tree-optimization/112450 - avoid AVX512 style masking for BImode masks
[official-gcc.git] / gcc / real.cc
bloba9996c828f8bd48e964fb7a38cc3e6497aaed587
1 /* real.cc - software floating point emulation.
2 Copyright (C) 1993-2023 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "realmpfr.h"
29 #include "dfp.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
35 Specifically
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
39 where
40 s = sign (+- 1)
41 b = base or radix, here always 2
42 e = exponent
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
48 range [0.5, 1.0).
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
54 in a normalized form.
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
66 #endif
68 static void get_zero (REAL_VALUE_TYPE *, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
71 static void get_inf (REAL_VALUE_TYPE *, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
73 const REAL_VALUE_TYPE *, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
75 unsigned int);
76 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
77 unsigned int);
78 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
79 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
80 const REAL_VALUE_TYPE *);
81 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, int);
83 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
84 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
86 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *);
92 static void normalize (REAL_VALUE_TYPE *);
94 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
95 const REAL_VALUE_TYPE *, int);
96 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
97 const REAL_VALUE_TYPE *);
98 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
99 const REAL_VALUE_TYPE *);
100 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
104 static void decimal_from_integer (REAL_VALUE_TYPE *);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
106 size_t);
108 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE * real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE *, int);
113 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
115 /* Determine whether a floating-point value X is a denormal. R is
116 expected to be in denormal form, so this function is only
117 meaningful after a call to round_for_format. */
119 static inline bool
120 real_isdenormal (const REAL_VALUE_TYPE *r)
122 return r->cl == rvc_normal && (r->sig[SIGSZ-1] & SIG_MSB) == 0;
125 /* Initialize R with a positive zero. */
127 static inline void
128 get_zero (REAL_VALUE_TYPE *r, int sign)
130 memset (r, 0, sizeof (*r));
131 r->sign = sign;
134 /* Initialize R with the canonical quiet NaN. */
136 static inline void
137 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
139 memset (r, 0, sizeof (*r));
140 r->cl = rvc_nan;
141 r->sign = sign;
142 r->canonical = 1;
145 static inline void
146 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
148 memset (r, 0, sizeof (*r));
149 r->cl = rvc_nan;
150 r->sign = sign;
151 r->signalling = 1;
152 r->canonical = 1;
155 static inline void
156 get_inf (REAL_VALUE_TYPE *r, int sign)
158 memset (r, 0, sizeof (*r));
159 r->cl = rvc_inf;
160 r->sign = sign;
164 /* Right-shift the significand of A by N bits; put the result in the
165 significand of R. If any one bits are shifted out, return true. */
167 static bool
168 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
169 unsigned int n)
171 unsigned long sticky = 0;
172 unsigned int i, ofs = 0;
174 if (n >= HOST_BITS_PER_LONG)
176 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
177 sticky |= a->sig[i];
178 n &= HOST_BITS_PER_LONG - 1;
181 if (n != 0)
183 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
184 for (i = 0; i < SIGSZ; ++i)
186 r->sig[i]
187 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
188 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
189 << (HOST_BITS_PER_LONG - n)));
192 else
194 for (i = 0; ofs + i < SIGSZ; ++i)
195 r->sig[i] = a->sig[ofs + i];
196 for (; i < SIGSZ; ++i)
197 r->sig[i] = 0;
200 return sticky != 0;
203 /* Right-shift the significand of A by N bits; put the result in the
204 significand of R. */
206 static void
207 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
208 unsigned int n)
210 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
212 n &= HOST_BITS_PER_LONG - 1;
213 if (n != 0)
215 for (i = 0; i < SIGSZ; ++i)
217 r->sig[i]
218 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
219 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
220 << (HOST_BITS_PER_LONG - n)));
223 else
225 for (i = 0; ofs + i < SIGSZ; ++i)
226 r->sig[i] = a->sig[ofs + i];
227 for (; i < SIGSZ; ++i)
228 r->sig[i] = 0;
232 /* Left-shift the significand of A by N bits; put the result in the
233 significand of R. */
235 static void
236 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
237 unsigned int n)
239 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
241 n &= HOST_BITS_PER_LONG - 1;
242 if (n == 0)
244 for (i = 0; ofs + i < SIGSZ; ++i)
245 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
246 for (; i < SIGSZ; ++i)
247 r->sig[SIGSZ-1-i] = 0;
249 else
250 for (i = 0; i < SIGSZ; ++i)
252 r->sig[SIGSZ-1-i]
253 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
254 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
255 >> (HOST_BITS_PER_LONG - n)));
259 /* Likewise, but N is specialized to 1. */
261 static inline void
262 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
264 unsigned int i;
266 for (i = SIGSZ - 1; i > 0; --i)
267 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
268 r->sig[0] = a->sig[0] << 1;
271 /* Add the significands of A and B, placing the result in R. Return
272 true if there was carry out of the most significant word. */
274 static inline bool
275 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
276 const REAL_VALUE_TYPE *b)
278 bool carry = false;
279 int i;
281 for (i = 0; i < SIGSZ; ++i)
283 unsigned long ai = a->sig[i];
284 unsigned long ri = ai + b->sig[i];
286 if (carry)
288 carry = ri < ai;
289 carry |= ++ri == 0;
291 else
292 carry = ri < ai;
294 r->sig[i] = ri;
297 return carry;
300 /* Subtract the significands of A and B, placing the result in R. CARRY is
301 true if there's a borrow incoming to the least significant word.
302 Return true if there was borrow out of the most significant word. */
304 static inline bool
305 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
306 const REAL_VALUE_TYPE *b, int carry)
308 int i;
310 for (i = 0; i < SIGSZ; ++i)
312 unsigned long ai = a->sig[i];
313 unsigned long ri = ai - b->sig[i];
315 if (carry)
317 carry = ri > ai;
318 carry |= ~--ri == 0;
320 else
321 carry = ri > ai;
323 r->sig[i] = ri;
326 return carry;
329 /* Negate the significand A, placing the result in R. */
331 static inline void
332 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
334 bool carry = true;
335 int i;
337 for (i = 0; i < SIGSZ; ++i)
339 unsigned long ri, ai = a->sig[i];
341 if (carry)
343 if (ai)
345 ri = -ai;
346 carry = false;
348 else
349 ri = ai;
351 else
352 ri = ~ai;
354 r->sig[i] = ri;
358 /* Compare significands. Return tri-state vs zero. */
360 static inline int
361 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
363 int i;
365 for (i = SIGSZ - 1; i >= 0; --i)
367 unsigned long ai = a->sig[i];
368 unsigned long bi = b->sig[i];
370 if (ai > bi)
371 return 1;
372 if (ai < bi)
373 return -1;
376 return 0;
379 /* Return true if A is nonzero. */
381 static inline int
382 cmp_significand_0 (const REAL_VALUE_TYPE *a)
384 int i;
386 for (i = SIGSZ - 1; i >= 0; --i)
387 if (a->sig[i])
388 return 1;
390 return 0;
393 /* Set bit N of the significand of R. */
395 static inline void
396 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
398 r->sig[n / HOST_BITS_PER_LONG]
399 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
402 /* Clear bit N of the significand of R. */
404 static inline void
405 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
407 r->sig[n / HOST_BITS_PER_LONG]
408 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
411 /* Test bit N of the significand of R. */
413 static inline bool
414 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
416 /* ??? Compiler bug here if we return this expression directly.
417 The conversion to bool strips the "&1" and we wind up testing
418 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
419 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
420 return t;
423 /* Clear bits 0..N-1 of the significand of R. */
425 static void
426 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
428 int i, w = n / HOST_BITS_PER_LONG;
430 for (i = 0; i < w; ++i)
431 r->sig[i] = 0;
433 /* We are actually passing N == SIGNIFICAND_BITS which would result
434 in an out-of-bound access below. */
435 if (n % HOST_BITS_PER_LONG != 0)
436 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
439 /* Divide the significands of A and B, placing the result in R. Return
440 true if the division was inexact. */
442 static inline bool
443 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
444 const REAL_VALUE_TYPE *b)
446 REAL_VALUE_TYPE u;
447 int i, bit = SIGNIFICAND_BITS - 1;
448 unsigned long msb, inexact;
450 u = *a;
451 memset (r->sig, 0, sizeof (r->sig));
453 msb = 0;
454 goto start;
457 msb = u.sig[SIGSZ-1] & SIG_MSB;
458 lshift_significand_1 (&u, &u);
459 start:
460 if (msb || cmp_significands (&u, b) >= 0)
462 sub_significands (&u, &u, b, 0);
463 set_significand_bit (r, bit);
466 while (--bit >= 0);
468 for (i = 0, inexact = 0; i < SIGSZ; i++)
469 inexact |= u.sig[i];
471 return inexact != 0;
474 /* Adjust the exponent and significand of R such that the most
475 significant bit is set. We underflow to zero and overflow to
476 infinity here, without denormals. (The intermediate representation
477 exponent is large enough to handle target denormals normalized.) */
479 static void
480 normalize (REAL_VALUE_TYPE *r)
482 int shift = 0, exp;
483 int i, j;
485 if (r->decimal)
486 return;
488 /* Find the first word that is nonzero. */
489 for (i = SIGSZ - 1; i >= 0; i--)
490 if (r->sig[i] == 0)
491 shift += HOST_BITS_PER_LONG;
492 else
493 break;
495 /* Zero significand flushes to zero. */
496 if (i < 0)
498 r->cl = rvc_zero;
499 SET_REAL_EXP (r, 0);
500 return;
503 /* Find the first bit that is nonzero. */
504 for (j = 0; ; j++)
505 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
506 break;
507 shift += j;
509 if (shift > 0)
511 exp = REAL_EXP (r) - shift;
512 if (exp > MAX_EXP)
513 get_inf (r, r->sign);
514 else if (exp < -MAX_EXP)
515 get_zero (r, r->sign);
516 else
518 SET_REAL_EXP (r, exp);
519 lshift_significand (r, r, shift);
524 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
525 result may be inexact due to a loss of precision. */
527 static bool
528 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
529 const REAL_VALUE_TYPE *b, int subtract_p)
531 int dexp, sign, exp;
532 REAL_VALUE_TYPE t;
533 bool inexact = false;
535 /* Determine if we need to add or subtract. */
536 sign = a->sign;
537 subtract_p = (sign ^ b->sign) ^ subtract_p;
539 switch (CLASS2 (a->cl, b->cl))
541 case CLASS2 (rvc_zero, rvc_zero):
542 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
543 get_zero (r, sign & !subtract_p);
544 return false;
546 case CLASS2 (rvc_zero, rvc_normal):
547 case CLASS2 (rvc_zero, rvc_inf):
548 case CLASS2 (rvc_zero, rvc_nan):
549 /* 0 + ANY = ANY. */
550 case CLASS2 (rvc_normal, rvc_nan):
551 case CLASS2 (rvc_inf, rvc_nan):
552 case CLASS2 (rvc_nan, rvc_nan):
553 /* ANY + NaN = NaN. */
554 case CLASS2 (rvc_normal, rvc_inf):
555 /* R + Inf = Inf. */
556 *r = *b;
557 /* Make resulting NaN value to be qNaN. The caller has the
558 responsibility to avoid the operation if flag_signaling_nans
559 is on. */
560 r->signalling = 0;
561 r->sign = sign ^ subtract_p;
562 return false;
564 case CLASS2 (rvc_normal, rvc_zero):
565 case CLASS2 (rvc_inf, rvc_zero):
566 case CLASS2 (rvc_nan, rvc_zero):
567 /* ANY + 0 = ANY. */
568 case CLASS2 (rvc_nan, rvc_normal):
569 case CLASS2 (rvc_nan, rvc_inf):
570 /* NaN + ANY = NaN. */
571 case CLASS2 (rvc_inf, rvc_normal):
572 /* Inf + R = Inf. */
573 *r = *a;
574 /* Make resulting NaN value to be qNaN. The caller has the
575 responsibility to avoid the operation if flag_signaling_nans
576 is on. */
577 r->signalling = 0;
578 return false;
580 case CLASS2 (rvc_inf, rvc_inf):
581 if (subtract_p)
582 /* Inf - Inf = NaN. */
583 get_canonical_qnan (r, 0);
584 else
585 /* Inf + Inf = Inf. */
586 *r = *a;
587 return false;
589 case CLASS2 (rvc_normal, rvc_normal):
590 break;
592 default:
593 gcc_unreachable ();
596 /* Swap the arguments such that A has the larger exponent. */
597 dexp = REAL_EXP (a) - REAL_EXP (b);
598 if (dexp < 0)
600 const REAL_VALUE_TYPE *t;
601 t = a, a = b, b = t;
602 dexp = -dexp;
603 sign ^= subtract_p;
605 exp = REAL_EXP (a);
607 /* If the exponents are not identical, we need to shift the
608 significand of B down. */
609 if (dexp > 0)
611 /* If the exponents are too far apart, the significands
612 do not overlap, which makes the subtraction a noop. */
613 if (dexp >= SIGNIFICAND_BITS)
615 *r = *a;
616 r->sign = sign;
617 return true;
620 inexact |= sticky_rshift_significand (&t, b, dexp);
621 b = &t;
624 if (subtract_p)
626 if (sub_significands (r, a, b, inexact))
628 /* We got a borrow out of the subtraction. That means that
629 A and B had the same exponent, and B had the larger
630 significand. We need to swap the sign and negate the
631 significand. */
632 sign ^= 1;
633 neg_significand (r, r);
636 else
638 if (add_significands (r, a, b))
640 /* We got carry out of the addition. This means we need to
641 shift the significand back down one bit and increase the
642 exponent. */
643 inexact |= sticky_rshift_significand (r, r, 1);
644 r->sig[SIGSZ-1] |= SIG_MSB;
645 if (++exp > MAX_EXP)
647 get_inf (r, sign);
648 return true;
653 r->cl = rvc_normal;
654 r->sign = sign;
655 SET_REAL_EXP (r, exp);
656 /* Zero out the remaining fields. */
657 r->signalling = 0;
658 r->canonical = 0;
659 r->decimal = 0;
661 /* Re-normalize the result. */
662 normalize (r);
664 /* Special case: if the subtraction results in zero, the result
665 is positive. */
666 if (r->cl == rvc_zero)
667 r->sign = 0;
668 else
669 r->sig[0] |= inexact;
671 return inexact;
674 /* Calculate R = A * B. Return true if the result may be inexact. */
676 static bool
677 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
678 const REAL_VALUE_TYPE *b)
680 REAL_VALUE_TYPE u, t, *rr;
681 unsigned int i, j, k;
682 int sign = a->sign ^ b->sign;
683 bool inexact = false;
685 switch (CLASS2 (a->cl, b->cl))
687 case CLASS2 (rvc_zero, rvc_zero):
688 case CLASS2 (rvc_zero, rvc_normal):
689 case CLASS2 (rvc_normal, rvc_zero):
690 /* +-0 * ANY = 0 with appropriate sign. */
691 get_zero (r, sign);
692 return false;
694 case CLASS2 (rvc_zero, rvc_nan):
695 case CLASS2 (rvc_normal, rvc_nan):
696 case CLASS2 (rvc_inf, rvc_nan):
697 case CLASS2 (rvc_nan, rvc_nan):
698 /* ANY * NaN = NaN. */
699 *r = *b;
700 /* Make resulting NaN value to be qNaN. The caller has the
701 responsibility to avoid the operation if flag_signaling_nans
702 is on. */
703 r->signalling = 0;
704 r->sign = sign;
705 return false;
707 case CLASS2 (rvc_nan, rvc_zero):
708 case CLASS2 (rvc_nan, rvc_normal):
709 case CLASS2 (rvc_nan, rvc_inf):
710 /* NaN * ANY = NaN. */
711 *r = *a;
712 /* Make resulting NaN value to be qNaN. The caller has the
713 responsibility to avoid the operation if flag_signaling_nans
714 is on. */
715 r->signalling = 0;
716 r->sign = sign;
717 return false;
719 case CLASS2 (rvc_zero, rvc_inf):
720 case CLASS2 (rvc_inf, rvc_zero):
721 /* 0 * Inf = NaN */
722 get_canonical_qnan (r, sign);
723 return false;
725 case CLASS2 (rvc_inf, rvc_inf):
726 case CLASS2 (rvc_normal, rvc_inf):
727 case CLASS2 (rvc_inf, rvc_normal):
728 /* Inf * Inf = Inf, R * Inf = Inf */
729 get_inf (r, sign);
730 return false;
732 case CLASS2 (rvc_normal, rvc_normal):
733 break;
735 default:
736 gcc_unreachable ();
739 if (r == a || r == b)
740 rr = &t;
741 else
742 rr = r;
743 get_zero (rr, 0);
745 /* Collect all the partial products. Since we don't have sure access
746 to a widening multiply, we split each long into two half-words.
