2014-09-02 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / asan.c
blob4ed9344bc9e059e4ed4d85b8856181bec0176972
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
92 [Protection of stack variables]
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
98 int
99 foo ()
101 char a[23] = {0};
102 int b[2] = {0};
104 a[5] = 1;
105 b[1] = 2;
107 return a[5] + b[1];
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
119 Slot 3/ [24 bytes for variable 'a']
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
125 Slot 6/ [8 bytes for variable 'b']
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
150 4/ The following 8 bytes are reserved for internal use by the run-time.
152 The shadow memory for that stack layout is going to look like this:
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
199 [Protection of global variables]
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
213 struct __asan_global
215 // Address of the beginning of the global variable.
216 const void *__beg;
218 // Initial size of the global variable.
219 uptr __size;
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
225 // Name of the global variable.
226 const void *__name;
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
235 A destructor function that calls the runtime asan library function
236 _asan_unregister_globals is also installed. */
238 alias_set_type asan_shadow_set = -1;
240 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
241 alias set is used for all shadow memory accesses. */
242 static GTY(()) tree shadow_ptr_types[2];
244 /* Decl for __asan_option_detect_stack_use_after_return. */
245 static GTY(()) tree asan_detect_stack_use_after_return;
247 /* Various flags for Asan builtins. */
248 enum asan_check_flags
250 ASAN_CHECK_STORE = 1 << 0,
251 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
252 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
253 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
254 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
255 ASAN_CHECK_LAST
258 /* Hashtable support for memory references used by gimple
259 statements. */
261 /* This type represents a reference to a memory region. */
262 struct asan_mem_ref
264 /* The expression of the beginning of the memory region. */
265 tree start;
267 /* The size of the access. */
268 HOST_WIDE_INT access_size;
271 static alloc_pool asan_mem_ref_alloc_pool;
273 /* This creates the alloc pool used to store the instances of
274 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
276 static alloc_pool
277 asan_mem_ref_get_alloc_pool ()
279 if (asan_mem_ref_alloc_pool == NULL)
280 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
281 sizeof (asan_mem_ref),
282 10);
283 return asan_mem_ref_alloc_pool;
287 /* Initializes an instance of asan_mem_ref. */
289 static void
290 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
292 ref->start = start;
293 ref->access_size = access_size;
296 /* Allocates memory for an instance of asan_mem_ref into the memory
297 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
298 START is the address of (or the expression pointing to) the
299 beginning of memory reference. ACCESS_SIZE is the size of the
300 access to the referenced memory. */
302 static asan_mem_ref*
303 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
305 asan_mem_ref *ref =
306 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
308 asan_mem_ref_init (ref, start, access_size);
309 return ref;
312 /* This builds and returns a pointer to the end of the memory region
313 that starts at START and of length LEN. */
315 tree
316 asan_mem_ref_get_end (tree start, tree len)
318 if (len == NULL_TREE || integer_zerop (len))
319 return start;
321 if (!ptrofftype_p (len))
322 len = convert_to_ptrofftype (len);
324 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
327 /* Return a tree expression that represents the end of the referenced
328 memory region. Beware that this function can actually build a new
329 tree expression. */
331 tree
332 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
334 return asan_mem_ref_get_end (ref->start, len);
337 struct asan_mem_ref_hasher
338 : typed_noop_remove <asan_mem_ref>
340 typedef asan_mem_ref value_type;
341 typedef asan_mem_ref compare_type;
343 static inline hashval_t hash (const value_type *);
344 static inline bool equal (const value_type *, const compare_type *);
347 /* Hash a memory reference. */
349 inline hashval_t
350 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
352 inchash::hash hstate;
353 inchash::add_expr (mem_ref->start, hstate);
354 hstate.add_wide_int (mem_ref->access_size);
355 return hstate.end ();
358 /* Compare two memory references. We accept the length of either
359 memory references to be NULL_TREE. */
361 inline bool
362 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
363 const asan_mem_ref *m2)
365 return (m1->access_size == m2->access_size
366 && operand_equal_p (m1->start, m2->start, 0));
369 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
371 /* Returns a reference to the hash table containing memory references.
372 This function ensures that the hash table is created. Note that
373 this hash table is updated by the function
374 update_mem_ref_hash_table. */
376 static hash_table<asan_mem_ref_hasher> *
377 get_mem_ref_hash_table ()
379 if (!asan_mem_ref_ht)
380 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
382 return asan_mem_ref_ht;
385 /* Clear all entries from the memory references hash table. */
387 static void
388 empty_mem_ref_hash_table ()
390 if (asan_mem_ref_ht)
391 asan_mem_ref_ht->empty ();
394 /* Free the memory references hash table. */
396 static void
397 free_mem_ref_resources ()
399 delete asan_mem_ref_ht;
400 asan_mem_ref_ht = NULL;
402 if (asan_mem_ref_alloc_pool)
404 free_alloc_pool (asan_mem_ref_alloc_pool);
405 asan_mem_ref_alloc_pool = NULL;
409 /* Return true iff the memory reference REF has been instrumented. */
411 static bool
412 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
414 asan_mem_ref r;
415 asan_mem_ref_init (&r, ref, access_size);
417 return (get_mem_ref_hash_table ()->find (&r) != NULL);
420 /* Return true iff the memory reference REF has been instrumented. */
422 static bool
423 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
425 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
428 /* Return true iff access to memory region starting at REF and of
429 length LEN has been instrumented. */
431 static bool
432 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
434 /* First let's see if the address of the beginning of REF has been
435 instrumented. */
436 if (!has_mem_ref_been_instrumented (ref))
437 return false;
439 if (len != 0)
441 /* Let's see if the end of the region has been instrumented. */
442 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
443 ref->access_size))
444 return false;
446 return true;
449 /* Set REF to the memory reference present in a gimple assignment
450 ASSIGNMENT. Return true upon successful completion, false
451 otherwise. */
453 static bool
454 get_mem_ref_of_assignment (const gimple assignment,
455 asan_mem_ref *ref,
456 bool *ref_is_store)
458 gcc_assert (gimple_assign_single_p (assignment));
460 if (gimple_store_p (assignment)
461 && !gimple_clobber_p (assignment))
463 ref->start = gimple_assign_lhs (assignment);
464 *ref_is_store = true;
466 else if (gimple_assign_load_p (assignment))
468 ref->start = gimple_assign_rhs1 (assignment);
469 *ref_is_store = false;
471 else
472 return false;
474 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
475 return true;
478 /* Return the memory references contained in a gimple statement
479 representing a builtin call that has to do with memory access. */
481 static bool
482 get_mem_refs_of_builtin_call (const gimple call,
483 asan_mem_ref *src0,
484 tree *src0_len,
485 bool *src0_is_store,
486 asan_mem_ref *src1,
487 tree *src1_len,
488 bool *src1_is_store,
489 asan_mem_ref *dst,
490 tree *dst_len,
491 bool *dst_is_store,
492 bool *dest_is_deref)
494 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
496 tree callee = gimple_call_fndecl (call);
497 tree source0 = NULL_TREE, source1 = NULL_TREE,
498 dest = NULL_TREE, len = NULL_TREE;
499 bool is_store = true, got_reference_p = false;
500 HOST_WIDE_INT access_size = 1;
502 switch (DECL_FUNCTION_CODE (callee))
504 /* (s, s, n) style memops. */
505 case BUILT_IN_BCMP:
506 case BUILT_IN_MEMCMP:
507 source0 = gimple_call_arg (call, 0);
508 source1 = gimple_call_arg (call, 1);
509 len = gimple_call_arg (call, 2);
510 break;
512 /* (src, dest, n) style memops. */
513 case BUILT_IN_BCOPY:
514 source0 = gimple_call_arg (call, 0);
515 dest = gimple_call_arg (call, 1);
516 len = gimple_call_arg (call, 2);
517 break;
519 /* (dest, src, n) style memops. */
520 case BUILT_IN_MEMCPY:
521 case BUILT_IN_MEMCPY_CHK:
522 case BUILT_IN_MEMMOVE:
523 case BUILT_IN_MEMMOVE_CHK:
524 case BUILT_IN_MEMPCPY:
525 case BUILT_IN_MEMPCPY_CHK:
526 dest = gimple_call_arg (call, 0);
527 source0 = gimple_call_arg (call, 1);
528 len = gimple_call_arg (call, 2);
529 break;
531 /* (dest, n) style memops. */
532 case BUILT_IN_BZERO:
533 dest = gimple_call_arg (call, 0);
534 len = gimple_call_arg (call, 1);
535 break;
537 /* (dest, x, n) style memops*/
538 case BUILT_IN_MEMSET:
539 case BUILT_IN_MEMSET_CHK:
540 dest = gimple_call_arg (call, 0);
541 len = gimple_call_arg (call, 2);
542 break;
544 case BUILT_IN_STRLEN:
545 source0 = gimple_call_arg (call, 0);
546 len = gimple_call_lhs (call);
547 break ;
549 /* And now the __atomic* and __sync builtins.
