2014-09-02 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / final.c
blobd02222615c92855a47378c0879b64749198c8b24
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
50 #include "tree.h"
51 #include "varasm.h"
52 #include "hard-reg-set.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "basic-block.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "tree-pass.h"
74 #include "cgraph.h"
75 #include "tree-ssa.h"
76 #include "coverage.h"
77 #include "df.h"
78 #include "ggc.h"
79 #include "cfgloop.h"
80 #include "params.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
82 #include "asan.h"
83 #include "wide-int-print.h"
84 #include "rtl-iter.h"
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h" /* Needed for external data
88 declarations for e.g. AIX 4.x. */
89 #endif
91 #include "dwarf2out.h"
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
101 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
102 So define a null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
107 /* Is the given character a logical line separator for the assembler? */
108 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
109 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
110 #endif
112 #ifndef JUMP_TABLES_IN_TEXT_SECTION
113 #define JUMP_TABLES_IN_TEXT_SECTION 0
114 #endif
116 /* Bitflags used by final_scan_insn. */
117 #define SEEN_NOTE 1
118 #define SEEN_EMITTED 2
120 /* Last insn processed by final_scan_insn. */
121 static rtx_insn *debug_insn;
122 rtx_insn *current_output_insn;
124 /* Line number of last NOTE. */
125 static int last_linenum;
127 /* Last discriminator written to assembly. */
128 static int last_discriminator;
130 /* Discriminator of current block. */
131 static int discriminator;
133 /* Highest line number in current block. */
134 static int high_block_linenum;
136 /* Likewise for function. */
137 static int high_function_linenum;
139 /* Filename of last NOTE. */
140 static const char *last_filename;
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare = 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter = 0;
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
173 CC_STATUS cc_status;
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status;
179 #endif
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth;
185 /* Nonzero if have enabled APP processing of our assembler output. */
187 static int app_on;
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
192 rtx_sequence *final_sequence;
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
200 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
201 rtx current_insn_predicate;
203 /* True if printing into -fdump-final-insns= dump. */
204 bool final_insns_dump_p;
206 /* True if profile_function should be called, but hasn't been called yet. */
207 static bool need_profile_function;
209 static int asm_insn_count (rtx);
210 static void profile_function (FILE *);
211 static void profile_after_prologue (FILE *);
212 static bool notice_source_line (rtx_insn *, bool *);
213 static rtx walk_alter_subreg (rtx *, bool *);
214 static void output_asm_name (void);
215 static void output_alternate_entry_point (FILE *, rtx_insn *);
216 static tree get_mem_expr_from_op (rtx, int *);
217 static void output_asm_operand_names (rtx *, int *, int);
218 #ifdef LEAF_REGISTERS
219 static void leaf_renumber_regs (rtx_insn *);
220 #endif
221 #ifdef HAVE_cc0
222 static int alter_cond (rtx);
223 #endif
224 #ifndef ADDR_VEC_ALIGN
225 static int final_addr_vec_align (rtx);
226 #endif
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 static void collect_fn_hard_reg_usage (void);
229 static tree get_call_fndecl (rtx_insn *);
231 /* Initialize data in final at the beginning of a compilation. */
233 void
234 init_final (const char *filename ATTRIBUTE_UNUSED)
236 app_on = 0;
237 final_sequence = 0;
239 #ifdef ASSEMBLER_DIALECT
240 dialect_number = ASSEMBLER_DIALECT;
241 #endif
244 /* Default target function prologue and epilogue assembler output.
246 If not overridden for epilogue code, then the function body itself
247 contains return instructions wherever needed. */
248 void
249 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
254 void
255 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
256 tree decl ATTRIBUTE_UNUSED,
257 bool new_is_cold ATTRIBUTE_UNUSED)
261 /* Default target hook that outputs nothing to a stream. */
262 void
263 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
267 /* Enable APP processing of subsequent output.
268 Used before the output from an `asm' statement. */
270 void
271 app_enable (void)
273 if (! app_on)
275 fputs (ASM_APP_ON, asm_out_file);
276 app_on = 1;
280 /* Disable APP processing of subsequent output.
281 Called from varasm.c before most kinds of output. */
283 void
284 app_disable (void)
286 if (app_on)
288 fputs (ASM_APP_OFF, asm_out_file);
289 app_on = 0;
293 /* Return the number of slots filled in the current
294 delayed branch sequence (we don't count the insn needing the
295 delay slot). Zero if not in a delayed branch sequence. */
297 #ifdef DELAY_SLOTS
299 dbr_sequence_length (void)
301 if (final_sequence != 0)
302 return XVECLEN (final_sequence, 0) - 1;
303 else
304 return 0;
306 #endif
308 /* The next two pages contain routines used to compute the length of an insn
309 and to shorten branches. */
311 /* Arrays for insn lengths, and addresses. The latter is referenced by
312 `insn_current_length'. */
314 static int *insn_lengths;
316 vec<int> insn_addresses_;
318 /* Max uid for which the above arrays are valid. */
319 static int insn_lengths_max_uid;
321 /* Address of insn being processed. Used by `insn_current_length'. */
322 int insn_current_address;
324 /* Address of insn being processed in previous iteration. */
325 int insn_last_address;
327 /* known invariant alignment of insn being processed. */
328 int insn_current_align;
330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
331 gives the next following alignment insn that increases the known
332 alignment, or NULL_RTX if there is no such insn.
333 For any alignment obtained this way, we can again index uid_align with
334 its uid to obtain the next following align that in turn increases the
335 alignment, till we reach NULL_RTX; the sequence obtained this way
336 for each insn we'll call the alignment chain of this insn in the following
337 comments. */
339 struct label_alignment
341 short alignment;
342 short max_skip;
345 static rtx *uid_align;
346 static int *uid_shuid;
347 static struct label_alignment *label_align;
349 /* Indicate that branch shortening hasn't yet been done. */
351 void
352 init_insn_lengths (void)
354 if (uid_shuid)
356 free (uid_shuid);
357 uid_shuid = 0;
359 if (insn_lengths)
361 free (insn_lengths);
362 insn_lengths = 0;
363 insn_lengths_max_uid = 0;
365 if (HAVE_ATTR_length)
366 INSN_ADDRESSES_FREE ();
367 if (uid_align)
369 free (uid_align);
370 uid_align = 0;
374 /* Obtain the current length of an insn. If branch shortening has been done,
375 get its actual length. Otherwise, use FALLBACK_FN to calculate the
376 length. */
377 static int
378 get_attr_length_1 (rtx uncast_insn, int (*fallback_fn) (rtx))
380 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
381 rtx body;
382 int i;
383 int length = 0;
385 if (!HAVE_ATTR_length)
386 return 0;
388 if (insn_lengths_max_uid > INSN_UID (insn))
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 case DEBUG_INSN:
397 return 0;
399 case CALL_INSN:
400 case JUMP_INSN:
401 length = fallback_fn (insn);
402 break;
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
412 for (i = 0; i < seq->len (); i++)
413 length += get_attr_length_1 (seq->insn (i), fallback_fn);
414 else
415 length = fallback_fn (insn);
416 break;
418 default:
419 break;
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
428 /* Obtain the current length of an insn. If branch shortening has been done,
429 get its actual length. Otherwise, get its maximum length. */
431 get_attr_length (rtx insn)
433 return get_attr_length_1 (insn, insn_default_length);
436 /* Obtain the current length of an insn. If branch shortening has been done,
437 get its actual length. Otherwise, get its minimum length. */
439 get_attr_min_length (rtx insn)
441 return get_attr_length_1 (insn, insn_min_length);
444 /* Code to handle alignment inside shorten_branches. */
446 /* Here is an explanation how the algorithm in align_fuzz can give
447 proper results:
449 Call a sequence of instructions beginning with alignment point X
450 and continuing until the next alignment point `block X'. When `X'
451 is used in an expression, it means the alignment value of the
452 alignment point.
454 Call the distance between the start of the first insn of block X, and
455 the end of the last insn of block X `IX', for the `inner size of X'.
456 This is clearly the sum of the instruction lengths.
458 Likewise with the next alignment-delimited block following X, which we
459 shall call block Y.
461 Call the distance between the start of the first insn of block X, and
462 the start of the first insn of block Y `OX', for the `outer size of X'.
464 The estimated padding is then OX - IX.
466 OX can be safely estimated as
468 if (X >= Y)
469 OX = round_up(IX, Y)
470 else
471 OX = round_up(IX, X) + Y - X
473 Clearly est(IX) >= real(IX), because that only depends on the
474 instruction lengths, and those being overestimated is a given.
476 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
477 we needn't worry about that when thinking about OX.
479 When X >= Y, the alignment provided by Y adds no uncertainty factor
480 for branch ranges starting before X, so we can just round what we have.
481 But when X < Y, we don't know anything about the, so to speak,
482 `middle bits', so we have to assume the worst when aligning up from an
483 address mod X to one mod Y, which is Y - X. */
485 #ifndef LABEL_ALIGN
486 #define LABEL_ALIGN(LABEL) align_labels_log
487 #endif
489 #ifndef LOOP_ALIGN
490 #define LOOP_ALIGN(LABEL) align_loops_log
491 #endif
493 #ifndef LABEL_ALIGN_AFTER_BARRIER
494 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
495 #endif
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
502 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
504 return 0;
508 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
510 return align_loops_max_skip;
514 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
516 return align_labels_max_skip;
520 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
522 return align_jumps_max_skip;
525 #ifndef ADDR_VEC_ALIGN
526 static int
527 final_addr_vec_align (rtx addr_vec)
529 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
531 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
532 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
533 return exact_log2 (align);
537 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
538 #endif
540 #ifndef INSN_LENGTH_ALIGNMENT
541 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
542 #endif
544 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
546 static int min_labelno, max_labelno;
548 #define LABEL_TO_ALIGNMENT(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
551 #define LABEL_TO_MAX_SKIP(LABEL) \
552 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
554 /* For the benefit of port specific code do this also as a function. */
557 label_to_alignment (rtx label)
559 if (CODE_LABEL_NUMBER (label) <= max_labelno)
560 return LABEL_TO_ALIGNMENT (label);
561 return 0;
565 label_to_max_skip (rtx label)
567 if (CODE_LABEL_NUMBER (label) <= max_labelno)
568 return LABEL_TO_MAX_SKIP (label);
569 return 0;
572 /* The differences in addresses
573 between a branch and its target might grow or shrink depending on
574 the alignment the start insn of the range (the branch for a forward
575 branch or the label for a backward branch) starts out on; if these
576 differences are used naively, they can even oscillate infinitely.
577 We therefore want to compute a 'worst case' address difference that
578 is independent of the alignment the start insn of the range end
579 up on, and that is at least as large as the actual difference.
580 The function align_fuzz calculates the amount we have to add to the
581 naively computed difference, by traversing the part of the alignment
582 chain of the start insn of the range that is in front of the end insn
583 of the range, and considering for each alignment the maximum amount
584 that it might contribute to a size increase.
586 For casesi tables, we also want to know worst case minimum amounts of
587 address difference, in case a machine description wants to introduce
588 some common offset that is added to all offsets in a table.
589 For this purpose, align_fuzz with a growth argument of 0 computes the
590 appropriate adjustment. */
592 /* Compute the maximum delta by which the difference of the addresses of
593 START and END might grow / shrink due to a different address for start
594 which changes the size of alignment insns between START and END.
595 KNOWN_ALIGN_LOG is the alignment known for START.
596 GROWTH should be ~0 if the objective is to compute potential code size
597 increase, and 0 if the objective is to compute potential shrink.
598 The return value is undefined for any other value of GROWTH. */
600 static int
601 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
603 int uid = INSN_UID (start);
604 rtx align_label;
605 int known_align = 1 << known_align_log;
606 int end_shuid = INSN_SHUID (end);
607 int fuzz = 0;
609 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
611 int align_addr, new_align;
613 uid = INSN_UID (align_label);
614 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
615 if (uid_shuid[uid] > end_shuid)
616 break;
617 known_align_log = LABEL_TO_ALIGNMENT (align_label);
618 new_align = 1 << known_align_log;
619 if (new_align < known_align)
620 continue;
621 fuzz += (-align_addr ^ growth) & (new_align - known_align);
622 known_align = new_align;
624 return fuzz;
627 /* Compute a worst-case reference address of a branch so that it
628 can be safely used in the presence of aligned labels. Since the
629 size of the branch itself is unknown, the size of the branch is
630 not included in the range. I.e. for a forward branch, the reference
631 address is the end address of the branch as known from the previous
632 branch shortening pass, minus a value to account for possible size
633 increase due to alignment. For a backward branch, it is the start
634 address of the branch as known from the current pass, plus a value
635 to account for possible size increase due to alignment.
636 NB.: Therefore, the maximum offset allowed for backward branches needs
637 to exclude the branch size. */
640 insn_current_reference_address (rtx_insn *branch)
642 rtx dest, seq;
643 int seq_uid;
645 if (! INSN_ADDRESSES_SET_P ())
646 return 0;
648 seq = NEXT_INSN (PREV_INSN (branch));
649 seq_uid = INSN_UID (seq);
650 if (!JUMP_P (branch))
651 /* This can happen for example on the PA; the objective is to know the
652 offset to address something in front of the start of the function.
653 Thus, we can treat it like a backward branch.
654 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
655 any alignment we'd encounter, so we skip the call to align_fuzz. */
656 return insn_current_address;
657 dest = JUMP_LABEL (branch);
659 /* BRANCH has no proper alignment chain set, so use SEQ.
660 BRANCH also has no INSN_SHUID. */
661 if (INSN_SHUID (seq) < INSN_SHUID (dest))
663 /* Forward branch. */
664 return (insn_last_address + insn_lengths[seq_uid]
665 - align_fuzz (seq, dest, length_unit_log, ~0));
667 else
669 /* Backward branch. */
670 return (insn_current_address
671 + align_fuzz (dest, seq, length_unit_log, ~0));
675 /* Compute branch alignments based on frequency information in the
676 CFG. */
678 unsigned int
679 compute_alignments (void)
681 int log, max_skip, max_log;
682 basic_block bb;
683 int freq_max = 0;
684 int freq_threshold = 0;
686 if (label_align)
688 free (label_align);
689 label_align = 0;
692 max_labelno = max_label_num ();
693 min_labelno = get_first_label_num ();
694 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
696 /* If not optimizing or optimizing for size, don't assign any alignments. */
697 if (! optimize || optimize_function_for_size_p (cfun))
698 return 0;
700 if (dump_file)
702 dump_reg_info (dump_file);
703 dump_flow_info (dump_file, TDF_DETAILS);
704 flow_loops_dump (dump_file, NULL, 1);
706 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
707 FOR_EACH_BB_FN (bb, cfun)
708 if (bb->frequency > freq_max)
709 freq_max = bb->frequency;
710 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
712 if (dump_file)
713 fprintf (dump_file, "freq_max: %i\n",freq_max);
714 FOR_EACH_BB_FN (bb, cfun)
716 rtx_insn *label = BB_HEAD (bb);
717 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
718 edge e;
719 edge_iterator ei;
721 if (!LABEL_P (label)
722 || optimize_bb_for_size_p (bb))
724 if (dump_file)
725 fprintf (dump_file,
726 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
727 bb->index, bb->frequency, bb->loop_father->num,
728 bb_loop_depth (bb));
729 continue;
731 max_log = LABEL_ALIGN (label);
732 max_skip = targetm.asm_out.label_align_max_skip (label);
734 FOR_EACH_EDGE (e, ei, bb->preds)
736 if (e->flags & EDGE_FALLTHRU)
737 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
738 else
739 branch_frequency += EDGE_FREQUENCY (e);
741 if (dump_file)
743 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
744 " %2i fall %4i branch %4i",
745 bb->index, bb->frequency, bb->loop_father->num,
746 bb_loop_depth (bb),
747 fallthru_frequency, branch_frequency);
748 if (!bb->loop_father->inner && bb->loop_father->num)
749 fprintf (dump_file, " inner_loop");
750 if (bb->loop_father->header == bb)
751 fprintf (dump_file, " loop_header");
752 fprintf (dump_file, "\n");
755 /* There are two purposes to align block with no fallthru incoming edge:
756 1) to avoid fetch stalls when branch destination is near cache boundary
757 2) to improve cache efficiency in case the previous block is not executed
758 (so it does not need to be in the cache).