748 Consider the long-hand form of a four half-word multiplication:
750 A B C D
751 * E F G H
752 --------------
753 DE DF DG DH
754 CE CF CG CH
755 BE BF BG BH
756 AE AF AG AH
758 We construct partial products of the widened half-word products
759 that are known to not overlap, e.g. DF+DH. Each such partial
760 product is given its proper exponent, which allows us to sum them
761 and obtain the finished product. */
763 for (i = 0; i < SIGSZ * 2; ++i)
765 unsigned long ai = a->sig[i / 2];
766 if (i & 1)
767 ai >>= HOST_BITS_PER_LONG / 2;
768 else
769 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
771 if (ai == 0)
772 continue;
774 for (j = 0; j < 2; ++j)
776 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
777 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
779 if (exp > MAX_EXP)
781 get_inf (r, sign);
782 return true;
784 if (exp < -MAX_EXP)
786 /* Would underflow to zero, which we shouldn't bother adding. */
787 inexact = true;
788 continue;
791 memset (&u, 0, sizeof (u));
792 u.cl = rvc_normal;
793 SET_REAL_EXP (&u, exp);
795 for (k = j; k < SIGSZ * 2; k += 2)
797 unsigned long bi = b->sig[k / 2];
798 if (k & 1)
799 bi >>= HOST_BITS_PER_LONG / 2;
800 else
801 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
803 u.sig[k / 2] = ai * bi;
806 normalize (&u);
807 inexact |= do_add (rr, rr, &u, 0);
811 rr->sign = sign;
812 if (rr != r)
813 *r = t;
815 return inexact;
818 /* Calculate R = A / B. Return true if the result may be inexact. */
820 static bool
821 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
822 const REAL_VALUE_TYPE *b)
824 int exp, sign = a->sign ^ b->sign;
825 REAL_VALUE_TYPE t, *rr;
826 bool inexact;
828 switch (CLASS2 (a->cl, b->cl))
830 case CLASS2 (rvc_zero, rvc_zero):
831 /* 0 / 0 = NaN. */
832 case CLASS2 (rvc_inf, rvc_inf):
833 /* Inf / Inf = NaN. */
834 get_canonical_qnan (r, sign);
835 return false;
837 case CLASS2 (rvc_zero, rvc_normal):
838 case CLASS2 (rvc_zero, rvc_inf):
839 /* 0 / ANY = 0. */
840 case CLASS2 (rvc_normal, rvc_inf):
841 /* R / Inf = 0. */
842 get_zero (r, sign);
843 return false;
845 case CLASS2 (rvc_normal, rvc_zero):
846 /* R / 0 = Inf. */
847 case CLASS2 (rvc_inf, rvc_zero):
848 /* Inf / 0 = Inf. */
849 get_inf (r, sign);
850 return false;
852 case CLASS2 (rvc_zero, rvc_nan):
853 case CLASS2 (rvc_normal, rvc_nan):
854 case CLASS2 (rvc_inf, rvc_nan):
855 case CLASS2 (rvc_nan, rvc_nan):
856 /* ANY / NaN = NaN. */
857 *r = *b;
858 /* Make resulting NaN value to be qNaN. The caller has the
859 responsibility to avoid the operation if flag_signaling_nans
860 is on. */
861 r->signalling = 0;
862 r->sign = sign;
863 return false;
865 case CLASS2 (rvc_nan, rvc_zero):
866 case CLASS2 (rvc_nan, rvc_normal):
867 case CLASS2 (rvc_nan, rvc_inf):
868 /* NaN / ANY = NaN. */
869 *r = *a;
870 /* Make resulting NaN value to be qNaN. The caller has the
871 responsibility to avoid the operation if flag_signaling_nans
872 is on. */
873 r->signalling = 0;
874 r->sign = sign;
875 return false;
877 case CLASS2 (rvc_inf, rvc_normal):
878 /* Inf / R = Inf. */
879 get_inf (r, sign);
880 return false;
882 case CLASS2 (rvc_normal, rvc_normal):
883 break;
885 default:
886 gcc_unreachable ();
889 if (r == a || r == b)
890 rr = &t;
891 else
892 rr = r;
894 /* Make sure all fields in the result are initialized. */
895 get_zero (rr, 0);
896 rr->cl = rvc_normal;
897 rr->sign = sign;
899 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
900 if (exp > MAX_EXP)
902 get_inf (r, sign);
903 return true;
905 if (exp < -MAX_EXP)
907 get_zero (r, sign);
908 return true;
910 SET_REAL_EXP (rr, exp);
912 inexact = div_significands (rr, a, b);
914 /* Re-normalize the result. */
915 normalize (rr);
916 rr->sig[0] |= inexact;
918 if (rr != r)
919 *r = t;
921 return inexact;
924 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
925 one of the two operands is a NaN. */
927 static int
928 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
929 int nan_result)
931 int ret;
933 switch (CLASS2 (a->cl, b->cl))
935 case CLASS2 (rvc_zero, rvc_zero):
936 /* Sign of zero doesn't matter for compares. */
937 return 0;
939 case CLASS2 (rvc_normal, rvc_zero):
940 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
941 if (a->decimal)
942 return decimal_do_compare (a, b, nan_result);
943 /* Fall through. */
944 case CLASS2 (rvc_inf, rvc_zero):
945 case CLASS2 (rvc_inf, rvc_normal):
946 return (a->sign ? -1 : 1);
948 case CLASS2 (rvc_inf, rvc_inf):
949 return -a->sign - -b->sign;
951 case CLASS2 (rvc_zero, rvc_normal):
952 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
953 if (b->decimal)
954 return decimal_do_compare (a, b, nan_result);
955 /* Fall through. */
956 case CLASS2 (rvc_zero, rvc_inf):
957 case CLASS2 (rvc_normal, rvc_inf):
958 return (b->sign ? 1 : -1);
960 case CLASS2 (rvc_zero, rvc_nan):
961 case CLASS2 (rvc_normal, rvc_nan):
962 case CLASS2 (rvc_inf, rvc_nan):
963 case CLASS2 (rvc_nan, rvc_nan):
964 case CLASS2 (rvc_nan, rvc_zero):
965 case CLASS2 (rvc_nan, rvc_normal):
966 case CLASS2 (rvc_nan, rvc_inf):
967 return nan_result;
969 case CLASS2 (rvc_normal, rvc_normal):
970 break;
972 default:
973 gcc_unreachable ();
976 if (a->decimal || b->decimal)
977 return decimal_do_compare (a, b, nan_result);
979 if (a->sign != b->sign)
980 return -a->sign - -b->sign;
982 if (REAL_EXP (a) > REAL_EXP (b))
983 ret = 1;
984 else if (REAL_EXP (a) < REAL_EXP (b))
985 ret = -1;
986 else
987 ret = cmp_significands (a, b);
989 return (a->sign ? -ret : ret);
992 /* Return A truncated to an integral value toward zero. */
994 static void
995 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
997 *r = *a;
999 switch (r->cl)
1001 case rvc_zero:
1002 case rvc_inf:
1003 case rvc_nan:
1004 /* Make resulting NaN value to be qNaN. The caller has the
1005 responsibility to avoid the operation if flag_signaling_nans
1006 is on. */
1007 r->signalling = 0;
1008 break;
1010 case rvc_normal:
1011 if (r->decimal)
1013 decimal_do_fix_trunc (r, a);
1014 return;
1016 if (REAL_EXP (r) <= 0)
1017 get_zero (r, r->sign);
1018 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
1019 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
1020 break;
1022 default:
1023 gcc_unreachable ();
1027 /* Perform the binary or unary operation described by CODE.
1028 For a unary operation, leave OP1 NULL. This function returns
1029 true if the result may be inexact due to loss of precision. */
1031 bool
1032 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
1033 const REAL_VALUE_TYPE *op1)
1035 enum tree_code code = (enum tree_code) icode;
1037 if (op0->decimal || (op1 && op1->decimal))
1038 return decimal_real_arithmetic (r, code, op0, op1);
1040 switch (code)
1042 case PLUS_EXPR:
1043 /* Clear any padding areas in *r if it isn't equal to one of the
1044 operands so that we can later do bitwise comparisons later on. */
1045 if (r != op0 && r != op1)
1046 memset (r, '\0', sizeof (*r));
1047 return do_add (r, op0, op1, 0);
1049 case MINUS_EXPR:
1050 if (r != op0 && r != op1)
1051 memset (r, '\0', sizeof (*r));
1052 return do_add (r, op0, op1, 1);
1054 case MULT_EXPR:
1055 if (r != op0 && r != op1)
1056 memset (r, '\0', sizeof (*r));
1057 return do_multiply (r, op0, op1);
1059 case RDIV_EXPR:
1060 if (r != op0 && r != op1)
1061 memset (r, '\0', sizeof (*r));
1062 return do_divide (r, op0, op1);
1064 case MIN_EXPR:
1065 if (op1->cl == rvc_nan)
1067 *r = *op1;
1068 /* Make resulting NaN value to be qNaN. The caller has the
1069 responsibility to avoid the operation if flag_signaling_nans
1070 is on. */
1071 r->signalling = 0;
1073 else if (do_compare (op0, op1, -1) < 0)
1074 *r = *op0;
1075 else
1076 *r = *op1;
1077 break;
1079 case MAX_EXPR:
1080 if (op1->cl == rvc_nan)
1082 *r = *op1;
1083 /* Make resulting NaN value to be qNaN. The caller has the
1084 responsibility to avoid the operation if flag_signaling_nans
1085 is on. */
1086 r->signalling = 0;
1088 else if (do_compare (op0, op1, 1) < 0)
1089 *r = *op1;
1090 else
1091 *r = *op0;
1092 break;
1094 case NEGATE_EXPR:
1095 *r = *op0;
1096 r->sign ^= 1;
1097 break;
1099 case ABS_EXPR:
1100 *r = *op0;
1101 r->sign = 0;
1102 break;
1104 case FIX_TRUNC_EXPR:
1105 do_fix_trunc (r, op0);
1106 break;
1108 default:
1109 gcc_unreachable ();
1111 return false;
1114 REAL_VALUE_TYPE
1115 real_value_negate (const REAL_VALUE_TYPE *op0)
1117 REAL_VALUE_TYPE r;
1118 real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
1119 return r;
1122 REAL_VALUE_TYPE
1123 real_value_abs (const REAL_VALUE_TYPE *op0)
1125 REAL_VALUE_TYPE r;
1126 real_arithmetic (&r, ABS_EXPR, op0, NULL);
1127 return r;
1130 /* Return whether OP0 == OP1. */
1132 bool
1133 real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1135 return do_compare (op0, op1, -1) == 0;
1138 /* Return whether OP0 < OP1. */
1140 bool
1141 real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1143 return do_compare (op0, op1, 1) < 0;
1146 bool
1147 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1148 const REAL_VALUE_TYPE *op1)
1150 enum tree_code code = (enum tree_code) icode;
1152 switch (code)
1154 case LT_EXPR:
1155 return real_less (op0, op1);
1156 case LE_EXPR:
1157 return do_compare (op0, op1, 1) <= 0;
1158 case GT_EXPR:
1159 return do_compare (op0, op1, -1) > 0;
1160 case GE_EXPR:
1161 return do_compare (op0, op1, -1) >= 0;
1162 case EQ_EXPR:
1163 return real_equal (op0, op1);
1164 case NE_EXPR:
1165 return do_compare (op0, op1, -1) != 0;
1166 case UNORDERED_EXPR:
1167 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1168 case ORDERED_EXPR:
1169 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1170 case UNLT_EXPR:
1171 return do_compare (op0, op1, -1) < 0;
1172 case UNLE_EXPR:
1173 return do_compare (op0, op1, -1) <= 0;
1174 case UNGT_EXPR:
1175 return do_compare (op0, op1, 1) > 0;
1176 case UNGE_EXPR:
1177 return do_compare (op0, op1, 1) >= 0;
1178 case UNEQ_EXPR:
1179 return do_compare (op0, op1, 0) == 0;
1180 case LTGT_EXPR:
1181 return do_compare (op0, op1, 0) != 0;
1183 default:
1184 gcc_unreachable ();
1188 /* Return floor log2(R). */
1191 real_exponent (const REAL_VALUE_TYPE *r)
1193 switch (r->cl)
1195 case rvc_zero:
1196 return 0;
1197 case rvc_inf:
1198 case rvc_nan:
1199 return (unsigned int)-1 >> 1;
1200 case rvc_normal:
1201 return REAL_EXP (r);
1202 default:
1203 gcc_unreachable ();
1207 /* R = OP0 * 2**EXP. */
1209 void
1210 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1212 *r = *op0;
1213 switch (r->cl)
1215 case rvc_zero:
1216 case rvc_inf:
1217 case rvc_nan:
1218 /* Make resulting NaN value to be qNaN. The caller has the
1219 responsibility to avoid the operation if flag_signaling_nans
1220 is on. */
1221 r->signalling = 0;
1222 break;
1224 case rvc_normal:
1225 exp += REAL_EXP (op0);
1226 if (exp > MAX_EXP)
1227 get_inf (r, r->sign);
1228 else if (exp < -MAX_EXP)
1229 get_zero (r, r->sign);
1230 else
1231 SET_REAL_EXP (r, exp);
1232 break;
1234 default:
1235 gcc_unreachable ();
1239 /* Determine whether a floating-point value X is infinite. */
1241 bool
1242 real_isinf (const REAL_VALUE_TYPE *r)
1244 return (r->cl == rvc_inf);
1247 /* Determine whether a floating-point value X is infinite with SIGN. */
1249 bool
1250 real_isinf (const REAL_VALUE_TYPE *r, bool sign)
1252 return real_isinf (r) && r->sign == sign;
1255 /* Determine whether a floating-point value X is a NaN. */
1257 bool
1258 real_isnan (const REAL_VALUE_TYPE *r)
1260 return (r->cl == rvc_nan);
1263 /* Determine whether a floating-point value X is a signaling NaN. */
1264 bool real_issignaling_nan (const REAL_VALUE_TYPE *r)
1266 return real_isnan (r) && r->signalling;
1269 /* Determine whether a floating-point value X is finite. */
1271 bool
1272 real_isfinite (const REAL_VALUE_TYPE *r)
1274 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1277 /* Determine whether a floating-point value X is negative. */
1279 bool
1280 real_isneg (const REAL_VALUE_TYPE *r)
1282 return r->sign;
1285 /* Determine whether a floating-point value X is plus or minus zero. */
1287 bool
1288 real_iszero (const REAL_VALUE_TYPE *r)
1290 return r->cl == rvc_zero;
1293 /* Determine whether a floating-point value X is zero with SIGN. */
1295 bool
1296 real_iszero (const REAL_VALUE_TYPE *r, bool sign)
1298 return real_iszero (r) && r->sign == sign;
1301 /* Determine whether a floating-point value X is minus zero. */
1303 bool
1304 real_isnegzero (const REAL_VALUE_TYPE *r)
1306 return r->sign && r->cl == rvc_zero;
1309 /* Compare two floating-point objects for bitwise identity. */
1311 bool
1312 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1314 int i;
1316 if (a->cl != b->cl)
1317 return false;
1318 if (a->sign != b->sign)
1319 return false;
1321 switch (a->cl)
1323 case rvc_zero:
1324 case rvc_inf:
1325 return true;
1327 case rvc_normal:
1328 if (a->decimal != b->decimal)
1329 return false;
1330 if (REAL_EXP (a) != REAL_EXP (b))
1331 return false;
1332 break;
1334 case rvc_nan:
1335 if (a->signalling != b->signalling)
1336 return false;
1337 /* The significand is ignored for canonical NaNs. */
1338 if (a->canonical || b->canonical)
1339 return a->canonical == b->canonical;
1340 break;
1342 default:
1343 gcc_unreachable ();
1346 for (i = 0; i < SIGSZ; ++i)
1347 if (a->sig[i] != b->sig[i])
1348 return false;
1350 return true;
1353 /* Try to change R into its exact multiplicative inverse in format FMT.
