2018-11-16 Richard Biener <rguenther@suse.de>
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_win.cc
blobebc6c503036412354eb1475123201f74c929121d
1 //===-- sanitizer_win.cc --------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and ThreadSanitizer
9 // run-time libraries and implements windows-specific functions from
10 // sanitizer_libc.h.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_platform.h"
14 #if SANITIZER_WINDOWS
16 #define WIN32_LEAN_AND_MEAN
17 #define NOGDI
18 #include <windows.h>
19 #include <io.h>
20 #include <psapi.h>
21 #include <stdlib.h>
23 #include "sanitizer_common.h"
24 #include "sanitizer_file.h"
25 #include "sanitizer_libc.h"
26 #include "sanitizer_mutex.h"
27 #include "sanitizer_placement_new.h"
28 #include "sanitizer_win_defs.h"
30 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
31 #pragma comment(lib, "psapi")
32 #endif
34 // A macro to tell the compiler that this part of the code cannot be reached,
35 // if the compiler supports this feature. Since we're using this in
36 // code that is called when terminating the process, the expansion of the
37 // macro should not terminate the process to avoid infinite recursion.
38 #if defined(__clang__)
39 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
40 #elif defined(__GNUC__) && \
41 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
42 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
43 #elif defined(_MSC_VER)
44 # define BUILTIN_UNREACHABLE() __assume(0)
45 #else
46 # define BUILTIN_UNREACHABLE()
47 #endif
49 namespace __sanitizer {
51 #include "sanitizer_syscall_generic.inc"
53 // --------------------- sanitizer_common.h
54 uptr GetPageSize() {
55 SYSTEM_INFO si;
56 GetSystemInfo(&si);
57 return si.dwPageSize;
60 uptr GetMmapGranularity() {
61 SYSTEM_INFO si;
62 GetSystemInfo(&si);
63 return si.dwAllocationGranularity;
66 uptr GetMaxUserVirtualAddress() {
67 SYSTEM_INFO si;
68 GetSystemInfo(&si);
69 return (uptr)si.lpMaximumApplicationAddress;
72 uptr GetMaxVirtualAddress() {
73 return GetMaxUserVirtualAddress();
76 bool FileExists(const char *filename) {
77 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
80 uptr internal_getpid() {
81 return GetProcessId(GetCurrentProcess());
84 // In contrast to POSIX, on Windows GetCurrentThreadId()
85 // returns a system-unique identifier.
86 tid_t GetTid() {
87 return GetCurrentThreadId();
90 uptr GetThreadSelf() {
91 return GetTid();
94 #if !SANITIZER_GO
95 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
96 uptr *stack_bottom) {
97 CHECK(stack_top);
98 CHECK(stack_bottom);
99 MEMORY_BASIC_INFORMATION mbi;
100 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
101 // FIXME: is it possible for the stack to not be a single allocation?
102 // Are these values what ASan expects to get (reserved, not committed;
103 // including stack guard page) ?
104 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
105 *stack_bottom = (uptr)mbi.AllocationBase;
107 #endif // #if !SANITIZER_GO
109 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
110 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
111 if (rv == 0)
112 ReportMmapFailureAndDie(size, mem_type, "allocate",
113 GetLastError(), raw_report);
114 return rv;
117 void UnmapOrDie(void *addr, uptr size) {
118 if (!size || !addr)
119 return;
121 MEMORY_BASIC_INFORMATION mbi;
122 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
124 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
125 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
126 // fails try MEM_DECOMMIT.
127 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
128 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
129 Report("ERROR: %s failed to "
130 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
131 SanitizerToolName, size, size, addr, GetLastError());
132 CHECK("unable to unmap" && 0);
137 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
138 const char *mmap_type) {
139 error_t last_error = GetLastError();
140 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
141 return nullptr;
142 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
145 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
146 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
147 if (rv == 0)
148 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
149 return rv;
152 // We want to map a chunk of address space aligned to 'alignment'.
153 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
154 const char *mem_type) {
155 CHECK(IsPowerOfTwo(size));
156 CHECK(IsPowerOfTwo(alignment));
158 // Windows will align our allocations to at least 64K.
