* gcc.dg/pr32912-3.c: Compile with -w.
[official-gcc.git] / gcc / tree-vrp.c
blob1e1ffaa7e69adfcc707dddf23687debeffec4075
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph;
45 /* Local functions. */
46 static int compare_values (tree val1, tree val2);
47 static int compare_values_warnv (tree val1, tree val2, bool *);
48 static void vrp_meet (value_range_t *, value_range_t *);
49 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
71 /* Value being compared against. */
72 tree val;
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
78 typedef struct assert_locus_d *assert_locus_t;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
97 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
98 number of executable edges we saw the last time we visited the
99 node. */
100 static int *vr_phi_edge_counts;
103 /* Return whether TYPE should use an overflow infinity distinct from
104 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
105 represent a signed overflow during VRP computations. An infinity
106 is distinct from a half-range, which will go from some number to
107 TYPE_{MIN,MAX}_VALUE. */
109 static inline bool
110 needs_overflow_infinity (const_tree type)
112 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
115 /* Return whether TYPE can support our overflow infinity
116 representation: we use the TREE_OVERFLOW flag, which only exists
117 for constants. If TYPE doesn't support this, we don't optimize
118 cases which would require signed overflow--we drop them to
119 VARYING. */
121 static inline bool
122 supports_overflow_infinity (const_tree type)
124 #ifdef ENABLE_CHECKING
125 gcc_assert (needs_overflow_infinity (type));
126 #endif
127 return (TYPE_MIN_VALUE (type) != NULL_TREE
128 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
129 && TYPE_MAX_VALUE (type) != NULL_TREE
130 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
133 /* VAL is the maximum or minimum value of a type. Return a
134 corresponding overflow infinity. */
136 static inline tree
137 make_overflow_infinity (tree val)
139 #ifdef ENABLE_CHECKING
140 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
141 #endif
142 val = copy_node (val);
143 TREE_OVERFLOW (val) = 1;
144 return val;
147 /* Return a negative overflow infinity for TYPE. */
149 static inline tree
150 negative_overflow_infinity (tree type)
152 #ifdef ENABLE_CHECKING
153 gcc_assert (supports_overflow_infinity (type));
154 #endif
155 return make_overflow_infinity (TYPE_MIN_VALUE (type));
158 /* Return a positive overflow infinity for TYPE. */
160 static inline tree
161 positive_overflow_infinity (tree type)
163 #ifdef ENABLE_CHECKING
164 gcc_assert (supports_overflow_infinity (type));
165 #endif
166 return make_overflow_infinity (TYPE_MAX_VALUE (type));
169 /* Return whether VAL is a negative overflow infinity. */
171 static inline bool
172 is_negative_overflow_infinity (const_tree val)
174 return (needs_overflow_infinity (TREE_TYPE (val))
175 && CONSTANT_CLASS_P (val)
176 && TREE_OVERFLOW (val)
177 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
180 /* Return whether VAL is a positive overflow infinity. */
182 static inline bool
183 is_positive_overflow_infinity (const_tree val)
185 return (needs_overflow_infinity (TREE_TYPE (val))
186 && CONSTANT_CLASS_P (val)
187 && TREE_OVERFLOW (val)
188 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
191 /* Return whether VAL is a positive or negative overflow infinity. */
193 static inline bool
194 is_overflow_infinity (const_tree val)
196 return (needs_overflow_infinity (TREE_TYPE (val))
197 && CONSTANT_CLASS_P (val)
198 && TREE_OVERFLOW (val)
199 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
200 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
203 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
204 the same value with TREE_OVERFLOW clear. This can be used to avoid
205 confusing a regular value with an overflow value. */
207 static inline tree
208 avoid_overflow_infinity (tree val)
210 if (!is_overflow_infinity (val))
211 return val;
213 if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
214 return TYPE_MAX_VALUE (TREE_TYPE (val));
215 else
217 #ifdef ENABLE_CHECKING
218 gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
219 #endif
220 return TYPE_MIN_VALUE (TREE_TYPE (val));