550 These are handled differently from the classical memory memory
551 access builtins above. */
553 case BUILT_IN_ATOMIC_LOAD_1:
554 case BUILT_IN_ATOMIC_LOAD_2:
555 case BUILT_IN_ATOMIC_LOAD_4:
556 case BUILT_IN_ATOMIC_LOAD_8:
557 case BUILT_IN_ATOMIC_LOAD_16:
558 is_store = false;
559 /* fall through. */
561 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
562 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
563 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
564 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
565 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
567 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
568 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
569 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
570 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
571 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
573 case BUILT_IN_SYNC_FETCH_AND_OR_1:
574 case BUILT_IN_SYNC_FETCH_AND_OR_2:
575 case BUILT_IN_SYNC_FETCH_AND_OR_4:
576 case BUILT_IN_SYNC_FETCH_AND_OR_8:
577 case BUILT_IN_SYNC_FETCH_AND_OR_16:
579 case BUILT_IN_SYNC_FETCH_AND_AND_1:
580 case BUILT_IN_SYNC_FETCH_AND_AND_2:
581 case BUILT_IN_SYNC_FETCH_AND_AND_4:
582 case BUILT_IN_SYNC_FETCH_AND_AND_8:
583 case BUILT_IN_SYNC_FETCH_AND_AND_16:
585 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
586 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
587 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
588 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
589 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
591 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
592 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
593 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
594 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
596 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
597 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
598 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
599 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
600 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
602 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
603 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
604 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
605 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
606 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
608 case BUILT_IN_SYNC_OR_AND_FETCH_1:
609 case BUILT_IN_SYNC_OR_AND_FETCH_2:
610 case BUILT_IN_SYNC_OR_AND_FETCH_4:
611 case BUILT_IN_SYNC_OR_AND_FETCH_8:
612 case BUILT_IN_SYNC_OR_AND_FETCH_16:
614 case BUILT_IN_SYNC_AND_AND_FETCH_1:
615 case BUILT_IN_SYNC_AND_AND_FETCH_2:
616 case BUILT_IN_SYNC_AND_AND_FETCH_4:
617 case BUILT_IN_SYNC_AND_AND_FETCH_8:
618 case BUILT_IN_SYNC_AND_AND_FETCH_16:
620 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
621 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
622 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
624 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
626 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
627 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
628 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
629 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
631 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
632 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
633 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
634 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
635 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
637 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
638 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
639 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
640 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
641 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
643 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
644 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
645 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
646 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
647 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
649 case BUILT_IN_SYNC_LOCK_RELEASE_1:
650 case BUILT_IN_SYNC_LOCK_RELEASE_2:
651 case BUILT_IN_SYNC_LOCK_RELEASE_4:
652 case BUILT_IN_SYNC_LOCK_RELEASE_8:
653 case BUILT_IN_SYNC_LOCK_RELEASE_16:
655 case BUILT_IN_ATOMIC_EXCHANGE_1:
656 case BUILT_IN_ATOMIC_EXCHANGE_2:
657 case BUILT_IN_ATOMIC_EXCHANGE_4:
658 case BUILT_IN_ATOMIC_EXCHANGE_8:
659 case BUILT_IN_ATOMIC_EXCHANGE_16:
661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
663 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
664 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
665 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
667 case BUILT_IN_ATOMIC_STORE_1:
668 case BUILT_IN_ATOMIC_STORE_2:
669 case BUILT_IN_ATOMIC_STORE_4:
670 case BUILT_IN_ATOMIC_STORE_8:
671 case BUILT_IN_ATOMIC_STORE_16:
673 case BUILT_IN_ATOMIC_ADD_FETCH_1:
674 case BUILT_IN_ATOMIC_ADD_FETCH_2:
675 case BUILT_IN_ATOMIC_ADD_FETCH_4:
676 case BUILT_IN_ATOMIC_ADD_FETCH_8:
677 case BUILT_IN_ATOMIC_ADD_FETCH_16:
679 case BUILT_IN_ATOMIC_SUB_FETCH_1:
680 case BUILT_IN_ATOMIC_SUB_FETCH_2:
681 case BUILT_IN_ATOMIC_SUB_FETCH_4:
682 case BUILT_IN_ATOMIC_SUB_FETCH_8:
683 case BUILT_IN_ATOMIC_SUB_FETCH_16:
685 case BUILT_IN_ATOMIC_AND_FETCH_1:
686 case BUILT_IN_ATOMIC_AND_FETCH_2:
687 case BUILT_IN_ATOMIC_AND_FETCH_4:
688 case BUILT_IN_ATOMIC_AND_FETCH_8:
689 case BUILT_IN_ATOMIC_AND_FETCH_16:
691 case BUILT_IN_ATOMIC_NAND_FETCH_1:
692 case BUILT_IN_ATOMIC_NAND_FETCH_2:
693 case BUILT_IN_ATOMIC_NAND_FETCH_4:
694 case BUILT_IN_ATOMIC_NAND_FETCH_8:
695 case BUILT_IN_ATOMIC_NAND_FETCH_16:
697 case BUILT_IN_ATOMIC_XOR_FETCH_1:
698 case BUILT_IN_ATOMIC_XOR_FETCH_2:
699 case BUILT_IN_ATOMIC_XOR_FETCH_4:
700 case BUILT_IN_ATOMIC_XOR_FETCH_8:
701 case BUILT_IN_ATOMIC_XOR_FETCH_16:
703 case BUILT_IN_ATOMIC_OR_FETCH_1:
704 case BUILT_IN_ATOMIC_OR_FETCH_2:
705 case BUILT_IN_ATOMIC_OR_FETCH_4:
706 case BUILT_IN_ATOMIC_OR_FETCH_8:
707 case BUILT_IN_ATOMIC_OR_FETCH_16:
709 case BUILT_IN_ATOMIC_FETCH_ADD_1:
710 case BUILT_IN_ATOMIC_FETCH_ADD_2:
711 case BUILT_IN_ATOMIC_FETCH_ADD_4:
712 case BUILT_IN_ATOMIC_FETCH_ADD_8:
713 case BUILT_IN_ATOMIC_FETCH_ADD_16:
715 case BUILT_IN_ATOMIC_FETCH_SUB_1:
716 case BUILT_IN_ATOMIC_FETCH_SUB_2:
717 case BUILT_IN_ATOMIC_FETCH_SUB_4:
718 case BUILT_IN_ATOMIC_FETCH_SUB_8:
719 case BUILT_IN_ATOMIC_FETCH_SUB_16:
721 case BUILT_IN_ATOMIC_FETCH_AND_1:
722 case BUILT_IN_ATOMIC_FETCH_AND_2:
723 case BUILT_IN_ATOMIC_FETCH_AND_4:
724 case BUILT_IN_ATOMIC_FETCH_AND_8:
725 case BUILT_IN_ATOMIC_FETCH_AND_16:
727 case BUILT_IN_ATOMIC_FETCH_NAND_1:
728 case BUILT_IN_ATOMIC_FETCH_NAND_2:
729 case BUILT_IN_ATOMIC_FETCH_NAND_4:
730 case BUILT_IN_ATOMIC_FETCH_NAND_8:
731 case BUILT_IN_ATOMIC_FETCH_NAND_16:
733 case BUILT_IN_ATOMIC_FETCH_XOR_1:
734 case BUILT_IN_ATOMIC_FETCH_XOR_2:
735 case BUILT_IN_ATOMIC_FETCH_XOR_4:
736 case BUILT_IN_ATOMIC_FETCH_XOR_8:
737 case BUILT_IN_ATOMIC_FETCH_XOR_16:
739 case BUILT_IN_ATOMIC_FETCH_OR_1:
740 case BUILT_IN_ATOMIC_FETCH_OR_2:
741 case BUILT_IN_ATOMIC_FETCH_OR_4:
742 case BUILT_IN_ATOMIC_FETCH_OR_8:
743 case BUILT_IN_ATOMIC_FETCH_OR_16:
745 dest = gimple_call_arg (call, 0);
746 /* DEST represents the address of a memory location.
747 instrument_derefs wants the memory location, so lets
748 dereference the address DEST before handing it to
749 instrument_derefs. */
750 if (TREE_CODE (dest) == ADDR_EXPR)
751 dest = TREE_OPERAND (dest, 0);
752 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
753 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
754 dest, build_int_cst (TREE_TYPE (dest), 0));
755 else
756 gcc_unreachable ();
758 access_size = int_size_in_bytes (TREE_TYPE (dest));
761 default:
762 /* The other builtins memory access are not instrumented in this
763 function because they either don't have any length parameter,
764 or their length parameter is just a limit. */
765 break;
768 if (len != NULL_TREE)
770 if (source0 != NULL_TREE)
772 src0->start = source0;
773 src0->access_size = access_size;
774 *src0_len = len;
775 *src0_is_store = false;
778 if (source1 != NULL_TREE)
780 src1->start = source1;
781 src1->access_size = access_size;
782 *src1_len = len;
783 *src1_is_store = false;
786 if (dest != NULL_TREE)
788 dst->start = dest;
789 dst->access_size = access_size;
790 *dst_len = len;
791 *dst_is_store = true;
794 got_reference_p = true;
796 else if (dest)
798 dst->start = dest;
799 dst->access_size = access_size;
800 *dst_len = NULL_TREE;
801 *dst_is_store = is_store;
802 *dest_is_deref = true;
803 got_reference_p = true;
806 return got_reference_p;
809 /* Return true iff a given gimple statement has been instrumented.