159 alignment = Max(alignment, GetMmapGranularity());
161 uptr mapped_addr =
162 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
163 if (!mapped_addr)
164 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
166 // If we got it right on the first try, return. Otherwise, unmap it and go to
167 // the slow path.
168 if (IsAligned(mapped_addr, alignment))
169 return (void*)mapped_addr;
170 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
171 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
173 // If we didn't get an aligned address, overallocate, find an aligned address,
174 // unmap, and try to allocate at that aligned address.
175 int retries = 0;
176 const int kMaxRetries = 10;
177 for (; retries < kMaxRetries &&
178 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
179 retries++) {
180 // Overallocate size + alignment bytes.
181 mapped_addr =
182 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
183 if (!mapped_addr)
184 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
186 // Find the aligned address.
187 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
189 // Free the overallocation.
190 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
191 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
193 // Attempt to allocate exactly the number of bytes we need at the aligned
194 // address. This may fail for a number of reasons, in which case we continue
195 // the loop.
196 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
197 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
200 // Fail if we can't make this work quickly.
201 if (retries == kMaxRetries && mapped_addr == 0)
202 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
204 return (void *)mapped_addr;
207 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
208 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
209 // but on Win64 it does.
210 (void)name; // unsupported
211 #if !SANITIZER_GO && SANITIZER_WINDOWS64
212 // On asan/Windows64, use MEM_COMMIT would result in error
213 // 1455:ERROR_COMMITMENT_LIMIT.
214 // Asan uses exception handler to commit page on demand.
215 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
216 #else
217 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
218 PAGE_READWRITE);
219 #endif
220 if (p == 0) {
221 Report("ERROR: %s failed to "
222 "allocate %p (%zd) bytes at %p (error code: %d)\n",
223 SanitizerToolName, size, size, fixed_addr, GetLastError());
224 return false;
226 return true;
229 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
230 // 'MmapFixedNoAccess'.
231 void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
232 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
233 MEM_COMMIT, PAGE_READWRITE);
234 if (p == 0) {
235 char mem_type[30];
236 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
237 fixed_addr);
238 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
240 return p;
243 // Uses fixed_addr for now.
244 // Will use offset instead once we've implemented this function for real.
245 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size) {
246 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
249 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size) {
250 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
253 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
254 // Only unmap if it covers the entire range.
255 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
256 // We unmap the whole range, just null out the base.
257 base_ = nullptr;
258 size_ = 0;
259 UnmapOrDie(reinterpret_cast<void*>(addr), size);
262 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
263 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
264 MEM_COMMIT, PAGE_READWRITE);
265 if (p == 0) {
266 char mem_type[30];
267 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
268 fixed_addr);
269 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
271 return p;
274 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
275 // FIXME: make this really NoReserve?
276 return MmapOrDie(size, mem_type);
279 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
280 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
281 size_ = size;
282 name_ = name;
283 (void)os_handle_; // unsupported
284 return reinterpret_cast<uptr>(base_);
288 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
289 (void)name; // unsupported
290 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
291 MEM_RESERVE, PAGE_NOACCESS);
292 if (res == 0)
293 Report("WARNING: %s failed to "
294 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
295 SanitizerToolName, size, size, fixed_addr, GetLastError());
296 return res;
299 void *MmapNoAccess(uptr size) {
300 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
301 if (res == 0)
302 Report("WARNING: %s failed to "
303 "mprotect %p (%zd) bytes (error code: %d)\n",
304 SanitizerToolName, size, size, GetLastError());
305 return res;
308 bool MprotectNoAccess(uptr addr, uptr size) {
309 DWORD old_protection;
310 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
313 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
314 // This is almost useless on 32-bits.
315 // FIXME: add madvise-analog when we move to 64-bits.
318 bool NoHugePagesInRegion(uptr addr, uptr size) {
319 // FIXME: probably similar to ReleaseMemoryToOS.
320 return true;
323 bool DontDumpShadowMemory(uptr addr, uptr length) {
324 // This is almost useless on 32-bits.