1354 Return true if successful. */
1356 bool
1357 exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
1359 const REAL_VALUE_TYPE *one = real_digit (1);
1360 REAL_VALUE_TYPE u;
1361 int i;
1363 if (r->cl != rvc_normal)
1364 return false;
1366 /* Check for a power of two: all significand bits zero except the MSB. */
1367 for (i = 0; i < SIGSZ-1; ++i)
1368 if (r->sig[i] != 0)
1369 return false;
1370 if (r->sig[SIGSZ-1] != SIG_MSB)
1371 return false;
1373 /* Find the inverse and truncate to the required format. */
1374 do_divide (&u, one, r);
1375 real_convert (&u, fmt, &u);
1377 /* The rounding may have overflowed. */
1378 if (u.cl != rvc_normal)
1379 return false;
1380 for (i = 0; i < SIGSZ-1; ++i)
1381 if (u.sig[i] != 0)
1382 return false;
1383 if (u.sig[SIGSZ-1] != SIG_MSB)
1384 return false;
1386 *r = u;
1387 return true;
1390 /* Return true if arithmetic on values in IMODE that were promoted
1391 from values in TMODE is equivalent to direct arithmetic on values
1392 in TMODE. */
1394 bool
1395 real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
1397 const struct real_format *tfmt, *ifmt;
1398 tfmt = REAL_MODE_FORMAT (tmode);
1399 ifmt = REAL_MODE_FORMAT (imode);
1400 /* These conditions are conservative rather than trying to catch the
1401 exact boundary conditions; the main case to allow is IEEE float
1402 and double. */
1403 return (ifmt->b == tfmt->b
1404 && ifmt->p > 2 * tfmt->p
1405 && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1406 && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1407 && ifmt->emax > 2 * tfmt->emax + 2
1408 && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1409 && ifmt->round_towards_zero == tfmt->round_towards_zero
1410 && (ifmt->has_sign_dependent_rounding
1411 == tfmt->has_sign_dependent_rounding)
1412 && ifmt->has_nans >= tfmt->has_nans
1413 && ifmt->has_inf >= tfmt->has_inf
1414 && ifmt->has_signed_zero >= tfmt->has_signed_zero
1415 && !MODE_COMPOSITE_P (tmode)
1416 && !MODE_COMPOSITE_P (imode));
1419 /* Render R as an integer. */
1421 HOST_WIDE_INT
1422 real_to_integer (const REAL_VALUE_TYPE *r)
1424 unsigned HOST_WIDE_INT i;
1426 switch (r->cl)
1428 case rvc_zero:
1429 underflow:
1430 return 0;
1432 case rvc_inf:
1433 case rvc_nan:
1434 overflow:
1435 i = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
1436 if (!r->sign)
1437 i--;
1438 return i;
1440 case rvc_normal:
1441 if (r->decimal)
1442 return decimal_real_to_integer (r);
1444 if (REAL_EXP (r) <= 0)
1445 goto underflow;
1446 /* Only force overflow for unsigned overflow. Signed overflow is
1447 undefined, so it doesn't matter what we return, and some callers
1448 expect to be able to use this routine for both signed and
1449 unsigned conversions. */
1450 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1451 goto overflow;
1453 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1454 i = r->sig[SIGSZ-1];
1455 else
1457 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1458 i = r->sig[SIGSZ-1];
1459 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1460 i |= r->sig[SIGSZ-2];
1463 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1465 if (r->sign)
1466 i = -i;
1467 return i;
1469 default:
1470 gcc_unreachable ();
1474 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1475 be represented in precision, *FAIL is set to TRUE. */
1477 wide_int
1478 real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
1480 HOST_WIDE_INT valb[WIDE_INT_MAX_INL_ELTS], *val;
1481 int exp;
1482 int words, w;
1483 wide_int result;
1485 switch (r->cl)
1487 case rvc_zero:
1488 underflow:
1489 return wi::zero (precision);
1491 case rvc_inf:
1492 case rvc_nan:
1493 overflow:
1494 *fail = true;
1496 if (r->sign)
1497 return wi::set_bit_in_zero (precision - 1, precision);
1498 else
1499 return ~wi::set_bit_in_zero (precision - 1, precision);
1501 case rvc_normal:
1502 if (r->decimal)
1503 return decimal_real_to_integer (r, fail, precision);
1505 exp = REAL_EXP (r);
1506 if (exp <= 0)
1507 goto underflow;
1508 /* Only force overflow for unsigned overflow. Signed overflow is
1509 undefined, so it doesn't matter what we return, and some callers
1510 expect to be able to use this routine for both signed and
1511 unsigned conversions. */
1512 if (exp > precision)
1513 goto overflow;
1515 /* Put the significand into a wide_int that has precision W, which
1516 is the smallest HWI-multiple that has at least PRECISION bits.
1517 This ensures that the top bit of the significand is in the
1518 top bit of the wide_int. */
1519 words = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1520 / HOST_BITS_PER_WIDE_INT);
1521 val = valb;
1522 if (UNLIKELY (words > WIDE_INT_MAX_INL_ELTS))
1523 val = XALLOCAVEC (HOST_WIDE_INT, words);
1524 w = words * HOST_BITS_PER_WIDE_INT;
1526 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1527 for (int i = 0; i < words; i++)
1529 int j = SIGSZ - words + i;
1530 val[i] = (j < 0) ? 0 : r->sig[j];
1532 #else
1533 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1534 for (int i = 0; i < words; i++)
1536 int j = SIGSZ - (words * 2) + (i * 2);
1537 if (j < 0)
1538 val[i] = 0;
1539 else
1540 val[i] = r->sig[j];
1541 j += 1;
1542 if (j >= 0)
1543 val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
1545 #endif
1546 /* Shift the value into place and truncate to the desired precision. */
1547 result = wide_int::from_array (val, words, w);
1548 result = wi::lrshift (result, w - exp);
1549 result = wide_int::from (result, precision, UNSIGNED);
1551 if (r->sign)
1552 return -result;
1553 else
1554 return result;
1556 default:
1557 gcc_unreachable ();
1561 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1562 of NUM / DEN. Return the quotient and place the remainder in NUM.
1563 It is expected that NUM / DEN are close enough that the quotient is
1564 small. */
1566 static unsigned long
1567 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1569 unsigned long q, msb;
1570 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1572 if (expn < expd)
1573 return 0;
1575 q = msb = 0;
1576 goto start;
1579 msb = num->sig[SIGSZ-1] & SIG_MSB;
1580 q <<= 1;
1581 lshift_significand_1 (num, num);
1582 start:
1583 if (msb || cmp_significands (num, den) >= 0)
1585 sub_significands (num, num, den, 0);
1586 q |= 1;
1589 while (--expn >= expd);
1591 SET_REAL_EXP (num, expd);
1592 normalize (num);
1594 return q;
1597 /* Render R as a decimal floating point constant. Emit DIGITS significant
1598 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1599 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1600 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1601 to a string that, when parsed back in mode MODE, yields the same value. */
1603 #define M_LOG10_2 0.30102999566398119521
1605 void
1606 real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1607 size_t buf_size, size_t digits,
1608 int crop_trailing_zeros, machine_mode mode)
1610 const struct real_format *fmt = NULL;
1611 const REAL_VALUE_TYPE *one, *ten;
1612 REAL_VALUE_TYPE r, pten, u, v;
1613 int dec_exp, cmp_one, digit;
1614 size_t max_digits;
1615 char *p, *first, *last;
1616 bool sign;
1617 bool round_up;
1619 if (mode != VOIDmode)
1621 fmt = REAL_MODE_FORMAT (mode);
1622 gcc_assert (fmt);
1625 r = *r_orig;
1626 switch (r.cl)
1628 case rvc_zero:
1629 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1630 return;
1631 case rvc_normal:
1632 break;
1633 case rvc_inf:
1634 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1635 return;
1636 case rvc_nan:
1637 /* ??? Print the significand as well, if not canonical? */
1638 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1639 (r_orig->signalling ? 'S' : 'Q'));
1640 return;
1641 default:
1642 gcc_unreachable ();
1645 if (r.decimal)
1647 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1648 return;
1651 /* Bound the number of digits printed by the size of the representation. */
1652 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1653 if (digits == 0 || digits > max_digits)
1654 digits = max_digits;
1656 /* Estimate the decimal exponent, and compute the length of the string it
1657 will print as. Be conservative and add one to account for possible
1658 overflow or rounding error. */
1659 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1660 for (max_digits = 1; dec_exp ; max_digits++)
1661 dec_exp /= 10;
1663 /* Bound the number of digits printed by the size of the output buffer. */
1664 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1665 gcc_assert (max_digits <= buf_size);
1666 if (digits > max_digits)
1667 digits = max_digits;
1669 one = real_digit (1);
1670 ten = ten_to_ptwo (0);
1672 sign = r.sign;
1673 r.sign = 0;
1675 dec_exp = 0;
1676 pten = *one;
1678 cmp_one = do_compare (&r, one, 0);
1679 if (cmp_one > 0)
1681 int m;
1683 /* Number is greater than one. Convert significand to an integer
1684 and strip trailing decimal zeros. */
1686 u = r;
1687 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1689 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1690 m = floor_log2 (max_digits);
1692 /* Iterate over the bits of the possible powers of 10 that might
1693 be present in U and eliminate them. That is, if we find that
1694 10**2**M divides U evenly, keep the division and increase
1695 DEC_EXP by 2**M. */
1698 REAL_VALUE_TYPE t;
1700 do_divide (&t, &u, ten_to_ptwo (m));
1701 do_fix_trunc (&v, &t);
1702 if (cmp_significands (&v, &t) == 0)
1704 u = t;
1705 dec_exp += 1 << m;
1708 while (--m >= 0);
1710 /* Revert the scaling to integer that we performed earlier. */
1711 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1712 - (SIGNIFICAND_BITS - 1));
1713 r = u;
1715 /* Find power of 10. Do this by dividing out 10**2**M when
1716 this is larger than the current remainder. Fill PTEN with
1717 the power of 10 that we compute. */
1718 if (REAL_EXP (&r) > 0)
1720 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1723 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1724 if (do_compare (&u, ptentwo, 0) >= 0)
1726 do_divide (&u, &u, ptentwo);
1727 do_multiply (&pten, &pten, ptentwo);
1728 dec_exp += 1 << m;
1731 while (--m >= 0);
1733 else
1734 /* We managed to divide off enough tens in the above reduction
1735 loop that we've now got a negative exponent. Fall into the
1736 less-than-one code to compute the proper value for PTEN. */
1737 cmp_one = -1;
1739 if (cmp_one < 0)
1741 int m;
1743 /* Number is less than one. Pad significand with leading
1744 decimal zeros. */
1746 v = r;
1747 while (1)
1749 /* Stop if we'd shift bits off the bottom. */
1750 if (v.sig[0] & 7)
1751 break;
1753 do_multiply (&u, &v, ten);
1755 /* Stop if we're now >= 1 or zero. */
1756 if (REAL_EXP (&u) > 0 || u.cl == rvc_zero)
1757 break;
1759 v = u;
1760 dec_exp -= 1;
1762 r = v;
1764 /* Find power of 10. Do this by multiplying in P=10**2**M when
1765 the current remainder is smaller than 1/P. Fill PTEN with the
1766 power of 10 that we compute. */
1767 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1770 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1771 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1773 if (do_compare (&v, ptenmtwo, 0) <= 0)
1775 do_multiply (&v, &v, ptentwo);
1776 do_multiply (&pten, &pten, ptentwo);
1777 dec_exp -= 1 << m;
1780 while (--m >= 0);
1782 /* Invert the positive power of 10 that we've collected so far. */
1783 do_divide (&pten, one, &pten);
1786 p = str;
1787 if (sign)
1788 *p++ = '-';
1789 first = p++;
1791 /* At this point, PTEN should contain the nearest power of 10 smaller
1792 than R, such that this division produces the first digit.
1794 Using a divide-step primitive that returns the complete integral
1795 remainder avoids the rounding error that would be produced if
1796 we were to use do_divide here and then simply multiply by 10 for
1797 each subsequent digit. */
1799 digit = rtd_divmod (&r, &pten);
1801 /* Be prepared for error in that division via underflow ... */
1802 if (digit == 0 && cmp_significand_0 (&r))
1804 /* Multiply by 10 and try again. */
1805 do_multiply (&r, &r, ten);
1806 digit = rtd_divmod (&r, &pten);
1807 dec_exp -= 1;
1808 gcc_assert (digit != 0);
1811 /* ... or overflow. */
1812 if (digit == 10)
1814 *p++ = '1';
1815 if (--digits > 0)
1816 *p++ = '0';
1817 dec_exp += 1;
1819 else
1821 gcc_assert (digit <= 10);
1822 *p++ = digit + '0';
1825 /* Generate subsequent digits. */
1826 while (--digits > 0)
1828 do_multiply (&r, &r, ten);
1829 digit = rtd_divmod (&r, &pten);
1830 *p++ = digit + '0';
1832 last = p;
1834 /* Generate one more digit with which to do rounding. */
1835 do_multiply (&r, &r, ten);
1836 digit = rtd_divmod (&r, &pten);
1838 /* Round the result. */
1839 if (fmt && fmt->round_towards_zero)
1841 /* If the format uses round towards zero when parsing the string
1842 back in, we need to always round away from zero here. */
1843 if (cmp_significand_0 (&r))
1844 digit++;
1845 round_up = digit > 0;
1847 else
1849 if (digit == 5)
1851 /* Round to nearest. If R is nonzero there are additional
1852 nonzero digits to be extracted. */
1853 if (cmp_significand_0 (&r))
1854 digit++;
1855 /* Round to even. */
1856 else if ((p[-1] - '0') & 1)
1857 digit++;
1860 round_up = digit > 5;
1863 if (round_up)
1865 while (p > first)
1867 digit = *--p;
1868 if (digit == '9')
1869 *p = '0';
1870 else
1872 *p = digit + 1;
1873 break;
1877 /* Carry out of the first digit. This means we had all 9's and
1878 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1879 if (p == first)
1881 first[1] = '1';
1882 dec_exp++;
1886 /* Insert the decimal point. */
1887 first[0] = first[1];
1888 first[1] = '.';
1890 /* If requested, drop trailing zeros. Never crop past "1.0". */
1891 if (crop_trailing_zeros)
1892 while (last > first + 3 && last[-1] == '0')
1893 last--;
1895 /* Append the exponent. */
1896 sprintf (last, "e%+d", dec_exp);
1898 /* Verify that we can read the original value back in. */
1899 if (flag_checking && mode != VOIDmode)
1901 real_from_string (&r, str);
1902 real_convert (&r, mode, &r);
1903 gcc_assert (real_identical (&r, r_orig));
1907 /* Likewise, except always uses round-to-nearest. */
1909 void
1910 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1911 size_t digits, int crop_trailing_zeros)
1913 real_to_decimal_for_mode (str, r_orig, buf_size,
1914 digits, crop_trailing_zeros, VOIDmode);
1917 DEBUG_FUNCTION void
1918 debug (const REAL_VALUE_TYPE &r)
1920 char s[60];
1921 real_to_hexadecimal (s, &r, sizeof (s), 0, 1);
1922 fprintf (stderr, "%s\n", s);
1925 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1926 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1927 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1928 strip trailing zeros. */
1930 void
1931 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1932 size_t digits, int crop_trailing_zeros)
1934 int i, j, exp = REAL_EXP (r);
1935 char *p, *first;
1936 char exp_buf[16];
1937 size_t max_digits;
1939 switch (r->cl)
1941 case rvc_zero:
1942 exp = 0;
1943 break;
1944 case rvc_normal:
1945 break;
1946 case rvc_inf:
1947 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1948 return;
1949 case rvc_nan:
1950 /* ??? Print the significand as well, if not canonical? */
1951 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1952 (r->signalling ? 'S' : 'Q'));
1953 return;
1954 default:
1955 gcc_unreachable ();
1958 if (r->decimal)
1960 /* Hexadecimal format for decimal floats is not interesting. */
1961 strcpy (str, "N/A");
1962 return;
1965 if (digits == 0)
1966 digits = SIGNIFICAND_BITS / 4;
1968 /* Bound the number of digits printed by the size of the output buffer. */
1970 sprintf (exp_buf, "p%+d", exp);
1971 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1972 gcc_assert (max_digits <= buf_size);
1973 if (digits > max_digits)
1974 digits = max_digits;
1976 p = str;
1977 if (r->sign)
1978 *p++ = '-';
1979 *p++ = '0';
1980 *p++ = 'x';
1981 *p++ = '0';
1982 *p++ = '.';
1983 first = p;
1985 for (i = SIGSZ - 1; i >= 0; --i)
1986 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1988 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1989 if (--digits == 0)
1990 goto out;
1993 out:
1994 if (crop_trailing_zeros)
1995 while (p > first + 1 && p[-1] == '0')
1996 p--;
1998 sprintf (p, "p%+d", exp);
2001 /* Initialize R from a decimal or hexadecimal string. The string is
2002 assumed to have been syntax checked already. Return -1 if the
2003 value underflows, +1 if overflows, and 0 otherwise. */
2006 real_from_string (REAL_VALUE_TYPE *r, const char *str)
2008 int exp = 0;
2009 bool sign = false;
2011 get_zero (r, 0);
2013 if (*str == '-')
2015 sign = true;
2016 str++;
2018 else if (*str == '+')
2019 str++;
2021 if (startswith (str, "QNaN"))
2023 get_canonical_qnan (r, sign);
2024 return 0;
2026 else if (startswith (str, "SNaN"))
2028 get_canonical_snan (r, sign);
2029 return 0;
2031 else if (startswith (str, "Inf"))
2033 get_inf (r, sign);
2034 return 0;
2037 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
2039 /* Hexadecimal floating point. */
2040 int pos = SIGNIFICAND_BITS - 4, d;
2042 str += 2;
2044 while (*str == '0')
2045 str++;
2046 while (1)
2048 d = hex_value (*str);
2049 if (d == _hex_bad)
2050 break;
2051 if (pos >= 0)
2053 r->sig[pos / HOST_BITS_PER_LONG]
2054 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2055 pos -= 4;
2057 else if (d)
2058 /* Ensure correct rounding by setting last bit if there is
2059 a subsequent nonzero digit. */
2060 r->sig[0] |= 1;
2061 exp += 4;
2062 str++;
2064 if (*str == '.')