225 /* Return whether VAL is equal to the maximum value of its type. This
226 will be true for a positive overflow infinity. We can't do a
227 simple equality comparison with TYPE_MAX_VALUE because C typedefs
228 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
229 to the integer constant with the same value in the type. */
231 static inline bool
232 vrp_val_is_max (const_tree val)
234 tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
236 return (val == type_max
237 || (type_max != NULL_TREE
238 && operand_equal_p (val, type_max, 0)));
241 /* Return whether VAL is equal to the minimum value of its type. This
242 will be true for a negative overflow infinity. */
244 static inline bool
245 vrp_val_is_min (const_tree val)
247 tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
249 return (val == type_min
250 || (type_min != NULL_TREE
251 && operand_equal_p (val, type_min, 0)));
255 /* Return true if ARG is marked with the nonnull attribute in the
256 current function signature. */
258 static bool
259 nonnull_arg_p (const_tree arg)
261 tree t, attrs, fntype;
262 unsigned HOST_WIDE_INT arg_num;
264 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
266 /* The static chain decl is always non null. */
267 if (arg == cfun->static_chain_decl)
268 return true;
270 fntype = TREE_TYPE (current_function_decl);
271 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
273 /* If "nonnull" wasn't specified, we know nothing about the argument. */
274 if (attrs == NULL_TREE)
275 return false;
277 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
278 if (TREE_VALUE (attrs) == NULL_TREE)
279 return true;
281 /* Get the position number for ARG in the function signature. */
282 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
284 t = TREE_CHAIN (t), arg_num++)
286 if (t == arg)
287 break;
290 gcc_assert (t == arg);
292 /* Now see if ARG_NUM is mentioned in the nonnull list. */
293 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
295 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
296 return true;
299 return false;
303 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
305 static void
306 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
307 tree max, bitmap equiv)
309 #if defined ENABLE_CHECKING
310 /* Check the validity of the range. */
311 if (t == VR_RANGE || t == VR_ANTI_RANGE)
313 int cmp;
315 gcc_assert (min && max);
317 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
318 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
320 cmp = compare_values (min, max);
321 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
323 if (needs_overflow_infinity (TREE_TYPE (min)))
324 gcc_assert (!is_overflow_infinity (min)
325 || !is_overflow_infinity (max));
328 if (t == VR_UNDEFINED || t == VR_VARYING)
329 gcc_assert (min == NULL_TREE && max == NULL_TREE);
331 if (t == VR_UNDEFINED || t == VR_VARYING)
332 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
333 #endif
335 vr->type = t;
336 vr->min = min;
337 vr->max = max;
339 /* Since updating the equivalence set involves deep copying the
340 bitmaps, only do it if absolutely necessary. */
341 if (vr->equiv == NULL
342 && equiv != NULL)
343 vr->equiv = BITMAP_ALLOC (NULL);
345 if (equiv != vr->equiv)
347 if (equiv && !bitmap_empty_p (equiv))
348 bitmap_copy (vr->equiv, equiv);
349 else
350 bitmap_clear (vr->equiv);
355 /* Copy value range FROM into value range TO. */
357 static inline void
358 copy_value_range (value_range_t *to, value_range_t *from)
360 set_value_range (to, from->type, from->min, from->max, from->equiv);
364 /* Set value range VR to VR_VARYING. */
366 static inline void
367 set_value_range_to_varying (value_range_t *vr)
369 vr->type = VR_VARYING;
370 vr->min = vr->max = NULL_TREE;
371 if (vr->equiv)
372 bitmap_clear (vr->equiv);
375 /* Set value range VR to a single value. This function is only called
376 with values we get from statements, and exists to clear the
377 TREE_OVERFLOW flag so that we don't think we have an overflow
378 infinity when we shouldn't. */
380 static inline void
381 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
383 gcc_assert (is_gimple_min_invariant (val));
384 val = avoid_overflow_infinity (val);
385 set_value_range (vr, VR_RANGE, val, val, equiv);
388 /* Set value range VR to a non-negative range of type TYPE.
