2014-09-02 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / rtlanal.c
blob080a14f47e3777e3b1dd72dc7b9c5a039c94f3a7
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
40 #include "rtl-iter.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
66 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
68 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
69 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
70 SIGN_EXTEND then while narrowing we also have to enforce the
71 representation and sign-extend the value to mode DESTINATION_REP.
73 If the value is already sign-extended to DESTINATION_REP mode we
74 can just switch to DESTINATION mode on it. For each pair of
75 integral modes SOURCE and DESTINATION, when truncating from SOURCE
76 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
77 contains the number of high-order bits in SOURCE that have to be
78 copies of the sign-bit so that we can do this mode-switch to
79 DESTINATION. */
81 static unsigned int
82 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
84 /* Store X into index I of ARRAY. ARRAY is known to have at least I
85 elements. Return the new base of ARRAY. */
87 template <typename T>
88 typename T::value_type *
89 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
90 value_type *base,
91 size_t i, value_type x)
93 if (base == array.stack)
95 if (i < LOCAL_ELEMS)
97 base[i] = x;
98 return base;
100 gcc_checking_assert (i == LOCAL_ELEMS);
101 vec_safe_grow (array.heap, i + 1);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
107 unsigned int length = array.heap->length ();
108 if (length > i)
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
114 else
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
131 const char *format = GET_RTX_FORMAT (GET_CODE (x));
132 size_t orig_end = end;
133 for (int i = 0; format[i]; ++i)
134 if (format[i] == 'e')
136 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
137 if (__builtin_expect (end < LOCAL_ELEMS, true))
138 base[end++] = subx;
139 else
140 base = add_single_to_queue (array, base, end++, subx);
142 else if (format[i] == 'E')
144 int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
145 rtx *vec = x->u.fld[i].rt_rtvec->elem;
146 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
147 for (int j = 0; j < length; j++)
148 base[end++] = T::get_value (vec[j]);
149 else
150 for (int j = 0; j < length; j++)
151 base = add_single_to_queue (array, base, end++,
152 T::get_value (vec[j]));
154 return end - orig_end;
157 template <typename T>
158 void
159 generic_subrtx_iterator <T>::free_array (array_type &array)
161 vec_free (array.heap);
164 template <typename T>
165 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
167 template class generic_subrtx_iterator <const_rtx_accessor>;
168 template class generic_subrtx_iterator <rtx_var_accessor>;
169 template class generic_subrtx_iterator <rtx_ptr_accessor>;
171 /* Return 1 if the value of X is unstable
172 (would be different at a different point in the program).
173 The frame pointer, arg pointer, etc. are considered stable
174 (within one function) and so is anything marked `unchanging'. */
177 rtx_unstable_p (const_rtx x)
179 const RTX_CODE code = GET_CODE (x);
180 int i;
181 const char *fmt;
183 switch (code)
185 case MEM:
186 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
188 case CONST:
189 CASE_CONST_ANY:
190 case SYMBOL_REF:
191 case LABEL_REF:
192 return 0;
194 case REG:
195 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
196 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
197 /* The arg pointer varies if it is not a fixed register. */
198 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
199 return 0;
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up local-alloc
202 into believing that the restore is not needed. */
203 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
204 return 0;
205 return 1;
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
211 /* Fall through. */
213 default:
214 break;
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
221 if (rtx_unstable_p (XEXP (x, i)))
222 return 1;
224 else if (fmt[i] == 'E')
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_unstable_p (XVECEXP (x, i, j)))
229 return 1;
232 return 0;
235 /* Return 1 if X has a value that can vary even between two
236 executions of the program. 0 means X can be compared reliably
237 against certain constants or near-constants.
238 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
239 zero, we are slightly more conservative.
240 The frame pointer and the arg pointer are considered constant. */
242 bool
243 rtx_varies_p (const_rtx x, bool for_alias)
245 RTX_CODE code;
246 int i;
247 const char *fmt;
249 if (!x)
250 return 0;
252 code = GET_CODE (x);
253 switch (code)
255 case MEM:
256 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
258 case CONST:
259 CASE_CONST_ANY:
260 case SYMBOL_REF:
261 case LABEL_REF:
262 return 0;
264 case REG:
265 /* Note that we have to test for the actual rtx used for the frame
266 and arg pointers and not just the register number in case we have
267 eliminated the frame and/or arg pointer and are using it
268 for pseudos. */
269 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
270 /* The arg pointer varies if it is not a fixed register. */
271 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
272 return 0;
273 if (x == pic_offset_table_rtx
274 /* ??? When call-clobbered, the value is stable modulo the restore
275 that must happen after a call. This currently screws up
276 local-alloc into believing that the restore is not needed, so we
277 must return 0 only if we are called from alias analysis. */
278 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
279 return 0;
280 return 1;
282 case LO_SUM:
283 /* The operand 0 of a LO_SUM is considered constant
284 (in fact it is related specifically to operand 1)
285 during alias analysis. */
286 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
287 || rtx_varies_p (XEXP (x, 1), for_alias);
289 case ASM_OPERANDS:
290 if (MEM_VOLATILE_P (x))
291 return 1;
293 /* Fall through. */
295 default:
296 break;
299 fmt = GET_RTX_FORMAT (code);
300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
301 if (fmt[i] == 'e')
303 if (rtx_varies_p (XEXP (x, i), for_alias))
304 return 1;
306 else if (fmt[i] == 'E')
308 int j;
309 for (j = 0; j < XVECLEN (x, i); j++)
310 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
311 return 1;
314 return 0;
317 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
318 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
319 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
320 references on strict alignment machines. */
322 static int
323 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
324 enum machine_mode mode, bool unaligned_mems)
326 enum rtx_code code = GET_CODE (x);
328 /* The offset must be a multiple of the mode size if we are considering
329 unaligned memory references on strict alignment machines. */
330 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
332 HOST_WIDE_INT actual_offset = offset;
334 #ifdef SPARC_STACK_BOUNDARY_HACK
335 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
336 the real alignment of %sp. However, when it does this, the
337 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
338 if (SPARC_STACK_BOUNDARY_HACK
339 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
340 actual_offset -= STACK_POINTER_OFFSET;
341 #endif
343 if (actual_offset % GET_MODE_SIZE (mode) != 0)
344 return 1;
347 switch (code)
349 case SYMBOL_REF:
350 if (SYMBOL_REF_WEAK (x))
351 return 1;
352 if (!CONSTANT_POOL_ADDRESS_P (x))
354 tree decl;
355 HOST_WIDE_INT decl_size;
357 if (offset < 0)
358 return 1;
359 if (size == 0)
360 size = GET_MODE_SIZE (mode);
361 if (size == 0)
362 return offset != 0;
364 /* If the size of the access or of the symbol is unknown,
365 assume the worst. */
366 decl = SYMBOL_REF_DECL (x);
368 /* Else check that the access is in bounds. TODO: restructure
369 expr_size/tree_expr_size/int_expr_size and just use the latter. */
370 if (!decl)
371 decl_size = -1;
372 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
373 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
374 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
375 : -1);
376 else if (TREE_CODE (decl) == STRING_CST)
377 decl_size = TREE_STRING_LENGTH (decl);
378 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
379 decl_size = int_size_in_bytes (TREE_TYPE (decl));
380 else
381 decl_size = -1;
383 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
386 return 0;
388 case LABEL_REF:
389 return 0;
391 case REG:
392 /* Stack references are assumed not to trap, but we need to deal with
393 nonsensical offsets. */
394 if (x == frame_pointer_rtx)
396 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
397 if (size == 0)
398 size = GET_MODE_SIZE (mode);
399 if (FRAME_GROWS_DOWNWARD)
401 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
402 return 1;
404 else
406 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
407 return 1;
409 return 0;
411 /* ??? Need to add a similar guard for nonsensical offsets. */
412 if (x == hard_frame_pointer_rtx
413 || x == stack_pointer_rtx
414 /* The arg pointer varies if it is not a fixed register. */
415 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
416 return 0;
417 /* All of the virtual frame registers are stack references. */
418 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
419 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
420 return 0;
421 return 1;
423 case CONST:
424 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
425 mode, unaligned_mems);
427 case PLUS:
428 /* An address is assumed not to trap if:
429 - it is the pic register plus a constant. */
430 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
431 return 0;
433 /* - or it is an address that can't trap plus a constant integer. */
434 if (CONST_INT_P (XEXP (x, 1))
435 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
436 size, mode, unaligned_mems))
437 return 0;
439 return 1;
441 case LO_SUM:
442 case PRE_MODIFY:
443 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
444 mode, unaligned_mems);
446 case PRE_DEC:
447 case PRE_INC:
448 case POST_DEC:
449 case POST_INC:
450 case POST_MODIFY:
451 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
452 mode, unaligned_mems);
454 default:
455 break;
458 /* If it isn't one of the case above, it can cause a trap. */
459 return 1;
462 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
465 rtx_addr_can_trap_p (const_rtx x)
467 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
470 /* Return true if X is an address that is known to not be zero. */
472 bool
473 nonzero_address_p (const_rtx x)
475 const enum rtx_code code = GET_CODE (x);
477 switch (code)
479 case SYMBOL_REF:
480 return !SYMBOL_REF_WEAK (x);
482 case LABEL_REF:
483 return true;
485 case REG:
486 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
487 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
488 || x == stack_pointer_rtx
489 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
490 return true;
491 /* All of the virtual frame registers are stack references. */
492 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
493 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
494 return true;
495 return false;
497 case CONST:
498 return nonzero_address_p (XEXP (x, 0));
500 case PLUS:
501 /* Handle PIC references. */
502 if (XEXP (x, 0) == pic_offset_table_rtx
503 && CONSTANT_P (XEXP (x, 1)))
504 return true;
505 return false;
507 case PRE_MODIFY:
508 /* Similar to the above; allow positive offsets. Further, since
509 auto-inc is only allowed in memories, the register must be a
510 pointer. */
511 if (CONST_INT_P (XEXP (x, 1))
512 && INTVAL (XEXP (x, 1)) > 0)
513 return true;
514 return nonzero_address_p (XEXP (x, 0));
516 case PRE_INC:
517 /* Similarly. Further, the offset is always positive. */
518 return true;
520 case PRE_DEC:
521 case POST_DEC:
522 case POST_INC:
523 case POST_MODIFY:
524 return nonzero_address_p (XEXP (x, 0));
526 case LO_SUM:
527 return nonzero_address_p (XEXP (x, 1));
529 default:
530 break;
533 /* If it isn't one of the case above, might be zero. */
534 return false;
537 /* Return 1 if X refers to a memory location whose address
538 cannot be compared reliably with constant addresses,
539 or if X refers to a BLKmode memory object.
540 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
541 zero, we are slightly more conservative. */
543 bool
544 rtx_addr_varies_p (const_rtx x, bool for_alias)
546 enum rtx_code code;
547 int i;
548 const char *fmt;
550 if (x == 0)
551 return 0;
553 code = GET_CODE (x);
554 if (code == MEM)
555 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
557 fmt = GET_RTX_FORMAT (code);
558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
559 if (fmt[i] == 'e')
561 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
562 return 1;
564 else if (fmt[i] == 'E')
566 int j;
567 for (j = 0; j < XVECLEN (x, i); j++)
568 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
569 return 1;
571 return 0;
574 /* Return the CALL in X if there is one. */
577 get_call_rtx_from (rtx x)
579 if (INSN_P (x))
580 x = PATTERN (x);
581 if (GET_CODE (x) == PARALLEL)
582 x = XVECEXP (x, 0, 0);
583 if (GET_CODE (x) == SET)
584 x = SET_SRC (x);
585 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
586 return x;
587 return NULL_RTX;
590 /* Return the value of the integer term in X, if one is apparent;
591 otherwise return 0.
592 Only obvious integer terms are detected.
593 This is used in cse.c with the `related_value' field. */
595 HOST_WIDE_INT
596 get_integer_term (const_rtx x)
598 if (GET_CODE (x) == CONST)
599 x = XEXP (x, 0);
601 if (GET_CODE (x) == MINUS
602 && CONST_INT_P (XEXP (x, 1)))
603 return - INTVAL (XEXP (x, 1));
604 if (GET_CODE (x) == PLUS
605 && CONST_INT_P (XEXP (x, 1)))
606 return INTVAL (XEXP (x, 1));
607 return 0;
610 /* If X is a constant, return the value sans apparent integer term;
611 otherwise return 0.
612 Only obvious integer terms are detected. */
615 get_related_value (const_rtx x)
617 if (GET_CODE (x) != CONST)
618 return 0;
619 x = XEXP (x, 0);
620 if (GET_CODE (x) == PLUS
621 && CONST_INT_P (XEXP (x, 1)))
622 return XEXP (x, 0);
623 else if (GET_CODE (x) == MINUS
624 && CONST_INT_P (XEXP (x, 1)))
625 return XEXP (x, 0);
626 return 0;
629 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
630 to somewhere in the same object or object_block as SYMBOL. */
632 bool
633 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
635 tree decl;
637 if (GET_CODE (symbol) != SYMBOL_REF)
638 return false;
640 if (offset == 0)
641 return true;
643 if (offset > 0)
645 if (CONSTANT_POOL_ADDRESS_P (symbol)
646 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
647 return true;
649 decl = SYMBOL_REF_DECL (symbol);
650 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
651 return true;
654 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
655 && SYMBOL_REF_BLOCK (symbol)
656 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
657 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
658 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
659 return true;
661 return false;
664 /* Split X into a base and a constant offset, storing them in *BASE_OUT
665 and *OFFSET_OUT respectively. */
667 void
668 split_const (rtx x, rtx *base_out, rtx *offset_out)
670 if (GET_CODE (x) == CONST)
672 x = XEXP (x, 0);
673 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
675 *base_out = XEXP (x, 0);
676 *offset_out = XEXP (x, 1);
677 return;
680 *base_out = x;
681 *offset_out = const0_rtx;
684 /* Return the number of places FIND appears within X. If COUNT_DEST is
685 zero, we do not count occurrences inside the destination of a SET. */
688 count_occurrences (const_rtx x, const_rtx find, int count_dest)
690 int i, j;
691 enum rtx_code code;
692 const char *format_ptr;
693 int count;
695 if (x == find)
696 return 1;
698 code = GET_CODE (x);
700 switch (code)
702 case REG:
703 CASE_CONST_ANY:
704 case SYMBOL_REF:
705 case CODE_LABEL:
706 case PC:
707 case CC0:
708 return 0;
710 case EXPR_LIST:
711 count = count_occurrences (XEXP (x, 0), find, count_dest);
712 if (XEXP (x, 1))
713 count += count_occurrences (XEXP (x, 1), find, count_dest);
714 return count;
716 case MEM:
717 if (MEM_P (find) && rtx_equal_p (x, find))
718 return 1;
719 break;
721 case SET:
722 if (SET_DEST (x) == find && ! count_dest)
723 return count_occurrences (SET_SRC (x), find, count_dest);
724 break;
726 default:
727 break;
730 format_ptr = GET_RTX_FORMAT (code);
731 count = 0;
733 for (i = 0; i < GET_RTX_LENGTH (code); i++)
735 switch (*format_ptr++)
737 case 'e':
738 count += count_occurrences (XEXP (x, i), find, count_dest);
739 break;
741 case 'E':
742 for (j = 0; j < XVECLEN (x, i); j++)
743 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
744 break;
747 return count;
751 /* Return TRUE if OP is a register or subreg of a register that
752 holds an unsigned quantity. Otherwise, return FALSE. */
754 bool
755 unsigned_reg_p (rtx op)
757 if (REG_P (op)
758 && REG_EXPR (op)
759 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
760 return true;
762 if (GET_CODE (op) == SUBREG
763 && SUBREG_PROMOTED_SIGN (op))
764 return true;
766 return false;
770 /* Nonzero if register REG appears somewhere within IN.