2066 str++;
2067 if (pos == SIGNIFICAND_BITS - 4)
2069 while (*str == '0')
2070 str++, exp -= 4;
2072 while (1)
2074 d = hex_value (*str);
2075 if (d == _hex_bad)
2076 break;
2077 if (pos >= 0)
2079 r->sig[pos / HOST_BITS_PER_LONG]
2080 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2081 pos -= 4;
2083 else if (d)
2084 /* Ensure correct rounding by setting last bit if there is
2085 a subsequent nonzero digit. */
2086 r->sig[0] |= 1;
2087 str++;
2091 /* If the mantissa is zero, ignore the exponent. */
2092 if (!cmp_significand_0 (r))
2093 goto is_a_zero;
2095 if (*str == 'p' || *str == 'P')
2097 bool exp_neg = false;
2099 str++;
2100 if (*str == '-')
2102 exp_neg = true;
2103 str++;
2105 else if (*str == '+')
2106 str++;
2108 d = 0;
2109 while (ISDIGIT (*str))
2111 d *= 10;
2112 d += *str - '0';
2113 if (d > MAX_EXP)
2115 /* Overflowed the exponent. */
2116 if (exp_neg)
2117 goto underflow;
2118 else
2119 goto overflow;
2121 str++;
2123 if (exp_neg)
2124 d = -d;
2126 exp += d;
2129 r->cl = rvc_normal;
2130 SET_REAL_EXP (r, exp);
2132 normalize (r);
2134 else
2136 /* Decimal floating point. */
2137 const char *cstr = str;
2138 bool inexact;
2140 while (*cstr == '0')
2141 cstr++;
2142 if (*cstr == '.')
2144 cstr++;
2145 while (*cstr == '0')
2146 cstr++;
2149 /* If the mantissa is zero, ignore the exponent. */
2150 if (!ISDIGIT (*cstr))
2151 goto is_a_zero;
2153 /* Nonzero value, possibly overflowing or underflowing. */
2154 auto_mpfr m (SIGNIFICAND_BITS);
2155 inexact = mpfr_strtofr (m, str, NULL, 10, MPFR_RNDZ);
2156 /* The result should never be a NaN, and because the rounding is
2157 toward zero should never be an infinity. */
2158 gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
2159 if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
2160 goto underflow;
2161 else if (mpfr_get_exp (m) > MAX_EXP - 4)
2162 goto overflow;
2163 else
2165 real_from_mpfr (r, m, NULL_TREE, MPFR_RNDZ);
2166 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2167 because the hex digits used in real_from_mpfr did not
2168 start with a digit 8 to f, but the exponent bounds above
2169 should have avoided underflow or overflow. */
2170 gcc_assert (r->cl == rvc_normal);
2171 /* Set a sticky bit if mpfr_strtofr was inexact. */
2172 r->sig[0] |= inexact;
2176 r->sign = sign;
2177 return 0;
2179 is_a_zero:
2180 get_zero (r, sign);
2181 return 0;
2183 underflow:
2184 get_zero (r, sign);
2185 return -1;
2187 overflow:
2188 get_inf (r, sign);
2189 return 1;
2192 /* Legacy. Similar, but return the result directly. */
2194 REAL_VALUE_TYPE
2195 real_from_string2 (const char *s, format_helper fmt)
2197 REAL_VALUE_TYPE r;
2199 real_from_string (&r, s);
2200 if (fmt)
2201 real_convert (&r, fmt, &r);
2203 return r;
2206 /* Initialize R from string S and desired format FMT. */
2208 void
2209 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
2211 if (fmt.decimal_p ())
2212 decimal_real_from_string (r, s);
2213 else
2214 real_from_string (r, s);
2216 if (fmt)
2217 real_convert (r, fmt, r);
2220 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2221 FMT is nonnull. */
2223 void
2224 real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
2225 const wide_int_ref &val_in, signop sgn)
2227 if (val_in == 0)
2228 get_zero (r, 0);
2229 else
2231 unsigned int len = val_in.get_precision ();
2232 int i, j, e = 0;
2233 int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
2234 const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
2235 * HOST_BITS_PER_WIDE_INT);
2237 memset (r, 0, sizeof (*r));
2238 r->cl = rvc_normal;
2239 r->sign = wi::neg_p (val_in, sgn);
2241 /* We have to ensure we can negate the largest negative number. */
2242 wide_int val = wide_int::from (val_in, maxbitlen, sgn);
2244 if (r->sign)
2245 val = -val;
2247 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2248 won't work with precisions that are not a multiple of
2249 HOST_BITS_PER_WIDE_INT. */
2250 len += HOST_BITS_PER_WIDE_INT - 1;
2252 /* Ensure we can represent the largest negative number. */
2253 len += 1;
2255 len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
2257 /* Cap the size to the size allowed by real.h. */
2258 if (len > realmax)
2260 HOST_WIDE_INT cnt_l_z;
2261 cnt_l_z = wi::clz (val);
2263 if (maxbitlen - cnt_l_z > realmax)
2265 e = maxbitlen - cnt_l_z - realmax;
2267 /* This value is too large, we must shift it right to
2268 preserve all the bits we can, and then bump the
2269 exponent up by that amount. */
2270 val = wi::lrshift (val, e);
2272 len = realmax;
2275 /* Clear out top bits so elt will work with precisions that aren't
2276 a multiple of HOST_BITS_PER_WIDE_INT. */
2277 val = wide_int::from (val, len, sgn);
2278 len = len / HOST_BITS_PER_WIDE_INT;
2280 SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
2282 j = SIGSZ - 1;
2283 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2284 for (i = len - 1; i >= 0; i--)
2286 r->sig[j--] = val.elt (i);
2287 if (j < 0)
2288 break;
2290 else
2292 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2293 for (i = len - 1; i >= 0; i--)
2295 HOST_WIDE_INT e = val.elt (i);
2296 r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
2297 if (j < 0)
2298 break;
2299 r->sig[j--] = e;
2300 if (j < 0)
2301 break;
2305 normalize (r);
2308 if (fmt.decimal_p ())
2309 decimal_from_integer (r);
2310 if (fmt)
2311 real_convert (r, fmt, r);
2314 /* Render R, an integral value, as a floating point constant with no
2315 specified exponent. */
2317 static void
2318 decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2319 size_t buf_size)
2321 int dec_exp, digit, digits;
2322 REAL_VALUE_TYPE r, pten;
2323 char *p;
2324 bool sign;
2326 r = *r_orig;
2328 if (r.cl == rvc_zero)
2330 strcpy (str, "0.");
2331 return;
2334 sign = r.sign;
2335 r.sign = 0;
2337 dec_exp = REAL_EXP (&r) * M_LOG10_2;
2338 digits = dec_exp + 1;
2339 gcc_assert ((digits + 2) < (int)buf_size);
2341 pten = *real_digit (1);
2342 times_pten (&pten, dec_exp);
2344 p = str;
2345 if (sign)
2346 *p++ = '-';
2348 digit = rtd_divmod (&r, &pten);
2349 gcc_assert (digit >= 0 && digit <= 9);
2350 *p++ = digit + '0';
2351 while (--digits > 0)
2353 times_pten (&r, 1);
2354 digit = rtd_divmod (&r, &pten);
2355 *p++ = digit + '0';
2357 *p++ = '.';
2358 *p++ = '\0';
2361 /* Convert a real with an integral value to decimal float. */
2363 static void
2364 decimal_from_integer (REAL_VALUE_TYPE *r)
2366 char str[256];
2368 decimal_integer_string (str, r, sizeof (str) - 1);
2369 decimal_real_from_string (r, str);
2372 /* Returns 10**2**N. */
2374 static const REAL_VALUE_TYPE *
2375 ten_to_ptwo (int n)
2377 static REAL_VALUE_TYPE tens[EXP_BITS];
2379 gcc_assert (n >= 0);
2380 gcc_assert (n < EXP_BITS);
2382 if (tens[n].cl == rvc_zero)
2384 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2386 HOST_WIDE_INT t = 10;
2387 int i;
2389 for (i = 0; i < n; ++i)
2390 t *= t;
2392 real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
2394 else
2396 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2397 do_multiply (&tens[n], t, t);
2401 return &tens[n];
2404 /* Returns 10**(-2**N). */
2406 static const REAL_VALUE_TYPE *
2407 ten_to_mptwo (int n)
2409 static REAL_VALUE_TYPE tens[EXP_BITS];
2411 gcc_assert (n >= 0);
2412 gcc_assert (n < EXP_BITS);
2414 if (tens[n].cl == rvc_zero)
2415 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2417 return &tens[n];
2420 /* Returns N. */
2422 static const REAL_VALUE_TYPE *
2423 real_digit (int n)
2425 static REAL_VALUE_TYPE num[10];
2427 gcc_assert (n >= 0);
2428 gcc_assert (n <= 9);
2430 if (n > 0 && num[n].cl == rvc_zero)
2431 real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
2433 return &num[n];
2436 /* Multiply R by 10**EXP. */
2438 static void
2439 times_pten (REAL_VALUE_TYPE *r, int exp)
2441 REAL_VALUE_TYPE pten, *rr;
2442 bool negative = (exp < 0);
2443 int i;
2445 if (negative)
2447 exp = -exp;
2448 pten = *real_digit (1);
2449 rr = &pten;
2451 else
2452 rr = r;
2454 for (i = 0; exp > 0; ++i, exp >>= 1)
2455 if (exp & 1)
2456 do_multiply (rr, rr, ten_to_ptwo (i));
2458 if (negative)
2459 do_divide (r, r, &pten);
2462 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2464 const REAL_VALUE_TYPE *
2465 dconst_e_ptr (void)
2467 static REAL_VALUE_TYPE value;
2469 /* Initialize mathematical constants for constant folding builtins.
2470 These constants need to be given to at least 160 bits precision. */
2471 if (value.cl == rvc_zero)
2473 auto_mpfr m (SIGNIFICAND_BITS);
2474 mpfr_set_ui (m, 1, MPFR_RNDN);
2475 mpfr_exp (m, m, MPFR_RNDN);
2476 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2479 return &value;
2482 /* Returns the special REAL_VALUE_TYPE corresponding to 'pi'. */
2484 const REAL_VALUE_TYPE *
2485 dconst_pi_ptr (void)
2487 static REAL_VALUE_TYPE value;
2489 /* Initialize mathematical constants for constant folding builtins.
2490 These constants need to be given to at least 160 bits precision. */
2491 if (value.cl == rvc_zero)
2493 auto_mpfr m (SIGNIFICAND_BITS);
2494 mpfr_set_si (m, -1, MPFR_RNDN);
2495 mpfr_acos (m, m, MPFR_RNDN);
2496 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2499 return &value;
2502 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2504 #define CACHED_FRACTION(NAME, N) \
2505 const REAL_VALUE_TYPE * \
2506 NAME (void) \
2508 static REAL_VALUE_TYPE value; \
2510 /* Initialize mathematical constants for constant folding builtins. \
2511 These constants need to be given to at least 160 bits \
2512 precision. */ \
2513 if (value.cl == rvc_zero) \
2514 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2515 return &value; \
2518 CACHED_FRACTION (dconst_third_ptr, 3)
2519 CACHED_FRACTION (dconst_quarter_ptr, 4)
2520 CACHED_FRACTION (dconst_sixth_ptr, 6)
2521 CACHED_FRACTION (dconst_ninth_ptr, 9)
2523 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2525 const REAL_VALUE_TYPE *
2526 dconst_sqrt2_ptr (void)
2528 static REAL_VALUE_TYPE value;
2530 /* Initialize mathematical constants for constant folding builtins.
2531 These constants need to be given to at least 160 bits precision. */
2532 if (value.cl == rvc_zero)
2534 auto_mpfr m (SIGNIFICAND_BITS);
2535 mpfr_sqrt_ui (m, 2, MPFR_RNDN);
2536 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2538 return &value;
2541 /* Fills R with Inf with SIGN. */
2543 void
2544 real_inf (REAL_VALUE_TYPE *r, bool sign)
2546 get_inf (r, sign);
2549 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2550 we force a QNaN, else we force an SNaN. The string, if not empty,
2551 is parsed as a number and placed in the significand. Return true
2552 if the string was successfully parsed. */
2554 bool
2555 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2556 format_helper fmt)
2558 if (*str == 0)
2560 if (quiet)
2561 get_canonical_qnan (r, 0);
2562 else
2563 get_canonical_snan (r, 0);
2565 else
2567 int base = 10, d;
2569 memset (r, 0, sizeof (*r));
2570 r->cl = rvc_nan;
2572 /* Parse akin to strtol into the significand of R. */
2574 while (ISSPACE (*str))
2575 str++;
2576 if (*str == '-')
2577 str++;
2578 else if (*str == '+')
2579 str++;
2580 if (*str == '0')
2582 str++;
2583 if (*str == 'x' || *str == 'X')
2585 base = 16;
2586 str++;
2588 else
2589 base = 8;
2592 while ((d = hex_value (*str)) < base)
2594 REAL_VALUE_TYPE u;
2596 switch (base)
2598 case 8:
2599 lshift_significand (r, r, 3);
2600 break;
2601 case 16:
2602 lshift_significand (r, r, 4);
2603 break;
2604 case 10:
2605 lshift_significand_1 (&u, r);
2606 lshift_significand (r, r, 3);
2607 add_significands (r, r, &u);
2608 break;
2609 default:
2610 gcc_unreachable ();
2613 get_zero (&u, 0);
2614 u.sig[0] = d;
2615 add_significands (r, r, &u);
2617 str++;
2620 /* Must have consumed the entire string for success. */
2621 if (*str != 0)
2622 return false;
2624 /* Shift the significand into place such that the bits
2625 are in the most significant bits for the format. */
2626 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2628 /* Our MSB is always unset for NaNs. */
2629 r->sig[SIGSZ-1] &= ~SIG_MSB;
2631 /* Force quiet or signaling NaN. */
2632 r->signalling = !quiet;
2635 return true;
2638 /* Fills R with the largest finite value representable in mode MODE.
2639 If SIGN is nonzero, R is set to the most negative finite value. */
2641 void
2642 real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
2644 const struct real_format *fmt;
2645 int np2;
2647 fmt = REAL_MODE_FORMAT (mode);
2648 gcc_assert (fmt);
2649 memset (r, 0, sizeof (*r));
2651 if (fmt->b == 10)
2652 decimal_real_maxval (r, sign, mode);
2653 else
2655 r->cl = rvc_normal;
2656 r->sign = sign;
2657 SET_REAL_EXP (r, fmt->emax);
2659 np2 = SIGNIFICAND_BITS - fmt->p;
2660 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2661 clear_significand_below (r, np2);
2663 if (fmt->pnan < fmt->p)
2664 /* This is an IBM extended double format made up of two IEEE
2665 doubles. The value of the long double is the sum of the
2666 values of the two parts. The most significant part is
2667 required to be the value of the long double rounded to the
2668 nearest double. Rounding means we need a slightly smaller
2669 value for LDBL_MAX. */
2670 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2674 /* Fills R with 2**N. */
2676 void
2677 real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
2679 memset (r, 0, sizeof (*r));
2681 n++;
2682 if (n > MAX_EXP)
2683 r->cl = rvc_inf;
2684 else if (n < -MAX_EXP)
2686 else
2688 r->cl = rvc_normal;
2689 SET_REAL_EXP (r, n);
2690 r->sig[SIGSZ-1] = SIG_MSB;
2692 if (fmt.decimal_p ())
2693 decimal_real_convert (r, fmt, r);
2697 static void
2698 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2700 int p2, np2, i, w;
2701 int emin2m1, emax2;
2702 bool round_up = false;
2704 if (r->decimal)
2706 if (fmt->b == 10)
2708 decimal_round_for_format (fmt, r);
2709 return;
2711 /* FIXME. We can come here via fp_easy_constant
2712 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2713 investigated whether this convert needs to be here, or
2714 something else is missing. */
2715 decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
2718 p2 = fmt->p;
2719 emin2m1 = fmt->emin - 1;
2720 emax2 = fmt->emax;
2722 np2 = SIGNIFICAND_BITS - p2;
2723 switch (r->cl)
2725 underflow:
2726 get_zero (r, r->sign);
2727 /* FALLTHRU */
2728 case rvc_zero:
2729 if (!fmt->has_signed_zero)
2730 r->sign = 0;
2731 return;
2733 overflow:
2734 get_inf (r, r->sign);
2735 case rvc_inf:
2736 return;
2738 case rvc_nan:
2739 clear_significand_below (r, np2);
2740 return;
2742 case rvc_normal:
2743 break;
2745 default:
2746 gcc_unreachable ();
2749 /* Check the range of the exponent. If we're out of range,
2750 either underflow or overflow. */
2751 if (REAL_EXP (r) > emax2)
2752 goto overflow;
2753 else if (REAL_EXP (r) <= emin2m1)
2755 int diff;
2757 if (!fmt->has_denorm)
2759 /* Don't underflow completely until we've had a chance to round. */
2760 if (REAL_EXP (r) < emin2m1)
2761 goto underflow;
2763 else
2765 diff = emin2m1 - REAL_EXP (r) + 1;
2766 if (diff > p2)
2767 goto underflow;
2769 /* De-normalize the significand. */
2770 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2771 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2775 if (!fmt->round_towards_zero)
2777 /* There are P2 true significand bits, followed by one guard bit,
2778 followed by one sticky bit, followed by stuff. Fold nonzero
2779 stuff into the sticky bit. */
2780 unsigned long sticky;
2781 bool guard, lsb;
2783 sticky = 0;
2784 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2785 sticky |= r->sig[i];
2786 sticky |= r->sig[w]
2787 & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2789 guard = test_significand_bit (r, np2 - 1);
2790 lsb = test_significand_bit (r, np2);
2792 /* Round to even. */
2793 round_up = guard && (sticky || lsb);
2796 if (round_up)
2798 REAL_VALUE_TYPE u;
2799 get_zero (&u, 0);
2800 set_significand_bit (&u, np2);
2802 if (add_significands (r, r, &u))
2804 /* Overflow. Means the significand had been all ones, and
2805 is now all zeros. Need to increase the exponent, and
2806 possibly re-normalize it. */
2807 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2808 if (REAL_EXP (r) > emax2)
2809 goto overflow;
2810 r->sig[SIGSZ-1] = SIG_MSB;
2814 /* Catch underflow that we deferred until after rounding. */
2815 if (REAL_EXP (r) <= emin2m1)
2816 goto underflow;
2818 /* Clear out trailing garbage. */
2819 clear_significand_below (r, np2);
2822 /* Extend or truncate to a new format. */
2824 void
2825 real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
2826 const REAL_VALUE_TYPE *a)
2828 *r = *a;
2830 if (a->decimal || fmt->b == 10)
2831 decimal_real_convert (r, fmt, a);
2833 round_for_format (fmt, r);
2835 /* Make resulting NaN value to be qNaN. The caller has the
2836 responsibility to avoid the operation if flag_signaling_nans
2837 is on. */
2838 if (r->cl == rvc_nan)
2839 r->signalling = 0;
2841 /* round_for_format de-normalizes denormals. Undo just that part. */
2842 if (r->cl == rvc_normal)
2843 normalize (r);
2846 /* Legacy. Likewise, except return the struct directly. */
2848 REAL_VALUE_TYPE
2849 real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
2851 REAL_VALUE_TYPE r;
2852 real_convert (&r, fmt, &a);
2853 return r;
2856 /* Return true if truncating to FMT is exact. */
2858 bool
2859 exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
2861 REAL_VALUE_TYPE t;
2862 int emin2m1;
2864 /* Don't allow conversion to denormals. */
2865 emin2m1 = fmt->emin - 1;
2866 if (REAL_EXP (a) <= emin2m1)
2867 return false;
2869 /* After conversion to the new format, the value must be identical. */
2870 real_convert (&t, fmt, a);
2871 return real_identical (&t, a);
2874 /* Write R to the given target format. Place the words of the result
2875 in target word order in BUF. There are always 32 bits in each
2876 long, no matter the size of the host long.