760 We to catch first case, we align frequently executed blocks.
761 To catch the second, we align blocks that are executed more frequently
762 than the predecessor and the predecessor is likely to not be executed
763 when function is called. */
765 if (!has_fallthru
766 && (branch_frequency > freq_threshold
767 || (bb->frequency > bb->prev_bb->frequency * 10
768 && (bb->prev_bb->frequency
769 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
771 log = JUMP_ALIGN (label);
772 if (dump_file)
773 fprintf (dump_file, " jump alignment added.\n");
774 if (max_log < log)
776 max_log = log;
777 max_skip = targetm.asm_out.jump_align_max_skip (label);
780 /* In case block is frequent and reached mostly by non-fallthru edge,
781 align it. It is most likely a first block of loop. */
782 if (has_fallthru
783 && !(single_succ_p (bb)
784 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
785 && optimize_bb_for_speed_p (bb)
786 && branch_frequency + fallthru_frequency > freq_threshold
787 && (branch_frequency
788 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
790 log = LOOP_ALIGN (label);
791 if (dump_file)
792 fprintf (dump_file, " internal loop alignment added.\n");
793 if (max_log < log)
795 max_log = log;
796 max_skip = targetm.asm_out.loop_align_max_skip (label);
799 LABEL_TO_ALIGNMENT (label) = max_log;
800 LABEL_TO_MAX_SKIP (label) = max_skip;
803 loop_optimizer_finalize ();
804 free_dominance_info (CDI_DOMINATORS);
805 return 0;
808 /* Grow the LABEL_ALIGN array after new labels are created. */
810 static void
811 grow_label_align (void)
813 int old = max_labelno;
814 int n_labels;
815 int n_old_labels;
817 max_labelno = max_label_num ();
819 n_labels = max_labelno - min_labelno + 1;
820 n_old_labels = old - min_labelno + 1;
822 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
824 /* Range of labels grows monotonically in the function. Failing here
825 means that the initialization of array got lost. */
826 gcc_assert (n_old_labels <= n_labels);
828 memset (label_align + n_old_labels, 0,
829 (n_labels - n_old_labels) * sizeof (struct label_alignment));
832 /* Update the already computed alignment information. LABEL_PAIRS is a vector
833 made up of pairs of labels for which the alignment information of the first
834 element will be copied from that of the second element. */
836 void
837 update_alignments (vec<rtx> &label_pairs)
839 unsigned int i = 0;
840 rtx iter, label = NULL_RTX;
842 if (max_labelno != max_label_num ())
843 grow_label_align ();
845 FOR_EACH_VEC_ELT (label_pairs, i, iter)
846 if (i & 1)
848 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
849 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
851 else
852 label = iter;
855 namespace {
857 const pass_data pass_data_compute_alignments =
859 RTL_PASS, /* type */
860 "alignments", /* name */
861 OPTGROUP_NONE, /* optinfo_flags */
862 TV_NONE, /* tv_id */
863 0, /* properties_required */
864 0, /* properties_provided */
865 0, /* properties_destroyed */
866 0, /* todo_flags_start */
867 0, /* todo_flags_finish */
870 class pass_compute_alignments : public rtl_opt_pass
872 public:
873 pass_compute_alignments (gcc::context *ctxt)
874 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
877 /* opt_pass methods: */
878 virtual unsigned int execute (function *) { return compute_alignments (); }
880 }; // class pass_compute_alignments
882 } // anon namespace
884 rtl_opt_pass *
885 make_pass_compute_alignments (gcc::context *ctxt)
887 return new pass_compute_alignments (ctxt);
891 /* Make a pass over all insns and compute their actual lengths by shortening
892 any branches of variable length if possible. */
894 /* shorten_branches might be called multiple times: for example, the SH
895 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
896 In order to do this, it needs proper length information, which it obtains
897 by calling shorten_branches. This cannot be collapsed with
898 shorten_branches itself into a single pass unless we also want to integrate
899 reorg.c, since the branch splitting exposes new instructions with delay
900 slots. */
902 void
903 shorten_branches (rtx_insn *first)
905 rtx_insn *insn;
906 int max_uid;
907 int i;
908 int max_log;
909 int max_skip;
910 #define MAX_CODE_ALIGN 16
911 rtx_insn *seq;
912 int something_changed = 1;
913 char *varying_length;
914 rtx body;
915 int uid;
916 rtx align_tab[MAX_CODE_ALIGN];
918 /* Compute maximum UID and allocate label_align / uid_shuid. */
919 max_uid = get_max_uid ();
921 /* Free uid_shuid before reallocating it. */
922 free (uid_shuid);
924 uid_shuid = XNEWVEC (int, max_uid);
926 if (max_labelno != max_label_num ())
927 grow_label_align ();
929 /* Initialize label_align and set up uid_shuid to be strictly
930 monotonically rising with insn order. */
931 /* We use max_log here to keep track of the maximum alignment we want to
932 impose on the next CODE_LABEL (or the current one if we are processing
933 the CODE_LABEL itself). */
935 max_log = 0;
936 max_skip = 0;
938 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
940 int log;
942 INSN_SHUID (insn) = i++;
943 if (INSN_P (insn))
944 continue;
946 if (LABEL_P (insn))
948 rtx_insn *next;
949 bool next_is_jumptable;
951 /* Merge in alignments computed by compute_alignments. */
952 log = LABEL_TO_ALIGNMENT (insn);
953 if (max_log < log)
955 max_log = log;
956 max_skip = LABEL_TO_MAX_SKIP (insn);
959 next = next_nonnote_insn (insn);
960 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
961 if (!next_is_jumptable)
963 log = LABEL_ALIGN (insn);
964 if (max_log < log)
966 max_log = log;
967 max_skip = targetm.asm_out.label_align_max_skip (insn);
970 /* ADDR_VECs only take room if read-only data goes into the text
971 section. */
972 if ((JUMP_TABLES_IN_TEXT_SECTION
973 || readonly_data_section == text_section)
974 && next_is_jumptable)
976 log = ADDR_VEC_ALIGN (next);
977 if (max_log < log)
979 max_log = log;
980 max_skip = targetm.asm_out.label_align_max_skip (insn);
983 LABEL_TO_ALIGNMENT (insn) = max_log;
984 LABEL_TO_MAX_SKIP (insn) = max_skip;
985 max_log = 0;
986 max_skip = 0;
988 else if (BARRIER_P (insn))
990 rtx_insn *label;
992 for (label = insn; label && ! INSN_P (label);
993 label = NEXT_INSN (label))
994 if (LABEL_P (label))
996 log = LABEL_ALIGN_AFTER_BARRIER (insn);
997 if (max_log < log)
999 max_log = log;
1000 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1002 break;
1006 if (!HAVE_ATTR_length)
1007 return;
1009 /* Allocate the rest of the arrays. */
1010 insn_lengths = XNEWVEC (int, max_uid);
1011 insn_lengths_max_uid = max_uid;
1012 /* Syntax errors can lead to labels being outside of the main insn stream.
1013 Initialize insn_addresses, so that we get reproducible results. */
1014 INSN_ADDRESSES_ALLOC (max_uid);
1016 varying_length = XCNEWVEC (char, max_uid);
1018 /* Initialize uid_align. We scan instructions
1019 from end to start, and keep in align_tab[n] the last seen insn
1020 that does an alignment of at least n+1, i.e. the successor
1021 in the alignment chain for an insn that does / has a known
1022 alignment of n. */
1023 uid_align = XCNEWVEC (rtx, max_uid);
1025 for (i = MAX_CODE_ALIGN; --i >= 0;)
1026 align_tab[i] = NULL_RTX;
1027 seq = get_last_insn ();
1028 for (; seq; seq = PREV_INSN (seq))
1030 int uid = INSN_UID (seq);
1031 int log;
1032 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1033 uid_align[uid] = align_tab[0];
1034 if (log)
1036 /* Found an alignment label. */
1037 uid_align[uid] = align_tab[log];
1038 for (i = log - 1; i >= 0; i--)
1039 align_tab[i] = seq;
1043 /* When optimizing, we start assuming minimum length, and keep increasing
1044 lengths as we find the need for this, till nothing changes.
1045 When not optimizing, we start assuming maximum lengths, and
1046 do a single pass to update the lengths. */
1047 bool increasing = optimize != 0;
1049 #ifdef CASE_VECTOR_SHORTEN_MODE
1050 if (optimize)
1052 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1053 label fields. */
1055 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1056 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1057 int rel;
1059 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1061 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1062 int len, i, min, max, insn_shuid;
1063 int min_align;
1064 addr_diff_vec_flags flags;
1066 if (! JUMP_TABLE_DATA_P (insn)
1067 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1068 continue;
1069 pat = PATTERN (insn);
1070 len = XVECLEN (pat, 1);
1071 gcc_assert (len > 0);
1072 min_align = MAX_CODE_ALIGN;
1073 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1075 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1076 int shuid = INSN_SHUID (lab);
1077 if (shuid < min)
1079 min = shuid;
1080 min_lab = lab;
1082 if (shuid > max)
1084 max = shuid;
1085 max_lab = lab;
1087 if (min_align > LABEL_TO_ALIGNMENT (lab))
1088 min_align = LABEL_TO_ALIGNMENT (lab);
1090 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1091 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1092 insn_shuid = INSN_SHUID (insn);
1093 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1094 memset (&flags, 0, sizeof (flags));
1095 flags.min_align = min_align;
1096 flags.base_after_vec = rel > insn_shuid;
1097 flags.min_after_vec = min > insn_shuid;
1098 flags.max_after_vec = max > insn_shuid;
1099 flags.min_after_base = min > rel;
1100 flags.max_after_base = max > rel;
1101 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1103 if (increasing)
1104 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1107 #endif /* CASE_VECTOR_SHORTEN_MODE */
1109 /* Compute initial lengths, addresses, and varying flags for each insn. */
1110 int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;
1112 for (insn_current_address = 0, insn = first;
1113 insn != 0;
1114 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1116 uid = INSN_UID (insn);
1118 insn_lengths[uid] = 0;
1120 if (LABEL_P (insn))
1122 int log = LABEL_TO_ALIGNMENT (insn);
1123 if (log)
1125 int align = 1 << log;
1126 int new_address = (insn_current_address + align - 1) & -align;
1127 insn_lengths[uid] = new_address - insn_current_address;
1131 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1133 if (NOTE_P (insn) || BARRIER_P (insn)
1134 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1135 continue;
1136 if (INSN_DELETED_P (insn))
1137 continue;
1139 body = PATTERN (insn);
1140 if (JUMP_TABLE_DATA_P (insn))
1142 /* This only takes room if read-only data goes into the text
1143 section. */
1144 if (JUMP_TABLES_IN_TEXT_SECTION
1145 || readonly_data_section == text_section)
1146 insn_lengths[uid] = (XVECLEN (body,
1147 GET_CODE (body) == ADDR_DIFF_VEC)
1148 * GET_MODE_SIZE (GET_MODE (body)));
1149 /* Alignment is handled by ADDR_VEC_ALIGN. */
1151 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1152 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1153 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1155 int i;
1156 int const_delay_slots;
1157 #ifdef DELAY_SLOTS
1158 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1159 #else
1160 const_delay_slots = 0;
1161 #endif
1162 int (*inner_length_fun) (rtx)
1163 = const_delay_slots ? length_fun : insn_default_length;
1164 /* Inside a delay slot sequence, we do not do any branch shortening
1165 if the shortening could change the number of delay slots
1166 of the branch. */
1167 for (i = 0; i < body_seq->len (); i++)
1169 rtx_insn *inner_insn = body_seq->insn (i);
1170 int inner_uid = INSN_UID (inner_insn);
1171 int inner_length;
1173 if (GET_CODE (body) == ASM_INPUT
1174 || asm_noperands (PATTERN (inner_insn)) >= 0)
1175 inner_length = (asm_insn_count (PATTERN (inner_insn))
1176 * insn_default_length (inner_insn));
1177 else
1178 inner_length = inner_length_fun (inner_insn);
1180 insn_lengths[inner_uid] = inner_length;
1181 if (const_delay_slots)
1183 if ((varying_length[inner_uid]
1184 = insn_variable_length_p (inner_insn)) != 0)
1185 varying_length[uid] = 1;
1186 INSN_ADDRESSES (inner_uid) = (insn_current_address
1187 + insn_lengths[uid]);
1189 else
1190 varying_length[inner_uid] = 0;
1191 insn_lengths[uid] += inner_length;
1194 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1196 insn_lengths[uid] = length_fun (insn);
1197 varying_length[uid] = insn_variable_length_p (insn);
1200 /* If needed, do any adjustment. */
1201 #ifdef ADJUST_INSN_LENGTH
1202 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1203 if (insn_lengths[uid] < 0)
1204 fatal_insn ("negative insn length", insn);
1205 #endif
1208 /* Now loop over all the insns finding varying length insns. For each,
1209 get the current insn length. If it has changed, reflect the change.