771 Also works if REG is not a register; in this case it checks
772 for a subexpression of IN that is Lisp "equal" to REG. */
775 reg_mentioned_p (const_rtx reg, const_rtx in)
777 const char *fmt;
778 int i;
779 enum rtx_code code;
781 if (in == 0)
782 return 0;
784 if (reg == in)
785 return 1;
787 if (GET_CODE (in) == LABEL_REF)
788 return reg == XEXP (in, 0);
790 code = GET_CODE (in);
792 switch (code)
794 /* Compare registers by number. */
795 case REG:
796 return REG_P (reg) && REGNO (in) == REGNO (reg);
798 /* These codes have no constituent expressions
799 and are unique. */
800 case SCRATCH:
801 case CC0:
802 case PC:
803 return 0;
805 CASE_CONST_ANY:
806 /* These are kept unique for a given value. */
807 return 0;
809 default:
810 break;
813 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
814 return 1;
816 fmt = GET_RTX_FORMAT (code);
818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
820 if (fmt[i] == 'E')
822 int j;
823 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
824 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
825 return 1;
827 else if (fmt[i] == 'e'
828 && reg_mentioned_p (reg, XEXP (in, i)))
829 return 1;
831 return 0;
834 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
835 no CODE_LABEL insn. */
838 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
840 rtx_insn *p;
841 if (beg == end)
842 return 0;
843 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
844 if (LABEL_P (p))
845 return 0;
846 return 1;
849 /* Nonzero if register REG is used in an insn between
850 FROM_INSN and TO_INSN (exclusive of those two). */
853 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
854 const rtx_insn *to_insn)
856 rtx_insn *insn;
858 if (from_insn == to_insn)
859 return 0;
861 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
862 if (NONDEBUG_INSN_P (insn)
863 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
864 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
865 return 1;
866 return 0;
869 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
870 is entirely replaced by a new value and the only use is as a SET_DEST,
871 we do not consider it a reference. */
874 reg_referenced_p (const_rtx x, const_rtx body)
876 int i;
878 switch (GET_CODE (body))
880 case SET:
881 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
882 return 1;
884 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
885 of a REG that occupies all of the REG, the insn references X if
886 it is mentioned in the destination. */
887 if (GET_CODE (SET_DEST (body)) != CC0
888 && GET_CODE (SET_DEST (body)) != PC
889 && !REG_P (SET_DEST (body))
890 && ! (GET_CODE (SET_DEST (body)) == SUBREG
891 && REG_P (SUBREG_REG (SET_DEST (body)))
892 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
893 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
894 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
895 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
896 && reg_overlap_mentioned_p (x, SET_DEST (body)))
897 return 1;
898 return 0;
900 case ASM_OPERANDS:
901 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
902 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
903 return 1;
904 return 0;
906 case CALL:
907 case USE:
908 case IF_THEN_ELSE:
909 return reg_overlap_mentioned_p (x, body);
911 case TRAP_IF:
912 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
914 case PREFETCH:
915 return reg_overlap_mentioned_p (x, XEXP (body, 0));
917 case UNSPEC:
918 case UNSPEC_VOLATILE:
919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
920 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
921 return 1;
922 return 0;
924 case PARALLEL:
925 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
926 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
927 return 1;
928 return 0;
930 case CLOBBER:
931 if (MEM_P (XEXP (body, 0)))
932 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
933 return 1;
934 return 0;
936 case COND_EXEC:
937 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
938 return 1;
939 return reg_referenced_p (x, COND_EXEC_CODE (body));
941 default:
942 return 0;
946 /* Nonzero if register REG is set or clobbered in an insn between
947 FROM_INSN and TO_INSN (exclusive of those two). */
950 reg_set_between_p (const_rtx reg, const_rtx uncast_from_insn, const_rtx to_insn)
952 const rtx_insn *from_insn =
953 safe_as_a <const rtx_insn *> (uncast_from_insn);
954 const rtx_insn *insn;
956 if (from_insn == to_insn)
957 return 0;
959 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
960 if (INSN_P (insn) && reg_set_p (reg, insn))
961 return 1;
962 return 0;
965 /* Internals of reg_set_between_p. */
967 reg_set_p (const_rtx reg, const_rtx insn)
969 /* We can be passed an insn or part of one. If we are passed an insn,
970 check if a side-effect of the insn clobbers REG. */
971 if (INSN_P (insn)
972 && (FIND_REG_INC_NOTE (insn, reg)
973 || (CALL_P (insn)
974 && ((REG_P (reg)
975 && REGNO (reg) < FIRST_PSEUDO_REGISTER
976 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
977 GET_MODE (reg), REGNO (reg)))
978 || MEM_P (reg)
979 || find_reg_fusage (insn, CLOBBER, reg)))))
980 return 1;
982 return set_of (reg, insn) != NULL_RTX;
985 /* Similar to reg_set_between_p, but check all registers in X. Return 0
986 only if none of them are modified between START and END. Return 1 if
987 X contains a MEM; this routine does use memory aliasing. */
990 modified_between_p (const_rtx x, const_rtx uncast_start, const_rtx end)
992 const rtx_insn *start =
993 safe_as_a <const rtx_insn *> (uncast_start);
994 const enum rtx_code code = GET_CODE (x);
995 const char *fmt;
996 int i, j;
997 rtx_insn *insn;
999 if (start == end)
1000 return 0;
1002 switch (code)
1004 CASE_CONST_ANY:
1005 case CONST:
1006 case SYMBOL_REF:
1007 case LABEL_REF:
1008 return 0;
1010 case PC:
1011 case CC0:
1012 return 1;
1014 case MEM:
1015 if (modified_between_p (XEXP (x, 0), start, end))
1016 return 1;
1017 if (MEM_READONLY_P (x))
1018 return 0;
1019 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1020 if (memory_modified_in_insn_p (x, insn))
1021 return 1;
1022 return 0;
1023 break;
1025 case REG:
1026 return reg_set_between_p (x, start, end);
1028 default:
1029 break;
1032 fmt = GET_RTX_FORMAT (code);
1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1035 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1036 return 1;
1038 else if (fmt[i] == 'E')
1039 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1040 if (modified_between_p (XVECEXP (x, i, j), start, end))
1041 return 1;
1044 return 0;
1047 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1048 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1049 does use memory aliasing. */
1052 modified_in_p (const_rtx x, const_rtx insn)
1054 const enum rtx_code code = GET_CODE (x);
1055 const char *fmt;
1056 int i, j;
1058 switch (code)
1060 CASE_CONST_ANY:
1061 case CONST:
1062 case SYMBOL_REF:
1063 case LABEL_REF:
1064 return 0;
1066 case PC:
1067 case CC0:
1068 return 1;
1070 case MEM:
1071 if (modified_in_p (XEXP (x, 0), insn))
1072 return 1;
1073 if (MEM_READONLY_P (x))
1074 return 0;
1075 if (memory_modified_in_insn_p (x, insn))
1076 return 1;
1077 return 0;
1078 break;
1080 case REG:
1081 return reg_set_p (x, insn);
1083 default:
1084 break;
1087 fmt = GET_RTX_FORMAT (code);
1088 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1090 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1091 return 1;
1093 else if (fmt[i] == 'E')
1094 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1095 if (modified_in_p (XVECEXP (x, i, j), insn))
1096 return 1;
1099 return 0;
1102 /* Helper function for set_of. */
1103 struct set_of_data
1105 const_rtx found;
1106 const_rtx pat;
1109 static void
1110 set_of_1 (rtx x, const_rtx pat, void *data1)
1112 struct set_of_data *const data = (struct set_of_data *) (data1);
1113 if (rtx_equal_p (x, data->pat)
1114 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1115 data->found = pat;
1118 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1119 (either directly or via STRICT_LOW_PART and similar modifiers). */
1120 const_rtx
1121 set_of (const_rtx pat, const_rtx insn)
1123 struct set_of_data data;
1124 data.found = NULL_RTX;
1125 data.pat = pat;
1126 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1127 return data.found;
1130 /* Add all hard register in X to *PSET. */
1131 void
1132 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1134 subrtx_iterator::array_type array;
1135 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1137 const_rtx x = *iter;
1138 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1139 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1143 /* This function, called through note_stores, collects sets and
1144 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1145 by DATA. */
1146 void
1147 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1149 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1150 if (REG_P (x) && HARD_REGISTER_P (x))
1151 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1154 /* Examine INSN, and compute the set of hard registers written by it.
1155 Store it in *PSET. Should only be called after reload. */
1156 void
1157 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1159 rtx link;
1161 CLEAR_HARD_REG_SET (*pset);
1162 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1163 if (CALL_P (insn))
1165 if (implicit)
1166 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1168 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1169 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1171 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1172 if (REG_NOTE_KIND (link) == REG_INC)
1173 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1176 /* Like record_hard_reg_sets, but called through note_uses. */
1177 void
1178 record_hard_reg_uses (rtx *px, void *data)
1180 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1183 /* Given an INSN, return a SET expression if this insn has only a single SET.
1184 It may also have CLOBBERs, USEs, or SET whose output
1185 will not be used, which we ignore. */
1188 single_set_2 (const_rtx insn, const_rtx pat)
1190 rtx set = NULL;
1191 int set_verified = 1;
1192 int i;
1194 if (GET_CODE (pat) == PARALLEL)
1196 for (i = 0; i < XVECLEN (pat, 0); i++)
1198 rtx sub = XVECEXP (pat, 0, i);
1199 switch (GET_CODE (sub))
1201 case USE:
1202 case CLOBBER:
1203 break;
1205 case SET:
1206 /* We can consider insns having multiple sets, where all
1207 but one are dead as single set insns. In common case
1208 only single set is present in the pattern so we want
1209 to avoid checking for REG_UNUSED notes unless necessary.
1211 When we reach set first time, we just expect this is
1212 the single set we are looking for and only when more
1213 sets are found in the insn, we check them. */
1214 if (!set_verified)
1216 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1217 && !side_effects_p (set))
1218 set = NULL;
1219 else
1220 set_verified = 1;
1222 if (!set)
1223 set = sub, set_verified = 0;
1224 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1225 || side_effects_p (sub))
1226 return NULL_RTX;
1227 break;
1229 default:
1230 return NULL_RTX;
1234 return set;
1237 /* Given an INSN, return nonzero if it has more than one SET, else return
1238 zero. */
1241 multiple_sets (const_rtx insn)
1243 int found;
1244 int i;
1246 /* INSN must be an insn. */
1247 if (! INSN_P (insn))
1248 return 0;
1250 /* Only a PARALLEL can have multiple SETs. */
1251 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1253 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1254 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1256 /* If we have already found a SET, then return now. */
1257 if (found)
1258 return 1;
1259 else
1260 found = 1;
1264 /* Either zero or one SET. */
1265 return 0;
1268 /* Return nonzero if the destination of SET equals the source
1269 and there are no side effects. */
1272 set_noop_p (const_rtx set)
1274 rtx src = SET_SRC (set);
1275 rtx dst = SET_DEST (set);
1277 if (dst == pc_rtx && src == pc_rtx)
1278 return 1;
1280 if (MEM_P (dst) && MEM_P (src))
1281 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1283 if (GET_CODE (dst) == ZERO_EXTRACT)
1284 return rtx_equal_p (XEXP (dst, 0), src)
1285 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1286 && !side_effects_p (src);
1288 if (GET_CODE (dst) == STRICT_LOW_PART)
1289 dst = XEXP (dst, 0);
1291 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1293 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1294 return 0;
1295 src = SUBREG_REG (src);
1296 dst = SUBREG_REG (dst);
1299 /* It is a NOOP if destination overlaps with selected src vector
1300 elements. */
1301 if (GET_CODE (src) == VEC_SELECT
1302 && REG_P (XEXP (src, 0)) && REG_P (dst)
1303 && HARD_REGISTER_P (XEXP (src, 0))
1304 && HARD_REGISTER_P (dst))
1306 int i;
1307 rtx par = XEXP (src, 1);
1308 rtx src0 = XEXP (src, 0);
1309 int c0 = INTVAL (XVECEXP (par, 0, 0));
1310 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1312 for (i = 1; i < XVECLEN (par, 0); i++)
1313 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1314 return 0;
1315 return
1316 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1317 offset, GET_MODE (dst)) == (int) REGNO (dst);
1320 return (REG_P (src) && REG_P (dst)
1321 && REGNO (src) == REGNO (dst));
1324 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1325 value to itself. */
1328 noop_move_p (const_rtx insn)
1330 rtx pat = PATTERN (insn);
1332 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1333 return 1;
1335 /* Insns carrying these notes are useful later on. */
1336 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1337 return 0;
1339 /* Check the code to be executed for COND_EXEC. */
1340 if (GET_CODE (pat) == COND_EXEC)
1341 pat = COND_EXEC_CODE (pat);
1343 if (GET_CODE (pat) == SET && set_noop_p (pat))
1344 return 1;
1346 if (GET_CODE (pat) == PARALLEL)
1348 int i;
1349 /* If nothing but SETs of registers to themselves,
1350 this insn can also be deleted. */
1351 for (i = 0; i < XVECLEN (pat, 0); i++)
1353 rtx tem = XVECEXP (pat, 0, i);
1355 if (GET_CODE (tem) == USE
1356 || GET_CODE (tem) == CLOBBER)
1357 continue;
1359 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1360 return 0;
1363 return 1;
1365 return 0;
1369 /* Return nonzero if register in range [REGNO, ENDREGNO)
1370 appears either explicitly or implicitly in X
1371 other than being stored into.
1373 References contained within the substructure at LOC do not count.
1374 LOC may be zero, meaning don't ignore anything. */
1377 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1378 rtx *loc)
1380 int i;
1381 unsigned int x_regno;
1382 RTX_CODE code;
1383 const char *fmt;
1385 repeat:
1386 /* The contents of a REG_NONNEG note is always zero, so we must come here
1387 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1388 if (x == 0)
1389 return 0;
1391 code = GET_CODE (x);
1393 switch (code)
1395 case REG:
1396 x_regno = REGNO (x);
1398 /* If we modifying the stack, frame, or argument pointer, it will
1399 clobber a virtual register. In fact, we could be more precise,
1400 but it isn't worth it. */
1401 if ((x_regno == STACK_POINTER_REGNUM
1402 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1403 || x_regno == ARG_POINTER_REGNUM
1404 #endif
1405 || x_regno == FRAME_POINTER_REGNUM)
1406 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1407 return 1;
1409 return endregno > x_regno && regno < END_REGNO (x);
1411 case SUBREG:
1412 /* If this is a SUBREG of a hard reg, we can see exactly which
1413 registers are being modified. Otherwise, handle normally. */
1414 if (REG_P (SUBREG_REG (x))
1415 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1417 unsigned int inner_regno = subreg_regno (x);
1418 unsigned int inner_endregno
1419 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1420 ? subreg_nregs (x) : 1);
1422 return endregno > inner_regno && regno < inner_endregno;
1424 break;
1426 case CLOBBER:
1427 case SET:
1428 if (&SET_DEST (x) != loc
1429 /* Note setting a SUBREG counts as referring to the REG it is in for
1430 a pseudo but not for hard registers since we can
1431 treat each word individually. */
1432 && ((GET_CODE (SET_DEST (x)) == SUBREG
1433 && loc != &SUBREG_REG (SET_DEST (x))
1434 && REG_P (SUBREG_REG (SET_DEST (x)))
1435 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1436 && refers_to_regno_p (regno, endregno,
1437 SUBREG_REG (SET_DEST (x)), loc))
1438 || (!REG_P (SET_DEST (x))
1439 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1440 return 1;
1442 if (code == CLOBBER || loc == &SET_SRC (x))
1443 return 0;
1444 x = SET_SRC (x);
1445 goto repeat;
1447 default:
1448 break;
1451 /* X does not match, so try its subexpressions. */
1453 fmt = GET_RTX_FORMAT (code);
1454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1456 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1458 if (i == 0)
1460 x = XEXP (x, 0);
1461 goto repeat;
1463 else
1464 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1465 return 1;
1467 else if (fmt[i] == 'E')
1469 int j;
1470 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1471 if (loc != &XVECEXP (x, i, j)
1472 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1473 return 1;
1476 return 0;
1479 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1480 we check if any register number in X conflicts with the relevant register
1481 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1482 contains a MEM (we don't bother checking for memory addresses that can't
1483 conflict because we expect this to be a rare case. */
1486 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1488 unsigned int regno, endregno;
1490 /* If either argument is a constant, then modifying X can not
1491 affect IN. Here we look at IN, we can profitably combine
1492 CONSTANT_P (x) with the switch statement below. */
1493 if (CONSTANT_P (in))
1494 return 0;
1496 recurse:
1497 switch (GET_CODE (x))
1499 case STRICT_LOW_PART:
1500 case ZERO_EXTRACT:
1501 case SIGN_EXTRACT:
1502 /* Overly conservative. */
1503 x = XEXP (x, 0);
1504 goto recurse;
1506 case SUBREG:
1507 regno = REGNO (SUBREG_REG (x));
1508 if (regno < FIRST_PSEUDO_REGISTER)
1509 regno = subreg_regno (x);
1510 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1511 ? subreg_nregs (x) : 1);
1512 goto do_reg;
1514 case REG:
1515 regno = REGNO (x);
1516 endregno = END_REGNO (x);
1517 do_reg:
1518 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1520 case MEM:
1522 const char *fmt;
1523 int i;
1525 if (MEM_P (in))
1526 return 1;
1528 fmt = GET_RTX_FORMAT (GET_CODE (in));
1529 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1530 if (fmt[i] == 'e')
1532 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1533 return 1;
1535 else if (fmt[i] == 'E')
1537 int j;
1538 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1539 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1540 return 1;
1543 return 0;
1546 case SCRATCH:
1547 case PC:
1548 case CC0:
1549 return reg_mentioned_p (x, in);
1551 case PARALLEL:
1553 int i;
1555 /* If any register in here refers to it we return true. */
1556 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1557 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1558 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1559 return 1;
1560 return 0;
1563 default:
1564 gcc_assert (CONSTANT_P (x));
1565 return 0;
1569 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1570 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1571 ignored by note_stores, but passed to FUN.
1573 FUN receives three arguments:
1574 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1575 2. the SET or CLOBBER rtx that does the store,
1576 3. the pointer DATA provided to note_stores.
1578 If the item being stored in or clobbered is a SUBREG of a hard register,
1579 the SUBREG will be passed. */
1581 void
1582 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1584 int i;
1586 if (GET_CODE (x) == COND_EXEC)
1587 x = COND_EXEC_CODE (x);
1589 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1591 rtx dest = SET_DEST (x);
1593 while ((GET_CODE (dest) == SUBREG
1594 && (!REG_P (SUBREG_REG (dest))
1595 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1596 || GET_CODE (dest) == ZERO_EXTRACT
1597 || GET_CODE (dest) == STRICT_LOW_PART)
1598 dest = XEXP (dest, 0);
1600 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1601 each of whose first operand is a register. */
1602 if (GET_CODE (dest) == PARALLEL)
1604 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1605 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1606 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1608 else
1609 (*fun) (dest, x, data);
1612 else if (GET_CODE (x) == PARALLEL)
1613 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1614 note_stores (XVECEXP (x, 0, i), fun, data);
1617 /* Like notes_stores, but call FUN for each expression that is being
1618 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1619 FUN for each expression, not any interior subexpressions. FUN receives a
1620 pointer to the expression and the DATA passed to this function.
1622 Note that this is not quite the same test as that done in reg_referenced_p
1623 since that considers something as being referenced if it is being
1624 partially set, while we do not. */
1626 void
1627 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1629 rtx body = *pbody;
1630 int i;
1632 switch (GET_CODE (body))
1634 case COND_EXEC:
1635 (*fun) (&COND_EXEC_TEST (body), data);
1636 note_uses (&COND_EXEC_CODE (body), fun, data);
1637 return;
1639 case PARALLEL:
1640 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1641 note_uses (&XVECEXP (body, 0, i), fun, data);
1642 return;
1644 case SEQUENCE:
1645 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1646 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1647 return;
1649 case USE:
1650 (*fun) (&XEXP (body, 0), data);
1651 return;
1653 case ASM_OPERANDS:
1654 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1655 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1656 return;
1658 case TRAP_IF:
1659 (*fun) (&TRAP_CONDITION (body), data);
1660 return;
1662 case PREFETCH:
1663 (*fun) (&XEXP (body, 0), data);
1664 return;
1666 case UNSPEC:
1667 case UNSPEC_VOLATILE:
1668 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1669 (*fun) (&XVECEXP (body, 0, i), data);
1670 return;
1672 case CLOBBER:
1673 if (MEM_P (XEXP (body, 0)))
1674 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1675 return;
1677 case SET:
1679 rtx dest = SET_DEST (body);
1681 /* For sets we replace everything in source plus registers in memory
1682 expression in store and operands of a ZERO_EXTRACT. */
1683 (*fun) (&SET_SRC (body), data);
1685 if (GET_CODE (dest) == ZERO_EXTRACT)
1687 (*fun) (&XEXP (dest, 1), data);
1688 (*fun) (&XEXP (dest, 2), data);
1691 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1692 dest = XEXP (dest, 0);
1694 if (MEM_P (dest))
1695 (*fun) (&XEXP (dest, 0), data);
1697 return;
1699 default:
1700 /* All the other possibilities never store. */
1701 (*fun) (pbody, data);
1702 return;
1706 /* Return nonzero if X's old contents don't survive after INSN.
1707 This will be true if X is (cc0) or if X is a register and
1708 X dies in INSN or because INSN entirely sets X.
1710 "Entirely set" means set directly and not through a SUBREG, or
1711 ZERO_EXTRACT, so no trace of the old contents remains.
1712 Likewise, REG_INC does not count.
1714 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1715 but for this use that makes no difference, since regs don't overlap
1716 during their lifetimes. Therefore, this function may be used
1717 at any time after deaths have been computed.