810 Note that the statement is "defined" by the memory references it
811 contains. */
813 static bool
814 has_stmt_been_instrumented_p (gimple stmt)
816 if (gimple_assign_single_p (stmt))
818 bool r_is_store;
819 asan_mem_ref r;
820 asan_mem_ref_init (&r, NULL, 1);
822 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
823 return has_mem_ref_been_instrumented (&r);
825 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
827 asan_mem_ref src0, src1, dest;
828 asan_mem_ref_init (&src0, NULL, 1);
829 asan_mem_ref_init (&src1, NULL, 1);
830 asan_mem_ref_init (&dest, NULL, 1);
832 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
833 bool src0_is_store = false, src1_is_store = false,
834 dest_is_store = false, dest_is_deref = false;
835 if (get_mem_refs_of_builtin_call (stmt,
836 &src0, &src0_len, &src0_is_store,
837 &src1, &src1_len, &src1_is_store,
838 &dest, &dest_len, &dest_is_store,
839 &dest_is_deref))
841 if (src0.start != NULL_TREE
842 && !has_mem_ref_been_instrumented (&src0, src0_len))
843 return false;
845 if (src1.start != NULL_TREE
846 && !has_mem_ref_been_instrumented (&src1, src1_len))
847 return false;
849 if (dest.start != NULL_TREE
850 && !has_mem_ref_been_instrumented (&dest, dest_len))
851 return false;
853 return true;
856 return false;
859 /* Insert a memory reference into the hash table. */
861 static void
862 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
864 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
866 asan_mem_ref r;
867 asan_mem_ref_init (&r, ref, access_size);
869 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
870 if (*slot == NULL)
871 *slot = asan_mem_ref_new (ref, access_size);
874 /* Initialize shadow_ptr_types array. */
876 static void
877 asan_init_shadow_ptr_types (void)
879 asan_shadow_set = new_alias_set ();
880 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
881 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
882 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
883 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
884 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
885 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
886 initialize_sanitizer_builtins ();
889 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
891 static tree
892 asan_pp_string (pretty_printer *pp)
894 const char *buf = pp_formatted_text (pp);
895 size_t len = strlen (buf);
896 tree ret = build_string (len + 1, buf);
897 TREE_TYPE (ret)
898 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
899 build_index_type (size_int (len)));
900 TREE_READONLY (ret) = 1;
901 TREE_STATIC (ret) = 1;
902 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
905 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
907 static rtx
908 asan_shadow_cst (unsigned char shadow_bytes[4])
910 int i;
911 unsigned HOST_WIDE_INT val = 0;
912 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
913 for (i = 0; i < 4; i++)
914 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
915 << (BITS_PER_UNIT * i);
916 return gen_int_mode (val, SImode);
919 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
920 though. */
922 static void
923 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
925 rtx_insn *insn, *insns, *jump;
926 rtx_code_label *top_label;
927 rtx end, addr, tmp;
929 start_sequence ();
930 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
931 insns = get_insns ();
932 end_sequence ();
933 for (insn = insns; insn; insn = NEXT_INSN (insn))
934 if (CALL_P (insn))
935 break;
936 if (insn == NULL_RTX)
938 emit_insn (insns);
939 return;
942 gcc_assert ((len & 3) == 0);
943 top_label = gen_label_rtx ();
944 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
945 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
946 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
947 emit_label (top_label);
949 emit_move_insn (shadow_mem, const0_rtx);
950 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
951 true, OPTAB_LIB_WIDEN);
952 if (tmp != addr)
953 emit_move_insn (addr, tmp);
954 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
955 jump = get_last_insn ();
956 gcc_assert (JUMP_P (jump));
957 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
960 void
961 asan_function_start (void)
963 section *fnsec = function_section (current_function_decl);
964 switch_to_section (fnsec);
965 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
966 current_function_funcdef_no);
969 /* Insert code to protect stack vars. The prologue sequence should be emitted
970 directly, epilogue sequence returned. BASE is the register holding the
971 stack base, against which OFFSETS array offsets are relative to, OFFSETS
972 array contains pairs of offsets in reverse order, always the end offset
973 of some gap that needs protection followed by starting offset,
974 and DECLS is an array of representative decls for each var partition.
975 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
976 elements long (OFFSETS include gap before the first variable as well
977 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
978 register which stack vars DECL_RTLs are based on. Either BASE should be
979 assigned to PBASE, when not doing use after return protection, or
980 corresponding address based on __asan_stack_malloc* return value. */
982 rtx_insn *
983 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
984 HOST_WIDE_INT *offsets, tree *decls, int length)
986 rtx shadow_base, shadow_mem, ret, mem, orig_base, lab;
987 rtx_insn *insns;
988 char buf[30];
989 unsigned char shadow_bytes[4];
990 HOST_WIDE_INT base_offset = offsets[length - 1];
991 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
992 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
993 HOST_WIDE_INT last_offset, last_size;
994 int l;
995 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
996 tree str_cst, decl, id;
997 int use_after_return_class = -1;
999 if (shadow_ptr_types[0] == NULL_TREE)
1000 asan_init_shadow_ptr_types ();
1002 /* First of all, prepare the description string. */
1003 pretty_printer asan_pp;
1005 pp_decimal_int (&asan_pp, length / 2 - 1);
1006 pp_space (&asan_pp);
1007 for (l = length - 2; l; l -= 2)
1009 tree decl = decls[l / 2 - 1];
1010 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1011 pp_space (&asan_pp);
1012 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1013 pp_space (&asan_pp);
1014 if (DECL_P (decl) && DECL_NAME (decl))
1016 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1017 pp_space (&asan_pp);
1018 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1020 else
1021 pp_string (&asan_pp, "9 <unknown>");
1022 pp_space (&asan_pp);
1024 str_cst = asan_pp_string (&asan_pp);
1026 /* Emit the prologue sequence. */
1027 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1028 && ASAN_USE_AFTER_RETURN)
1030 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1031 /* __asan_stack_malloc_N guarantees alignment
1032 N < 6 ? (64 << N) : 4096 bytes. */
1033 if (alignb > (use_after_return_class < 6
1034 ? (64U << use_after_return_class) : 4096U))
1035 use_after_return_class = -1;
1036 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1037 base_align_bias = ((asan_frame_size + alignb - 1)
1038 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1040 /* Align base if target is STRICT_ALIGNMENT. */
1041 if (STRICT_ALIGNMENT)
1042 base = expand_binop (Pmode, and_optab, base,
1043 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1044 << ASAN_SHADOW_SHIFT)
1045 / BITS_PER_UNIT), Pmode), NULL_RTX,
1046 1, OPTAB_DIRECT);
1048 if (use_after_return_class == -1 && pbase)
1049 emit_move_insn (pbase, base);
1051 base = expand_binop (Pmode, add_optab, base,
1052 gen_int_mode (base_offset - base_align_bias, Pmode),
1053 NULL_RTX, 1, OPTAB_DIRECT);
1054 orig_base = NULL_RTX;
1055 if (use_after_return_class != -1)
1057 if (asan_detect_stack_use_after_return == NULL_TREE)
1059 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1060 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1061 integer_type_node);
1062 SET_DECL_ASSEMBLER_NAME (decl, id);
1063 TREE_ADDRESSABLE (decl) = 1;
1064 DECL_ARTIFICIAL (decl) = 1;
1065 DECL_IGNORED_P (decl) = 1;
1066 DECL_EXTERNAL (decl) = 1;
1067 TREE_STATIC (decl) = 1;
1068 TREE_PUBLIC (decl) = 1;
1069 TREE_USED (decl) = 1;
1070 asan_detect_stack_use_after_return = decl;
1072 orig_base = gen_reg_rtx (Pmode);
1073 emit_move_insn (orig_base, base);
1074 ret = expand_normal (asan_detect_stack_use_after_return);
1075 lab = gen_label_rtx ();
1076 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1077 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1078 VOIDmode, 0, lab, very_likely);
1079 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1080 use_after_return_class);
1081 ret = init_one_libfunc (buf);
1082 rtx addr = convert_memory_address (ptr_mode, base);
1083 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1084 GEN_INT (asan_frame_size
1085 + base_align_bias),
1086 TYPE_MODE (pointer_sized_int_node),
1087 addr, ptr_mode);
1088 ret = convert_memory_address (Pmode, ret);
1089 emit_move_insn (base, ret);
1090 emit_label (lab);
1091 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1092 gen_int_mode (base_align_bias
1093 - base_offset, Pmode),
1094 NULL_RTX, 1, OPTAB_DIRECT));
1096 mem = gen_rtx_MEM (ptr_mode, base);
1097 mem = adjust_address (mem, VOIDmode, base_align_bias);
1098 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1099 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1100 emit_move_insn (mem, expand_normal (str_cst));
1101 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1102 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1103 id = get_identifier (buf);
1104 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1105 VAR_DECL, id, char_type_node);
1106 SET_DECL_ASSEMBLER_NAME (decl, id);
1107 TREE_ADDRESSABLE (decl) = 1;
1108 TREE_READONLY (decl) = 1;
1109 DECL_ARTIFICIAL (decl) = 1;
1110 DECL_IGNORED_P (decl) = 1;
1111 TREE_STATIC (decl) = 1;
1112 TREE_PUBLIC (decl) = 0;
1113 TREE_USED (decl) = 1;
1114 DECL_INITIAL (decl) = decl;
1115 TREE_ASM_WRITTEN (decl) = 1;
1116 TREE_ASM_WRITTEN (id) = 1;
1117 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1118 shadow_base = expand_binop (Pmode, lshr_optab, base,
1119 GEN_INT (ASAN_SHADOW_SHIFT),
1120 NULL_RTX, 1, OPTAB_DIRECT);
1121 shadow_base
1122 = plus_constant (Pmode, shadow_base,
1123 targetm.asan_shadow_offset ()
1124 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1125 gcc_assert (asan_shadow_set != -1
1126 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1127 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1128 set_mem_alias_set (shadow_mem, asan_shadow_set);
1129 if (STRICT_ALIGNMENT)
1130 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1131 prev_offset = base_offset;
1132 for (l = length; l; l -= 2)
1134 if (l == 2)
1135 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1136 offset = offsets[l - 1];
1137 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1139 int i;
1140 HOST_WIDE_INT aoff
1141 = base_offset + ((offset - base_offset)
1142 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1143 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1144 (aoff - prev_offset)
