459 expression wasn't deleted anywhere. */
2460 if (expr->reaching_reg == NULL)
2461 continue;
2463 /* Set when we add a copy for that expression. */
2464 added_copy = 0;
2466 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2468 if (! occr->deleted_p)
2469 continue;
2471 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2473 rtx insn = avail->insn;
2475 /* No need to handle this one if handled already. */
2476 if (avail->copied_p)
2477 continue;
2479 /* Don't handle this one if it's a redundant one. */
2480 if (INSN_DELETED_P (insn))
2481 continue;
2483 /* Or if the expression doesn't reach the deleted one. */
2484 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2485 expr,
2486 BLOCK_FOR_INSN (occr->insn)))
2487 continue;
2489 added_copy = 1;
2491 /* Copy the result of avail to reaching_reg. */
2492 pre_insert_copy_insn (expr, insn);
2493 avail->copied_p = 1;
2497 if (added_copy)
2498 update_ld_motion_stores (expr);
2502 /* Emit move from SRC to DEST noting the equivalence with expression computed
2503 in INSN. */
2505 static rtx
2506 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2508 rtx new_rtx;
2509 rtx set = single_set (insn), set2;
2510 rtx note;
2511 rtx eqv = NULL_RTX;
2513 /* This should never fail since we're creating a reg->reg copy
2514 we've verified to be valid. */
2516 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2518 /* Note the equivalence for local CSE pass. Take the note from the old
2519 set if there was one. Otherwise record the SET_SRC from the old set
2520 unless DEST is also an operand of the SET_SRC. */
2521 set2 = single_set (new_rtx);
2522 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2523 return new_rtx;
2524 if ((note = find_reg_equal_equiv_note (insn)))
2525 eqv = XEXP (note, 0);
2526 else if (! REG_P (dest)
2527 || ! reg_mentioned_p (dest, SET_SRC (set)))
2528 eqv = SET_SRC (set);
2530 if (eqv != NULL_RTX)
2531 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2533 return new_rtx;
2536 /* Delete redundant computations.
2537 Deletion is done by changing the insn to copy the `reaching_reg' of
2538 the expression into the result of the SET. It is left to later passes
2539 to propagate the copy or eliminate it.
2541 Return nonzero if a change is made. */
2543 static int
2544 pre_delete (void)
2546 unsigned int i;
2547 int changed;
2548 struct expr *expr;
2549 struct occr *occr;
2551 changed = 0;
2552 for (i = 0; i < expr_hash_table.size; i++)
2553 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2555 int indx = expr->bitmap_index;
2557 /* We only need to search antic_occr since we require ANTLOC != 0. */
2558 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2560 rtx insn = occr->insn;
2561 rtx set;
2562 basic_block bb = BLOCK_FOR_INSN (insn);
2564 /* We only delete insns that have a single_set. */
2565 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2566 && (set = single_set (insn)) != 0
2567 && dbg_cnt (pre_insn))
2569 /* Create a pseudo-reg to store the result of reaching
2570 expressions into. Get the mode for the new pseudo from
2571 the mode of the original destination pseudo. */
2572 if (expr->reaching_reg == NULL)
2573 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2575 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2576 delete_insn (insn);
2577 occr->deleted_p = 1;
2578 changed = 1;
2579 gcse_subst_count++;
2581 if (dump_file)
2583 fprintf (dump_file,
2584 "PRE: redundant insn %d (expression %d) in ",
2585 INSN_UID (insn), indx);
2586 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2587 bb->index, REGNO (expr->reaching_reg));
2593 return changed;
2596 /* Perform GCSE optimizations using PRE.
2597 This is called by one_pre_gcse_pass after all the dataflow analysis
2598 has been done.
2600 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2601 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2602 Compiler Design and Implementation.
2604 ??? A new pseudo reg is created to hold the reaching expression. The nice
2605 thing about the classical approach is that it would try to use an existing
2606 reg. If the register can't be adequately optimized [i.e. we introduce
2607 reload problems], one could add a pass here to propagate the new register
2608 through the block.
2610 ??? We don't handle single sets in PARALLELs because we're [currently] not
2611 able to copy the rest of the parallel when we insert copies to create full
2612 redundancies from partial redundancies. However, there's no reason why we
2613 can't handle PARALLELs in the cases where there are no partial
2614 redundancies. */
2616 static int
2617 pre_gcse (struct edge_list *edge_list)
2619 unsigned int i;
2620 int did_insert, changed;
2621 struct expr **index_map;
2622 struct expr *expr;
2624 /* Compute a mapping from expression number (`bitmap_index') to
2625 hash table entry. */
2627 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2628 for (i = 0; i < expr_hash_table.size; i++)
2629 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2630 index_map[expr->bitmap_index] = expr;
2632 /* Delete the redundant insns first so that
2633 - we know what register to use for the new insns and for the other
2634 ones with reaching expressions
2635 - we know which insns are redundant when we go to create copies */
2637 changed = pre_delete ();
2638 did_insert = pre_edge_insert (edge_list, index_map);
2640 /* In other places with reaching expressions, copy the expression to the
2641 specially allocated pseudo-reg that reaches the redundant expr. */
2642 pre_insert_copies ();
2643 if (did_insert)
2645 commit_edge_insertions ();
2646 changed = 1;
2649 free (index_map);
2650 return changed;
2653 /* Top level routine to perform one PRE GCSE pass.