2878 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2880 long
2881 real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
2882 format_helper fmt)
2884 REAL_VALUE_TYPE r;
2885 long buf1;
2887 r = *r_orig;
2888 round_for_format (fmt, &r);
2890 if (!buf)
2891 buf = &buf1;
2892 (*fmt->encode) (fmt, buf, &r);
2894 return *buf;
2897 /* Read R from the given target format. Read the words of the result
2898 in target word order in BUF. There are always 32 bits in each
2899 long, no matter the size of the host long. */
2901 void
2902 real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
2904 (*fmt->decode) (fmt, r, buf);
2907 /* Return the number of bits of the largest binary value that the
2908 significand of FMT will hold. */
2909 /* ??? Legacy. Should get access to real_format directly. */
2912 significand_size (format_helper fmt)
2914 if (fmt == NULL)
2915 return 0;
2917 if (fmt->b == 10)
2919 /* Return the size in bits of the largest binary value that can be
2920 held by the decimal coefficient for this format. This is one more
2921 than the number of bits required to hold the largest coefficient
2922 of this format. */
2923 double log2_10 = 3.3219281;
2924 return fmt->p * log2_10;
2926 return fmt->p;
2929 /* Return a hash value for the given real value. */
2930 /* ??? The "unsigned int" return value is intended to be hashval_t,
2931 but I didn't want to pull hashtab.h into real.h. */
2933 unsigned int
2934 real_hash (const REAL_VALUE_TYPE *r)
2936 unsigned int h;
2937 size_t i;
2939 h = r->cl | (r->sign << 2);
2940 switch (r->cl)
2942 case rvc_zero:
2943 case rvc_inf:
2944 return h;
2946 case rvc_normal:
2947 h |= (unsigned int)REAL_EXP (r) << 3;
2948 break;
2950 case rvc_nan:
2951 if (r->signalling)
2952 h ^= (unsigned int)-1;
2953 if (r->canonical)
2954 return h;
2955 break;
2957 default:
2958 gcc_unreachable ();
2961 if (sizeof (unsigned long) > sizeof (unsigned int))
2962 for (i = 0; i < SIGSZ; ++i)
2964 unsigned long s = r->sig[i];
2965 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2967 else
2968 for (i = 0; i < SIGSZ; ++i)
2969 h ^= r->sig[i];
2971 return h;
2974 /* IEEE single-precision format. */
2976 static void encode_ieee_single (const struct real_format *fmt,
2977 long *, const REAL_VALUE_TYPE *);
2978 static void decode_ieee_single (const struct real_format *,
2979 REAL_VALUE_TYPE *, const long *);
2981 static void
2982 encode_ieee_single (const struct real_format *fmt, long *buf,
2983 const REAL_VALUE_TYPE *r)
2985 unsigned long image, sig, exp;
2986 unsigned long sign = r->sign;
2988 image = sign << 31;
2989 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2991 switch (r->cl)
2993 case rvc_zero:
2994 break;
2996 case rvc_inf:
2997 if (fmt->has_inf)
2998 image |= 255 << 23;
2999 else
3000 image |= 0x7fffffff;
3001 break;
3003 case rvc_nan:
3004 if (fmt->has_nans)
3006 if (r->canonical)
3007 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
3008 if (r->signalling == fmt->qnan_msb_set)
3009 sig &= ~(1 << 22);
3010 else
3011 sig |= 1 << 22;
3012 if (sig == 0)
3013 sig = 1 << 21;
3015 image |= 255 << 23;
3016 image |= sig;
3018 else
3019 image |= 0x7fffffff;
3020 break;
3022 case rvc_normal:
3023 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3024 whereas the intermediate representation is 0.F x 2**exp.
3025 Which means we're off by one. */
3026 if (real_isdenormal (r))
3027 exp = 0;
3028 else
3029 exp = REAL_EXP (r) + 127 - 1;
3030 image |= exp << 23;
3031 image |= sig;
3032 break;
3034 default:
3035 gcc_unreachable ();
3038 buf[0] = image;
3041 static void
3042 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3043 const long *buf)
3045 unsigned long image = buf[0] & 0xffffffff;
3046 bool sign = (image >> 31) & 1;
3047 int exp = (image >> 23) & 0xff;
3049 memset (r, 0, sizeof (*r));
3050 image <<= HOST_BITS_PER_LONG - 24;
3051 image &= ~SIG_MSB;
3053 if (exp == 0)
3055 if (image && fmt->has_denorm)
3057 r->cl = rvc_normal;
3058 r->sign = sign;
3059 SET_REAL_EXP (r, -126);
3060 r->sig[SIGSZ-1] = image << 1;
3061 normalize (r);
3063 else if (fmt->has_signed_zero)
3064 r->sign = sign;
3066 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
3068 if (image)
3070 r->cl = rvc_nan;
3071 r->sign = sign;
3072 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
3073 ^ fmt->qnan_msb_set);
3074 r->sig[SIGSZ-1] = image;
3076 else
3078 r->cl = rvc_inf;
3079 r->sign = sign;
3082 else
3084 r->cl = rvc_normal;
3085 r->sign = sign;
3086 SET_REAL_EXP (r, exp - 127 + 1);
3087 r->sig[SIGSZ-1] = image | SIG_MSB;
3091 const struct real_format ieee_single_format =
3093 encode_ieee_single,
3094 decode_ieee_single,
3098 -125,
3099 128,
3103 false,
3104 true,
3105 true,
3106 true,
3107 true,
3108 true,
3109 true,
3110 false,
3111 "ieee_single"
3114 const struct real_format mips_single_format =
3116 encode_ieee_single,
3117 decode_ieee_single,
3121 -125,
3122 128,
3126 false,
3127 true,
3128 true,
3129 true,
3130 true,
3131 true,
3132 false,
3133 true,
3134 "mips_single"
3137 const struct real_format motorola_single_format =
3139 encode_ieee_single,
3140 decode_ieee_single,
3144 -125,
3145 128,
3149 false,
3150 true,
3151 true,
3152 true,
3153 true,
3154 true,
3155 true,
3156 true,
3157 "motorola_single"
3160 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3161 single precision with the following differences:
3162 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3163 are generated.
3164 - NaNs are not supported.
3165 - The range of non-zero numbers in binary is
3166 (001)[1.]000...000 to (255)[1.]111...111.
3167 - Denormals can be represented, but are treated as +0.0 when
3168 used as an operand and are never generated as a result.
3169 - -0.0 can be represented, but a zero result is always +0.0.
3170 - the only supported rounding mode is trunction (towards zero). */
3171 const struct real_format spu_single_format =
3173 encode_ieee_single,
3174 decode_ieee_single,
3178 -125,
3179 129,
3183 true,
3184 false,
3185 false,
3186 false,
3187 true,
3188 true,
3189 false,
3190 false,
3191 "spu_single"
3194 /* IEEE double-precision format. */
3196 static void encode_ieee_double (const struct real_format *fmt,
3197 long *, const REAL_VALUE_TYPE *);
3198 static void decode_ieee_double (const struct real_format *,
3199 REAL_VALUE_TYPE *, const long *);
3201 static void
3202 encode_ieee_double (const struct real_format *fmt, long *buf,
3203 const REAL_VALUE_TYPE *r)
3205 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3206 unsigned long sign = r->sign;
3208 image_hi = sign << 31;
3209 image_lo = 0;
3211 if (HOST_BITS_PER_LONG == 64)
3213 sig_hi = r->sig[SIGSZ-1];
3214 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3215 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3217 else
3219 sig_hi = r->sig[SIGSZ-1];
3220 sig_lo = r->sig[SIGSZ-2];
3221 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3222 sig_hi = (sig_hi >> 11) & 0xfffff;
3225 switch (r->cl)
3227 case rvc_zero:
3228 break;
3230 case rvc_inf:
3231 if (fmt->has_inf)
3232 image_hi |= 2047 << 20;
3233 else
3235 image_hi |= 0x7fffffff;
3236 image_lo = 0xffffffff;
3238 break;
3240 case rvc_nan:
3241 if (fmt->has_nans)
3243 if (r->canonical)
3245 if (fmt->canonical_nan_lsbs_set)
3247 sig_hi = (1 << 19) - 1;
3248 sig_lo = 0xffffffff;
3250 else
3252 sig_hi = 0;
3253 sig_lo = 0;
3256 if (r->signalling == fmt->qnan_msb_set)
3257 sig_hi &= ~(1 << 19);
3258 else
3259 sig_hi |= 1 << 19;
3260 if (sig_hi == 0 && sig_lo == 0)
3261 sig_hi = 1 << 18;
3263 image_hi |= 2047 << 20;
3264 image_hi |= sig_hi;
3265 image_lo = sig_lo;
3267 else
3269 image_hi |= 0x7fffffff;
3270 image_lo = 0xffffffff;
3272 break;
3274 case rvc_normal:
3275 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3276 whereas the intermediate representation is 0.F x 2**exp.
3277 Which means we're off by one. */
3278 if (real_isdenormal (r))
3279 exp = 0;
3280 else
3281 exp = REAL_EXP (r) + 1023 - 1;
3282 image_hi |= exp << 20;
3283 image_hi |= sig_hi;
3284 image_lo = sig_lo;
3285 break;
3287 default:
3288 gcc_unreachable ();
3291 if (FLOAT_WORDS_BIG_ENDIAN)
3292 buf[0] = image_hi, buf[1] = image_lo;
3293 else
3294 buf[0] = image_lo, buf[1] = image_hi;
3297 static void
3298 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3299 const long *buf)
3301 unsigned long image_hi, image_lo;
3302 bool sign;
3303 int exp;
3305 if (FLOAT_WORDS_BIG_ENDIAN)
3306 image_hi = buf[0], image_lo = buf[1];
3307 else
3308 image_lo = buf[0], image_hi = buf[1];
3309 image_lo &= 0xffffffff;
3310 image_hi &= 0xffffffff;
3312 sign = (image_hi >> 31) & 1;
3313 exp = (image_hi >> 20) & 0x7ff;
3315 memset (r, 0, sizeof (*r));
3317 image_hi <<= 32 - 21;
3318 image_hi |= image_lo >> 21;
3319 image_hi &= 0x7fffffff;
3320 image_lo <<= 32 - 21;
3322 if (exp == 0)
3324 if ((image_hi || image_lo) && fmt->has_denorm)
3326 r->cl = rvc_normal;
3327 r->sign = sign;
3328 SET_REAL_EXP (r, -1022);
3329 if (HOST_BITS_PER_LONG == 32)
3331 image_hi = (image_hi << 1) | (image_lo >> 31);
3332 image_lo <<= 1;
3333 r->sig[SIGSZ-1] = image_hi;
3334 r->sig[SIGSZ-2] = image_lo;
3336 else
3338 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3339 r->sig[SIGSZ-1] = image_hi;
3341 normalize (r);
3343 else if (fmt->has_signed_zero)
3344 r->sign = sign;
3346 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3348 if (image_hi || image_lo)
3350 r->cl = rvc_nan;
3351 r->sign = sign;
3352 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3353 if (HOST_BITS_PER_LONG == 32)
3355 r->sig[SIGSZ-1] = image_hi;
3356 r->sig[SIGSZ-2] = image_lo;
3358 else
3359 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3361 else
3363 r->cl = rvc_inf;
3364 r->sign = sign;
3367 else
3369 r->cl = rvc_normal;
3370 r->sign = sign;
3371 SET_REAL_EXP (r, exp - 1023 + 1);
3372 if (HOST_BITS_PER_LONG == 32)
3374 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3375 r->sig[SIGSZ-2] = image_lo;
3377 else
3378 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3382 const struct real_format ieee_double_format =
3384 encode_ieee_double,
3385 decode_ieee_double,
3389 -1021,
3390 1024,
3394 false,
3395 true,
3396 true,
3397 true,
3398 true,
3399 true,
3400 true,
3401 false,
3402 "ieee_double"
3405 const struct real_format mips_double_format =
3407 encode_ieee_double,
3408 decode_ieee_double,
3412 -1021,
3413 1024,
3417 false,
3418 true,
3419 true,
3420 true,
3421 true,
3422 true,
3423 false,
3424 true,
3425 "mips_double"
3428 const struct real_format motorola_double_format =
3430 encode_ieee_double,
3431 decode_ieee_double,
3435 -1021,
3436 1024,
3440 false,
3441 true,
3442 true,
3443 true,
3444 true,
3445 true,
3446 true,
3447 true,
3448 "motorola_double"
3451 /* IEEE extended real format. This comes in three flavors: Intel's as
3452 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3453 12- and 16-byte images may be big- or little endian; Motorola's is
3454 always big endian. */
3456 /* Helper subroutine which converts from the internal format to the
3457 12-byte little-endian Intel format. Functions below adjust this
3458 for the other possible formats. */
3459 static void
3460 encode_ieee_extended (const struct real_format *fmt, long *buf,
3461 const REAL_VALUE_TYPE *r)
3463 unsigned long image_hi, sig_hi, sig_lo;
3465 image_hi = r->sign << 15;
3466 sig_hi = sig_lo = 0;
3468 switch (r->cl)
3470 case rvc_zero:
3471 break;
3473 case rvc_inf:
3474 if (fmt->has_inf)
3476 image_hi |= 32767;
3478 /* Intel requires the explicit integer bit to be set, otherwise
3479 it considers the value a "pseudo-infinity". Motorola docs
3480 say it doesn't care. */
3481 sig_hi = 0x80000000;
3483 else
3485 image_hi |= 32767;
3486 sig_lo = sig_hi = 0xffffffff;
3488 break;
3490 case rvc_nan:
3491 if (fmt->has_nans)
3493 image_hi |= 32767;
3494 if (r->canonical)
3496 if (fmt->canonical_nan_lsbs_set)
3498 sig_hi = (1 << 30) - 1;
3499 sig_lo = 0xffffffff;
3502 else if (HOST_BITS_PER_LONG == 32)
3504 sig_hi = r->sig[SIGSZ-1];
3505 sig_lo = r->sig[SIGSZ-2];
3507 else
3509 sig_lo = r->sig[SIGSZ-1];
3510 sig_hi = sig_lo >> 31 >> 1;
3511 sig_lo &= 0xffffffff;
3513 if (r->signalling == fmt->qnan_msb_set)
3514 sig_hi &= ~(1 << 30);
3515 else
3516 sig_hi |= 1 << 30;
3517 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3518 sig_hi = 1 << 29;
3520 /* Intel requires the explicit integer bit to be set, otherwise
3521 it considers the value a "pseudo-nan". Motorola docs say it
3522 doesn't care. */
3523 sig_hi |= 0x80000000;
3525 else
3527 image_hi |= 32767;
3528 sig_lo = sig_hi = 0xffffffff;
3530 break;
3532 case rvc_normal:
3534 int exp = REAL_EXP (r);
3536 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3537 whereas the intermediate representation is 0.F x 2**exp.