325 // FIXME: add madvise-analog when we move to 64-bits.
326 return true;
329 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
330 uptr *largest_gap_found,
331 uptr *max_occupied_addr) {
332 uptr address = 0;
333 while (true) {
334 MEMORY_BASIC_INFORMATION info;
335 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
336 return 0;
338 if (info.State == MEM_FREE) {
339 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
340 alignment);
341 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
342 return shadow_address;
345 // Move to the next region.
346 address = (uptr)info.BaseAddress + info.RegionSize;
348 return 0;
351 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
352 MEMORY_BASIC_INFORMATION mbi;
353 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
354 return mbi.Protect == PAGE_NOACCESS &&
355 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
358 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
359 UNIMPLEMENTED();
362 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
363 UNIMPLEMENTED();
366 static const int kMaxEnvNameLength = 128;
367 static const DWORD kMaxEnvValueLength = 32767;
369 namespace {
371 struct EnvVariable {
372 char name[kMaxEnvNameLength];
373 char value[kMaxEnvValueLength];
376 } // namespace
378 static const int kEnvVariables = 5;
379 static EnvVariable env_vars[kEnvVariables];
380 static int num_env_vars;
382 const char *GetEnv(const char *name) {
383 // Note: this implementation caches the values of the environment variables
384 // and limits their quantity.
385 for (int i = 0; i < num_env_vars; i++) {
386 if (0 == internal_strcmp(name, env_vars[i].name))
387 return env_vars[i].value;
389 CHECK_LT(num_env_vars, kEnvVariables);
390 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
391 kMaxEnvValueLength);
392 if (rv > 0 && rv < kMaxEnvValueLength) {
393 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
394 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
395 num_env_vars++;
396 return env_vars[num_env_vars - 1].value;
398 return 0;
401 const char *GetPwd() {
402 UNIMPLEMENTED();
405 u32 GetUid() {
406 UNIMPLEMENTED();
409 namespace {
410 struct ModuleInfo {
411 const char *filepath;
412 uptr base_address;
413 uptr end_address;
416 #if !SANITIZER_GO
417 int CompareModulesBase(const void *pl, const void *pr) {
418 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
419 if (l->base_address < r->base_address)
420 return -1;
421 return l->base_address > r->base_address;
423 #endif
424 } // namespace
426 #if !SANITIZER_GO
427 void DumpProcessMap() {
428 Report("Dumping process modules:\n");
429 ListOfModules modules;
430 modules.init();
431 uptr num_modules = modules.size();
433 InternalMmapVector<ModuleInfo> module_infos(num_modules);
434 for (size_t i = 0; i < num_modules; ++i) {
435 module_infos[i].filepath = modules[i].full_name();
436 module_infos[i].base_address = modules[i].ranges().front()->beg;
437 module_infos[i].end_address = modules[i].ranges().back()->end;
439 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
440 CompareModulesBase);
442 for (size_t i = 0; i < num_modules; ++i) {
443 const ModuleInfo &mi = module_infos[i];
444 if (mi.end_address != 0) {
445 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
446 mi.filepath[0] ? mi.filepath : "[no name]");
447 } else if (mi.filepath[0]) {
448 Printf("\t??\?-??? %s\n", mi.filepath);
449 } else {
450 Printf("\t???\n");
454 #endif
456 void PrintModuleMap() { }
458 void DisableCoreDumperIfNecessary() {
459 // Do nothing.