2655 Return nonzero if a change was made. */
2657 static int
2658 one_pre_gcse_pass (void)
2660 int changed = 0;
2662 gcse_subst_count = 0;
2663 gcse_create_count = 0;
2665 /* Return if there's nothing to do, or it is too expensive. */
2666 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2667 || is_too_expensive (_("PRE disabled")))
2668 return 0;
2670 /* We need alias. */
2671 init_alias_analysis ();
2673 bytes_used = 0;
2674 gcc_obstack_init (&gcse_obstack);
2675 alloc_gcse_mem ();
2677 alloc_hash_table (&expr_hash_table);
2678 add_noreturn_fake_exit_edges ();
2679 if (flag_gcse_lm)
2680 compute_ld_motion_mems ();
2682 compute_hash_table (&expr_hash_table);
2683 if (flag_gcse_lm)
2684 trim_ld_motion_mems ();
2685 if (dump_file)
2686 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2688 if (expr_hash_table.n_elems > 0)
2690 struct edge_list *edge_list;
2691 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2692 edge_list = compute_pre_data ();
2693 changed |= pre_gcse (edge_list);
2694 free_edge_list (edge_list);
2695 free_pre_mem ();
2698 if (flag_gcse_lm)
2699 free_ld_motion_mems ();
2700 remove_fake_exit_edges ();
2701 free_hash_table (&expr_hash_table);
2703 free_gcse_mem ();
2704 obstack_free (&gcse_obstack, NULL);
2706 /* We are finished with alias. */
2707 end_alias_analysis ();
2709 if (dump_file)
2711 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2712 current_function_name (), n_basic_blocks_for_fn (cfun),
2713 bytes_used);
2714 fprintf (dump_file, "%d substs, %d insns created\n",
2715 gcse_subst_count, gcse_create_count);
2718 return changed;
2721 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2722 to INSN. If such notes are added to an insn which references a
2723 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2724 that note, because the following loop optimization pass requires
2725 them. */
2727 /* ??? If there was a jump optimization pass after gcse and before loop,
2728 then we would not need to do this here, because jump would add the
2729 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2731 static void
2732 add_label_notes (rtx x, rtx insn)
2734 enum rtx_code code = GET_CODE (x);
2735 int i, j;
2736 const char *fmt;
2738 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2740 /* This code used to ignore labels that referred to dispatch tables to
2741 avoid flow generating (slightly) worse code.
2743 We no longer ignore such label references (see LABEL_REF handling in
2744 mark_jump_label for additional information). */
2746 /* There's no reason for current users to emit jump-insns with
2747 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2748 notes. */
2749 gcc_assert (!JUMP_P (insn));
2750 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2752 if (LABEL_P (XEXP (x, 0)))
2753 LABEL_NUSES (XEXP (x, 0))++;
2755 return;
2758 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2760 if (fmt[i] == 'e')
2761 add_label_notes (XEXP (x, i), insn);
2762 else if (fmt[i] == 'E')
2763 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2764 add_label_notes (XVECEXP (x, i, j), insn);
2768 /* Code Hoisting variables and subroutines. */
2770 /* Very busy expressions. */
2771 static sbitmap *hoist_vbein;
2772 static sbitmap *hoist_vbeout;
2774 /* ??? We could compute post dominators and run this algorithm in
2775 reverse to perform tail merging, doing so would probably be
2776 more effective than the tail merging code in jump.c.
2778 It's unclear if tail merging could be run in parallel with
2779 code hoisting. It would be nice. */
2781 /* Allocate vars used for code hoisting analysis. */
2783 static void
2784 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2786 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2787 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2788 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2790 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2791 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2794 /* Free vars used for code hoisting analysis. */
2796 static void
2797 free_code_hoist_mem (void)
2799 sbitmap_vector_free (antloc);
2800 sbitmap_vector_free (transp);
2801 sbitmap_vector_free (comp);
2803 sbitmap_vector_free (hoist_vbein);
2804 sbitmap_vector_free (hoist_vbeout);
2806 free_dominance_info (CDI_DOMINATORS);
2809 /* Compute the very busy expressions at entry/exit from each block.
2811 An expression is very busy if all paths from a given point
2812 compute the expression. */
2814 static void
2815 compute_code_hoist_vbeinout (void)
2817 int changed, passes;
2818 basic_block bb;
2820 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2821 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2823 passes = 0;
2824 changed = 1;
2826 while (changed)
2828 changed = 0;
2830 /* We scan the blocks in the reverse order to speed up
2831 the convergence. */
2832 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2834 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2836 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2837 hoist_vbein, bb);
2839 /* Include expressions in VBEout that are calculated
2840 in BB and available at its end. */
2841 bitmap_ior (hoist_vbeout[bb->index],
2842 hoist_vbeout[bb->index], comp[bb->index]);
2845 changed |= bitmap_or_and (hoist_vbein[bb->index],
2846 antloc[bb->index],
2847 hoist_vbeout[bb->index],
2848 transp[bb->index]);
2851 passes++;
2854 if (dump_file)
2856 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2858 FOR_EACH_BB_FN (bb, cfun)
2860 fprintf (dump_file, "vbein (%d): ", bb->index);
2861 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2862 fprintf (dump_file, "vbeout(%d): ", bb->index);
2863 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2868 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2870 static void
2871 compute_code_hoist_data (void)
2873 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2874 prune_expressions (false);
2875 compute_code_hoist_vbeinout ();
2876 calculate_dominance_info (CDI_DOMINATORS);
2877 if (dump_file)
2878 fprintf (dump_file, "\n");
2881 /* Update register pressure for BB when hoisting an expression from
2882 instruction FROM, if live ranges of inputs are shrunk. Also
2883 maintain live_in information if live range of register referred
2884 in FROM is shrunk.
2886 Return 0 if register pressure doesn't change, otherwise return
2887 the number by which register pressure is decreased.
2889 NOTE: Register pressure won't be increased in this function. */
2891 static int
2892 update_bb_reg_pressure (basic_block bb, rtx from)
2894 rtx dreg, insn;
2895 basic_block succ_bb;
2896 df_ref *op, op_ref;
2897 edge succ;
2898 edge_iterator ei;
2899 int decreased_pressure = 0;
2900 int nregs;
2901 enum reg_class pressure_class;
2903 for (op = DF_INSN_USES (from); *op; op++)
2905 dreg = DF_REF_REAL_REG (*op);
2906 /* The live range of register is shrunk only if it isn't:
2907 1. referred on any path from the end of this block to EXIT, or
2908 2. referred by insns other than FROM in this block. */
2909 FOR_EACH_EDGE (succ, ei, bb->succs)
2911 succ_bb = succ->dest;
2912 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2913 continue;
2915 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2916 break;
2918 if (succ != NULL)
2919 continue;
2921 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2922 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2924 if (!DF_REF_INSN_INFO (op_ref))
2925 continue;
2927 insn = DF_REF_INSN (op_ref);
2928 if (BLOCK_FOR_INSN (insn) == bb
2929 && NONDEBUG_INSN_P (insn) && insn != from)
2930 break;
2933 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2934 /* Decrease register pressure and update live_in information for
2935 this block. */
2936 if (!op_ref && pressure_class != NO_REGS)
2938 decreased_pressure += nregs;
2939 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2940 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2943 return decreased_pressure;
2946 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2947 flow graph, if it can reach BB unimpared. Stop the search if the
2948 expression would need to be moved more than DISTANCE instructions.