389 OVERFLOW_INFINITY indicates whether to use an overflow infinity
390 rather than TYPE_MAX_VALUE; this should be true if we determine
391 that the range is nonnegative based on the assumption that signed
392 overflow does not occur. */
394 static inline void
395 set_value_range_to_nonnegative (value_range_t *vr, tree type,
396 bool overflow_infinity)
398 tree zero;
400 if (overflow_infinity && !supports_overflow_infinity (type))
402 set_value_range_to_varying (vr);
403 return;
406 zero = build_int_cst (type, 0);
407 set_value_range (vr, VR_RANGE, zero,
408 (overflow_infinity
409 ? positive_overflow_infinity (type)
410 : TYPE_MAX_VALUE (type)),
411 vr->equiv);
414 /* Set value range VR to a non-NULL range of type TYPE. */
416 static inline void
417 set_value_range_to_nonnull (value_range_t *vr, tree type)
419 tree zero = build_int_cst (type, 0);
420 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
424 /* Set value range VR to a NULL range of type TYPE. */
426 static inline void
427 set_value_range_to_null (value_range_t *vr, tree type)
429 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
433 /* Set value range VR to a range of a truthvalue of type TYPE. */
435 static inline void
436 set_value_range_to_truthvalue (value_range_t *vr, tree type)
438 if (TYPE_PRECISION (type) == 1)
439 set_value_range_to_varying (vr);
440 else
441 set_value_range (vr, VR_RANGE,
442 build_int_cst (type, 0), build_int_cst (type, 1),
443 vr->equiv);
447 /* Set value range VR to VR_UNDEFINED. */
449 static inline void
450 set_value_range_to_undefined (value_range_t *vr)
452 vr->type = VR_UNDEFINED;
453 vr->min = vr->max = NULL_TREE;
454 if (vr->equiv)
455 bitmap_clear (vr->equiv);
459 /* Return value range information for VAR.
461 If we have no values ranges recorded (ie, VRP is not running), then
462 return NULL. Otherwise create an empty range if none existed for VAR. */
464 static value_range_t *
465 get_value_range (const_tree var)
467 value_range_t *vr;
468 tree sym;
469 unsigned ver = SSA_NAME_VERSION (var);
471 /* If we have no recorded ranges, then return NULL. */
472 if (! vr_value)
473 return NULL;
475 vr = vr_value[ver];
476 if (vr)
477 return vr;
479 /* Create a default value range. */
480 vr_value[ver] = vr = XCNEW (value_range_t);
482 /* Defer allocating the equivalence set. */
483 vr->equiv = NULL;
485 /* If VAR is a default definition, the variable can take any value
486 in VAR's type. */
487 sym = SSA_NAME_VAR (var);
488 if (SSA_NAME_IS_DEFAULT_DEF (var))
490 /* Try to use the "nonnull" attribute to create ~[0, 0]
491 anti-ranges for pointers. Note that this is only valid with
492 default definitions of PARM_DECLs. */
493 if (TREE_CODE (sym) == PARM_DECL
494 && POINTER_TYPE_P (TREE_TYPE (sym))
495 && nonnull_arg_p (sym))
496 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
497 else
498 set_value_range_to_varying (vr);
501 return vr;
504 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
506 static inline bool
507 vrp_operand_equal_p (const_tree val1, const_tree val2)
509 if (val1 == val2)
510 return true;
511 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
512 return false;
513 if (is_overflow_infinity (val1))
514 return is_overflow_infinity (val2);
515 return true;
518 /* Return true, if the bitmaps B1 and B2 are equal. */
520 static inline bool
521 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
523 return (b1 == b2
524 || (b1 && b2
525 && bitmap_equal_p (b1, b2)));
528 /* Update the value range and equivalence set for variable VAR to
529 NEW_VR. Return true if NEW_VR is different from VAR's previous
530 value.