1719 If REG is a hard reg that occupies multiple machine registers, this
1720 function will only return 1 if each of those registers will be replaced
1721 by INSN. */
1724 dead_or_set_p (const_rtx insn, const_rtx x)
1726 unsigned int regno, end_regno;
1727 unsigned int i;
1729 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1730 if (GET_CODE (x) == CC0)
1731 return 1;
1733 gcc_assert (REG_P (x));
1735 regno = REGNO (x);
1736 end_regno = END_REGNO (x);
1737 for (i = regno; i < end_regno; i++)
1738 if (! dead_or_set_regno_p (insn, i))
1739 return 0;
1741 return 1;
1744 /* Return TRUE iff DEST is a register or subreg of a register and
1745 doesn't change the number of words of the inner register, and any
1746 part of the register is TEST_REGNO. */
1748 static bool
1749 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1751 unsigned int regno, endregno;
1753 if (GET_CODE (dest) == SUBREG
1754 && (((GET_MODE_SIZE (GET_MODE (dest))
1755 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1756 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1757 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1758 dest = SUBREG_REG (dest);
1760 if (!REG_P (dest))
1761 return false;
1763 regno = REGNO (dest);
1764 endregno = END_REGNO (dest);
1765 return (test_regno >= regno && test_regno < endregno);
1768 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1769 any member matches the covers_regno_no_parallel_p criteria. */
1771 static bool
1772 covers_regno_p (const_rtx dest, unsigned int test_regno)
1774 if (GET_CODE (dest) == PARALLEL)
1776 /* Some targets place small structures in registers for return
1777 values of functions, and those registers are wrapped in
1778 PARALLELs that we may see as the destination of a SET. */
1779 int i;
1781 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1783 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1784 if (inner != NULL_RTX
1785 && covers_regno_no_parallel_p (inner, test_regno))
1786 return true;
1789 return false;
1791 else
1792 return covers_regno_no_parallel_p (dest, test_regno);
1795 /* Utility function for dead_or_set_p to check an individual register. */
1798 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1800 const_rtx pattern;
1802 /* See if there is a death note for something that includes TEST_REGNO. */
1803 if (find_regno_note (insn, REG_DEAD, test_regno))
1804 return 1;
1806 if (CALL_P (insn)
1807 && find_regno_fusage (insn, CLOBBER, test_regno))
1808 return 1;
1810 pattern = PATTERN (insn);
1812 /* If a COND_EXEC is not executed, the value survives. */
1813 if (GET_CODE (pattern) == COND_EXEC)
1814 return 0;
1816 if (GET_CODE (pattern) == SET)
1817 return covers_regno_p (SET_DEST (pattern), test_regno);
1818 else if (GET_CODE (pattern) == PARALLEL)
1820 int i;
1822 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1824 rtx body = XVECEXP (pattern, 0, i);
1826 if (GET_CODE (body) == COND_EXEC)
1827 body = COND_EXEC_CODE (body);
1829 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1830 && covers_regno_p (SET_DEST (body), test_regno))
1831 return 1;
1835 return 0;
1838 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1839 If DATUM is nonzero, look for one whose datum is DATUM. */
1842 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1844 rtx link;
1846 gcc_checking_assert (insn);
1848 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1849 if (! INSN_P (insn))
1850 return 0;
1851 if (datum == 0)
1853 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1854 if (REG_NOTE_KIND (link) == kind)
1855 return link;
1856 return 0;
1859 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1860 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1861 return link;
1862 return 0;
1865 /* Return the reg-note of kind KIND in insn INSN which applies to register
1866 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1867 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1868 it might be the case that the note overlaps REGNO. */
1871 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1873 rtx link;
1875 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1876 if (! INSN_P (insn))
1877 return 0;
1879 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1880 if (REG_NOTE_KIND (link) == kind
1881 /* Verify that it is a register, so that scratch and MEM won't cause a
1882 problem here. */
1883 && REG_P (XEXP (link, 0))
1884 && REGNO (XEXP (link, 0)) <= regno
1885 && END_REGNO (XEXP (link, 0)) > regno)
1886 return link;
1887 return 0;
1890 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1891 has such a note. */
1894 find_reg_equal_equiv_note (const_rtx insn)
1896 rtx link;
1898 if (!INSN_P (insn))
1899 return 0;
1901 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1902 if (REG_NOTE_KIND (link) == REG_EQUAL
1903 || REG_NOTE_KIND (link) == REG_EQUIV)
1905 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1906 insns that have multiple sets. Checking single_set to
1907 make sure of this is not the proper check, as explained
1908 in the comment in set_unique_reg_note.
1910 This should be changed into an assert. */
1911 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1912 return 0;
1913 return link;
1915 return NULL;
1918 /* Check whether INSN is a single_set whose source is known to be
1919 equivalent to a constant. Return that constant if so, otherwise
1920 return null. */
1923 find_constant_src (const_rtx insn)
1925 rtx note, set, x;
1927 set = single_set (insn);
1928 if (set)
1930 x = avoid_constant_pool_reference (SET_SRC (set));
1931 if (CONSTANT_P (x))
1932 return x;
1935 note = find_reg_equal_equiv_note (insn);
1936 if (note && CONSTANT_P (XEXP (note, 0)))
1937 return XEXP (note, 0);
1939 return NULL_RTX;
1942 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1943 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1946 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1948 /* If it's not a CALL_INSN, it can't possibly have a
1949 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1950 if (!CALL_P (insn))
1951 return 0;
1953 gcc_assert (datum);
1955 if (!REG_P (datum))
1957 rtx link;
1959 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1960 link;
1961 link = XEXP (link, 1))
1962 if (GET_CODE (XEXP (link, 0)) == code
1963 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1964 return 1;
1966 else
1968 unsigned int regno = REGNO (datum);
1970 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1971 to pseudo registers, so don't bother checking. */
1973 if (regno < FIRST_PSEUDO_REGISTER)
1975 unsigned int end_regno = END_HARD_REGNO (datum);
1976 unsigned int i;
1978 for (i = regno; i < end_regno; i++)
1979 if (find_regno_fusage (insn, code, i))
1980 return 1;
1984 return 0;
1987 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1988 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1991 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1993 rtx link;
1995 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1996 to pseudo registers, so don't bother checking. */
1998 if (regno >= FIRST_PSEUDO_REGISTER
1999 || !CALL_P (insn) )
2000 return 0;
2002 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2004 rtx op, reg;
2006 if (GET_CODE (op = XEXP (link, 0)) == code
2007 && REG_P (reg = XEXP (op, 0))
2008 && REGNO (reg) <= regno
2009 && END_HARD_REGNO (reg) > regno)
2010 return 1;
2013 return 0;
2017 /* Return true if KIND is an integer REG_NOTE. */
2019 static bool
2020 int_reg_note_p (enum reg_note kind)
2022 return kind == REG_BR_PROB;
2025 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2026 stored as the pointer to the next register note. */
2029 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2031 rtx note;
2033 gcc_checking_assert (!int_reg_note_p (kind));
2034 switch (kind)
2036 case REG_CC_SETTER:
2037 case REG_CC_USER:
2038 case REG_LABEL_TARGET:
2039 case REG_LABEL_OPERAND:
2040 case REG_TM:
2041 /* These types of register notes use an INSN_LIST rather than an
2042 EXPR_LIST, so that copying is done right and dumps look
2043 better. */
2044 note = alloc_INSN_LIST (datum, list);
2045 PUT_REG_NOTE_KIND (note, kind);
2046 break;
2048 default:
2049 note = alloc_EXPR_LIST (kind, datum, list);
2050 break;
2053 return note;
2056 /* Add register note with kind KIND and datum DATUM to INSN. */
2058 void
2059 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2061 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2064 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2066 void
2067 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2069 gcc_checking_assert (int_reg_note_p (kind));
2070 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
2071 datum, REG_NOTES (insn));
2074 /* Add a register note like NOTE to INSN. */
2076 void
2077 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2079 if (GET_CODE (note) == INT_LIST)
2080 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2081 else
2082 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2085 /* Remove register note NOTE from the REG_NOTES of INSN. */
2087 void
2088 remove_note (rtx insn, const_rtx note)
2090 rtx link;
2092 if (note == NULL_RTX)
2093 return;
2095 if (REG_NOTES (insn) == note)
2096 REG_NOTES (insn) = XEXP (note, 1);
2097 else
2098 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2099 if (XEXP (link, 1) == note)
2101 XEXP (link, 1) = XEXP (note, 1);
2102 break;
2105 switch (REG_NOTE_KIND (note))
2107 case REG_EQUAL:
2108 case REG_EQUIV:
2109 df_notes_rescan (as_a <rtx_insn *> (insn));
2110 break;
2111 default:
2112 break;
2116 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2118 void
2119 remove_reg_equal_equiv_notes (rtx insn)
2121 rtx *loc;
2123 loc = &REG_NOTES (insn);
2124 while (*loc)
2126 enum reg_note kind = REG_NOTE_KIND (*loc);
2127 if (kind == REG_EQUAL || kind == REG_EQUIV)
2128 *loc = XEXP (*loc, 1);
2129 else
2130 loc = &XEXP (*loc, 1);
2134 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2136 void
2137 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2139 df_ref eq_use;
2141 if (!df)
2142 return;
2144 /* This loop is a little tricky. We cannot just go down the chain because
2145 it is being modified by some actions in the loop. So we just iterate
2146 over the head. We plan to drain the list anyway. */
2147 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2149 rtx_insn *insn = DF_REF_INSN (eq_use);
2150 rtx note = find_reg_equal_equiv_note (insn);
2152 /* This assert is generally triggered when someone deletes a REG_EQUAL
2153 or REG_EQUIV note by hacking the list manually rather than calling
2154 remove_note. */
2155 gcc_assert (note);
2157 remove_note (insn, note);
2161 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2162 return 1 if it is found. A simple equality test is used to determine if
2163 NODE matches. */
2166 in_expr_list_p (const_rtx listp, const_rtx node)
2168 const_rtx x;
2170 for (x = listp; x; x = XEXP (x, 1))
2171 if (node == XEXP (x, 0))
2172 return 1;
2174 return 0;
2177 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2178 remove that entry from the list if it is found.
2180 A simple equality test is used to determine if NODE matches. */
2182 void
2183 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2185 rtx_expr_list *temp = *listp;
2186 rtx prev = NULL_RTX;
2188 while (temp)
2190 if (node == temp->element ())
2192 /* Splice the node out of the list. */
2193 if (prev)
2194 XEXP (prev, 1) = temp->next ();
2195 else
2196 *listp = temp->next ();
2198 return;
2201 prev = temp;
2202 temp = temp->next ();
2206 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2207 remove that entry from the list if it is found.
2209 A simple equality test is used to determine if NODE matches. */
2211 void
2212 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2214 rtx_insn_list *temp = *listp;
2215 rtx prev = NULL;
2217 while (temp)
2219 if (node == temp->insn ())
2221 /* Splice the node out of the list. */
2222 if (prev)
2223 XEXP (prev, 1) = temp->next ();
2224 else
2225 *listp = temp->next ();
2227 return;
2230 prev = temp;
2231 temp = temp->next ();
2235 /* Nonzero if X contains any volatile instructions. These are instructions
2236 which may cause unpredictable machine state instructions, and thus no
2237 instructions or register uses should be moved or combined across them.
2238 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2241 volatile_insn_p (const_rtx x)
2243 const RTX_CODE code = GET_CODE (x);
2244 switch (code)
2246 case LABEL_REF:
2247 case SYMBOL_REF:
2248 case CONST:
2249 CASE_CONST_ANY:
2250 case CC0:
2251 case PC:
2252 case REG:
2253 case SCRATCH:
2254 case CLOBBER:
2255 case ADDR_VEC:
2256 case ADDR_DIFF_VEC:
2257 case CALL:
2258 case MEM:
2259 return 0;
2261 case UNSPEC_VOLATILE:
2262 return 1;
2264 case ASM_INPUT:
2265 case ASM_OPERANDS:
2266 if (MEM_VOLATILE_P (x))
2267 return 1;
2269 default:
2270 break;
2273 /* Recursively scan the operands of this expression. */
2276 const char *const fmt = GET_RTX_FORMAT (code);
2277 int i;
2279 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2281 if (fmt[i] == 'e')
2283 if (volatile_insn_p (XEXP (x, i)))
2284 return 1;
2286 else if (fmt[i] == 'E')
2288 int j;
2289 for (j = 0; j < XVECLEN (x, i); j++)
2290 if (volatile_insn_p (XVECEXP (x, i, j)))
2291 return 1;
2295 return 0;
2298 /* Nonzero if X contains any volatile memory references
2299 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2302 volatile_refs_p (const_rtx x)
2304 const RTX_CODE code = GET_CODE (x);
2305 switch (code)
2307 case LABEL_REF:
2308 case SYMBOL_REF:
2309 case CONST:
2310 CASE_CONST_ANY:
2311 case CC0:
2312 case PC:
2313 case REG:
2314 case SCRATCH:
2315 case CLOBBER:
2316 case ADDR_VEC:
2317 case ADDR_DIFF_VEC:
2318 return 0;
2320 case UNSPEC_VOLATILE:
2321 return 1;
2323 case MEM:
2324 case ASM_INPUT:
2325 case ASM_OPERANDS:
2326 if (MEM_VOLATILE_P (x))
2327 return 1;
2329 default:
2330 break;
2333 /* Recursively scan the operands of this expression. */
2336 const char *const fmt = GET_RTX_FORMAT (code);
2337 int i;
2339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2341 if (fmt[i] == 'e')
2343 if (volatile_refs_p (XEXP (x, i)))
2344 return 1;
2346 else if (fmt[i] == 'E')
2348 int j;
2349 for (j = 0; j < XVECLEN (x, i); j++)
2350 if (volatile_refs_p (XVECEXP (x, i, j)))
2351 return 1;
2355 return 0;
2358 /* Similar to above, except that it also rejects register pre- and post-
2359 incrementing. */
2362 side_effects_p (const_rtx x)
2364 const RTX_CODE code = GET_CODE (x);
2365 switch (code)
2367 case LABEL_REF:
2368 case SYMBOL_REF:
2369 case CONST:
2370 CASE_CONST_ANY:
2371 case CC0:
2372 case PC:
2373 case REG:
2374 case SCRATCH:
2375 case ADDR_VEC:
2376 case ADDR_DIFF_VEC:
2377 case VAR_LOCATION:
2378 return 0;
2380 case CLOBBER:
2381 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2382 when some combination can't be done. If we see one, don't think
2383 that we can simplify the expression. */
2384 return (GET_MODE (x) != VOIDmode);
2386 case PRE_INC:
2387 case PRE_DEC:
2388 case POST_INC:
2389 case POST_DEC:
2390 case PRE_MODIFY:
2391 case POST_MODIFY:
2392 case CALL:
2393 case UNSPEC_VOLATILE:
2394 return 1;
2396 case MEM:
2397 case ASM_INPUT:
2398 case ASM_OPERANDS:
2399 if (MEM_VOLATILE_P (x))
2400 return 1;
2402 default:
2403 break;
2406 /* Recursively scan the operands of this expression. */
2409 const char *fmt = GET_RTX_FORMAT (code);
2410 int i;
2412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2414 if (fmt[i] == 'e')
2416 if (side_effects_p (XEXP (x, i)))
2417 return 1;
2419 else if (fmt[i] == 'E')
2421 int j;
2422 for (j = 0; j < XVECLEN (x, i); j++)
2423 if (side_effects_p (XVECEXP (x, i, j)))
2424 return 1;
2428 return 0;
2431 /* Return nonzero if evaluating rtx X might cause a trap.
2432 FLAGS controls how to consider MEMs. A nonzero means the context
2433 of the access may have changed from the original, such that the
2434 address may have become invalid. */
2437 may_trap_p_1 (const_rtx x, unsigned flags)
2439 int i;
2440 enum rtx_code code;
2441 const char *fmt;
2443 /* We make no distinction currently, but this function is part of
2444 the internal target-hooks ABI so we keep the parameter as
2445 "unsigned flags". */
2446 bool code_changed = flags != 0;
2448 if (x == 0)
2449 return 0;
2450 code = GET_CODE (x);
2451 switch (code)
2453 /* Handle these cases quickly. */
2454 CASE_CONST_ANY:
2455 case SYMBOL_REF:
2456 case LABEL_REF:
2457 case CONST:
2458 case PC:
2459 case CC0:
2460 case REG:
2461 case SCRATCH:
2462 return 0;
2464 case UNSPEC:
2465 return targetm.unspec_may_trap_p (x, flags);
2467 case UNSPEC_VOLATILE:
2468 case ASM_INPUT:
2469 case TRAP_IF:
2470 return 1;
2472 case ASM_OPERANDS:
2473 return MEM_VOLATILE_P (x);
2475 /* Memory ref can trap unless it's a static var or a stack slot. */
2476 case MEM:
2477 /* Recognize specific pattern of stack checking probes. */
2478 if (flag_stack_check
2479 && MEM_VOLATILE_P (x)
2480 && XEXP (x, 0) == stack_pointer_rtx)
2481 return 1;
2482 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2483 reference; moving it out of context such as when moving code
2484 when optimizing, might cause its address to become invalid. */
2485 code_changed
2486 || !MEM_NOTRAP_P (x))
2488 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2489 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2490 GET_MODE (x), code_changed);
2493 return 0;
2495 /* Division by a non-constant might trap. */
2496 case DIV:
2497 case MOD:
2498 case UDIV:
2499 case UMOD:
2500 if (HONOR_SNANS (GET_MODE (x)))
2501 return 1;
2502 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2503 return flag_trapping_math;
2504 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2505 return 1;
2506 break;
2508 case EXPR_LIST:
2509 /* An EXPR_LIST is used to represent a function call. This
2510 certainly may trap. */
2511 return 1;
2513 case GE:
2514 case GT:
2515 case LE:
2516 case LT:
2517 case LTGT:
2518 case COMPARE:
2519 /* Some floating point comparisons may trap. */
2520 if (!flag_trapping_math)
2521 break;
2522 /* ??? There is no machine independent way to check for tests that trap
2523 when COMPARE is used, though many targets do make this distinction.
