* tree.c (valid_machine_attribute): Only create a new type variant if
[official-gcc.git] / gcc / tree.c
blobb02e87e8af45686b9a7269e1ca062cd025d77f96
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #ifdef __STDC__
38 #include <stdarg.h>
39 #else
40 #include <varargs.h>
41 #endif
42 #include "system.h"
43 #include <setjmp.h>
44 #include "flags.h"
45 #include "tree.h"
46 #include "except.h"
47 #include "function.h"
48 #include "obstack.h"
49 #include "toplev.h"
51 #define obstack_chunk_alloc xmalloc
52 #define obstack_chunk_free free
53 /* obstack.[ch] explicitly declined to prototype this. */
54 extern int _obstack_allocated_p PROTO ((struct obstack *h, GENERIC_PTR obj));
56 /* Tree nodes of permanent duration are allocated in this obstack.
57 They are the identifier nodes, and everything outside of
58 the bodies and parameters of function definitions. */
60 struct obstack permanent_obstack;
62 /* The initial RTL, and all ..._TYPE nodes, in a function
63 are allocated in this obstack. Usually they are freed at the
64 end of the function, but if the function is inline they are saved.
65 For top-level functions, this is maybepermanent_obstack.
66 Separate obstacks are made for nested functions. */
68 struct obstack *function_maybepermanent_obstack;
70 /* This is the function_maybepermanent_obstack for top-level functions. */
72 struct obstack maybepermanent_obstack;
74 /* This is a list of function_maybepermanent_obstacks for top-level inline
75 functions that are compiled in the middle of compiling other functions. */
77 struct simple_obstack_stack *toplev_inline_obstacks;
79 /* Former elements of toplev_inline_obstacks that have been recycled. */
81 struct simple_obstack_stack *extra_inline_obstacks;
83 /* This is a list of function_maybepermanent_obstacks for inline functions
84 nested in the current function that were compiled in the middle of
85 compiling other functions. */
87 struct simple_obstack_stack *inline_obstacks;
89 /* The contents of the current function definition are allocated
90 in this obstack, and all are freed at the end of the function.
91 For top-level functions, this is temporary_obstack.
92 Separate obstacks are made for nested functions. */
94 struct obstack *function_obstack;
96 /* This is used for reading initializers of global variables. */
98 struct obstack temporary_obstack;
100 /* The tree nodes of an expression are allocated
101 in this obstack, and all are freed at the end of the expression. */
103 struct obstack momentary_obstack;
105 /* The tree nodes of a declarator are allocated
106 in this obstack, and all are freed when the declarator
107 has been parsed. */
109 static struct obstack temp_decl_obstack;
111 /* This points at either permanent_obstack
112 or the current function_maybepermanent_obstack. */
114 struct obstack *saveable_obstack;
116 /* This is same as saveable_obstack during parse and expansion phase;
117 it points to the current function's obstack during optimization.
118 This is the obstack to be used for creating rtl objects. */
120 struct obstack *rtl_obstack;
122 /* This points at either permanent_obstack or the current function_obstack. */
124 struct obstack *current_obstack;
126 /* This points at either permanent_obstack or the current function_obstack
127 or momentary_obstack. */
129 struct obstack *expression_obstack;
131 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
133 struct obstack_stack
135 struct obstack_stack *next;
136 struct obstack *current;
137 struct obstack *saveable;
138 struct obstack *expression;
139 struct obstack *rtl;
142 struct obstack_stack *obstack_stack;
144 /* Obstack for allocating struct obstack_stack entries. */
146 static struct obstack obstack_stack_obstack;
148 /* Addresses of first objects in some obstacks.
149 This is for freeing their entire contents. */
150 char *maybepermanent_firstobj;
151 char *temporary_firstobj;
152 char *momentary_firstobj;
153 char *temp_decl_firstobj;
155 /* This is used to preserve objects (mainly array initializers) that need to
156 live until the end of the current function, but no further. */
157 char *momentary_function_firstobj;
159 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
161 int all_types_permanent;
163 /* Stack of places to restore the momentary obstack back to. */
165 struct momentary_level
167 /* Pointer back to previous such level. */
168 struct momentary_level *prev;
169 /* First object allocated within this level. */
170 char *base;
171 /* Value of expression_obstack saved at entry to this level. */
172 struct obstack *obstack;
175 struct momentary_level *momentary_stack;
177 /* Table indexed by tree code giving a string containing a character
178 classifying the tree code. Possibilities are
179 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
181 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
183 char tree_code_type[MAX_TREE_CODES] = {
184 #include "tree.def"
186 #undef DEFTREECODE
188 /* Table indexed by tree code giving number of expression
189 operands beyond the fixed part of the node structure.
190 Not used for types or decls. */
192 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
194 int tree_code_length[MAX_TREE_CODES] = {
195 #include "tree.def"
197 #undef DEFTREECODE
199 /* Names of tree components.
200 Used for printing out the tree and error messages. */
201 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
203 char *tree_code_name[MAX_TREE_CODES] = {
204 #include "tree.def"
206 #undef DEFTREECODE
208 /* Statistics-gathering stuff. */
209 typedef enum
211 d_kind,
212 t_kind,
213 b_kind,
214 s_kind,
215 r_kind,
216 e_kind,
217 c_kind,
218 id_kind,
219 op_id_kind,
220 perm_list_kind,
221 temp_list_kind,
222 vec_kind,
223 x_kind,
224 lang_decl,
225 lang_type,
226 all_kinds
227 } tree_node_kind;
229 int tree_node_counts[(int)all_kinds];
230 int tree_node_sizes[(int)all_kinds];
231 int id_string_size = 0;
233 char *tree_node_kind_names[] = {
234 "decls",
235 "types",
236 "blocks",
237 "stmts",
238 "refs",
239 "exprs",
240 "constants",
241 "identifiers",
242 "op_identifiers",
243 "perm_tree_lists",
244 "temp_tree_lists",
245 "vecs",
246 "random kinds",
247 "lang_decl kinds",
248 "lang_type kinds"
251 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
253 #define MAX_HASH_TABLE 1009
254 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
256 /* 0 while creating built-in identifiers. */
257 static int do_identifier_warnings;
259 /* Unique id for next decl created. */
260 static int next_decl_uid;
261 /* Unique id for next type created. */
262 static int next_type_uid = 1;
264 /* The language-specific function for alias analysis. If NULL, the
265 language does not do any special alias analysis. */
266 int (*lang_get_alias_set) PROTO((tree));
268 /* Here is how primitive or already-canonicalized types' hash
269 codes are made. */
270 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
272 extern char *mode_name[];
274 void gcc_obstack_init ();
276 /* Init the principal obstacks. */
278 void
279 init_obstacks ()
281 gcc_obstack_init (&obstack_stack_obstack);
282 gcc_obstack_init (&permanent_obstack);
284 gcc_obstack_init (&temporary_obstack);
285 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
286 gcc_obstack_init (&momentary_obstack);
287 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
288 momentary_function_firstobj = momentary_firstobj;
289 gcc_obstack_init (&maybepermanent_obstack);
290 maybepermanent_firstobj
291 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
292 gcc_obstack_init (&temp_decl_obstack);
293 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
295 function_obstack = &temporary_obstack;
296 function_maybepermanent_obstack = &maybepermanent_obstack;
297 current_obstack = &permanent_obstack;
298 expression_obstack = &permanent_obstack;
299 rtl_obstack = saveable_obstack = &permanent_obstack;
301 /* Init the hash table of identifiers. */
302 bzero ((char *) hash_table, sizeof hash_table);
305 void
306 gcc_obstack_init (obstack)
307 struct obstack *obstack;
309 /* Let particular systems override the size of a chunk. */
310 #ifndef OBSTACK_CHUNK_SIZE
311 #define OBSTACK_CHUNK_SIZE 0
312 #endif
313 /* Let them override the alloc and free routines too. */
314 #ifndef OBSTACK_CHUNK_ALLOC
315 #define OBSTACK_CHUNK_ALLOC xmalloc
316 #endif
317 #ifndef OBSTACK_CHUNK_FREE
318 #define OBSTACK_CHUNK_FREE free
319 #endif
320 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
321 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
322 (void (*) ()) OBSTACK_CHUNK_FREE);
325 /* Save all variables describing the current status into the structure *P.
326 This is used before starting a nested function.
328 CONTEXT is the decl_function_context for the function we're about to
329 compile; if it isn't current_function_decl, we have to play some games. */
331 void
332 save_tree_status (p, context)
333 struct function *p;
334 tree context;
336 p->all_types_permanent = all_types_permanent;
337 p->momentary_stack = momentary_stack;
338 p->maybepermanent_firstobj = maybepermanent_firstobj;
339 p->temporary_firstobj = temporary_firstobj;
340 p->momentary_firstobj = momentary_firstobj;
341 p->momentary_function_firstobj = momentary_function_firstobj;
342 p->function_obstack = function_obstack;
343 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
344 p->current_obstack = current_obstack;
345 p->expression_obstack = expression_obstack;
346 p->saveable_obstack = saveable_obstack;
347 p->rtl_obstack = rtl_obstack;
348 p->inline_obstacks = inline_obstacks;
350 if (context == current_function_decl)
351 /* Objects that need to be saved in this function can be in the nonsaved
352 obstack of the enclosing function since they can't possibly be needed
353 once it has returned. */
354 function_maybepermanent_obstack = function_obstack;
355 else
357 /* We're compiling a function which isn't nested in the current
358 function. We need to create a new maybepermanent_obstack for this
359 function, since it can't go onto any of the existing obstacks. */
360 struct simple_obstack_stack **head;
361 struct simple_obstack_stack *current;
363 if (context == NULL_TREE)
364 head = &toplev_inline_obstacks;
365 else
367 struct function *f = find_function_data (context);
368 head = &f->inline_obstacks;
371 if (context == NULL_TREE && extra_inline_obstacks)
373 current = extra_inline_obstacks;
374 extra_inline_obstacks = current->next;
376 else
378 current = ((struct simple_obstack_stack *)
379 xmalloc (sizeof (struct simple_obstack_stack)));
381 current->obstack
382 = (struct obstack *) xmalloc (sizeof (struct obstack));
383 gcc_obstack_init (current->obstack);
386 function_maybepermanent_obstack = current->obstack;
388 current->next = *head;
389 *head = current;
392 maybepermanent_firstobj
393 = (char *) obstack_finish (function_maybepermanent_obstack);
395 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
396 gcc_obstack_init (function_obstack);
398 current_obstack = &permanent_obstack;
399 expression_obstack = &permanent_obstack;
400 rtl_obstack = saveable_obstack = &permanent_obstack;
402 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
403 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
404 momentary_function_firstobj = momentary_firstobj;
407 /* Restore all variables describing the current status from the structure *P.
408 This is used after a nested function. */
410 void
411 restore_tree_status (p, context)
412 struct function *p;
413 tree context;
415 all_types_permanent = p->all_types_permanent;
416 momentary_stack = p->momentary_stack;
418 obstack_free (&momentary_obstack, momentary_function_firstobj);
420 /* Free saveable storage used by the function just compiled and not
421 saved.
423 CAUTION: This is in function_obstack of the containing function.
424 So we must be sure that we never allocate from that obstack during
425 the compilation of a nested function if we expect it to survive
426 past the nested function's end. */
427 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
429 /* If we were compiling a toplevel function, we can free this space now. */
430 if (context == NULL_TREE)
432 obstack_free (&temporary_obstack, temporary_firstobj);
433 obstack_free (&momentary_obstack, momentary_function_firstobj);
436 /* If we were compiling a toplevel function that we don't actually want
437 to save anything from, return the obstack to the pool. */
438 if (context == NULL_TREE
439 && obstack_empty_p (function_maybepermanent_obstack))
441 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
443 if ((*p) != NULL)
445 while ((*p)->obstack != function_maybepermanent_obstack)
446 p = &((*p)->next);
447 current = *p;
448 *p = current->next;
450 current->next = extra_inline_obstacks;
451 extra_inline_obstacks = current;
455 obstack_free (function_obstack, 0);
456 free (function_obstack);
458 temporary_firstobj = p->temporary_firstobj;
459 momentary_firstobj = p->momentary_firstobj;
460 momentary_function_firstobj = p->momentary_function_firstobj;
461 maybepermanent_firstobj = p->maybepermanent_firstobj;
462 function_obstack = p->function_obstack;
463 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
464 current_obstack = p->current_obstack;
465 expression_obstack = p->expression_obstack;
466 saveable_obstack = p->saveable_obstack;
467 rtl_obstack = p->rtl_obstack;
468 inline_obstacks = p->inline_obstacks;
471 /* Start allocating on the temporary (per function) obstack.
472 This is done in start_function before parsing the function body,
473 and before each initialization at top level, and to go back
474 to temporary allocation after doing permanent_allocation. */
476 void
477 temporary_allocation ()
479 /* Note that function_obstack at top level points to temporary_obstack.
480 But within a nested function context, it is a separate obstack. */
481 current_obstack = function_obstack;
482 expression_obstack = function_obstack;
483 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
484 momentary_stack = 0;
485 inline_obstacks = 0;
488 /* Start allocating on the permanent obstack but don't
489 free the temporary data. After calling this, call
490 `permanent_allocation' to fully resume permanent allocation status. */
492 void
493 end_temporary_allocation ()
495 current_obstack = &permanent_obstack;
496 expression_obstack = &permanent_obstack;
497 rtl_obstack = saveable_obstack = &permanent_obstack;
500 /* Resume allocating on the temporary obstack, undoing
501 effects of `end_temporary_allocation'. */
503 void
504 resume_temporary_allocation ()
506 current_obstack = function_obstack;
507 expression_obstack = function_obstack;
508 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
511 /* While doing temporary allocation, switch to allocating in such a
512 way as to save all nodes if the function is inlined. Call
513 resume_temporary_allocation to go back to ordinary temporary
514 allocation. */
516 void
517 saveable_allocation ()
519 /* Note that function_obstack at top level points to temporary_obstack.
520 But within a nested function context, it is a separate obstack. */
521 expression_obstack = current_obstack = saveable_obstack;
524 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
525 recording the previously current obstacks on a stack.
526 This does not free any storage in any obstack. */
528 void
529 push_obstacks (current, saveable)
530 struct obstack *current, *saveable;
532 struct obstack_stack *p
533 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
534 (sizeof (struct obstack_stack)));
536 p->current = current_obstack;
537 p->saveable = saveable_obstack;
538 p->expression = expression_obstack;
539 p->rtl = rtl_obstack;
540 p->next = obstack_stack;
541 obstack_stack = p;
543 current_obstack = current;
544 expression_obstack = current;
545 rtl_obstack = saveable_obstack = saveable;
548 /* Save the current set of obstacks, but don't change them. */
550 void
551 push_obstacks_nochange ()
553 struct obstack_stack *p
554 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
555 (sizeof (struct obstack_stack)));
557 p->current = current_obstack;
558 p->saveable = saveable_obstack;
559 p->expression = expression_obstack;
560 p->rtl = rtl_obstack;
561 p->next = obstack_stack;
562 obstack_stack = p;
565 /* Pop the obstack selection stack. */
567 void
568 pop_obstacks ()
570 struct obstack_stack *p = obstack_stack;
571 obstack_stack = p->next;
573 current_obstack = p->current;
574 saveable_obstack = p->saveable;
575 expression_obstack = p->expression;
576 rtl_obstack = p->rtl;
578 obstack_free (&obstack_stack_obstack, p);
581 /* Nonzero if temporary allocation is currently in effect.
582 Zero if currently doing permanent allocation. */
585 allocation_temporary_p ()
587 return current_obstack != &permanent_obstack;
590 /* Go back to allocating on the permanent obstack
591 and free everything in the temporary obstack.