3538 Which means we're off by one.
3540 Except for Motorola, which consider exp=0 and explicit
3541 integer bit set to continue to be normalized. In theory
3542 this discrepancy has been taken care of by the difference
3543 in fmt->emin in round_for_format. */
3545 if (real_isdenormal (r))
3546 exp = 0;
3547 else
3549 exp += 16383 - 1;
3550 gcc_assert (exp >= 0);
3552 image_hi |= exp;
3554 if (HOST_BITS_PER_LONG == 32)
3556 sig_hi = r->sig[SIGSZ-1];
3557 sig_lo = r->sig[SIGSZ-2];
3559 else
3561 sig_lo = r->sig[SIGSZ-1];
3562 sig_hi = sig_lo >> 31 >> 1;
3563 sig_lo &= 0xffffffff;
3566 break;
3568 default:
3569 gcc_unreachable ();
3572 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3575 /* Convert from the internal format to the 12-byte Motorola format
3576 for an IEEE extended real. */
3577 static void
3578 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3579 const REAL_VALUE_TYPE *r)
3581 long intermed[3];
3582 encode_ieee_extended (fmt, intermed, r);
3584 if (r->cl == rvc_inf)
3585 /* For infinity clear the explicit integer bit again, so that the
3586 format matches the canonical infinity generated by the FPU. */
3587 intermed[1] = 0;
3589 /* Motorola chips are assumed always to be big-endian. Also, the
3590 padding in a Motorola extended real goes between the exponent and
3591 the mantissa. At this point the mantissa is entirely within
3592 elements 0 and 1 of intermed, and the exponent entirely within
3593 element 2, so all we have to do is swap the order around, and
3594 shift element 2 left 16 bits. */
3595 buf[0] = intermed[2] << 16;
3596 buf[1] = intermed[1];
3597 buf[2] = intermed[0];
3600 /* Convert from the internal format to the 12-byte Intel format for
3601 an IEEE extended real. */
3602 static void
3603 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3604 const REAL_VALUE_TYPE *r)
3606 if (FLOAT_WORDS_BIG_ENDIAN)
3608 /* All the padding in an Intel-format extended real goes at the high
3609 end, which in this case is after the mantissa, not the exponent.
3610 Therefore we must shift everything down 16 bits. */
3611 long intermed[3];
3612 encode_ieee_extended (fmt, intermed, r);
3613 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3614 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3615 buf[2] = (intermed[0] << 16);
3617 else
3618 /* encode_ieee_extended produces what we want directly. */
3619 encode_ieee_extended (fmt, buf, r);
3622 /* Convert from the internal format to the 16-byte Intel format for
3623 an IEEE extended real. */
3624 static void
3625 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3626 const REAL_VALUE_TYPE *r)
3628 /* All the padding in an Intel-format extended real goes at the high end. */
3629 encode_ieee_extended_intel_96 (fmt, buf, r);
3630 buf[3] = 0;
3633 /* As above, we have a helper function which converts from 12-byte
3634 little-endian Intel format to internal format. Functions below
3635 adjust for the other possible formats. */
3636 static void
3637 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3638 const long *buf)
3640 unsigned long image_hi, sig_hi, sig_lo;
3641 bool sign;
3642 int exp;
3644 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3645 sig_lo &= 0xffffffff;
3646 sig_hi &= 0xffffffff;
3647 image_hi &= 0xffffffff;
3649 sign = (image_hi >> 15) & 1;
3650 exp = image_hi & 0x7fff;
3652 memset (r, 0, sizeof (*r));
3654 if (exp == 0)
3656 if ((sig_hi || sig_lo) && fmt->has_denorm)
3658 r->cl = rvc_normal;
3659 r->sign = sign;
3661 /* When the IEEE format contains a hidden bit, we know that
3662 it's zero at this point, and so shift up the significand
3663 and decrease the exponent to match. In this case, Motorola
3664 defines the explicit integer bit to be valid, so we don't
3665 know whether the msb is set or not. */
3666 SET_REAL_EXP (r, fmt->emin);
3667 if (HOST_BITS_PER_LONG == 32)
3669 r->sig[SIGSZ-1] = sig_hi;
3670 r->sig[SIGSZ-2] = sig_lo;
3672 else
3673 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3675 normalize (r);
3677 else if (fmt->has_signed_zero)
3678 r->sign = sign;
3680 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3682 /* See above re "pseudo-infinities" and "pseudo-nans".
3683 Short summary is that the MSB will likely always be
3684 set, and that we don't care about it. */
3685 sig_hi &= 0x7fffffff;
3687 if (sig_hi || sig_lo)
3689 r->cl = rvc_nan;
3690 r->sign = sign;
3691 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3692 if (HOST_BITS_PER_LONG == 32)
3694 r->sig[SIGSZ-1] = sig_hi;
3695 r->sig[SIGSZ-2] = sig_lo;
3697 else
3698 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3700 else
3702 r->cl = rvc_inf;
3703 r->sign = sign;
3706 else
3708 r->cl = rvc_normal;
3709 r->sign = sign;
3710 SET_REAL_EXP (r, exp - 16383 + 1);
3711 if (HOST_BITS_PER_LONG == 32)
3713 r->sig[SIGSZ-1] = sig_hi;
3714 r->sig[SIGSZ-2] = sig_lo;
3716 else
3717 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3721 /* Convert from the internal format to the 12-byte Motorola format
3722 for an IEEE extended real. */
3723 static void
3724 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3725 const long *buf)
3727 long intermed[3];
3729 /* Motorola chips are assumed always to be big-endian. Also, the
3730 padding in a Motorola extended real goes between the exponent and
3731 the mantissa; remove it. */
3732 intermed[0] = buf[2];
3733 intermed[1] = buf[1];
3734 intermed[2] = (unsigned long)buf[0] >> 16;
3736 decode_ieee_extended (fmt, r, intermed);
3739 /* Convert from the internal format to the 12-byte Intel format for
3740 an IEEE extended real. */
3741 static void
3742 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3743 const long *buf)
3745 if (FLOAT_WORDS_BIG_ENDIAN)
3747 /* All the padding in an Intel-format extended real goes at the high
3748 end, which in this case is after the mantissa, not the exponent.
3749 Therefore we must shift everything up 16 bits. */
3750 long intermed[3];
3752 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3753 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3754 intermed[2] = ((unsigned long)buf[0] >> 16);
3756 decode_ieee_extended (fmt, r, intermed);
3758 else
3759 /* decode_ieee_extended produces what we want directly. */
3760 decode_ieee_extended (fmt, r, buf);
3763 /* Convert from the internal format to the 16-byte Intel format for
3764 an IEEE extended real. */
3765 static void
3766 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3767 const long *buf)
3769 /* All the padding in an Intel-format extended real goes at the high end. */
3770 decode_ieee_extended_intel_96 (fmt, r, buf);
3773 const struct real_format ieee_extended_motorola_format =
3775 encode_ieee_extended_motorola,
3776 decode_ieee_extended_motorola,
3780 -16382,
3781 16384,
3785 false,
3786 true,
3787 true,
3788 true,
3789 true,
3790 true,
3791 true,
3792 true,
3793 "ieee_extended_motorola"
3796 const struct real_format ieee_extended_intel_96_format =
3798 encode_ieee_extended_intel_96,
3799 decode_ieee_extended_intel_96,
3803 -16381,
3804 16384,
3808 false,
3809 true,
3810 true,
3811 true,
3812 true,
3813 true,
3814 true,
3815 false,
3816 "ieee_extended_intel_96"
3819 const struct real_format ieee_extended_intel_128_format =
3821 encode_ieee_extended_intel_128,
3822 decode_ieee_extended_intel_128,
3826 -16381,
3827 16384,
3831 false,
3832 true,
3833 true,
3834 true,
3835 true,
3836 true,
3837 true,
3838 false,
3839 "ieee_extended_intel_128"
3842 /* The following caters to i386 systems that set the rounding precision
3843 to 53 bits instead of 64, e.g. FreeBSD. */
3844 const struct real_format ieee_extended_intel_96_round_53_format =
3846 encode_ieee_extended_intel_96,
3847 decode_ieee_extended_intel_96,
3851 -16381,
3852 16384,
3856 false,
3857 true,
3858 true,
3859 true,
3860 true,
3861 true,
3862 true,
3863 false,
3864 "ieee_extended_intel_96_round_53"
3867 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3868 numbers whose sum is equal to the extended precision value. The number
3869 with greater magnitude is first. This format has the same magnitude
3870 range as an IEEE double precision value, but effectively 106 bits of
3871 significand precision. Infinity and NaN are represented by their IEEE
3872 double precision value stored in the first number, the second number is
3873 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3875 static void encode_ibm_extended (const struct real_format *fmt,
3876 long *, const REAL_VALUE_TYPE *);
3877 static void decode_ibm_extended (const struct real_format *,
3878 REAL_VALUE_TYPE *, const long *);
3880 static void
3881 encode_ibm_extended (const struct real_format *fmt, long *buf,
3882 const REAL_VALUE_TYPE *r)
3884 REAL_VALUE_TYPE u, normr, v;
3885 const struct real_format *base_fmt;
3887 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3889 /* Renormalize R before doing any arithmetic on it. */
3890 normr = *r;
3891 if (normr.cl == rvc_normal)
3892 normalize (&normr);
3894 /* u = IEEE double precision portion of significand. */
3895 u = normr;
3896 round_for_format (base_fmt, &u);
3897 encode_ieee_double (base_fmt, &buf[0], &u);
3899 if (u.cl == rvc_normal)
3901 do_add (&v, &normr, &u, 1);
3902 /* Call round_for_format since we might need to denormalize. */
3903 round_for_format (base_fmt, &v);
3904 encode_ieee_double (base_fmt, &buf[2], &v);
3906 else
3908 /* Inf, NaN, 0 are all representable as doubles, so the
3909 least-significant part can be 0.0. */
3910 buf[2] = 0;
3911 buf[3] = 0;
3915 static void
3916 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3917 const long *buf)
3919 REAL_VALUE_TYPE u, v;
3920 const struct real_format *base_fmt;
3922 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3923 decode_ieee_double (base_fmt, &u, &buf[0]);
3925 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3927 decode_ieee_double (base_fmt, &v, &buf[2]);
3928 do_add (r, &u, &v, 0);
3930 else
3931 *r = u;
3934 const struct real_format ibm_extended_format =
3936 encode_ibm_extended,
3937 decode_ibm_extended,
3939 53 + 53,
3941 -1021 + 53,
3942 1024,
3943 127,
3946 false,
3947 true,
3948 true,
3949 true,
3950 true,
3951 true,
3952 true,
3953 false,
3954 "ibm_extended"
3957 const struct real_format mips_extended_format =
3959 encode_ibm_extended,
3960 decode_ibm_extended,
3962 53 + 53,
3964 -1021 + 53,
3965 1024,
3966 127,
3969 false,
3970 true,
3971 true,
3972 true,
3973 true,
3974 true,
3975 false,
3976 true,
3977 "mips_extended"
3981 /* IEEE quad precision format. */
3983 static void encode_ieee_quad (const struct real_format *fmt,
3984 long *, const REAL_VALUE_TYPE *);
3985 static void decode_ieee_quad (const struct real_format *,
3986 REAL_VALUE_TYPE *, const long *);
3988 static void
3989 encode_ieee_quad (const struct real_format *fmt, long *buf,
3990 const REAL_VALUE_TYPE *r)
3992 unsigned long image3, image2, image1, image0, exp;
3993 unsigned long sign = r->sign;
3994 REAL_VALUE_TYPE u;
3996 image3 = sign << 31;
3997 image2 = 0;
3998 image1 = 0;
3999 image0 = 0;
4001 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
4003 switch (r->cl)
4005 case rvc_zero:
4006 break;
4008 case rvc_inf:
4009 if (fmt->has_inf)
4010 image3 |= 32767 << 16;
4011 else
4013 image3 |= 0x7fffffff;
4014 image2 = 0xffffffff;
4015 image1 = 0xffffffff;
4016 image0 = 0xffffffff;
4018 break;
4020 case rvc_nan:
4021 if (fmt->has_nans)
4023 image3 |= 32767 << 16;
4025 if (r->canonical)
4027 if (fmt->canonical_nan_lsbs_set)
4029 image3 |= 0x7fff;
4030 image2 = image1 = image0 = 0xffffffff;
4033 else if (HOST_BITS_PER_LONG == 32)
4035 image0 = u.sig[0];
4036 image1 = u.sig[1];
4037 image2 = u.sig[2];
4038 image3 |= u.sig[3] & 0xffff;
4040 else
4042 image0 = u.sig[0];
4043 image1 = image0 >> 31 >> 1;
4044 image2 = u.sig[1];
4045 image3 |= (image2 >> 31 >> 1) & 0xffff;
4046 image0 &= 0xffffffff;
4047 image2 &= 0xffffffff;
4049 if (r->signalling == fmt->qnan_msb_set)
4050 image3 &= ~0x8000;
4051 else
4052 image3 |= 0x8000;
4053 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
4054 image3 |= 0x4000;
4056 else
4058 image3 |= 0x7fffffff;
4059 image2 = 0xffffffff;
4060 image1 = 0xffffffff;
4061 image0 = 0xffffffff;
4063 break;
4065 case rvc_normal:
4066 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4067 whereas the intermediate representation is 0.F x 2**exp.
4068 Which means we're off by one. */
4069 if (real_isdenormal (r))
4070 exp = 0;
4071 else
4072 exp = REAL_EXP (r) + 16383 - 1;
4073 image3 |= exp << 16;
4075 if (HOST_BITS_PER_LONG == 32)
4077 image0 = u.sig[0];
4078 image1 = u.sig[1];
4079 image2 = u.sig[2];
4080 image3 |= u.sig[3] & 0xffff;
4082 else
4084 image0 = u.sig[0];
4085 image1 = image0 >> 31 >> 1;
4086 image2 = u.sig[1];
4087 image3 |= (image2 >> 31 >> 1) & 0xffff;
4088 image0 &= 0xffffffff;
4089 image2 &= 0xffffffff;
4091 break;
4093 default:
4094 gcc_unreachable ();
4097 if (FLOAT_WORDS_BIG_ENDIAN)
4099 buf[0] = image3;
4100 buf[1] = image2;
4101 buf[2] = image1;
4102 buf[3] = image0;
4104 else
4106 buf[0] = image0;
4107 buf[1] = image1;
4108 buf[2] = image2;
4109 buf[3] = image3;
4113 static void
4114 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4115 const long *buf)
4117 unsigned long image3, image2, image1, image0;
4118 bool sign;
4119 int exp;
4121 if (FLOAT_WORDS_BIG_ENDIAN)
4123 image3 = buf[0];
4124 image2 = buf[1];
4125 image1 = buf[2];
4126 image0 = buf[3];
4128 else
4130 image0 = buf[0];
4131 image1 = buf[1];
4132 image2 = buf[2];
4133 image3 = buf[3];
4135 image0 &= 0xffffffff;
4136 image1 &= 0xffffffff;
4137 image2 &= 0xffffffff;
4139 sign = (image3 >> 31) & 1;
4140 exp = (image3 >> 16) & 0x7fff;
4141 image3 &= 0xffff;
4143 memset (r, 0, sizeof (*r));
4145 if (exp == 0)
4147 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4149 r->cl = rvc_normal;
4150 r->sign = sign;
4152 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4153 if (HOST_BITS_PER_LONG == 32)
4155 r->sig[0] = image0;
4156 r->sig[1] = image1;
4157 r->sig[2] = image2;
4158 r->sig[3] = image3;
4160 else
4162 r->sig[0] = (image1 << 31 << 1) | image0;
4163 r->sig[1] = (image3 << 31 << 1) | image2;
4166 normalize (r);
4168 else if (fmt->has_signed_zero)
4169 r->sign = sign;
4171 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4173 if (image3 | image2 | image1 | image0)
4175 r->cl = rvc_nan;
4176 r->sign = sign;
4177 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4179 if (HOST_BITS_PER_LONG == 32)
4181 r->sig[0] = image0;
4182 r->sig[1] = image1;
4183 r->sig[2] = image2;
4184 r->sig[3] = image3;
4186 else
4188 r->sig[0] = (image1 << 31 << 1) | image0;
4189 r->sig[1] = (image3 << 31 << 1) | image2;
4191 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4193 else
4195 r->cl = rvc_inf;
4196 r->sign = sign;
4199 else
4201 r->cl = rvc_normal;
4202 r->sign = sign;
4203 SET_REAL_EXP (r, exp - 16383 + 1);
4205 if (HOST_BITS_PER_LONG == 32)
4207 r->sig[0] = image0;
4208 r->sig[1] = image1;
4209 r->sig[2] = image2;
4210 r->sig[3] = image3;
4212 else
4214 r->sig[0] = (image1 << 31 << 1) | image0;
4215 r->sig[1] = (image3 << 31 << 1) | image2;
4217 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4218 r->sig[SIGSZ-1] |= SIG_MSB;
4222 const struct real_format ieee_quad_format =
4224 encode_ieee_quad,
4225 decode_ieee_quad,
4227 113,
4228 113,
4229 -16381,
4230 16384,
4231 127,
4232 127,
4233 128,
4234 false,
4235 true,
4236 true,
4237 true,
4238 true,
4239 true,
4240 true,
4241 false,
4242 "ieee_quad"
4245 const struct real_format mips_quad_format =
4247 encode_ieee_quad,
4248 decode_ieee_quad,
4250 113,
4251 113,
4252 -16381,
4253 16384,
4254 127,
4255 127,
4256 128,
4257 false,
4258 true,
4259 true,
4260 true,
4261 true,
4262 true,
4263 false,
4264 true,
4265 "mips_quad"
4268 /* Descriptions of VAX floating point formats can be found beginning at
4270 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4272 The thing to remember is that they're almost IEEE, except for word
4273 order, exponent bias, and the lack of infinities, nans, and denormals.