2524 For instance, sparc uses CCFPE for compares which generate exceptions
2525 and CCFP for compares which do not generate exceptions. */
2526 if (HONOR_NANS (GET_MODE (x)))
2527 return 1;
2528 /* But often the compare has some CC mode, so check operand
2529 modes as well. */
2530 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2531 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2532 return 1;
2533 break;
2535 case EQ:
2536 case NE:
2537 if (HONOR_SNANS (GET_MODE (x)))
2538 return 1;
2539 /* Often comparison is CC mode, so check operand modes. */
2540 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2541 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2542 return 1;
2543 break;
2545 case FIX:
2546 /* Conversion of floating point might trap. */
2547 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2548 return 1;
2549 break;
2551 case NEG:
2552 case ABS:
2553 case SUBREG:
2554 /* These operations don't trap even with floating point. */
2555 break;
2557 default:
2558 /* Any floating arithmetic may trap. */
2559 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2560 return 1;
2563 fmt = GET_RTX_FORMAT (code);
2564 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2566 if (fmt[i] == 'e')
2568 if (may_trap_p_1 (XEXP (x, i), flags))
2569 return 1;
2571 else if (fmt[i] == 'E')
2573 int j;
2574 for (j = 0; j < XVECLEN (x, i); j++)
2575 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2576 return 1;
2579 return 0;
2582 /* Return nonzero if evaluating rtx X might cause a trap. */
2585 may_trap_p (const_rtx x)
2587 return may_trap_p_1 (x, 0);
2590 /* Same as above, but additionally return nonzero if evaluating rtx X might
2591 cause a fault. We define a fault for the purpose of this function as a
2592 erroneous execution condition that cannot be encountered during the normal
2593 execution of a valid program; the typical example is an unaligned memory
2594 access on a strict alignment machine. The compiler guarantees that it
2595 doesn't generate code that will fault from a valid program, but this
2596 guarantee doesn't mean anything for individual instructions. Consider
2597 the following example:
2599 struct S { int d; union { char *cp; int *ip; }; };
2601 int foo(struct S *s)
2603 if (s->d == 1)
2604 return *s->ip;
2605 else
2606 return *s->cp;
2609 on a strict alignment machine. In a valid program, foo will never be
2610 invoked on a structure for which d is equal to 1 and the underlying
2611 unique field of the union not aligned on a 4-byte boundary, but the
2612 expression *s->ip might cause a fault if considered individually.
2614 At the RTL level, potentially problematic expressions will almost always
2615 verify may_trap_p; for example, the above dereference can be emitted as
2616 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2617 However, suppose that foo is inlined in a caller that causes s->cp to
2618 point to a local character variable and guarantees that s->d is not set
2619 to 1; foo may have been effectively translated into pseudo-RTL as:
2621 if ((reg:SI) == 1)
2622 (set (reg:SI) (mem:SI (%fp - 7)))
2623 else
2624 (set (reg:QI) (mem:QI (%fp - 7)))
2626 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2627 memory reference to a stack slot, but it will certainly cause a fault
2628 on a strict alignment machine. */
2631 may_trap_or_fault_p (const_rtx x)
2633 return may_trap_p_1 (x, 1);
2636 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2637 i.e., an inequality. */
2640 inequality_comparisons_p (const_rtx x)
2642 const char *fmt;
2643 int len, i;
2644 const enum rtx_code code = GET_CODE (x);
2646 switch (code)
2648 case REG:
2649 case SCRATCH:
2650 case PC:
2651 case CC0:
2652 CASE_CONST_ANY:
2653 case CONST:
2654 case LABEL_REF:
2655 case SYMBOL_REF:
2656 return 0;
2658 case LT:
2659 case LTU:
2660 case GT:
2661 case GTU:
2662 case LE:
2663 case LEU:
2664 case GE:
2665 case GEU:
2666 return 1;
2668 default:
2669 break;
2672 len = GET_RTX_LENGTH (code);
2673 fmt = GET_RTX_FORMAT (code);
2675 for (i = 0; i < len; i++)
2677 if (fmt[i] == 'e')
2679 if (inequality_comparisons_p (XEXP (x, i)))
2680 return 1;
2682 else if (fmt[i] == 'E')
2684 int j;
2685 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2686 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2687 return 1;
2691 return 0;
2694 /* Replace any occurrence of FROM in X with TO. The function does
2695 not enter into CONST_DOUBLE for the replace.
2697 Note that copying is not done so X must not be shared unless all copies
2698 are to be modified. */
2701 replace_rtx (rtx x, rtx from, rtx to)
2703 int i, j;
2704 const char *fmt;
2706 if (x == from)
2707 return to;
2709 /* Allow this function to make replacements in EXPR_LISTs. */
2710 if (x == 0)
2711 return 0;
2713 if (GET_CODE (x) == SUBREG)
2715 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2717 if (CONST_INT_P (new_rtx))
2719 x = simplify_subreg (GET_MODE (x), new_rtx,
2720 GET_MODE (SUBREG_REG (x)),
2721 SUBREG_BYTE (x));
2722 gcc_assert (x);
2724 else
2725 SUBREG_REG (x) = new_rtx;
2727 return x;
2729 else if (GET_CODE (x) == ZERO_EXTEND)
2731 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2733 if (CONST_INT_P (new_rtx))
2735 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2736 new_rtx, GET_MODE (XEXP (x, 0)));
2737 gcc_assert (x);
2739 else
2740 XEXP (x, 0) = new_rtx;
2742 return x;
2745 fmt = GET_RTX_FORMAT (GET_CODE (x));
2746 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2748 if (fmt[i] == 'e')
2749 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2750 else if (fmt[i] == 'E')
2751 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2752 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2755 return x;
2758 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2759 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2761 void
2762 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2764 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2765 rtx x = *loc;
2766 if (JUMP_TABLE_DATA_P (x))
2768 x = PATTERN (x);
2769 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2770 int len = GET_NUM_ELEM (vec);
2771 for (int i = 0; i < len; ++i)
2773 rtx ref = RTVEC_ELT (vec, i);
2774 if (XEXP (ref, 0) == old_label)
2776 XEXP (ref, 0) = new_label;
2777 if (update_label_nuses)
2779 ++LABEL_NUSES (new_label);
2780 --LABEL_NUSES (old_label);
2784 return;
2787 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2788 field. This is not handled by the iterator because it doesn't
2789 handle unprinted ('0') fields. */
2790 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2791 JUMP_LABEL (x) = new_label;
2793 subrtx_ptr_iterator::array_type array;
2794 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2796 rtx *loc = *iter;
2797 if (rtx x = *loc)
2799 if (GET_CODE (x) == SYMBOL_REF
2800 && CONSTANT_POOL_ADDRESS_P (x))
2802 rtx c = get_pool_constant (x);
2803 if (rtx_referenced_p (old_label, c))
2805 /* Create a copy of constant C; replace the label inside
2806 but do not update LABEL_NUSES because uses in constant pool
2807 are not counted. */
2808 rtx new_c = copy_rtx (c);
2809 replace_label (&new_c, old_label, new_label, false);
2811 /* Add the new constant NEW_C to constant pool and replace
2812 the old reference to constant by new reference. */
2813 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2814 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2818 if ((GET_CODE (x) == LABEL_REF
2819 || GET_CODE (x) == INSN_LIST)
2820 && XEXP (x, 0) == old_label)
2822 XEXP (x, 0) = new_label;
2823 if (update_label_nuses)
2825 ++LABEL_NUSES (new_label);
2826 --LABEL_NUSES (old_label);
2833 void
2834 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2835 bool update_label_nuses)
2837 rtx insn_as_rtx = insn;
2838 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2839 gcc_checking_assert (insn_as_rtx == insn);
2842 /* Return true if X is referenced in BODY. */
2844 bool
2845 rtx_referenced_p (const_rtx x, const_rtx body)
2847 subrtx_iterator::array_type array;
2848 FOR_EACH_SUBRTX (iter, array, body, ALL)
2849 if (const_rtx y = *iter)
2851 /* Check if a label_ref Y refers to label X. */
2852 if (GET_CODE (y) == LABEL_REF && LABEL_P (x) && XEXP (y, 0) == x)
2853 return true;
2855 if (rtx_equal_p (x, y))
2856 return true;
2858 /* If Y is a reference to pool constant traverse the constant. */
2859 if (GET_CODE (y) == SYMBOL_REF
2860 && CONSTANT_POOL_ADDRESS_P (y))
2861 iter.substitute (get_pool_constant (y));
2863 return false;
2866 /* If INSN is a tablejump return true and store the label (before jump table) to
2867 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2869 bool
2870 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2872 rtx label, table;
2874 if (!JUMP_P (insn))
2875 return false;
2877 label = JUMP_LABEL (insn);
2878 if (label != NULL_RTX && !ANY_RETURN_P (label)
2879 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2880 && JUMP_TABLE_DATA_P (table))
2882 if (labelp)
2883 *labelp = label;
2884 if (tablep)
2885 *tablep = as_a <rtx_jump_table_data *> (table);
2886 return true;
2888 return false;
2891 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2892 constant that is not in the constant pool and not in the condition
2893 of an IF_THEN_ELSE. */
2895 static int
2896 computed_jump_p_1 (const_rtx x)
2898 const enum rtx_code code = GET_CODE (x);
2899 int i, j;
2900 const char *fmt;
2902 switch (code)
2904 case LABEL_REF:
2905 case PC:
2906 return 0;
2908 case CONST:
2909 CASE_CONST_ANY:
2910 case SYMBOL_REF:
2911 case REG:
2912 return 1;
2914 case MEM:
2915 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2916 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2918 case IF_THEN_ELSE:
2919 return (computed_jump_p_1 (XEXP (x, 1))
2920 || computed_jump_p_1 (XEXP (x, 2)));
2922 default:
2923 break;
2926 fmt = GET_RTX_FORMAT (code);
2927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2929 if (fmt[i] == 'e'
2930 && computed_jump_p_1 (XEXP (x, i)))
2931 return 1;
2933 else if (fmt[i] == 'E')
2934 for (j = 0; j < XVECLEN (x, i); j++)
2935 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2936 return 1;
2939 return 0;
2942 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2944 Tablejumps and casesi insns are not considered indirect jumps;
2945 we can recognize them by a (use (label_ref)). */
2948 computed_jump_p (const_rtx insn)
2950 int i;
2951 if (JUMP_P (insn))
2953 rtx pat = PATTERN (insn);
2955 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2956 if (JUMP_LABEL (insn) != NULL)
2957 return 0;
2959 if (GET_CODE (pat) == PARALLEL)
2961 int len = XVECLEN (pat, 0);
2962 int has_use_labelref = 0;
2964 for (i = len - 1; i >= 0; i--)
2965 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2966 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2967 == LABEL_REF))
2969 has_use_labelref = 1;
2970 break;
2973 if (! has_use_labelref)
2974 for (i = len - 1; i >= 0; i--)
2975 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2976 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2977 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2978 return 1;
2980 else if (GET_CODE (pat) == SET
2981 && SET_DEST (pat) == pc_rtx
2982 && computed_jump_p_1 (SET_SRC (pat)))
2983 return 1;
2985 return 0;
2988 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2989 calls. Processes the subexpressions of EXP and passes them to F. */
2990 static int
2991 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2993 int result, i, j;
2994 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2995 rtx *x;
2997 for (; format[n] != '\0'; n++)
2999 switch (format[n])
3001 case 'e':
3002 /* Call F on X. */
3003 x = &XEXP (exp, n);
3004 result = (*f) (x, data);
3005 if (result == -1)
3006 /* Do not traverse sub-expressions. */
3007 continue;
3008 else if (result != 0)
3009 /* Stop the traversal. */
3010 return result;
3012 if (*x == NULL_RTX)
3013 /* There are no sub-expressions. */
3014 continue;
3016 i = non_rtx_starting_operands[GET_CODE (*x)];
3017 if (i >= 0)
3019 result = for_each_rtx_1 (*x, i, f, data);
3020 if (result != 0)
3021 return result;
3023 break;
3025 case 'V':
3026 case 'E':
3027 if (XVEC (exp, n) == 0)
3028 continue;
3029 for (j = 0; j < XVECLEN (exp, n); ++j)
3031 /* Call F on X. */
3032 x = &XVECEXP (exp, n, j);
3033 result = (*f) (x, data);
3034 if (result == -1)
3035 /* Do not traverse sub-expressions. */
3036 continue;
3037 else if (result != 0)
3038 /* Stop the traversal. */
3039 return result;
3041 if (*x == NULL_RTX)
3042 /* There are no sub-expressions. */
3043 continue;
3045 i = non_rtx_starting_operands[GET_CODE (*x)];
3046 if (i >= 0)
3048 result = for_each_rtx_1 (*x, i, f, data);
3049 if (result != 0)
3050 return result;
3053 break;
3055 default:
3056 /* Nothing to do. */
3057 break;
3061 return 0;
3064 /* Traverse X via depth-first search, calling F for each
3065 sub-expression (including X itself). F is also passed the DATA.
3066 If F returns -1, do not traverse sub-expressions, but continue
3067 traversing the rest of the tree. If F ever returns any other
3068 nonzero value, stop the traversal, and return the value returned
3069 by F. Otherwise, return 0. This function does not traverse inside
3070 tree structure that contains RTX_EXPRs, or into sub-expressions
3071 whose format code is `0' since it is not known whether or not those
3072 codes are actually RTL.
3074 This routine is very general, and could (should?) be used to
3075 implement many of the other routines in this file. */
3078 for_each_rtx (rtx *x, rtx_function f, void *data)
3080 int result;
3081 int i;
3083 /* Call F on X. */
3084 result = (*f) (x, data);
3085 if (result == -1)
3086 /* Do not traverse sub-expressions. */
3087 return 0;
3088 else if (result != 0)
3089 /* Stop the traversal. */
3090 return result;
3092 if (*x == NULL_RTX)
3093 /* There are no sub-expressions. */
3094 return 0;
3096 i = non_rtx_starting_operands[GET_CODE (*x)];
3097 if (i < 0)
3098 return 0;
3100 return for_each_rtx_1 (*x, i, f, data);
3103 /* Like "for_each_rtx", but for calling on an rtx_insn **. */
3106 for_each_rtx_in_insn (rtx_insn **insn, rtx_function f, void *data)
3108 rtx insn_as_rtx = *insn;
3109 int result;
3111 result = for_each_rtx (&insn_as_rtx, f, data);
3113 if (insn_as_rtx != *insn)
3114 *insn = safe_as_a <rtx_insn *> (insn_as_rtx);
3116 return result;
3121 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3122 the equivalent add insn and pass the result to FN, using DATA as the
3123 final argument. */
3125 static int
3126 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3128 rtx x = XEXP (mem, 0);
3129 switch (GET_CODE (x))
3131 case PRE_INC:
3132 case POST_INC:
3134 int size = GET_MODE_SIZE (GET_MODE (mem));
3135 rtx r1 = XEXP (x, 0);
3136 rtx c = gen_int_mode (size, GET_MODE (r1));
3137 return fn (mem, x, r1, r1, c, data);
3140 case PRE_DEC:
3141 case POST_DEC:
3143 int size = GET_MODE_SIZE (GET_MODE (mem));
3144 rtx r1 = XEXP (x, 0);
3145 rtx c = gen_int_mode (-size, GET_MODE (r1));
3146 return fn (mem, x, r1, r1, c, data);
3149 case PRE_MODIFY:
3150 case POST_MODIFY:
3152 rtx r1 = XEXP (x, 0);
3153 rtx add = XEXP (x, 1);
3154 return fn (mem, x, r1, add, NULL, data);
3157 default:
3158 gcc_unreachable ();
3162 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3163 For each such autoinc operation found, call FN, passing it
3164 the innermost enclosing MEM, the operation itself, the RTX modified
3165 by the operation, two RTXs (the second may be NULL) that, once
3166 added, represent the value to be held by the modified RTX
3167 afterwards, and DATA. FN is to return 0 to continue the
3168 traversal or any other value to have it returned to the caller of
3169 for_each_inc_dec. */
3172 for_each_inc_dec (rtx x,
3173 for_each_inc_dec_fn fn,
3174 void *data)
3176 subrtx_var_iterator::array_type array;
3177 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3179 rtx mem = *iter;
3180 if (mem
3181 && MEM_P (mem)
3182 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3184 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3185 if (res != 0)
3186 return res;
3187 iter.skip_subrtxes ();
3190 return 0;
3194 /* Searches X for any reference to REGNO, returning the rtx of the
3195 reference found if any. Otherwise, returns NULL_RTX. */
3198 regno_use_in (unsigned int regno, rtx x)
3200 const char *fmt;
3201 int i, j;
3202 rtx tem;
3204 if (REG_P (x) && REGNO (x) == regno)
3205 return x;
3207 fmt = GET_RTX_FORMAT (GET_CODE (x));
3208 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3210 if (fmt[i] == 'e')
3212 if ((tem = regno_use_in (regno, XEXP (x, i))))
3213 return tem;
3215 else if (fmt[i] == 'E')
3216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3217 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3218 return tem;
3221 return NULL_RTX;
3224 /* Return a value indicating whether OP, an operand of a commutative
3225 operation, is preferred as the first or second operand. The higher
3226 the value, the stronger the preference for being the first operand.
3227 We use negative values to indicate a preference for the first operand
3228 and positive values for the second operand. */
3231 commutative_operand_precedence (rtx op)
3233 enum rtx_code code = GET_CODE (op);
3235 /* Constants always come the second operand. Prefer "nice" constants. */
3236 if (code == CONST_INT)
3237 return -8;
3238 if (code == CONST_WIDE_INT)
3239 return -8;
3240 if (code == CONST_DOUBLE)
3241 return -7;
3242 if (code == CONST_FIXED)
3243 return -7;
3244 op = avoid_constant_pool_reference (op);
3245 code = GET_CODE (op);
3247 switch (GET_RTX_CLASS (code))
3249 case RTX_CONST_OBJ:
3250 if (code == CONST_INT)
3251 return -6;
3252 if (code == CONST_WIDE_INT)
3253 return -6;
3254 if (code == CONST_DOUBLE)
3255 return -5;
3256 if (code == CONST_FIXED)
3257 return -5;
3258 return -4;
3260 case RTX_EXTRA:
3261 /* SUBREGs of objects should come second. */
3262 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3263 return -3;
3264 return 0;
3266 case RTX_OBJ:
3267 /* Complex expressions should be the first, so decrease priority
3268 of objects. Prefer pointer objects over non pointer objects. */
3269 if ((REG_P (op) && REG_POINTER (op))
3270 || (MEM_P (op) && MEM_POINTER (op)))
3271 return -1;
3272 return -2;
3274 case RTX_COMM_ARITH:
3275 /* Prefer operands that are themselves commutative to be first.