593 FUNCTION_END is true only if we have just finished compiling a function.
594 In that case, we also free preserved initial values on the momentary
595 obstack. */
597 void
598 permanent_allocation (function_end)
599 int function_end;
601 /* Free up previous temporary obstack data */
602 obstack_free (&temporary_obstack, temporary_firstobj);
603 if (function_end)
605 obstack_free (&momentary_obstack, momentary_function_firstobj);
606 momentary_firstobj = momentary_function_firstobj;
608 else
609 obstack_free (&momentary_obstack, momentary_firstobj);
610 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
611 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
613 /* Free up the maybepermanent_obstacks for any of our nested functions
614 which were compiled at a lower level. */
615 while (inline_obstacks)
617 struct simple_obstack_stack *current = inline_obstacks;
618 inline_obstacks = current->next;
619 obstack_free (current->obstack, 0);
620 free (current->obstack);
621 free (current);
624 current_obstack = &permanent_obstack;
625 expression_obstack = &permanent_obstack;
626 rtl_obstack = saveable_obstack = &permanent_obstack;
629 /* Save permanently everything on the maybepermanent_obstack. */
631 void
632 preserve_data ()
634 maybepermanent_firstobj
635 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
638 void
639 preserve_initializer ()
641 struct momentary_level *tem;
642 char *old_momentary;
644 temporary_firstobj
645 = (char *) obstack_alloc (&temporary_obstack, 0);
646 maybepermanent_firstobj
647 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
649 old_momentary = momentary_firstobj;
650 momentary_firstobj
651 = (char *) obstack_alloc (&momentary_obstack, 0);
652 if (momentary_firstobj != old_momentary)
653 for (tem = momentary_stack; tem; tem = tem->prev)
654 tem->base = momentary_firstobj;
657 /* Start allocating new rtl in current_obstack.
658 Use resume_temporary_allocation
659 to go back to allocating rtl in saveable_obstack. */
661 void
662 rtl_in_current_obstack ()
664 rtl_obstack = current_obstack;
667 /* Start allocating rtl from saveable_obstack. Intended to be used after
668 a call to push_obstacks_nochange. */
670 void
671 rtl_in_saveable_obstack ()
673 rtl_obstack = saveable_obstack;
676 /* Allocate SIZE bytes in the current obstack
677 and return a pointer to them.
678 In practice the current obstack is always the temporary one. */
680 char *
681 oballoc (size)
682 int size;
684 return (char *) obstack_alloc (current_obstack, size);
687 /* Free the object PTR in the current obstack
688 as well as everything allocated since PTR.
689 In practice the current obstack is always the temporary one. */
691 void
692 obfree (ptr)
693 char *ptr;
695 obstack_free (current_obstack, ptr);
698 /* Allocate SIZE bytes in the permanent obstack
699 and return a pointer to them. */
701 char *
702 permalloc (size)
703 int size;
705 return (char *) obstack_alloc (&permanent_obstack, size);
708 /* Allocate NELEM items of SIZE bytes in the permanent obstack
709 and return a pointer to them. The storage is cleared before
710 returning the value. */
712 char *
713 perm_calloc (nelem, size)
714 int nelem;
715 long size;
717 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
718 bzero (rval, nelem * size);
719 return rval;
722 /* Allocate SIZE bytes in the saveable obstack
723 and return a pointer to them. */
725 char *
726 savealloc (size)
727 int size;
729 return (char *) obstack_alloc (saveable_obstack, size);
732 /* Allocate SIZE bytes in the expression obstack
733 and return a pointer to them. */
735 char *
736 expralloc (size)
737 int size;
739 return (char *) obstack_alloc (expression_obstack, size);
742 /* Print out which obstack an object is in. */
744 void
745 print_obstack_name (object, file, prefix)
746 char *object;
747 FILE *file;
748 char *prefix;
750 struct obstack *obstack = NULL;
751 char *obstack_name = NULL;
752 struct function *p;
754 for (p = outer_function_chain; p; p = p->next)
756 if (_obstack_allocated_p (p->function_obstack, object))
758 obstack = p->function_obstack;
759 obstack_name = "containing function obstack";
761 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
763 obstack = p->function_maybepermanent_obstack;
764 obstack_name = "containing function maybepermanent obstack";
768 if (_obstack_allocated_p (&obstack_stack_obstack, object))
770 obstack = &obstack_stack_obstack;
771 obstack_name = "obstack_stack_obstack";
773 else if (_obstack_allocated_p (function_obstack, object))
775 obstack = function_obstack;
776 obstack_name = "function obstack";
778 else if (_obstack_allocated_p (&permanent_obstack, object))
780 obstack = &permanent_obstack;
781 obstack_name = "permanent_obstack";
783 else if (_obstack_allocated_p (&momentary_obstack, object))
785 obstack = &momentary_obstack;
786 obstack_name = "momentary_obstack";
788 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
790 obstack = function_maybepermanent_obstack;
791 obstack_name = "function maybepermanent obstack";
793 else if (_obstack_allocated_p (&temp_decl_obstack, object))
795 obstack = &temp_decl_obstack;
796 obstack_name = "temp_decl_obstack";
799 /* Check to see if the object is in the free area of the obstack. */
800 if (obstack != NULL)
802 if (object >= obstack->next_free
803 && object < obstack->chunk_limit)
804 fprintf (file, "%s in free portion of obstack %s",
805 prefix, obstack_name);
806 else
807 fprintf (file, "%s allocated from %s", prefix, obstack_name);
809 else
810 fprintf (file, "%s not allocated from any obstack", prefix);
813 void
814 debug_obstack (object)
815 char *object;
817 print_obstack_name (object, stderr, "object");
818 fprintf (stderr, ".\n");
821 /* Return 1 if OBJ is in the permanent obstack.
822 This is slow, and should be used only for debugging.
823 Use TREE_PERMANENT for other purposes. */
826 object_permanent_p (obj)
827 tree obj;
829 return _obstack_allocated_p (&permanent_obstack, obj);
832 /* Start a level of momentary allocation.
833 In C, each compound statement has its own level
834 and that level is freed at the end of each statement.
835 All expression nodes are allocated in the momentary allocation level. */
837 void
838 push_momentary ()
840 struct momentary_level *tem
841 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
842 sizeof (struct momentary_level));
843 tem->prev = momentary_stack;
844 tem->base = (char *) obstack_base (&momentary_obstack);
845 tem->obstack = expression_obstack;
846 momentary_stack = tem;
847 expression_obstack = &momentary_obstack;
850 /* Set things up so the next clear_momentary will only clear memory
851 past our present position in momentary_obstack. */
853 void
854 preserve_momentary ()
856 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
859 /* Free all the storage in the current momentary-allocation level.
860 In C, this happens at the end of each statement. */
862 void
863 clear_momentary ()
865 obstack_free (&momentary_obstack, momentary_stack->base);
868 /* Discard a level of momentary allocation.
869 In C, this happens at the end of each compound statement.
870 Restore the status of expression node allocation
871 that was in effect before this level was created. */
873 void
874 pop_momentary ()
876 struct momentary_level *tem = momentary_stack;
877 momentary_stack = tem->prev;
878 expression_obstack = tem->obstack;
879 /* We can't free TEM from the momentary_obstack, because there might
880 be objects above it which have been saved. We can free back to the
881 stack of the level we are popping off though. */
882 obstack_free (&momentary_obstack, tem->base);
885 /* Pop back to the previous level of momentary allocation,
886 but don't free any momentary data just yet. */
888 void
889 pop_momentary_nofree ()
891 struct momentary_level *tem = momentary_stack;
892 momentary_stack = tem->prev;
893 expression_obstack = tem->obstack;
896 /* Call when starting to parse a declaration:
897 make expressions in the declaration last the length of the function.
898 Returns an argument that should be passed to resume_momentary later. */
901 suspend_momentary ()
903 register int tem = expression_obstack == &momentary_obstack;
904 expression_obstack = saveable_obstack;
905 return tem;
908 /* Call when finished parsing a declaration:
909 restore the treatment of node-allocation that was
910 in effect before the suspension.
911 YES should be the value previously returned by suspend_momentary. */
913 void
914 resume_momentary (yes)
915 int yes;
917 if (yes)
918 expression_obstack = &momentary_obstack;
921 /* Init the tables indexed by tree code.
922 Note that languages can add to these tables to define their own codes. */
924 void
925 init_tree_codes ()
930 /* Return a newly allocated node of code CODE.
931 Initialize the node's unique id and its TREE_PERMANENT flag.
932 For decl and type nodes, some other fields are initialized.
933 The rest of the node is initialized to zero.
935 Achoo! I got a code in the node. */
937 tree
938 make_node (code)
939 enum tree_code code;
941 register tree t;
942 register int type = TREE_CODE_CLASS (code);
943 register int length = 0;
944 register struct obstack *obstack = current_obstack;
945 register int i;
946 #ifdef GATHER_STATISTICS
947 register tree_node_kind kind;
948 #endif
950 switch (type)
952 case 'd': /* A decl node */
953 #ifdef GATHER_STATISTICS
954 kind = d_kind;
955 #endif
956 length = sizeof (struct tree_decl);
957 /* All decls in an inline function need to be saved. */
958 if (obstack != &permanent_obstack)
959 obstack = saveable_obstack;
961 /* PARM_DECLs go on the context of the parent. If this is a nested
962 function, then we must allocate the PARM_DECL on the parent's
963 obstack, so that they will live to the end of the parent's
964 closing brace. This is necessary in case we try to inline the
965 function into its parent.
967 PARM_DECLs of top-level functions do not have this problem. However,
968 we allocate them where we put the FUNCTION_DECL for languages such as
969 Ada that need to consult some flags in the PARM_DECLs of the function
970 when calling it.
972 See comment in restore_tree_status for why we can't put this
973 in function_obstack. */
974 if (code == PARM_DECL && obstack != &permanent_obstack)
976 tree context = 0;
977 if (current_function_decl)
978 context = decl_function_context (current_function_decl);
980 if (context)
981 obstack
982 = find_function_data (context)->function_maybepermanent_obstack;
984 break;
986 case 't': /* a type node */
987 #ifdef GATHER_STATISTICS
988 kind = t_kind;
989 #endif
990 length = sizeof (struct tree_type);
991 /* All data types are put where we can preserve them if nec. */
992 if (obstack != &permanent_obstack)
993 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
994 break;
996 case 'b': /* a lexical block */
997 #ifdef GATHER_STATISTICS
998 kind = b_kind;
999 #endif
1000 length = sizeof (struct tree_block);
1001 /* All BLOCK nodes are put where we can preserve them if nec. */
1002 if (obstack != &permanent_obstack)
1003 obstack = saveable_obstack;
1004 break;
1006 case 's': /* an expression with side effects */
1007 #ifdef GATHER_STATISTICS
1008 kind = s_kind;
1009 goto usual_kind;
1010 #endif
1011 case 'r': /* a reference */
1012 #ifdef GATHER_STATISTICS
1013 kind = r_kind;
1014 goto usual_kind;
1015 #endif
1016 case 'e': /* an expression */
1017 case '<': /* a comparison expression */
1018 case '1': /* a unary arithmetic expression */
1019 case '2': /* a binary arithmetic expression */
1020 #ifdef GATHER_STATISTICS
1021 kind = e_kind;
1022 usual_kind:
1023 #endif
1024 obstack = expression_obstack;
1025 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1026 if (code == BIND_EXPR && obstack != &permanent_obstack)
1027 obstack = saveable_obstack;
1028 length = sizeof (struct tree_exp)
1029 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1030 break;
1032 case 'c': /* a constant */
1033 #ifdef GATHER_STATISTICS
1034 kind = c_kind;
1035 #endif
1036 obstack = expression_obstack;
1038 /* We can't use tree_code_length for INTEGER_CST, since the number of
1039 words is machine-dependent due to varying length of HOST_WIDE_INT,
1040 which might be wider than a pointer (e.g., long long). Similarly
1041 for REAL_CST, since the number of words is machine-dependent due
1042 to varying size and alignment of `double'. */
1044 if (code == INTEGER_CST)
1045 length = sizeof (struct tree_int_cst);
1046 else if (code == REAL_CST)
1047 length = sizeof (struct tree_real_cst);
1048 else
1049 length = sizeof (struct tree_common)
1050 + tree_code_length[(int) code] * sizeof (char *);
1051 break;
1053 case 'x': /* something random, like an identifier. */
1054 #ifdef GATHER_STATISTICS
1055 if (code == IDENTIFIER_NODE)
1056 kind = id_kind;
1057 else if (code == OP_IDENTIFIER)
1058 kind = op_id_kind;
1059 else if (code == TREE_VEC)
1060 kind = vec_kind;
1061 else
1062 kind = x_kind;
1063 #endif
1064 length = sizeof (struct tree_common)
1065 + tree_code_length[(int) code] * sizeof (char *);
1066 /* Identifier nodes are always permanent since they are
1067 unique in a compiler run. */
1068 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1069 break;
1071 default:
1072 abort ();
1075 t = (tree) obstack_alloc (obstack, length);
1077 #ifdef GATHER_STATISTICS
1078 tree_node_counts[(int)kind]++;
1079 tree_node_sizes[(int)kind] += length;
1080 #endif
1082 /* Clear a word at a time. */
1083 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1084 ((int *) t)[i] = 0;
1085 /* Clear any extra bytes. */
1086 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1087 ((char *) t)[i] = 0;
1089 TREE_SET_CODE (t, code);
1090 if (obstack == &permanent_obstack)
1091 TREE_PERMANENT (t) = 1;
1093 switch (type)
1095 case 's':
1096 TREE_SIDE_EFFECTS (t) = 1;
1097 TREE_TYPE (t) = void_type_node;
1098 break;
1100 case 'd':
1101 if (code != FUNCTION_DECL)
1102 DECL_ALIGN (t) = 1;
1103 DECL_IN_SYSTEM_HEADER (t)
1104 = in_system_header && (obstack == &permanent_obstack);
1105 DECL_SOURCE_LINE (t) = lineno;
1106 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1107 DECL_UID (t) = next_decl_uid++;
1108 break;
1110 case 't':
1111 TYPE_UID (t) = next_type_uid++;
1112 TYPE_ALIGN (t) = 1;
1113 TYPE_MAIN_VARIANT (t) = t;
1114 TYPE_OBSTACK (t) = obstack;
1115 TYPE_ATTRIBUTES (t) = NULL_TREE;
1116 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1117 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1118 #endif
1119 /* Note that we have not yet computed the alias set for this
1120 type. */
1121 TYPE_ALIAS_SET (t) = -1;
1122 break;
1124 case 'c':
1125 TREE_CONSTANT (t) = 1;
1126 break;
1129 return t;
1132 /* Return a new node with the same contents as NODE
1133 except that its TREE_CHAIN is zero and it has a fresh uid. */
1135 tree
1136 copy_node (node)
1137 tree node;
1139 register tree t;
1140 register enum tree_code code = TREE_CODE (node);
1141 register int length = 0;
1142 register int i;
1144 switch (TREE_CODE_CLASS (code))
1146 case 'd': /* A decl node */
1147 length = sizeof (struct tree_decl);
1148 break;
1150 case 't': /* a type node */
1151 length = sizeof (struct tree_type);
1152 break;
1154 case 'b': /* a lexical block node */
1155 length = sizeof (struct tree_block);
1156 break;
1158 case 'r': /* a reference */
1159 case 'e': /* an expression */
1160 case 's': /* an expression with side effects */
1161 case '<': /* a comparison expression */
1162 case '1': /* a unary arithmetic expression */
1163 case '2': /* a binary arithmetic expression */
1164 length = sizeof (struct tree_exp)
1165 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1166 break;
1168 case 'c': /* a constant */
1169 /* We can't use tree_code_length for INTEGER_CST, since the number of
1170 words is machine-dependent due to varying length of HOST_WIDE_INT,
1171 which might be wider than a pointer (e.g., long long). Similarly
1172 for REAL_CST, since the number of words is machine-dependent due
1173 to varying size and alignment of `double'. */
1174 if (code == INTEGER_CST)
1175 length = sizeof (struct tree_int_cst);
1176 else if (code == REAL_CST)
1177 length = sizeof (struct tree_real_cst);
1178 else
1179 length = (sizeof (struct tree_common)
1180 + tree_code_length[(int) code] * sizeof (char *));
1181 break;
1183 case 'x': /* something random, like an identifier. */
1184 length = sizeof (struct tree_common)
1185 + tree_code_length[(int) code] * sizeof (char *);
1186 if (code == TREE_VEC)
1187 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1190 t = (tree) obstack_alloc (current_obstack, length);
1192 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1193 ((int *) t)[i] = ((int *) node)[i];
1194 /* Clear any extra bytes. */
1195 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1196 ((char *) t)[i] = ((char *) node)[i];
1198 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1199 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1200 TREE_CHAIN (t) = 0;
1201 TREE_ASM_WRITTEN (t) = 0;
1203 if (TREE_CODE_CLASS (code) == 'd')
1204 DECL_UID (t) = next_decl_uid++;
1205 else if (TREE_CODE_CLASS (code) == 't')
1207 TYPE_UID (t) = next_type_uid++;
1208 TYPE_OBSTACK (t) = current_obstack;
1210 /* The following is so that the debug code for
1211 the copy is different from the original type.