1145 >> ASAN_SHADOW_SHIFT);
1146 prev_offset = aoff;
1147 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1148 if (aoff < offset)
1150 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1151 shadow_bytes[i] = 0;
1152 else
1153 shadow_bytes[i] = offset - aoff;
1155 else
1156 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1157 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1158 offset = aoff;
1160 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1162 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1163 (offset - prev_offset)
1164 >> ASAN_SHADOW_SHIFT);
1165 prev_offset = offset;
1166 memset (shadow_bytes, cur_shadow_byte, 4);
1167 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1168 offset += ASAN_RED_ZONE_SIZE;
1170 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1172 do_pending_stack_adjust ();
1174 /* Construct epilogue sequence. */
1175 start_sequence ();
1177 lab = NULL_RTX;
1178 if (use_after_return_class != -1)
1180 rtx lab2 = gen_label_rtx ();
1181 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1182 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1183 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1184 VOIDmode, 0, lab2, very_likely);
1185 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1186 set_mem_alias_set (shadow_mem, asan_shadow_set);
1187 mem = gen_rtx_MEM (ptr_mode, base);
1188 mem = adjust_address (mem, VOIDmode, base_align_bias);
1189 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1190 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1191 if (use_after_return_class < 5
1192 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1193 BITS_PER_UNIT, true))
1194 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1195 BITS_PER_UNIT, true, 0);
1196 else if (use_after_return_class >= 5
1197 || !set_storage_via_setmem (shadow_mem,
1198 GEN_INT (sz),
1199 gen_int_mode (c, QImode),
1200 BITS_PER_UNIT, BITS_PER_UNIT,
1201 -1, sz, sz, sz))
1203 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1204 use_after_return_class);
1205 ret = init_one_libfunc (buf);
1206 rtx addr = convert_memory_address (ptr_mode, base);
1207 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1208 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1209 GEN_INT (asan_frame_size + base_align_bias),
1210 TYPE_MODE (pointer_sized_int_node),
1211 orig_addr, ptr_mode);
1213 lab = gen_label_rtx ();
1214 emit_jump (lab);
1215 emit_label (lab2);
1218 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1219 set_mem_alias_set (shadow_mem, asan_shadow_set);
1221 if (STRICT_ALIGNMENT)
1222 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1224 prev_offset = base_offset;
1225 last_offset = base_offset;
1226 last_size = 0;
1227 for (l = length; l; l -= 2)
1229 offset = base_offset + ((offsets[l - 1] - base_offset)
1230 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1231 if (last_offset + last_size != offset)
1233 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1234 (last_offset - prev_offset)
1235 >> ASAN_SHADOW_SHIFT);
1236 prev_offset = last_offset;
1237 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1238 last_offset = offset;
1239 last_size = 0;
1241 last_size += base_offset + ((offsets[l - 2] - base_offset)
1242 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1243 - offset;
1245 if (last_size)
1247 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1248 (last_offset - prev_offset)
1249 >> ASAN_SHADOW_SHIFT);
1250 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1253 do_pending_stack_adjust ();
1254 if (lab)
1255 emit_label (lab);
1257 insns = get_insns ();
1258 end_sequence ();
1259 return insns;
1262 /* Return true if DECL, a global var, might be overridden and needs
1263 therefore a local alias. */
1265 static bool
1266 asan_needs_local_alias (tree decl)
1268 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1271 /* Return true if DECL is a VAR_DECL that should be protected
1272 by Address Sanitizer, by appending a red zone with protected
1273 shadow memory after it and aligning it to at least
1274 ASAN_RED_ZONE_SIZE bytes. */
1276 bool
1277 asan_protect_global (tree decl)
1279 if (!ASAN_GLOBALS)
1280 return false;
1282 rtx rtl, symbol;
1284 if (TREE_CODE (decl) == STRING_CST)
1286 /* Instrument all STRING_CSTs except those created
1287 by asan_pp_string here. */
1288 if (shadow_ptr_types[0] != NULL_TREE
1289 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1290 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1291 return false;
1292 return true;
1294 if (TREE_CODE (decl) != VAR_DECL
1295 /* TLS vars aren't statically protectable. */
1296 || DECL_THREAD_LOCAL_P (decl)
1297 /* Externs will be protected elsewhere. */
1298 || DECL_EXTERNAL (decl)
1299 || !DECL_RTL_SET_P (decl)
1300 /* Comdat vars pose an ABI problem, we can't know if
1301 the var that is selected by the linker will have
1302 padding or not. */
1303 || DECL_ONE_ONLY (decl)
1304 /* Similarly for common vars. People can use -fno-common. */
1305 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1306 /* Don't protect if using user section, often vars placed
1307 into user section from multiple TUs are then assumed
1308 to be an array of such vars, putting padding in there
1309 breaks this assumption. */
1310 || (DECL_SECTION_NAME (decl) != NULL
1311 && !symtab_node::get (decl)->implicit_section)
1312 || DECL_SIZE (decl) == 0
1313 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1314 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1315 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1316 return false;
1318 rtl = DECL_RTL (decl);
1319 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1320 return false;
1321 symbol = XEXP (rtl, 0);
1323 if (CONSTANT_POOL_ADDRESS_P (symbol)
1324 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1325 return false;
1327 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1328 return false;
1330 #ifndef ASM_OUTPUT_DEF
1331 if (asan_needs_local_alias (decl))
1332 return false;
1333 #endif
1335 return true;
1338 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1339 IS_STORE is either 1 (for a store) or 0 (for a load). */
1341 static tree
1342 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1344 static enum built_in_function report[2][6]
1345 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1346 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1347 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1348 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1349 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1350 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1351 if (size_in_bytes == -1)
1353 *nargs = 2;
1354 return builtin_decl_implicit (report[is_store][5]);
1356 *nargs = 1;
1357 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1360 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1361 IS_STORE is either 1 (for a store) or 0 (for a load). */
1363 static tree
1364 check_func (bool is_store, int size_in_bytes, int *nargs)
1366 static enum built_in_function check[2][6]
1367 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1368 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1369 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1370 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1371 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1372 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1373 if (size_in_bytes == -1)
1375 *nargs = 2;
1376 return builtin_decl_implicit (check[is_store][5]);
1378 *nargs = 1;
1379 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1382 /* Split the current basic block and create a condition statement
1383 insertion point right before or after the statement pointed to by
1384 ITER. Return an iterator to the point at which the caller might
1385 safely insert the condition statement.
1387 THEN_BLOCK must be set to the address of an uninitialized instance
1388 of basic_block. The function will then set *THEN_BLOCK to the
1389 'then block' of the condition statement to be inserted by the
1390 caller.
1392 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1393 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1395 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1396 block' of the condition statement to be inserted by the caller.
1398 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1399 statements starting from *ITER, and *THEN_BLOCK is a new empty
1400 block.
1402 *ITER is adjusted to point to always point to the first statement
1403 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1404 same as what ITER was pointing to prior to calling this function,
1405 if BEFORE_P is true; otherwise, it is its following statement. */
1407 gimple_stmt_iterator
1408 create_cond_insert_point (gimple_stmt_iterator *iter,
1409 bool before_p,
1410 bool then_more_likely_p,
1411 bool create_then_fallthru_edge,
1412 basic_block *then_block,
1413 basic_block *fallthrough_block)
1415 gimple_stmt_iterator gsi = *iter;
1417 if (!gsi_end_p (gsi) && before_p)
1418 gsi_prev (&gsi);
1420 basic_block cur_bb = gsi_bb (*iter);
1422 edge e = split_block (cur_bb, gsi_stmt (gsi));
1424 /* Get a hold on the 'condition block', the 'then block' and the
1425 'else block'. */
1426 basic_block cond_bb = e->src;
1427 basic_block fallthru_bb = e->dest;
1428 basic_block then_bb = create_empty_bb (cond_bb);
1429 if (current_loops)
1431 add_bb_to_loop (then_bb, cond_bb->loop_father);
1432 loops_state_set (LOOPS_NEED_FIXUP);
1435 /* Set up the newly created 'then block'. */
1436 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1437 int fallthrough_probability
1438 = then_more_likely_p
1439 ? PROB_VERY_UNLIKELY
1440 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1441 e->probability = PROB_ALWAYS - fallthrough_probability;
1442 if (create_then_fallthru_edge)
1443 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1445 /* Set up the fallthrough basic block. */
1446 e = find_edge (cond_bb, fallthru_bb);
1447 e->flags = EDGE_FALSE_VALUE;
1448 e->count = cond_bb->count;
1449 e->probability = fallthrough_probability;
1451 /* Update dominance info for the newly created then_bb; note that
1452 fallthru_bb's dominance info has already been updated by
1453 split_bock. */
1454 if (dom_info_available_p (CDI_DOMINATORS))
1455 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1457 *then_block = then_bb;
1458 *fallthrough_block = fallthru_bb;
1459 *iter = gsi_start_bb (fallthru_bb);
1461 return gsi_last_bb (cond_bb);
1464 /* Insert an if condition followed by a 'then block' right before the
1465 statement pointed to by ITER. The fallthrough block -- which is the
1466 else block of the condition as well as the destination of the
1467 outcoming edge of the 'then block' -- starts with the statement
1468 pointed to by ITER.
1470 COND is the condition of the if.
1472 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1473 'then block' is higher than the probability of the edge to the
1474 fallthrough block.
1476 Upon completion of the function, *THEN_BB is set to the newly
1477 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1478 fallthrough block.