3276 This helps to make things linear. In particular,
3277 (and (and (reg) (reg)) (not (reg))) is canonical. */
3278 return 4;
3280 case RTX_BIN_ARITH:
3281 /* If only one operand is a binary expression, it will be the first
3282 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3283 is canonical, although it will usually be further simplified. */
3284 return 2;
3286 case RTX_UNARY:
3287 /* Then prefer NEG and NOT. */
3288 if (code == NEG || code == NOT)
3289 return 1;
3291 default:
3292 return 0;
3296 /* Return 1 iff it is necessary to swap operands of commutative operation
3297 in order to canonicalize expression. */
3299 bool
3300 swap_commutative_operands_p (rtx x, rtx y)
3302 return (commutative_operand_precedence (x)
3303 < commutative_operand_precedence (y));
3306 /* Return 1 if X is an autoincrement side effect and the register is
3307 not the stack pointer. */
3309 auto_inc_p (const_rtx x)
3311 switch (GET_CODE (x))
3313 case PRE_INC:
3314 case POST_INC:
3315 case PRE_DEC:
3316 case POST_DEC:
3317 case PRE_MODIFY:
3318 case POST_MODIFY:
3319 /* There are no REG_INC notes for SP. */
3320 if (XEXP (x, 0) != stack_pointer_rtx)
3321 return 1;
3322 default:
3323 break;
3325 return 0;
3328 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3330 loc_mentioned_in_p (rtx *loc, const_rtx in)
3332 enum rtx_code code;
3333 const char *fmt;
3334 int i, j;
3336 if (!in)
3337 return 0;
3339 code = GET_CODE (in);
3340 fmt = GET_RTX_FORMAT (code);
3341 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3343 if (fmt[i] == 'e')
3345 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3346 return 1;
3348 else if (fmt[i] == 'E')
3349 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3350 if (loc == &XVECEXP (in, i, j)
3351 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3352 return 1;
3354 return 0;
3357 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3358 and SUBREG_BYTE, return the bit offset where the subreg begins
3359 (counting from the least significant bit of the operand). */
3361 unsigned int
3362 subreg_lsb_1 (enum machine_mode outer_mode,
3363 enum machine_mode inner_mode,
3364 unsigned int subreg_byte)
3366 unsigned int bitpos;
3367 unsigned int byte;
3368 unsigned int word;
3370 /* A paradoxical subreg begins at bit position 0. */
3371 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3372 return 0;
3374 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3375 /* If the subreg crosses a word boundary ensure that
3376 it also begins and ends on a word boundary. */
3377 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3378 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3379 && (subreg_byte % UNITS_PER_WORD
3380 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3382 if (WORDS_BIG_ENDIAN)
3383 word = (GET_MODE_SIZE (inner_mode)
3384 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3385 else
3386 word = subreg_byte / UNITS_PER_WORD;
3387 bitpos = word * BITS_PER_WORD;
3389 if (BYTES_BIG_ENDIAN)
3390 byte = (GET_MODE_SIZE (inner_mode)
3391 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3392 else
3393 byte = subreg_byte % UNITS_PER_WORD;
3394 bitpos += byte * BITS_PER_UNIT;
3396 return bitpos;
3399 /* Given a subreg X, return the bit offset where the subreg begins
3400 (counting from the least significant bit of the reg). */
3402 unsigned int
3403 subreg_lsb (const_rtx x)
3405 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3406 SUBREG_BYTE (x));
3409 /* Fill in information about a subreg of a hard register.
3410 xregno - A regno of an inner hard subreg_reg (or what will become one).
3411 xmode - The mode of xregno.
3412 offset - The byte offset.
3413 ymode - The mode of a top level SUBREG (or what may become one).
3414 info - Pointer to structure to fill in. */
3415 void
3416 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3417 unsigned int offset, enum machine_mode ymode,
3418 struct subreg_info *info)
3420 int nregs_xmode, nregs_ymode;
3421 int mode_multiple, nregs_multiple;
3422 int offset_adj, y_offset, y_offset_adj;
3423 int regsize_xmode, regsize_ymode;
3424 bool rknown;
3426 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3428 rknown = false;
3430 /* If there are holes in a non-scalar mode in registers, we expect
3431 that it is made up of its units concatenated together. */
3432 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3434 enum machine_mode xmode_unit;
3436 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3437 if (GET_MODE_INNER (xmode) == VOIDmode)
3438 xmode_unit = xmode;
3439 else
3440 xmode_unit = GET_MODE_INNER (xmode);
3441 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3442 gcc_assert (nregs_xmode
3443 == (GET_MODE_NUNITS (xmode)
3444 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3445 gcc_assert (hard_regno_nregs[xregno][xmode]
3446 == (hard_regno_nregs[xregno][xmode_unit]
3447 * GET_MODE_NUNITS (xmode)));
3449 /* You can only ask for a SUBREG of a value with holes in the middle
3450 if you don't cross the holes. (Such a SUBREG should be done by
3451 picking a different register class, or doing it in memory if
3452 necessary.) An example of a value with holes is XCmode on 32-bit
3453 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3454 3 for each part, but in memory it's two 128-bit parts.
3455 Padding is assumed to be at the end (not necessarily the 'high part')
3456 of each unit. */
3457 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3458 < GET_MODE_NUNITS (xmode))
3459 && (offset / GET_MODE_SIZE (xmode_unit)
3460 != ((offset + GET_MODE_SIZE (ymode) - 1)
3461 / GET_MODE_SIZE (xmode_unit))))
3463 info->representable_p = false;
3464 rknown = true;
3467 else
3468 nregs_xmode = hard_regno_nregs[xregno][xmode];
3470 nregs_ymode = hard_regno_nregs[xregno][ymode];
3472 /* Paradoxical subregs are otherwise valid. */
3473 if (!rknown
3474 && offset == 0
3475 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3477 info->representable_p = true;
3478 /* If this is a big endian paradoxical subreg, which uses more
3479 actual hard registers than the original register, we must
3480 return a negative offset so that we find the proper highpart
3481 of the register. */
3482 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3483 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3484 info->offset = nregs_xmode - nregs_ymode;
3485 else
3486 info->offset = 0;
3487 info->nregs = nregs_ymode;
3488 return;
3491 /* If registers store different numbers of bits in the different
3492 modes, we cannot generally form this subreg. */
3493 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3494 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3495 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3496 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3498 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3499 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3500 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3502 info->representable_p = false;
3503 info->nregs
3504 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3505 info->offset = offset / regsize_xmode;
3506 return;
3508 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3510 info->representable_p = false;
3511 info->nregs
3512 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3513 info->offset = offset / regsize_xmode;
3514 return;
3518 /* Lowpart subregs are otherwise valid. */
3519 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3521 info->representable_p = true;
3522 rknown = true;
3524 if (offset == 0 || nregs_xmode == nregs_ymode)
3526 info->offset = 0;
3527 info->nregs = nregs_ymode;
3528 return;
3532 /* This should always pass, otherwise we don't know how to verify
3533 the constraint. These conditions may be relaxed but
3534 subreg_regno_offset would need to be redesigned. */
3535 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3536 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3538 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3539 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3541 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3542 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3543 HOST_WIDE_INT off_low = offset & (ysize - 1);
3544 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3545 offset = (xsize - ysize - off_high) | off_low;
3547 /* The XMODE value can be seen as a vector of NREGS_XMODE
3548 values. The subreg must represent a lowpart of given field.
3549 Compute what field it is. */
3550 offset_adj = offset;
3551 offset_adj -= subreg_lowpart_offset (ymode,
3552 mode_for_size (GET_MODE_BITSIZE (xmode)
3553 / nregs_xmode,
3554 MODE_INT, 0));
3556 /* Size of ymode must not be greater than the size of xmode. */
3557 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3558 gcc_assert (mode_multiple != 0);
3560 y_offset = offset / GET_MODE_SIZE (ymode);
3561 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3562 nregs_multiple = nregs_xmode / nregs_ymode;
3564 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3565 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3567 if (!rknown)
3569 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3570 rknown = true;
3572 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3573 info->nregs = nregs_ymode;
3576 /* This function returns the regno offset of a subreg expression.
3577 xregno - A regno of an inner hard subreg_reg (or what will become one).
3578 xmode - The mode of xregno.
3579 offset - The byte offset.
3580 ymode - The mode of a top level SUBREG (or what may become one).
3581 RETURN - The regno offset which would be used. */
3582 unsigned int
3583 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3584 unsigned int offset, enum machine_mode ymode)
3586 struct subreg_info info;
3587 subreg_get_info (xregno, xmode, offset, ymode, &info);
3588 return info.offset;
3591 /* This function returns true when the offset is representable via
3592 subreg_offset in the given regno.
3593 xregno - A regno of an inner hard subreg_reg (or what will become one).
3594 xmode - The mode of xregno.
3595 offset - The byte offset.
3596 ymode - The mode of a top level SUBREG (or what may become one).
3597 RETURN - Whether the offset is representable. */
3598 bool
3599 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3600 unsigned int offset, enum machine_mode ymode)
3602 struct subreg_info info;
3603 subreg_get_info (xregno, xmode, offset, ymode, &info);
3604 return info.representable_p;
3607 /* Return the number of a YMODE register to which
3609 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3611 can be simplified. Return -1 if the subreg can't be simplified.
3613 XREGNO is a hard register number. */
3616 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3617 unsigned int offset, enum machine_mode ymode)
3619 struct subreg_info info;
3620 unsigned int yregno;
3622 #ifdef CANNOT_CHANGE_MODE_CLASS
3623 /* Give the backend a chance to disallow the mode change. */
3624 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3625 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3626 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3627 /* We can use mode change in LRA for some transformations. */
3628 && ! lra_in_progress)
3629 return -1;
3630 #endif
3632 /* We shouldn't simplify stack-related registers. */
3633 if ((!reload_completed || frame_pointer_needed)
3634 && xregno == FRAME_POINTER_REGNUM)
3635 return -1;
3637 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3638 && xregno == ARG_POINTER_REGNUM)
3639 return -1;
3641 if (xregno == STACK_POINTER_REGNUM
3642 /* We should convert hard stack register in LRA if it is
3643 possible. */
3644 && ! lra_in_progress)
3645 return -1;
3647 /* Try to get the register offset. */
3648 subreg_get_info (xregno, xmode, offset, ymode, &info);
3649 if (!info.representable_p)
3650 return -1;
3652 /* Make sure that the offsetted register value is in range. */
3653 yregno = xregno + info.offset;
3654 if (!HARD_REGISTER_NUM_P (yregno))
3655 return -1;
3657 /* See whether (reg:YMODE YREGNO) is valid.
3659 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3660 This is a kludge to work around how complex FP arguments are passed
3661 on IA-64 and should be fixed. See PR target/49226. */
3662 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3663 && HARD_REGNO_MODE_OK (xregno, xmode))
3664 return -1;
3666 return (int) yregno;
3669 /* Return the final regno that a subreg expression refers to. */
3670 unsigned int
3671 subreg_regno (const_rtx x)
3673 unsigned int ret;
3674 rtx subreg = SUBREG_REG (x);
3675 int regno = REGNO (subreg);
3677 ret = regno + subreg_regno_offset (regno,
3678 GET_MODE (subreg),
3679 SUBREG_BYTE (x),
3680 GET_MODE (x));
3681 return ret;
3685 /* Return the number of registers that a subreg expression refers
3686 to. */
3687 unsigned int
3688 subreg_nregs (const_rtx x)
3690 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3693 /* Return the number of registers that a subreg REG with REGNO
3694 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3695 changed so that the regno can be passed in. */
3697 unsigned int
3698 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3700 struct subreg_info info;
3701 rtx subreg = SUBREG_REG (x);
3703 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3704 &info);
3705 return info.nregs;
3709 struct parms_set_data
3711 int nregs;
3712 HARD_REG_SET regs;
3715 /* Helper function for noticing stores to parameter registers. */
3716 static void
3717 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3719 struct parms_set_data *const d = (struct parms_set_data *) data;
3720 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3721 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3723 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3724 d->nregs--;
3728 /* Look backward for first parameter to be loaded.
3729 Note that loads of all parameters will not necessarily be
3730 found if CSE has eliminated some of them (e.g., an argument
3731 to the outer function is passed down as a parameter).
3732 Do not skip BOUNDARY. */
3733 rtx_insn *
3734 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3736 struct parms_set_data parm;
3737 rtx p;
3738 rtx_insn *before, *first_set;
3740 /* Since different machines initialize their parameter registers
3741 in different orders, assume nothing. Collect the set of all
3742 parameter registers. */
3743 CLEAR_HARD_REG_SET (parm.regs);
3744 parm.nregs = 0;
3745 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3746 if (GET_CODE (XEXP (p, 0)) == USE
3747 && REG_P (XEXP (XEXP (p, 0), 0)))
3749 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3751 /* We only care about registers which can hold function
3752 arguments. */
3753 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3754 continue;
3756 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3757 parm.nregs++;
3759 before = call_insn;
3760 first_set = call_insn;
3762 /* Search backward for the first set of a register in this set. */
3763 while (parm.nregs && before != boundary)
3765 before = PREV_INSN (before);
3767 /* It is possible that some loads got CSEed from one call to
3768 another. Stop in that case. */
3769 if (CALL_P (before))
3770 break;
3772 /* Our caller needs either ensure that we will find all sets
3773 (in case code has not been optimized yet), or take care
3774 for possible labels in a way by setting boundary to preceding
3775 CODE_LABEL. */
3776 if (LABEL_P (before))
3778 gcc_assert (before == boundary);
3779 break;
3782 if (INSN_P (before))
3784 int nregs_old = parm.nregs;
3785 note_stores (PATTERN (before), parms_set, &parm);
3786 /* If we found something that did not set a parameter reg,
3787 we're done. Do not keep going, as that might result
3788 in hoisting an insn before the setting of a pseudo
3789 that is used by the hoisted insn. */
3790 if (nregs_old != parm.nregs)
3791 first_set = before;
3792 else
3793 break;
3796 return first_set;
3799 /* Return true if we should avoid inserting code between INSN and preceding
3800 call instruction. */
3802 bool
3803 keep_with_call_p (const_rtx insn)
3805 rtx set;
3807 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3809 if (REG_P (SET_DEST (set))
3810 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3811 && fixed_regs[REGNO (SET_DEST (set))]
3812 && general_operand (SET_SRC (set), VOIDmode))
3813 return true;
3814 if (REG_P (SET_SRC (set))
3815 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3816 && REG_P (SET_DEST (set))
3817 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3818 return true;
3819 /* There may be a stack pop just after the call and before the store
3820 of the return register. Search for the actual store when deciding
3821 if we can break or not. */
3822 if (SET_DEST (set) == stack_pointer_rtx)
3824 /* This CONST_CAST is okay because next_nonnote_insn just
3825 returns its argument and we assign it to a const_rtx
3826 variable. */
3827 const rtx_insn *i2 = next_nonnote_insn (CONST_CAST_RTX (insn));
3828 if (i2 && keep_with_call_p (i2))
3829 return true;
3832 return false;
3835 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3836 to non-complex jumps. That is, direct unconditional, conditional,
3837 and tablejumps, but not computed jumps or returns. It also does
3838 not apply to the fallthru case of a conditional jump. */
3840 bool
3841 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3843 rtx tmp = JUMP_LABEL (jump_insn);
3844 rtx_jump_table_data *table;
3846 if (label == tmp)
3847 return true;
3849 if (tablejump_p (jump_insn, NULL, &table))
3851 rtvec vec = table->get_labels ();
3852 int i, veclen = GET_NUM_ELEM (vec);
3854 for (i = 0; i < veclen; ++i)
3855 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3856 return true;
3859 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3860 return true;
3862 return false;
3866 /* Return an estimate of the cost of computing rtx X.
3867 One use is in cse, to decide which expression to keep in the hash table.
3868 Another is in rtl generation, to pick the cheapest way to multiply.
3869 Other uses like the latter are expected in the future.
3871 X appears as operand OPNO in an expression with code OUTER_CODE.
3872 SPEED specifies whether costs optimized for speed or size should
3873 be returned. */
3876 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3878 int i, j;
3879 enum rtx_code code;
3880 const char *fmt;
3881 int total;
3882 int factor;
3884 if (x == 0)
3885 return 0;
3887 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3888 many insns, taking N times as long. */
3889 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3890 if (factor == 0)
3891 factor = 1;
3893 /* Compute the default costs of certain things.
3894 Note that targetm.rtx_costs can override the defaults. */
3896 code = GET_CODE (x);
3897 switch (code)
3899 case MULT:
3900 /* Multiplication has time-complexity O(N*N), where N is the
3901 number of units (translated from digits) when using
3902 schoolbook long multiplication. */
3903 total = factor * factor * COSTS_N_INSNS (5);
3904 break;
3905 case DIV:
3906 case UDIV:
3907 case MOD:
3908 case UMOD:
3909 /* Similarly, complexity for schoolbook long division. */
3910 total = factor * factor * COSTS_N_INSNS (7);
3911 break;
3912 case USE:
3913 /* Used in combine.c as a marker. */
3914 total = 0;
3915 break;
3916 case SET:
3917 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3918 the mode for the factor. */
3919 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3920 if (factor == 0)
3921 factor = 1;
3922 /* Pass through. */
3923 default:
3924 total = factor * COSTS_N_INSNS (1);
3927 switch (code)
3929 case REG:
3930 return 0;
3932 case SUBREG:
3933 total = 0;
3934 /* If we can't tie these modes, make this expensive. The larger
3935 the mode, the more expensive it is. */
3936 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3937 return COSTS_N_INSNS (2 + factor);
3938 break;
3940 default:
3941 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3942 return total;
3943 break;
3946 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3947 which is already in total. */
3949 fmt = GET_RTX_FORMAT (code);
3950 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3951 if (fmt[i] == 'e')
3952 total += rtx_cost (XEXP (x, i), code, i, speed);
3953 else if (fmt[i] == 'E')
3954 for (j = 0; j < XVECLEN (x, i); j++)
3955 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3957 return total;
3960 /* Fill in the structure C with information about both speed and size rtx
3961 costs for X, which is operand OPNO in an expression with code OUTER. */
3963 void
3964 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3965 struct full_rtx_costs *c)
3967 c->speed = rtx_cost (x, outer, opno, true);
3968 c->size = rtx_cost (x, outer, opno, false);
3972 /* Return cost of address expression X.
3973 Expect that X is properly formed address reference.
3975 SPEED parameter specify whether costs optimized for speed or size should
3976 be returned. */
3979 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3981 /* We may be asked for cost of various unusual addresses, such as operands
3982 of push instruction. It is not worthwhile to complicate writing
3983 of the target hook by such cases. */
3985 if (!memory_address_addr_space_p (mode, x, as))
3986 return 1000;
3988 return targetm.address_cost (x, mode, as, speed);
3991 /* If the target doesn't override, compute the cost as with arithmetic. */
3994 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
3996 return rtx_cost (x, MEM, 0, speed);
4000 unsigned HOST_WIDE_INT
4001 nonzero_bits (const_rtx x, enum machine_mode mode)
4003 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4006 unsigned int
4007 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
4009 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4012 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4013 It avoids exponential behavior in nonzero_bits1 when X has
4014 identical subexpressions on the first or the second level. */
4016 static unsigned HOST_WIDE_INT
4017 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
4018 enum machine_mode known_mode,
4019 unsigned HOST_WIDE_INT known_ret)
4021 if (x == known_x && mode == known_mode)
4022 return known_ret;
4024 /* Try to find identical subexpressions. If found call
4025 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4026 precomputed value for the subexpression as KNOWN_RET. */
4028 if (ARITHMETIC_P (x))
4030 rtx x0 = XEXP (x, 0);
4031 rtx x1 = XEXP (x, 1);
4033 /* Check the first level. */
4034 if (x0 == x1)
4035 return nonzero_bits1 (x, mode, x0, mode,
4036 cached_nonzero_bits (x0, mode, known_x,
4037 known_mode, known_ret));
4039 /* Check the second level. */
4040 if (ARITHMETIC_P (x0)
4041 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4042 return nonzero_bits1 (x, mode, x1, mode,
4043 cached_nonzero_bits (x1, mode, known_x,
4044 known_mode, known_ret));
4046 if (ARITHMETIC_P (x1)
4047 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4048 return nonzero_bits1 (x, mode, x0, mode,
4049 cached_nonzero_bits (x0, mode, known_x,
4050 known_mode, known_ret));
4053 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4056 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4057 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4058 is less useful. We can't allow both, because that results in exponential
4059 run time recursion. There is a nullstone testcase that triggered
4060 this. This macro avoids accidental uses of num_sign_bit_copies. */
4061 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4063 /* Given an expression, X, compute which bits in X can be nonzero.