1212 The two statements usually duplicate each other
1213 (because they clear fields of the same union),
1214 but the optimizer should catch that. */
1215 TYPE_SYMTAB_POINTER (t) = 0;
1216 TYPE_SYMTAB_ADDRESS (t) = 0;
1219 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1221 return t;
1224 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1225 For example, this can copy a list made of TREE_LIST nodes. */
1227 tree
1228 copy_list (list)
1229 tree list;
1231 tree head;
1232 register tree prev, next;
1234 if (list == 0)
1235 return 0;
1237 head = prev = copy_node (list);
1238 next = TREE_CHAIN (list);
1239 while (next)
1241 TREE_CHAIN (prev) = copy_node (next);
1242 prev = TREE_CHAIN (prev);
1243 next = TREE_CHAIN (next);
1245 return head;
1248 #define HASHBITS 30
1250 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1251 If an identifier with that name has previously been referred to,
1252 the same node is returned this time. */
1254 tree
1255 get_identifier (text)
1256 register char *text;
1258 register int hi;
1259 register int i;
1260 register tree idp;
1261 register int len, hash_len;
1263 /* Compute length of text in len. */
1264 for (len = 0; text[len]; len++);
1266 /* Decide how much of that length to hash on */
1267 hash_len = len;
1268 if (warn_id_clash && len > id_clash_len)
1269 hash_len = id_clash_len;
1271 /* Compute hash code */
1272 hi = hash_len * 613 + (unsigned) text[0];
1273 for (i = 1; i < hash_len; i += 2)
1274 hi = ((hi * 613) + (unsigned) (text[i]));
1276 hi &= (1 << HASHBITS) - 1;
1277 hi %= MAX_HASH_TABLE;
1279 /* Search table for identifier */
1280 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1281 if (IDENTIFIER_LENGTH (idp) == len
1282 && IDENTIFIER_POINTER (idp)[0] == text[0]
1283 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1284 return idp; /* <-- return if found */
1286 /* Not found; optionally warn about a similar identifier */
1287 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1288 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1289 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1291 warning ("`%s' and `%s' identical in first %d characters",
1292 IDENTIFIER_POINTER (idp), text, id_clash_len);
1293 break;
1296 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1297 abort (); /* set_identifier_size hasn't been called. */
1299 /* Not found, create one, add to chain */
1300 idp = make_node (IDENTIFIER_NODE);
1301 IDENTIFIER_LENGTH (idp) = len;
1302 #ifdef GATHER_STATISTICS
1303 id_string_size += len;
1304 #endif
1306 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1308 TREE_CHAIN (idp) = hash_table[hi];
1309 hash_table[hi] = idp;
1310 return idp; /* <-- return if created */
1313 /* If an identifier with the name TEXT (a null-terminated string) has
1314 previously been referred to, return that node; otherwise return
1315 NULL_TREE. */
1317 tree
1318 maybe_get_identifier (text)
1319 register char *text;
1321 register int hi;
1322 register int i;
1323 register tree idp;
1324 register int len, hash_len;
1326 /* Compute length of text in len. */
1327 for (len = 0; text[len]; len++);
1329 /* Decide how much of that length to hash on */
1330 hash_len = len;
1331 if (warn_id_clash && len > id_clash_len)
1332 hash_len = id_clash_len;
1334 /* Compute hash code */
1335 hi = hash_len * 613 + (unsigned) text[0];
1336 for (i = 1; i < hash_len; i += 2)
1337 hi = ((hi * 613) + (unsigned) (text[i]));
1339 hi &= (1 << HASHBITS) - 1;
1340 hi %= MAX_HASH_TABLE;
1342 /* Search table for identifier */
1343 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1344 if (IDENTIFIER_LENGTH (idp) == len
1345 && IDENTIFIER_POINTER (idp)[0] == text[0]
1346 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1347 return idp; /* <-- return if found */
1349 return NULL_TREE;
1352 /* Enable warnings on similar identifiers (if requested).
1353 Done after the built-in identifiers are created. */
1355 void
1356 start_identifier_warnings ()
1358 do_identifier_warnings = 1;
1361 /* Record the size of an identifier node for the language in use.
1362 SIZE is the total size in bytes.
1363 This is called by the language-specific files. This must be
1364 called before allocating any identifiers. */
1366 void
1367 set_identifier_size (size)
1368 int size;
1370 tree_code_length[(int) IDENTIFIER_NODE]
1371 = (size - sizeof (struct tree_common)) / sizeof (tree);
1374 /* Return a newly constructed INTEGER_CST node whose constant value
1375 is specified by the two ints LOW and HI.
1376 The TREE_TYPE is set to `int'.
1378 This function should be used via the `build_int_2' macro. */
1380 tree
1381 build_int_2_wide (low, hi)
1382 HOST_WIDE_INT low, hi;
1384 register tree t = make_node (INTEGER_CST);
1385 TREE_INT_CST_LOW (t) = low;
1386 TREE_INT_CST_HIGH (t) = hi;
1387 TREE_TYPE (t) = integer_type_node;
1388 return t;
1391 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1393 tree
1394 build_real (type, d)
1395 tree type;
1396 REAL_VALUE_TYPE d;
1398 tree v;
1399 int overflow = 0;
1401 /* Check for valid float value for this type on this target machine;
1402 if not, can print error message and store a valid value in D. */
1403 #ifdef CHECK_FLOAT_VALUE
1404 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1405 #endif
1407 v = make_node (REAL_CST);
1408 TREE_TYPE (v) = type;
1409 TREE_REAL_CST (v) = d;
1410 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1411 return v;
1414 /* Return a new REAL_CST node whose type is TYPE
1415 and whose value is the integer value of the INTEGER_CST node I. */
1417 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1419 REAL_VALUE_TYPE
1420 real_value_from_int_cst (type, i)
1421 tree type, i;
1423 REAL_VALUE_TYPE d;
1425 #ifdef REAL_ARITHMETIC
1426 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1427 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1428 TYPE_MODE (type));
1429 else
1430 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1431 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1432 #else /* not REAL_ARITHMETIC */
1433 /* Some 386 compilers mishandle unsigned int to float conversions,
1434 so introduce a temporary variable E to avoid those bugs. */
1435 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1437 REAL_VALUE_TYPE e;
1439 d = (double) (~ TREE_INT_CST_HIGH (i));
1440 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1441 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1442 d *= e;
1443 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1444 d += e;
1445 d = (- d - 1.0);
1447 else
1449 REAL_VALUE_TYPE e;
1451 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1452 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1453 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1454 d *= e;
1455 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1456 d += e;
1458 #endif /* not REAL_ARITHMETIC */
1459 return d;
1462 /* This function can't be implemented if we can't do arithmetic
1463 on the float representation. */
1465 tree
1466 build_real_from_int_cst (type, i)
1467 tree type;
1468 tree i;
1470 tree v;
1471 int overflow = TREE_OVERFLOW (i);
1472 REAL_VALUE_TYPE d;
1473 jmp_buf float_error;
1475 v = make_node (REAL_CST);
1476 TREE_TYPE (v) = type;
1478 if (setjmp (float_error))
1480 d = dconst0;
1481 overflow = 1;
1482 goto got_it;
1485 set_float_handler (float_error);
1487 #ifdef REAL_ARITHMETIC
1488 d = real_value_from_int_cst (type, i);
1489 #else
1490 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type),
1491 real_value_from_int_cst (type, i));
1492 #endif
1494 /* Check for valid float value for this type on this target machine. */
1496 got_it:
1497 set_float_handler (NULL_PTR);
1499 #ifdef CHECK_FLOAT_VALUE
1500 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1501 #endif
1503 TREE_REAL_CST (v) = d;
1504 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1505 return v;
1508 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1510 /* Return a newly constructed STRING_CST node whose value is
1511 the LEN characters at STR.
1512 The TREE_TYPE is not initialized. */
1514 tree
1515 build_string (len, str)
1516 int len;
1517 char *str;
1519 /* Put the string in saveable_obstack since it will be placed in the RTL
1520 for an "asm" statement and will also be kept around a while if
1521 deferring constant output in varasm.c. */
1523 register tree s = make_node (STRING_CST);
1524 TREE_STRING_LENGTH (s) = len;
1525 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1526 return s;
1529 /* Return a newly constructed COMPLEX_CST node whose value is
1530 specified by the real and imaginary parts REAL and IMAG.
1531 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1532 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1534 tree
1535 build_complex (type, real, imag)
1536 tree type;
1537 tree real, imag;
1539 register tree t = make_node (COMPLEX_CST);
1541 TREE_REALPART (t) = real;
1542 TREE_IMAGPART (t) = imag;
1543 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1544 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1545 TREE_CONSTANT_OVERFLOW (t)
1546 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1547 return t;
1550 /* Build a newly constructed TREE_VEC node of length LEN. */
1552 tree
1553 make_tree_vec (len)
1554 int len;
1556 register tree t;
1557 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1558 register struct obstack *obstack = current_obstack;
1559 register int i;
1561 #ifdef GATHER_STATISTICS
1562 tree_node_counts[(int)vec_kind]++;
1563 tree_node_sizes[(int)vec_kind] += length;
1564 #endif
1566 t = (tree) obstack_alloc (obstack, length);
1568 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1569 ((int *) t)[i] = 0;
1571 TREE_SET_CODE (t, TREE_VEC);
1572 TREE_VEC_LENGTH (t) = len;
1573 if (obstack == &permanent_obstack)
1574 TREE_PERMANENT (t) = 1;
1576 return t;
1579 /* Return 1 if EXPR is the integer constant zero or a complex constant
1580 of zero. */
1583 integer_zerop (expr)
1584 tree expr;
1586 STRIP_NOPS (expr);
1588 return ((TREE_CODE (expr) == INTEGER_CST
1589 && ! TREE_CONSTANT_OVERFLOW (expr)
1590 && TREE_INT_CST_LOW (expr) == 0
1591 && TREE_INT_CST_HIGH (expr) == 0)
1592 || (TREE_CODE (expr) == COMPLEX_CST
1593 && integer_zerop (TREE_REALPART (expr))
1594 && integer_zerop (TREE_IMAGPART (expr))));
1597 /* Return 1 if EXPR is the integer constant one or the corresponding
1598 complex constant. */
1601 integer_onep (expr)
1602 tree expr;
1604 STRIP_NOPS (expr);
1606 return ((TREE_CODE (expr) == INTEGER_CST
1607 && ! TREE_CONSTANT_OVERFLOW (expr)
1608 && TREE_INT_CST_LOW (expr) == 1
1609 && TREE_INT_CST_HIGH (expr) == 0)
1610 || (TREE_CODE (expr) == COMPLEX_CST
1611 && integer_onep (TREE_REALPART (expr))
1612 && integer_zerop (TREE_IMAGPART (expr))));
1615 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1616 it contains. Likewise for the corresponding complex constant. */
1619 integer_all_onesp (expr)
1620 tree expr;
1622 register int prec;
1623 register int uns;
1625 STRIP_NOPS (expr);
1627 if (TREE_CODE (expr) == COMPLEX_CST
1628 && integer_all_onesp (TREE_REALPART (expr))
1629 && integer_zerop (TREE_IMAGPART (expr)))
1630 return 1;
1632 else if (TREE_CODE (expr) != INTEGER_CST
1633 || TREE_CONSTANT_OVERFLOW (expr))
1634 return 0;
1636 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1637 if (!uns)
1638 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1640 /* Note that using TYPE_PRECISION here is wrong. We care about the
1641 actual bits, not the (arbitrary) range of the type. */
1642 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1643 if (prec >= HOST_BITS_PER_WIDE_INT)
1645 int high_value, shift_amount;
1647 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1649 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1650 /* Can not handle precisions greater than twice the host int size. */
1651 abort ();
1652 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1653 /* Shifting by the host word size is undefined according to the ANSI
1654 standard, so we must handle this as a special case. */
1655 high_value = -1;
1656 else
1657 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1659 return TREE_INT_CST_LOW (expr) == -1
1660 && TREE_INT_CST_HIGH (expr) == high_value;
1662 else
1663 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1666 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1667 one bit on). */
1670 integer_pow2p (expr)
1671 tree expr;
1673 int prec;
1674 HOST_WIDE_INT high, low;
1676 STRIP_NOPS (expr);
1678 if (TREE_CODE (expr) == COMPLEX_CST
1679 && integer_pow2p (TREE_REALPART (expr))
1680 && integer_zerop (TREE_IMAGPART (expr)))
1681 return 1;
1683 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1684 return 0;
1686 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1687 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1688 high = TREE_INT_CST_HIGH (expr);
1689 low = TREE_INT_CST_LOW (expr);
1691 /* First clear all bits that are beyond the type's precision in case
1692 we've been sign extended. */
1694 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1696 else if (prec > HOST_BITS_PER_WIDE_INT)
1697 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1698 else
1700 high = 0;
1701 if (prec < HOST_BITS_PER_WIDE_INT)
1702 low &= ~((HOST_WIDE_INT) (-1) << prec);
1705 if (high == 0 && low == 0)
1706 return 0;
1708 return ((high == 0 && (low & (low - 1)) == 0)
1709 || (low == 0 && (high & (high - 1)) == 0));
1712 /* Return the power of two represented by a tree node known to be a
1713 power of two. */
1716 tree_log2 (expr)
1717 tree expr;
1719 int prec;
1720 HOST_WIDE_INT high, low;
1722 STRIP_NOPS (expr);
1724 if (TREE_CODE (expr) == COMPLEX_CST)
1725 return tree_log2 (TREE_REALPART (expr));
1727 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1728 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1730 high = TREE_INT_CST_HIGH (expr);
1731 low = TREE_INT_CST_LOW (expr);
1733 /* First clear all bits that are beyond the type's precision in case
1734 we've been sign extended. */
1736 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1738 else if (prec > HOST_BITS_PER_WIDE_INT)
1739 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1740 else
1742 high = 0;
1743 if (prec < HOST_BITS_PER_WIDE_INT)
1744 low &= ~((HOST_WIDE_INT) (-1) << prec);
1747 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1748 : exact_log2 (low));
1751 /* Return 1 if EXPR is the real constant zero. */
1754 real_zerop (expr)
1755 tree expr;
1757 STRIP_NOPS (expr);
1759 return ((TREE_CODE (expr) == REAL_CST
1760 && ! TREE_CONSTANT_OVERFLOW (expr)
1761 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1762 || (TREE_CODE (expr) == COMPLEX_CST
1763 && real_zerop (TREE_REALPART (expr))
1764 && real_zerop (TREE_IMAGPART (expr))));
1767 /* Return 1 if EXPR is the real constant one in real or complex form. */
1770 real_onep (expr)
1771 tree expr;
1773 STRIP_NOPS (expr);
1775 return ((TREE_CODE (expr) == REAL_CST
1776 && ! TREE_CONSTANT_OVERFLOW (expr)
1777 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1778 || (TREE_CODE (expr) == COMPLEX_CST
1779 && real_onep (TREE_REALPART (expr))
1780 && real_zerop (TREE_IMAGPART (expr))));
1783 /* Return 1 if EXPR is the real constant two. */
1786 real_twop (expr)
1787 tree expr;
1789 STRIP_NOPS (expr);
1791 return ((TREE_CODE (expr) == REAL_CST
1792 && ! TREE_CONSTANT_OVERFLOW (expr)
1793 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1794 || (TREE_CODE (expr) == COMPLEX_CST
1795 && real_twop (TREE_REALPART (expr))
1796 && real_zerop (TREE_IMAGPART (expr))));
1799 /* Nonzero if EXP is a constant or a cast of a constant. */
1802 really_constant_p (exp)
1803 tree exp;
1805 /* This is not quite the same as STRIP_NOPS. It does more. */
1806 while (TREE_CODE (exp) == NOP_EXPR
1807 || TREE_CODE (exp) == CONVERT_EXPR
1808 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1809 exp = TREE_OPERAND (exp, 0);
1810 return TREE_CONSTANT (exp);
1813 /* Return first list element whose TREE_VALUE is ELEM.