1480 *ITER is adjusted to still point to the same statement it was
1481 pointing to initially. */
1483 static void
1484 insert_if_then_before_iter (gimple cond,
1485 gimple_stmt_iterator *iter,
1486 bool then_more_likely_p,
1487 basic_block *then_bb,
1488 basic_block *fallthrough_bb)
1490 gimple_stmt_iterator cond_insert_point =
1491 create_cond_insert_point (iter,
1492 /*before_p=*/true,
1493 then_more_likely_p,
1494 /*create_then_fallthru_edge=*/true,
1495 then_bb,
1496 fallthrough_bb);
1497 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1500 /* Build
1501 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1503 static tree
1504 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1505 tree base_addr, tree shadow_ptr_type)
1507 tree t, uintptr_type = TREE_TYPE (base_addr);
1508 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1509 gimple g;
1511 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1512 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1513 make_ssa_name (uintptr_type, NULL),
1514 base_addr, t);
1515 gimple_set_location (g, location);
1516 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1518 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1519 g = gimple_build_assign_with_ops (PLUS_EXPR,
1520 make_ssa_name (uintptr_type, NULL),
1521 gimple_assign_lhs (g), t);
1522 gimple_set_location (g, location);
1523 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1525 g = gimple_build_assign_with_ops (NOP_EXPR,
1526 make_ssa_name (shadow_ptr_type, NULL),
1527 gimple_assign_lhs (g), NULL_TREE);
1528 gimple_set_location (g, location);
1529 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1531 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1532 build_int_cst (shadow_ptr_type, 0));
1533 g = gimple_build_assign_with_ops (MEM_REF,
1534 make_ssa_name (shadow_type, NULL),
1535 t, NULL_TREE);
1536 gimple_set_location (g, location);
1537 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1538 return gimple_assign_lhs (g);
1541 /* BASE can already be an SSA_NAME; in that case, do not create a
1542 new SSA_NAME for it. */
1544 static tree
1545 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1546 bool before_p)
1548 if (TREE_CODE (base) == SSA_NAME)
1549 return base;
1550 gimple g
1551 = gimple_build_assign_with_ops (TREE_CODE (base),
1552 make_ssa_name (TREE_TYPE (base), NULL),
1553 base, NULL_TREE);
1554 gimple_set_location (g, loc);
1555 if (before_p)
1556 gsi_insert_before (iter, g, GSI_SAME_STMT);
1557 else
1558 gsi_insert_after (iter, g, GSI_NEW_STMT);
1559 return gimple_assign_lhs (g);
1562 /* LEN can already have necessary size and precision;
1563 in that case, do not create a new variable. */
1565 tree
1566 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1567 bool before_p)
1569 if (ptrofftype_p (len))
1570 return len;
1571 gimple g
1572 = gimple_build_assign_with_ops (NOP_EXPR,
1573 make_ssa_name (pointer_sized_int_node, NULL),
1574 len, NULL);
1575 gimple_set_location (g, loc);
1576 if (before_p)
1577 gsi_insert_before (iter, g, GSI_SAME_STMT);
1578 else
1579 gsi_insert_after (iter, g, GSI_NEW_STMT);
1580 return gimple_assign_lhs (g);
1583 /* Instrument the memory access instruction BASE. Insert new
1584 statements before or after ITER.
1586 Note that the memory access represented by BASE can be either an
1587 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1588 location. IS_STORE is TRUE for a store, FALSE for a load.
1589 BEFORE_P is TRUE for inserting the instrumentation code before
1590 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1591 for a scalar memory access and FALSE for memory region access.
1592 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1593 length. ALIGN tells alignment of accessed memory object.
1595 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1596 memory region have already been instrumented.
1598 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1599 statement it was pointing to prior to calling this function,
1600 otherwise, it points to the statement logically following it. */
1602 static void
1603 build_check_stmt (location_t loc, tree base, tree len,
1604 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1605 bool is_non_zero_len, bool before_p, bool is_store,
1606 bool is_scalar_access, unsigned int align = 0,
1607 bool start_instrumented = false,
1608 bool end_instrumented = false)
1610 gimple_stmt_iterator gsi = *iter;
1611 gimple g;
1613 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1615 if (start_instrumented && end_instrumented)
1617 if (!before_p)
1618 gsi_next (iter);
1619 return;
1622 gsi = *iter;
1624 base = unshare_expr (base);
1625 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1627 if (len)
1629 len = unshare_expr (len);
1630 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1632 else
1634 gcc_assert (size_in_bytes != -1);
1635 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1638 if (size_in_bytes > 1)
1640 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1641 || size_in_bytes > 16)
1642 is_scalar_access = false;
1643 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1645 /* On non-strict alignment targets, if
1646 16-byte access is just 8-byte aligned,
1647 this will result in misaligned shadow
1648 memory 2 byte load, but otherwise can
1649 be handled using one read. */
1650 if (size_in_bytes != 16
1651 || STRICT_ALIGNMENT
1652 || align < 8 * BITS_PER_UNIT)
1653 is_scalar_access = false;
1657 HOST_WIDE_INT flags = 0;
1658 if (is_store)
1659 flags |= ASAN_CHECK_STORE;
1660 if (is_non_zero_len)
1661 flags |= ASAN_CHECK_NON_ZERO_LEN;
1662 if (is_scalar_access)
1663 flags |= ASAN_CHECK_SCALAR_ACCESS;
1664 if (start_instrumented)
1665 flags |= ASAN_CHECK_START_INSTRUMENTED;
1666 if (end_instrumented)
1667 flags |= ASAN_CHECK_END_INSTRUMENTED;
1669 g = gimple_build_call_internal (IFN_ASAN_CHECK, 3,
1670 build_int_cst (integer_type_node, flags),
1671 base, len);
1672 gimple_set_location (g, loc);
1673 if (before_p)
1674 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1675 else
1677 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1678 gsi_next (&gsi);
1679 *iter = gsi;
1683 /* If T represents a memory access, add instrumentation code before ITER.
1684 LOCATION is source code location.
1685 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1687 static void
1688 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1689 location_t location, bool is_store)
1691 if (is_store && !ASAN_INSTRUMENT_WRITES)
1692 return;
1693 if (!is_store && !ASAN_INSTRUMENT_READS)
1694 return;
1696 tree type, base;
1697 HOST_WIDE_INT size_in_bytes;
1699 type = TREE_TYPE (t);
1700 switch (TREE_CODE (t))
1702 case ARRAY_REF:
1703 case COMPONENT_REF:
1704 case INDIRECT_REF:
1705 case MEM_REF:
1706 case VAR_DECL:
1707 break;
1708 /* FALLTHRU */
1709 default:
1710 return;
1713 size_in_bytes = int_size_in_bytes (type);
1714 if (size_in_bytes <= 0)
1715 return;
1717 HOST_WIDE_INT bitsize, bitpos;
1718 tree offset;
1719 enum machine_mode mode;
1720 int volatilep = 0, unsignedp = 0;
1721 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1722 &mode, &unsignedp, &volatilep, false);
1724 if (TREE_CODE (t) == COMPONENT_REF
1725 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1727 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1728 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1729 TREE_OPERAND (t, 0), repr,
1730 NULL_TREE), location, is_store);
1731 return;
1734 if (bitpos % BITS_PER_UNIT
1735 || bitsize != size_in_bytes * BITS_PER_UNIT)
1736 return;
1738 if (TREE_CODE (inner) == VAR_DECL
1739 && offset == NULL_TREE
1740 && bitpos >= 0
1741 && DECL_SIZE (inner)
1742 && tree_fits_shwi_p (DECL_SIZE (inner))
1743 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1745 if (DECL_THREAD_LOCAL_P (inner))
1746 return;
1747 if (!TREE_STATIC (inner))
1749 /* Automatic vars in the current function will be always
1750 accessible. */
1751 if (decl_function_context (inner) == current_function_decl)
1752 return;
1754 /* Always instrument external vars, they might be dynamically
1755 initialized. */
1756 else if (!DECL_EXTERNAL (inner))
1758 /* For static vars if they are known not to be dynamically
1759 initialized, they will be always accessible. */
1760 varpool_node *vnode = varpool_node::get (inner);
1761 if (vnode && !vnode->dynamically_initialized)
1762 return;
1766 base = build_fold_addr_expr (t);
1767 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1769 unsigned int align = get_object_alignment (t);
1770 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1771 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1772 is_store, /*is_scalar_access*/true, align);
1773 update_mem_ref_hash_table (base, size_in_bytes);
1774 update_mem_ref_hash_table (t, size_in_bytes);
1779 /* Instrument an access to a contiguous memory region that starts at
1780 the address pointed to by BASE, over a length of LEN (expressed in
1781 the sizeof (*BASE) bytes). ITER points to the instruction before
1782 which the instrumentation instructions must be inserted. LOCATION
1783 is the source location that the instrumentation instructions must
1784 have. If IS_STORE is true, then the memory access is a store;
1785 otherwise, it's a load. */
1787 static void
1788 instrument_mem_region_access (tree base, tree len,
1789 gimple_stmt_iterator *iter,
1790 location_t location, bool is_store)
1792 if (!POINTER_TYPE_P (TREE_TYPE (base))
1793 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1794 || integer_zerop (len))
1795 return;
1797 /* If the beginning of the memory region has already been
1798 instrumented, do not instrument it. */
1799 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1801 /* If the end of the memory region has already been instrumented, do
1802 not instrument it. */
1803 tree end = asan_mem_ref_get_end (base, len);
1804 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1806 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1808 build_check_stmt (location, base, len, size_in_bytes, iter,
1809 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1810 is_store, /*is_scalar_access*/false, /*align*/0,
1811 start_instrumented, end_instrumented);
1813 update_mem_ref_hash_table (base, 1);
1814 if (size_in_bytes != -1)
1815 update_mem_ref_hash_table (end, 1);
1817 *iter = gsi_for_stmt (gsi_stmt (*iter));
1820 /* Instrument the call (to the builtin strlen function) pointed to by
1821 ITER.
1823 This function instruments the access to the first byte of the
1824 argument, right before the call. After the call it instruments the
1825 access to the last byte of the argument; it uses the result of the
1826 call to deduce the offset of that last byte.