462 void ReExec() {
463 UNIMPLEMENTED();
466 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
468 bool StackSizeIsUnlimited() {
469 UNIMPLEMENTED();
472 void SetStackSizeLimitInBytes(uptr limit) {
473 UNIMPLEMENTED();
476 bool AddressSpaceIsUnlimited() {
477 UNIMPLEMENTED();
480 void SetAddressSpaceUnlimited() {
481 UNIMPLEMENTED();
484 bool IsPathSeparator(const char c) {
485 return c == '\\' || c == '/';
488 bool IsAbsolutePath(const char *path) {
489 UNIMPLEMENTED();
492 void SleepForSeconds(int seconds) {
493 Sleep(seconds * 1000);
496 void SleepForMillis(int millis) {
497 Sleep(millis);
500 u64 NanoTime() {
501 static LARGE_INTEGER frequency = {};
502 LARGE_INTEGER counter;
503 if (UNLIKELY(frequency.QuadPart == 0)) {
504 QueryPerformanceFrequency(&frequency);
505 CHECK_NE(frequency.QuadPart, 0);
507 QueryPerformanceCounter(&counter);
508 counter.QuadPart *= 1000ULL * 1000000ULL;
509 counter.QuadPart /= frequency.QuadPart;
510 return counter.QuadPart;
513 u64 MonotonicNanoTime() { return NanoTime(); }
515 void Abort() {
516 internal__exit(3);
519 #if !SANITIZER_GO
520 // Read the file to extract the ImageBase field from the PE header. If ASLR is
521 // disabled and this virtual address is available, the loader will typically
522 // load the image at this address. Therefore, we call it the preferred base. Any
523 // addresses in the DWARF typically assume that the object has been loaded at
524 // this address.
525 static uptr GetPreferredBase(const char *modname) {
526 fd_t fd = OpenFile(modname, RdOnly, nullptr);
527 if (fd == kInvalidFd)
528 return 0;
529 FileCloser closer(fd);
531 // Read just the DOS header.
532 IMAGE_DOS_HEADER dos_header;
533 uptr bytes_read;
534 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
535 bytes_read != sizeof(dos_header))
536 return 0;
538 // The file should start with the right signature.
539 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
540 return 0;
542 // The layout at e_lfanew is:
543 // "PE\0\0"
544 // IMAGE_FILE_HEADER
545 // IMAGE_OPTIONAL_HEADER
546 // Seek to e_lfanew and read all that data.
547 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
548 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
549 INVALID_SET_FILE_POINTER)
550 return 0;
551 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
552 bytes_read != sizeof(buf))
553 return 0;
555 // Check for "PE\0\0" before the PE header.
556 char *pe_sig = &buf[0];
557 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
558 return 0;
560 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
561 IMAGE_OPTIONAL_HEADER *pe_header =
562 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
564 // Check for more magic in the PE header.
565 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
566 return 0;
568 // Finally, return the ImageBase.
569 return (uptr)pe_header->ImageBase;
572 void ListOfModules::init() {
573 clearOrInit();
574 HANDLE cur_process = GetCurrentProcess();
576 // Query the list of modules. Start by assuming there are no more than 256
577 // modules and retry if that's not sufficient.
578 HMODULE *hmodules = 0;
579 uptr modules_buffer_size = sizeof(HMODULE) * 256;
580 DWORD bytes_required;
581 while (!hmodules) {
582 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
583 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
584 &bytes_required));
585 if (bytes_required > modules_buffer_size) {
586 // Either there turned out to be more than 256 hmodules, or new hmodules
587 // could have loaded since the last try. Retry.
588 UnmapOrDie(hmodules, modules_buffer_size);
589 hmodules = 0;
590 modules_buffer_size = bytes_required;
594 // |num_modules| is the number of modules actually present,
595 size_t num_modules = bytes_required / sizeof(HMODULE);
596 for (size_t i = 0; i < num_modules; ++i) {
597 HMODULE handle = hmodules[i];
598 MODULEINFO mi;
599 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
600 continue;
602 // Get the UTF-16 path and convert to UTF-8.
603 wchar_t modname_utf16[kMaxPathLength];
604 int modname_utf16_len =
605 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
606 if (modname_utf16_len == 0)
607 modname_utf16[0] = '\0';
608 char module_name[kMaxPathLength];
609 int module_name_len =
610 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
611 &module_name[0], kMaxPathLength, NULL, NULL);
612 module_name[module_name_len] = '\0';
614 uptr base_address = (uptr)mi.lpBaseOfDll;
615 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
617 // Adjust the base address of the module so that we get a VA instead of an
618 // RVA when computing the module offset. This helps llvm-symbolizer find the
619 // right DWARF CU. In the common case that the image is loaded at it's
620 // preferred address, we will now print normal virtual addresses.