2950 DISTANCE is the number of instructions through which EXPR can be
2951 hoisted up in flow graph.
2953 BB_SIZE points to an array which contains the number of instructions
2954 for each basic block.
2956 PRESSURE_CLASS and NREGS are register class and number of hard registers
2957 for storing EXPR.
2959 HOISTED_BBS points to a bitmap indicating basic blocks through which
2960 EXPR is hoisted.
2962 FROM is the instruction from which EXPR is hoisted.
2964 It's unclear exactly what Muchnick meant by "unimpared". It seems
2965 to me that the expression must either be computed or transparent in
2966 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2967 would allow the expression to be hoisted out of loops, even if
2968 the expression wasn't a loop invariant.
2970 Contrast this to reachability for PRE where an expression is
2971 considered reachable if *any* path reaches instead of *all*
2972 paths. */
2974 static int
2975 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2976 basic_block bb, sbitmap visited, int distance,
2977 int *bb_size, enum reg_class pressure_class,
2978 int *nregs, bitmap hoisted_bbs, rtx from)
2980 unsigned int i;
2981 edge pred;
2982 edge_iterator ei;
2983 sbitmap_iterator sbi;
2984 int visited_allocated_locally = 0;
2985 int decreased_pressure = 0;
2987 if (flag_ira_hoist_pressure)
2989 /* Record old information of basic block BB when it is visited
2990 at the first time. */
2991 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2993 struct bb_data *data = BB_DATA (bb);
2994 bitmap_copy (data->backup, data->live_in);
2995 data->old_pressure = data->max_reg_pressure[pressure_class];
2997 decreased_pressure = update_bb_reg_pressure (bb, from);
2999 /* Terminate the search if distance, for which EXPR is allowed to move,
3000 is exhausted. */
3001 if (distance > 0)
3003 if (flag_ira_hoist_pressure)
3005 /* Prefer to hoist EXPR if register pressure is decreased. */
3006 if (decreased_pressure > *nregs)
3007 distance += bb_size[bb->index];
3008 /* Let EXPR be hoisted through basic block at no cost if one
3009 of following conditions is satisfied:
3011 1. The basic block has low register pressure.
3012 2. Register pressure won't be increases after hoisting EXPR.
3014 Constant expressions is handled conservatively, because
3015 hoisting constant expression aggressively results in worse
3016 code. This decision is made by the observation of CSiBE
3017 on ARM target, while it has no obvious effect on other
3018 targets like x86, x86_64, mips and powerpc. */
3019 else if (CONST_INT_P (expr->expr)
3020 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3021 >= ira_class_hard_regs_num[pressure_class]
3022 && decreased_pressure < *nregs))
3023 distance -= bb_size[bb->index];
3025 else
3026 distance -= bb_size[bb->index];
3028 if (distance <= 0)
3029 return 0;
3031 else
3032 gcc_assert (distance == 0);
3034 if (visited == NULL)
3036 visited_allocated_locally = 1;
3037 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
3038 bitmap_clear (visited);
3041 FOR_EACH_EDGE (pred, ei, bb->preds)
3043 basic_block pred_bb = pred->src;
3045 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3046 break;
3047 else if (pred_bb == expr_bb)
3048 continue;
3049 else if (bitmap_bit_p (visited, pred_bb->index))
3050 continue;
3051 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3052 break;
3053 /* Not killed. */
3054 else
3056 bitmap_set_bit (visited, pred_bb->index);
3057 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3058 visited, distance, bb_size,
3059 pressure_class, nregs,
3060 hoisted_bbs, from))
3061 break;
3064 if (visited_allocated_locally)
3066 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3067 which EXPR is hoisted in hoisted_bbs. */
3068 if (flag_ira_hoist_pressure && !pred)
3070 /* Record the basic block from which EXPR is hoisted. */
3071 bitmap_set_bit (visited, bb->index);
3072 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3073 bitmap_set_bit (hoisted_bbs, i);
3075 sbitmap_free (visited);
3078 return (pred == NULL);
3081 /* Find occurrence in BB. */
3083 static struct occr *
3084 find_occr_in_bb (struct occr *occr, basic_block bb)
3086 /* Find the right occurrence of this expression. */
3087 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3088 occr = occr->next;
3090 return occr;
3093 /* Actually perform code hoisting.
3095 The code hoisting pass can hoist multiple computations of the same
3096 expression along dominated path to a dominating basic block, like
3097 from b2/b3 to b1 as depicted below:
3099 b1 ------
3100 /\ |
3101 / \ |
3102 bx by distance
3103 / \ |
3104 / \ |
3105 b2 b3 ------
3107 Unfortunately code hoisting generally extends the live range of an
3108 output pseudo register, which increases register pressure and hurts
3109 register allocation. To address this issue, an attribute MAX_DISTANCE
3110 is computed and attached to each expression. The attribute is computed
3111 from rtx cost of the corresponding expression and it's used to control
3112 how long the expression can be hoisted up in flow graph. As the
3113 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3114 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3115 register pressure if live ranges of inputs are shrunk.
3117 Option "-fira-hoist-pressure" implements register pressure directed
3118 hoist based on upper method. The rationale is:
3119 1. Calculate register pressure for each basic block by reusing IRA
3120 facility.
3121 2. When expression is hoisted through one basic block, GCC checks
3122 the change of live ranges for inputs/output. The basic block's
3123 register pressure will be increased because of extended live
3124 range of output. However, register pressure will be decreased
3125 if the live ranges of inputs are shrunk.
3126 3. After knowing how hoisting affects register pressure, GCC prefers
3127 to hoist the expression if it can decrease register pressure, by
3128 increasing DISTANCE of the corresponding expression.
3129 4. If hoisting the expression increases register pressure, GCC checks
3130 register pressure of the basic block and decrease DISTANCE only if
3131 the register pressure is high. In other words, expression will be
3132 hoisted through at no cost if the basic block has low register
3133 pressure.