1210 When nothing changes for a full pass, we are done. */
1212 while (something_changed)
1214 something_changed = 0;
1215 insn_current_align = MAX_CODE_ALIGN - 1;
1216 for (insn_current_address = 0, insn = first;
1217 insn != 0;
1218 insn = NEXT_INSN (insn))
1220 int new_length;
1221 #ifdef ADJUST_INSN_LENGTH
1222 int tmp_length;
1223 #endif
1224 int length_align;
1226 uid = INSN_UID (insn);
1228 if (LABEL_P (insn))
1230 int log = LABEL_TO_ALIGNMENT (insn);
1232 #ifdef CASE_VECTOR_SHORTEN_MODE
1233 /* If the mode of a following jump table was changed, we
1234 may need to update the alignment of this label. */
1235 rtx_insn *next;
1236 bool next_is_jumptable;
1238 next = next_nonnote_insn (insn);
1239 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1240 if ((JUMP_TABLES_IN_TEXT_SECTION
1241 || readonly_data_section == text_section)
1242 && next_is_jumptable)
1244 int newlog = ADDR_VEC_ALIGN (next);
1245 if (newlog != log)
1247 log = newlog;
1248 LABEL_TO_ALIGNMENT (insn) = log;
1249 something_changed = 1;
1252 #endif
1254 if (log > insn_current_align)
1256 int align = 1 << log;
1257 int new_address= (insn_current_address + align - 1) & -align;
1258 insn_lengths[uid] = new_address - insn_current_address;
1259 insn_current_align = log;
1260 insn_current_address = new_address;
1262 else
1263 insn_lengths[uid] = 0;
1264 INSN_ADDRESSES (uid) = insn_current_address;
1265 continue;
1268 length_align = INSN_LENGTH_ALIGNMENT (insn);
1269 if (length_align < insn_current_align)
1270 insn_current_align = length_align;
1272 insn_last_address = INSN_ADDRESSES (uid);
1273 INSN_ADDRESSES (uid) = insn_current_address;
1275 #ifdef CASE_VECTOR_SHORTEN_MODE
1276 if (optimize
1277 && JUMP_TABLE_DATA_P (insn)
1278 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1280 rtx body = PATTERN (insn);
1281 int old_length = insn_lengths[uid];
1282 rtx_insn *rel_lab =
1283 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1284 rtx min_lab = XEXP (XEXP (body, 2), 0);
1285 rtx max_lab = XEXP (XEXP (body, 3), 0);
1286 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1287 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1288 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1289 rtx_insn *prev;
1290 int rel_align = 0;
1291 addr_diff_vec_flags flags;
1292 enum machine_mode vec_mode;
1294 /* Avoid automatic aggregate initialization. */
1295 flags = ADDR_DIFF_VEC_FLAGS (body);
1297 /* Try to find a known alignment for rel_lab. */
1298 for (prev = rel_lab;
1299 prev
1300 && ! insn_lengths[INSN_UID (prev)]
1301 && ! (varying_length[INSN_UID (prev)] & 1);
1302 prev = PREV_INSN (prev))
1303 if (varying_length[INSN_UID (prev)] & 2)
1305 rel_align = LABEL_TO_ALIGNMENT (prev);
1306 break;
1309 /* See the comment on addr_diff_vec_flags in rtl.h for the
1310 meaning of the flags values. base: REL_LAB vec: INSN */
1311 /* Anything after INSN has still addresses from the last
1312 pass; adjust these so that they reflect our current
1313 estimate for this pass. */
1314 if (flags.base_after_vec)
1315 rel_addr += insn_current_address - insn_last_address;
1316 if (flags.min_after_vec)
1317 min_addr += insn_current_address - insn_last_address;
1318 if (flags.max_after_vec)
1319 max_addr += insn_current_address - insn_last_address;
1320 /* We want to know the worst case, i.e. lowest possible value
1321 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1322 its offset is positive, and we have to be wary of code shrink;
1323 otherwise, it is negative, and we have to be vary of code
1324 size increase. */
1325 if (flags.min_after_base)
1327 /* If INSN is between REL_LAB and MIN_LAB, the size
1328 changes we are about to make can change the alignment
1329 within the observed offset, therefore we have to break
1330 it up into two parts that are independent. */
1331 if (! flags.base_after_vec && flags.min_after_vec)
1333 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1334 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1336 else
1337 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1339 else
1341 if (flags.base_after_vec && ! flags.min_after_vec)
1343 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1344 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1346 else
1347 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1349 /* Likewise, determine the highest lowest possible value
1350 for the offset of MAX_LAB. */
1351 if (flags.max_after_base)
1353 if (! flags.base_after_vec && flags.max_after_vec)
1355 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1356 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1358 else
1359 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1361 else
1363 if (flags.base_after_vec && ! flags.max_after_vec)
1365 max_addr += align_fuzz (max_lab, insn, 0, 0);
1366 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1368 else
1369 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1371 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1372 max_addr - rel_addr, body);
1373 if (!increasing
1374 || (GET_MODE_SIZE (vec_mode)
1375 >= GET_MODE_SIZE (GET_MODE (body))))
1376 PUT_MODE (body, vec_mode);
1377 if (JUMP_TABLES_IN_TEXT_SECTION
1378 || readonly_data_section == text_section)
1380 insn_lengths[uid]
1381 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1382 insn_current_address += insn_lengths[uid];
1383 if (insn_lengths[uid] != old_length)
1384 something_changed = 1;
1387 continue;
1389 #endif /* CASE_VECTOR_SHORTEN_MODE */
1391 if (! (varying_length[uid]))
1393 if (NONJUMP_INSN_P (insn)
1394 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1396 int i;
1398 body = PATTERN (insn);
1399 for (i = 0; i < XVECLEN (body, 0); i++)
1401 rtx inner_insn = XVECEXP (body, 0, i);
1402 int inner_uid = INSN_UID (inner_insn);
1404 INSN_ADDRESSES (inner_uid) = insn_current_address;
1406 insn_current_address += insn_lengths[inner_uid];
1409 else
1410 insn_current_address += insn_lengths[uid];
1412 continue;
1415 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1417 int i;
1419 body = PATTERN (insn);
1420 new_length = 0;
1421 for (i = 0; i < XVECLEN (body, 0); i++)
1423 rtx inner_insn = XVECEXP (body, 0, i);
1424 int inner_uid = INSN_UID (inner_insn);
1425 int inner_length;
1427 INSN_ADDRESSES (inner_uid) = insn_current_address;
1429 /* insn_current_length returns 0 for insns with a
1430 non-varying length. */
1431 if (! varying_length[inner_uid])
1432 inner_length = insn_lengths[inner_uid];
1433 else
1434 inner_length = insn_current_length (inner_insn);
1436 if (inner_length != insn_lengths[inner_uid])
1438 if (!increasing || inner_length > insn_lengths[inner_uid])
1440 insn_lengths[inner_uid] = inner_length;
1441 something_changed = 1;
1443 else
1444 inner_length = insn_lengths[inner_uid];
1446 insn_current_address += inner_length;
1447 new_length += inner_length;
1450 else
1452 new_length = insn_current_length (insn);
1453 insn_current_address += new_length;
1456 #ifdef ADJUST_INSN_LENGTH
1457 /* If needed, do any adjustment. */
1458 tmp_length = new_length;
1459 ADJUST_INSN_LENGTH (insn, new_length);
1460 insn_current_address += (new_length - tmp_length);
1461 #endif
1463 if (new_length != insn_lengths[uid]
1464 && (!increasing || new_length > insn_lengths[uid]))
1466 insn_lengths[uid] = new_length;
1467 something_changed = 1;
1469 else
1470 insn_current_address += insn_lengths[uid] - new_length;
1472 /* For a non-optimizing compile, do only a single pass. */
1473 if (!increasing)
1474 break;
1477 free (varying_length);
1480 /* Given the body of an INSN known to be generated by an ASM statement, return
1481 the number of machine instructions likely to be generated for this insn.
1482 This is used to compute its length. */
1484 static int
1485 asm_insn_count (rtx body)
1487 const char *templ;
1489 if (GET_CODE (body) == ASM_INPUT)
1490 templ = XSTR (body, 0);
1491 else
1492 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1494 return asm_str_count (templ);
1497 /* Return the number of machine instructions likely to be generated for the
1498 inline-asm template. */
1500 asm_str_count (const char *templ)
1502 int count = 1;
1504 if (!*templ)
1505 return 0;
1507 for (; *templ; templ++)
1508 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1509 || *templ == '\n')
1510 count++;
1512 return count;
1515 /* ??? This is probably the wrong place for these. */
1516 /* Structure recording the mapping from source file and directory
1517 names at compile time to those to be embedded in debug
1518 information. */
1519 typedef struct debug_prefix_map
1521 const char *old_prefix;
1522 const char *new_prefix;
1523 size_t old_len;
1524 size_t new_len;
1525 struct debug_prefix_map *next;
1526 } debug_prefix_map;
1528 /* Linked list of such structures. */
1529 static debug_prefix_map *debug_prefix_maps;
1532 /* Record a debug file prefix mapping. ARG is the argument to
1533 -fdebug-prefix-map and must be of the form OLD=NEW. */
1535 void
1536 add_debug_prefix_map (const char *arg)
1538 debug_prefix_map *map;
1539 const char *p;
1541 p = strchr (arg, '=');
1542 if (!p)
1544 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1545 return;
1547 map = XNEW (debug_prefix_map);
1548 map->old_prefix = xstrndup (arg, p - arg);
1549 map->old_len = p - arg;
1550 p++;
1551 map->new_prefix = xstrdup (p);
1552 map->new_len = strlen (p);
1553 map->next = debug_prefix_maps;
1554 debug_prefix_maps = map;
1557 /* Perform user-specified mapping of debug filename prefixes. Return
1558 the new name corresponding to FILENAME. */
1560 const char *
1561 remap_debug_filename (const char *filename)
1563 debug_prefix_map *map;
1564 char *s;
1565 const char *name;
1566 size_t name_len;
1568 for (map = debug_prefix_maps; map; map = map->next)
1569 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1570 break;
1571 if (!map)
1572 return filename;
1573 name = filename + map->old_len;
1574 name_len = strlen (name) + 1;
1575 s = (char *) alloca (name_len + map->new_len);
1576 memcpy (s, map->new_prefix, map->new_len);
1577 memcpy (s + map->new_len, name, name_len);
1578 return ggc_strdup (s);
1581 /* Return true if DWARF2 debug info can be emitted for DECL. */
1583 static bool
1584 dwarf2_debug_info_emitted_p (tree decl)
1586 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1587 return false;
1589 if (DECL_IGNORED_P (decl))
1590 return false;
1592 return true;
1595 /* Return scope resulting from combination of S1 and S2. */
1596 static tree
1597 choose_inner_scope (tree s1, tree s2)
1599 if (!s1)
1600 return s2;
1601 if (!s2)
1602 return s1;
1603 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1604 return s1;
1605 return s2;
1608 /* Emit lexical block notes needed to change scope from S1 to S2. */
1610 static void
1611 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1613 rtx_insn *insn = orig_insn;
1614 tree com = NULL_TREE;
1615 tree ts1 = s1, ts2 = s2;
1616 tree s;
1618 while (ts1 != ts2)
1620 gcc_assert (ts1 && ts2);
1621 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1622 ts1 = BLOCK_SUPERCONTEXT (ts1);
1623 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1624 ts2 = BLOCK_SUPERCONTEXT (ts2);
1625 else
1627 ts1 = BLOCK_SUPERCONTEXT (ts1);
1628 ts2 = BLOCK_SUPERCONTEXT (ts2);
1631 com = ts1;
1633 /* Close scopes. */
1634 s = s1;
1635 while (s != com)
1637 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1638 NOTE_BLOCK (note) = s;
1639 s = BLOCK_SUPERCONTEXT (s);
1642 /* Open scopes. */
1643 s = s2;
1644 while (s != com)
1646 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1647 NOTE_BLOCK (insn) = s;
1648 s = BLOCK_SUPERCONTEXT (s);
1652 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1653 on the scope tree and the newly reordered instructions. */
1655 static void
1656 reemit_insn_block_notes (void)
1658 tree cur_block = DECL_INITIAL (cfun->decl);
1659 rtx_insn *insn;
1660 rtx_note *note;
1662 insn = get_insns ();
1663 for (; insn; insn = NEXT_INSN (insn))
1665 tree this_block;
1667 /* Prevent lexical blocks from straddling section boundaries. */
1668 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1670 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1671 s = BLOCK_SUPERCONTEXT (s))
1673 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1674 NOTE_BLOCK (note) = s;
1675 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1676 NOTE_BLOCK (note) = s;
1680 if (!active_insn_p (insn))
1681 continue;
1683 /* Avoid putting scope notes between jump table and its label. */
1684 if (JUMP_TABLE_DATA_P (insn))
1685 continue;
1687 this_block = insn_scope (insn);
1688 /* For sequences compute scope resulting from merging all scopes
1689 of instructions nested inside. */
1690 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1692 int i;
1694 this_block = NULL;
1695 for (i = 0; i < body->len (); i++)
1696 this_block = choose_inner_scope (this_block,
1697 insn_scope (body->insn (i)));
1699 if (! this_block)
1701 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1702 continue;
1703 else
1704 this_block = DECL_INITIAL (cfun->decl);
1707 if (this_block != cur_block)
1709 change_scope (insn, cur_block, this_block);
1710 cur_block = this_block;
1714 /* change_scope emits before the insn, not after. */
1715 note = emit_note (NOTE_INSN_DELETED);
1716 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1717 delete_insn (note);
1719 reorder_blocks ();
1722 /* Output assembler code for the start of a function,
1723 and initialize some of the variables in this file
1724 for the new function. The label for the function and associated
1725 assembler pseudo-ops have already been output in `assemble_start_function'.
1727 FIRST is the first insn of the rtl for the function being compiled.
1728 FILE is the file to write assembler code to.
1729 OPTIMIZE_P is nonzero if we should eliminate redundant
1730 test and compare insns. */
1732 void
1733 final_start_function (rtx_insn *first, FILE *file,
1734 int optimize_p ATTRIBUTE_UNUSED)
1736 block_depth = 0;
1738 this_is_asm_operands = 0;
1740 need_profile_function = false;
1742 last_filename = LOCATION_FILE (prologue_location);
1743 last_linenum = LOCATION_LINE (prologue_location);
1744 last_discriminator = discriminator = 0;
1746 high_block_linenum = high_function_linenum = last_linenum;
1748 if (flag_sanitize & SANITIZE_ADDRESS)
1749 asan_function_start ();
1751 if (!DECL_IGNORED_P (current_function_decl))
1752 debug_hooks->begin_prologue (last_linenum, last_filename);
1754 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1755 dwarf2out_begin_prologue (0, NULL);
1757 #ifdef LEAF_REG_REMAP
1758 if (crtl->uses_only_leaf_regs)
1759 leaf_renumber_regs (first);
1760 #endif
1762 /* The Sun386i and perhaps other machines don't work right
1763 if the profiling code comes after the prologue. */
1764 if (targetm.profile_before_prologue () && crtl->profile)
1766 if (targetm.asm_out.function_prologue
1767 == default_function_pro_epilogue
1768 #ifdef HAVE_prologue
1769 && HAVE_prologue
1770 #endif
1773 rtx_insn *insn;
1774 for (insn = first; insn; insn = NEXT_INSN (insn))
1775 if (!NOTE_P (insn))
1777 insn = NULL;
1778 break;
1780 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1781 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1782 break;
1783 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1784 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1785 continue;
1786 else
1788 insn = NULL;
1789 break;
1792 if (insn)
1793 need_profile_function = true;
1794 else
1795 profile_function (file);
1797 else
1798 profile_function (file);
1801 /* If debugging, assign block numbers to all of the blocks in this
1802 function. */
1803 if (write_symbols)
1805 reemit_insn_block_notes ();
1806 number_blocks (current_function_decl);
1807 /* We never actually put out begin/end notes for the top-level
1808 block in the function. But, conceptually, that block is
1809 always needed. */
1810 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1813 if (warn_frame_larger_than
1814 && get_frame_size () > frame_larger_than_size)
1816 /* Issue a warning */
1817 warning (OPT_Wframe_larger_than_,
1818 "the frame size of %wd bytes is larger than %wd bytes",
1819 get_frame_size (), frame_larger_than_size);
1822 /* First output the function prologue: code to set up the stack frame. */
1823 targetm.asm_out.function_prologue (file, get_frame_size ());
1825 /* If the machine represents the prologue as RTL, the profiling code must
1826 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1827 #ifdef HAVE_prologue
1828 if (! HAVE_prologue)
1829 #endif
1830 profile_after_prologue (file);
1833 static void
1834 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1836 if (!targetm.profile_before_prologue () && crtl->profile)
1837 profile_function (file);
1840 static void
1841 profile_function (FILE *file ATTRIBUTE_UNUSED)
1843 #ifndef NO_PROFILE_COUNTERS
1844 # define NO_PROFILE_COUNTERS 0
1845 #endif
1846 #ifdef ASM_OUTPUT_REG_PUSH
1847 rtx sval = NULL, chain = NULL;
1849 if (cfun->returns_struct)
1850 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1851 true);
1852 if (cfun->static_chain_decl)
1853 chain = targetm.calls.static_chain (current_function_decl, true);
1854 #endif /* ASM_OUTPUT_REG_PUSH */
1856 if (! NO_PROFILE_COUNTERS)
1858 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1859 switch_to_section (data_section);
1860 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1861 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1862 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1865 switch_to_section (current_function_section ());
1867 #ifdef ASM_OUTPUT_REG_PUSH
1868 if (sval && REG_P (sval))
1869 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1870 if (chain && REG_P (chain))
1871 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1872 #endif
1874 FUNCTION_PROFILER (file, current_function_funcdef_no);
1876 #ifdef ASM_OUTPUT_REG_PUSH
1877 if (chain && REG_P (chain))
1878 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1879 if (sval && REG_P (sval))
1880 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1881 #endif
1884 /* Output assembler code for the end of a function.