532 NOTE: This function assumes that NEW_VR is a temporary value range
533 object created for the sole purpose of updating VAR's range. The
534 storage used by the equivalence set from NEW_VR will be freed by
535 this function. Do not call update_value_range when NEW_VR
536 is the range object associated with another SSA name. */
538 static inline bool
539 update_value_range (const_tree var, value_range_t *new_vr)
541 value_range_t *old_vr;
542 bool is_new;
544 /* Update the value range, if necessary. */
545 old_vr = get_value_range (var);
546 is_new = old_vr->type != new_vr->type
547 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
548 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
549 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
551 if (is_new)
552 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
553 new_vr->equiv);
555 BITMAP_FREE (new_vr->equiv);
557 return is_new;
561 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
562 point where equivalence processing can be turned on/off. */
564 static void
565 add_equivalence (bitmap *equiv, const_tree var)
567 unsigned ver = SSA_NAME_VERSION (var);
568 value_range_t *vr = vr_value[ver];
570 if (*equiv == NULL)
571 *equiv = BITMAP_ALLOC (NULL);
572 bitmap_set_bit (*equiv, ver);
573 if (vr && vr->equiv)
574 bitmap_ior_into (*equiv, vr->equiv);
578 /* Return true if VR is ~[0, 0]. */
580 static inline bool
581 range_is_nonnull (value_range_t *vr)
583 return vr->type == VR_ANTI_RANGE
584 && integer_zerop (vr->min)
585 && integer_zerop (vr->max);
589 /* Return true if VR is [0, 0]. */
591 static inline bool
592 range_is_null (value_range_t *vr)
594 return vr->type == VR_RANGE
595 && integer_zerop (vr->min)
596 && integer_zerop (vr->max);
600 /* Return true if value range VR involves at least one symbol. */
602 static inline bool
603 symbolic_range_p (value_range_t *vr)
605 return (!is_gimple_min_invariant (vr->min)
606 || !is_gimple_min_invariant (vr->max));
609 /* Return true if value range VR uses an overflow infinity. */
611 static inline bool
612 overflow_infinity_range_p (value_range_t *vr)
614 return (vr->type == VR_RANGE
615 && (is_overflow_infinity (vr->min)
616 || is_overflow_infinity (vr->max)));
619 /* Return false if we can not make a valid comparison based on VR;
620 this will be the case if it uses an overflow infinity and overflow
621 is not undefined (i.e., -fno-strict-overflow is in effect).
622 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
623 uses an overflow infinity. */
625 static bool
626 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
628 gcc_assert (vr->type == VR_RANGE);
629 if (is_overflow_infinity (vr->min))
631 *strict_overflow_p = true;
632 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
633 return false;
635 if (is_overflow_infinity (vr->max))
637 *strict_overflow_p = true;
638 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
639 return false;
641 return true;
645 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
646 ranges obtained so far. */
648 static bool
649 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
651 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
654 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
655 obtained so far. */
657 static bool
658 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
660 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
661 return true;
663 /* If we have an expression of the form &X->a, then the expression
664 is nonnull if X is nonnull. */
665 if (TREE_CODE (expr) == ADDR_EXPR)
667 tree base = get_base_address (TREE_OPERAND (expr, 0));
669 if (base != NULL_TREE
670 && TREE_CODE (base) == INDIRECT_REF
671 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
673 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
674 if (range_is_nonnull (vr))
675 return true;
679 return false;
682 /* Returns true if EXPR is a valid value (as expected by compare_values) --
683 a gimple invariant, or SSA_NAME +- CST. */
685 static bool
686 valid_value_p (tree expr)
688 if (TREE_CODE (expr) == SSA_NAME)
689 return true;
691 if (TREE_CODE (expr) == PLUS_EXPR
692 || TREE_CODE (expr) == MINUS_EXPR)
693 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
694 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
696 return is_gimple_min_invariant (expr);
699 /* Return
700 1 if VAL < VAL2
701 0 if !(VAL < VAL2)
702 -2 if those are incomparable. */
703 static inline int
704 operand_less_p (tree val, tree val2)
706 /* LT is folded faster than GE and others. Inline the common case. */
707 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
709 if (TYPE_UNSIGNED (TREE_TYPE (val)))
710 return INT_CST_LT_UNSIGNED (val, val2);
711 else
713 if (INT_CST_LT (val, val2))
714 return 1;
717 else
719 tree tcmp;
721 fold_defer_overflow_warnings ();
723 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
725 fold_undefer_and_ignore_overflow_warnings ();
727 if (!tcmp)
728 return -2;
730 if (!integer_zerop (tcmp))
731 return 1;
734 /* val >= val2, not considering overflow infinity. */
735 if (is_negative_overflow_infinity (val))
736 return is_negative_overflow_infinity (val2) ? 0 : 1;
737 else if (is_positive_overflow_infinity (val2))
738 return is_positive_overflow_infinity (val) ? 0 : 1;
740 return 0;
743 /* Compare two values VAL1 and VAL2. Return
745 -2 if VAL1 and VAL2 cannot be compared at compile-time,
746 -1 if VAL1 < VAL2,
747 0 if VAL1 == VAL2,
748 +1 if VAL1 > VAL2, and
749 +2 if VAL1 != VAL2
751 This is similar to tree_int_cst_compare but supports pointer values
752 and values that cannot be compared at compile time.