3134 5. Update register pressure information for basic blocks through
3135 which expression is hoisted. */
3137 static int
3138 hoist_code (void)
3140 basic_block bb, dominated;
3141 vec<basic_block> dom_tree_walk;
3142 unsigned int dom_tree_walk_index;
3143 vec<basic_block> domby;
3144 unsigned int i, j, k;
3145 struct expr **index_map;
3146 struct expr *expr;
3147 int *to_bb_head;
3148 int *bb_size;
3149 int changed = 0;
3150 struct bb_data *data;
3151 /* Basic blocks that have occurrences reachable from BB. */
3152 bitmap from_bbs;
3153 /* Basic blocks through which expr is hoisted. */
3154 bitmap hoisted_bbs = NULL;
3155 bitmap_iterator bi;
3157 /* Compute a mapping from expression number (`bitmap_index') to
3158 hash table entry. */
3160 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3161 for (i = 0; i < expr_hash_table.size; i++)
3162 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3163 index_map[expr->bitmap_index] = expr;
3165 /* Calculate sizes of basic blocks and note how far
3166 each instruction is from the start of its block. We then use this
3167 data to restrict distance an expression can travel. */
3169 to_bb_head = XCNEWVEC (int, get_max_uid ());
3170 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3172 FOR_EACH_BB_FN (bb, cfun)
3174 rtx insn;
3175 int to_head;
3177 to_head = 0;
3178 FOR_BB_INSNS (bb, insn)
3180 /* Don't count debug instructions to avoid them affecting
3181 decision choices. */
3182 if (NONDEBUG_INSN_P (insn))
3183 to_bb_head[INSN_UID (insn)] = to_head++;
3186 bb_size[bb->index] = to_head;
3189 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3190 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3191 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3193 from_bbs = BITMAP_ALLOC (NULL);
3194 if (flag_ira_hoist_pressure)
3195 hoisted_bbs = BITMAP_ALLOC (NULL);
3197 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3198 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3200 /* Walk over each basic block looking for potentially hoistable
3201 expressions, nothing gets hoisted from the entry block. */
3202 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3204 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3206 if (domby.length () == 0)
3207 continue;
3209 /* Examine each expression that is very busy at the exit of this
3210 block. These are the potentially hoistable expressions. */
3211 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3213 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3215 int nregs = 0;
3216 enum reg_class pressure_class = NO_REGS;
3217 /* Current expression. */
3218 struct expr *expr = index_map[i];
3219 /* Number of occurrences of EXPR that can be hoisted to BB. */
3220 int hoistable = 0;
3221 /* Occurrences reachable from BB. */
3222 vec<occr_t> occrs_to_hoist = vNULL;
3223 /* We want to insert the expression into BB only once, so
3224 note when we've inserted it. */
3225 int insn_inserted_p;
3226 occr_t occr;
3228 /* If an expression is computed in BB and is available at end of
3229 BB, hoist all occurrences dominated by BB to BB. */
3230 if (bitmap_bit_p (comp[bb->index], i))
3232 occr = find_occr_in_bb (expr->antic_occr, bb);
3234 if (occr)
3236 /* An occurrence might've been already deleted
3237 while processing a dominator of BB. */
3238 if (!occr->deleted_p)
3240 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3241 hoistable++;
3244 else
3245 hoistable++;
3248 /* We've found a potentially hoistable expression, now
3249 we look at every block BB dominates to see if it
3250 computes the expression. */
3251 FOR_EACH_VEC_ELT (domby, j, dominated)
3253 int max_distance;
3255 /* Ignore self dominance. */
3256 if (bb == dominated)
3257 continue;
3258 /* We've found a dominated block, now see if it computes
3259 the busy expression and whether or not moving that
3260 expression to the "beginning" of that block is safe. */
3261 if (!bitmap_bit_p (antloc[dominated->index], i))
3262 continue;
3264 occr = find_occr_in_bb (expr->antic_occr, dominated);
3265 gcc_assert (occr);
3267 /* An occurrence might've been already deleted
3268 while processing a dominator of BB. */
3269 if (occr->deleted_p)
3270 continue;
3271 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3273 max_distance = expr->max_distance;
3274 if (max_distance > 0)
3275 /* Adjust MAX_DISTANCE to account for the fact that
3276 OCCR won't have to travel all of DOMINATED, but
3277 only part of it. */
3278 max_distance += (bb_size[dominated->index]
3279 - to_bb_head[INSN_UID (occr->insn)]);
3281 pressure_class = get_pressure_class_and_nregs (occr->insn,
3282 &nregs);
3284 /* Note if the expression should be hoisted from the dominated
3285 block to BB if it can reach DOMINATED unimpared.
3287 Keep track of how many times this expression is hoistable
3288 from a dominated block into BB. */
3289 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3290 max_distance, bb_size,
3291 pressure_class, &nregs,
3292 hoisted_bbs, occr->insn))
3294 hoistable++;
3295 occrs_to_hoist.safe_push (occr);
3296 bitmap_set_bit (from_bbs, dominated->index);
3300 /* If we found more than one hoistable occurrence of this
3301 expression, then note it in the vector of expressions to
3302 hoist. It makes no sense to hoist things which are computed
3303 in only one BB, and doing so tends to pessimize register
3304 allocation. One could increase this value to try harder
3305 to avoid any possible code expansion due to register
3306 allocation issues; however experiments have shown that
3307 the vast majority of hoistable expressions are only movable
3308 from two successors, so raising this threshold is likely
3309 to nullify any benefit we get from code hoisting. */
3310 if (hoistable > 1 && dbg_cnt (hoist_insn))
3312 /* If (hoistable != vec::length), then there is
3313 an occurrence of EXPR in BB itself. Don't waste
3314 time looking for LCA in this case. */
3315 if ((unsigned) hoistable == occrs_to_hoist.length ())
3317 basic_block lca;
3319 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3320 from_bbs);
3321 if (lca != bb)
3322 /* Punt, it's better to hoist these occurrences to
3323 LCA. */
3324 occrs_to_hoist.release ();
3327 else
3328 /* Punt, no point hoisting a single occurrence. */
3329 occrs_to_hoist.release ();
3331 if (flag_ira_hoist_pressure
3332 && !occrs_to_hoist.is_empty ())
3334 /* Increase register pressure of basic blocks to which
3335 expr is hoisted because of extended live range of
3336 output. */
3337 data = BB_DATA (bb);
3338 data->max_reg_pressure[pressure_class] += nregs;
3339 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3341 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3342 data->max_reg_pressure[pressure_class] += nregs;
3345 else if (flag_ira_hoist_pressure)
3347 /* Restore register pressure and live_in info for basic
3348 blocks recorded in hoisted_bbs when expr will not be
3349 hoisted. */
3350 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3352 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3353 bitmap_copy (data->live_in, data->backup);
3354 data->max_reg_pressure[pressure_class]
3355 = data->old_pressure;
3359 if (flag_ira_hoist_pressure)
3360 bitmap_clear (hoisted_bbs);
3362 insn_inserted_p = 0;
3364 /* Walk through occurrences of I'th expressions we want
3365 to hoist to BB and make the transformations. */
3366 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3368 rtx insn;
3369 rtx set;
3371 gcc_assert (!occr->deleted_p);
3373 insn = occr->insn;
3374 set = single_set (insn);
3375 gcc_assert (set);
3377 /* Create a pseudo-reg to store the result of reaching
3378 expressions into. Get the mode for the new pseudo
3379 from the mode of the original destination pseudo.