4275 We don't implement the H_floating format here, simply because neither
4276 the VAX or Alpha ports use it. */
4278 static void encode_vax_f (const struct real_format *fmt,
4279 long *, const REAL_VALUE_TYPE *);
4280 static void decode_vax_f (const struct real_format *,
4281 REAL_VALUE_TYPE *, const long *);
4282 static void encode_vax_d (const struct real_format *fmt,
4283 long *, const REAL_VALUE_TYPE *);
4284 static void decode_vax_d (const struct real_format *,
4285 REAL_VALUE_TYPE *, const long *);
4286 static void encode_vax_g (const struct real_format *fmt,
4287 long *, const REAL_VALUE_TYPE *);
4288 static void decode_vax_g (const struct real_format *,
4289 REAL_VALUE_TYPE *, const long *);
4291 static void
4292 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4293 const REAL_VALUE_TYPE *r)
4295 unsigned long sign, exp, sig, image;
4297 sign = r->sign << 15;
4299 switch (r->cl)
4301 case rvc_zero:
4302 image = 0;
4303 break;
4305 case rvc_inf:
4306 case rvc_nan:
4307 image = 0xffff7fff | sign;
4308 break;
4310 case rvc_normal:
4311 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4312 exp = REAL_EXP (r) + 128;
4314 image = (sig << 16) & 0xffff0000;
4315 image |= sign;
4316 image |= exp << 7;
4317 image |= sig >> 16;
4318 break;
4320 default:
4321 gcc_unreachable ();
4324 buf[0] = image;
4327 static void
4328 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4329 REAL_VALUE_TYPE *r, const long *buf)
4331 unsigned long image = buf[0] & 0xffffffff;
4332 int exp = (image >> 7) & 0xff;
4334 memset (r, 0, sizeof (*r));
4336 if (exp != 0)
4338 r->cl = rvc_normal;
4339 r->sign = (image >> 15) & 1;
4340 SET_REAL_EXP (r, exp - 128);
4342 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4343 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4347 static void
4348 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4349 const REAL_VALUE_TYPE *r)
4351 unsigned long image0, image1, sign = r->sign << 15;
4353 switch (r->cl)
4355 case rvc_zero:
4356 image0 = image1 = 0;
4357 break;
4359 case rvc_inf:
4360 case rvc_nan:
4361 image0 = 0xffff7fff | sign;
4362 image1 = 0xffffffff;
4363 break;
4365 case rvc_normal:
4366 /* Extract the significand into straight hi:lo. */
4367 if (HOST_BITS_PER_LONG == 64)
4369 image0 = r->sig[SIGSZ-1];
4370 image1 = (image0 >> (64 - 56)) & 0xffffffff;
4371 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4373 else
4375 image0 = r->sig[SIGSZ-1];
4376 image1 = r->sig[SIGSZ-2];
4377 image1 = (image0 << 24) | (image1 >> 8);
4378 image0 = (image0 >> 8) & 0xffffff;
4381 /* Rearrange the half-words of the significand to match the
4382 external format. */
4383 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4384 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4386 /* Add the sign and exponent. */
4387 image0 |= sign;
4388 image0 |= (REAL_EXP (r) + 128) << 7;
4389 break;
4391 default:
4392 gcc_unreachable ();
4395 if (FLOAT_WORDS_BIG_ENDIAN)
4396 buf[0] = image1, buf[1] = image0;
4397 else
4398 buf[0] = image0, buf[1] = image1;
4401 static void
4402 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4403 REAL_VALUE_TYPE *r, const long *buf)
4405 unsigned long image0, image1;
4406 int exp;
4408 if (FLOAT_WORDS_BIG_ENDIAN)
4409 image1 = buf[0], image0 = buf[1];
4410 else
4411 image0 = buf[0], image1 = buf[1];
4412 image0 &= 0xffffffff;
4413 image1 &= 0xffffffff;
4415 exp = (image0 >> 7) & 0xff;
4417 memset (r, 0, sizeof (*r));
4419 if (exp != 0)
4421 r->cl = rvc_normal;
4422 r->sign = (image0 >> 15) & 1;
4423 SET_REAL_EXP (r, exp - 128);
4425 /* Rearrange the half-words of the external format into
4426 proper ascending order. */
4427 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4428 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4430 if (HOST_BITS_PER_LONG == 64)
4432 image0 = (image0 << 31 << 1) | image1;
4433 image0 <<= 64 - 56;
4434 image0 |= SIG_MSB;
4435 r->sig[SIGSZ-1] = image0;
4437 else
4439 r->sig[SIGSZ-1] = image0;
4440 r->sig[SIGSZ-2] = image1;
4441 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4442 r->sig[SIGSZ-1] |= SIG_MSB;
4447 static void
4448 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4449 const REAL_VALUE_TYPE *r)
4451 unsigned long image0, image1, sign = r->sign << 15;
4453 switch (r->cl)
4455 case rvc_zero:
4456 image0 = image1 = 0;
4457 break;
4459 case rvc_inf:
4460 case rvc_nan:
4461 image0 = 0xffff7fff | sign;
4462 image1 = 0xffffffff;
4463 break;
4465 case rvc_normal:
4466 /* Extract the significand into straight hi:lo. */
4467 if (HOST_BITS_PER_LONG == 64)
4469 image0 = r->sig[SIGSZ-1];
4470 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4471 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4473 else
4475 image0 = r->sig[SIGSZ-1];
4476 image1 = r->sig[SIGSZ-2];
4477 image1 = (image0 << 21) | (image1 >> 11);
4478 image0 = (image0 >> 11) & 0xfffff;
4481 /* Rearrange the half-words of the significand to match the
4482 external format. */
4483 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4484 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4486 /* Add the sign and exponent. */
4487 image0 |= sign;
4488 image0 |= (REAL_EXP (r) + 1024) << 4;
4489 break;
4491 default:
4492 gcc_unreachable ();
4495 if (FLOAT_WORDS_BIG_ENDIAN)
4496 buf[0] = image1, buf[1] = image0;
4497 else
4498 buf[0] = image0, buf[1] = image1;
4501 static void
4502 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4503 REAL_VALUE_TYPE *r, const long *buf)
4505 unsigned long image0, image1;
4506 int exp;
4508 if (FLOAT_WORDS_BIG_ENDIAN)
4509 image1 = buf[0], image0 = buf[1];
4510 else
4511 image0 = buf[0], image1 = buf[1];
4512 image0 &= 0xffffffff;
4513 image1 &= 0xffffffff;
4515 exp = (image0 >> 4) & 0x7ff;
4517 memset (r, 0, sizeof (*r));
4519 if (exp != 0)
4521 r->cl = rvc_normal;
4522 r->sign = (image0 >> 15) & 1;
4523 SET_REAL_EXP (r, exp - 1024);
4525 /* Rearrange the half-words of the external format into
4526 proper ascending order. */
4527 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4528 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4530 if (HOST_BITS_PER_LONG == 64)
4532 image0 = (image0 << 31 << 1) | image1;
4533 image0 <<= 64 - 53;
4534 image0 |= SIG_MSB;
4535 r->sig[SIGSZ-1] = image0;
4537 else
4539 r->sig[SIGSZ-1] = image0;
4540 r->sig[SIGSZ-2] = image1;
4541 lshift_significand (r, r, 64 - 53);
4542 r->sig[SIGSZ-1] |= SIG_MSB;
4547 const struct real_format vax_f_format =
4549 encode_vax_f,
4550 decode_vax_f,
4554 -127,
4555 127,
4559 false,
4560 false,
4561 false,
4562 false,
4563 false,
4564 false,
4565 false,
4566 false,
4567 "vax_f"
4570 const struct real_format vax_d_format =
4572 encode_vax_d,
4573 decode_vax_d,
4577 -127,
4578 127,
4582 false,
4583 false,
4584 false,
4585 false,
4586 false,
4587 false,
4588 false,
4589 false,
4590 "vax_d"
4593 const struct real_format vax_g_format =
4595 encode_vax_g,
4596 decode_vax_g,
4600 -1023,
4601 1023,
4605 false,
4606 false,
4607 false,
4608 false,
4609 false,
4610 false,
4611 false,
4612 false,
4613 "vax_g"
4616 /* Encode real R into a single precision DFP value in BUF. */
4617 static void
4618 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4619 long *buf ATTRIBUTE_UNUSED,
4620 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4622 encode_decimal32 (fmt, buf, r);
4625 /* Decode a single precision DFP value in BUF into a real R. */
4626 static void
4627 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4628 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4629 const long *buf ATTRIBUTE_UNUSED)
4631 decode_decimal32 (fmt, r, buf);
4634 /* Encode real R into a double precision DFP value in BUF. */
4635 static void
4636 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4637 long *buf ATTRIBUTE_UNUSED,
4638 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4640 encode_decimal64 (fmt, buf, r);
4643 /* Decode a double precision DFP value in BUF into a real R. */
4644 static void
4645 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4646 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4647 const long *buf ATTRIBUTE_UNUSED)
4649 decode_decimal64 (fmt, r, buf);
4652 /* Encode real R into a quad precision DFP value in BUF. */
4653 static void
4654 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4655 long *buf ATTRIBUTE_UNUSED,
4656 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4658 encode_decimal128 (fmt, buf, r);
4661 /* Decode a quad precision DFP value in BUF into a real R. */
4662 static void
4663 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4664 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4665 const long *buf ATTRIBUTE_UNUSED)
4667 decode_decimal128 (fmt, r, buf);
4670 /* Single precision decimal floating point (IEEE 754). */
4671 const struct real_format decimal_single_format =
4673 encode_decimal_single,
4674 decode_decimal_single,
4678 -94,
4683 false,
4684 true,
4685 true,
4686 true,
4687 true,
4688 true,
4689 true,
4690 false,
4691 "decimal_single"
4694 /* Double precision decimal floating point (IEEE 754). */
4695 const struct real_format decimal_double_format =
4697 encode_decimal_double,
4698 decode_decimal_double,
4702 -382,
4703 385,
4707 false,
4708 true,
4709 true,
4710 true,
4711 true,
4712 true,
4713 true,
4714 false,
4715 "decimal_double"
4718 /* Quad precision decimal floating point (IEEE 754). */
4719 const struct real_format decimal_quad_format =
4721 encode_decimal_quad,
4722 decode_decimal_quad,
4726 -6142,
4727 6145,
4728 127,
4729 127,
4730 128,
4731 false,
4732 true,
4733 true,
4734 true,
4735 true,
4736 true,
4737 true,
4738 false,
4739 "decimal_quad"
4742 /* Encode half-precision floats. This routine is used both for the IEEE
4743 ARM alternative encodings. */
4744 static void
4745 encode_ieee_half (const struct real_format *fmt, long *buf,
4746 const REAL_VALUE_TYPE *r)
4748 unsigned long image, sig, exp;
4749 unsigned long sign = r->sign;
4751 image = sign << 15;
4752 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4754 switch (r->cl)
4756 case rvc_zero:
4757 break;
4759 case rvc_inf:
4760 if (fmt->has_inf)
4761 image |= 31 << 10;
4762 else
4763 image |= 0x7fff;
4764 break;
4766 case rvc_nan:
4767 if (fmt->has_nans)
4769 if (r->canonical)
4770 sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4771 if (r->signalling == fmt->qnan_msb_set)
4772 sig &= ~(1 << 9);
4773 else
4774 sig |= 1 << 9;
4775 if (sig == 0)
4776 sig = 1 << 8;
4778 image |= 31 << 10;
4779 image |= sig;
4781 else
4782 image |= 0x3ff;
4783 break;
4785 case rvc_normal:
4786 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4787 whereas the intermediate representation is 0.F x 2**exp.
4788 Which means we're off by one. */
4789 if (real_isdenormal (r))
4790 exp = 0;
4791 else
4792 exp = REAL_EXP (r) + 15 - 1;
4793 image |= exp << 10;
4794 image |= sig;
4795 break;
4797 default:
4798 gcc_unreachable ();
4801 buf[0] = image;
4804 /* Decode half-precision floats. This routine is used both for the IEEE
4805 ARM alternative encodings. */
4806 static void
4807 decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4808 const long *buf)
4810 unsigned long image = buf[0] & 0xffff;
4811 bool sign = (image >> 15) & 1;
4812 int exp = (image >> 10) & 0x1f;
4814 memset (r, 0, sizeof (*r));
4815 image <<= HOST_BITS_PER_LONG - 11;
4816 image &= ~SIG_MSB;
4818 if (exp == 0)
4820 if (image && fmt->has_denorm)
4822 r->cl = rvc_normal;
4823 r->sign = sign;
4824 SET_REAL_EXP (r, -14);
4825 r->sig[SIGSZ-1] = image << 1;
4826 normalize (r);
4828 else if (fmt->has_signed_zero)
4829 r->sign = sign;
4831 else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4833 if (image)
4835 r->cl = rvc_nan;
4836 r->sign = sign;
4837 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4838 ^ fmt->qnan_msb_set);
4839 r->sig[SIGSZ-1] = image;
4841 else
4843 r->cl = rvc_inf;
4844 r->sign = sign;
4847 else
4849 r->cl = rvc_normal;
4850 r->sign = sign;
4851 SET_REAL_EXP (r, exp - 15 + 1);
4852 r->sig[SIGSZ-1] = image | SIG_MSB;
4856 /* Encode arm_bfloat types. */
4857 static void
4858 encode_arm_bfloat_half (const struct real_format *fmt, long *buf,
4859 const REAL_VALUE_TYPE *r)
4861 unsigned long image, sig, exp;
4862 unsigned long sign = r->sign;
4864 image = sign << 15;
4865 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 8)) & 0x7f;
4867 switch (r->cl)
4869 case rvc_zero:
4870 break;
4872 case rvc_inf:
4873 if (fmt->has_inf)
4874 image |= 255 << 7;
4875 else
4876 image |= 0x7fff;
4877 break;
4879 case rvc_nan:
4880 if (fmt->has_nans)
4882 if (r->canonical)
4883 sig = (fmt->canonical_nan_lsbs_set ? (1 << 6) - 1 : 0);
4884 if (r->signalling == fmt->qnan_msb_set)
4885 sig &= ~(1 << 6);
4886 else
4887 sig |= 1 << 6;
4888 if (sig == 0)
4889 sig = 1 << 5;
4891 image |= 255 << 7;
4892 image |= sig;
4894 else
4895 image |= 0x7fff;
4896 break;
4898 case rvc_normal:
4899 if (real_isdenormal (r))
4900 exp = 0;
4901 else
4902 exp = REAL_EXP (r) + 127 - 1;
4903 image |= exp << 7;
4904 image |= sig;
4905 break;
4907 default:
4908 gcc_unreachable ();
4911 buf[0] = image;
4914 /* Decode arm_bfloat types. */
4915 static void
4916 decode_arm_bfloat_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4917 const long *buf)
4919 unsigned long image = buf[0] & 0xffff;
4920 bool sign = (image >> 15) & 1;
4921 int exp = (image >> 7) & 0xff;
4923 memset (r, 0, sizeof (*r));
4924 image <<= HOST_BITS_PER_LONG - 8;
4925 image &= ~SIG_MSB;
4927 if (exp == 0)
4929 if (image && fmt->has_denorm)
4931 r->cl = rvc_normal;
4932 r->sign = sign;
4933 SET_REAL_EXP (r, -126);
4934 r->sig[SIGSZ-1] = image << 1;
4935 normalize (r);
4937 else if (fmt->has_signed_zero)
4938 r->sign = sign;
4940 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
4942 if (image)
4944 r->cl = rvc_nan;
4945 r->sign = sign;
4946 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4947 ^ fmt->qnan_msb_set);
4948 r->sig[SIGSZ-1] = image;
4950 else
4952 r->cl = rvc_inf;
4953 r->sign = sign;
4956 else
4958 r->cl = rvc_normal;
4959 r->sign = sign;
4960 SET_REAL_EXP (r, exp - 127 + 1);
4961 r->sig[SIGSZ-1] = image | SIG_MSB;
4965 /* Half-precision format, as specified in IEEE 754R. */
4966 const struct real_format ieee_half_format =
4968 encode_ieee_half,
4969 decode_ieee_half,
4973 -13,
4978 false,
4979 true,
4980 true,
4981 true,
4982 true,
4983 true,
4984 true,
4985 false,
4986 "ieee_half"
4989 /* ARM's alternative half-precision format, similar to IEEE but with
4990 no reserved exponent value for NaNs and infinities; rather, it just
4991 extends the range of exponents by one. */
4992 const struct real_format arm_half_format =
4994 encode_ieee_half,
4995 decode_ieee_half,
4999 -13,
5004 false,
5005 true,
5006 false,
5007 false,
5008 true,
5009 true,
5010 false,
5011 false,
5012 "arm_half"
5015 /* ARM Bfloat half-precision format. This format resembles a truncated
5016 (16-bit) version of the 32-bit IEEE 754 single-precision floating-point
5017 format. */
5018 const struct real_format arm_bfloat_half_format =
5020 encode_arm_bfloat_half,
5021 decode_arm_bfloat_half,
5025 -125,
5026 128,
5030 false,
5031 true,
5032 true,
5033 true,
5034 true,
5035 true,
5036 true,
5037 false,
5038 "arm_bfloat_half"
5042 /* A synthetic "format" for internal arithmetic. It's the size of the
5043 internal significand minus the two bits needed for proper rounding.