4064 We don't care about bits outside of those defined in MODE.
4066 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4067 an arithmetic operation, we can do better. */
4069 static unsigned HOST_WIDE_INT
4070 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4071 enum machine_mode known_mode,
4072 unsigned HOST_WIDE_INT known_ret)
4074 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4075 unsigned HOST_WIDE_INT inner_nz;
4076 enum rtx_code code;
4077 enum machine_mode inner_mode;
4078 unsigned int mode_width = GET_MODE_PRECISION (mode);
4080 /* For floating-point and vector values, assume all bits are needed. */
4081 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4082 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4083 return nonzero;
4085 /* If X is wider than MODE, use its mode instead. */
4086 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4088 mode = GET_MODE (x);
4089 nonzero = GET_MODE_MASK (mode);
4090 mode_width = GET_MODE_PRECISION (mode);
4093 if (mode_width > HOST_BITS_PER_WIDE_INT)
4094 /* Our only callers in this case look for single bit values. So
4095 just return the mode mask. Those tests will then be false. */
4096 return nonzero;
4098 #ifndef WORD_REGISTER_OPERATIONS
4099 /* If MODE is wider than X, but both are a single word for both the host
4100 and target machines, we can compute this from which bits of the
4101 object might be nonzero in its own mode, taking into account the fact
4102 that on many CISC machines, accessing an object in a wider mode
4103 causes the high-order bits to become undefined. So they are
4104 not known to be zero. */
4106 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4107 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4108 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4109 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4111 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4112 known_x, known_mode, known_ret);
4113 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4114 return nonzero;
4116 #endif
4118 code = GET_CODE (x);
4119 switch (code)
4121 case REG:
4122 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4123 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4124 all the bits above ptr_mode are known to be zero. */
4125 /* As we do not know which address space the pointer is referring to,
4126 we can do this only if the target does not support different pointer
4127 or address modes depending on the address space. */
4128 if (target_default_pointer_address_modes_p ()
4129 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4130 && REG_POINTER (x))
4131 nonzero &= GET_MODE_MASK (ptr_mode);
4132 #endif
4134 /* Include declared information about alignment of pointers. */
4135 /* ??? We don't properly preserve REG_POINTER changes across
4136 pointer-to-integer casts, so we can't trust it except for
4137 things that we know must be pointers. See execute/960116-1.c. */
4138 if ((x == stack_pointer_rtx
4139 || x == frame_pointer_rtx
4140 || x == arg_pointer_rtx)
4141 && REGNO_POINTER_ALIGN (REGNO (x)))
4143 unsigned HOST_WIDE_INT alignment
4144 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4146 #ifdef PUSH_ROUNDING
4147 /* If PUSH_ROUNDING is defined, it is possible for the
4148 stack to be momentarily aligned only to that amount,
4149 so we pick the least alignment. */
4150 if (x == stack_pointer_rtx && PUSH_ARGS)
4151 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4152 alignment);
4153 #endif
4155 nonzero &= ~(alignment - 1);
4159 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4160 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4161 known_mode, known_ret,
4162 &nonzero_for_hook);
4164 if (new_rtx)
4165 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4166 known_mode, known_ret);
4168 return nonzero_for_hook;
4171 case CONST_INT:
4172 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4173 /* If X is negative in MODE, sign-extend the value. */
4174 if (INTVAL (x) > 0
4175 && mode_width < BITS_PER_WORD
4176 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4177 != 0)
4178 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4179 #endif
4181 return UINTVAL (x);
4183 case MEM:
4184 #ifdef LOAD_EXTEND_OP
4185 /* In many, if not most, RISC machines, reading a byte from memory
4186 zeros the rest of the register. Noticing that fact saves a lot
4187 of extra zero-extends. */
4188 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4189 nonzero &= GET_MODE_MASK (GET_MODE (x));
4190 #endif
4191 break;
4193 case EQ: case NE:
4194 case UNEQ: case LTGT:
4195 case GT: case GTU: case UNGT:
4196 case LT: case LTU: case UNLT:
4197 case GE: case GEU: case UNGE:
4198 case LE: case LEU: case UNLE:
4199 case UNORDERED: case ORDERED:
4200 /* If this produces an integer result, we know which bits are set.
4201 Code here used to clear bits outside the mode of X, but that is
4202 now done above. */
4203 /* Mind that MODE is the mode the caller wants to look at this
4204 operation in, and not the actual operation mode. We can wind
4205 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4206 that describes the results of a vector compare. */
4207 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4208 && mode_width <= HOST_BITS_PER_WIDE_INT)
4209 nonzero = STORE_FLAG_VALUE;
4210 break;
4212 case NEG:
4213 #if 0
4214 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4215 and num_sign_bit_copies. */
4216 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4217 == GET_MODE_PRECISION (GET_MODE (x)))
4218 nonzero = 1;
4219 #endif
4221 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4222 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4223 break;
4225 case ABS:
4226 #if 0
4227 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4228 and num_sign_bit_copies. */
4229 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4230 == GET_MODE_PRECISION (GET_MODE (x)))
4231 nonzero = 1;
4232 #endif
4233 break;
4235 case TRUNCATE:
4236 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4237 known_x, known_mode, known_ret)
4238 & GET_MODE_MASK (mode));
4239 break;
4241 case ZERO_EXTEND:
4242 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4243 known_x, known_mode, known_ret);
4244 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4245 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4246 break;
4248 case SIGN_EXTEND:
4249 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4250 Otherwise, show all the bits in the outer mode but not the inner
4251 may be nonzero. */
4252 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4253 known_x, known_mode, known_ret);
4254 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4256 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4257 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4258 inner_nz |= (GET_MODE_MASK (mode)
4259 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4262 nonzero &= inner_nz;
4263 break;
4265 case AND:
4266 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4267 known_x, known_mode, known_ret)
4268 & cached_nonzero_bits (XEXP (x, 1), mode,
4269 known_x, known_mode, known_ret);
4270 break;
4272 case XOR: case IOR:
4273 case UMIN: case UMAX: case SMIN: case SMAX:
4275 unsigned HOST_WIDE_INT nonzero0
4276 = cached_nonzero_bits (XEXP (x, 0), mode,
4277 known_x, known_mode, known_ret);
4279 /* Don't call nonzero_bits for the second time if it cannot change
4280 anything. */
4281 if ((nonzero & nonzero0) != nonzero)
4282 nonzero &= nonzero0
4283 | cached_nonzero_bits (XEXP (x, 1), mode,
4284 known_x, known_mode, known_ret);
4286 break;
4288 case PLUS: case MINUS:
4289 case MULT:
4290 case DIV: case UDIV:
4291 case MOD: case UMOD:
4292 /* We can apply the rules of arithmetic to compute the number of
4293 high- and low-order zero bits of these operations. We start by
4294 computing the width (position of the highest-order nonzero bit)
4295 and the number of low-order zero bits for each value. */
4297 unsigned HOST_WIDE_INT nz0
4298 = cached_nonzero_bits (XEXP (x, 0), mode,
4299 known_x, known_mode, known_ret);
4300 unsigned HOST_WIDE_INT nz1
4301 = cached_nonzero_bits (XEXP (x, 1), mode,
4302 known_x, known_mode, known_ret);
4303 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4304 int width0 = floor_log2 (nz0) + 1;
4305 int width1 = floor_log2 (nz1) + 1;
4306 int low0 = floor_log2 (nz0 & -nz0);
4307 int low1 = floor_log2 (nz1 & -nz1);
4308 unsigned HOST_WIDE_INT op0_maybe_minusp
4309 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4310 unsigned HOST_WIDE_INT op1_maybe_minusp
4311 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4312 unsigned int result_width = mode_width;
4313 int result_low = 0;
4315 switch (code)
4317 case PLUS:
4318 result_width = MAX (width0, width1) + 1;
4319 result_low = MIN (low0, low1);
4320 break;
4321 case MINUS:
4322 result_low = MIN (low0, low1);
4323 break;
4324 case MULT:
4325 result_width = width0 + width1;
4326 result_low = low0 + low1;
4327 break;
4328 case DIV:
4329 if (width1 == 0)
4330 break;
4331 if (!op0_maybe_minusp && !op1_maybe_minusp)
4332 result_width = width0;
4333 break;
4334 case UDIV:
4335 if (width1 == 0)
4336 break;
4337 result_width = width0;
4338 break;
4339 case MOD:
4340 if (width1 == 0)
4341 break;
4342 if (!op0_maybe_minusp && !op1_maybe_minusp)
4343 result_width = MIN (width0, width1);
4344 result_low = MIN (low0, low1);
4345 break;
4346 case UMOD:
4347 if (width1 == 0)
4348 break;
4349 result_width = MIN (width0, width1);
4350 result_low = MIN (low0, low1);
4351 break;
4352 default:
4353 gcc_unreachable ();
4356 if (result_width < mode_width)
4357 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4359 if (result_low > 0)
4360 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4362 break;
4364 case ZERO_EXTRACT:
4365 if (CONST_INT_P (XEXP (x, 1))
4366 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4367 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4368 break;
4370 case SUBREG:
4371 /* If this is a SUBREG formed for a promoted variable that has
4372 been zero-extended, we know that at least the high-order bits
4373 are zero, though others might be too. */
4375 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4376 nonzero = GET_MODE_MASK (GET_MODE (x))
4377 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4378 known_x, known_mode, known_ret);
4380 inner_mode = GET_MODE (SUBREG_REG (x));
4381 /* If the inner mode is a single word for both the host and target
4382 machines, we can compute this from which bits of the inner
4383 object might be nonzero. */
4384 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4385 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4387 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4388 known_x, known_mode, known_ret);
4390 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4391 /* If this is a typical RISC machine, we only have to worry
4392 about the way loads are extended. */
4393 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4394 ? val_signbit_known_set_p (inner_mode, nonzero)
4395 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4396 || !MEM_P (SUBREG_REG (x)))
4397 #endif
4399 /* On many CISC machines, accessing an object in a wider mode
4400 causes the high-order bits to become undefined. So they are
4401 not known to be zero. */
4402 if (GET_MODE_PRECISION (GET_MODE (x))
4403 > GET_MODE_PRECISION (inner_mode))
4404 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4405 & ~GET_MODE_MASK (inner_mode));
4408 break;
4410 case ASHIFTRT:
4411 case LSHIFTRT:
4412 case ASHIFT:
4413 case ROTATE:
4414 /* The nonzero bits are in two classes: any bits within MODE
4415 that aren't in GET_MODE (x) are always significant. The rest of the
4416 nonzero bits are those that are significant in the operand of
4417 the shift when shifted the appropriate number of bits. This
4418 shows that high-order bits are cleared by the right shift and
4419 low-order bits by left shifts. */
4420 if (CONST_INT_P (XEXP (x, 1))
4421 && INTVAL (XEXP (x, 1)) >= 0
4422 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4423 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4425 enum machine_mode inner_mode = GET_MODE (x);
4426 unsigned int width = GET_MODE_PRECISION (inner_mode);
4427 int count = INTVAL (XEXP (x, 1));
4428 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4429 unsigned HOST_WIDE_INT op_nonzero
4430 = cached_nonzero_bits (XEXP (x, 0), mode,
4431 known_x, known_mode, known_ret);
4432 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4433 unsigned HOST_WIDE_INT outer = 0;
4435 if (mode_width > width)
4436 outer = (op_nonzero & nonzero & ~mode_mask);
4438 if (code == LSHIFTRT)
4439 inner >>= count;
4440 else if (code == ASHIFTRT)
4442 inner >>= count;
4444 /* If the sign bit may have been nonzero before the shift, we
4445 need to mark all the places it could have been copied to
4446 by the shift as possibly nonzero. */
4447 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4448 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4449 << (width - count);
4451 else if (code == ASHIFT)
4452 inner <<= count;
4453 else
4454 inner = ((inner << (count % width)
4455 | (inner >> (width - (count % width)))) & mode_mask);
4457 nonzero &= (outer | inner);
4459 break;
4461 case FFS:
4462 case POPCOUNT:
4463 /* This is at most the number of bits in the mode. */
4464 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4465 break;
4467 case CLZ:
4468 /* If CLZ has a known value at zero, then the nonzero bits are
4469 that value, plus the number of bits in the mode minus one. */
4470 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4471 nonzero
4472 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4473 else
4474 nonzero = -1;
4475 break;
4477 case CTZ:
4478 /* If CTZ has a known value at zero, then the nonzero bits are
4479 that value, plus the number of bits in the mode minus one. */
4480 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4481 nonzero
4482 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4483 else
4484 nonzero = -1;
4485 break;
4487 case CLRSB:
4488 /* This is at most the number of bits in the mode minus 1. */
4489 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4490 break;
4492 case PARITY:
4493 nonzero = 1;
4494 break;
4496 case IF_THEN_ELSE:
4498 unsigned HOST_WIDE_INT nonzero_true
4499 = cached_nonzero_bits (XEXP (x, 1), mode,
4500 known_x, known_mode, known_ret);
4502 /* Don't call nonzero_bits for the second time if it cannot change
4503 anything. */
4504 if ((nonzero & nonzero_true) != nonzero)
4505 nonzero &= nonzero_true
4506 | cached_nonzero_bits (XEXP (x, 2), mode,
4507 known_x, known_mode, known_ret);
4509 break;
4511 default:
4512 break;
4515 return nonzero;
4518 /* See the macro definition above. */
4519 #undef cached_num_sign_bit_copies
4522 /* The function cached_num_sign_bit_copies is a wrapper around
4523 num_sign_bit_copies1. It avoids exponential behavior in
4524 num_sign_bit_copies1 when X has identical subexpressions on the
4525 first or the second level. */
4527 static unsigned int
4528 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4529 enum machine_mode known_mode,
4530 unsigned int known_ret)
4532 if (x == known_x && mode == known_mode)
4533 return known_ret;
4535 /* Try to find identical subexpressions. If found call
4536 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4537 the precomputed value for the subexpression as KNOWN_RET. */
4539 if (ARITHMETIC_P (x))
4541 rtx x0 = XEXP (x, 0);
4542 rtx x1 = XEXP (x, 1);
4544 /* Check the first level. */
4545 if (x0 == x1)
4546 return
4547 num_sign_bit_copies1 (x, mode, x0, mode,
4548 cached_num_sign_bit_copies (x0, mode, known_x,
4549 known_mode,
4550 known_ret));
4552 /* Check the second level. */
4553 if (ARITHMETIC_P (x0)
4554 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4555 return
4556 num_sign_bit_copies1 (x, mode, x1, mode,
4557 cached_num_sign_bit_copies (x1, mode, known_x,
4558 known_mode,
4559 known_ret));
4561 if (ARITHMETIC_P (x1)
4562 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4563 return
4564 num_sign_bit_copies1 (x, mode, x0, mode,
4565 cached_num_sign_bit_copies (x0, mode, known_x,
4566 known_mode,
4567 known_ret));
4570 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4573 /* Return the number of bits at the high-order end of X that are known to
4574 be equal to the sign bit. X will be used in mode MODE; if MODE is
4575 VOIDmode, X will be used in its own mode. The returned value will always
4576 be between 1 and the number of bits in MODE. */
4578 static unsigned int
4579 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4580 enum machine_mode known_mode,
4581 unsigned int known_ret)
4583 enum rtx_code code = GET_CODE (x);
4584 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4585 int num0, num1, result;
4586 unsigned HOST_WIDE_INT nonzero;
4588 /* If we weren't given a mode, use the mode of X. If the mode is still
4589 VOIDmode, we don't know anything. Likewise if one of the modes is
4590 floating-point. */
4592 if (mode == VOIDmode)
4593 mode = GET_MODE (x);
4595 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4596 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4597 return 1;
4599 /* For a smaller object, just ignore the high bits. */
4600 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4602 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4603 known_x, known_mode, known_ret);
4604 return MAX (1,
4605 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4608 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4610 #ifndef WORD_REGISTER_OPERATIONS
4611 /* If this machine does not do all register operations on the entire
4612 register and MODE is wider than the mode of X, we can say nothing
4613 at all about the high-order bits. */
4614 return 1;
4615 #else
4616 /* Likewise on machines that do, if the mode of the object is smaller
4617 than a word and loads of that size don't sign extend, we can say
4618 nothing about the high order bits. */
4619 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4620 #ifdef LOAD_EXTEND_OP
4621 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4622 #endif
4624 return 1;
4625 #endif
4628 switch (code)
4630 case REG:
4632 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4633 /* If pointers extend signed and this is a pointer in Pmode, say that
4634 all the bits above ptr_mode are known to be sign bit copies. */
4635 /* As we do not know which address space the pointer is referring to,
4636 we can do this only if the target does not support different pointer
4637 or address modes depending on the address space. */
4638 if (target_default_pointer_address_modes_p ()
4639 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4640 && mode == Pmode && REG_POINTER (x))
4641 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4642 #endif
4645 unsigned int copies_for_hook = 1, copies = 1;
4646 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4647 known_mode, known_ret,
4648 &copies_for_hook);
4650 if (new_rtx)
4651 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4652 known_mode, known_ret);
4654 if (copies > 1 || copies_for_hook > 1)
4655 return MAX (copies, copies_for_hook);
4657 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4659 break;
4661 case MEM:
4662 #ifdef LOAD_EXTEND_OP
4663 /* Some RISC machines sign-extend all loads of smaller than a word. */
4664 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4665 return MAX (1, ((int) bitwidth
4666 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4667 #endif
4668 break;
4670 case CONST_INT:
4671 /* If the constant is negative, take its 1's complement and remask.