3381 It is important to use new pseudos whenever we
3382 emit a set. This will allow reload to use
3383 rematerialization for such registers. */
3384 if (!insn_inserted_p)
3385 expr->reaching_reg
3386 = gen_reg_rtx_and_attrs (SET_DEST (set));
3388 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3389 insn);
3390 delete_insn (insn);
3391 occr->deleted_p = 1;
3392 changed = 1;
3393 gcse_subst_count++;
3395 if (!insn_inserted_p)
3397 insert_insn_end_basic_block (expr, bb);
3398 insn_inserted_p = 1;
3402 occrs_to_hoist.release ();
3403 bitmap_clear (from_bbs);
3406 domby.release ();
3409 dom_tree_walk.release ();
3410 BITMAP_FREE (from_bbs);
3411 if (flag_ira_hoist_pressure)
3412 BITMAP_FREE (hoisted_bbs);
3414 free (bb_size);
3415 free (to_bb_head);
3416 free (index_map);
3418 return changed;
3421 /* Return pressure class and number of needed hard registers (through
3422 *NREGS) of register REGNO. */
3423 static enum reg_class
3424 get_regno_pressure_class (int regno, int *nregs)
3426 if (regno >= FIRST_PSEUDO_REGISTER)
3428 enum reg_class pressure_class;
3430 pressure_class = reg_allocno_class (regno);
3431 pressure_class = ira_pressure_class_translate[pressure_class];
3432 *nregs
3433 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3434 return pressure_class;
3436 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3437 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3439 *nregs = 1;
3440 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3442 else
3444 *nregs = 0;
3445 return NO_REGS;
3449 /* Return pressure class and number of hard registers (through *NREGS)
3450 for destination of INSN. */
3451 static enum reg_class
3452 get_pressure_class_and_nregs (rtx insn, int *nregs)
3454 rtx reg;
3455 enum reg_class pressure_class;
3456 rtx set = single_set (insn);
3458 /* Considered invariant insns have only one set. */
3459 gcc_assert (set != NULL_RTX);
3460 reg = SET_DEST (set);
3461 if (GET_CODE (reg) == SUBREG)
3462 reg = SUBREG_REG (reg);
3463 if (MEM_P (reg))
3465 *nregs = 0;
3466 pressure_class = NO_REGS;
3468 else
3470 gcc_assert (REG_P (reg));
3471 pressure_class = reg_allocno_class (REGNO (reg));
3472 pressure_class = ira_pressure_class_translate[pressure_class];
3473 *nregs
3474 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3476 return pressure_class;
3479 /* Increase (if INCR_P) or decrease current register pressure for
3480 register REGNO. */
3481 static void
3482 change_pressure (int regno, bool incr_p)
3484 int nregs;
3485 enum reg_class pressure_class;
3487 pressure_class = get_regno_pressure_class (regno, &nregs);
3488 if (! incr_p)
3489 curr_reg_pressure[pressure_class] -= nregs;
3490 else
3492 curr_reg_pressure[pressure_class] += nregs;
3493 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3494 < curr_reg_pressure[pressure_class])
3495 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3496 = curr_reg_pressure[pressure_class];
3500 /* Calculate register pressure for each basic block by walking insns
3501 from last to first. */
3502 static void
3503 calculate_bb_reg_pressure (void)
3505 int i;
3506 unsigned int j;
3507 rtx insn;
3508 basic_block bb;
3509 bitmap curr_regs_live;
3510 bitmap_iterator bi;
3513 ira_setup_eliminable_regset ();
3514 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3515 FOR_EACH_BB_FN (bb, cfun)
3517 curr_bb = bb;
3518 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3519 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3520 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3521 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3522 for (i = 0; i < ira_pressure_classes_num; i++)
3523 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3524 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3525 change_pressure (j, true);
3527 FOR_BB_INSNS_REVERSE (bb, insn)
3529 rtx dreg;
3530 int regno;
3531 df_ref *def_rec, *use_rec;
3533 if (! NONDEBUG_INSN_P (insn))
3534 continue;
3536 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3538 dreg = DF_REF_REAL_REG (*def_rec);
3539 gcc_assert (REG_P (dreg));
3540 regno = REGNO (dreg);
3541 if (!(DF_REF_FLAGS (*def_rec)
3542 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3544 if (bitmap_clear_bit (curr_regs_live, regno))
3545 change_pressure (regno, false);
3549 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3551 dreg = DF_REF_REAL_REG (*use_rec);
3552 gcc_assert (REG_P (dreg));
3553 regno = REGNO (dreg);
3554 if (bitmap_set_bit (curr_regs_live, regno))
3555 change_pressure (regno, true);
3559 BITMAP_FREE (curr_regs_live);
3561 if (dump_file == NULL)
3562 return;
3564 fprintf (dump_file, "\nRegister Pressure: \n");
3565 FOR_EACH_BB_FN (bb, cfun)
3567 fprintf (dump_file, " Basic block %d: \n", bb->index);
3568 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3570 enum reg_class pressure_class;
3572 pressure_class = ira_pressure_classes[i];
3573 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3574 continue;
3576 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3577 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3580 fprintf (dump_file, "\n");
3583 /* Top level routine to perform one code hoisting (aka unification) pass
3585 Return nonzero if a change was made. */