5044 The encode and decode routines exist only to satisfy our paranoia
5045 harness. */
5047 static void encode_internal (const struct real_format *fmt,
5048 long *, const REAL_VALUE_TYPE *);
5049 static void decode_internal (const struct real_format *,
5050 REAL_VALUE_TYPE *, const long *);
5052 static void
5053 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
5054 const REAL_VALUE_TYPE *r)
5056 memcpy (buf, r, sizeof (*r));
5059 static void
5060 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
5061 REAL_VALUE_TYPE *r, const long *buf)
5063 memcpy (r, buf, sizeof (*r));
5066 const struct real_format real_internal_format =
5068 encode_internal,
5069 decode_internal,
5071 SIGNIFICAND_BITS - 2,
5072 SIGNIFICAND_BITS - 2,
5073 -MAX_EXP,
5074 MAX_EXP,
5078 false,
5079 false,
5080 true,
5081 true,
5082 false,
5083 true,
5084 true,
5085 false,
5086 "real_internal"
5089 /* Calculate X raised to the integer exponent N in format FMT and store
5090 the result in R. Return true if the result may be inexact due to
5091 loss of precision. The algorithm is the classic "left-to-right binary
5092 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
5093 Algorithms", "The Art of Computer Programming", Volume 2. */
5095 bool
5096 real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
5097 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
5099 unsigned HOST_WIDE_INT bit;
5100 REAL_VALUE_TYPE t;
5101 bool inexact = false;
5102 bool init = false;
5103 bool neg;
5104 int i;
5106 if (n == 0)
5108 *r = dconst1;
5109 return false;
5111 else if (n < 0)
5113 /* Don't worry about overflow, from now on n is unsigned. */
5114 neg = true;
5115 n = -n;
5117 else
5118 neg = false;
5120 t = *x;
5121 bit = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
5122 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
5124 if (init)
5126 inexact |= do_multiply (&t, &t, &t);
5127 if (n & bit)
5128 inexact |= do_multiply (&t, &t, x);
5130 else if (n & bit)
5131 init = true;
5132 bit >>= 1;
5135 if (neg)
5136 inexact |= do_divide (&t, &dconst1, &t);
5138 real_convert (r, fmt, &t);
5139 return inexact;
5142 /* Round X to the nearest integer not larger in absolute value, i.e.
5143 towards zero, placing the result in R in format FMT. */
5145 void
5146 real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
5147 const REAL_VALUE_TYPE *x)
5149 do_fix_trunc (r, x);
5150 if (fmt)
5151 real_convert (r, fmt, r);
5154 /* Round X to the largest integer not greater in value, i.e. round
5155 down, placing the result in R in format FMT. */
5157 void
5158 real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
5159 const REAL_VALUE_TYPE *x)
5161 REAL_VALUE_TYPE t;
5163 do_fix_trunc (&t, x);
5164 if (! real_identical (&t, x) && x->sign)
5165 do_add (&t, &t, &dconstm1, 0);
5166 if (fmt)
5167 real_convert (r, fmt, &t);
5168 else
5169 *r = t;
5172 /* Round X to the smallest integer not less then argument, i.e. round
5173 up, placing the result in R in format FMT. */
5175 void
5176 real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
5177 const REAL_VALUE_TYPE *x)
5179 REAL_VALUE_TYPE t;
5181 do_fix_trunc (&t, x);
5182 if (! real_identical (&t, x) && ! x->sign)
5183 do_add (&t, &t, &dconst1, 0);
5184 if (fmt)
5185 real_convert (r, fmt, &t);
5186 else
5187 *r = t;
5190 /* Round X to the nearest integer, but round halfway cases away from
5191 zero. */
5193 void
5194 real_round (REAL_VALUE_TYPE *r, format_helper fmt,
5195 const REAL_VALUE_TYPE *x)
5197 do_add (r, x, &dconsthalf, x->sign);
5198 do_fix_trunc (r, r);
5199 if (fmt)
5200 real_convert (r, fmt, r);
5203 /* Return true (including 0) if integer part of R is even, else return
5204 false. The function is not valid for rvc_inf and rvc_nan classes. */
5206 static bool
5207 is_even (REAL_VALUE_TYPE *r)
5209 gcc_assert (r->cl != rvc_inf);
5210 gcc_assert (r->cl != rvc_nan);
5212 if (r->cl == rvc_zero)
5213 return true;
5215 /* For (-1,1), number is even. */
5216 if (REAL_EXP (r) <= 0)
5217 return true;
5219 /* Check lowest bit, if not set, return true. */
5220 else if (REAL_EXP (r) <= SIGNIFICAND_BITS)
5222 unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r);
5223 int w = n / HOST_BITS_PER_LONG;
5225 unsigned long num = ((unsigned long)1 << (n % HOST_BITS_PER_LONG));
5227 if ((r->sig[w] & num) == 0)
5228 return true;
5230 else
5231 return true;
5233 return false;
5236 /* Return true if R is halfway between two integers, else return
5237 false. */
5239 static bool
5240 is_halfway_below (const REAL_VALUE_TYPE *r)
5242 if (r->cl != rvc_normal)
5243 return false;
5245 /* For numbers (-0.5,0) and (0,0.5). */
5246 if (REAL_EXP (r) < 0)
5247 return false;
5249 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
5251 unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r) - 1;
5252 int w = n / HOST_BITS_PER_LONG;
5254 for (int i = 0; i < w; ++i)
5255 if (r->sig[i] != 0)
5256 return false;
5258 unsigned long num = 1UL << (n % HOST_BITS_PER_LONG);
5260 if ((r->sig[w] & num) != 0 && (r->sig[w] & (num - 1)) == 0)
5261 return true;
5263 return false;
5266 /* Round X to nearest integer, rounding halfway cases towards even. */
5268 void
5269 real_roundeven (REAL_VALUE_TYPE *r, format_helper fmt,
5270 const REAL_VALUE_TYPE *x)
5272 if (is_halfway_below (x))
5274 /* Special case as -0.5 rounds to -0.0 and
5275 similarly +0.5 rounds to +0.0. */
5276 if (REAL_EXP (x) == 0)
5278 *r = *x;
5279 clear_significand_below (r, SIGNIFICAND_BITS);
5281 else
5283 do_add (r, x, &dconsthalf, x->sign);
5284 if (!is_even (r))
5285 do_add (r, r, &dconstm1, x->sign);
5287 if (fmt)
5288 real_convert (r, fmt, r);
5290 else
5291 real_round (r, fmt, x);
5294 /* Set the sign of R to the sign of X. */
5296 void
5297 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
5299 r->sign = x->sign;
5302 /* Check whether the real constant value given is an integer.
5303 Returns false for signaling NaN. */
5305 bool
5306 real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
5308 REAL_VALUE_TYPE cint;
5310 real_trunc (&cint, fmt, c);
5311 return real_identical (c, &cint);
5314 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
5315 storing it in *INT_OUT if so. */
5317 bool
5318 real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
5320 REAL_VALUE_TYPE cint;
5322 HOST_WIDE_INT n = real_to_integer (c);
5323 real_from_integer (&cint, VOIDmode, n, SIGNED);
5324 if (real_identical (c, &cint))
5326 *int_out = n;
5327 return true;
5329 return false;
5332 /* Calculate nextafter (X, Y) or nexttoward (X, Y). Return true if
5333 underflow or overflow needs to be raised. */
5335 bool
5336 real_nextafter (REAL_VALUE_TYPE *r, format_helper fmt,
5337 const REAL_VALUE_TYPE *x, const REAL_VALUE_TYPE *y)
5339 int cmp = do_compare (x, y, 2);
5340 /* If either operand is NaN, return qNaN. */
5341 if (cmp == 2)
5343 get_canonical_qnan (r, 0);
5344 return false;
5346 /* If x == y, return y cast to target type. */
5347 if (cmp == 0)
5349 real_convert (r, fmt, y);
5350 return false;
5353 if (x->cl == rvc_zero)
5355 get_zero (r, y->sign);
5356 r->cl = rvc_normal;
5357 SET_REAL_EXP (r, fmt->emin - fmt->p + 1);
5358 r->sig[SIGSZ - 1] = SIG_MSB;
5359 return false;
5362 int np2 = SIGNIFICAND_BITS - fmt->p;
5363 /* For denormals adjust np2 correspondingly. */
5364 if (x->cl == rvc_normal && REAL_EXP (x) < fmt->emin)
5365 np2 += fmt->emin - REAL_EXP (x);
5367 REAL_VALUE_TYPE u;
5368 get_zero (r, x->sign);
5369 get_zero (&u, 0);
5370 set_significand_bit (&u, np2);
5371 r->cl = rvc_normal;
5372 SET_REAL_EXP (r, REAL_EXP (x));
5374 if (x->cl == rvc_inf)
5376 bool borrow = sub_significands (r, r, &u, 0);
5377 gcc_assert (borrow);
5378 SET_REAL_EXP (r, fmt->emax);
5380 else if (cmp == (x->sign ? 1 : -1))
5382 if (add_significands (r, x, &u))
5384 /* Overflow. Means the significand had been all ones, and
5385 is now all zeros. Need to increase the exponent, and
5386 possibly re-normalize it. */
5387 SET_REAL_EXP (r, REAL_EXP (r) + 1);
5388 if (REAL_EXP (r) > fmt->emax)
5390 get_inf (r, x->sign);
5391 return true;
5393 r->sig[SIGSZ - 1] = SIG_MSB;
5396 else
5398 if (REAL_EXP (x) > fmt->emin && x->sig[SIGSZ - 1] == SIG_MSB)
5400 int i;
5401 for (i = SIGSZ - 2; i >= 0; i--)
5402 if (x->sig[i])
5403 break;
5404 if (i < 0)
5406 /* When mantissa is 1.0, we need to subtract only
5407 half of u: nextafter (1.0, 0.0) is 1.0 - __DBL_EPSILON__ / 2
5408 rather than 1.0 - __DBL_EPSILON__. */
5409 clear_significand_bit (&u, np2);
5410 np2--;
5411 set_significand_bit (&u, np2);
5414 sub_significands (r, x, &u, 0);
5417 /* Clear out trailing garbage. */
5418 clear_significand_below (r, np2);
5419 normalize (r);
5420 if (REAL_EXP (r) <= fmt->emin - fmt->p)
5422 get_zero (r, x->sign);
5423 return true;
5425 return r->cl == rvc_zero || REAL_EXP (r) < fmt->emin;
5428 /* Write into BUF the maximum representable finite floating-point
5429 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5430 float string. LEN is the size of BUF, and the buffer must be large
5431 enough to contain the resulting string. If NORM_MAX, instead write
5432 the maximum representable finite normalized floating-point number,
5433 defined to be such that all choices of digits for that exponent are
5434 representable in the format (this only makes a difference for IBM
5435 long double). */
5437 void
5438 get_max_float (const struct real_format *fmt, char *buf, size_t len,
5439 bool norm_max)
5441 int i, n;
5442 char *p;
5443 bool is_ibm_extended = fmt->pnan < fmt->p;
5445 strcpy (buf, "0x0.");
5446 n = fmt->p;
5447 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
5448 *p++ = 'f';
5449 if (i < n)
5450 *p++ = "08ce"[n - i];
5451 sprintf (p, "p%d",
5452 (is_ibm_extended && norm_max) ? fmt->emax - 1 : fmt->emax);
5453 if (is_ibm_extended && !norm_max)
5455 /* This is an IBM extended double format made up of two IEEE
5456 doubles. The value of the long double is the sum of the
5457 values of the two parts. The most significant part is
5458 required to be the value of the long double rounded to the
5459 nearest double. Rounding means we need a slightly smaller
5460 value for LDBL_MAX. */
5461 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
5464 gcc_assert (strlen (buf) < len);
5467 /* True if all values of integral type can be represented
5468 by this floating-point type exactly. */
5470 bool format_helper::can_represent_integral_type_p (tree type) const
5472 gcc_assert (! decimal_p () && INTEGRAL_TYPE_P (type));
5474 /* INT?_MIN is power-of-two so it takes
5475 only one mantissa bit. */
5476 bool signed_p = TYPE_SIGN (type) == SIGNED;
5477 return TYPE_PRECISION (type) - signed_p <= significand_size (*this);
5480 /* True if mode M has a NaN representation and
5481 the treatment of NaN operands is important. */
5483 bool
5484 HONOR_NANS (machine_mode m)
5486 return MODE_HAS_NANS (m) && !flag_finite_math_only;
5489 bool
5490 HONOR_NANS (const_tree t)
5492 return HONOR_NANS (element_mode (t));
5495 bool
5496 HONOR_NANS (const_rtx x)
5498 return HONOR_NANS (GET_MODE (x));
5501 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5503 bool
5504 HONOR_SNANS (machine_mode m)
5506 return flag_signaling_nans && HONOR_NANS (m);
5509 bool
5510 HONOR_SNANS (const_tree t)
5512 return HONOR_SNANS (element_mode (t));
5515 bool
5516 HONOR_SNANS (const_rtx x)
5518 return HONOR_SNANS (GET_MODE (x));
5521 /* As for HONOR_NANS, but true if the mode can represent infinity and
5522 the treatment of infinite values is important. */
5524 bool
5525 HONOR_INFINITIES (machine_mode m)
5527 return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
5530 bool
5531 HONOR_INFINITIES (const_tree t)
5533 return HONOR_INFINITIES (element_mode (t));
5536 bool
5537 HONOR_INFINITIES (const_rtx x)
5539 return HONOR_INFINITIES (GET_MODE (x));
5542 /* Like HONOR_NANS, but true if the given mode distinguishes between
5543 positive and negative zero, and the sign of zero is important. */
5545 bool
5546 HONOR_SIGNED_ZEROS (machine_mode m)
5548 return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
5551 bool
5552 HONOR_SIGNED_ZEROS (const_tree t)
5554 return HONOR_SIGNED_ZEROS (element_mode (t));
5557 bool
5558 HONOR_SIGNED_ZEROS (const_rtx x)
5560 return HONOR_SIGNED_ZEROS (GET_MODE (x));
5563 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5564 and the rounding mode is important. */
5566 bool
5567 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
5569 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
5572 bool
5573 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
5575 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
5578 bool
5579 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
5581 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));
5584 /* Fills r with the largest value such that 1 + r*r won't overflow.
5585 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
5587 void
5588 build_sinatan_real (REAL_VALUE_TYPE * r, tree type)
5590 REAL_VALUE_TYPE maxval;
5591 mpfr_t mpfr_const1, mpfr_c, mpfr_maxval;
5592 machine_mode mode = TYPE_MODE (type);
5593 const struct real_format * fmt = REAL_MODE_FORMAT (mode);
5595 real_maxval (&maxval, 0, mode);
5597 mpfr_inits (mpfr_const1, mpfr_c, mpfr_maxval, NULL);
5599 mpfr_from_real (mpfr_const1, &dconst1, MPFR_RNDN);
5600 mpfr_from_real (mpfr_maxval, &maxval, MPFR_RNDN);
5602 mpfr_sub (mpfr_c, mpfr_maxval, mpfr_const1, MPFR_RNDN);
5603 mpfr_sqrt (mpfr_c, mpfr_c, MPFR_RNDZ);
5605 real_from_mpfr (r, mpfr_c, fmt, MPFR_RNDZ);
5607 mpfr_clears (mpfr_const1, mpfr_c, mpfr_maxval, NULL);