1885 For clarity, args are same as those of `final_start_function'
1886 even though not all of them are needed. */
1888 void
1889 final_end_function (void)
1891 app_disable ();
1893 if (!DECL_IGNORED_P (current_function_decl))
1894 debug_hooks->end_function (high_function_linenum);
1896 /* Finally, output the function epilogue:
1897 code to restore the stack frame and return to the caller. */
1898 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1900 /* And debug output. */
1901 if (!DECL_IGNORED_P (current_function_decl))
1902 debug_hooks->end_epilogue (last_linenum, last_filename);
1904 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1905 && dwarf2out_do_frame ())
1906 dwarf2out_end_epilogue (last_linenum, last_filename);
1910 /* Dumper helper for basic block information. FILE is the assembly
1911 output file, and INSN is the instruction being emitted. */
1913 static void
1914 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1915 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1917 basic_block bb;
1919 if (!flag_debug_asm)
1920 return;
1922 if (INSN_UID (insn) < bb_map_size
1923 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1925 edge e;
1926 edge_iterator ei;
1928 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1929 if (bb->frequency)
1930 fprintf (file, " freq:%d", bb->frequency);
1931 if (bb->count)
1932 fprintf (file, " count:%"PRId64,
1933 bb->count);
1934 fprintf (file, " seq:%d", (*bb_seqn)++);
1935 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1936 FOR_EACH_EDGE (e, ei, bb->preds)
1938 dump_edge_info (file, e, TDF_DETAILS, 0);
1940 fprintf (file, "\n");
1942 if (INSN_UID (insn) < bb_map_size
1943 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1945 edge e;
1946 edge_iterator ei;
1948 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1949 FOR_EACH_EDGE (e, ei, bb->succs)
1951 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1953 fprintf (file, "\n");
1957 /* Output assembler code for some insns: all or part of a function.
1958 For description of args, see `final_start_function', above. */
1960 void
1961 final (rtx_insn *first, FILE *file, int optimize_p)
1963 rtx_insn *insn, *next;
1964 int seen = 0;
1966 /* Used for -dA dump. */
1967 basic_block *start_to_bb = NULL;
1968 basic_block *end_to_bb = NULL;
1969 int bb_map_size = 0;
1970 int bb_seqn = 0;
1972 last_ignored_compare = 0;
1974 #ifdef HAVE_cc0
1975 for (insn = first; insn; insn = NEXT_INSN (insn))
1977 /* If CC tracking across branches is enabled, record the insn which
1978 jumps to each branch only reached from one place. */
1979 if (optimize_p && JUMP_P (insn))
1981 rtx lab = JUMP_LABEL (insn);
1982 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1984 LABEL_REFS (lab) = insn;
1988 #endif
1990 init_recog ();
1992 CC_STATUS_INIT;
1994 if (flag_debug_asm)
1996 basic_block bb;
1998 bb_map_size = get_max_uid () + 1;
1999 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2000 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2002 /* There is no cfg for a thunk. */
2003 if (!cfun->is_thunk)
2004 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2006 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2007 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2011 /* Output the insns. */
2012 for (insn = first; insn;)
2014 if (HAVE_ATTR_length)
2016 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2018 /* This can be triggered by bugs elsewhere in the compiler if
2019 new insns are created after init_insn_lengths is called. */
2020 gcc_assert (NOTE_P (insn));
2021 insn_current_address = -1;
2023 else
2024 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2027 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2028 bb_map_size, &bb_seqn);
2029 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2032 if (flag_debug_asm)
2034 free (start_to_bb);
2035 free (end_to_bb);
2038 /* Remove CFI notes, to avoid compare-debug failures. */
2039 for (insn = first; insn; insn = next)
2041 next = NEXT_INSN (insn);
2042 if (NOTE_P (insn)
2043 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2044 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2045 delete_insn (insn);
2049 const char *
2050 get_insn_template (int code, rtx insn)
2052 switch (insn_data[code].output_format)
2054 case INSN_OUTPUT_FORMAT_SINGLE:
2055 return insn_data[code].output.single;
2056 case INSN_OUTPUT_FORMAT_MULTI:
2057 return insn_data[code].output.multi[which_alternative];
2058 case INSN_OUTPUT_FORMAT_FUNCTION:
2059 gcc_assert (insn);
2060 return (*insn_data[code].output.function) (recog_data.operand,
2061 as_a <rtx_insn *> (insn));
2063 default:
2064 gcc_unreachable ();
2068 /* Emit the appropriate declaration for an alternate-entry-point
2069 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2070 LABEL_KIND != LABEL_NORMAL.
2072 The case fall-through in this function is intentional. */
2073 static void
2074 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2076 const char *name = LABEL_NAME (insn);
2078 switch (LABEL_KIND (insn))
2080 case LABEL_WEAK_ENTRY:
2081 #ifdef ASM_WEAKEN_LABEL
2082 ASM_WEAKEN_LABEL (file, name);
2083 #endif
2084 case LABEL_GLOBAL_ENTRY:
2085 targetm.asm_out.globalize_label (file, name);
2086 case LABEL_STATIC_ENTRY:
2087 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2088 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2089 #endif
2090 ASM_OUTPUT_LABEL (file, name);
2091 break;
2093 case LABEL_NORMAL:
2094 default:
2095 gcc_unreachable ();
2099 /* Given a CALL_INSN, find and return the nested CALL. */
2100 static rtx
2101 call_from_call_insn (rtx_call_insn *insn)
2103 rtx x;
2104 gcc_assert (CALL_P (insn));
2105 x = PATTERN (insn);
2107 while (GET_CODE (x) != CALL)
2109 switch (GET_CODE (x))
2111 default:
2112 gcc_unreachable ();
2113 case COND_EXEC:
2114 x = COND_EXEC_CODE (x);
2115 break;
2116 case PARALLEL:
2117 x = XVECEXP (x, 0, 0);
2118 break;
2119 case SET:
2120 x = XEXP (x, 1);
2121 break;
2124 return x;
2127 /* The final scan for one insn, INSN.
2128 Args are same as in `final', except that INSN
2129 is the insn being scanned.
2130 Value returned is the next insn to be scanned.
2132 NOPEEPHOLES is the flag to disallow peephole processing (currently
2133 used for within delayed branch sequence output).
2135 SEEN is used to track the end of the prologue, for emitting
2136 debug information. We force the emission of a line note after
2137 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2139 rtx_insn *
2140 final_scan_insn (rtx uncast_insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2141 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2143 #ifdef HAVE_cc0
2144 rtx set;
2145 #endif
2146 rtx_insn *next;
2148 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
2150 insn_counter++;
2152 /* Ignore deleted insns. These can occur when we split insns (due to a
2153 template of "#") while not optimizing. */
2154 if (INSN_DELETED_P (insn))
2155 return NEXT_INSN (insn);
2157 switch (GET_CODE (insn))
2159 case NOTE:
2160 switch (NOTE_KIND (insn))
2162 case NOTE_INSN_DELETED:
2163 break;
2165 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2166 in_cold_section_p = !in_cold_section_p;
2168 if (dwarf2out_do_frame ())
2169 dwarf2out_switch_text_section ();
2170 else if (!DECL_IGNORED_P (current_function_decl))
2171 debug_hooks->switch_text_section ();
2173 switch_to_section (current_function_section ());
2174 targetm.asm_out.function_switched_text_sections (asm_out_file,
2175 current_function_decl,
2176 in_cold_section_p);
2177 /* Emit a label for the split cold section. Form label name by
2178 suffixing "cold" to the original function's name. */
2179 if (in_cold_section_p)
2181 tree cold_function_name
2182 = clone_function_name (current_function_decl, "cold");
2183 ASM_OUTPUT_LABEL (asm_out_file,
2184 IDENTIFIER_POINTER (cold_function_name));
2186 break;
2188 case NOTE_INSN_BASIC_BLOCK:
2189 if (need_profile_function)
2191 profile_function (asm_out_file);
2192 need_profile_function = false;
2195 if (targetm.asm_out.unwind_emit)
2196 targetm.asm_out.unwind_emit (asm_out_file, insn);
2198 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2200 break;
2202 case NOTE_INSN_EH_REGION_BEG:
2203 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2204 NOTE_EH_HANDLER (insn));
2205 break;
2207 case NOTE_INSN_EH_REGION_END:
2208 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2209 NOTE_EH_HANDLER (insn));
2210 break;
2212 case NOTE_INSN_PROLOGUE_END:
2213 targetm.asm_out.function_end_prologue (file);
2214 profile_after_prologue (file);
2216 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2218 *seen |= SEEN_EMITTED;
2219 force_source_line = true;
2221 else
2222 *seen |= SEEN_NOTE;
2224 break;
2226 case NOTE_INSN_EPILOGUE_BEG:
2227 if (!DECL_IGNORED_P (current_function_decl))
2228 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2229 targetm.asm_out.function_begin_epilogue (file);
2230 break;
2232 case NOTE_INSN_CFI:
2233 dwarf2out_emit_cfi (NOTE_CFI (insn));
2234 break;
2236 case NOTE_INSN_CFI_LABEL:
2237 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2238 NOTE_LABEL_NUMBER (insn));
2239 break;
2241 case NOTE_INSN_FUNCTION_BEG:
2242 if (need_profile_function)
2244 profile_function (asm_out_file);
2245 need_profile_function = false;
2248 app_disable ();
2249 if (!DECL_IGNORED_P (current_function_decl))
2250 debug_hooks->end_prologue (last_linenum, last_filename);
2252 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2254 *seen |= SEEN_EMITTED;
2255 force_source_line = true;
2257 else
2258 *seen |= SEEN_NOTE;
2260 break;
2262 case NOTE_INSN_BLOCK_BEG:
2263 if (debug_info_level == DINFO_LEVEL_NORMAL
2264 || debug_info_level == DINFO_LEVEL_VERBOSE
2265 || write_symbols == DWARF2_DEBUG
2266 || write_symbols == VMS_AND_DWARF2_DEBUG
2267 || write_symbols == VMS_DEBUG)
2269 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2271 app_disable ();
2272 ++block_depth;
2273 high_block_linenum = last_linenum;
2275 /* Output debugging info about the symbol-block beginning. */
2276 if (!DECL_IGNORED_P (current_function_decl))
2277 debug_hooks->begin_block (last_linenum, n);
2279 /* Mark this block as output. */
2280 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2282 if (write_symbols == DBX_DEBUG
2283 || write_symbols == SDB_DEBUG)
2285 location_t *locus_ptr
2286 = block_nonartificial_location (NOTE_BLOCK (insn));
2288 if (locus_ptr != NULL)
2290 override_filename = LOCATION_FILE (*locus_ptr);
2291 override_linenum = LOCATION_LINE (*locus_ptr);
2294 break;
2296 case NOTE_INSN_BLOCK_END:
2297 if (debug_info_level == DINFO_LEVEL_NORMAL
2298 || debug_info_level == DINFO_LEVEL_VERBOSE
2299 || write_symbols == DWARF2_DEBUG
2300 || write_symbols == VMS_AND_DWARF2_DEBUG
2301 || write_symbols == VMS_DEBUG)
2303 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2305 app_disable ();
2307 /* End of a symbol-block. */
2308 --block_depth;
2309 gcc_assert (block_depth >= 0);
2311 if (!DECL_IGNORED_P (current_function_decl))
2312 debug_hooks->end_block (high_block_linenum, n);
2314 if (write_symbols == DBX_DEBUG
2315 || write_symbols == SDB_DEBUG)
2317 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2318 location_t *locus_ptr
2319 = block_nonartificial_location (outer_block);
2321 if (locus_ptr != NULL)
2323 override_filename = LOCATION_FILE (*locus_ptr);
2324 override_linenum = LOCATION_LINE (*locus_ptr);
2326 else
2328 override_filename = NULL;
2329 override_linenum = 0;
2332 break;
2334 case NOTE_INSN_DELETED_LABEL:
2335 /* Emit the label. We may have deleted the CODE_LABEL because
2336 the label could be proved to be unreachable, though still
2337 referenced (in the form of having its address taken. */
2338 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2339 break;
2341 case NOTE_INSN_DELETED_DEBUG_LABEL:
2342 /* Similarly, but need to use different namespace for it. */
2343 if (CODE_LABEL_NUMBER (insn) != -1)
2344 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2345 break;
2347 case NOTE_INSN_VAR_LOCATION:
2348 case NOTE_INSN_CALL_ARG_LOCATION:
2349 if (!DECL_IGNORED_P (current_function_decl))
2350 debug_hooks->var_location (insn);
2351 break;
2353 default:
2354 gcc_unreachable ();
2355 break;
2357 break;
2359 case BARRIER:
2360 break;
2362 case CODE_LABEL:
2363 /* The target port might emit labels in the output function for
2364 some insn, e.g. sh.c output_branchy_insn. */
2365 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2367 int align = LABEL_TO_ALIGNMENT (insn);
2368 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2369 int max_skip = LABEL_TO_MAX_SKIP (insn);
2370 #endif
2372 if (align && NEXT_INSN (insn))
2374 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2375 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2376 #else
2377 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2378 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2379 #else
2380 ASM_OUTPUT_ALIGN (file, align);
2381 #endif
2382 #endif
2385 CC_STATUS_INIT;
2387 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2388 debug_hooks->label (as_a <rtx_code_label *> (insn));
2390 app_disable ();
2392 next = next_nonnote_insn (insn);
2393 /* If this label is followed by a jump-table, make sure we put
2394 the label in the read-only section. Also possibly write the
2395 label and jump table together. */
2396 if (next != 0 && JUMP_TABLE_DATA_P (next))
2398 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2399 /* In this case, the case vector is being moved by the
2400 target, so don't output the label at all. Leave that
2401 to the back end macros. */
2402 #else
2403 if (! JUMP_TABLES_IN_TEXT_SECTION)
2405 int log_align;
2407 switch_to_section (targetm.asm_out.function_rodata_section
2408 (current_function_decl));
2410 #ifdef ADDR_VEC_ALIGN
2411 log_align = ADDR_VEC_ALIGN (next);
2412 #else
2413 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2414 #endif
2415 ASM_OUTPUT_ALIGN (file, log_align);
2417 else
2418 switch_to_section (current_function_section ());
2420 #ifdef ASM_OUTPUT_CASE_LABEL
2421 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2422 next);
2423 #else
2424 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2425 #endif
2426 #endif
2427 break;
2429 if (LABEL_ALT_ENTRY_P (insn))
2430 output_alternate_entry_point (file, insn);
2431 else
2432 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2433 break;
2435 default:
2437 rtx body = PATTERN (insn);
2438 int insn_code_number;
2439 const char *templ;
2440 bool is_stmt;
2442 /* Reset this early so it is correct for ASM statements. */
2443 current_insn_predicate = NULL_RTX;
2445 /* An INSN, JUMP_INSN or CALL_INSN.