3587 static int
3588 one_code_hoisting_pass (void)
3590 int changed = 0;
3592 gcse_subst_count = 0;
3593 gcse_create_count = 0;
3595 /* Return if there's nothing to do, or it is too expensive. */
3596 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3597 || is_too_expensive (_("GCSE disabled")))
3598 return 0;
3600 doing_code_hoisting_p = true;
3602 /* Calculate register pressure for each basic block. */
3603 if (flag_ira_hoist_pressure)
3605 regstat_init_n_sets_and_refs ();
3606 ira_set_pseudo_classes (false, dump_file);
3607 alloc_aux_for_blocks (sizeof (struct bb_data));
3608 calculate_bb_reg_pressure ();
3609 regstat_free_n_sets_and_refs ();
3612 /* We need alias. */
3613 init_alias_analysis ();
3615 bytes_used = 0;
3616 gcc_obstack_init (&gcse_obstack);
3617 alloc_gcse_mem ();
3619 alloc_hash_table (&expr_hash_table);
3620 compute_hash_table (&expr_hash_table);
3621 if (dump_file)
3622 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3624 if (expr_hash_table.n_elems > 0)
3626 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3627 expr_hash_table.n_elems);
3628 compute_code_hoist_data ();
3629 changed = hoist_code ();
3630 free_code_hoist_mem ();
3633 if (flag_ira_hoist_pressure)
3635 free_aux_for_blocks ();
3636 free_reg_info ();
3638 free_hash_table (&expr_hash_table);
3639 free_gcse_mem ();
3640 obstack_free (&gcse_obstack, NULL);
3642 /* We are finished with alias. */
3643 end_alias_analysis ();
3645 if (dump_file)
3647 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3648 current_function_name (), n_basic_blocks_for_fn (cfun),
3649 bytes_used);
3650 fprintf (dump_file, "%d substs, %d insns created\n",
3651 gcse_subst_count, gcse_create_count);
3654 doing_code_hoisting_p = false;
3656 return changed;
3659 /* Here we provide the things required to do store motion towards the exit.
3660 In order for this to be effective, gcse also needed to be taught how to
3661 move a load when it is killed only by a store to itself.
3663 int i;
3664 float a[10];
3666 void foo(float scale)
3668 for (i=0; i<10; i++)
3669 a[i] *= scale;
3672 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3673 the load out since its live around the loop, and stored at the bottom
3674 of the loop.
3676 The 'Load Motion' referred to and implemented in this file is
3677 an enhancement to gcse which when using edge based LCM, recognizes
3678 this situation and allows gcse to move the load out of the loop.
3680 Once gcse has hoisted the load, store motion can then push this
3681 load towards the exit, and we end up with no loads or stores of 'i'
3682 in the loop. */
3684 /* This will search the ldst list for a matching expression. If it
3685 doesn't find one, we create one and initialize it. */
3687 static struct ls_expr *
3688 ldst_entry (rtx x)
3690 int do_not_record_p = 0;
3691 struct ls_expr * ptr;
3692 unsigned int hash;
3693 ls_expr **slot;
3694 struct ls_expr e;
3696 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3697 NULL, /*have_reg_qty=*/false);
3699 e.pattern = x;
3700 slot = pre_ldst_table.find_slot_with_hash (&e, hash, INSERT);
3701 if (*slot)
3702 return *slot;
3704 ptr = XNEW (struct ls_expr);
3706 ptr->next = pre_ldst_mems;
3707 ptr->expr = NULL;
3708 ptr->pattern = x;
3709 ptr->pattern_regs = NULL_RTX;
3710 ptr->loads = NULL_RTX;
3711 ptr->stores = NULL_RTX;
3712 ptr->reaching_reg = NULL_RTX;
3713 ptr->invalid = 0;
3714 ptr->index = 0;
3715 ptr->hash_index = hash;
3716 pre_ldst_mems = ptr;
3717 *slot = ptr;
3719 return ptr;
3722 /* Free up an individual ldst entry. */
3724 static void
3725 free_ldst_entry (struct ls_expr * ptr)
3727 free_INSN_LIST_list (& ptr->loads);
3728 free_INSN_LIST_list (& ptr->stores);
3730 free (ptr);
3733 /* Free up all memory associated with the ldst list. */
3735 static void
3736 free_ld_motion_mems (void)
3738 if (pre_ldst_table.is_created ())
3739 pre_ldst_table.dispose ();
3741 while (pre_ldst_mems)
3743 struct ls_expr * tmp = pre_ldst_mems;
3745 pre_ldst_mems = pre_ldst_mems->next;
3747 free_ldst_entry (tmp);
3750 pre_ldst_mems = NULL;
3753 /* Dump debugging info about the ldst list. */
3755 static void
3756 print_ldst_list (FILE * file)
3758 struct ls_expr * ptr;
3760 fprintf (file, "LDST list: \n");
3762 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3764 fprintf (file, " Pattern (%3d): ", ptr->index);
3766 print_rtl (file, ptr->pattern);
3768 fprintf (file, "\n Loads : ");
3770 if (ptr->loads)
3771 print_rtl (file, ptr->loads);
3772 else
3773 fprintf (file, "(nil)");
3775 fprintf (file, "\n Stores : ");
3777 if (ptr->stores)
3778 print_rtl (file, ptr->stores);
3779 else
3780 fprintf (file, "(nil)");
3782 fprintf (file, "\n\n");
3785 fprintf (file, "\n");
3788 /* Returns 1 if X is in the list of ldst only expressions. */
3790 static struct ls_expr *
3791 find_rtx_in_ldst (rtx x)
3793 struct ls_expr e;
3794 ls_expr **slot;
3795 if (!pre_ldst_table.is_created ())
3796 return NULL;
3797 e.pattern = x;
3798 slot = pre_ldst_table.find_slot (&e, NO_INSERT);
3799 if (!slot || (*slot)->invalid)
3800 return NULL;
3801 return *slot;
3804 /* Load Motion for loads which only kill themselves. */
3806 /* Return true if x, a MEM, is a simple access with no side effects.