1814 Return 0 if ELEM is not in LIST. */
1816 tree
1817 value_member (elem, list)
1818 tree elem, list;
1820 while (list)
1822 if (elem == TREE_VALUE (list))
1823 return list;
1824 list = TREE_CHAIN (list);
1826 return NULL_TREE;
1829 /* Return first list element whose TREE_PURPOSE is ELEM.
1830 Return 0 if ELEM is not in LIST. */
1832 tree
1833 purpose_member (elem, list)
1834 tree elem, list;
1836 while (list)
1838 if (elem == TREE_PURPOSE (list))
1839 return list;
1840 list = TREE_CHAIN (list);
1842 return NULL_TREE;
1845 /* Return first list element whose BINFO_TYPE is ELEM.
1846 Return 0 if ELEM is not in LIST. */
1848 tree
1849 binfo_member (elem, list)
1850 tree elem, list;
1852 while (list)
1854 if (elem == BINFO_TYPE (list))
1855 return list;
1856 list = TREE_CHAIN (list);
1858 return NULL_TREE;
1861 /* Return nonzero if ELEM is part of the chain CHAIN. */
1864 chain_member (elem, chain)
1865 tree elem, chain;
1867 while (chain)
1869 if (elem == chain)
1870 return 1;
1871 chain = TREE_CHAIN (chain);
1874 return 0;
1877 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1878 chain CHAIN. */
1879 /* ??? This function was added for machine specific attributes but is no
1880 longer used. It could be deleted if we could confirm all front ends
1881 don't use it. */
1884 chain_member_value (elem, chain)
1885 tree elem, chain;
1887 while (chain)
1889 if (elem == TREE_VALUE (chain))
1890 return 1;
1891 chain = TREE_CHAIN (chain);
1894 return 0;
1897 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1898 for any piece of chain CHAIN. */
1899 /* ??? This function was added for machine specific attributes but is no
1900 longer used. It could be deleted if we could confirm all front ends
1901 don't use it. */
1904 chain_member_purpose (elem, chain)
1905 tree elem, chain;
1907 while (chain)
1909 if (elem == TREE_PURPOSE (chain))
1910 return 1;
1911 chain = TREE_CHAIN (chain);
1914 return 0;
1917 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1918 We expect a null pointer to mark the end of the chain.
1919 This is the Lisp primitive `length'. */
1922 list_length (t)
1923 tree t;
1925 register tree tail;
1926 register int len = 0;
1928 for (tail = t; tail; tail = TREE_CHAIN (tail))
1929 len++;
1931 return len;
1934 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1935 by modifying the last node in chain 1 to point to chain 2.
1936 This is the Lisp primitive `nconc'. */
1938 tree
1939 chainon (op1, op2)
1940 tree op1, op2;
1943 if (op1)
1945 register tree t1;
1946 register tree t2;
1948 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1950 TREE_CHAIN (t1) = op2;
1951 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1952 if (t2 == t1)
1953 abort (); /* Circularity created. */
1954 return op1;
1956 else return op2;
1959 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1961 tree
1962 tree_last (chain)
1963 register tree chain;
1965 register tree next;
1966 if (chain)
1967 while ((next = TREE_CHAIN (chain)))
1968 chain = next;
1969 return chain;
1972 /* Reverse the order of elements in the chain T,
1973 and return the new head of the chain (old last element). */
1975 tree
1976 nreverse (t)
1977 tree t;
1979 register tree prev = 0, decl, next;
1980 for (decl = t; decl; decl = next)
1982 next = TREE_CHAIN (decl);
1983 TREE_CHAIN (decl) = prev;
1984 prev = decl;
1986 return prev;
1989 /* Given a chain CHAIN of tree nodes,
1990 construct and return a list of those nodes. */
1992 tree
1993 listify (chain)
1994 tree chain;
1996 tree result = NULL_TREE;
1997 tree in_tail = chain;
1998 tree out_tail = NULL_TREE;
2000 while (in_tail)
2002 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2003 if (out_tail)
2004 TREE_CHAIN (out_tail) = next;
2005 else
2006 result = next;
2007 out_tail = next;
2008 in_tail = TREE_CHAIN (in_tail);
2011 return result;
2014 /* Return a newly created TREE_LIST node whose
2015 purpose and value fields are PARM and VALUE. */
2017 tree
2018 build_tree_list (parm, value)
2019 tree parm, value;
2021 register tree t = make_node (TREE_LIST);
2022 TREE_PURPOSE (t) = parm;
2023 TREE_VALUE (t) = value;
2024 return t;
2027 /* Similar, but build on the temp_decl_obstack. */
2029 tree
2030 build_decl_list (parm, value)
2031 tree parm, value;
2033 register tree node;
2034 register struct obstack *ambient_obstack = current_obstack;
2035 current_obstack = &temp_decl_obstack;
2036 node = build_tree_list (parm, value);
2037 current_obstack = ambient_obstack;
2038 return node;
2041 /* Similar, but build on the expression_obstack. */
2043 tree
2044 build_expr_list (parm, value)
2045 tree parm, value;
2047 register tree node;
2048 register struct obstack *ambient_obstack = current_obstack;
2049 current_obstack = expression_obstack;
2050 node = build_tree_list (parm, value);
2051 current_obstack = ambient_obstack;
2052 return node;
2055 /* Return a newly created TREE_LIST node whose
2056 purpose and value fields are PARM and VALUE
2057 and whose TREE_CHAIN is CHAIN. */
2059 tree
2060 tree_cons (purpose, value, chain)
2061 tree purpose, value, chain;
2063 #if 0
2064 register tree node = make_node (TREE_LIST);
2065 #else
2066 register int i;
2067 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2068 #ifdef GATHER_STATISTICS
2069 tree_node_counts[(int)x_kind]++;
2070 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2071 #endif
2073 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2074 ((int *) node)[i] = 0;
2076 TREE_SET_CODE (node, TREE_LIST);
2077 if (current_obstack == &permanent_obstack)
2078 TREE_PERMANENT (node) = 1;
2079 #endif
2081 TREE_CHAIN (node) = chain;
2082 TREE_PURPOSE (node) = purpose;
2083 TREE_VALUE (node) = value;
2084 return node;
2087 /* Similar, but build on the temp_decl_obstack. */
2089 tree
2090 decl_tree_cons (purpose, value, chain)
2091 tree purpose, value, chain;
2093 register tree node;
2094 register struct obstack *ambient_obstack = current_obstack;
2095 current_obstack = &temp_decl_obstack;
2096 node = tree_cons (purpose, value, chain);
2097 current_obstack = ambient_obstack;
2098 return node;
2101 /* Similar, but build on the expression_obstack. */
2103 tree
2104 expr_tree_cons (purpose, value, chain)
2105 tree purpose, value, chain;
2107 register tree node;
2108 register struct obstack *ambient_obstack = current_obstack;
2109 current_obstack = expression_obstack;
2110 node = tree_cons (purpose, value, chain);
2111 current_obstack = ambient_obstack;
2112 return node;
2115 /* Same as `tree_cons' but make a permanent object. */
2117 tree
2118 perm_tree_cons (purpose, value, chain)
2119 tree purpose, value, chain;
2121 register tree node;
2122 register struct obstack *ambient_obstack = current_obstack;
2123 current_obstack = &permanent_obstack;
2125 node = tree_cons (purpose, value, chain);
2126 current_obstack = ambient_obstack;
2127 return node;
2130 /* Same as `tree_cons', but make this node temporary, regardless. */
2132 tree
2133 temp_tree_cons (purpose, value, chain)
2134 tree purpose, value, chain;
2136 register tree node;
2137 register struct obstack *ambient_obstack = current_obstack;
2138 current_obstack = &temporary_obstack;
2140 node = tree_cons (purpose, value, chain);
2141 current_obstack = ambient_obstack;
2142 return node;
2145 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2147 tree
2148 saveable_tree_cons (purpose, value, chain)
2149 tree purpose, value, chain;
2151 register tree node;
2152 register struct obstack *ambient_obstack = current_obstack;
2153 current_obstack = saveable_obstack;
2155 node = tree_cons (purpose, value, chain);
2156 current_obstack = ambient_obstack;
2157 return node;
2160 /* Return the size nominally occupied by an object of type TYPE
2161 when it resides in memory. The value is measured in units of bytes,
2162 and its data type is that normally used for type sizes
2163 (which is the first type created by make_signed_type or
2164 make_unsigned_type). */
2166 tree
2167 size_in_bytes (type)
2168 tree type;
2170 tree t;
2172 if (type == error_mark_node)
2173 return integer_zero_node;
2175 type = TYPE_MAIN_VARIANT (type);
2176 t = TYPE_SIZE_UNIT (type);
2177 if (t == 0)
2179 incomplete_type_error (NULL_TREE, type);
2180 return integer_zero_node;
2182 if (TREE_CODE (t) == INTEGER_CST)
2183 force_fit_type (t, 0);
2185 return t;
2188 /* Return the size of TYPE (in bytes) as a wide integer
2189 or return -1 if the size can vary or is larger than an integer. */
2191 HOST_WIDE_INT
2192 int_size_in_bytes (type)
2193 tree type;
2195 tree t;
2197 if (type == error_mark_node)
2198 return 0;
2200 type = TYPE_MAIN_VARIANT (type);
2201 t = TYPE_SIZE_UNIT (type);
2202 if (t == 0
2203 || TREE_CODE (t) != INTEGER_CST
2204 || TREE_INT_CST_HIGH (t) != 0)
2205 return -1;
2207 return TREE_INT_CST_LOW (t);
2210 /* Return, as a tree node, the number of elements for TYPE (which is an
2211 ARRAY_TYPE) minus one. This counts only elements of the top array.
2213 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2214 action, they would get unsaved. */
2216 tree
2217 array_type_nelts (type)
2218 tree type;
2220 tree index_type, min, max;
2222 /* If they did it with unspecified bounds, then we should have already
2223 given an error about it before we got here. */
2224 if (! TYPE_DOMAIN (type))
2225 return error_mark_node;
2227 index_type = TYPE_DOMAIN (type);
2228 min = TYPE_MIN_VALUE (index_type);
2229 max = TYPE_MAX_VALUE (index_type);
2231 if (! TREE_CONSTANT (min))
2233 STRIP_NOPS (min);
2234 if (TREE_CODE (min) == SAVE_EXPR)
2235 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2236 SAVE_EXPR_RTL (min));
2237 else
2238 min = TYPE_MIN_VALUE (index_type);
2241 if (! TREE_CONSTANT (max))
2243 STRIP_NOPS (max);
2244 if (TREE_CODE (max) == SAVE_EXPR)
2245 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2246 SAVE_EXPR_RTL (max));
2247 else
2248 max = TYPE_MAX_VALUE (index_type);
2251 return (integer_zerop (min)
2252 ? max
2253 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2256 /* Return nonzero if arg is static -- a reference to an object in
2257 static storage. This is not the same as the C meaning of `static'. */
2260 staticp (arg)
2261 tree arg;
2263 switch (TREE_CODE (arg))
2265 case FUNCTION_DECL:
2266 /* Nested functions aren't static, since taking their address
2267 involves a trampoline. */
2268 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2269 && ! DECL_NON_ADDR_CONST_P (arg);
2271 case VAR_DECL:
2272 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2273 && ! DECL_NON_ADDR_CONST_P (arg);
2275 case CONSTRUCTOR:
2276 return TREE_STATIC (arg);
2278 case STRING_CST:
2279 return 1;
2281 /* If we are referencing a bitfield, we can't evaluate an
2282 ADDR_EXPR at compile time and so it isn't a constant. */
2283 case COMPONENT_REF:
2284 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2285 && staticp (TREE_OPERAND (arg, 0)));
2287 case BIT_FIELD_REF:
2288 return 0;
2290 #if 0
2291 /* This case is technically correct, but results in setting
2292 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2293 compile time. */
2294 case INDIRECT_REF:
2295 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2296 #endif
2298 case ARRAY_REF:
2299 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2300 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2301 return staticp (TREE_OPERAND (arg, 0));
2303 default:
2304 return 0;
2308 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2309 Do this to any expression which may be used in more than one place,
2310 but must be evaluated only once.
2312 Normally, expand_expr would reevaluate the expression each time.
2313 Calling save_expr produces something that is evaluated and recorded
2314 the first time expand_expr is called on it. Subsequent calls to
2315 expand_expr just reuse the recorded value.
2317 The call to expand_expr that generates code that actually computes
2318 the value is the first call *at compile time*. Subsequent calls
2319 *at compile time* generate code to use the saved value.
2320 This produces correct result provided that *at run time* control
2321 always flows through the insns made by the first expand_expr
2322 before reaching the other places where the save_expr was evaluated.
2323 You, the caller of save_expr, must make sure this is so.
2325 Constants, and certain read-only nodes, are returned with no
2326 SAVE_EXPR because that is safe. Expressions containing placeholders
2327 are not touched; see tree.def for an explanation of what these
2328 are used for. */
2330 tree
2331 save_expr (expr)
2332 tree expr;
2334 register tree t = fold (expr);
2336 /* We don't care about whether this can be used as an lvalue in this
2337 context. */
2338 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2339 t = TREE_OPERAND (t, 0);
2341 /* If the tree evaluates to a constant, then we don't want to hide that
2342 fact (i.e. this allows further folding, and direct checks for constants).
2343 However, a read-only object that has side effects cannot be bypassed.
2344 Since it is no problem to reevaluate literals, we just return the
2345 literal node. */
2347 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2348 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2349 return t;
2351 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2352 it means that the size or offset of some field of an object depends on
2353 the value within another field.