621 uptr preferred_base = GetPreferredBase(&module_name[0]);
622 uptr adjusted_base = base_address - preferred_base;
624 LoadedModule cur_module;
625 cur_module.set(module_name, adjusted_base);
626 // We add the whole module as one single address range.
627 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
628 /*writable*/ true);
629 modules_.push_back(cur_module);
631 UnmapOrDie(hmodules, modules_buffer_size);
634 void ListOfModules::fallbackInit() { clear(); }
636 // We can't use atexit() directly at __asan_init time as the CRT is not fully
637 // initialized at this point. Place the functions into a vector and use
638 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
639 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
641 int Atexit(void (*function)(void)) {
642 atexit_functions.push_back(function);
643 return 0;
646 static int RunAtexit() {
647 int ret = 0;
648 for (uptr i = 0; i < atexit_functions.size(); ++i) {
649 ret |= atexit(atexit_functions[i]);
651 return ret;
654 #pragma section(".CRT$XID", long, read) // NOLINT
655 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
656 #endif
658 // ------------------ sanitizer_libc.h
659 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
660 // FIXME: Use the wide variants to handle Unicode filenames.
661 fd_t res;
662 if (mode == RdOnly) {
663 res = CreateFileA(filename, GENERIC_READ,
664 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
665 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
666 } else if (mode == WrOnly) {
667 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
668 FILE_ATTRIBUTE_NORMAL, nullptr);
669 } else {
670 UNIMPLEMENTED();
672 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
673 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
674 if (res == kInvalidFd && last_error)
675 *last_error = GetLastError();
676 return res;
679 void CloseFile(fd_t fd) {
680 CloseHandle(fd);
683 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
684 error_t *error_p) {
685 CHECK(fd != kInvalidFd);
687 // bytes_read can't be passed directly to ReadFile:
688 // uptr is unsigned long long on 64-bit Windows.
689 unsigned long num_read_long;
691 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
692 if (!success && error_p)
693 *error_p = GetLastError();
694 if (bytes_read)
695 *bytes_read = num_read_long;
696 return success;
699 bool SupportsColoredOutput(fd_t fd) {
700 // FIXME: support colored output.
701 return false;
704 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
705 error_t *error_p) {
706 CHECK(fd != kInvalidFd);
708 // Handle null optional parameters.
709 error_t dummy_error;
710 error_p = error_p ? error_p : &dummy_error;
711 uptr dummy_bytes_written;
712 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
714 // Initialize output parameters in case we fail.
715 *error_p = 0;
716 *bytes_written = 0;
718 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
719 // closed, in which case this will fail.
720 if (fd == kStdoutFd || fd == kStderrFd) {
721 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
722 if (fd == 0) {
723 *error_p = ERROR_INVALID_HANDLE;
724 return false;
728 DWORD bytes_written_32;
729 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
730 *error_p = GetLastError();
731 return false;
732 } else {
733 *bytes_written = bytes_written_32;
734 return true;
738 bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
739 UNIMPLEMENTED();
742 uptr internal_sched_yield() {
743 Sleep(0);
744 return 0;
747 void internal__exit(int exitcode) {
748 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
749 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
750 // so add our own breakpoint here.