1828 Upon completion, iff the call has actually been instrumented, this
1829 function returns TRUE and *ITER points to the statement logically
1830 following the built-in strlen function call *ITER was initially
1831 pointing to. Otherwise, the function returns FALSE and *ITER
1832 remains unchanged. */
1834 static bool
1835 instrument_strlen_call (gimple_stmt_iterator *iter)
1837 gimple g;
1838 gimple call = gsi_stmt (*iter);
1839 gcc_assert (is_gimple_call (call));
1841 tree callee = gimple_call_fndecl (call);
1842 gcc_assert (is_builtin_fn (callee)
1843 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1844 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1846 location_t loc = gimple_location (call);
1848 tree len = gimple_call_lhs (call);
1849 if (len == NULL)
1850 /* Some passes might clear the return value of the strlen call;
1851 bail out in that case. Return FALSE as we are not advancing
1852 *ITER. */
1853 return false;
1854 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1856 len = maybe_cast_to_ptrmode (loc, len, iter, /*before_p*/false);
1858 tree str_arg = gimple_call_arg (call, 0);
1859 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1861 tree cptr_type = build_pointer_type (char_type_node);
1862 g = gimple_build_assign_with_ops (NOP_EXPR,
1863 make_ssa_name (cptr_type, NULL),
1864 str_arg, NULL);
1865 gimple_set_location (g, loc);
1866 gsi_insert_before (iter, g, GSI_SAME_STMT);
1867 str_arg = gimple_assign_lhs (g);
1869 build_check_stmt (loc, str_arg, NULL_TREE, 1, iter,
1870 /*is_non_zero_len*/true, /*before_p=*/true,
1871 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1872 start_instrumented, start_instrumented);
1874 g = gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1875 make_ssa_name (cptr_type, NULL),
1876 str_arg,
1877 len);
1878 gimple_set_location (g, loc);
1879 gsi_insert_after (iter, g, GSI_NEW_STMT);
1881 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1882 /*is_non_zero_len*/true, /*before_p=*/false,
1883 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1885 return true;
1888 /* Instrument the call to a built-in memory access function that is
1889 pointed to by the iterator ITER.
1891 Upon completion, return TRUE iff *ITER has been advanced to the
1892 statement following the one it was originally pointing to. */
1894 static bool
1895 instrument_builtin_call (gimple_stmt_iterator *iter)
1897 if (!ASAN_MEMINTRIN)
1898 return false;
1900 bool iter_advanced_p = false;
1901 gimple call = gsi_stmt (*iter);
1903 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1905 tree callee = gimple_call_fndecl (call);
1906 location_t loc = gimple_location (call);
1908 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1909 iter_advanced_p = instrument_strlen_call (iter);
1910 else
1912 asan_mem_ref src0, src1, dest;
1913 asan_mem_ref_init (&src0, NULL, 1);
1914 asan_mem_ref_init (&src1, NULL, 1);
1915 asan_mem_ref_init (&dest, NULL, 1);
1917 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1918 bool src0_is_store = false, src1_is_store = false,
1919 dest_is_store = false, dest_is_deref = false;
1921 if (get_mem_refs_of_builtin_call (call,
1922 &src0, &src0_len, &src0_is_store,
1923 &src1, &src1_len, &src1_is_store,
1924 &dest, &dest_len, &dest_is_store,
1925 &dest_is_deref))
1927 if (dest_is_deref)
1929 instrument_derefs (iter, dest.start, loc, dest_is_store);
1930 gsi_next (iter);
1931 iter_advanced_p = true;
1933 else if (src0_len || src1_len || dest_len)
1935 if (src0.start != NULL_TREE)
1936 instrument_mem_region_access (src0.start, src0_len,
1937 iter, loc, /*is_store=*/false);
1938 if (src1.start != NULL_TREE)
1939 instrument_mem_region_access (src1.start, src1_len,
1940 iter, loc, /*is_store=*/false);
1941 if (dest.start != NULL_TREE)
1942 instrument_mem_region_access (dest.start, dest_len,
1943 iter, loc, /*is_store=*/true);
1944 *iter = gsi_for_stmt (call);
1945 gsi_next (iter);
1946 iter_advanced_p = true;
1950 return iter_advanced_p;
1953 /* Instrument the assignment statement ITER if it is subject to
1954 instrumentation. Return TRUE iff instrumentation actually
1955 happened. In that case, the iterator ITER is advanced to the next
1956 logical expression following the one initially pointed to by ITER,
1957 and the relevant memory reference that which access has been
1958 instrumented is added to the memory references hash table. */
1960 static bool
1961 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1963 gimple s = gsi_stmt (*iter);
1965 gcc_assert (gimple_assign_single_p (s));
1967 tree ref_expr = NULL_TREE;
1968 bool is_store, is_instrumented = false;
1970 if (gimple_store_p (s))
1972 ref_expr = gimple_assign_lhs (s);
1973 is_store = true;
1974 instrument_derefs (iter, ref_expr,
1975 gimple_location (s),
1976 is_store);
1977 is_instrumented = true;
1980 if (gimple_assign_load_p (s))
1982 ref_expr = gimple_assign_rhs1 (s);
1983 is_store = false;
1984 instrument_derefs (iter, ref_expr,
1985 gimple_location (s),
1986 is_store);
1987 is_instrumented = true;
1990 if (is_instrumented)
1991 gsi_next (iter);
1993 return is_instrumented;
1996 /* Instrument the function call pointed to by the iterator ITER, if it
1997 is subject to instrumentation. At the moment, the only function
1998 calls that are instrumented are some built-in functions that access
1999 memory. Look at instrument_builtin_call to learn more.
2001 Upon completion return TRUE iff *ITER was advanced to the statement
2002 following the one it was originally pointing to. */
2004 static bool
2005 maybe_instrument_call (gimple_stmt_iterator *iter)
2007 gimple stmt = gsi_stmt (*iter);
2008 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2010 if (is_builtin && instrument_builtin_call (iter))
2011 return true;
2013 if (gimple_call_noreturn_p (stmt))
2015 if (is_builtin)
2017 tree callee = gimple_call_fndecl (stmt);
2018 switch (DECL_FUNCTION_CODE (callee))
2020 case BUILT_IN_UNREACHABLE:
2021 case BUILT_IN_TRAP:
2022 /* Don't instrument these. */
2023 return false;
2026 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2027 gimple g = gimple_build_call (decl, 0);
2028 gimple_set_location (g, gimple_location (stmt));
2029 gsi_insert_before (iter, g, GSI_SAME_STMT);
2031 return false;
2034 /* Walk each instruction of all basic block and instrument those that
2035 represent memory references: loads, stores, or function calls.
2036 In a given basic block, this function avoids instrumenting memory
2037 references that have already been instrumented. */
2039 static void
2040 transform_statements (void)
2042 basic_block bb, last_bb = NULL;
2043 gimple_stmt_iterator i;
2044 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2046 FOR_EACH_BB_FN (bb, cfun)
2048 basic_block prev_bb = bb;
2050 if (bb->index >= saved_last_basic_block) continue;
2052 /* Flush the mem ref hash table, if current bb doesn't have
2053 exactly one predecessor, or if that predecessor (skipping
2054 over asan created basic blocks) isn't the last processed
2055 basic block. Thus we effectively flush on extended basic
2056 block boundaries. */
2057 while (single_pred_p (prev_bb))
2059 prev_bb = single_pred (prev_bb);
2060 if (prev_bb->index < saved_last_basic_block)
2061 break;
2063 if (prev_bb != last_bb)
2064 empty_mem_ref_hash_table ();
2065 last_bb = bb;
2067 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2069 gimple s = gsi_stmt (i);
2071 if (has_stmt_been_instrumented_p (s))
2072 gsi_next (&i);
2073 else if (gimple_assign_single_p (s)
2074 && maybe_instrument_assignment (&i))
2075 /* Nothing to do as maybe_instrument_assignment advanced
2076 the iterator I. */;
2077 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2078 /* Nothing to do as maybe_instrument_call
2079 advanced the iterator I. */;
2080 else
2082 /* No instrumentation happened.
2084 If the current instruction is a function call that
2085 might free something, let's forget about the memory
2086 references that got instrumented. Otherwise we might
2087 miss some instrumentation opportunities. */
2088 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2089 empty_mem_ref_hash_table ();
2091 gsi_next (&i);
2095 free_mem_ref_resources ();
2098 /* Build
2099 __asan_before_dynamic_init (module_name)
2101 __asan_after_dynamic_init ()
2102 call. */
2104 tree
2105 asan_dynamic_init_call (bool after_p)
2107 tree fn = builtin_decl_implicit (after_p
2108 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2109 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2110 tree module_name_cst = NULL_TREE;
2111 if (!after_p)
2113 pretty_printer module_name_pp;
2114 pp_string (&module_name_pp, main_input_filename);
2116 if (shadow_ptr_types[0] == NULL_TREE)
2117 asan_init_shadow_ptr_types ();
2118 module_name_cst = asan_pp_string (&module_name_pp);
2119 module_name_cst = fold_convert (const_ptr_type_node,
2120 module_name_cst);
2123 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2126 /* Build
2127 struct __asan_global
2129 const void *__beg;
2130 uptr __size;
2131 uptr __size_with_redzone;
2132 const void *__name;
2133 const void *__module_name;
2134 uptr __has_dynamic_init;
2135 } type. */
2137 static tree
2138 asan_global_struct (void)
2140 static const char *field_names[6]
2141 = { "__beg", "__size", "__size_with_redzone",
2142 "__name", "__module_name", "__has_dynamic_init" };
2143 tree fields[6], ret;
2144 int i;
2146 ret = make_node (RECORD_TYPE);
2147 for (i = 0; i < 6; i++)
2149 fields[i]
2150 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2151 get_identifier (field_names[i]),
2152 (i == 0 || i == 3) ? const_ptr_type_node
2153 : pointer_sized_int_node);
2154 DECL_CONTEXT (fields[i]) = ret;
2155 if (i)
2156 DECL_CHAIN (fields[i - 1]) = fields[i];
2158 TYPE_FIELDS (ret) = fields[0];
2159 TYPE_NAME (ret) = get_identifier ("__asan_global");
2160 layout_type (ret);
2161 return ret;
2164 /* Append description of a single global DECL into vector V.