3807 These are the types of loads we consider for the ld_motion list,
3808 otherwise we let the usual aliasing take care of it. */
3810 static int
3811 simple_mem (const_rtx x)
3813 if (MEM_VOLATILE_P (x))
3814 return 0;
3816 if (GET_MODE (x) == BLKmode)
3817 return 0;
3819 /* If we are handling exceptions, we must be careful with memory references
3820 that may trap. If we are not, the behavior is undefined, so we may just
3821 continue. */
3822 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3823 return 0;
3825 if (side_effects_p (x))
3826 return 0;
3828 /* Do not consider function arguments passed on stack. */
3829 if (reg_mentioned_p (stack_pointer_rtx, x))
3830 return 0;
3832 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3833 return 0;
3835 return 1;
3838 /* Make sure there isn't a buried reference in this pattern anywhere.
3839 If there is, invalidate the entry for it since we're not capable
3840 of fixing it up just yet.. We have to be sure we know about ALL
3841 loads since the aliasing code will allow all entries in the
3842 ld_motion list to not-alias itself. If we miss a load, we will get
3843 the wrong value since gcse might common it and we won't know to
3844 fix it up. */
3846 static void
3847 invalidate_any_buried_refs (rtx x)
3849 const char * fmt;
3850 int i, j;
3851 struct ls_expr * ptr;
3853 /* Invalidate it in the list. */
3854 if (MEM_P (x) && simple_mem (x))
3856 ptr = ldst_entry (x);
3857 ptr->invalid = 1;
3860 /* Recursively process the insn. */
3861 fmt = GET_RTX_FORMAT (GET_CODE (x));
3863 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3865 if (fmt[i] == 'e')
3866 invalidate_any_buried_refs (XEXP (x, i));
3867 else if (fmt[i] == 'E')
3868 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3869 invalidate_any_buried_refs (XVECEXP (x, i, j));
3873 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3874 being defined as MEM loads and stores to symbols, with no side effects
3875 and no registers in the expression. For a MEM destination, we also
3876 check that the insn is still valid if we replace the destination with a
3877 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3878 which don't match this criteria, they are invalidated and trimmed out
3879 later. */
3881 static void
3882 compute_ld_motion_mems (void)
3884 struct ls_expr * ptr;
3885 basic_block bb;
3886 rtx insn;
3888 pre_ldst_mems = NULL;
3889 pre_ldst_table.create (13);
3891 FOR_EACH_BB_FN (bb, cfun)
3893 FOR_BB_INSNS (bb, insn)
3895 if (NONDEBUG_INSN_P (insn))
3897 if (GET_CODE (PATTERN (insn)) == SET)
3899 rtx src = SET_SRC (PATTERN (insn));
3900 rtx dest = SET_DEST (PATTERN (insn));
3901 rtx note = find_reg_equal_equiv_note (insn);
3902 rtx src_eq;
3904 /* Check for a simple LOAD... */
3905 if (MEM_P (src) && simple_mem (src))
3907 ptr = ldst_entry (src);
3908 if (REG_P (dest))
3909 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3910 else
3911 ptr->invalid = 1;
3913 else
3915 /* Make sure there isn't a buried load somewhere. */
3916 invalidate_any_buried_refs (src);
3919 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3920 src_eq = XEXP (note, 0);
3921 else
3922 src_eq = NULL_RTX;
3924 if (src_eq != NULL_RTX
3925 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3926 invalidate_any_buried_refs (src_eq);
3928 /* Check for stores. Don't worry about aliased ones, they
3929 will block any movement we might do later. We only care
3930 about this exact pattern since those are the only
3931 circumstance that we will ignore the aliasing info. */
3932 if (MEM_P (dest) && simple_mem (dest))
3934 ptr = ldst_entry (dest);
3936 if (! MEM_P (src)
3937 && GET_CODE (src) != ASM_OPERANDS
3938 /* Check for REG manually since want_to_gcse_p
3939 returns 0 for all REGs. */
3940 && can_assign_to_reg_without_clobbers_p (src))
3941 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3942 else
3943 ptr->invalid = 1;
3946 else
3947 invalidate_any_buried_refs (PATTERN (insn));
3953 /* Remove any references that have been either invalidated or are not in the
3954 expression list for pre gcse. */
3956 static void
3957 trim_ld_motion_mems (void)
3959 struct ls_expr * * last = & pre_ldst_mems;
3960 struct ls_expr * ptr = pre_ldst_mems;
3962 while (ptr != NULL)
3964 struct expr * expr;
3966 /* Delete if entry has been made invalid. */
3967 if (! ptr->invalid)
3969 /* Delete if we cannot find this mem in the expression list. */
3970 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3972 for (expr = expr_hash_table.table[hash];
3973 expr != NULL;
3974 expr = expr->next_same_hash)
3975 if (expr_equiv_p (expr->expr, ptr->pattern))
3976 break;
3978 else
3979 expr = (struct expr *) 0;
3981 if (expr)
3983 /* Set the expression field if we are keeping it. */
3984 ptr->expr = expr;
3985 last = & ptr->next;
3986 ptr = ptr->next;
3988 else
3990 *last = ptr->next;
3991 pre_ldst_table.remove_elt_with_hash (ptr, ptr->hash_index);
3992 free_ldst_entry (ptr);
3993 ptr = * last;
3997 /* Show the world what we've found. */
3998 if (dump_file && pre_ldst_mems != NULL)
3999 print_ldst_list (dump_file);
4002 /* This routine will take an expression which we are replacing with
4003 a reaching register, and update any stores that are needed if
4004 that expression is in the ld_motion list. Stores are updated by
4005 copying their SRC to the reaching register, and then storing
4006 the reaching register into the store location. These keeps the
4007 correct value in the reaching register for the loads. */
4009 static void
4010 update_ld_motion_stores (struct expr * expr)
4012 struct ls_expr * mem_ptr;
4014 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4016 /* We can try to find just the REACHED stores, but is shouldn't
4017 matter to set the reaching reg everywhere... some might be
4018 dead and should be eliminated later. */
4020 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4021 where reg is the reaching reg used in the load. We checked in
4022 compute_ld_motion_mems that we can replace (set mem expr) with
4023 (set reg expr) in that insn. */
4024 rtx list = mem_ptr->stores;
4026 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4028 rtx insn = XEXP (list, 0);
4029 rtx pat = PATTERN (insn);
4030 rtx src = SET_SRC (pat);
4031 rtx reg = expr->reaching_reg;
4032 rtx copy;
4034 /* If we've already copied it, continue. */
4035 if (expr->reaching_reg == src)
4036 continue;
4038 if (dump_file)
4040 fprintf (dump_file, "PRE: store updated with reaching reg ");
4041 print_rtl (dump_file, reg);
4042 fprintf (dump_file, ":\n ");
4043 print_inline_rtx (dump_file, insn, 8);
4044 fprintf (dump_file, "\n");
4047 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4048 emit_insn_before (copy, insn);
4049 SET_SRC (pat) = reg;
4050 df_insn_rescan (insn);
4052 /* un-recognize this pattern since it's probably different now. */
4053 INSN_CODE (insn) = -1;
4054 gcse_create_count++;
4059 /* Return true if the graph is too expensive to optimize. PASS is the
4060 optimization about to be performed. */
4062 static bool
4063 is_too_expensive (const char *pass)
4065 /* Trying to perform global optimizations on flow graphs which have
4066 a high connectivity will take a long time and is unlikely to be
4067 particularly useful.