2446 First check for special kinds that recog doesn't recognize. */
2448 if (GET_CODE (body) == USE /* These are just declarations. */
2449 || GET_CODE (body) == CLOBBER)
2450 break;
2452 #ifdef HAVE_cc0
2454 /* If there is a REG_CC_SETTER note on this insn, it means that
2455 the setting of the condition code was done in the delay slot
2456 of the insn that branched here. So recover the cc status
2457 from the insn that set it. */
2459 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2460 if (note)
2462 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2463 cc_prev_status = cc_status;
2466 #endif
2468 /* Detect insns that are really jump-tables
2469 and output them as such. */
2471 if (JUMP_TABLE_DATA_P (insn))
2473 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2474 int vlen, idx;
2475 #endif
2477 if (! JUMP_TABLES_IN_TEXT_SECTION)
2478 switch_to_section (targetm.asm_out.function_rodata_section
2479 (current_function_decl));
2480 else
2481 switch_to_section (current_function_section ());
2483 app_disable ();
2485 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2486 if (GET_CODE (body) == ADDR_VEC)
2488 #ifdef ASM_OUTPUT_ADDR_VEC
2489 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2490 #else
2491 gcc_unreachable ();
2492 #endif
2494 else
2496 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2497 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2498 #else
2499 gcc_unreachable ();
2500 #endif
2502 #else
2503 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2504 for (idx = 0; idx < vlen; idx++)
2506 if (GET_CODE (body) == ADDR_VEC)
2508 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2509 ASM_OUTPUT_ADDR_VEC_ELT
2510 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2511 #else
2512 gcc_unreachable ();
2513 #endif
2515 else
2517 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2518 ASM_OUTPUT_ADDR_DIFF_ELT
2519 (file,
2520 body,
2521 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2522 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2523 #else
2524 gcc_unreachable ();
2525 #endif
2528 #ifdef ASM_OUTPUT_CASE_END
2529 ASM_OUTPUT_CASE_END (file,
2530 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2531 insn);
2532 #endif
2533 #endif
2535 switch_to_section (current_function_section ());
2537 break;
2539 /* Output this line note if it is the first or the last line
2540 note in a row. */
2541 if (!DECL_IGNORED_P (current_function_decl)
2542 && notice_source_line (insn, &is_stmt))
2543 (*debug_hooks->source_line) (last_linenum, last_filename,
2544 last_discriminator, is_stmt);
2546 if (GET_CODE (body) == ASM_INPUT)
2548 const char *string = XSTR (body, 0);
2550 /* There's no telling what that did to the condition codes. */
2551 CC_STATUS_INIT;
2553 if (string[0])
2555 expanded_location loc;
2557 app_enable ();
2558 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2559 if (*loc.file && loc.line)
2560 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2561 ASM_COMMENT_START, loc.line, loc.file);
2562 fprintf (asm_out_file, "\t%s\n", string);
2563 #if HAVE_AS_LINE_ZERO
2564 if (*loc.file && loc.line)
2565 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2566 #endif
2568 break;
2571 /* Detect `asm' construct with operands. */
2572 if (asm_noperands (body) >= 0)
2574 unsigned int noperands = asm_noperands (body);
2575 rtx *ops = XALLOCAVEC (rtx, noperands);
2576 const char *string;
2577 location_t loc;
2578 expanded_location expanded;
2580 /* There's no telling what that did to the condition codes. */
2581 CC_STATUS_INIT;
2583 /* Get out the operand values. */
2584 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2585 /* Inhibit dying on what would otherwise be compiler bugs. */
2586 insn_noperands = noperands;
2587 this_is_asm_operands = insn;
2588 expanded = expand_location (loc);
2590 #ifdef FINAL_PRESCAN_INSN
2591 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2592 #endif
2594 /* Output the insn using them. */
2595 if (string[0])
2597 app_enable ();
2598 if (expanded.file && expanded.line)
2599 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2600 ASM_COMMENT_START, expanded.line, expanded.file);
2601 output_asm_insn (string, ops);
2602 #if HAVE_AS_LINE_ZERO
2603 if (expanded.file && expanded.line)
2604 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2605 #endif
2608 if (targetm.asm_out.final_postscan_insn)
2609 targetm.asm_out.final_postscan_insn (file, insn, ops,
2610 insn_noperands);
2612 this_is_asm_operands = 0;
2613 break;
2616 app_disable ();
2618 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2620 /* A delayed-branch sequence */
2621 int i;
2623 final_sequence = seq;
2625 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2626 force the restoration of a comparison that was previously
2627 thought unnecessary. If that happens, cancel this sequence
2628 and cause that insn to be restored. */
2630 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2631 if (next != seq->insn (1))
2633 final_sequence = 0;
2634 return next;
2637 for (i = 1; i < seq->len (); i++)
2639 rtx_insn *insn = seq->insn (i);
2640 rtx_insn *next = NEXT_INSN (insn);
2641 /* We loop in case any instruction in a delay slot gets
2642 split. */
2644 insn = final_scan_insn (insn, file, 0, 1, seen);
2645 while (insn != next);
2647 #ifdef DBR_OUTPUT_SEQEND
2648 DBR_OUTPUT_SEQEND (file);
2649 #endif
2650 final_sequence = 0;
2652 /* If the insn requiring the delay slot was a CALL_INSN, the
2653 insns in the delay slot are actually executed before the
2654 called function. Hence we don't preserve any CC-setting
2655 actions in these insns and the CC must be marked as being
2656 clobbered by the function. */
2657 if (CALL_P (seq->insn (0)))
2659 CC_STATUS_INIT;
2661 break;
2664 /* We have a real machine instruction as rtl. */
2666 body = PATTERN (insn);
2668 #ifdef HAVE_cc0
2669 set = single_set (insn);
2671 /* Check for redundant test and compare instructions
2672 (when the condition codes are already set up as desired).
2673 This is done only when optimizing; if not optimizing,
2674 it should be possible for the user to alter a variable
2675 with the debugger in between statements
2676 and the next statement should reexamine the variable
2677 to compute the condition codes. */
2679 if (optimize_p)
2681 if (set
2682 && GET_CODE (SET_DEST (set)) == CC0
2683 && insn != last_ignored_compare)
2685 rtx src1, src2;
2686 if (GET_CODE (SET_SRC (set)) == SUBREG)
2687 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2689 src1 = SET_SRC (set);
2690 src2 = NULL_RTX;
2691 if (GET_CODE (SET_SRC (set)) == COMPARE)
2693 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2694 XEXP (SET_SRC (set), 0)
2695 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2696 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2697 XEXP (SET_SRC (set), 1)
2698 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2699 if (XEXP (SET_SRC (set), 1)
2700 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2701 src2 = XEXP (SET_SRC (set), 0);
2703 if ((cc_status.value1 != 0
2704 && rtx_equal_p (src1, cc_status.value1))
2705 || (cc_status.value2 != 0
2706 && rtx_equal_p (src1, cc_status.value2))
2707 || (src2 != 0 && cc_status.value1 != 0
2708 && rtx_equal_p (src2, cc_status.value1))
2709 || (src2 != 0 && cc_status.value2 != 0
2710 && rtx_equal_p (src2, cc_status.value2)))
2712 /* Don't delete insn if it has an addressing side-effect. */
2713 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2714 /* or if anything in it is volatile. */
2715 && ! volatile_refs_p (PATTERN (insn)))
2717 /* We don't really delete the insn; just ignore it. */
2718 last_ignored_compare = insn;
2719 break;
2725 /* If this is a conditional branch, maybe modify it
2726 if the cc's are in a nonstandard state
2727 so that it accomplishes the same thing that it would
2728 do straightforwardly if the cc's were set up normally. */
2730 if (cc_status.flags != 0
2731 && JUMP_P (insn)
2732 && GET_CODE (body) == SET
2733 && SET_DEST (body) == pc_rtx
2734 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2735 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2736 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2738 /* This function may alter the contents of its argument
2739 and clear some of the cc_status.flags bits.
2740 It may also return 1 meaning condition now always true
2741 or -1 meaning condition now always false
2742 or 2 meaning condition nontrivial but altered. */
2743 int result = alter_cond (XEXP (SET_SRC (body), 0));
2744 /* If condition now has fixed value, replace the IF_THEN_ELSE
2745 with its then-operand or its else-operand. */
2746 if (result == 1)
2747 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2748 if (result == -1)
2749 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2751 /* The jump is now either unconditional or a no-op.
2752 If it has become a no-op, don't try to output it.
2753 (It would not be recognized.) */
2754 if (SET_SRC (body) == pc_rtx)
2756 delete_insn (insn);
2757 break;
2759 else if (ANY_RETURN_P (SET_SRC (body)))
2760 /* Replace (set (pc) (return)) with (return). */
2761 PATTERN (insn) = body = SET_SRC (body);
2763 /* Rerecognize the instruction if it has changed. */
2764 if (result != 0)
2765 INSN_CODE (insn) = -1;
2768 /* If this is a conditional trap, maybe modify it if the cc's
2769 are in a nonstandard state so that it accomplishes the same
2770 thing that it would do straightforwardly if the cc's were
2771 set up normally. */
2772 if (cc_status.flags != 0
2773 && NONJUMP_INSN_P (insn)
2774 && GET_CODE (body) == TRAP_IF
2775 && COMPARISON_P (TRAP_CONDITION (body))
2776 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2778 /* This function may alter the contents of its argument
2779 and clear some of the cc_status.flags bits.
2780 It may also return 1 meaning condition now always true
2781 or -1 meaning condition now always false
2782 or 2 meaning condition nontrivial but altered. */
2783 int result = alter_cond (TRAP_CONDITION (body));
2785 /* If TRAP_CONDITION has become always false, delete the
2786 instruction. */
2787 if (result == -1)
2789 delete_insn (insn);
2790 break;
2793 /* If TRAP_CONDITION has become always true, replace
2794 TRAP_CONDITION with const_true_rtx. */
2795 if (result == 1)
2796 TRAP_CONDITION (body) = const_true_rtx;
2798 /* Rerecognize the instruction if it has changed. */
2799 if (result != 0)
2800 INSN_CODE (insn) = -1;
2803 /* Make same adjustments to instructions that examine the
2804 condition codes without jumping and instructions that
2805 handle conditional moves (if this machine has either one). */
2807 if (cc_status.flags != 0
2808 && set != 0)
2810 rtx cond_rtx, then_rtx, else_rtx;
2812 if (!JUMP_P (insn)
2813 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2815 cond_rtx = XEXP (SET_SRC (set), 0);
2816 then_rtx = XEXP (SET_SRC (set), 1);
2817 else_rtx = XEXP (SET_SRC (set), 2);
2819 else
2821 cond_rtx = SET_SRC (set);
2822 then_rtx = const_true_rtx;
2823 else_rtx = const0_rtx;
2826 if (COMPARISON_P (cond_rtx)
2827 && XEXP (cond_rtx, 0) == cc0_rtx)
2829 int result;
2830 result = alter_cond (cond_rtx);
2831 if (result == 1)
2832 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2833 else if (result == -1)
2834 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2835 else if (result == 2)
2836 INSN_CODE (insn) = -1;
2837 if (SET_DEST (set) == SET_SRC (set))
2838 delete_insn (insn);
2842 #endif
2844 #ifdef HAVE_peephole
2845 /* Do machine-specific peephole optimizations if desired. */
2847 if (optimize_p && !flag_no_peephole && !nopeepholes)
2849 rtx_insn *next = peephole (insn);
2850 /* When peepholing, if there were notes within the peephole,
2851 emit them before the peephole. */
2852 if (next != 0 && next != NEXT_INSN (insn))
2854 rtx_insn *note, *prev = PREV_INSN (insn);
2856 for (note = NEXT_INSN (insn); note != next;
2857 note = NEXT_INSN (note))
2858 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2860 /* Put the notes in the proper position for a later
2861 rescan. For example, the SH target can do this
2862 when generating a far jump in a delayed branch
2863 sequence. */
2864 note = NEXT_INSN (insn);
2865 SET_PREV_INSN (note) = prev;
2866 SET_NEXT_INSN (prev) = note;
2867 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2868 SET_PREV_INSN (insn) = PREV_INSN (next);
2869 SET_NEXT_INSN (insn) = next;
2870 SET_PREV_INSN (next) = insn;
2873 /* PEEPHOLE might have changed this. */
2874 body = PATTERN (insn);
2876 #endif
2878 /* Try to recognize the instruction.
2879 If successful, verify that the operands satisfy the
2880 constraints for the instruction. Crash if they don't,
2881 since `reload' should have changed them so that they do. */
2883 insn_code_number = recog_memoized (insn);
2884 cleanup_subreg_operands (insn);
2886 /* Dump the insn in the assembly for debugging (-dAP).
2887 If the final dump is requested as slim RTL, dump slim
2888 RTL to the assembly file also. */
2889 if (flag_dump_rtl_in_asm)
2891 print_rtx_head = ASM_COMMENT_START;
2892 if (! (dump_flags & TDF_SLIM))
2893 print_rtl_single (asm_out_file, insn);
2894 else
2895 dump_insn_slim (asm_out_file, insn);
2896 print_rtx_head = "";
2899 if (! constrain_operands_cached (1))
2900 fatal_insn_not_found (insn);
2902 /* Some target machines need to prescan each insn before
2903 it is output. */
2905 #ifdef FINAL_PRESCAN_INSN
2906 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2907 #endif
2909 if (targetm.have_conditional_execution ()
2910 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2911 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2913 #ifdef HAVE_cc0
2914 cc_prev_status = cc_status;
2916 /* Update `cc_status' for this instruction.
2917 The instruction's output routine may change it further.
2918 If the output routine for a jump insn needs to depend
2919 on the cc status, it should look at cc_prev_status. */
2921 NOTICE_UPDATE_CC (body, insn);
2922 #endif
2924 current_output_insn = debug_insn = insn;
2926 /* Find the proper template for this insn. */
2927 templ = get_insn_template (insn_code_number, insn);
2929 /* If the C code returns 0, it means that it is a jump insn
2930 which follows a deleted test insn, and that test insn
2931 needs to be reinserted. */
2932 if (templ == 0)
2934 rtx_insn *prev;
2936 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2938 /* We have already processed the notes between the setter and
2939 the user. Make sure we don't process them again, this is
2940 particularly important if one of the notes is a block
2941 scope note or an EH note. */
2942 for (prev = insn;
2943 prev != last_ignored_compare;
2944 prev = PREV_INSN (prev))
2946 if (NOTE_P (prev))
2947 delete_insn (prev); /* Use delete_note. */
2950 return prev;
2953 /* If the template is the string "#", it means that this insn must
2954 be split. */
2955 if (templ[0] == '#' && templ[1] == '\0')
2957 rtx_insn *new_rtx = try_split (body, insn, 0);
2959 /* If we didn't split the insn, go away. */
2960 if (new_rtx == insn && PATTERN (new_rtx) == body)
2961 fatal_insn ("could not split insn", insn);
2963 /* If we have a length attribute, this instruction should have
2964 been split in shorten_branches, to ensure that we would have
2965 valid length info for the splitees. */
2966 gcc_assert (!HAVE_ATTR_length);
2968 return new_rtx;
2971 /* ??? This will put the directives in the wrong place if
2972 get_insn_template outputs assembly directly. However calling it
2973 before get_insn_template breaks if the insns is split. */
2974 if (targetm.asm_out.unwind_emit_before_insn
2975 && targetm.asm_out.unwind_emit)
2976 targetm.asm_out.unwind_emit (asm_out_file, insn);
2978 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
2980 rtx x = call_from_call_insn (call_insn);
2981 x = XEXP (x, 0);
2982 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2984 tree t;
2985 x = XEXP (x, 0);
2986 t = SYMBOL_REF_DECL (x);
2987 if (t)
2988 assemble_external (t);
2990 if (!DECL_IGNORED_P (current_function_decl))
2991 debug_hooks->var_location (insn);
2994 /* Output assembler code from the template. */
2995 output_asm_insn (templ, recog_data.operand);
2997 /* Some target machines need to postscan each insn after
2998 it is output. */
2999 if (targetm.asm_out.final_postscan_insn)
3000 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3001 recog_data.n_operands);
3003 if (!targetm.asm_out.unwind_emit_before_insn
3004 && targetm.asm_out.unwind_emit)
3005 targetm.asm_out.unwind_emit (asm_out_file, insn);
3007 current_output_insn = debug_insn = 0;
3010 return NEXT_INSN (insn);
3013 /* Return whether a source line note needs to be emitted before INSN.