2165 TYPE is __asan_global struct type as returned by asan_global_struct. */
2167 static void
2168 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2170 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2171 unsigned HOST_WIDE_INT size;
2172 tree str_cst, module_name_cst, refdecl = decl;
2173 vec<constructor_elt, va_gc> *vinner = NULL;
2175 pretty_printer asan_pp, module_name_pp;
2177 if (DECL_NAME (decl))
2178 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2179 else
2180 pp_string (&asan_pp, "<unknown>");
2181 str_cst = asan_pp_string (&asan_pp);
2183 pp_string (&module_name_pp, main_input_filename);
2184 module_name_cst = asan_pp_string (&module_name_pp);
2186 if (asan_needs_local_alias (decl))
2188 char buf[20];
2189 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2190 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2191 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2192 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2193 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2194 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2195 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2196 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2197 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2198 TREE_STATIC (refdecl) = 1;
2199 TREE_PUBLIC (refdecl) = 0;
2200 TREE_USED (refdecl) = 1;
2201 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2204 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2205 fold_convert (const_ptr_type_node,
2206 build_fold_addr_expr (refdecl)));
2207 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2208 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2209 size += asan_red_zone_size (size);
2210 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2211 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2212 fold_convert (const_ptr_type_node, str_cst));
2213 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2214 fold_convert (const_ptr_type_node, module_name_cst));
2215 varpool_node *vnode = varpool_node::get (decl);
2216 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2217 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2218 build_int_cst (uptr, has_dynamic_init));
2219 init = build_constructor (type, vinner);
2220 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2223 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2224 void
2225 initialize_sanitizer_builtins (void)
2227 tree decl;
2229 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2230 return;
2232 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2233 tree BT_FN_VOID_PTR
2234 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2235 tree BT_FN_VOID_CONST_PTR
2236 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2237 tree BT_FN_VOID_PTR_PTR
2238 = build_function_type_list (void_type_node, ptr_type_node,
2239 ptr_type_node, NULL_TREE);
2240 tree BT_FN_VOID_PTR_PTR_PTR
2241 = build_function_type_list (void_type_node, ptr_type_node,
2242 ptr_type_node, ptr_type_node, NULL_TREE);
2243 tree BT_FN_VOID_PTR_PTRMODE
2244 = build_function_type_list (void_type_node, ptr_type_node,
2245 pointer_sized_int_node, NULL_TREE);
2246 tree BT_FN_VOID_INT
2247 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2248 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2249 tree BT_FN_IX_CONST_VPTR_INT[5];
2250 tree BT_FN_IX_VPTR_IX_INT[5];
2251 tree BT_FN_VOID_VPTR_IX_INT[5];
2252 tree vptr
2253 = build_pointer_type (build_qualified_type (void_type_node,
2254 TYPE_QUAL_VOLATILE));
2255 tree cvptr
2256 = build_pointer_type (build_qualified_type (void_type_node,
2257 TYPE_QUAL_VOLATILE
2258 |TYPE_QUAL_CONST));
2259 tree boolt
2260 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2261 int i;
2262 for (i = 0; i < 5; i++)
2264 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2265 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2266 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2267 integer_type_node, integer_type_node,
2268 NULL_TREE);
2269 BT_FN_IX_CONST_VPTR_INT[i]
2270 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2271 BT_FN_IX_VPTR_IX_INT[i]
2272 = build_function_type_list (ix, vptr, ix, integer_type_node,
2273 NULL_TREE);
2274 BT_FN_VOID_VPTR_IX_INT[i]
2275 = build_function_type_list (void_type_node, vptr, ix,
2276 integer_type_node, NULL_TREE);
2278 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2279 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2280 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2281 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2282 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2283 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2284 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2285 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2286 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2287 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2288 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2289 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2290 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2291 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2292 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2293 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2294 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2295 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2296 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2297 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2298 #undef ATTR_NOTHROW_LEAF_LIST
2299 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2300 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2301 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2302 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2303 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2304 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2305 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2306 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2307 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2308 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2309 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2310 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2311 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2312 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2313 #undef DEF_SANITIZER_BUILTIN
2314 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2315 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2316 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2317 set_call_expr_flags (decl, ATTRS); \
2318 set_builtin_decl (ENUM, decl, true);
2320 #include "sanitizer.def"
2322 #undef DEF_SANITIZER_BUILTIN
2325 /* Called via htab_traverse. Count number of emitted
2326 STRING_CSTs in the constant hash table. */
2328 static int
2329 count_string_csts (void **slot, void *data)
2331 struct constant_descriptor_tree *desc
2332 = (struct constant_descriptor_tree *) *slot;
2333 if (TREE_CODE (desc->value) == STRING_CST
2334 && TREE_ASM_WRITTEN (desc->value)
2335 && asan_protect_global (desc->value))
2336 ++*((unsigned HOST_WIDE_INT *) data);
2337 return 1;
2340 /* Helper structure to pass two parameters to
2341 add_string_csts. */
2343 struct asan_add_string_csts_data
2345 tree type;
2346 vec<constructor_elt, va_gc> *v;
2349 /* Called via htab_traverse. Call asan_add_global
2350 on emitted STRING_CSTs from the constant hash table. */
2352 static int
2353 add_string_csts (void **slot, void *data)
2355 struct constant_descriptor_tree *desc
2356 = (struct constant_descriptor_tree *) *slot;
2357 if (TREE_CODE (desc->value) == STRING_CST
2358 && TREE_ASM_WRITTEN (desc->value)
2359 && asan_protect_global (desc->value))
2361 struct asan_add_string_csts_data *aascd
2362 = (struct asan_add_string_csts_data *) data;
2363 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2364 aascd->type, aascd->v);
2366 return 1;
2369 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2370 invoke ggc_collect. */
2371 static GTY(()) tree asan_ctor_statements;
2373 /* Module-level instrumentation.
2374 - Insert __asan_init_vN() into the list of CTORs.
2375 - TODO: insert redzones around globals.
2378 void
2379 asan_finish_file (void)
2381 varpool_node *vnode;
2382 unsigned HOST_WIDE_INT gcount = 0;
2384 if (shadow_ptr_types[0] == NULL_TREE)
2385 asan_init_shadow_ptr_types ();
2386 /* Avoid instrumenting code in the asan ctors/dtors.
2387 We don't need to insert padding after the description strings,
2388 nor after .LASAN* array. */
2389 flag_sanitize &= ~SANITIZE_ADDRESS;
2391 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2392 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2393 FOR_EACH_DEFINED_VARIABLE (vnode)
2394 if (TREE_ASM_WRITTEN (vnode->decl)
2395 && asan_protect_global (vnode->decl))
2396 ++gcount;
2397 htab_t const_desc_htab = constant_pool_htab ();
2398 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2399 if (gcount)
2401 tree type = asan_global_struct (), var, ctor;
2402 tree dtor_statements = NULL_TREE;
2403 vec<constructor_elt, va_gc> *v;
2404 char buf[20];
2406 type = build_array_type_nelts (type, gcount);
2407 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2408 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2409 type);
2410 TREE_STATIC (var) = 1;
2411 TREE_PUBLIC (var) = 0;
2412 DECL_ARTIFICIAL (var) = 1;
2413 DECL_IGNORED_P (var) = 1;
2414 vec_alloc (v, gcount);
2415 FOR_EACH_DEFINED_VARIABLE (vnode)
2416 if (TREE_ASM_WRITTEN (vnode->decl)
2417 && asan_protect_global (vnode->decl))
2418 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2419 struct asan_add_string_csts_data aascd;
2420 aascd.type = TREE_TYPE (type);
2421 aascd.v = v;
2422 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2423 ctor = build_constructor (type, v);
2424 TREE_CONSTANT (ctor) = 1;
2425 TREE_STATIC (ctor) = 1;
2426 DECL_INITIAL (var) = ctor;
2427 varpool_node::finalize_decl (var);
2429 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2430 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2431 append_to_statement_list (build_call_expr (fn, 2,
2432 build_fold_addr_expr (var),
2433 gcount_tree),
2434 &asan_ctor_statements);
2436 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2437 append_to_statement_list (build_call_expr (fn, 2,
2438 build_fold_addr_expr (var),
2439 gcount_tree),
2440 &dtor_statements);
2441 cgraph_build_static_cdtor ('D', dtor_statements,
2442 MAX_RESERVED_INIT_PRIORITY - 1);
2444 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2445 MAX_RESERVED_INIT_PRIORITY - 1);
2446 flag_sanitize |= SANITIZE_ADDRESS;
2449 /* Expand the ASAN_{LOAD,STORE} builtins. */
2451 static bool
2452 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2454 gimple g = gsi_stmt (*iter);
2455 location_t loc = gimple_location (g);
2457 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2458 gcc_assert (flags < ASAN_CHECK_LAST);
2459 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2460 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2461 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2462 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2463 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2465 tree base = gimple_call_arg (g, 1);
2466 tree len = gimple_call_arg (g, 2);
2468 HOST_WIDE_INT size_in_bytes
2469 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2471 if (use_calls)
2473 /* Instrument using callbacks. */
2474 gimple g
2475 = gimple_build_assign_with_ops (NOP_EXPR,
2476 make_ssa_name (pointer_sized_int_node,
2477 NULL),
2478 base, NULL_TREE);
2479 gimple_set_location (g, loc);
2480 gsi_insert_before (iter, g, GSI_SAME_STMT);
2481 tree base_addr = gimple_assign_lhs (g);
2483 int nargs;
2484 tree fun = check_func (is_store, size_in_bytes, &nargs);
2485 if (nargs == 1)
2486 g = gimple_build_call (fun, 1, base_addr);
2487 else
2489 gcc_assert (nargs == 2);
2490 g = gimple_build_assign_with_ops (NOP_EXPR,
2491 make_ssa_name (pointer_sized_int_node,
2492 NULL),
2493 len, NULL_TREE);
2494 gimple_set_location (g, loc);
2495 gsi_insert_before (iter, g, GSI_SAME_STMT);
2496 tree sz_arg = gimple_assign_lhs (g);
2497 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2499 gimple_set_location (g, loc);
2500 gsi_replace (iter, g, false);
2501 return false;
2504 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2506 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2507 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2509 gimple_stmt_iterator gsi = *iter;
2511 if (!is_non_zero_len)
2513 /* So, the length of the memory area to asan-protect is
2514 non-constant. Let's guard the generated instrumentation code
2515 like:
2517 if (len != 0)
2519 //asan instrumentation code goes here.