2355 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2356 and some variable since it would then need to be both evaluated once and
2357 evaluated more than once. Front-ends must assure this case cannot
2358 happen by surrounding any such subexpressions in their own SAVE_EXPR
2359 and forcing evaluation at the proper time. */
2360 if (contains_placeholder_p (t))
2361 return t;
2363 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2365 /* This expression might be placed ahead of a jump to ensure that the
2366 value was computed on both sides of the jump. So make sure it isn't
2367 eliminated as dead. */
2368 TREE_SIDE_EFFECTS (t) = 1;
2369 return t;
2372 /* Arrange for an expression to be expanded multiple independent
2373 times. This is useful for cleanup actions, as the backend can
2374 expand them multiple times in different places. */
2376 tree
2377 unsave_expr (expr)
2378 tree expr;
2380 tree t;
2382 /* If this is already protected, no sense in protecting it again. */
2383 if (TREE_CODE (expr) == UNSAVE_EXPR)
2384 return expr;
2386 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2387 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2388 return t;
2391 /* Returns the index of the first non-tree operand for CODE, or the number
2392 of operands if all are trees. */
2395 first_rtl_op (code)
2396 enum tree_code code;
2398 switch (code)
2400 case SAVE_EXPR:
2401 return 2;
2402 case RTL_EXPR:
2403 return 0;
2404 case CALL_EXPR:
2405 return 2;
2406 case WITH_CLEANUP_EXPR:
2407 /* Should be defined to be 2. */
2408 return 1;
2409 case METHOD_CALL_EXPR:
2410 return 3;
2411 default:
2412 return tree_code_length [(int) code];
2416 /* Modify a tree in place so that all the evaluate only once things
2417 are cleared out. Return the EXPR given. */
2419 tree
2420 unsave_expr_now (expr)
2421 tree expr;
2423 enum tree_code code;
2424 register int i;
2425 int first_rtl;
2427 if (expr == NULL_TREE)
2428 return expr;
2430 code = TREE_CODE (expr);
2431 first_rtl = first_rtl_op (code);
2432 switch (code)
2434 case SAVE_EXPR:
2435 SAVE_EXPR_RTL (expr) = 0;
2436 break;
2438 case TARGET_EXPR:
2439 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2440 TREE_OPERAND (expr, 3) = NULL_TREE;
2441 break;
2443 case RTL_EXPR:
2444 /* I don't yet know how to emit a sequence multiple times. */
2445 if (RTL_EXPR_SEQUENCE (expr) != 0)
2446 abort ();
2447 break;
2449 case CALL_EXPR:
2450 CALL_EXPR_RTL (expr) = 0;
2451 if (TREE_OPERAND (expr, 1)
2452 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2454 tree exp = TREE_OPERAND (expr, 1);
2455 while (exp)
2457 unsave_expr_now (TREE_VALUE (exp));
2458 exp = TREE_CHAIN (exp);
2461 break;
2463 default:
2464 break;
2467 switch (TREE_CODE_CLASS (code))
2469 case 'c': /* a constant */
2470 case 't': /* a type node */
2471 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2472 case 'd': /* A decl node */
2473 case 'b': /* A block node */
2474 return expr;
2476 case 'e': /* an expression */
2477 case 'r': /* a reference */
2478 case 's': /* an expression with side effects */
2479 case '<': /* a comparison expression */
2480 case '2': /* a binary arithmetic expression */
2481 case '1': /* a unary arithmetic expression */
2482 for (i = first_rtl - 1; i >= 0; i--)
2483 unsave_expr_now (TREE_OPERAND (expr, i));
2484 return expr;
2486 default:
2487 abort ();
2491 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2492 or offset that depends on a field within a record. */
2495 contains_placeholder_p (exp)
2496 tree exp;
2498 register enum tree_code code = TREE_CODE (exp);
2499 int result;
2501 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2502 in it since it is supplying a value for it. */
2503 if (code == WITH_RECORD_EXPR)
2504 return 0;
2505 else if (code == PLACEHOLDER_EXPR)
2506 return 1;
2508 switch (TREE_CODE_CLASS (code))
2510 case 'r':
2511 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2512 position computations since they will be converted into a
2513 WITH_RECORD_EXPR involving the reference, which will assume
2514 here will be valid. */
2515 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2517 case 'x':
2518 if (code == TREE_LIST)
2519 return (contains_placeholder_p (TREE_VALUE (exp))
2520 || (TREE_CHAIN (exp) != 0
2521 && contains_placeholder_p (TREE_CHAIN (exp))));
2522 break;
2524 case '1':
2525 case '2': case '<':
2526 case 'e':
2527 switch (code)
2529 case COMPOUND_EXPR:
2530 /* Ignoring the first operand isn't quite right, but works best. */
2531 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2533 case RTL_EXPR:
2534 case CONSTRUCTOR:
2535 return 0;
2537 case COND_EXPR:
2538 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2539 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2540 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2542 case SAVE_EXPR:
2543 /* If we already know this doesn't have a placeholder, don't
2544 check again. */
2545 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2546 return 0;
2548 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2549 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2550 if (result)
2551 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2553 return result;
2555 case CALL_EXPR:
2556 return (TREE_OPERAND (exp, 1) != 0
2557 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2559 default:
2560 break;
2563 switch (tree_code_length[(int) code])
2565 case 1:
2566 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2567 case 2:
2568 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2569 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2570 default:
2571 return 0;
2574 default:
2575 return 0;
2577 return 0;
2580 /* Return 1 if EXP contains any expressions that produce cleanups for an
2581 outer scope to deal with. Used by fold. */
2584 has_cleanups (exp)
2585 tree exp;
2587 int i, nops, cmp;
2589 if (! TREE_SIDE_EFFECTS (exp))
2590 return 0;
2592 switch (TREE_CODE (exp))
2594 case TARGET_EXPR:
2595 case WITH_CLEANUP_EXPR:
2596 return 1;
2598 case CLEANUP_POINT_EXPR:
2599 return 0;
2601 case CALL_EXPR:
2602 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2604 cmp = has_cleanups (TREE_VALUE (exp));
2605 if (cmp)
2606 return cmp;
2608 return 0;
2610 default:
2611 break;
2614 /* This general rule works for most tree codes. All exceptions should be
2615 handled above. If this is a language-specific tree code, we can't
2616 trust what might be in the operand, so say we don't know
2617 the situation. */
2618 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2619 return -1;
2621 nops = first_rtl_op (TREE_CODE (exp));
2622 for (i = 0; i < nops; i++)
2623 if (TREE_OPERAND (exp, i) != 0)
2625 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2626 if (type == 'e' || type == '<' || type == '1' || type == '2'
2627 || type == 'r' || type == 's')
2629 cmp = has_cleanups (TREE_OPERAND (exp, i));
2630 if (cmp)
2631 return cmp;
2635 return 0;
2638 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2639 return a tree with all occurrences of references to F in a
2640 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2641 contains only arithmetic expressions or a CALL_EXPR with a
2642 PLACEHOLDER_EXPR occurring only in its arglist. */
2644 tree
2645 substitute_in_expr (exp, f, r)
2646 tree exp;
2647 tree f;
2648 tree r;
2650 enum tree_code code = TREE_CODE (exp);
2651 tree op0, op1, op2;
2652 tree new;
2653 tree inner;
2655 switch (TREE_CODE_CLASS (code))
2657 case 'c':
2658 case 'd':
2659 return exp;
2661 case 'x':
2662 if (code == PLACEHOLDER_EXPR)
2663 return exp;
2664 else if (code == TREE_LIST)
2666 op0 = (TREE_CHAIN (exp) == 0
2667 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2668 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2669 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2670 return exp;
2672 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2675 abort ();
2677 case '1':
2678 case '2':
2679 case '<':
2680 case 'e':
2681 switch (tree_code_length[(int) code])
2683 case 1:
2684 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2685 if (op0 == TREE_OPERAND (exp, 0))
2686 return exp;
2688 new = fold (build1 (code, TREE_TYPE (exp), op0));
2689 break;
2691 case 2:
2692 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2693 could, but we don't support it. */
2694 if (code == RTL_EXPR)
2695 return exp;
2696 else if (code == CONSTRUCTOR)
2697 abort ();
2699 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2700 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2701 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2702 return exp;
2704 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2705 break;
2707 case 3:
2708 /* It cannot be that anything inside a SAVE_EXPR contains a
2709 PLACEHOLDER_EXPR. */
2710 if (code == SAVE_EXPR)
2711 return exp;
2713 else if (code == CALL_EXPR)
2715 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2716 if (op1 == TREE_OPERAND (exp, 1))
2717 return exp;
2719 return build (code, TREE_TYPE (exp),
2720 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2723 else if (code != COND_EXPR)
2724 abort ();
2726 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2727 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2728 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2729 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2730 && op2 == TREE_OPERAND (exp, 2))
2731 return exp;
2733 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2734 break;
2736 default:
2737 abort ();
2740 break;
2742 case 'r':
2743 switch (code)
2745 case COMPONENT_REF:
2746 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2747 and it is the right field, replace it with R. */
2748 for (inner = TREE_OPERAND (exp, 0);
2749 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2750 inner = TREE_OPERAND (inner, 0))
2752 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2753 && TREE_OPERAND (exp, 1) == f)
2754 return r;
2756 /* If this expression hasn't been completed let, leave it
2757 alone. */
2758 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2759 && TREE_TYPE (inner) == 0)
2760 return exp;
2762 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2763 if (op0 == TREE_OPERAND (exp, 0))
2764 return exp;
2766 new = fold (build (code, TREE_TYPE (exp), op0,
2767 TREE_OPERAND (exp, 1)));
2768 break;
2770 case BIT_FIELD_REF:
2771 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2772 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2773 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2774 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2775 && op2 == TREE_OPERAND (exp, 2))
2776 return exp;
2778 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2779 break;
2781 case INDIRECT_REF:
2782 case BUFFER_REF:
2783 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2784 if (op0 == TREE_OPERAND (exp, 0))
2785 return exp;
2787 new = fold (build1 (code, TREE_TYPE (exp), op0));
2788 break;
2790 default:
2791 abort ();
2793 break;
2795 default:
2796 abort ();
2799 TREE_READONLY (new) = TREE_READONLY (exp);
2800 return new;
2803 /* Stabilize a reference so that we can use it any number of times
2804 without causing its operands to be evaluated more than once.
2805 Returns the stabilized reference. This works by means of save_expr,
2806 so see the caveats in the comments about save_expr.
2808 Also allows conversion expressions whose operands are references.
2809 Any other kind of expression is returned unchanged. */
2811 tree
2812 stabilize_reference (ref)
2813 tree ref;
2815 register tree result;
2816 register enum tree_code code = TREE_CODE (ref);
2818 switch (code)
2820 case VAR_DECL:
2821 case PARM_DECL:
2822 case RESULT_DECL:
2823 /* No action is needed in this case. */
2824 return ref;
2826 case NOP_EXPR:
2827 case CONVERT_EXPR:
2828 case FLOAT_EXPR:
2829 case FIX_TRUNC_EXPR:
2830 case FIX_FLOOR_EXPR:
2831 case FIX_ROUND_EXPR:
2832 case FIX_CEIL_EXPR:
2833 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2834 break;
2836 case INDIRECT_REF:
2837 result = build_nt (INDIRECT_REF,
2838 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2839 break;
2841 case COMPONENT_REF:
2842 result = build_nt (COMPONENT_REF,
2843 stabilize_reference (TREE_OPERAND (ref, 0)),
2844 TREE_OPERAND (ref, 1));
2845 break;
2847 case BIT_FIELD_REF:
2848 result = build_nt (BIT_FIELD_REF,
2849 stabilize_reference (TREE_OPERAND (ref, 0)),
2850 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2851 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2852 break;
2854 case ARRAY_REF:
2855 result = build_nt (ARRAY_REF,
2856 stabilize_reference (TREE_OPERAND (ref, 0)),
2857 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2858 break;
2860 case COMPOUND_EXPR:
2861 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2862 it wouldn't be ignored. This matters when dealing with
2863 volatiles. */
2864 return stabilize_reference_1 (ref);
2866 case RTL_EXPR:
2867 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2868 save_expr (build1 (ADDR_EXPR,
2869 build_pointer_type (TREE_TYPE (ref)),
2870 ref)));
2871 break;
2874 /* If arg isn't a kind of lvalue we recognize, make no change.
2875 Caller should recognize the error for an invalid lvalue. */
2876 default:
2877 return ref;
2879 case ERROR_MARK:
2880 return error_mark_node;
2883 TREE_TYPE (result) = TREE_TYPE (ref);
2884 TREE_READONLY (result) = TREE_READONLY (ref);
2885 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2886 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2887 TREE_RAISES (result) = TREE_RAISES (ref);
2889 return result;
2892 /* Subroutine of stabilize_reference; this is called for subtrees of
2893 references. Any expression with side-effects must be put in a SAVE_EXPR
2894 to ensure that it is only evaluated once.
2896 We don't put SAVE_EXPR nodes around everything, because assigning very
2897 simple expressions to temporaries causes us to miss good opportunities
2898 for optimizations. Among other things, the opportunity to fold in the
2899 addition of a constant into an addressing mode often gets lost, e.g.
2900 "y[i+1] += x;". In general, we take the approach that we should not make
2901 an assignment unless we are forced into it - i.e., that any non-side effect
2902 operator should be allowed, and that cse should take care of coalescing
2903 multiple utterances of the same expression should that prove fruitful. */
2905 tree
2906 stabilize_reference_1 (e)
2907 tree e;
2909 register tree result;
2910 register enum tree_code code = TREE_CODE (e);
2912 /* We cannot ignore const expressions because it might be a reference
2913 to a const array but whose index contains side-effects. But we can
2914 ignore things that are actual constant or that already have been
2915 handled by this function. */
2917 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2918 return e;
2920 switch (TREE_CODE_CLASS (code))
2922 case 'x':
2923 case 't':
2924 case 'd':
2925 case 'b':
2926 case '<':
2927 case 's':
2928 case 'e':
2929 case 'r':
2930 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2931 so that it will only be evaluated once. */
2932 /* The reference (r) and comparison (<) classes could be handled as
2933 below, but it is generally faster to only evaluate them once. */
2934 if (TREE_SIDE_EFFECTS (e))
2935 return save_expr (e);
2936 return e;
2938 case 'c':
2939 /* Constants need no processing. In fact, we should never reach
2940 here. */
2941 return e;
2943 case '2':
2944 /* Division is slow and tends to be compiled with jumps,
2945 especially the division by powers of 2 that is often
2946 found inside of an array reference. So do it just once. */
2947 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2948 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2949 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2950 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2951 return save_expr (e);
2952 /* Recursively stabilize each operand. */
2953 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2954 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2955 break;
2957 case '1':
2958 /* Recursively stabilize each operand. */
2959 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2960 break;
2962 default:
2963 abort ();
2966 TREE_TYPE (result) = TREE_TYPE (e);
2967 TREE_READONLY (result) = TREE_READONLY (e);
2968 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2969 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2970 TREE_RAISES (result) = TREE_RAISES (e);
2972 return result;
2975 /* Low-level constructors for expressions. */
2977 /* Build an expression of code CODE, data type TYPE,
2978 and operands as specified by the arguments ARG1 and following arguments.
2979 Expressions and reference nodes can be created this way.
2980 Constants, decls, types and misc nodes cannot be. */
2982 tree
2983 build VPROTO((enum tree_code code, tree tt, ...))
2985 #ifndef __STDC__
2986 enum tree_code code;
2987 tree tt;
2988 #endif
2989 va_list p;
2990 register tree t;
2991 register int length;
2992 register int i;
2994 VA_START (p, tt);
2996 #ifndef __STDC__
2997 code = va_arg (p, enum tree_code);
2998 tt = va_arg (p, tree);
2999 #endif
3001 t = make_node (code);
3002 length = tree_code_length[(int) code];
3003 TREE_TYPE (t) = tt;
3005 if (length == 2)
3007 /* This is equivalent to the loop below, but faster. */
3008 register tree arg0 = va_arg (p, tree);
3009 register tree arg1 = va_arg (p, tree);
3010 TREE_OPERAND (t, 0) = arg0;
3011 TREE_OPERAND (t, 1) = arg1;
3012 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
3013 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
3014 TREE_SIDE_EFFECTS (t) = 1;
3015 TREE_RAISES (t)
3016 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
3018 else if (length == 1)
3020 register tree arg0 = va_arg (p, tree);
3022 /* Call build1 for this! */
3023 if (TREE_CODE_CLASS (code) != 's')
3024 abort ();
3025 TREE_OPERAND (t, 0) = arg0;
3026 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3027 TREE_SIDE_EFFECTS (t) = 1;
3028 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3030 else
3032 for (i = 0; i < length; i++)
3034 register tree operand = va_arg (p, tree);
3035 TREE_OPERAND (t, i) = operand;
3036 if (operand)
3038 if (TREE_SIDE_EFFECTS (operand))
3039 TREE_SIDE_EFFECTS (t) = 1;
3040 if (TREE_RAISES (operand))
3041 TREE_RAISES (t) = 1;
3045 va_end (p);
3046 return t;
3049 /* Same as above, but only builds for unary operators.
3050 Saves lions share of calls to `build'; cuts down use
3051 of varargs, which is expensive for RISC machines. */
3053 tree
3054 build1 (code, type, node)
3055 enum tree_code code;
3056 tree type;
3057 tree node;
3059 register struct obstack *obstack = expression_obstack;
3060 register int i, length;
3061 #ifdef GATHER_STATISTICS
3062 register tree_node_kind kind;
3063 #endif
3064 register tree t;
3066 #ifdef GATHER_STATISTICS
3067 if (TREE_CODE_CLASS (code) == 'r')
3068 kind = r_kind;
3069 else
3070 kind = e_kind;
3071 #endif
3073 length = sizeof (struct tree_exp);
3075 t = (tree) obstack_alloc (obstack, length);
3077 #ifdef GATHER_STATISTICS
3078 tree_node_counts[(int)kind]++;
3079 tree_node_sizes[(int)kind] += length;
3080 #endif
3082 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
3083 ((int *) t)[i] = 0;
3085 TREE_TYPE (t) = type;
3086 TREE_SET_CODE (t, code);
3088 if (obstack == &permanent_obstack)
3089 TREE_PERMANENT (t) = 1;
3091 TREE_OPERAND (t, 0) = node;
3092 if (node)
3094 if (TREE_SIDE_EFFECTS (node))
3095 TREE_SIDE_EFFECTS (t) = 1;
3096 if (TREE_RAISES (node))
3097 TREE_RAISES (t) = 1;
3100 return t;
3103 /* Similar except don't specify the TREE_TYPE
3104 and leave the TREE_SIDE_EFFECTS as 0.
3105 It is permissible for arguments to be null,
3106 or even garbage if their values do not matter. */
3108 tree
3109 build_nt VPROTO((enum tree_code code, ...))
3111 #ifndef __STDC__
3112 enum tree_code code;
3113 #endif
3114 va_list p;
3115 register tree t;
3116 register int length;
3117 register int i;
3119 VA_START (p, code);
3121 #ifndef __STDC__
3122 code = va_arg (p, enum tree_code);
3123 #endif
3125 t = make_node (code);
3126 length = tree_code_length[(int) code];
3128 for (i = 0; i < length; i++)
3129 TREE_OPERAND (t, i) = va_arg (p, tree);
3131 va_end (p);
3132 return t;
3135 /* Similar to `build_nt', except we build
3136 on the temp_decl_obstack, regardless. */
3138 tree
3139 build_parse_node VPROTO((enum tree_code code, ...))