3014 Sets IS_STMT to TRUE if the line should be marked as a possible
3015 breakpoint location. */
3017 static bool
3018 notice_source_line (rtx_insn *insn, bool *is_stmt)
3020 const char *filename;
3021 int linenum;
3023 if (override_filename)
3025 filename = override_filename;
3026 linenum = override_linenum;
3028 else if (INSN_HAS_LOCATION (insn))
3030 expanded_location xloc = insn_location (insn);
3031 filename = xloc.file;
3032 linenum = xloc.line;
3034 else
3036 filename = NULL;
3037 linenum = 0;
3040 if (filename == NULL)
3041 return false;
3043 if (force_source_line
3044 || filename != last_filename
3045 || last_linenum != linenum)
3047 force_source_line = false;
3048 last_filename = filename;
3049 last_linenum = linenum;
3050 last_discriminator = discriminator;
3051 *is_stmt = true;
3052 high_block_linenum = MAX (last_linenum, high_block_linenum);
3053 high_function_linenum = MAX (last_linenum, high_function_linenum);
3054 return true;
3057 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3059 /* If the discriminator changed, but the line number did not,
3060 output the line table entry with is_stmt false so the
3061 debugger does not treat this as a breakpoint location. */
3062 last_discriminator = discriminator;
3063 *is_stmt = false;
3064 return true;
3067 return false;
3070 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3071 directly to the desired hard register. */
3073 void
3074 cleanup_subreg_operands (rtx insn)
3076 int i;
3077 bool changed = false;
3078 extract_insn_cached (insn);
3079 for (i = 0; i < recog_data.n_operands; i++)
3081 /* The following test cannot use recog_data.operand when testing
3082 for a SUBREG: the underlying object might have been changed
3083 already if we are inside a match_operator expression that
3084 matches the else clause. Instead we test the underlying
3085 expression directly. */
3086 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3088 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3089 changed = true;
3091 else if (GET_CODE (recog_data.operand[i]) == PLUS
3092 || GET_CODE (recog_data.operand[i]) == MULT
3093 || MEM_P (recog_data.operand[i]))
3094 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3097 for (i = 0; i < recog_data.n_dups; i++)
3099 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3101 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3102 changed = true;
3104 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3105 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3106 || MEM_P (*recog_data.dup_loc[i]))
3107 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3109 if (changed)
3110 df_insn_rescan (as_a <rtx_insn *> (insn));
3113 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3114 the thing it is a subreg of. Do it anyway if FINAL_P. */
3117 alter_subreg (rtx *xp, bool final_p)
3119 rtx x = *xp;
3120 rtx y = SUBREG_REG (x);
3122 /* simplify_subreg does not remove subreg from volatile references.
3123 We are required to. */
3124 if (MEM_P (y))
3126 int offset = SUBREG_BYTE (x);
3128 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3129 contains 0 instead of the proper offset. See simplify_subreg. */
3130 if (offset == 0
3131 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3133 int difference = GET_MODE_SIZE (GET_MODE (y))
3134 - GET_MODE_SIZE (GET_MODE (x));
3135 if (WORDS_BIG_ENDIAN)
3136 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3137 if (BYTES_BIG_ENDIAN)
3138 offset += difference % UNITS_PER_WORD;
3141 if (final_p)
3142 *xp = adjust_address (y, GET_MODE (x), offset);
3143 else
3144 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3146 else
3148 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3149 SUBREG_BYTE (x));
3151 if (new_rtx != 0)
3152 *xp = new_rtx;
3153 else if (final_p && REG_P (y))
3155 /* Simplify_subreg can't handle some REG cases, but we have to. */
3156 unsigned int regno;
3157 HOST_WIDE_INT offset;
3159 regno = subreg_regno (x);
3160 if (subreg_lowpart_p (x))
3161 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3162 else
3163 offset = SUBREG_BYTE (x);
3164 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3168 return *xp;
3171 /* Do alter_subreg on all the SUBREGs contained in X. */
3173 static rtx
3174 walk_alter_subreg (rtx *xp, bool *changed)
3176 rtx x = *xp;
3177 switch (GET_CODE (x))
3179 case PLUS:
3180 case MULT:
3181 case AND:
3182 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3183 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3184 break;
3186 case MEM:
3187 case ZERO_EXTEND:
3188 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3189 break;
3191 case SUBREG:
3192 *changed = true;
3193 return alter_subreg (xp, true);
3195 default:
3196 break;
3199 return *xp;
3202 #ifdef HAVE_cc0
3204 /* Given BODY, the body of a jump instruction, alter the jump condition
3205 as required by the bits that are set in cc_status.flags.
3206 Not all of the bits there can be handled at this level in all cases.
3208 The value is normally 0.
3209 1 means that the condition has become always true.
3210 -1 means that the condition has become always false.
3211 2 means that COND has been altered. */
3213 static int
3214 alter_cond (rtx cond)
3216 int value = 0;
3218 if (cc_status.flags & CC_REVERSED)
3220 value = 2;
3221 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3224 if (cc_status.flags & CC_INVERTED)
3226 value = 2;
3227 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3230 if (cc_status.flags & CC_NOT_POSITIVE)
3231 switch (GET_CODE (cond))
3233 case LE:
3234 case LEU:
3235 case GEU:
3236 /* Jump becomes unconditional. */
3237 return 1;
3239 case GT:
3240 case GTU:
3241 case LTU:
3242 /* Jump becomes no-op. */
3243 return -1;
3245 case GE:
3246 PUT_CODE (cond, EQ);
3247 value = 2;
3248 break;
3250 case LT:
3251 PUT_CODE (cond, NE);
3252 value = 2;
3253 break;
3255 default:
3256 break;
3259 if (cc_status.flags & CC_NOT_NEGATIVE)
3260 switch (GET_CODE (cond))
3262 case GE:
3263 case GEU:
3264 /* Jump becomes unconditional. */
3265 return 1;
3267 case LT:
3268 case LTU:
3269 /* Jump becomes no-op. */
3270 return -1;
3272 case LE:
3273 case LEU:
3274 PUT_CODE (cond, EQ);
3275 value = 2;
3276 break;
3278 case GT:
3279 case GTU:
3280 PUT_CODE (cond, NE);
3281 value = 2;
3282 break;
3284 default:
3285 break;
3288 if (cc_status.flags & CC_NO_OVERFLOW)
3289 switch (GET_CODE (cond))
3291 case GEU:
3292 /* Jump becomes unconditional. */
3293 return 1;
3295 case LEU:
3296 PUT_CODE (cond, EQ);
3297 value = 2;
3298 break;
3300 case GTU:
3301 PUT_CODE (cond, NE);
3302 value = 2;
3303 break;
3305 case LTU:
3306 /* Jump becomes no-op. */
3307 return -1;
3309 default:
3310 break;
3313 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3314 switch (GET_CODE (cond))
3316 default:
3317 gcc_unreachable ();
3319 case NE:
3320 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3321 value = 2;
3322 break;
3324 case EQ:
3325 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3326 value = 2;
3327 break;
3330 if (cc_status.flags & CC_NOT_SIGNED)
3331 /* The flags are valid if signed condition operators are converted
3332 to unsigned. */
3333 switch (GET_CODE (cond))
3335 case LE:
3336 PUT_CODE (cond, LEU);
3337 value = 2;
3338 break;
3340 case LT:
3341 PUT_CODE (cond, LTU);
3342 value = 2;
3343 break;
3345 case GT:
3346 PUT_CODE (cond, GTU);
3347 value = 2;
3348 break;
3350 case GE:
3351 PUT_CODE (cond, GEU);
3352 value = 2;
3353 break;
3355 default:
3356 break;
3359 return value;
3361 #endif
3363 /* Report inconsistency between the assembler template and the operands.
3364 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3366 void
3367 output_operand_lossage (const char *cmsgid, ...)
3369 char *fmt_string;
3370 char *new_message;
3371 const char *pfx_str;
3372 va_list ap;
3374 va_start (ap, cmsgid);
3376 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3377 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3378 vasprintf (&new_message, fmt_string, ap);
3380 if (this_is_asm_operands)
3381 error_for_asm (this_is_asm_operands, "%s", new_message);
3382 else
3383 internal_error ("%s", new_message);
3385 free (fmt_string);
3386 free (new_message);
3387 va_end (ap);
3390 /* Output of assembler code from a template, and its subroutines. */
3392 /* Annotate the assembly with a comment describing the pattern and
3393 alternative used. */
3395 static void
3396 output_asm_name (void)
3398 if (debug_insn)
3400 int num = INSN_CODE (debug_insn);
3401 fprintf (asm_out_file, "\t%s %d\t%s",
3402 ASM_COMMENT_START, INSN_UID (debug_insn),
3403 insn_data[num].name);
3404 if (insn_data[num].n_alternatives > 1)
3405 fprintf (asm_out_file, "/%d", which_alternative + 1);
3407 if (HAVE_ATTR_length)
3408 fprintf (asm_out_file, "\t[length = %d]",
3409 get_attr_length (debug_insn));
3411 /* Clear this so only the first assembler insn
3412 of any rtl insn will get the special comment for -dp. */
3413 debug_insn = 0;
3417 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3418 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3419 corresponds to the address of the object and 0 if to the object. */
3421 static tree
3422 get_mem_expr_from_op (rtx op, int *paddressp)
3424 tree expr;
3425 int inner_addressp;
3427 *paddressp = 0;
3429 if (REG_P (op))
3430 return REG_EXPR (op);
3431 else if (!MEM_P (op))
3432 return 0;
3434 if (MEM_EXPR (op) != 0)
3435 return MEM_EXPR (op);
3437 /* Otherwise we have an address, so indicate it and look at the address. */
3438 *paddressp = 1;
3439 op = XEXP (op, 0);
3441 /* First check if we have a decl for the address, then look at the right side
3442 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3443 But don't allow the address to itself be indirect. */
3444 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3445 return expr;
3446 else if (GET_CODE (op) == PLUS
3447 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3448 return expr;
3450 while (UNARY_P (op)
3451 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3452 op = XEXP (op, 0);
3454 expr = get_mem_expr_from_op (op, &inner_addressp);
3455 return inner_addressp ? 0 : expr;
3458 /* Output operand names for assembler instructions. OPERANDS is the
3459 operand vector, OPORDER is the order to write the operands, and NOPS
3460 is the number of operands to write. */
3462 static void
3463 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3465 int wrote = 0;
3466 int i;
3468 for (i = 0; i < nops; i++)
3470 int addressp;
3471 rtx op = operands[oporder[i]];
3472 tree expr = get_mem_expr_from_op (op, &addressp);
3474 fprintf (asm_out_file, "%c%s",
3475 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3476 wrote = 1;
3477 if (expr)
3479 fprintf (asm_out_file, "%s",
3480 addressp ? "*" : "");
3481 print_mem_expr (asm_out_file, expr);
3482 wrote = 1;
3484 else if (REG_P (op) && ORIGINAL_REGNO (op)
3485 && ORIGINAL_REGNO (op) != REGNO (op))
3486 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3490 #ifdef ASSEMBLER_DIALECT
3491 /* Helper function to parse assembler dialects in the asm string.
3492 This is called from output_asm_insn and asm_fprintf. */
3493 static const char *
3494 do_assembler_dialects (const char *p, int *dialect)
3496 char c = *(p - 1);
3498 switch (c)
3500 case '{':
3502 int i;
3504 if (*dialect)
3505 output_operand_lossage ("nested assembly dialect alternatives");
3506 else
3507 *dialect = 1;
3509 /* If we want the first dialect, do nothing. Otherwise, skip
3510 DIALECT_NUMBER of strings ending with '|'. */
3511 for (i = 0; i < dialect_number; i++)
3513 while (*p && *p != '}')
3515 if (*p == '|')
3517 p++;
3518 break;
3521 /* Skip over any character after a percent sign. */
3522 if (*p == '%')
3523 p++;
3524 if (*p)
3525 p++;
3528 if (*p == '}')
3529 break;
3532 if (*p == '\0')
3533 output_operand_lossage ("unterminated assembly dialect alternative");
3535 break;
3537 case '|':
3538 if (*dialect)
3540 /* Skip to close brace. */
3543 if (*p == '\0')
3545 output_operand_lossage ("unterminated assembly dialect alternative");
3546 break;
3549 /* Skip over any character after a percent sign. */
3550 if (*p == '%' && p[1])
3552 p += 2;
3553 continue;
3556 if (*p++ == '}')
3557 break;
3559 while (1);
3561 *dialect = 0;
3563 else
3564 putc (c, asm_out_file);
3565 break;
3567 case '}':
3568 if (! *dialect)
3569 putc (c, asm_out_file);
3570 *dialect = 0;
3571 break;
3572 default:
3573 gcc_unreachable ();
3576 return p;
3578 #endif
3580 /* Output text from TEMPLATE to the assembler output file,
3581 obeying %-directions to substitute operands taken from
3582 the vector OPERANDS.
3584 %N (for N a digit) means print operand N in usual manner.
3585 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3586 and print the label name with no punctuation.
3587 %cN means require operand N to be a constant
3588 and print the constant expression with no punctuation.
3589 %aN means expect operand N to be a memory address
3590 (not a memory reference!) and print a reference
3591 to that address.
3592 %nN means expect operand N to be a constant
3593 and print a constant expression for minus the value
3594 of the operand, with no other punctuation. */
3596 void
3597 output_asm_insn (const char *templ, rtx *operands)
3599 const char *p;
3600 int c;
3601 #ifdef ASSEMBLER_DIALECT
3602 int dialect = 0;
3603 #endif
3604 int oporder[MAX_RECOG_OPERANDS];
3605 char opoutput[MAX_RECOG_OPERANDS];
3606 int ops = 0;
3608 /* An insn may return a null string template
3609 in a case where no assembler code is needed. */
3610 if (*templ == 0)
3611 return;
3613 memset (opoutput, 0, sizeof opoutput);
3614 p = templ;
3615 putc ('\t', asm_out_file);
3617 #ifdef ASM_OUTPUT_OPCODE
3618 ASM_OUTPUT_OPCODE (asm_out_file, p);
3619 #endif
3621 while ((c = *p++))
3622 switch (c)
3624 case '\n':
3625 if (flag_verbose_asm)
3626 output_asm_operand_names (operands, oporder, ops);
3627 if (flag_print_asm_name)
3628 output_asm_name ();
3630 ops = 0;
3631 memset (opoutput, 0, sizeof opoutput);
3633 putc (c, asm_out_file);
3634 #ifdef ASM_OUTPUT_OPCODE
3635 while ((c = *p) == '\t')
3637 putc (c, asm_out_file);
3638 p++;
3640 ASM_OUTPUT_OPCODE (asm_out_file, p);
3641 #endif
3642 break;
3644 #ifdef ASSEMBLER_DIALECT
3645 case '{':
3646 case '}':
3647 case '|':
3648 p = do_assembler_dialects (p, &dialect);
3649 break;
3650 #endif
3652 case '%':
3653 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3654 if ASSEMBLER_DIALECT defined and these characters have a special
3655 meaning as dialect delimiters.*/
3656 if (*p == '%'
3657 #ifdef ASSEMBLER_DIALECT
3658 || *p == '{' || *p == '}' || *p == '|'
3659 #endif
3662 putc (*p, asm_out_file);
3663 p++;
3665 /* %= outputs a number which is unique to each insn in the entire
3666 compilation. This is useful for making local labels that are
3667 referred to more than once in a given insn. */
3668 else if (*p == '=')
3670 p++;
3671 fprintf (asm_out_file, "%d", insn_counter);
3673 /* % followed by a letter and some digits
3674 outputs an operand in a special way depending on the letter.