754 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
755 true if the return value is only valid if we assume that signed
756 overflow is undefined. */
758 static int
759 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
761 if (val1 == val2)
762 return 0;
764 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
765 both integers. */
766 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
767 == POINTER_TYPE_P (TREE_TYPE (val2)));
768 /* Convert the two values into the same type. This is needed because
769 sizetype causes sign extension even for unsigned types. */
770 val2 = fold_convert (TREE_TYPE (val1), val2);
771 STRIP_USELESS_TYPE_CONVERSION (val2);
773 if ((TREE_CODE (val1) == SSA_NAME
774 || TREE_CODE (val1) == PLUS_EXPR
775 || TREE_CODE (val1) == MINUS_EXPR)
776 && (TREE_CODE (val2) == SSA_NAME
777 || TREE_CODE (val2) == PLUS_EXPR
778 || TREE_CODE (val2) == MINUS_EXPR))
780 tree n1, c1, n2, c2;
781 enum tree_code code1, code2;
783 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
784 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
785 same name, return -2. */
786 if (TREE_CODE (val1) == SSA_NAME)
788 code1 = SSA_NAME;
789 n1 = val1;
790 c1 = NULL_TREE;
792 else
794 code1 = TREE_CODE (val1);
795 n1 = TREE_OPERAND (val1, 0);
796 c1 = TREE_OPERAND (val1, 1);
797 if (tree_int_cst_sgn (c1) == -1)
799 if (is_negative_overflow_infinity (c1))
800 return -2;
801 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
802 if (!c1)
803 return -2;
804 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
808 if (TREE_CODE (val2) == SSA_NAME)
810 code2 = SSA_NAME;
811 n2 = val2;
812 c2 = NULL_TREE;
814 else
816 code2 = TREE_CODE (val2);
817 n2 = TREE_OPERAND (val2, 0);
818 c2 = TREE_OPERAND (val2, 1);
819 if (tree_int_cst_sgn (c2) == -1)
821 if (is_negative_overflow_infinity (c2))
822 return -2;
823 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
824 if (!c2)
825 return -2;
826 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
830 /* Both values must use the same name. */
831 if (n1 != n2)
832 return -2;
834 if (code1 == SSA_NAME
835 && code2 == SSA_NAME)
836 /* NAME == NAME */
837 return 0;
839 /* If overflow is defined we cannot simplify more. */
840 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
841 return -2;
843 if (strict_overflow_p != NULL
844 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
845 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
846 *strict_overflow_p = true;
848 if (code1 == SSA_NAME)
850 if (code2 == PLUS_EXPR)
851 /* NAME < NAME + CST */
852 return -1;
853 else if (code2 == MINUS_EXPR)
854 /* NAME > NAME - CST */
855 return 1;
857 else if (code1 == PLUS_EXPR)
859 if (code2 == SSA_NAME)
860 /* NAME + CST > NAME */
861 return 1;
862 else if (code2 == PLUS_EXPR)
863 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
864 return compare_values_warnv (c1, c2, strict_overflow_p);
865 else if (code2 == MINUS_EXPR)
866 /* NAME + CST1 > NAME - CST2 */
867 return 1;
869 else if (code1 == MINUS_EXPR)
871 if (code2 == SSA_NAME)
872 /* NAME - CST < NAME */
873 return -1;
874 else if (code2 == PLUS_EXPR)
875 /* NAME - CST1 < NAME + CST2 */
876 return -1;
877 else if (code2 == MINUS_EXPR)
878 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
879 C1 and C2 are swapped in the call to compare_values. */
880 return compare_values_warnv (c2, c1, strict_overflow_p);
883 gcc_unreachable ();
886 /* We cannot compare non-constants. */
887 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
888 return -2;
890 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
892 /* We cannot compare overflowed values, except for overflow
893 infinities. */
894 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