3141 #ifndef __STDC__
3142 enum tree_code code;
3143 #endif
3144 register struct obstack *ambient_obstack = expression_obstack;
3145 va_list p;
3146 register tree t;
3147 register int length;
3148 register int i;
3150 VA_START (p, code);
3152 #ifndef __STDC__
3153 code = va_arg (p, enum tree_code);
3154 #endif
3156 expression_obstack = &temp_decl_obstack;
3158 t = make_node (code);
3159 length = tree_code_length[(int) code];
3161 for (i = 0; i < length; i++)
3162 TREE_OPERAND (t, i) = va_arg (p, tree);
3164 va_end (p);
3165 expression_obstack = ambient_obstack;
3166 return t;
3169 #if 0
3170 /* Commented out because this wants to be done very
3171 differently. See cp-lex.c. */
3172 tree
3173 build_op_identifier (op1, op2)
3174 tree op1, op2;
3176 register tree t = make_node (OP_IDENTIFIER);
3177 TREE_PURPOSE (t) = op1;
3178 TREE_VALUE (t) = op2;
3179 return t;
3181 #endif
3183 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3184 We do NOT enter this node in any sort of symbol table.
3186 layout_decl is used to set up the decl's storage layout.
3187 Other slots are initialized to 0 or null pointers. */
3189 tree
3190 build_decl (code, name, type)
3191 enum tree_code code;
3192 tree name, type;
3194 register tree t;
3196 t = make_node (code);
3198 /* if (type == error_mark_node)
3199 type = integer_type_node; */
3200 /* That is not done, deliberately, so that having error_mark_node
3201 as the type can suppress useless errors in the use of this variable. */
3203 DECL_NAME (t) = name;
3204 DECL_ASSEMBLER_NAME (t) = name;
3205 TREE_TYPE (t) = type;
3207 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3208 layout_decl (t, 0);
3209 else if (code == FUNCTION_DECL)
3210 DECL_MODE (t) = FUNCTION_MODE;
3212 return t;
3215 /* BLOCK nodes are used to represent the structure of binding contours
3216 and declarations, once those contours have been exited and their contents
3217 compiled. This information is used for outputting debugging info. */
3219 tree
3220 build_block (vars, tags, subblocks, supercontext, chain)
3221 tree vars, tags, subblocks, supercontext, chain;
3223 register tree block = make_node (BLOCK);
3224 BLOCK_VARS (block) = vars;
3225 BLOCK_TYPE_TAGS (block) = tags;
3226 BLOCK_SUBBLOCKS (block) = subblocks;
3227 BLOCK_SUPERCONTEXT (block) = supercontext;
3228 BLOCK_CHAIN (block) = chain;
3229 return block;
3232 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3233 location where an expression or an identifier were encountered. It
3234 is necessary for languages where the frontend parser will handle
3235 recursively more than one file (Java is one of them). */
3237 tree
3238 build_expr_wfl (node, file, line, col)
3239 tree node;
3240 char *file;
3241 int line, col;
3243 static char *last_file = 0;
3244 static tree last_filenode = NULL_TREE;
3245 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3247 EXPR_WFL_NODE (wfl) = node;
3248 EXPR_WFL_SET_LINECOL (wfl, line, col);
3249 if (file != last_file)
3251 last_file = file;
3252 last_filenode = file ? get_identifier (file) : NULL_TREE;
3254 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3255 if (node)
3257 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3258 TREE_TYPE (wfl) = TREE_TYPE (node);
3260 return wfl;
3263 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3264 is ATTRIBUTE. */
3266 tree
3267 build_decl_attribute_variant (ddecl, attribute)
3268 tree ddecl, attribute;
3270 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3271 return ddecl;
3274 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3275 is ATTRIBUTE.
3277 Record such modified types already made so we don't make duplicates. */
3279 tree
3280 build_type_attribute_variant (ttype, attribute)
3281 tree ttype, attribute;
3283 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3285 register int hashcode;
3286 register struct obstack *ambient_obstack = current_obstack;
3287 tree ntype;
3289 if (ambient_obstack != &permanent_obstack)
3290 current_obstack = TYPE_OBSTACK (ttype);
3292 ntype = copy_node (ttype);
3293 current_obstack = ambient_obstack;
3295 TYPE_POINTER_TO (ntype) = 0;
3296 TYPE_REFERENCE_TO (ntype) = 0;
3297 TYPE_ATTRIBUTES (ntype) = attribute;
3299 /* Create a new main variant of TYPE. */
3300 TYPE_MAIN_VARIANT (ntype) = ntype;
3301 TYPE_NEXT_VARIANT (ntype) = 0;
3302 TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
3304 hashcode = TYPE_HASH (TREE_CODE (ntype))
3305 + TYPE_HASH (TREE_TYPE (ntype))
3306 + attribute_hash_list (attribute);
3308 switch (TREE_CODE (ntype))
3310 case FUNCTION_TYPE:
3311 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3312 break;
3313 case ARRAY_TYPE:
3314 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3315 break;
3316 case INTEGER_TYPE:
3317 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3318 break;
3319 case REAL_TYPE:
3320 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3321 break;
3322 default:
3323 break;
3326 ntype = type_hash_canon (hashcode, ntype);
3327 ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
3328 TYPE_VOLATILE (ttype));
3331 return ttype;
3334 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3335 or type TYPE and 0 otherwise. Validity is determined the configuration
3336 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3339 valid_machine_attribute (attr_name, attr_args, decl, type)
3340 tree attr_name, attr_args;
3341 tree decl;
3342 tree type;
3344 int valid = 0;
3345 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3346 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3347 #endif
3348 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3349 tree type_attr_list = TYPE_ATTRIBUTES (type);
3350 #endif
3352 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3353 abort ();
3355 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3356 if (decl != 0
3357 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3359 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3360 decl_attr_list);
3362 if (attr != NULL_TREE)
3364 /* Override existing arguments. Declarations are unique so we can
3365 modify this in place. */
3366 TREE_VALUE (attr) = attr_args;
3368 else
3370 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3371 decl = build_decl_attribute_variant (decl, decl_attr_list);
3374 valid = 1;
3376 #endif
3378 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3379 if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name, attr_args))
3381 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3382 type_attr_list);
3384 if (attr != NULL_TREE)
3386 /* Override existing arguments.
3387 ??? This currently works since attribute arguments are not
3388 included in `attribute_hash_list'. Something more complicated
3389 may be needed in the future. */
3390 TREE_VALUE (attr) = attr_args;
3392 else
3394 /* If this is part of a declaration, create a type variant,
3395 otherwise, this is part of a type definition, so add it
3396 to the base type. */
3397 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3398 if (decl != 0)
3399 type = build_type_attribute_variant (type, type_attr_list);
3400 else
3401 TYPE_ATTRIBUTES (type) = type_attr_list;
3403 if (decl != 0)
3404 TREE_TYPE (decl) = type;
3405 valid = 1;
3408 /* Handle putting a type attribute on pointer-to-function-type by putting
3409 the attribute on the function type. */
3410 else if (POINTER_TYPE_P (type)
3411 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3412 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3413 attr_name, attr_args))
3415 tree inner_type = TREE_TYPE (type);
3416 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3417 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3418 type_attr_list);
3420 if (attr != NULL_TREE)
3421 TREE_VALUE (attr) = attr_args;
3422 else
3424 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3425 inner_type = build_type_attribute_variant (inner_type,
3426 inner_attr_list);
3429 if (decl != 0)
3430 TREE_TYPE (decl) = build_pointer_type (inner_type);
3432 valid = 1;
3434 #endif
3436 return valid;
3439 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3440 or zero if not.
3442 We try both `text' and `__text__', ATTR may be either one. */
3443 /* ??? It might be a reasonable simplification to require ATTR to be only
3444 `text'. One might then also require attribute lists to be stored in
3445 their canonicalized form. */
3448 is_attribute_p (attr, ident)
3449 char *attr;
3450 tree ident;
3452 int ident_len, attr_len;
3453 char *p;
3455 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3456 return 0;
3458 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3459 return 1;
3461 p = IDENTIFIER_POINTER (ident);
3462 ident_len = strlen (p);
3463 attr_len = strlen (attr);
3465 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3466 if (attr[0] == '_')
3468 if (attr[1] != '_'
3469 || attr[attr_len - 2] != '_'
3470 || attr[attr_len - 1] != '_')
3471 abort ();
3472 if (ident_len == attr_len - 4
3473 && strncmp (attr + 2, p, attr_len - 4) == 0)
3474 return 1;
3476 else
3478 if (ident_len == attr_len + 4
3479 && p[0] == '_' && p[1] == '_'
3480 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3481 && strncmp (attr, p + 2, attr_len) == 0)
3482 return 1;
3485 return 0;
3488 /* Given an attribute name and a list of attributes, return a pointer to the
3489 attribute's list element if the attribute is part of the list, or NULL_TREE
3490 if not found. */
3492 tree
3493 lookup_attribute (attr_name, list)
3494 char *attr_name;
3495 tree list;
3497 tree l;
3499 for (l = list; l; l = TREE_CHAIN (l))
3501 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3502 abort ();
3503 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3504 return l;
3507 return NULL_TREE;
3510 /* Return an attribute list that is the union of a1 and a2. */
3512 tree
3513 merge_attributes (a1, a2)
3514 register tree a1, a2;
3516 tree attributes;
3518 /* Either one unset? Take the set one. */
3520 if (! (attributes = a1))
3521 attributes = a2;
3523 /* One that completely contains the other? Take it. */
3525 else if (a2 && ! attribute_list_contained (a1, a2))
3527 if (attribute_list_contained (a2, a1))
3528 attributes = a2;
3529 else
3531 /* Pick the longest list, and hang on the other list. */
3532 /* ??? For the moment we punt on the issue of attrs with args. */
3534 if (list_length (a1) < list_length (a2))
3535 attributes = a2, a2 = a1;
3537 for (; a2; a2 = TREE_CHAIN (a2))
3538 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3539 attributes) == NULL_TREE)
3541 a1 = copy_node (a2);
3542 TREE_CHAIN (a1) = attributes;
3543 attributes = a1;
3547 return attributes;
3550 /* Given types T1 and T2, merge their attributes and return
3551 the result. */
3553 tree
3554 merge_machine_type_attributes (t1, t2)
3555 tree t1, t2;
3557 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3558 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3559 #else
3560 return merge_attributes (TYPE_ATTRIBUTES (t1),
3561 TYPE_ATTRIBUTES (t2));
3562 #endif
3565 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3566 the result. */
3568 tree
3569 merge_machine_decl_attributes (olddecl, newdecl)
3570 tree olddecl, newdecl;
3572 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3573 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3574 #else
3575 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3576 DECL_MACHINE_ATTRIBUTES (newdecl));
3577 #endif
3580 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
3581 and its TYPE_VOLATILE is VOLATILEP.
3583 Such variant types already made are recorded so that duplicates
3584 are not made.
3586 A variant types should never be used as the type of an expression.
3587 Always copy the variant information into the TREE_READONLY
3588 and TREE_THIS_VOLATILE of the expression, and then give the expression
3589 as its type the "main variant", the variant whose TYPE_READONLY
3590 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
3591 main variant. */
3593 tree
3594 build_type_variant (type, constp, volatilep)
3595 tree type;
3596 int constp, volatilep;
3598 register tree t;
3600 /* Treat any nonzero argument as 1. */
3601 constp = !!constp;
3602 volatilep = !!volatilep;
3604 /* Search the chain of variants to see if there is already one there just
3605 like the one we need to have. If so, use that existing one. We must
3606 preserve the TYPE_NAME, since there is code that depends on this. */
3608 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3609 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
3610 && TYPE_NAME (t) == TYPE_NAME (type))
3611 return t;
3613 /* We need a new one. */
3615 t = build_type_copy (type);
3616 TYPE_READONLY (t) = constp;
3617 TYPE_VOLATILE (t) = volatilep;
3619 return t;
3622 /* Create a new variant of TYPE, equivalent but distinct.
3623 This is so the caller can modify it. */
3625 tree
3626 build_type_copy (type)
3627 tree type;
3629 register tree t, m = TYPE_MAIN_VARIANT (type);
3630 register struct obstack *ambient_obstack = current_obstack;
3632 current_obstack = TYPE_OBSTACK (type);
3633 t = copy_node (type);
3634 current_obstack = ambient_obstack;
3636 TYPE_POINTER_TO (t) = 0;
3637 TYPE_REFERENCE_TO (t) = 0;
3639 /* Add this type to the chain of variants of TYPE. */
3640 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3641 TYPE_NEXT_VARIANT (m) = t;
3643 return t;
3646 /* Hashing of types so that we don't make duplicates.
3647 The entry point is `type_hash_canon'. */
3649 /* Each hash table slot is a bucket containing a chain
3650 of these structures. */
3652 struct type_hash
3654 struct type_hash *next; /* Next structure in the bucket. */
3655 int hashcode; /* Hash code of this type. */
3656 tree type; /* The type recorded here. */
3659 /* Now here is the hash table. When recording a type, it is added
3660 to the slot whose index is the hash code mod the table size.
3661 Note that the hash table is used for several kinds of types
3662 (function types, array types and array index range types, for now).
3663 While all these live in the same table, they are completely independent,
3664 and the hash code is computed differently for each of these. */
3666 #define TYPE_HASH_SIZE 59
3667 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3669 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3670 with types in the TREE_VALUE slots), by adding the hash codes
3671 of the individual types. */
3674 type_hash_list (list)
3675 tree list;
3677 register int hashcode;
3678 register tree tail;
3679 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3680 hashcode += TYPE_HASH (TREE_VALUE (tail));
3681 return hashcode;
3684 /* Look in the type hash table for a type isomorphic to TYPE.
3685 If one is found, return it. Otherwise return 0. */
3687 tree
3688 type_hash_lookup (hashcode, type)
3689 int hashcode;
3690 tree type;
3692 register struct type_hash *h;
3693 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3694 if (h->hashcode == hashcode
3695 && TREE_CODE (h->type) == TREE_CODE (type)
3696 && TREE_TYPE (h->type) == TREE_TYPE (type)
3697 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3698 TYPE_ATTRIBUTES (type))
3699 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3700 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3701 TYPE_MAX_VALUE (type)))
3702 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3703 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3704 TYPE_MIN_VALUE (type)))
3705 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3706 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3707 || (TYPE_DOMAIN (h->type)
3708 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3709 && TYPE_DOMAIN (type)
3710 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3711 && type_list_equal (TYPE_DOMAIN (h->type),
3712 TYPE_DOMAIN (type)))))
3713 return h->type;
3714 return 0;
3717 /* Add an entry to the type-hash-table
3718 for a type TYPE whose hash code is HASHCODE. */
3720 void
3721 type_hash_add (hashcode, type)
3722 int hashcode;
3723 tree type;
3725 register struct type_hash *h;
3727 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3728 h->hashcode = hashcode;
3729 h->type = type;
3730 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3731 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3734 /* Given TYPE, and HASHCODE its hash code, return the canonical
3735 object for an identical type if one already exists.
3736 Otherwise, return TYPE, and record it as the canonical object
3737 if it is a permanent object.
3739 To use this function, first create a type of the sort you want.
3740 Then compute its hash code from the fields of the type that
3741 make it different from other similar types.