3675 Letters `acln' are implemented directly.
3676 Other letters are passed to `output_operand' so that
3677 the TARGET_PRINT_OPERAND hook can define them. */
3678 else if (ISALPHA (*p))
3680 int letter = *p++;
3681 unsigned long opnum;
3682 char *endptr;
3684 opnum = strtoul (p, &endptr, 10);
3686 if (endptr == p)
3687 output_operand_lossage ("operand number missing "
3688 "after %%-letter");
3689 else if (this_is_asm_operands && opnum >= insn_noperands)
3690 output_operand_lossage ("operand number out of range");
3691 else if (letter == 'l')
3692 output_asm_label (operands[opnum]);
3693 else if (letter == 'a')
3694 output_address (operands[opnum]);
3695 else if (letter == 'c')
3697 if (CONSTANT_ADDRESS_P (operands[opnum]))
3698 output_addr_const (asm_out_file, operands[opnum]);
3699 else
3700 output_operand (operands[opnum], 'c');
3702 else if (letter == 'n')
3704 if (CONST_INT_P (operands[opnum]))
3705 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3706 - INTVAL (operands[opnum]));
3707 else
3709 putc ('-', asm_out_file);
3710 output_addr_const (asm_out_file, operands[opnum]);
3713 else
3714 output_operand (operands[opnum], letter);
3716 if (!opoutput[opnum])
3717 oporder[ops++] = opnum;
3718 opoutput[opnum] = 1;
3720 p = endptr;
3721 c = *p;
3723 /* % followed by a digit outputs an operand the default way. */
3724 else if (ISDIGIT (*p))
3726 unsigned long opnum;
3727 char *endptr;
3729 opnum = strtoul (p, &endptr, 10);
3730 if (this_is_asm_operands && opnum >= insn_noperands)
3731 output_operand_lossage ("operand number out of range");
3732 else
3733 output_operand (operands[opnum], 0);
3735 if (!opoutput[opnum])
3736 oporder[ops++] = opnum;
3737 opoutput[opnum] = 1;
3739 p = endptr;
3740 c = *p;
3742 /* % followed by punctuation: output something for that
3743 punctuation character alone, with no operand. The
3744 TARGET_PRINT_OPERAND hook decides what is actually done. */
3745 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3746 output_operand (NULL_RTX, *p++);
3747 else
3748 output_operand_lossage ("invalid %%-code");
3749 break;
3751 default:
3752 putc (c, asm_out_file);
3755 /* Write out the variable names for operands, if we know them. */
3756 if (flag_verbose_asm)
3757 output_asm_operand_names (operands, oporder, ops);
3758 if (flag_print_asm_name)
3759 output_asm_name ();
3761 putc ('\n', asm_out_file);
3764 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3766 void
3767 output_asm_label (rtx x)
3769 char buf[256];
3771 if (GET_CODE (x) == LABEL_REF)
3772 x = XEXP (x, 0);
3773 if (LABEL_P (x)
3774 || (NOTE_P (x)
3775 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3776 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3777 else
3778 output_operand_lossage ("'%%l' operand isn't a label");
3780 assemble_name (asm_out_file, buf);
3783 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3785 void
3786 mark_symbol_refs_as_used (rtx x)
3788 subrtx_iterator::array_type array;
3789 FOR_EACH_SUBRTX (iter, array, x, ALL)
3791 const_rtx x = *iter;
3792 if (GET_CODE (x) == SYMBOL_REF)
3793 if (tree t = SYMBOL_REF_DECL (x))
3794 assemble_external (t);
3798 /* Print operand X using machine-dependent assembler syntax.
3799 CODE is a non-digit that preceded the operand-number in the % spec,
3800 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3801 between the % and the digits.
3802 When CODE is a non-letter, X is 0.
3804 The meanings of the letters are machine-dependent and controlled
3805 by TARGET_PRINT_OPERAND. */
3807 void
3808 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3810 if (x && GET_CODE (x) == SUBREG)
3811 x = alter_subreg (&x, true);
3813 /* X must not be a pseudo reg. */
3814 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3816 targetm.asm_out.print_operand (asm_out_file, x, code);
3818 if (x == NULL_RTX)
3819 return;
3821 mark_symbol_refs_as_used (x);
3824 /* Print a memory reference operand for address X using
3825 machine-dependent assembler syntax. */
3827 void
3828 output_address (rtx x)
3830 bool changed = false;
3831 walk_alter_subreg (&x, &changed);
3832 targetm.asm_out.print_operand_address (asm_out_file, x);
3835 /* Print an integer constant expression in assembler syntax.
3836 Addition and subtraction are the only arithmetic
3837 that may appear in these expressions. */
3839 void
3840 output_addr_const (FILE *file, rtx x)
3842 char buf[256];
3844 restart:
3845 switch (GET_CODE (x))
3847 case PC:
3848 putc ('.', file);
3849 break;
3851 case SYMBOL_REF:
3852 if (SYMBOL_REF_DECL (x))
3853 assemble_external (SYMBOL_REF_DECL (x));
3854 #ifdef ASM_OUTPUT_SYMBOL_REF
3855 ASM_OUTPUT_SYMBOL_REF (file, x);
3856 #else
3857 assemble_name (file, XSTR (x, 0));
3858 #endif
3859 break;
3861 case LABEL_REF:
3862 x = XEXP (x, 0);
3863 /* Fall through. */
3864 case CODE_LABEL:
3865 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3866 #ifdef ASM_OUTPUT_LABEL_REF
3867 ASM_OUTPUT_LABEL_REF (file, buf);
3868 #else
3869 assemble_name (file, buf);
3870 #endif
3871 break;
3873 case CONST_INT:
3874 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3875 break;
3877 case CONST:
3878 /* This used to output parentheses around the expression,
3879 but that does not work on the 386 (either ATT or BSD assembler). */
3880 output_addr_const (file, XEXP (x, 0));
3881 break;
3883 case CONST_WIDE_INT:
3884 /* We do not know the mode here so we have to use a round about
3885 way to build a wide-int to get it printed properly. */
3887 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3888 CONST_WIDE_INT_NUNITS (x),
3889 CONST_WIDE_INT_NUNITS (x)
3890 * HOST_BITS_PER_WIDE_INT,
3891 false);
3892 print_decs (w, file);
3894 break;
3896 case CONST_DOUBLE:
3897 if (CONST_DOUBLE_AS_INT_P (x))
3899 /* We can use %d if the number is one word and positive. */
3900 if (CONST_DOUBLE_HIGH (x))
3901 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3902 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3903 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3904 else if (CONST_DOUBLE_LOW (x) < 0)
3905 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3906 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3907 else
3908 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3910 else
3911 /* We can't handle floating point constants;
3912 PRINT_OPERAND must handle them. */
3913 output_operand_lossage ("floating constant misused");
3914 break;
3916 case CONST_FIXED:
3917 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3918 break;
3920 case PLUS:
3921 /* Some assemblers need integer constants to appear last (eg masm). */
3922 if (CONST_INT_P (XEXP (x, 0)))
3924 output_addr_const (file, XEXP (x, 1));
3925 if (INTVAL (XEXP (x, 0)) >= 0)
3926 fprintf (file, "+");
3927 output_addr_const (file, XEXP (x, 0));
3929 else
3931 output_addr_const (file, XEXP (x, 0));
3932 if (!CONST_INT_P (XEXP (x, 1))
3933 || INTVAL (XEXP (x, 1)) >= 0)
3934 fprintf (file, "+");
3935 output_addr_const (file, XEXP (x, 1));
3937 break;
3939 case MINUS:
3940 /* Avoid outputting things like x-x or x+5-x,
3941 since some assemblers can't handle that. */
3942 x = simplify_subtraction (x);
3943 if (GET_CODE (x) != MINUS)
3944 goto restart;
3946 output_addr_const (file, XEXP (x, 0));
3947 fprintf (file, "-");
3948 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3949 || GET_CODE (XEXP (x, 1)) == PC
3950 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3951 output_addr_const (file, XEXP (x, 1));
3952 else
3954 fputs (targetm.asm_out.open_paren, file);
3955 output_addr_const (file, XEXP (x, 1));
3956 fputs (targetm.asm_out.close_paren, file);
3958 break;
3960 case ZERO_EXTEND:
3961 case SIGN_EXTEND:
3962 case SUBREG:
3963 case TRUNCATE:
3964 output_addr_const (file, XEXP (x, 0));
3965 break;
3967 default:
3968 if (targetm.asm_out.output_addr_const_extra (file, x))
3969 break;
3971 output_operand_lossage ("invalid expression as operand");
3975 /* Output a quoted string. */
3977 void
3978 output_quoted_string (FILE *asm_file, const char *string)
3980 #ifdef OUTPUT_QUOTED_STRING
3981 OUTPUT_QUOTED_STRING (asm_file, string);
3982 #else
3983 char c;
3985 putc ('\"', asm_file);
3986 while ((c = *string++) != 0)
3988 if (ISPRINT (c))
3990 if (c == '\"' || c == '\\')
3991 putc ('\\', asm_file);
3992 putc (c, asm_file);
3994 else
3995 fprintf (asm_file, "\\%03o", (unsigned char) c);
3997 putc ('\"', asm_file);
3998 #endif
4001 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4003 void
4004 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4006 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4007 if (value == 0)
4008 putc ('0', f);
4009 else
4011 char *p = buf + sizeof (buf);
4013 *--p = "0123456789abcdef"[value % 16];
4014 while ((value /= 16) != 0);
4015 *--p = 'x';
4016 *--p = '0';
4017 fwrite (p, 1, buf + sizeof (buf) - p, f);
4021 /* Internal function that prints an unsigned long in decimal in reverse.
4022 The output string IS NOT null-terminated. */
4024 static int
4025 sprint_ul_rev (char *s, unsigned long value)
4027 int i = 0;
4030 s[i] = "0123456789"[value % 10];
4031 value /= 10;
4032 i++;
4033 /* alternate version, without modulo */
4034 /* oldval = value; */
4035 /* value /= 10; */
4036 /* s[i] = "0123456789" [oldval - 10*value]; */
4037 /* i++ */
4039 while (value != 0);
4040 return i;
4043 /* Write an unsigned long as decimal to a file, fast. */
4045 void
4046 fprint_ul (FILE *f, unsigned long value)
4048 /* python says: len(str(2**64)) == 20 */
4049 char s[20];
4050 int i;
4052 i = sprint_ul_rev (s, value);
4054 /* It's probably too small to bother with string reversal and fputs. */
4057 i--;
4058 putc (s[i], f);
4060 while (i != 0);
4063 /* Write an unsigned long as decimal to a string, fast.
4064 s must be wide enough to not overflow, at least 21 chars.
4065 Returns the length of the string (without terminating '\0'). */
4068 sprint_ul (char *s, unsigned long value)
4070 int len;
4071 char tmp_c;
4072 int i;
4073 int j;
4075 len = sprint_ul_rev (s, value);
4076 s[len] = '\0';
4078 /* Reverse the string. */
4079 i = 0;
4080 j = len - 1;
4081 while (i < j)
4083 tmp_c = s[i];
4084 s[i] = s[j];
4085 s[j] = tmp_c;
4086 i++; j--;
4089 return len;
4092 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4093 %R prints the value of REGISTER_PREFIX.
4094 %L prints the value of LOCAL_LABEL_PREFIX.
4095 %U prints the value of USER_LABEL_PREFIX.
4096 %I prints the value of IMMEDIATE_PREFIX.
4097 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4098 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4100 We handle alternate assembler dialects here, just like output_asm_insn. */
4102 void
4103 asm_fprintf (FILE *file, const char *p, ...)
4105 char buf[10];
4106 char *q, c;
4107 #ifdef ASSEMBLER_DIALECT
4108 int dialect = 0;
4109 #endif
4110 va_list argptr;
4112 va_start (argptr, p);
4114 buf[0] = '%';
4116 while ((c = *p++))
4117 switch (c)
4119 #ifdef ASSEMBLER_DIALECT
4120 case '{':
4121 case '}':
4122 case '|':
4123 p = do_assembler_dialects (p, &dialect);
4124 break;
4125 #endif
4127 case '%':
4128 c = *p++;
4129 q = &buf[1];
4130 while (strchr ("-+ #0", c))
4132 *q++ = c;
4133 c = *p++;
4135 while (ISDIGIT (c) || c == '.')
4137 *q++ = c;
4138 c = *p++;
4140 switch (c)
4142 case '%':
4143 putc ('%', file);
4144 break;
4146 case 'd': case 'i': case 'u':
4147 case 'x': case 'X': case 'o':
4148 case 'c':
4149 *q++ = c;
4150 *q = 0;
4151 fprintf (file, buf, va_arg (argptr, int));
4152 break;
4154 case 'w':
4155 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4156 'o' cases, but we do not check for those cases. It
4157 means that the value is a HOST_WIDE_INT, which may be
4158 either `long' or `long long'. */
4159 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4160 q += strlen (HOST_WIDE_INT_PRINT);
4161 *q++ = *p++;
4162 *q = 0;
4163 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4164 break;
4166 case 'l':
4167 *q++ = c;
4168 #ifdef HAVE_LONG_LONG
4169 if (*p == 'l')
4171 *q++ = *p++;
4172 *q++ = *p++;
4173 *q = 0;
4174 fprintf (file, buf, va_arg (argptr, long long));
4176 else
4177 #endif
4179 *q++ = *p++;
4180 *q = 0;
4181 fprintf (file, buf, va_arg (argptr, long));
4184 break;
4186 case 's':
4187 *q++ = c;
4188 *q = 0;
4189 fprintf (file, buf, va_arg (argptr, char *));
4190 break;
4192 case 'O':
4193 #ifdef ASM_OUTPUT_OPCODE
4194 ASM_OUTPUT_OPCODE (asm_out_file, p);
4195 #endif
4196 break;
4198 case 'R':
4199 #ifdef REGISTER_PREFIX
4200 fprintf (file, "%s", REGISTER_PREFIX);
4201 #endif
4202 break;
4204 case 'I':
4205 #ifdef IMMEDIATE_PREFIX
4206 fprintf (file, "%s", IMMEDIATE_PREFIX);
4207 #endif
4208 break;
4210 case 'L':
4211 #ifdef LOCAL_LABEL_PREFIX
4212 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4213 #endif
4214 break;
4216 case 'U':
4217 fputs (user_label_prefix, file);
4218 break;
4220 #ifdef ASM_FPRINTF_EXTENSIONS
4221 /* Uppercase letters are reserved for general use by asm_fprintf
4222 and so are not available to target specific code. In order to
4223 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4224 they are defined here. As they get turned into real extensions
4225 to asm_fprintf they should be removed from this list. */
4226 case 'A': case 'B': case 'C': case 'D': case 'E':
4227 case 'F': case 'G': case 'H': case 'J': case 'K':
4228 case 'M': case 'N': case 'P': case 'Q': case 'S':
4229 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4230 break;
4232 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4233 #endif
4234 default:
4235 gcc_unreachable ();
4237 break;
4239 default:
4240 putc (c, file);
4242 va_end (argptr);
4245 /* Return nonzero if this function has no function calls. */
4248 leaf_function_p (void)
4250 rtx_insn *insn;
4252 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4253 functions even if they call mcount. */
4254 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4255 return 0;
4257 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4259 if (CALL_P (insn)
4260 && ! SIBLING_CALL_P (insn))
4261 return 0;
4262 if (NONJUMP_INSN_P (insn)
4263 && GET_CODE (PATTERN (insn)) == SEQUENCE
4264 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4265 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4266 return 0;
4269 return 1;
4272 /* Return 1 if branch is a forward branch.
4273 Uses insn_shuid array, so it works only in the final pass. May be used by
4274 output templates to customary add branch prediction hints.