4069 In normal circumstances a cfg should have about twice as many
4070 edges as blocks. But we do not want to punish small functions
4071 which have a couple switch statements. Rather than simply
4072 threshold the number of blocks, uses something with a more
4073 graceful degradation. */
4074 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4076 warning (OPT_Wdisabled_optimization,
4077 "%s: %d basic blocks and %d edges/basic block",
4078 pass, n_basic_blocks_for_fn (cfun),
4079 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4081 return true;
4084 /* If allocating memory for the dataflow bitmaps would take up too much
4085 storage it's better just to disable the optimization. */
4086 if ((n_basic_blocks_for_fn (cfun)
4087 * SBITMAP_SET_SIZE (max_reg_num ())
4088 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4090 warning (OPT_Wdisabled_optimization,
4091 "%s: %d basic blocks and %d registers",
4092 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4094 return true;
4097 return false;
4100 /* All the passes implemented in this file. Each pass has its
4101 own gate and execute function, and at the end of the file a
4102 pass definition for passes.c.
4104 We do not construct an accurate cfg in functions which call
4105 setjmp, so none of these passes runs if the function calls
4106 setjmp.
4107 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4109 static bool
4110 gate_rtl_pre (void)
4112 return optimize > 0 && flag_gcse
4113 && !cfun->calls_setjmp
4114 && optimize_function_for_speed_p (cfun)
4115 && dbg_cnt (pre);
4118 static unsigned int
4119 execute_rtl_pre (void)
4121 int changed;
4122 delete_unreachable_blocks ();
4123 df_analyze ();
4124 changed = one_pre_gcse_pass ();
4125 flag_rerun_cse_after_global_opts |= changed;
4126 if (changed)
4127 cleanup_cfg (0);
4128 return 0;
4131 static bool
4132 gate_rtl_hoist (void)
4134 return optimize > 0 && flag_gcse
4135 && !cfun->calls_setjmp
4136 /* It does not make sense to run code hoisting unless we are optimizing
4137 for code size -- it rarely makes programs faster, and can make then
4138 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4139 && optimize_function_for_size_p (cfun)
4140 && dbg_cnt (hoist);
4143 static unsigned int
4144 execute_rtl_hoist (void)
4146 int changed;
4147 delete_unreachable_blocks ();
4148 df_analyze ();
4149 changed = one_code_hoisting_pass ();
4150 flag_rerun_cse_after_global_opts |= changed;
4151 if (changed)
4152 cleanup_cfg (0);
4153 return 0;
4156 namespace {
4158 const pass_data pass_data_rtl_pre =
4160 RTL_PASS, /* type */
4161 "rtl pre", /* name */
4162 OPTGROUP_NONE, /* optinfo_flags */
4163 true, /* has_gate */
4164 true, /* has_execute */
4165 TV_PRE, /* tv_id */
4166 PROP_cfglayout, /* properties_required */
4167 0, /* properties_provided */
4168 0, /* properties_destroyed */
4169 0, /* todo_flags_start */
4170 ( TODO_df_finish | TODO_verify_rtl_sharing
4171 | TODO_verify_flow ), /* todo_flags_finish */
4174 class pass_rtl_pre : public rtl_opt_pass
4176 public:
4177 pass_rtl_pre (gcc::context *ctxt)
4178 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4181 /* opt_pass methods: */
4182 bool gate () { return gate_rtl_pre (); }
4183 unsigned int execute () { return execute_rtl_pre (); }
4185 }; // class pass_rtl_pre
4187 } // anon namespace
4189 rtl_opt_pass *
4190 make_pass_rtl_pre (gcc::context *ctxt)
4192 return new pass_rtl_pre (ctxt);
4195 namespace {
4197 const pass_data pass_data_rtl_hoist =
4199 RTL_PASS, /* type */
4200 "hoist", /* name */
4201 OPTGROUP_NONE, /* optinfo_flags */
4202 true, /* has_gate */
4203 true, /* has_execute */
4204 TV_HOIST, /* tv_id */
4205 PROP_cfglayout, /* properties_required */
4206 0, /* properties_provided */
4207 0, /* properties_destroyed */
4208 0, /* todo_flags_start */
4209 ( TODO_df_finish | TODO_verify_rtl_sharing
4210 | TODO_verify_flow ), /* todo_flags_finish */
4213 class pass_rtl_hoist : public rtl_opt_pass
4215 public:
4216 pass_rtl_hoist (gcc::context *ctxt)
4217 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4220 /* opt_pass methods: */
4221 bool gate () { return gate_rtl_hoist (); }
4222 unsigned int execute () { return execute_rtl_hoist (); }
4224 }; // class pass_rtl_hoist
4226 } // anon namespace
4228 rtl_opt_pass *
4229 make_pass_rtl_hoist (gcc::context *ctxt)
4231 return new pass_rtl_hoist (ctxt);
4234 #include "gt-gcse.h"