896 if (strict_overflow_p != NULL)
897 *strict_overflow_p = true;
898 if (is_negative_overflow_infinity (val1))
899 return is_negative_overflow_infinity (val2) ? 0 : -1;
900 else if (is_negative_overflow_infinity (val2))
901 return 1;
902 else if (is_positive_overflow_infinity (val1))
903 return is_positive_overflow_infinity (val2) ? 0 : 1;
904 else if (is_positive_overflow_infinity (val2))
905 return -1;
906 return -2;
909 return tree_int_cst_compare (val1, val2);
911 else
913 tree t;
915 /* First see if VAL1 and VAL2 are not the same. */
916 if (val1 == val2 || operand_equal_p (val1, val2, 0))
917 return 0;
919 /* If VAL1 is a lower address than VAL2, return -1. */
920 if (operand_less_p (val1, val2) == 1)
921 return -1;
923 /* If VAL1 is a higher address than VAL2, return +1. */
924 if (operand_less_p (val2, val1) == 1)
925 return 1;
927 /* If VAL1 is different than VAL2, return +2.
928 For integer constants we either have already returned -1 or 1
929 or they are equivalent. We still might succeed in proving
930 something about non-trivial operands. */
931 if (TREE_CODE (val1) != INTEGER_CST
932 || TREE_CODE (val2) != INTEGER_CST)
934 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
935 if (t && tree_expr_nonzero_p (t))
936 return 2;
939 return -2;
943 /* Compare values like compare_values_warnv, but treat comparisons of
944 nonconstants which rely on undefined overflow as incomparable. */
946 static int
947 compare_values (tree val1, tree val2)
949 bool sop;
950 int ret;
952 sop = false;
953 ret = compare_values_warnv (val1, val2, &sop);
954 if (sop
955 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
956 ret = -2;
957 return ret;
961 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
962 0 if VAL is not inside VR,
963 -2 if we cannot tell either way.
965 FIXME, the current semantics of this functions are a bit quirky
966 when taken in the context of VRP. In here we do not care
967 about VR's type. If VR is the anti-range ~[3, 5] the call
968 value_inside_range (4, VR) will return 1.
970 This is counter-intuitive in a strict sense, but the callers
971 currently expect this. They are calling the function
972 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
973 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
974 themselves.
976 This also applies to value_ranges_intersect_p and
977 range_includes_zero_p. The semantics of VR_RANGE and
978 VR_ANTI_RANGE should be encoded here, but that also means
979 adapting the users of these functions to the new semantics.
981 Benchmark compile/20001226-1.c compilation time after changing this
982 function. */
984 static inline int
985 value_inside_range (tree val, value_range_t * vr)
987 int cmp1, cmp2;
989 cmp1 = operand_less_p (val, vr->min);
990 if (cmp1 == -2)
991 return -2;
992 if (cmp1 == 1)
993 return 0;
995 cmp2 = operand_less_p (vr->max, val);
996 if (cmp2 == -2)
997 return -2;
999 return !cmp2;
1003 /* Return true if value ranges VR0 and VR1 have a non-empty
1004 intersection.
1006 Benchmark compile/20001226-1.c compilation time after changing this
1007 function.
1010 static inline bool
1011 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1013 /* The value ranges do not intersect if the maximum of the first range is
1014 less than the minimum of the second range or vice versa.
1015 When those relations are unknown, we can't do any better. */
1016 if (operand_less_p (vr0->max, vr1->min) != 0)
1017 return false;
1018 if (operand_less_p (vr1->max, vr0->min) != 0)
1019 return false;
1020 return true;
1024 /* Return true if VR includes the value zero, false otherwise. FIXME,
1025 currently this will return false for an anti-range like ~[-4, 3].