2521 // falltrough instructions, starting with *ITER. */
2523 g = gimple_build_cond (NE_EXPR,
2524 len,
2525 build_int_cst (TREE_TYPE (len), 0),
2526 NULL_TREE, NULL_TREE);
2527 gimple_set_location (g, loc);
2529 basic_block then_bb, fallthrough_bb;
2530 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2531 &then_bb, &fallthrough_bb);
2532 /* Note that fallthrough_bb starts with the statement that was
2533 pointed to by ITER. */
2535 /* The 'then block' of the 'if (len != 0) condition is where
2536 we'll generate the asan instrumentation code now. */
2537 gsi = gsi_last_bb (then_bb);
2540 /* Get an iterator on the point where we can add the condition
2541 statement for the instrumentation. */
2542 basic_block then_bb, else_bb;
2543 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2544 /*then_more_likely_p=*/false,
2545 /*create_then_fallthru_edge=*/false,
2546 &then_bb,
2547 &else_bb);
2549 g = gimple_build_assign_with_ops (NOP_EXPR,
2550 make_ssa_name (pointer_sized_int_node,
2551 NULL),
2552 base, NULL_TREE);
2553 gimple_set_location (g, loc);
2554 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2555 tree base_addr = gimple_assign_lhs (g);
2557 tree t = NULL_TREE;
2558 if (real_size_in_bytes >= 8)
2560 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2561 shadow_ptr_type);
2562 t = shadow;
2564 else
2566 /* Slow path for 1, 2 and 4 byte accesses. */
2568 if (!start_instrumented)
2570 /* Test (shadow != 0)
2571 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2572 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2573 shadow_ptr_type);
2574 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2575 gimple_seq seq = NULL;
2576 gimple_seq_add_stmt (&seq, shadow_test);
2577 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, base_addr, 7));
2578 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2579 gimple_seq_last (seq)));
2580 if (real_size_in_bytes > 1)
2581 gimple_seq_add_stmt (&seq,
2582 build_assign (PLUS_EXPR, gimple_seq_last (seq),
2583 real_size_in_bytes - 1));
2584 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2585 gimple_seq_last (seq),
2586 shadow));
2587 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2588 gimple_seq_last (seq)));
2589 t = gimple_assign_lhs (gimple_seq_last (seq));
2590 gimple_seq_set_location (seq, loc);
2591 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2594 /* For non-constant, misaligned or otherwise weird access sizes,
2595 check first and last byte. */
2596 if (size_in_bytes == -1 && !end_instrumented)
2598 g = gimple_build_assign_with_ops (MINUS_EXPR,
2599 make_ssa_name (pointer_sized_int_node, NULL),
2600 len,
2601 build_int_cst (pointer_sized_int_node, 1));
2602 gimple_set_location (g, loc);
2603 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2604 tree last = gimple_assign_lhs (g);
2605 g = gimple_build_assign_with_ops (PLUS_EXPR,
2606 make_ssa_name (pointer_sized_int_node, NULL),
2607 base_addr,
2608 last);
2609 gimple_set_location (g, loc);
2610 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2611 tree base_end_addr = gimple_assign_lhs (g);
2613 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2614 shadow_ptr_type);
2615 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2616 gimple_seq seq = NULL;
2617 gimple_seq_add_stmt (&seq, shadow_test);
2618 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2619 base_end_addr, 7));
2620 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2621 gimple_seq_last (seq)));
2622 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2623 gimple_seq_last (seq),
2624 shadow));
2625 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2626 gimple_seq_last (seq)));
2627 if (!start_instrumented)
2628 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2629 gimple_seq_last (seq)));
2630 t = gimple_assign_lhs (gimple_seq_last (seq));
2631 gimple_seq_set_location (seq, loc);
2632 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2636 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2637 NULL_TREE, NULL_TREE);
2638 gimple_set_location (g, loc);
2639 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2641 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2642 gsi = gsi_start_bb (then_bb);
2643 int nargs;
2644 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2645 g = gimple_build_call (fun, nargs, base_addr, len);
2646 gimple_set_location (g, loc);
2647 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2649 gsi_remove (iter, true);
2650 *iter = gsi_start_bb (else_bb);
2652 return true;
2655 /* Instrument the current function. */
2657 static unsigned int
2658 asan_instrument (void)
2660 if (shadow_ptr_types[0] == NULL_TREE)
2661 asan_init_shadow_ptr_types ();
2662 transform_statements ();
2663 return 0;
2666 static bool
2667 gate_asan (void)
2669 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2670 && !lookup_attribute ("no_sanitize_address",
2671 DECL_ATTRIBUTES (current_function_decl));
2674 namespace {
2676 const pass_data pass_data_asan =
2678 GIMPLE_PASS, /* type */
2679 "asan", /* name */
2680 OPTGROUP_NONE, /* optinfo_flags */
2681 TV_NONE, /* tv_id */
2682 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2683 0, /* properties_provided */
2684 0, /* properties_destroyed */
2685 0, /* todo_flags_start */
2686 TODO_update_ssa, /* todo_flags_finish */
2689 class pass_asan : public gimple_opt_pass
2691 public:
2692 pass_asan (gcc::context *ctxt)
2693 : gimple_opt_pass (pass_data_asan, ctxt)
2696 /* opt_pass methods: */
2697 opt_pass * clone () { return new pass_asan (m_ctxt); }
2698 virtual bool gate (function *) { return gate_asan (); }
2699 virtual unsigned int execute (function *) { return asan_instrument (); }
2701 }; // class pass_asan
2703 } // anon namespace
2705 gimple_opt_pass *
2706 make_pass_asan (gcc::context *ctxt)
2708 return new pass_asan (ctxt);
2711 namespace {
2713 const pass_data pass_data_asan_O0 =
2715 GIMPLE_PASS, /* type */
2716 "asan0", /* name */
2717 OPTGROUP_NONE, /* optinfo_flags */
2718 TV_NONE, /* tv_id */
2719 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2720 0, /* properties_provided */
2721 0, /* properties_destroyed */
2722 0, /* todo_flags_start */
2723 TODO_update_ssa, /* todo_flags_finish */
2726 class pass_asan_O0 : public gimple_opt_pass
2728 public:
2729 pass_asan_O0 (gcc::context *ctxt)
2730 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2733 /* opt_pass methods: */
2734 virtual bool gate (function *) { return !optimize && gate_asan (); }
2735 virtual unsigned int execute (function *) { return asan_instrument (); }
2737 }; // class pass_asan_O0
2739 } // anon namespace
2741 gimple_opt_pass *
2742 make_pass_asan_O0 (gcc::context *ctxt)
2744 return new pass_asan_O0 (ctxt);
2747 /* Perform optimization of sanitize functions. */
2749 namespace {
2751 const pass_data pass_data_sanopt =
2753 GIMPLE_PASS, /* type */
2754 "sanopt", /* name */
2755 OPTGROUP_NONE, /* optinfo_flags */
2756 TV_NONE, /* tv_id */
2757 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2758 0, /* properties_provided */
2759 0, /* properties_destroyed */
2760 0, /* todo_flags_start */
2761 TODO_update_ssa, /* todo_flags_finish */
2764 class pass_sanopt : public gimple_opt_pass
2766 public:
2767 pass_sanopt (gcc::context *ctxt)
2768 : gimple_opt_pass (pass_data_sanopt, ctxt)
2771 /* opt_pass methods: */
2772 virtual bool gate (function *) { return flag_sanitize; }
2773 virtual unsigned int execute (function *);
2775 }; // class pass_sanopt
2777 unsigned int
2778 pass_sanopt::execute (function *fun)
2780 basic_block bb;
2782 int asan_num_accesses = 0;
2783 if (flag_sanitize & SANITIZE_ADDRESS)
2785 gimple_stmt_iterator gsi;
2786 FOR_EACH_BB_FN (bb, fun)
2787 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2789 gimple stmt = gsi_stmt (gsi);
2790 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2791 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2792 ++asan_num_accesses;
2796 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2797 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2799 FOR_EACH_BB_FN (bb, fun)
2801 gimple_stmt_iterator gsi;
2802 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2804 gimple stmt = gsi_stmt (gsi);
2805 bool no_next = false;
2807 if (!is_gimple_call (stmt))
2809 gsi_next (&gsi);
2810 continue;
2813 if (gimple_call_internal_p (stmt))
2815 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2816 switch (ifn)
2818 case IFN_UBSAN_NULL:
2819 no_next = ubsan_expand_null_ifn (&gsi);
2820 break;
2821 case IFN_UBSAN_BOUNDS:
2822 no_next = ubsan_expand_bounds_ifn (&gsi);
2823 break;
2824 case IFN_ASAN_CHECK:
2826 no_next = asan_expand_check_ifn (&gsi, use_calls);
2827 break;
2829 default:
2830 break;
2834 if (dump_file && (dump_flags & TDF_DETAILS))
2836 fprintf (dump_file, "Optimized\n ");
2837 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2838 fprintf (dump_file, "\n");
2841 if (!no_next)
2842 gsi_next (&gsi);
2845 return 0;
2848 } // anon namespace
2850 gimple_opt_pass *
2851 make_pass_sanopt (gcc::context *ctxt)
2853 return new pass_sanopt (ctxt);
2856 #include "gt-asan.h"