3742 Then call this function and use the value.
3743 This function frees the type you pass in if it is a duplicate. */
3745 /* Set to 1 to debug without canonicalization. Never set by program. */
3746 int debug_no_type_hash = 0;
3748 tree
3749 type_hash_canon (hashcode, type)
3750 int hashcode;
3751 tree type;
3753 tree t1;
3755 if (debug_no_type_hash)
3756 return type;
3758 t1 = type_hash_lookup (hashcode, type);
3759 if (t1 != 0)
3761 obstack_free (TYPE_OBSTACK (type), type);
3762 #ifdef GATHER_STATISTICS
3763 tree_node_counts[(int)t_kind]--;
3764 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3765 #endif
3766 return t1;
3769 /* If this is a permanent type, record it for later reuse. */
3770 if (TREE_PERMANENT (type))
3771 type_hash_add (hashcode, type);
3773 return type;
3776 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3777 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3778 by adding the hash codes of the individual attributes. */
3781 attribute_hash_list (list)
3782 tree list;
3784 register int hashcode;
3785 register tree tail;
3786 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3787 /* ??? Do we want to add in TREE_VALUE too? */
3788 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3789 return hashcode;
3792 /* Given two lists of attributes, return true if list l2 is
3793 equivalent to l1. */
3796 attribute_list_equal (l1, l2)
3797 tree l1, l2;
3799 return attribute_list_contained (l1, l2)
3800 && attribute_list_contained (l2, l1);
3803 /* Given two lists of attributes, return true if list L2 is
3804 completely contained within L1. */
3805 /* ??? This would be faster if attribute names were stored in a canonicalized
3806 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3807 must be used to show these elements are equivalent (which they are). */
3808 /* ??? It's not clear that attributes with arguments will always be handled
3809 correctly. */
3812 attribute_list_contained (l1, l2)
3813 tree l1, l2;
3815 register tree t1, t2;
3817 /* First check the obvious, maybe the lists are identical. */
3818 if (l1 == l2)
3819 return 1;
3821 /* Maybe the lists are similar. */
3822 for (t1 = l1, t2 = l2;
3823 t1 && t2
3824 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3825 && TREE_VALUE (t1) == TREE_VALUE (t2);
3826 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3828 /* Maybe the lists are equal. */
3829 if (t1 == 0 && t2 == 0)
3830 return 1;
3832 for (; t2; t2 = TREE_CHAIN (t2))
3834 tree attr
3835 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3837 if (attr == NULL_TREE)
3838 return 0;
3839 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3840 return 0;
3843 return 1;
3846 /* Given two lists of types
3847 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3848 return 1 if the lists contain the same types in the same order.
3849 Also, the TREE_PURPOSEs must match. */
3852 type_list_equal (l1, l2)
3853 tree l1, l2;
3855 register tree t1, t2;
3857 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3858 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3859 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3860 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3861 && (TREE_TYPE (TREE_PURPOSE (t1))
3862 == TREE_TYPE (TREE_PURPOSE (t2))))))
3863 return 0;
3865 return t1 == t2;
3868 /* Nonzero if integer constants T1 and T2
3869 represent the same constant value. */
3872 tree_int_cst_equal (t1, t2)
3873 tree t1, t2;
3875 if (t1 == t2)
3876 return 1;
3877 if (t1 == 0 || t2 == 0)
3878 return 0;
3879 if (TREE_CODE (t1) == INTEGER_CST
3880 && TREE_CODE (t2) == INTEGER_CST
3881 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3882 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3883 return 1;
3884 return 0;
3887 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3888 The precise way of comparison depends on their data type. */
3891 tree_int_cst_lt (t1, t2)
3892 tree t1, t2;
3894 if (t1 == t2)
3895 return 0;
3897 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3898 return INT_CST_LT (t1, t2);
3899 return INT_CST_LT_UNSIGNED (t1, t2);
3902 /* Return an indication of the sign of the integer constant T.
3903 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3904 Note that -1 will never be returned it T's type is unsigned. */
3907 tree_int_cst_sgn (t)
3908 tree t;
3910 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3911 return 0;
3912 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3913 return 1;
3914 else if (TREE_INT_CST_HIGH (t) < 0)
3915 return -1;
3916 else
3917 return 1;
3920 /* Compare two constructor-element-type constants. Return 1 if the lists
3921 are known to be equal; otherwise return 0. */
3924 simple_cst_list_equal (l1, l2)
3925 tree l1, l2;
3927 while (l1 != NULL_TREE && l2 != NULL_TREE)
3929 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3930 return 0;
3932 l1 = TREE_CHAIN (l1);
3933 l2 = TREE_CHAIN (l2);
3936 return (l1 == l2);
3939 /* Return truthvalue of whether T1 is the same tree structure as T2.
3940 Return 1 if they are the same.
3941 Return 0 if they are understandably different.
3942 Return -1 if either contains tree structure not understood by
3943 this function. */
3946 simple_cst_equal (t1, t2)
3947 tree t1, t2;
3949 register enum tree_code code1, code2;
3950 int cmp;
3952 if (t1 == t2)
3953 return 1;
3954 if (t1 == 0 || t2 == 0)
3955 return 0;
3957 code1 = TREE_CODE (t1);
3958 code2 = TREE_CODE (t2);
3960 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3961 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
3962 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3963 else
3964 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3965 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3966 || code2 == NON_LVALUE_EXPR)
3967 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3969 if (code1 != code2)
3970 return 0;
3972 switch (code1)
3974 case INTEGER_CST:
3975 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3976 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3978 case REAL_CST:
3979 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3981 case STRING_CST:
3982 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3983 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3984 TREE_STRING_LENGTH (t1));
3986 case CONSTRUCTOR:
3987 abort ();
3989 case SAVE_EXPR:
3990 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3992 case CALL_EXPR:
3993 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3994 if (cmp <= 0)
3995 return cmp;
3996 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3998 case TARGET_EXPR:
3999 /* Special case: if either target is an unallocated VAR_DECL,
4000 it means that it's going to be unified with whatever the
4001 TARGET_EXPR is really supposed to initialize, so treat it
4002 as being equivalent to anything. */
4003 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4004 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4005 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4006 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4007 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4008 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4009 cmp = 1;
4010 else
4011 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4012 if (cmp <= 0)
4013 return cmp;
4014 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4016 case WITH_CLEANUP_EXPR:
4017 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4018 if (cmp <= 0)
4019 return cmp;
4020 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4022 case COMPONENT_REF:
4023 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4024 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4025 return 0;
4027 case VAR_DECL:
4028 case PARM_DECL:
4029 case CONST_DECL:
4030 case FUNCTION_DECL:
4031 return 0;
4033 default:
4034 break;
4037 /* This general rule works for most tree codes. All exceptions should be
4038 handled above. If this is a language-specific tree code, we can't
4039 trust what might be in the operand, so say we don't know
4040 the situation. */
4041 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4042 return -1;
4044 switch (TREE_CODE_CLASS (code1))
4046 int i;
4047 case '1':
4048 case '2':
4049 case '<':
4050 case 'e':
4051 case 'r':
4052 case 's':
4053 cmp = 1;
4054 for (i=0; i<tree_code_length[(int) code1]; ++i)
4056 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4057 if (cmp <= 0)
4058 return cmp;
4060 return cmp;
4062 default:
4063 return -1;
4067 /* Constructors for pointer, array and function types.
4068 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4069 constructed by language-dependent code, not here.) */
4071 /* Construct, lay out and return the type of pointers to TO_TYPE.
4072 If such a type has already been constructed, reuse it. */
4074 tree
4075 build_pointer_type (to_type)
4076 tree to_type;
4078 register tree t = TYPE_POINTER_TO (to_type);
4080 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4082 if (t)
4083 return t;
4085 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4086 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4087 t = make_node (POINTER_TYPE);
4088 pop_obstacks ();
4090 TREE_TYPE (t) = to_type;
4092 /* Record this type as the pointer to TO_TYPE. */
4093 TYPE_POINTER_TO (to_type) = t;
4095 /* Lay out the type. This function has many callers that are concerned
4096 with expression-construction, and this simplifies them all.
4097 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4098 layout_type (t);
4100 return t;
4103 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4104 MAXVAL should be the maximum value in the domain
4105 (one less than the length of the array).
4107 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4108 We don't enforce this limit, that is up to caller (e.g. language front end).
4109 The limit exists because the result is a signed type and we don't handle
4110 sizes that use more than one HOST_WIDE_INT. */
4112 tree
4113 build_index_type (maxval)
4114 tree maxval;
4116 register tree itype = make_node (INTEGER_TYPE);
4118 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4119 TYPE_MIN_VALUE (itype) = size_zero_node;
4121 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4122 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4123 pop_obstacks ();
4125 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4126 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4127 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4128 if (TREE_CODE (maxval) == INTEGER_CST)
4130 int maxint = (int) TREE_INT_CST_LOW (maxval);
4131 /* If the domain should be empty, make sure the maxval
4132 remains -1 and is not spoiled by truncation. */
4133 if (INT_CST_LT (maxval, integer_zero_node))
4135 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4136 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4138 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4140 else
4141 return itype;
4144 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4145 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4146 low bound LOWVAL and high bound HIGHVAL.
4147 if TYPE==NULL_TREE, sizetype is used. */
4149 tree
4150 build_range_type (type, lowval, highval)
4151 tree type, lowval, highval;
4153 register tree itype = make_node (INTEGER_TYPE);
4155 TREE_TYPE (itype) = type;
4156 if (type == NULL_TREE)
4157 type = sizetype;
4159 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4160 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4161 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4162 pop_obstacks ();
4164 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4165 TYPE_MODE (itype) = TYPE_MODE (type);
4166 TYPE_SIZE (itype) = TYPE_SIZE (type);
4167 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4168 if (TREE_CODE (lowval) == INTEGER_CST)
4170 HOST_WIDE_INT lowint, highint;
4171 int maxint;
4173 lowint = TREE_INT_CST_LOW (lowval);
4174 if (highval && TREE_CODE (highval) == INTEGER_CST)
4175 highint = TREE_INT_CST_LOW (highval);
4176 else
4177 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4179 maxint = (int) (highint - lowint);
4180 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4182 else
4183 return itype;
4186 /* Just like build_index_type, but takes lowval and highval instead
4187 of just highval (maxval). */
4189 tree
4190 build_index_2_type (lowval,highval)
4191 tree lowval, highval;
4193 return build_range_type (NULL_TREE, lowval, highval);
4196 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4197 Needed because when index types are not hashed, equal index types
4198 built at different times appear distinct, even though structurally,
4199 they are not. */
4202 index_type_equal (itype1, itype2)
4203 tree itype1, itype2;
4205 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4206 return 0;
4207 if (TREE_CODE (itype1) == INTEGER_TYPE)
4209 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4210 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4211 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4212 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4213 return 0;
4214 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4215 TYPE_MIN_VALUE (itype2))
4216 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4217 TYPE_MAX_VALUE (itype2)))
4218 return 1;
4221 return 0;
4224 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4225 and number of elements specified by the range of values of INDEX_TYPE.
4226 If such a type has already been constructed, reuse it. */
4228 tree
4229 build_array_type (elt_type, index_type)
4230 tree elt_type, index_type;
4232 register tree t;
4233 int hashcode;
4235 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4237 error ("arrays of functions are not meaningful");
4238 elt_type = integer_type_node;
4241 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4242 build_pointer_type (elt_type);
4244 /* Allocate the array after the pointer type,
4245 in case we free it in type_hash_canon. */
4246 t = make_node (ARRAY_TYPE);
4247 TREE_TYPE (t) = elt_type;
4248 TYPE_DOMAIN (t) = index_type;
4250 if (index_type == 0)
4252 return t;
4255 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4256 t = type_hash_canon (hashcode, t);
4258 if (TYPE_SIZE (t) == 0)
4259 layout_type (t);
4260 return t;
4263 /* Return the TYPE of the elements comprising
4264 the innermost dimension of ARRAY. */
4266 tree
4267 get_inner_array_type (array)
4268 tree array;
4270 tree type = TREE_TYPE (array);
4272 while (TREE_CODE (type) == ARRAY_TYPE)
4273 type = TREE_TYPE (type);
4275 return type;
4278 /* Construct, lay out and return
4279 the type of functions returning type VALUE_TYPE
4280 given arguments of types ARG_TYPES.
4281 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4282 are data type nodes for the arguments of the function.
4283 If such a type has already been constructed, reuse it. */
4285 tree
4286 build_function_type (value_type, arg_types)
4287 tree value_type, arg_types;
4289 register tree t;
4290 int hashcode;
4292 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4294 error ("function return type cannot be function");
4295 value_type = integer_type_node;
4298 /* Make a node of the sort we want. */
4299 t = make_node (FUNCTION_TYPE);
4300 TREE_TYPE (t) = value_type;
4301 TYPE_ARG_TYPES (t) = arg_types;
4303 /* If we already have such a type, use the old one and free this one. */
4304 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4305 t = type_hash_canon (hashcode, t);
4307 if (TYPE_SIZE (t) == 0)
4308 layout_type (t);
4309 return t;
4312 /* Build the node for the type of references-to-TO_TYPE. */
4314 tree
4315 build_reference_type (to_type)
4316 tree to_type;
4318 register tree t = TYPE_REFERENCE_TO (to_type);
4320 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4322 if (t)
4323 return t;
4325 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4326 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4327 t = make_node (REFERENCE_TYPE);
4328 pop_obstacks ();
4330 TREE_TYPE (t) = to_type;
4332 /* Record this type as the pointer to TO_TYPE. */
4333 TYPE_REFERENCE_TO (to_type) = t;
4335 layout_type (t);
4337 return t;
4340 /* Construct, lay out and return the type of methods belonging to class
4341 BASETYPE and whose arguments and values are described by TYPE.
4342 If that type exists already, reuse it.
4343 TYPE must be a FUNCTION_TYPE node. */
4345 tree
4346 build_method_type (basetype, type)
4347 tree basetype, type;
4349 register tree t;
4350 int hashcode;
4352 /* Make a node of the sort we want. */
4353 t = make_node (METHOD_TYPE);
4355 if (TREE_CODE (type) != FUNCTION_TYPE)
4356 abort ();
4358 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4359 TREE_TYPE (t) = TREE_TYPE (type);
4361 /* The actual arglist for this function includes a "hidden" argument
4362 which is "this". Put it into the list of argument types. */
4364 TYPE_ARG_TYPES (t)
4365 = tree_cons (NULL_TREE,
4366 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4368 /* If we already have such a type, use the old one and free this one. */
4369 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4370 t = type_hash_canon (hashcode, t);
4372 if (TYPE_SIZE (t) == 0)
4373 layout_type (t);
4375 return t;
4378 /* Construct, lay out and return the type of offsets to a value
4379 of type TYPE, within an object of type BASETYPE.
4380 If a suitable offset type exists already, reuse it. */
4382 tree
4383 build_offset_type (basetype, type)
4384 tree basetype, type;
4386 register tree t;
4387 int hashcode;
4389 /* Make a node of the sort we want. */
4390 t = make_node (OFFSET_TYPE);
4392 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4393 TREE_TYPE (t) = type;
4395 /* If we already have such a type, use the old one and free this one. */
4396 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4397 t = type_hash_canon (hashcode, t);
4399 if (TYPE_SIZE (t) == 0)
4400 layout_type (t);
4402 return t;
4405 /* Create a complex type whose components are COMPONENT_TYPE. */
4407 tree
4408 build_complex_type (component_type)
4409 tree component_type;
4411 register tree t;
4412 int hashcode;
4414 /* Make a node of the sort we want. */
4415 t = make_node (COMPLEX_TYPE);
4417 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4418 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
4419 TYPE_READONLY (t) = TYPE_READONLY (component_type);
4421 /* If we already have such a type, use the old one and free this one. */
4422 hashcode = TYPE_HASH (component_type);
4423 t = type_hash_canon (hashcode, t);
4425 if (TYPE_SIZE (t) == 0)
4426 layout_type (t);
4428 return t;
4431 /* Return OP, stripped of any conversions to wider types as much as is safe.
4432 Converting the value back to OP's type makes a value equivalent to OP.
4434 If FOR_TYPE is nonzero, we return a value which, if converted to
4435 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4437 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4438 narrowest type that can hold the value, even if they don't exactly fit.
4439 Otherwise, bit-field references are changed to a narrower type
4440 only if they can be fetched directly from memory in that type.
4442 OP must have integer, real or enumeral type. Pointers are not allowed!
4444 There are some cases where the obvious value we could return
4445 would regenerate to OP if converted to OP's type,
4446 but would not extend like OP to wider types.
4447 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4448 For example, if OP is (unsigned short)(signed char)-1,
4449 we avoid returning (signed char)-1 if FOR_TYPE is int,
4450 even though extending that to an unsigned short would regenerate OP,
4451 since the result of extending (signed char)-1 to (int)
4452 is different from (int) OP. */
4454 tree
4455 get_unwidened (op, for_type)
4456 register tree op;
4457 tree for_type;
4459 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4460 register tree type = TREE_TYPE (op);
4461 register unsigned final_prec
4462 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4463 register int uns
4464 = (for_type != 0 && for_type != type
4465 && final_prec > TYPE_PRECISION (type)
4466 && TREE_UNSIGNED (type));
4467 register tree win = op;
4469 while (TREE_CODE (op) == NOP_EXPR)
4471 register int bitschange
4472 = TYPE_PRECISION (TREE_TYPE (op))
4473 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4475 /* Truncations are many-one so cannot be removed.