1026 This will be wrong when the semantics of value_inside_range are
1027 modified (currently the users of this function expect these
1028 semantics). */
1030 static inline bool
1031 range_includes_zero_p (value_range_t *vr)
1033 tree zero;
1035 gcc_assert (vr->type != VR_UNDEFINED
1036 && vr->type != VR_VARYING
1037 && !symbolic_range_p (vr));
1039 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1040 return (value_inside_range (zero, vr) == 1);
1043 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1044 false otherwise or if no value range information is available. */
1046 bool
1047 ssa_name_nonnegative_p (const_tree t)
1049 value_range_t *vr = get_value_range (t);
1051 if (!vr)
1052 return false;
1054 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1055 which would return a useful value should be encoded as a VR_RANGE. */
1056 if (vr->type == VR_RANGE)
1058 int result = compare_values (vr->min, integer_zero_node);
1060 return (result == 0 || result == 1);
1062 return false;
1065 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1066 false otherwise or if no value range information is available. */
1068 bool
1069 ssa_name_nonzero_p (const_tree t)
1071 value_range_t *vr = get_value_range (t);
1073 if (!vr)
1074 return false;
1076 /* A VR_RANGE which does not include zero is a nonzero value. */
1077 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1078 return ! range_includes_zero_p (vr);
1080 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1081 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1082 return range_includes_zero_p (vr);
1084 return false;
1088 /* Extract value range information from an ASSERT_EXPR EXPR and store
1089 it in *VR_P. */
1091 static void
1092 extract_range_from_assert (value_range_t *vr_p, tree expr)
1094 tree var, cond, limit, min, max, type;
1095 value_range_t *var_vr, *limit_vr;
1096 enum tree_code cond_code;
1098 var = ASSERT_EXPR_VAR (expr);
1099 cond = ASSERT_EXPR_COND (expr);
1101 gcc_assert (COMPARISON_CLASS_P (cond));
1103 /* Find VAR in the ASSERT_EXPR conditional. */
1104 if (var == TREE_OPERAND (cond, 0))
1106 /* If the predicate is of the form VAR COMP LIMIT, then we just
1107 take LIMIT from the RHS and use the same comparison code. */
1108 limit = TREE_OPERAND (cond, 1);
1109 cond_code = TREE_CODE (cond);
1111 else
1113 /* If the predicate is of the form LIMIT COMP VAR, then we need
1114 to flip around the comparison code to create the proper range
1115 for VAR. */
1116 limit = TREE_OPERAND (cond, 0);
1117 cond_code = swap_tree_comparison (TREE_CODE (cond));
1120 limit = avoid_overflow_infinity (limit);
1122 type = TREE_TYPE (limit);
1123 gcc_assert (limit != var);
1125 /* For pointer arithmetic, we only keep track of pointer equality
1126 and inequality. */
1127 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1129 set_value_range_to_varying (vr_p);
1130 return;
1133 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1134 try to use LIMIT's range to avoid creating symbolic ranges
1135 unnecessarily. */
1136 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1138 /* LIMIT's range is only interesting if it has any useful information. */
1139 if (limit_vr
1140 && (limit_vr->type == VR_UNDEFINED
1141 || limit_vr->type == VR_VARYING
1142 || symbolic_range_p (limit_vr)))
1143 limit_vr = NULL;
1145 /* Initially, the new range has the same set of equivalences of
1146 VAR's range. This will be revised before returning the final
1147 value. Since assertions may be chained via mutually exclusive
1148 predicates, we will need to trim the set of equivalences before
1149 we are done. */
1150 gcc_assert (vr_p->equiv == NULL);
1151 add_equivalence (&vr_p->equiv, var);
1153 /* Extract a new range based on the asserted comparison for VAR and
1154 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1155 will only use it for equality comparisons (EQ_EXPR). For any
1156 other kind of assertion, we cannot derive a range from LIMIT's
1157 anti-range that can be used to describe the new range. For
1158 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1159 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1160 no single range for x_2 that could describe LE_EXPR, so we might
1161 as well build the range [b_4, +INF] for it. */
1162 if (cond_code == EQ_EXPR)
1164 enum value_range_type range_type;
1166 if (limit_vr)
1168 range_type = limit_vr->type;
1169 min = limit_vr->min;
1170 max = limit_vr->max;
1172 else
1174 range_type = VR_RANGE;
1175 min = limit;
1176 max = limit;
1179 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1181 /* When asserting the equality VAR == LIMIT and LIMIT is another
1182 SSA name, the new range will also inherit the equivalence set
1183 from LIMIT. */
1184 if (TREE_CODE (limit) == SSA_NAME)
1185 add_equivalence (&vr_p->equiv, limit);
1187 else if (cond_code == NE_EXPR)
1189 /* As described above, when LIMIT's range is an anti-range and
1190 this assertion is an inequality (NE_EXPR), then we cannot
1191 derive anything from the anti-range. For instance, if
1192 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1193 not imply that VAR's range is [0, 0]. So, in the case of
1194 anti-ranges, we just assert the inequality using LIMIT and
1195 not its anti-range.