751 if (::IsDebuggerPresent())
752 __debugbreak();
753 TerminateProcess(GetCurrentProcess(), exitcode);
754 BUILTIN_UNREACHABLE();
757 uptr internal_ftruncate(fd_t fd, uptr size) {
758 UNIMPLEMENTED();
761 uptr GetRSS() {
762 PROCESS_MEMORY_COUNTERS counters;
763 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
764 return 0;
765 return counters.WorkingSetSize;
768 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
769 void internal_join_thread(void *th) { }
771 // ---------------------- BlockingMutex ---------------- {{{1
773 BlockingMutex::BlockingMutex() {
774 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
775 internal_memset(this, 0, sizeof(*this));
778 void BlockingMutex::Lock() {
779 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
780 CHECK_EQ(owner_, 0);
781 owner_ = GetThreadSelf();
784 void BlockingMutex::Unlock() {
785 CheckLocked();
786 owner_ = 0;
787 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
790 void BlockingMutex::CheckLocked() {
791 CHECK_EQ(owner_, GetThreadSelf());
794 uptr GetTlsSize() {
795 return 0;
798 void InitTlsSize() {
801 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
802 uptr *tls_addr, uptr *tls_size) {
803 #if SANITIZER_GO
804 *stk_addr = 0;
805 *stk_size = 0;
806 *tls_addr = 0;
807 *tls_size = 0;
808 #else
809 uptr stack_top, stack_bottom;
810 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
811 *stk_addr = stack_bottom;
812 *stk_size = stack_top - stack_bottom;
813 *tls_addr = 0;
814 *tls_size = 0;
815 #endif
818 void ReportFile::Write(const char *buffer, uptr length) {
819 SpinMutexLock l(mu);
820 ReopenIfNecessary();
821 if (!WriteToFile(fd, buffer, length)) {
822 // stderr may be closed, but we may be able to print to the debugger
823 // instead. This is the case when launching a program from Visual Studio,
824 // and the following routine should write to its console.
825 OutputDebugStringA(buffer);
829 void SetAlternateSignalStack() {
830 // FIXME: Decide what to do on Windows.
833 void UnsetAlternateSignalStack() {
834 // FIXME: Decide what to do on Windows.
837 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
838 (void)handler;
839 // FIXME: Decide what to do on Windows.
842 HandleSignalMode GetHandleSignalMode(int signum) {
843 // FIXME: Decide what to do on Windows.
844 return kHandleSignalNo;
847 // Check based on flags if we should handle this exception.
848 bool IsHandledDeadlyException(DWORD exceptionCode) {
849 switch (exceptionCode) {
850 case EXCEPTION_ACCESS_VIOLATION:
851 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
852 case EXCEPTION_STACK_OVERFLOW:
853 case EXCEPTION_DATATYPE_MISALIGNMENT:
854 case EXCEPTION_IN_PAGE_ERROR:
855 return common_flags()->handle_segv;
856 case EXCEPTION_ILLEGAL_INSTRUCTION:
857 case EXCEPTION_PRIV_INSTRUCTION:
858 case EXCEPTION_BREAKPOINT:
859 return common_flags()->handle_sigill;
860 case EXCEPTION_FLT_DENORMAL_OPERAND:
861 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
862 case EXCEPTION_FLT_INEXACT_RESULT:
863 case EXCEPTION_FLT_INVALID_OPERATION:
864 case EXCEPTION_FLT_OVERFLOW:
865 case EXCEPTION_FLT_STACK_CHECK:
866 case EXCEPTION_FLT_UNDERFLOW:
867 case EXCEPTION_INT_DIVIDE_BY_ZERO:
868 case EXCEPTION_INT_OVERFLOW:
869 return common_flags()->handle_sigfpe;
871 return false;
874 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
875 SYSTEM_INFO si;
876 GetNativeSystemInfo(&si);
877 uptr page_size = si.dwPageSize;
878 uptr page_mask = ~(page_size - 1);
880 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
881 page <= end;) {
882 MEMORY_BASIC_INFORMATION info;
883 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
884 return false;
886 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
887 info.Protect == PAGE_EXECUTE)
888 return false;
890 if (info.RegionSize == 0)
891 return false;
893 page += info.RegionSize;
896 return true;
899 bool SignalContext::IsStackOverflow() const {
900 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
903 void SignalContext::InitPcSpBp() {
904 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
905 CONTEXT *context_record = (CONTEXT *)context;
907 pc = (uptr)exception_record->ExceptionAddress;
908 #ifdef _WIN64
909 bp = (uptr)context_record->Rbp;
910 sp = (uptr)context_record->Rsp;
911 #else
912 bp = (uptr)context_record->Ebp;
913 sp = (uptr)context_record->Esp;
914 #endif
917 uptr SignalContext::GetAddress() const {
918 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
919 return exception_record->ExceptionInformation[1];
922 bool SignalContext::IsMemoryAccess() const {
923 return GetWriteFlag() != SignalContext::UNKNOWN;
926 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
927 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
928 // The contents of this array are documented at
929 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
930 // The first element indicates read as 0, write as 1, or execute as 8. The
931 // second element is the faulting address.