4277 final_forward_branch_p (rtx_insn *insn)
4279 int insn_id, label_id;
4281 gcc_assert (uid_shuid);
4282 insn_id = INSN_SHUID (insn);
4283 label_id = INSN_SHUID (JUMP_LABEL (insn));
4284 /* We've hit some insns that does not have id information available. */
4285 gcc_assert (insn_id && label_id);
4286 return insn_id < label_id;
4289 /* On some machines, a function with no call insns
4290 can run faster if it doesn't create its own register window.
4291 When output, the leaf function should use only the "output"
4292 registers. Ordinarily, the function would be compiled to use
4293 the "input" registers to find its arguments; it is a candidate
4294 for leaf treatment if it uses only the "input" registers.
4295 Leaf function treatment means renumbering so the function
4296 uses the "output" registers instead. */
4298 #ifdef LEAF_REGISTERS
4300 /* Return 1 if this function uses only the registers that can be
4301 safely renumbered. */
4304 only_leaf_regs_used (void)
4306 int i;
4307 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4309 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4310 if ((df_regs_ever_live_p (i) || global_regs[i])
4311 && ! permitted_reg_in_leaf_functions[i])
4312 return 0;
4314 if (crtl->uses_pic_offset_table
4315 && pic_offset_table_rtx != 0
4316 && REG_P (pic_offset_table_rtx)
4317 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4318 return 0;
4320 return 1;
4323 /* Scan all instructions and renumber all registers into those
4324 available in leaf functions. */
4326 static void
4327 leaf_renumber_regs (rtx_insn *first)
4329 rtx_insn *insn;
4331 /* Renumber only the actual patterns.
4332 The reg-notes can contain frame pointer refs,
4333 and renumbering them could crash, and should not be needed. */
4334 for (insn = first; insn; insn = NEXT_INSN (insn))
4335 if (INSN_P (insn))
4336 leaf_renumber_regs_insn (PATTERN (insn));
4339 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4340 available in leaf functions. */
4342 void
4343 leaf_renumber_regs_insn (rtx in_rtx)
4345 int i, j;
4346 const char *format_ptr;
4348 if (in_rtx == 0)
4349 return;
4351 /* Renumber all input-registers into output-registers.
4352 renumbered_regs would be 1 for an output-register;
4353 they */
4355 if (REG_P (in_rtx))
4357 int newreg;
4359 /* Don't renumber the same reg twice. */
4360 if (in_rtx->used)
4361 return;
4363 newreg = REGNO (in_rtx);
4364 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4365 to reach here as part of a REG_NOTE. */
4366 if (newreg >= FIRST_PSEUDO_REGISTER)
4368 in_rtx->used = 1;
4369 return;
4371 newreg = LEAF_REG_REMAP (newreg);
4372 gcc_assert (newreg >= 0);
4373 df_set_regs_ever_live (REGNO (in_rtx), false);
4374 df_set_regs_ever_live (newreg, true);
4375 SET_REGNO (in_rtx, newreg);
4376 in_rtx->used = 1;
4379 if (INSN_P (in_rtx))
4381 /* Inside a SEQUENCE, we find insns.
4382 Renumber just the patterns of these insns,
4383 just as we do for the top-level insns. */
4384 leaf_renumber_regs_insn (PATTERN (in_rtx));
4385 return;
4388 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4390 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4391 switch (*format_ptr++)
4393 case 'e':
4394 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4395 break;
4397 case 'E':
4398 if (NULL != XVEC (in_rtx, i))
4400 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4401 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4403 break;
4405 case 'S':
4406 case 's':
4407 case '0':
4408 case 'i':
4409 case 'w':
4410 case 'n':
4411 case 'u':
4412 break;
4414 default:
4415 gcc_unreachable ();
4418 #endif
4420 /* Turn the RTL into assembly. */
4421 static unsigned int
4422 rest_of_handle_final (void)
4424 rtx x;
4425 const char *fnname;
4427 /* Get the function's name, as described by its RTL. This may be
4428 different from the DECL_NAME name used in the source file. */
4430 x = DECL_RTL (current_function_decl);
4431 gcc_assert (MEM_P (x));
4432 x = XEXP (x, 0);
4433 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4434 fnname = XSTR (x, 0);
4436 assemble_start_function (current_function_decl, fnname);
4437 final_start_function (get_insns (), asm_out_file, optimize);
4438 final (get_insns (), asm_out_file, optimize);
4439 if (flag_use_caller_save)
4440 collect_fn_hard_reg_usage ();
4441 final_end_function ();
4443 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4444 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4445 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4446 output_function_exception_table (fnname);
4448 assemble_end_function (current_function_decl, fnname);
4450 user_defined_section_attribute = false;
4452 /* Free up reg info memory. */
4453 free_reg_info ();
4455 if (! quiet_flag)
4456 fflush (asm_out_file);
4458 /* Write DBX symbols if requested. */
4460 /* Note that for those inline functions where we don't initially
4461 know for certain that we will be generating an out-of-line copy,
4462 the first invocation of this routine (rest_of_compilation) will
4463 skip over this code by doing a `goto exit_rest_of_compilation;'.
4464 Later on, wrapup_global_declarations will (indirectly) call
4465 rest_of_compilation again for those inline functions that need
4466 to have out-of-line copies generated. During that call, we
4467 *will* be routed past here. */
4469 timevar_push (TV_SYMOUT);
4470 if (!DECL_IGNORED_P (current_function_decl))
4471 debug_hooks->function_decl (current_function_decl);
4472 timevar_pop (TV_SYMOUT);
4474 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4475 DECL_INITIAL (current_function_decl) = error_mark_node;
4477 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4478 && targetm.have_ctors_dtors)
4479 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4480 decl_init_priority_lookup
4481 (current_function_decl));
4482 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4483 && targetm.have_ctors_dtors)
4484 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4485 decl_fini_priority_lookup
4486 (current_function_decl));
4487 return 0;
4490 namespace {
4492 const pass_data pass_data_final =
4494 RTL_PASS, /* type */
4495 "final", /* name */
4496 OPTGROUP_NONE, /* optinfo_flags */
4497 TV_FINAL, /* tv_id */
4498 0, /* properties_required */
4499 0, /* properties_provided */
4500 0, /* properties_destroyed */
4501 0, /* todo_flags_start */
4502 0, /* todo_flags_finish */
4505 class pass_final : public rtl_opt_pass
4507 public:
4508 pass_final (gcc::context *ctxt)
4509 : rtl_opt_pass (pass_data_final, ctxt)
4512 /* opt_pass methods: */
4513 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4515 }; // class pass_final
4517 } // anon namespace
4519 rtl_opt_pass *
4520 make_pass_final (gcc::context *ctxt)
4522 return new pass_final (ctxt);
4526 static unsigned int
4527 rest_of_handle_shorten_branches (void)
4529 /* Shorten branches. */
4530 shorten_branches (get_insns ());
4531 return 0;
4534 namespace {
4536 const pass_data pass_data_shorten_branches =
4538 RTL_PASS, /* type */
4539 "shorten", /* name */
4540 OPTGROUP_NONE, /* optinfo_flags */
4541 TV_SHORTEN_BRANCH, /* tv_id */
4542 0, /* properties_required */
4543 0, /* properties_provided */
4544 0, /* properties_destroyed */
4545 0, /* todo_flags_start */
4546 0, /* todo_flags_finish */
4549 class pass_shorten_branches : public rtl_opt_pass
4551 public:
4552 pass_shorten_branches (gcc::context *ctxt)
4553 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4556 /* opt_pass methods: */
4557 virtual unsigned int execute (function *)
4559 return rest_of_handle_shorten_branches ();
4562 }; // class pass_shorten_branches
4564 } // anon namespace
4566 rtl_opt_pass *
4567 make_pass_shorten_branches (gcc::context *ctxt)
4569 return new pass_shorten_branches (ctxt);
4573 static unsigned int
4574 rest_of_clean_state (void)
4576 rtx_insn *insn, *next;
4577 FILE *final_output = NULL;
4578 int save_unnumbered = flag_dump_unnumbered;
4579 int save_noaddr = flag_dump_noaddr;
4581 if (flag_dump_final_insns)
4583 final_output = fopen (flag_dump_final_insns, "a");
4584 if (!final_output)
4586 error ("could not open final insn dump file %qs: %m",
4587 flag_dump_final_insns);
4588 flag_dump_final_insns = NULL;
4590 else
4592 flag_dump_noaddr = flag_dump_unnumbered = 1;
4593 if (flag_compare_debug_opt || flag_compare_debug)
4594 dump_flags |= TDF_NOUID;
4595 dump_function_header (final_output, current_function_decl,
4596 dump_flags);
4597 final_insns_dump_p = true;
4599 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4600 if (LABEL_P (insn))
4601 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4602 else
4604 if (NOTE_P (insn))
4605 set_block_for_insn (insn, NULL);
4606 INSN_UID (insn) = 0;
4611 /* It is very important to decompose the RTL instruction chain here:
4612 debug information keeps pointing into CODE_LABEL insns inside the function
4613 body. If these remain pointing to the other insns, we end up preserving
4614 whole RTL chain and attached detailed debug info in memory. */
4615 for (insn = get_insns (); insn; insn = next)
4617 next = NEXT_INSN (insn);
4618 SET_NEXT_INSN (insn) = NULL;
4619 SET_PREV_INSN (insn) = NULL;
4621 if (final_output
4622 && (!NOTE_P (insn) ||
4623 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4624 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4625 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4626 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4627 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4628 print_rtl_single (final_output, insn);
4631 if (final_output)
4633 flag_dump_noaddr = save_noaddr;
4634 flag_dump_unnumbered = save_unnumbered;
4635 final_insns_dump_p = false;
4637 if (fclose (final_output))
4639 error ("could not close final insn dump file %qs: %m",
4640 flag_dump_final_insns);
4641 flag_dump_final_insns = NULL;
4645 /* In case the function was not output,
4646 don't leave any temporary anonymous types
4647 queued up for sdb output. */
4648 #ifdef SDB_DEBUGGING_INFO
4649 if (write_symbols == SDB_DEBUG)
4650 sdbout_types (NULL_TREE);
4651 #endif
4653 flag_rerun_cse_after_global_opts = 0;
4654 reload_completed = 0;
4655 epilogue_completed = 0;
4656 #ifdef STACK_REGS
4657 regstack_completed = 0;
4658 #endif
4660 /* Clear out the insn_length contents now that they are no
4661 longer valid. */
4662 init_insn_lengths ();
4664 /* Show no temporary slots allocated. */
4665 init_temp_slots ();
4667 free_bb_for_insn ();
4669 delete_tree_ssa ();
4671 /* We can reduce stack alignment on call site only when we are sure that
4672 the function body just produced will be actually used in the final
4673 executable. */
4674 if (decl_binds_to_current_def_p (current_function_decl))
4676 unsigned int pref = crtl->preferred_stack_boundary;
4677 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4678 pref = crtl->stack_alignment_needed;
4679 cgraph_node::rtl_info (current_function_decl)
4680 ->preferred_incoming_stack_boundary = pref;
4683 /* Make sure volatile mem refs aren't considered valid operands for
4684 arithmetic insns. We must call this here if this is a nested inline
4685 function, since the above code leaves us in the init_recog state,
4686 and the function context push/pop code does not save/restore volatile_ok.
4688 ??? Maybe it isn't necessary for expand_start_function to call this
4689 anymore if we do it here? */
4691 init_recog_no_volatile ();
4693 /* We're done with this function. Free up memory if we can. */
4694 free_after_parsing (cfun);
4695 free_after_compilation (cfun);
4696 return 0;
4699 namespace {
4701 const pass_data pass_data_clean_state =
4703 RTL_PASS, /* type */
4704 "*clean_state", /* name */
4705 OPTGROUP_NONE, /* optinfo_flags */
4706 TV_FINAL, /* tv_id */
4707 0, /* properties_required */
4708 0, /* properties_provided */
4709 PROP_rtl, /* properties_destroyed */
4710 0, /* todo_flags_start */
4711 0, /* todo_flags_finish */
4714 class pass_clean_state : public rtl_opt_pass
4716 public:
4717 pass_clean_state (gcc::context *ctxt)
4718 : rtl_opt_pass (pass_data_clean_state, ctxt)
4721 /* opt_pass methods: */
4722 virtual unsigned int execute (function *)
4724 return rest_of_clean_state ();
4727 }; // class pass_clean_state
4729 } // anon namespace
4731 rtl_opt_pass *
4732 make_pass_clean_state (gcc::context *ctxt)
4734 return new pass_clean_state (ctxt);
4737 /* Return true if INSN is a call to the the current function. */
4739 static bool
4740 self_recursive_call_p (rtx_insn *insn)
4742 tree fndecl = get_call_fndecl (insn);
4743 return (fndecl == current_function_decl
4744 && decl_binds_to_current_def_p (fndecl));
4747 /* Collect hard register usage for the current function. */
4749 static void
4750 collect_fn_hard_reg_usage (void)
4752 rtx_insn *insn;
4753 #ifdef STACK_REGS
4754 int i;
4755 #endif
4756 struct cgraph_rtl_info *node;
4757 HARD_REG_SET function_used_regs;
4759 /* ??? To be removed when all the ports have been fixed. */
4760 if (!targetm.call_fusage_contains_non_callee_clobbers)
4761 return;
4763 CLEAR_HARD_REG_SET (function_used_regs);
4765 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4767 HARD_REG_SET insn_used_regs;
4769 if (!NONDEBUG_INSN_P (insn))
4770 continue;
4772 if (CALL_P (insn)
4773 && !self_recursive_call_p (insn))
4775 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4776 call_used_reg_set))
4777 return;
4779 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4782 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4783 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4786 /* Be conservative - mark fixed and global registers as used. */
4787 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4789 #ifdef STACK_REGS
4790 /* Handle STACK_REGS conservatively, since the df-framework does not
4791 provide accurate information for them. */
4793 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4794 SET_HARD_REG_BIT (function_used_regs, i);
4795 #endif
4797 /* The information we have gathered is only interesting if it exposes a
4798 register from the call_used_regs that is not used in this function. */
4799 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4800 return;
4802 node = cgraph_node::rtl_info (current_function_decl);
4803 gcc_assert (node != NULL);
4805 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4806 node->function_used_regs_valid = 1;
4809 /* Get the declaration of the function called by INSN. */
4811 static tree
4812 get_call_fndecl (rtx_insn *insn)
4814 rtx note, datum;
4816 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4817 if (note == NULL_RTX)
4818 return NULL_TREE;
4820 datum = XEXP (note, 0);
4821 if (datum != NULL_RTX)
4822 return SYMBOL_REF_DECL (datum);
4824 return NULL_TREE;
4827 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4828 call targets that can be overwritten. */
4830 static struct cgraph_rtl_info *
4831 get_call_cgraph_rtl_info (rtx_insn *insn)
4833 tree fndecl;
4835 if (insn == NULL_RTX)
4836 return NULL;
4838 fndecl = get_call_fndecl (insn);
4839 if (fndecl == NULL_TREE
4840 || !decl_binds_to_current_def_p (fndecl))
4841 return NULL;
4843 return cgraph_node::rtl_info (fndecl);
4846 /* Find hard registers used by function call instruction INSN, and return them
4847 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4849 bool
4850 get_call_reg_set_usage (rtx uncast_insn, HARD_REG_SET *reg_set,
4851 HARD_REG_SET default_set)
4853 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
4854 if (flag_use_caller_save)
4856 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4857 if (node != NULL
4858 && node->function_used_regs_valid)
4860 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4861 AND_HARD_REG_SET (*reg_set, default_set);
4862 return true;
4866 COPY_HARD_REG_SET (*reg_set, default_set);
4867 return false;