4672 Then see how many zero bits we have. */
4673 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4674 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4675 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4676 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4678 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4680 case SUBREG:
4681 /* If this is a SUBREG for a promoted object that is sign-extended
4682 and we are looking at it in a wider mode, we know that at least the
4683 high-order bits are known to be sign bit copies. */
4685 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4687 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4688 known_x, known_mode, known_ret);
4689 return MAX ((int) bitwidth
4690 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4691 num0);
4694 /* For a smaller object, just ignore the high bits. */
4695 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4697 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4698 known_x, known_mode, known_ret);
4699 return MAX (1, (num0
4700 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4701 - bitwidth)));
4704 #ifdef WORD_REGISTER_OPERATIONS
4705 #ifdef LOAD_EXTEND_OP
4706 /* For paradoxical SUBREGs on machines where all register operations
4707 affect the entire register, just look inside. Note that we are
4708 passing MODE to the recursive call, so the number of sign bit copies
4709 will remain relative to that mode, not the inner mode. */
4711 /* This works only if loads sign extend. Otherwise, if we get a
4712 reload for the inner part, it may be loaded from the stack, and
4713 then we lose all sign bit copies that existed before the store
4714 to the stack. */
4716 if (paradoxical_subreg_p (x)
4717 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4718 && MEM_P (SUBREG_REG (x)))
4719 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4720 known_x, known_mode, known_ret);
4721 #endif
4722 #endif
4723 break;
4725 case SIGN_EXTRACT:
4726 if (CONST_INT_P (XEXP (x, 1)))
4727 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4728 break;
4730 case SIGN_EXTEND:
4731 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4732 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4733 known_x, known_mode, known_ret));
4735 case TRUNCATE:
4736 /* For a smaller object, just ignore the high bits. */
4737 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4738 known_x, known_mode, known_ret);
4739 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4740 - bitwidth)));
4742 case NOT:
4743 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4744 known_x, known_mode, known_ret);
4746 case ROTATE: case ROTATERT:
4747 /* If we are rotating left by a number of bits less than the number
4748 of sign bit copies, we can just subtract that amount from the
4749 number. */
4750 if (CONST_INT_P (XEXP (x, 1))
4751 && INTVAL (XEXP (x, 1)) >= 0
4752 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4754 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4755 known_x, known_mode, known_ret);
4756 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4757 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4759 break;
4761 case NEG:
4762 /* In general, this subtracts one sign bit copy. But if the value
4763 is known to be positive, the number of sign bit copies is the
4764 same as that of the input. Finally, if the input has just one bit
4765 that might be nonzero, all the bits are copies of the sign bit. */
4766 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4767 known_x, known_mode, known_ret);
4768 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4769 return num0 > 1 ? num0 - 1 : 1;
4771 nonzero = nonzero_bits (XEXP (x, 0), mode);
4772 if (nonzero == 1)
4773 return bitwidth;
4775 if (num0 > 1
4776 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4777 num0--;
4779 return num0;
4781 case IOR: case AND: case XOR:
4782 case SMIN: case SMAX: case UMIN: case UMAX:
4783 /* Logical operations will preserve the number of sign-bit copies.
4784 MIN and MAX operations always return one of the operands. */
4785 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4786 known_x, known_mode, known_ret);
4787 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4788 known_x, known_mode, known_ret);
4790 /* If num1 is clearing some of the top bits then regardless of
4791 the other term, we are guaranteed to have at least that many
4792 high-order zero bits. */
4793 if (code == AND
4794 && num1 > 1
4795 && bitwidth <= HOST_BITS_PER_WIDE_INT
4796 && CONST_INT_P (XEXP (x, 1))
4797 && (UINTVAL (XEXP (x, 1))
4798 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4799 return num1;
4801 /* Similarly for IOR when setting high-order bits. */
4802 if (code == IOR
4803 && num1 > 1
4804 && bitwidth <= HOST_BITS_PER_WIDE_INT
4805 && CONST_INT_P (XEXP (x, 1))
4806 && (UINTVAL (XEXP (x, 1))
4807 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4808 return num1;
4810 return MIN (num0, num1);
4812 case PLUS: case MINUS:
4813 /* For addition and subtraction, we can have a 1-bit carry. However,
4814 if we are subtracting 1 from a positive number, there will not
4815 be such a carry. Furthermore, if the positive number is known to
4816 be 0 or 1, we know the result is either -1 or 0. */
4818 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4819 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4821 nonzero = nonzero_bits (XEXP (x, 0), mode);
4822 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4823 return (nonzero == 1 || nonzero == 0 ? bitwidth
4824 : bitwidth - floor_log2 (nonzero) - 1);
4827 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4828 known_x, known_mode, known_ret);
4829 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4830 known_x, known_mode, known_ret);
4831 result = MAX (1, MIN (num0, num1) - 1);
4833 return result;
4835 case MULT:
4836 /* The number of bits of the product is the sum of the number of
4837 bits of both terms. However, unless one of the terms if known
4838 to be positive, we must allow for an additional bit since negating
4839 a negative number can remove one sign bit copy. */
4841 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4842 known_x, known_mode, known_ret);
4843 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4844 known_x, known_mode, known_ret);
4846 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4847 if (result > 0
4848 && (bitwidth > HOST_BITS_PER_WIDE_INT
4849 || (((nonzero_bits (XEXP (x, 0), mode)
4850 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4851 && ((nonzero_bits (XEXP (x, 1), mode)
4852 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4853 != 0))))
4854 result--;
4856 return MAX (1, result);
4858 case UDIV:
4859 /* The result must be <= the first operand. If the first operand
4860 has the high bit set, we know nothing about the number of sign
4861 bit copies. */
4862 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4863 return 1;
4864 else if ((nonzero_bits (XEXP (x, 0), mode)
4865 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4866 return 1;
4867 else
4868 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4869 known_x, known_mode, known_ret);
4871 case UMOD:
4872 /* The result must be <= the second operand. If the second operand
4873 has (or just might have) the high bit set, we know nothing about
4874 the number of sign bit copies. */
4875 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4876 return 1;
4877 else if ((nonzero_bits (XEXP (x, 1), mode)
4878 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4879 return 1;
4880 else
4881 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4882 known_x, known_mode, known_ret);
4884 case DIV:
4885 /* Similar to unsigned division, except that we have to worry about
4886 the case where the divisor is negative, in which case we have
4887 to add 1. */
4888 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4889 known_x, known_mode, known_ret);
4890 if (result > 1
4891 && (bitwidth > HOST_BITS_PER_WIDE_INT
4892 || (nonzero_bits (XEXP (x, 1), mode)
4893 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4894 result--;
4896 return result;
4898 case MOD:
4899 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4900 known_x, known_mode, known_ret);
4901 if (result > 1
4902 && (bitwidth > HOST_BITS_PER_WIDE_INT
4903 || (nonzero_bits (XEXP (x, 1), mode)
4904 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4905 result--;
4907 return result;
4909 case ASHIFTRT:
4910 /* Shifts by a constant add to the number of bits equal to the
4911 sign bit. */
4912 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4913 known_x, known_mode, known_ret);
4914 if (CONST_INT_P (XEXP (x, 1))
4915 && INTVAL (XEXP (x, 1)) > 0
4916 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4917 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4919 return num0;
4921 case ASHIFT:
4922 /* Left shifts destroy copies. */
4923 if (!CONST_INT_P (XEXP (x, 1))
4924 || INTVAL (XEXP (x, 1)) < 0
4925 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4926 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4927 return 1;
4929 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4930 known_x, known_mode, known_ret);
4931 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4933 case IF_THEN_ELSE:
4934 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4935 known_x, known_mode, known_ret);
4936 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4937 known_x, known_mode, known_ret);
4938 return MIN (num0, num1);
4940 case EQ: case NE: case GE: case GT: case LE: case LT:
4941 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4942 case GEU: case GTU: case LEU: case LTU:
4943 case UNORDERED: case ORDERED:
4944 /* If the constant is negative, take its 1's complement and remask.
4945 Then see how many zero bits we have. */
4946 nonzero = STORE_FLAG_VALUE;
4947 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4948 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4949 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4951 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4953 default:
4954 break;
4957 /* If we haven't been able to figure it out by one of the above rules,
4958 see if some of the high-order bits are known to be zero. If so,
4959 count those bits and return one less than that amount. If we can't
4960 safely compute the mask for this mode, always return BITWIDTH. */
4962 bitwidth = GET_MODE_PRECISION (mode);
4963 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4964 return 1;
4966 nonzero = nonzero_bits (x, mode);
4967 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4968 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4971 /* Calculate the rtx_cost of a single instruction. A return value of
4972 zero indicates an instruction pattern without a known cost. */
4975 insn_rtx_cost (rtx pat, bool speed)
4977 int i, cost;
4978 rtx set;
4980 /* Extract the single set rtx from the instruction pattern.
4981 We can't use single_set since we only have the pattern. */
4982 if (GET_CODE (pat) == SET)
4983 set = pat;
4984 else if (GET_CODE (pat) == PARALLEL)
4986 set = NULL_RTX;
4987 for (i = 0; i < XVECLEN (pat, 0); i++)
4989 rtx x = XVECEXP (pat, 0, i);
4990 if (GET_CODE (x) == SET)
4992 if (set)
4993 return 0;
4994 set = x;
4997 if (!set)
4998 return 0;
5000 else
5001 return 0;
5003 cost = set_src_cost (SET_SRC (set), speed);
5004 return cost > 0 ? cost : COSTS_N_INSNS (1);
5007 /* Given an insn INSN and condition COND, return the condition in a
5008 canonical form to simplify testing by callers. Specifically:
5010 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5011 (2) Both operands will be machine operands; (cc0) will have been replaced.
5012 (3) If an operand is a constant, it will be the second operand.
5013 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5014 for GE, GEU, and LEU.
5016 If the condition cannot be understood, or is an inequality floating-point
5017 comparison which needs to be reversed, 0 will be returned.
5019 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5021 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5022 insn used in locating the condition was found. If a replacement test
5023 of the condition is desired, it should be placed in front of that
5024 insn and we will be sure that the inputs are still valid.
5026 If WANT_REG is nonzero, we wish the condition to be relative to that
5027 register, if possible. Therefore, do not canonicalize the condition
5028 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5029 to be a compare to a CC mode register.
5031 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5032 and at INSN. */
5035 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5036 rtx_insn **earliest,
5037 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5039 enum rtx_code code;
5040 rtx_insn *prev = insn;
5041 const_rtx set;
5042 rtx tem;
5043 rtx op0, op1;
5044 int reverse_code = 0;
5045 enum machine_mode mode;
5046 basic_block bb = BLOCK_FOR_INSN (insn);
5048 code = GET_CODE (cond);
5049 mode = GET_MODE (cond);
5050 op0 = XEXP (cond, 0);
5051 op1 = XEXP (cond, 1);
5053 if (reverse)
5054 code = reversed_comparison_code (cond, insn);
5055 if (code == UNKNOWN)
5056 return 0;
5058 if (earliest)
5059 *earliest = insn;
5061 /* If we are comparing a register with zero, see if the register is set
5062 in the previous insn to a COMPARE or a comparison operation. Perform
5063 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5064 in cse.c */
5066 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5067 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5068 && op1 == CONST0_RTX (GET_MODE (op0))
5069 && op0 != want_reg)
5071 /* Set nonzero when we find something of interest. */
5072 rtx x = 0;
5074 #ifdef HAVE_cc0
5075 /* If comparison with cc0, import actual comparison from compare
5076 insn. */
5077 if (op0 == cc0_rtx)
5079 if ((prev = prev_nonnote_insn (prev)) == 0
5080 || !NONJUMP_INSN_P (prev)
5081 || (set = single_set (prev)) == 0
5082 || SET_DEST (set) != cc0_rtx)
5083 return 0;
5085 op0 = SET_SRC (set);
5086 op1 = CONST0_RTX (GET_MODE (op0));
5087 if (earliest)
5088 *earliest = prev;
5090 #endif
5092 /* If this is a COMPARE, pick up the two things being compared. */
5093 if (GET_CODE (op0) == COMPARE)
5095 op1 = XEXP (op0, 1);
5096 op0 = XEXP (op0, 0);
5097 continue;
5099 else if (!REG_P (op0))
5100 break;
5102 /* Go back to the previous insn. Stop if it is not an INSN. We also
5103 stop if it isn't a single set or if it has a REG_INC note because
5104 we don't want to bother dealing with it. */
5106 prev = prev_nonnote_nondebug_insn (prev);
5108 if (prev == 0
5109 || !NONJUMP_INSN_P (prev)
5110 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5111 /* In cfglayout mode, there do not have to be labels at the
5112 beginning of a block, or jumps at the end, so the previous
5113 conditions would not stop us when we reach bb boundary. */
5114 || BLOCK_FOR_INSN (prev) != bb)
5115 break;
5117 set = set_of (op0, prev);
5119 if (set
5120 && (GET_CODE (set) != SET
5121 || !rtx_equal_p (SET_DEST (set), op0)))
5122 break;
5124 /* If this is setting OP0, get what it sets it to if it looks
5125 relevant. */
5126 if (set)
5128 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5129 #ifdef FLOAT_STORE_FLAG_VALUE
5130 REAL_VALUE_TYPE fsfv;
5131 #endif
5133 /* ??? We may not combine comparisons done in a CCmode with
5134 comparisons not done in a CCmode. This is to aid targets
5135 like Alpha that have an IEEE compliant EQ instruction, and
5136 a non-IEEE compliant BEQ instruction. The use of CCmode is
5137 actually artificial, simply to prevent the combination, but
5138 should not affect other platforms.
5140 However, we must allow VOIDmode comparisons to match either
5141 CCmode or non-CCmode comparison, because some ports have
5142 modeless comparisons inside branch patterns.
5144 ??? This mode check should perhaps look more like the mode check
5145 in simplify_comparison in combine. */
5146 if (((GET_MODE_CLASS (mode) == MODE_CC)
5147 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5148 && mode != VOIDmode
5149 && inner_mode != VOIDmode)
5150 break;
5151 if (GET_CODE (SET_SRC (set)) == COMPARE
5152 || (((code == NE
5153 || (code == LT
5154 && val_signbit_known_set_p (inner_mode,
5155 STORE_FLAG_VALUE))
5156 #ifdef FLOAT_STORE_FLAG_VALUE
5157 || (code == LT
5158 && SCALAR_FLOAT_MODE_P (inner_mode)
5159 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5160 REAL_VALUE_NEGATIVE (fsfv)))
5161 #endif
5163 && COMPARISON_P (SET_SRC (set))))
5164 x = SET_SRC (set);
5165 else if (((code == EQ
5166 || (code == GE
5167 && val_signbit_known_set_p (inner_mode,
5168 STORE_FLAG_VALUE))
5169 #ifdef FLOAT_STORE_FLAG_VALUE
5170 || (code == GE
5171 && SCALAR_FLOAT_MODE_P (inner_mode)
5172 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5173 REAL_VALUE_NEGATIVE (fsfv)))
5174 #endif
5176 && COMPARISON_P (SET_SRC (set)))
5178 reverse_code = 1;
5179 x = SET_SRC (set);
5181 else if ((code == EQ || code == NE)
5182 && GET_CODE (SET_SRC (set)) == XOR)
5183 /* Handle sequences like:
5185 (set op0 (xor X Y))
5186 ...(eq|ne op0 (const_int 0))...
5188 in which case:
5190 (eq op0 (const_int 0)) reduces to (eq X Y)
5191 (ne op0 (const_int 0)) reduces to (ne X Y)
5193 This is the form used by MIPS16, for example. */
5194 x = SET_SRC (set);
5195 else
5196 break;
5199 else if (reg_set_p (op0, prev))
5200 /* If this sets OP0, but not directly, we have to give up. */
5201 break;
5203 if (x)
5205 /* If the caller is expecting the condition to be valid at INSN,
5206 make sure X doesn't change before INSN. */
5207 if (valid_at_insn_p)
5208 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5209 break;
5210 if (COMPARISON_P (x))
5211 code = GET_CODE (x);
5212 if (reverse_code)
5214 code = reversed_comparison_code (x, prev);
5215 if (code == UNKNOWN)
5216 return 0;
5217 reverse_code = 0;
5220 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5221 if (earliest)
5222 *earliest = prev;
5226 /* If constant is first, put it last. */
5227 if (CONSTANT_P (op0))
5228 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5230 /* If OP0 is the result of a comparison, we weren't able to find what
5231 was really being compared, so fail. */
5232 if (!allow_cc_mode
5233 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5234 return 0;
5236 /* Canonicalize any ordered comparison with integers involving equality
5237 if we can do computations in the relevant mode and we do not
5238 overflow. */
5240 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5241 && CONST_INT_P (op1)
5242 && GET_MODE (op0) != VOIDmode
5243 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5245 HOST_WIDE_INT const_val = INTVAL (op1);
5246 unsigned HOST_WIDE_INT uconst_val = const_val;
5247 unsigned HOST_WIDE_INT max_val
5248 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5250 switch (code)
5252 case LE:
5253 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5254 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5255 break;
5257 /* When cross-compiling, const_val might be sign-extended from
5258 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5259 case GE:
5260 if ((const_val & max_val)
5261 != ((unsigned HOST_WIDE_INT) 1
5262 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5263 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5264 break;
5266 case LEU:
5267 if (uconst_val < max_val)
5268 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5269 break;
5271 case GEU:
5272 if (uconst_val != 0)
5273 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5274 break;
5276 default:
5277 break;
5281 /* Never return CC0; return zero instead. */
5282 if (CC0_P (op0))
5283 return 0;
5285 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5288 /* Given a jump insn JUMP, return the condition that will cause it to branch
5289 to its JUMP_LABEL. If the condition cannot be understood, or is an
5290 inequality floating-point comparison which needs to be reversed, 0 will
5291 be returned.
5293 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5294 insn used in locating the condition was found. If a replacement test
5295 of the condition is desired, it should be placed in front of that
5296 insn and we will be sure that the inputs are still valid. If EARLIEST
5297 is null, the returned condition will be valid at INSN.
5299 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5300 compare CC mode register.
5302 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5305 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5306 int valid_at_insn_p)
5308 rtx cond;
5309 int reverse;
5310 rtx set;
5312 /* If this is not a standard conditional jump, we can't parse it. */
5313 if (!JUMP_P (jump)
5314 || ! any_condjump_p (jump))
5315 return 0;
5316 set = pc_set (jump);
5318 cond = XEXP (SET_SRC (set), 0);
5320 /* If this branches to JUMP_LABEL when the condition is false, reverse
5321 the condition. */
5322 reverse
5323 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5324 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5326 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5327 allow_cc_mode, valid_at_insn_p);
5330 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5331 TARGET_MODE_REP_EXTENDED.