4476 Unless we are later going to truncate down even farther. */
4477 if (bitschange < 0
4478 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4479 break;
4481 /* See what's inside this conversion. If we decide to strip it,
4482 we will set WIN. */
4483 op = TREE_OPERAND (op, 0);
4485 /* If we have not stripped any zero-extensions (uns is 0),
4486 we can strip any kind of extension.
4487 If we have previously stripped a zero-extension,
4488 only zero-extensions can safely be stripped.
4489 Any extension can be stripped if the bits it would produce
4490 are all going to be discarded later by truncating to FOR_TYPE. */
4492 if (bitschange > 0)
4494 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4495 win = op;
4496 /* TREE_UNSIGNED says whether this is a zero-extension.
4497 Let's avoid computing it if it does not affect WIN
4498 and if UNS will not be needed again. */
4499 if ((uns || TREE_CODE (op) == NOP_EXPR)
4500 && TREE_UNSIGNED (TREE_TYPE (op)))
4502 uns = 1;
4503 win = op;
4508 if (TREE_CODE (op) == COMPONENT_REF
4509 /* Since type_for_size always gives an integer type. */
4510 && TREE_CODE (type) != REAL_TYPE
4511 /* Don't crash if field not laid out yet. */
4512 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4514 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4515 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4517 /* We can get this structure field in the narrowest type it fits in.
4518 If FOR_TYPE is 0, do this only for a field that matches the
4519 narrower type exactly and is aligned for it
4520 The resulting extension to its nominal type (a fullword type)
4521 must fit the same conditions as for other extensions. */
4523 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4524 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4525 && (! uns || final_prec <= innerprec
4526 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4527 && type != 0)
4529 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4530 TREE_OPERAND (op, 1));
4531 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4532 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4533 TREE_RAISES (win) = TREE_RAISES (op);
4536 return win;
4539 /* Return OP or a simpler expression for a narrower value
4540 which can be sign-extended or zero-extended to give back OP.
4541 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4542 or 0 if the value should be sign-extended. */
4544 tree
4545 get_narrower (op, unsignedp_ptr)
4546 register tree op;
4547 int *unsignedp_ptr;
4549 register int uns = 0;
4550 int first = 1;
4551 register tree win = op;
4553 while (TREE_CODE (op) == NOP_EXPR)
4555 register int bitschange
4556 = TYPE_PRECISION (TREE_TYPE (op))
4557 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4559 /* Truncations are many-one so cannot be removed. */
4560 if (bitschange < 0)
4561 break;
4563 /* See what's inside this conversion. If we decide to strip it,
4564 we will set WIN. */
4565 op = TREE_OPERAND (op, 0);
4567 if (bitschange > 0)
4569 /* An extension: the outermost one can be stripped,
4570 but remember whether it is zero or sign extension. */
4571 if (first)
4572 uns = TREE_UNSIGNED (TREE_TYPE (op));
4573 /* Otherwise, if a sign extension has been stripped,
4574 only sign extensions can now be stripped;
4575 if a zero extension has been stripped, only zero-extensions. */
4576 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4577 break;
4578 first = 0;
4580 else /* bitschange == 0 */
4582 /* A change in nominal type can always be stripped, but we must
4583 preserve the unsignedness. */
4584 if (first)
4585 uns = TREE_UNSIGNED (TREE_TYPE (op));
4586 first = 0;
4589 win = op;
4592 if (TREE_CODE (op) == COMPONENT_REF
4593 /* Since type_for_size always gives an integer type. */
4594 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4596 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4597 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4599 /* We can get this structure field in a narrower type that fits it,
4600 but the resulting extension to its nominal type (a fullword type)
4601 must satisfy the same conditions as for other extensions.
4603 Do this only for fields that are aligned (not bit-fields),
4604 because when bit-field insns will be used there is no
4605 advantage in doing this. */
4607 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4608 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4609 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4610 && type != 0)
4612 if (first)
4613 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4614 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4615 TREE_OPERAND (op, 1));
4616 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4617 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4618 TREE_RAISES (win) = TREE_RAISES (op);
4621 *unsignedp_ptr = uns;
4622 return win;
4625 /* Nonzero if integer constant C has a value that is permissible
4626 for type TYPE (an INTEGER_TYPE). */
4629 int_fits_type_p (c, type)
4630 tree c, type;
4632 if (TREE_UNSIGNED (type))
4633 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4634 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4635 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4636 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4637 /* Negative ints never fit unsigned types. */
4638 && ! (TREE_INT_CST_HIGH (c) < 0
4639 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4640 else
4641 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4642 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4643 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4644 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4645 /* Unsigned ints with top bit set never fit signed types. */
4646 && ! (TREE_INT_CST_HIGH (c) < 0
4647 && TREE_UNSIGNED (TREE_TYPE (c))));
4650 /* Return the innermost context enclosing DECL that is
4651 a FUNCTION_DECL, or zero if none. */
4653 tree
4654 decl_function_context (decl)
4655 tree decl;
4657 tree context;
4659 if (TREE_CODE (decl) == ERROR_MARK)
4660 return 0;
4662 if (TREE_CODE (decl) == SAVE_EXPR)
4663 context = SAVE_EXPR_CONTEXT (decl);
4664 else
4665 context = DECL_CONTEXT (decl);
4667 while (context && TREE_CODE (context) != FUNCTION_DECL)
4669 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4670 context = TYPE_CONTEXT (context);
4671 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4672 context = DECL_CONTEXT (context);
4673 else if (TREE_CODE (context) == BLOCK)
4674 context = BLOCK_SUPERCONTEXT (context);
4675 else
4676 /* Unhandled CONTEXT !? */
4677 abort ();
4680 return context;
4683 /* Return the innermost context enclosing DECL that is
4684 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4685 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4687 tree
4688 decl_type_context (decl)
4689 tree decl;
4691 tree context = DECL_CONTEXT (decl);
4693 while (context)
4695 if (TREE_CODE (context) == RECORD_TYPE
4696 || TREE_CODE (context) == UNION_TYPE
4697 || TREE_CODE (context) == QUAL_UNION_TYPE)
4698 return context;
4699 if (TREE_CODE (context) == TYPE_DECL
4700 || TREE_CODE (context) == FUNCTION_DECL)
4701 context = DECL_CONTEXT (context);
4702 else if (TREE_CODE (context) == BLOCK)
4703 context = BLOCK_SUPERCONTEXT (context);
4704 else
4705 /* Unhandled CONTEXT!? */
4706 abort ();
4708 return NULL_TREE;
4711 /* Print debugging information about the size of the
4712 toplev_inline_obstacks. */
4714 void
4715 print_inline_obstack_statistics ()
4717 struct simple_obstack_stack *current = toplev_inline_obstacks;
4718 int n_obstacks = 0;
4719 int n_alloc = 0;
4720 int n_chunks = 0;
4722 for (; current; current = current->next, ++n_obstacks)
4724 struct obstack *o = current->obstack;
4725 struct _obstack_chunk *chunk = o->chunk;
4727 n_alloc += o->next_free - chunk->contents;
4728 chunk = chunk->prev;
4729 ++n_chunks;
4730 for (; chunk; chunk = chunk->prev, ++n_chunks)
4731 n_alloc += chunk->limit - &chunk->contents[0];
4733 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4734 n_obstacks, n_alloc, n_chunks);
4737 /* Print debugging information about the obstack O, named STR. */
4739 void
4740 print_obstack_statistics (str, o)
4741 char *str;
4742 struct obstack *o;
4744 struct _obstack_chunk *chunk = o->chunk;
4745 int n_chunks = 1;
4746 int n_alloc = 0;
4748 n_alloc += o->next_free - chunk->contents;
4749 chunk = chunk->prev;
4750 while (chunk)
4752 n_chunks += 1;
4753 n_alloc += chunk->limit - &chunk->contents[0];
4754 chunk = chunk->prev;
4756 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4757 str, n_alloc, n_chunks);
4760 /* Print debugging information about tree nodes generated during the compile,
4761 and any language-specific information. */
4763 void
4764 dump_tree_statistics ()
4766 #ifdef GATHER_STATISTICS
4767 int i;
4768 int total_nodes, total_bytes;
4769 #endif
4771 fprintf (stderr, "\n??? tree nodes created\n\n");
4772 #ifdef GATHER_STATISTICS
4773 fprintf (stderr, "Kind Nodes Bytes\n");
4774 fprintf (stderr, "-------------------------------------\n");
4775 total_nodes = total_bytes = 0;
4776 for (i = 0; i < (int) all_kinds; i++)
4778 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4779 tree_node_counts[i], tree_node_sizes[i]);
4780 total_nodes += tree_node_counts[i];
4781 total_bytes += tree_node_sizes[i];
4783 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4784 fprintf (stderr, "-------------------------------------\n");
4785 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4786 fprintf (stderr, "-------------------------------------\n");
4787 #else
4788 fprintf (stderr, "(No per-node statistics)\n");
4789 #endif
4790 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4791 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4792 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4793 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4794 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4795 print_inline_obstack_statistics ();
4796 print_lang_statistics ();
4799 #define FILE_FUNCTION_PREFIX_LEN 9
4801 #ifndef NO_DOLLAR_IN_LABEL
4802 #define FILE_FUNCTION_FORMAT "_GLOBAL_$D$%s"
4803 #else /* NO_DOLLAR_IN_LABEL */
4804 #ifndef NO_DOT_IN_LABEL
4805 #define FILE_FUNCTION_FORMAT "_GLOBAL_.D.%s"
4806 #else /* NO_DOT_IN_LABEL */
4807 #define FILE_FUNCTION_FORMAT "_GLOBAL__D_%s"
4808 #endif /* NO_DOT_IN_LABEL */
4809 #endif /* NO_DOLLAR_IN_LABEL */
4811 extern char * first_global_object_name;
4812 extern char * weak_global_object_name;
4814 /* If KIND=='I', return a suitable global initializer (constructor) name.
4815 If KIND=='D', return a suitable global clean-up (destructor) name. */
4817 tree
4818 get_file_function_name (kind)
4819 int kind;
4821 char *buf;
4822 register char *p;
4824 if (first_global_object_name)
4825 p = first_global_object_name;
4826 else if (weak_global_object_name)
4827 p = weak_global_object_name;
4828 else if (main_input_filename)
4829 p = main_input_filename;
4830 else
4831 p = input_filename;
4833 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p));
4835 /* Set up the name of the file-level functions we may need. */
4836 /* Use a global object (which is already required to be unique over
4837 the program) rather than the file name (which imposes extra
4838 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4839 sprintf (buf, FILE_FUNCTION_FORMAT, p);
4841 /* Don't need to pull weird characters out of global names. */
4842 if (p != first_global_object_name)
4844 for (p = buf+11; *p; p++)
4845 if (! ((*p >= '0' && *p <= '9')
4846 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4847 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4848 || *p == '.'
4849 #endif
4850 #endif
4851 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4852 || *p == '$'
4853 #endif
4854 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4855 || *p == '.'
4856 #endif
4857 || (*p >= 'A' && *p <= 'Z')
4858 || (*p >= 'a' && *p <= 'z')))
4859 *p = '_';
4862 buf[FILE_FUNCTION_PREFIX_LEN] = kind;
4864 return get_identifier (buf);
4867 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4868 The result is placed in BUFFER (which has length BIT_SIZE),
4869 with one bit in each char ('\000' or '\001').
4871 If the constructor is constant, NULL_TREE is returned.
4872 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4874 tree
4875 get_set_constructor_bits (init, buffer, bit_size)
4876 tree init;
4877 char *buffer;
4878 int bit_size;
4880 int i;
4881 tree vals;
4882 HOST_WIDE_INT domain_min
4883 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4884 tree non_const_bits = NULL_TREE;
4885 for (i = 0; i < bit_size; i++)
4886 buffer[i] = 0;
4888 for (vals = TREE_OPERAND (init, 1);
4889 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4891 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4892 || (TREE_PURPOSE (vals) != NULL_TREE
4893 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4894 non_const_bits
4895 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4896 else if (TREE_PURPOSE (vals) != NULL_TREE)
4898 /* Set a range of bits to ones. */
4899 HOST_WIDE_INT lo_index
4900 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4901 HOST_WIDE_INT hi_index
4902 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4903 if (lo_index < 0 || lo_index >= bit_size
4904 || hi_index < 0 || hi_index >= bit_size)
4905 abort ();
4906 for ( ; lo_index <= hi_index; lo_index++)
4907 buffer[lo_index] = 1;
4909 else
4911 /* Set a single bit to one. */
4912 HOST_WIDE_INT index
4913 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4914 if (index < 0 || index >= bit_size)
4916 error ("invalid initializer for bit string");
4917 return NULL_TREE;
4919 buffer[index] = 1;
4922 return non_const_bits;
4925 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4926 The result is placed in BUFFER (which is an array of bytes).
4927 If the constructor is constant, NULL_TREE is returned.
4928 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4930 tree
4931 get_set_constructor_bytes (init, buffer, wd_size)
4932 tree init;
4933 unsigned char *buffer;
4934 int wd_size;
4936 int i;
4937 int set_word_size = BITS_PER_UNIT;
4938 int bit_size = wd_size * set_word_size;
4939 int bit_pos = 0;
4940 unsigned char *bytep = buffer;
4941 char *bit_buffer = (char *) alloca(bit_size);
4942 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4944 for (i = 0; i < wd_size; i++)
4945 buffer[i] = 0;
4947 for (i = 0; i < bit_size; i++)
4949 if (bit_buffer[i])
4951 if (BYTES_BIG_ENDIAN)
4952 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4953 else
4954 *bytep |= 1 << bit_pos;
4956 bit_pos++;
4957 if (bit_pos >= set_word_size)
4958 bit_pos = 0, bytep++;
4960 return non_const_bits;
4963 #ifdef ENABLE_CHECKING
4965 /* Complain if the tree code does not match the expected one.
4966 NODE is the tree node in question, CODE is the expected tree code,
4967 and FILE and LINE are the filename and line number, respectively,
4968 of the line on which the check was done. If NONFATAL is nonzero,
4969 don't abort if the reference is invalid; instead, return 0.
4970 If the reference is valid, return NODE. */
4972 tree
4973 tree_check (node, code, file, line, nofatal)
4974 tree node;
4975 enum tree_code code;
4976 char *file;
4977 int line;
4978 int nofatal;
4980 if (TREE_CODE (node) == code)
4981 return node;
4982 else if (nofatal)
4983 return 0;
4984 else
4985 fatal ("%s:%d: Expect %s, have %s\n", file, line,
4986 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
4989 /* Similar to above, except that we check for a class of tree
4990 code, given in CL. */
4992 tree
4993 tree_class_check (node, cl, file, line, nofatal)
4994 tree node;
4995 char cl;
4996 char *file;
4997 int line;
4998 int nofatal;
5000 if (TREE_CODE_CLASS (TREE_CODE (node)) == cl)
5001 return node;
5002 else if (nofatal)
5003 return 0;
5004 else
5005 fatal ("%s:%d: Expect '%c', have '%s'\n", file, line,
5006 cl, tree_code_name[TREE_CODE (node)]);
5009 /* Likewise, but complain if the tree node is not an expression. */
5011 tree
5012 expr_check (node, ignored, file, line, nofatal)
5013 tree node;
5014 int ignored;
5015 char *file;
5016 int line;
5017 int nofatal;
5019 switch (TREE_CODE_CLASS (TREE_CODE (node)))
5021 case 'r':
5022 case 's':
5023 case 'e':
5024 case '<':
5025 case '1':
5026 case '2':
5027 break;
5029 default:
5030 if (nofatal)
5031 return 0;
5032 else
5033 fatal ("%s:%d: Expect expression, have '%s'\n", file, line,
5034 tree_code_name[TREE_CODE (node)]);
5037 return node;
5039 #endif
5041 /* Return the alias set for T, which may be either a type or an
5042 expression. */
5044 int get_alias_set (t)
5045 tree t;
5047 if (!flag_strict_aliasing || !lang_get_alias_set)
5048 /* If we're not doing any lanaguage-specific alias analysis, just
5049 assume everything aliases everything else. */
5050 return 0;
5051 else
5052 return (*lang_get_alias_set) (t);