932 switch (exception_record->ExceptionInformation[0]) {
933 case 0:
934 return SignalContext::READ;
935 case 1:
936 return SignalContext::WRITE;
937 case 8:
938 return SignalContext::UNKNOWN;
940 return SignalContext::UNKNOWN;
943 void SignalContext::DumpAllRegisters(void *context) {
944 // FIXME: Implement this.
947 int SignalContext::GetType() const {
948 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
951 const char *SignalContext::Describe() const {
952 unsigned code = GetType();
953 // Get the string description of the exception if this is a known deadly
954 // exception.
955 switch (code) {
956 case EXCEPTION_ACCESS_VIOLATION:
957 return "access-violation";
958 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
959 return "array-bounds-exceeded";
960 case EXCEPTION_STACK_OVERFLOW:
961 return "stack-overflow";
962 case EXCEPTION_DATATYPE_MISALIGNMENT:
963 return "datatype-misalignment";
964 case EXCEPTION_IN_PAGE_ERROR:
965 return "in-page-error";
966 case EXCEPTION_ILLEGAL_INSTRUCTION:
967 return "illegal-instruction";
968 case EXCEPTION_PRIV_INSTRUCTION:
969 return "priv-instruction";
970 case EXCEPTION_BREAKPOINT:
971 return "breakpoint";
972 case EXCEPTION_FLT_DENORMAL_OPERAND:
973 return "flt-denormal-operand";
974 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
975 return "flt-divide-by-zero";
976 case EXCEPTION_FLT_INEXACT_RESULT:
977 return "flt-inexact-result";
978 case EXCEPTION_FLT_INVALID_OPERATION:
979 return "flt-invalid-operation";
980 case EXCEPTION_FLT_OVERFLOW:
981 return "flt-overflow";
982 case EXCEPTION_FLT_STACK_CHECK:
983 return "flt-stack-check";
984 case EXCEPTION_FLT_UNDERFLOW:
985 return "flt-underflow";
986 case EXCEPTION_INT_DIVIDE_BY_ZERO:
987 return "int-divide-by-zero";
988 case EXCEPTION_INT_OVERFLOW:
989 return "int-overflow";
991 return "unknown exception";
994 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
995 // FIXME: Actually implement this function.
996 CHECK_GT(buf_len, 0);
997 buf[0] = 0;
998 return 0;
1001 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1002 return ReadBinaryName(buf, buf_len);
1005 void CheckVMASize() {
1006 // Do nothing.
1009 void MaybeReexec() {
1010 // No need to re-exec on Windows.
1013 void CheckASLR() {
1014 // Do nothing
1017 char **GetArgv() {
1018 // FIXME: Actually implement this function.
1019 return 0;
1022 pid_t StartSubprocess(const char *program, const char *const argv[],
1023 fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
1024 // FIXME: implement on this platform
1025 // Should be implemented based on
1026 // SymbolizerProcess::StarAtSymbolizerSubprocess
1027 // from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
1028 return -1;
1031 bool IsProcessRunning(pid_t pid) {
1032 // FIXME: implement on this platform.
1033 return false;
1036 int WaitForProcess(pid_t pid) { return -1; }
1038 // FIXME implement on this platform.
1039 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1041 void CheckNoDeepBind(const char *filename, int flag) {
1042 // Do nothing.
1045 // FIXME: implement on this platform.
1046 bool GetRandom(void *buffer, uptr length, bool blocking) {
1047 UNIMPLEMENTED();
1050 u32 GetNumberOfCPUs() {
1051 SYSTEM_INFO sysinfo = {};
1052 GetNativeSystemInfo(&sysinfo);
1053 return sysinfo.dwNumberOfProcessors;
1056 } // namespace __sanitizer
1058 #endif // _WIN32