5333 Note that we assume that the property of
5334 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5335 narrower than mode B. I.e., if A is a mode narrower than B then in
5336 order to be able to operate on it in mode B, mode A needs to
5337 satisfy the requirements set by the representation of mode B. */
5339 static void
5340 init_num_sign_bit_copies_in_rep (void)
5342 enum machine_mode mode, in_mode;
5344 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5345 in_mode = GET_MODE_WIDER_MODE (mode))
5346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5347 mode = GET_MODE_WIDER_MODE (mode))
5349 enum machine_mode i;
5351 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5352 extends to the next widest mode. */
5353 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5354 || GET_MODE_WIDER_MODE (mode) == in_mode);
5356 /* We are in in_mode. Count how many bits outside of mode
5357 have to be copies of the sign-bit. */
5358 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5360 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5362 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5363 /* We can only check sign-bit copies starting from the
5364 top-bit. In order to be able to check the bits we
5365 have already seen we pretend that subsequent bits
5366 have to be sign-bit copies too. */
5367 || num_sign_bit_copies_in_rep [in_mode][mode])
5368 num_sign_bit_copies_in_rep [in_mode][mode]
5369 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5374 /* Suppose that truncation from the machine mode of X to MODE is not a
5375 no-op. See if there is anything special about X so that we can
5376 assume it already contains a truncated value of MODE. */
5378 bool
5379 truncated_to_mode (enum machine_mode mode, const_rtx x)
5381 /* This register has already been used in MODE without explicit
5382 truncation. */
5383 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5384 return true;
5386 /* See if we already satisfy the requirements of MODE. If yes we
5387 can just switch to MODE. */
5388 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5389 && (num_sign_bit_copies (x, GET_MODE (x))
5390 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5391 return true;
5393 return false;
5396 /* Return true if RTX code CODE has a single sequence of zero or more
5397 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5398 entry in that case. */
5400 static bool
5401 setup_reg_subrtx_bounds (unsigned int code)
5403 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5404 unsigned int i = 0;
5405 for (; format[i] != 'e'; ++i)
5407 if (!format[i])
5408 /* No subrtxes. Leave start and count as 0. */
5409 return true;
5410 if (format[i] == 'E' || format[i] == 'V')
5411 return false;
5414 /* Record the sequence of 'e's. */
5415 rtx_all_subrtx_bounds[code].start = i;
5417 ++i;
5418 while (format[i] == 'e');
5419 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5420 /* rtl-iter.h relies on this. */
5421 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5423 for (; format[i]; ++i)
5424 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5425 return false;
5427 return true;
5430 /* Initialize non_rtx_starting_operands, which is used to speed up
5431 for_each_rtx, and rtx_all_subrtx_bounds. */
5432 void
5433 init_rtlanal (void)
5435 int i;
5436 for (i = 0; i < NUM_RTX_CODE; i++)
5438 const char *format = GET_RTX_FORMAT (i);
5439 const char *first = strpbrk (format, "eEV");
5440 non_rtx_starting_operands[i] = first ? first - format : -1;
5441 if (!setup_reg_subrtx_bounds (i))
5442 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5443 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5444 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5447 init_num_sign_bit_copies_in_rep ();
5450 /* Check whether this is a constant pool constant. */
5451 bool
5452 constant_pool_constant_p (rtx x)
5454 x = avoid_constant_pool_reference (x);
5455 return CONST_DOUBLE_P (x);
5458 /* If M is a bitmask that selects a field of low-order bits within an item but
5459 not the entire word, return the length of the field. Return -1 otherwise.
5460 M is used in machine mode MODE. */
5463 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5465 if (mode != VOIDmode)
5467 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5468 return -1;
5469 m &= GET_MODE_MASK (mode);
5472 return exact_log2 (m + 1);
5475 /* Return the mode of MEM's address. */
5477 enum machine_mode
5478 get_address_mode (rtx mem)
5480 enum machine_mode mode;
5482 gcc_assert (MEM_P (mem));
5483 mode = GET_MODE (XEXP (mem, 0));
5484 if (mode != VOIDmode)
5485 return mode;
5486 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5489 /* Split up a CONST_DOUBLE or integer constant rtx
5490 into two rtx's for single words,
5491 storing in *FIRST the word that comes first in memory in the target
5492 and in *SECOND the other.
5494 TODO: This function needs to be rewritten to work on any size
5495 integer. */
5497 void
5498 split_double (rtx value, rtx *first, rtx *second)
5500 if (CONST_INT_P (value))
5502 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5504 /* In this case the CONST_INT holds both target words.
5505 Extract the bits from it into two word-sized pieces.
5506 Sign extend each half to HOST_WIDE_INT. */
5507 unsigned HOST_WIDE_INT low, high;
5508 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5509 unsigned bits_per_word = BITS_PER_WORD;
5511 /* Set sign_bit to the most significant bit of a word. */
5512 sign_bit = 1;
5513 sign_bit <<= bits_per_word - 1;
5515 /* Set mask so that all bits of the word are set. We could
5516 have used 1 << BITS_PER_WORD instead of basing the
5517 calculation on sign_bit. However, on machines where
5518 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5519 compiler warning, even though the code would never be
5520 executed. */
5521 mask = sign_bit << 1;
5522 mask--;
5524 /* Set sign_extend as any remaining bits. */
5525 sign_extend = ~mask;
5527 /* Pick the lower word and sign-extend it. */
5528 low = INTVAL (value);
5529 low &= mask;
5530 if (low & sign_bit)
5531 low |= sign_extend;
5533 /* Pick the higher word, shifted to the least significant
5534 bits, and sign-extend it. */
5535 high = INTVAL (value);
5536 high >>= bits_per_word - 1;
5537 high >>= 1;
5538 high &= mask;
5539 if (high & sign_bit)
5540 high |= sign_extend;
5542 /* Store the words in the target machine order. */
5543 if (WORDS_BIG_ENDIAN)
5545 *first = GEN_INT (high);
5546 *second = GEN_INT (low);
5548 else
5550 *first = GEN_INT (low);
5551 *second = GEN_INT (high);
5554 else
5556 /* The rule for using CONST_INT for a wider mode
5557 is that we regard the value as signed.
5558 So sign-extend it. */
5559 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5560 if (WORDS_BIG_ENDIAN)
5562 *first = high;
5563 *second = value;
5565 else
5567 *first = value;
5568 *second = high;
5572 else if (GET_CODE (value) == CONST_WIDE_INT)
5574 /* All of this is scary code and needs to be converted to
5575 properly work with any size integer. */
5576 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5577 if (WORDS_BIG_ENDIAN)
5579 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5580 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5582 else
5584 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5585 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5588 else if (!CONST_DOUBLE_P (value))
5590 if (WORDS_BIG_ENDIAN)
5592 *first = const0_rtx;
5593 *second = value;
5595 else
5597 *first = value;
5598 *second = const0_rtx;
5601 else if (GET_MODE (value) == VOIDmode
5602 /* This is the old way we did CONST_DOUBLE integers. */
5603 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5605 /* In an integer, the words are defined as most and least significant.
5606 So order them by the target's convention. */
5607 if (WORDS_BIG_ENDIAN)
5609 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5610 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5612 else
5614 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5615 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5618 else
5620 REAL_VALUE_TYPE r;
5621 long l[2];
5622 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5624 /* Note, this converts the REAL_VALUE_TYPE to the target's
5625 format, splits up the floating point double and outputs
5626 exactly 32 bits of it into each of l[0] and l[1] --
5627 not necessarily BITS_PER_WORD bits. */
5628 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5630 /* If 32 bits is an entire word for the target, but not for the host,
5631 then sign-extend on the host so that the number will look the same
5632 way on the host that it would on the target. See for instance
5633 simplify_unary_operation. The #if is needed to avoid compiler
5634 warnings. */
5636 #if HOST_BITS_PER_LONG > 32
5637 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5639 if (l[0] & ((long) 1 << 31))
5640 l[0] |= ((long) (-1) << 32);
5641 if (l[1] & ((long) 1 << 31))
5642 l[1] |= ((long) (-1) << 32);
5644 #endif
5646 *first = GEN_INT (l[0]);
5647 *second = GEN_INT (l[1]);
5651 /* Return true if X is a sign_extract or zero_extract from the least
5652 significant bit. */
5654 static bool
5655 lsb_bitfield_op_p (rtx x)
5657 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5659 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5660 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5661 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5663 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5665 return false;
5668 /* Strip outer address "mutations" from LOC and return a pointer to the
5669 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5670 stripped expression there.
5672 "Mutations" either convert between modes or apply some kind of
5673 extension, truncation or alignment. */
5675 rtx *
5676 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5678 for (;;)
5680 enum rtx_code code = GET_CODE (*loc);
5681 if (GET_RTX_CLASS (code) == RTX_UNARY)
5682 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5683 used to convert between pointer sizes. */
5684 loc = &XEXP (*loc, 0);
5685 else if (lsb_bitfield_op_p (*loc))
5686 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5687 acts as a combined truncation and extension. */
5688 loc = &XEXP (*loc, 0);
5689 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5690 /* (and ... (const_int -X)) is used to align to X bytes. */
5691 loc = &XEXP (*loc, 0);
5692 else if (code == SUBREG
5693 && !OBJECT_P (SUBREG_REG (*loc))
5694 && subreg_lowpart_p (*loc))
5695 /* (subreg (operator ...) ...) inside and is used for mode
5696 conversion too. */
5697 loc = &SUBREG_REG (*loc);
5698 else
5699 return loc;
5700 if (outer_code)
5701 *outer_code = code;
5705 /* Return true if CODE applies some kind of scale. The scaled value is
5706 is the first operand and the scale is the second. */
5708 static bool
5709 binary_scale_code_p (enum rtx_code code)
5711 return (code == MULT
5712 || code == ASHIFT
5713 /* Needed by ARM targets. */
5714 || code == ASHIFTRT
5715 || code == LSHIFTRT
5716 || code == ROTATE
5717 || code == ROTATERT);
5720 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5721 (see address_info). Return null otherwise. */
5723 static rtx *
5724 get_base_term (rtx *inner)
5726 if (GET_CODE (*inner) == LO_SUM)
5727 inner = strip_address_mutations (&XEXP (*inner, 0));
5728 if (REG_P (*inner)
5729 || MEM_P (*inner)
5730 || GET_CODE (*inner) == SUBREG)
5731 return inner;
5732 return 0;
5735 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5736 (see address_info). Return null otherwise. */
5738 static rtx *
5739 get_index_term (rtx *inner)
5741 /* At present, only constant scales are allowed. */
5742 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5743 inner = strip_address_mutations (&XEXP (*inner, 0));
5744 if (REG_P (*inner)
5745 || MEM_P (*inner)
5746 || GET_CODE (*inner) == SUBREG)
5747 return inner;
5748 return 0;
5751 /* Set the segment part of address INFO to LOC, given that INNER is the
5752 unmutated value. */
5754 static void
5755 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5757 gcc_assert (!info->segment);
5758 info->segment = loc;
5759 info->segment_term = inner;
5762 /* Set the base part of address INFO to LOC, given that INNER is the
5763 unmutated value. */
5765 static void
5766 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5768 gcc_assert (!info->base);
5769 info->base = loc;
5770 info->base_term = inner;
5773 /* Set the index part of address INFO to LOC, given that INNER is the
5774 unmutated value. */
5776 static void
5777 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5779 gcc_assert (!info->index);
5780 info->index = loc;
5781 info->index_term = inner;
5784 /* Set the displacement part of address INFO to LOC, given that INNER
5785 is the constant term. */
5787 static void
5788 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5790 gcc_assert (!info->disp);
5791 info->disp = loc;
5792 info->disp_term = inner;
5795 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5796 rest of INFO accordingly. */
5798 static void
5799 decompose_incdec_address (struct address_info *info)
5801 info->autoinc_p = true;
5803 rtx *base = &XEXP (*info->inner, 0);
5804 set_address_base (info, base, base);
5805 gcc_checking_assert (info->base == info->base_term);
5807 /* These addresses are only valid when the size of the addressed
5808 value is known. */
5809 gcc_checking_assert (info->mode != VOIDmode);
5812 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5813 of INFO accordingly. */
5815 static void
5816 decompose_automod_address (struct address_info *info)
5818 info->autoinc_p = true;
5820 rtx *base = &XEXP (*info->inner, 0);
5821 set_address_base (info, base, base);
5822 gcc_checking_assert (info->base == info->base_term);
5824 rtx plus = XEXP (*info->inner, 1);
5825 gcc_assert (GET_CODE (plus) == PLUS);
5827 info->base_term2 = &XEXP (plus, 0);
5828 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5830 rtx *step = &XEXP (plus, 1);
5831 rtx *inner_step = strip_address_mutations (step);
5832 if (CONSTANT_P (*inner_step))
5833 set_address_disp (info, step, inner_step);
5834 else
5835 set_address_index (info, step, inner_step);
5838 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5839 values in [PTR, END). Return a pointer to the end of the used array. */
5841 static rtx **
5842 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5844 rtx x = *loc;
5845 if (GET_CODE (x) == PLUS)
5847 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5848 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5850 else
5852 gcc_assert (ptr != end);
5853 *ptr++ = loc;
5855 return ptr;
5858 /* Evaluate the likelihood of X being a base or index value, returning
5859 positive if it is likely to be a base, negative if it is likely to be
5860 an index, and 0 if we can't tell. Make the magnitude of the return
5861 value reflect the amount of confidence we have in the answer.
5863 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5865 static int
5866 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5867 enum rtx_code outer_code, enum rtx_code index_code)
5869 /* Believe *_POINTER unless the address shape requires otherwise. */
5870 if (REG_P (x) && REG_POINTER (x))
5871 return 2;
5872 if (MEM_P (x) && MEM_POINTER (x))
5873 return 2;
5875 if (REG_P (x) && HARD_REGISTER_P (x))
5877 /* X is a hard register. If it only fits one of the base
5878 or index classes, choose that interpretation. */
5879 int regno = REGNO (x);
5880 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5881 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5882 if (base_p != index_p)
5883 return base_p ? 1 : -1;
5885 return 0;
5888 /* INFO->INNER describes a normal, non-automodified address.
5889 Fill in the rest of INFO accordingly. */
5891 static void
5892 decompose_normal_address (struct address_info *info)
5894 /* Treat the address as the sum of up to four values. */
5895 rtx *ops[4];
5896 size_t n_ops = extract_plus_operands (info->inner, ops,
5897 ops + ARRAY_SIZE (ops)) - ops;
5899 /* If there is more than one component, any base component is in a PLUS. */
5900 if (n_ops > 1)
5901 info->base_outer_code = PLUS;
5903 /* Try to classify each sum operand now. Leave those that could be
5904 either a base or an index in OPS. */
5905 rtx *inner_ops[4];
5906 size_t out = 0;
5907 for (size_t in = 0; in < n_ops; ++in)
5909 rtx *loc = ops[in];
5910 rtx *inner = strip_address_mutations (loc);
5911 if (CONSTANT_P (*inner))
5912 set_address_disp (info, loc, inner);
5913 else if (GET_CODE (*inner) == UNSPEC)
5914 set_address_segment (info, loc, inner);
5915 else
5917 /* The only other possibilities are a base or an index. */
5918 rtx *base_term = get_base_term (inner);
5919 rtx *index_term = get_index_term (inner);
5920 gcc_assert (base_term || index_term);
5921 if (!base_term)
5922 set_address_index (info, loc, index_term);
5923 else if (!index_term)
5924 set_address_base (info, loc, base_term);
5925 else
5927 gcc_assert (base_term == index_term);
5928 ops[out] = loc;
5929 inner_ops[out] = base_term;
5930 ++out;
5935 /* Classify the remaining OPS members as bases and indexes. */
5936 if (out == 1)
5938 /* If we haven't seen a base or an index yet, assume that this is
5939 the base. If we were confident that another term was the base
5940 or index, treat the remaining operand as the other kind. */
5941 if (!info->base)
5942 set_address_base (info, ops[0], inner_ops[0]);
5943 else
5944 set_address_index (info, ops[0], inner_ops[0]);
5946 else if (out == 2)
5948 /* In the event of a tie, assume the base comes first. */
5949 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5950 GET_CODE (*ops[1]))
5951 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5952 GET_CODE (*ops[0])))
5954 set_address_base (info, ops[0], inner_ops[0]);
5955 set_address_index (info, ops[1], inner_ops[1]);
5957 else
5959 set_address_base (info, ops[1], inner_ops[1]);
5960 set_address_index (info, ops[0], inner_ops[0]);
5963 else
5964 gcc_assert (out == 0);
5967 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5968 or VOIDmode if not known. AS is the address space associated with LOC.
5969 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5971 void
5972 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5973 addr_space_t as, enum rtx_code outer_code)
5975 memset (info, 0, sizeof (*info));
5976 info->mode = mode;
5977 info->as = as;
5978 info->addr_outer_code = outer_code;
5979 info->outer = loc;
5980 info->inner = strip_address_mutations (loc, &outer_code);
5981 info->base_outer_code = outer_code;
5982 switch (GET_CODE (*info->inner))
5984 case PRE_DEC:
5985 case PRE_INC:
5986 case POST_DEC:
5987 case POST_INC:
5988 decompose_incdec_address (info);
5989 break;
5991 case PRE_MODIFY:
5992 case POST_MODIFY:
5993 decompose_automod_address (info);
5994 break;
5996 default:
5997 decompose_normal_address (info);
5998 break;
6002 /* Describe address operand LOC in INFO. */
6004 void
6005 decompose_lea_address (struct address_info *info, rtx *loc)
6007 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6010 /* Describe the address of MEM X in INFO. */
6012 void
6013 decompose_mem_address (struct address_info *info, rtx x)
6015 gcc_assert (MEM_P (x));
6016 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6017 MEM_ADDR_SPACE (x), MEM);
6020 /* Update INFO after a change to the address it describes. */
6022 void
6023 update_address (struct address_info *info)
6025 decompose_address (info, info->outer, info->mode, info->as,
6026 info->addr_outer_code);
6029 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6030 more complicated than that. */
6032 HOST_WIDE_INT
6033 get_index_scale (const struct address_info *info)
6035 rtx index = *info->index;
6036 if (GET_CODE (index) == MULT
6037 && CONST_INT_P (XEXP (index, 1))
6038 && info->index_term == &XEXP (index, 0))
6039 return INTVAL (XEXP (index, 1));
6041 if (GET_CODE (index) == ASHIFT
6042 && CONST_INT_P (XEXP (index, 1))
6043 && info->index_term == &XEXP (index, 0))
6044 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6046 if (info->index == info->index_term)
6047 return 1;
6049 return 0;
6052 /* Return the "index code" of INFO, in the form required by
6053 ok_for_base_p_1. */
6055 enum rtx_code
6056 get_index_code (const struct address_info *info)
6058 if (info->index)
6059 return GET_CODE (*info->index);
6061 if (info->disp)
6062 return GET_CODE (*info->disp);
6064 return SCRATCH;
6067 /* Return true if X contains a thread-local symbol. */
6069 bool
6070 tls_referenced_p (const_rtx x)
6072 if (!targetm.have_tls)
6073 return false;
6075 subrtx_iterator::array_type array;
6076 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
6077 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6078 return true;
6079 return false;