1197 If LIMIT_VR is a range, we can only use it to build a new
1198 anti-range if LIMIT_VR is a single-valued range. For
1199 instance, if LIMIT_VR is [0, 1], the predicate
1200 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1201 Rather, it means that for value 0 VAR should be ~[0, 0]
1202 and for value 1, VAR should be ~[1, 1]. We cannot
1203 represent these ranges.
1205 The only situation in which we can build a valid
1206 anti-range is when LIMIT_VR is a single-valued range
1207 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1208 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1209 if (limit_vr
1210 && limit_vr->type == VR_RANGE
1211 && compare_values (limit_vr->min, limit_vr->max) == 0)
1213 min = limit_vr->min;
1214 max = limit_vr->max;
1216 else
1218 /* In any other case, we cannot use LIMIT's range to build a
1219 valid anti-range. */
1220 min = max = limit;
1223 /* If MIN and MAX cover the whole range for their type, then
1224 just use the original LIMIT. */
1225 if (INTEGRAL_TYPE_P (type)
1226 && vrp_val_is_min (min)
1227 && vrp_val_is_max (max))
1228 min = max = limit;
1230 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1232 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1234 min = TYPE_MIN_VALUE (type);
1236 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1237 max = limit;
1238 else
1240 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1241 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1242 LT_EXPR. */
1243 max = limit_vr->max;
1246 /* If the maximum value forces us to be out of bounds, simply punt.
1247 It would be pointless to try and do anything more since this
1248 all should be optimized away above us. */
1249 if ((cond_code == LT_EXPR
1250 && compare_values (max, min) == 0)
1251 || is_overflow_infinity (max))
1252 set_value_range_to_varying (vr_p);
1253 else
1255 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1256 if (cond_code == LT_EXPR)
1258 tree one = build_int_cst (type, 1);
1259 max = fold_build2 (MINUS_EXPR, type, max, one);
1260 if (EXPR_P (max))
1261 TREE_NO_WARNING (max) = 1;
1264 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1267 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1269 max = TYPE_MAX_VALUE (type);
1271 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1272 min = limit;
1273 else
1275 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1276 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1277 GT_EXPR. */
1278 min = limit_vr->min;
1281 /* If the minimum value forces us to be out of bounds, simply punt.
1282 It would be pointless to try and do anything more since this
1283 all should be optimized away above us. */
1284 if ((cond_code == GT_EXPR
1285 && compare_values (min, max) == 0)
1286 || is_overflow_infinity (min))
1287 set_value_range_to_varying (vr_p);
1288 else
1290 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1291 if (cond_code == GT_EXPR)
1293 tree one = build_int_cst (type, 1);
1294 min = fold_build2 (PLUS_EXPR, type, min, one);
1295 if (EXPR_P (min))
1296 TREE_NO_WARNING (min) = 1;
1299 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1302 else
1303 gcc_unreachable ();
1305 /* If VAR already had a known range, it may happen that the new
1306 range we have computed and VAR's range are not compatible. For
1307 instance,
1309 if (p_5 == NULL)
1310 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1311 x_7 = p_6->fld;
1312 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1314 While the above comes from a faulty program, it will cause an ICE
1315 later because p_8 and p_6 will have incompatible ranges and at
1316 the same time will be considered equivalent. A similar situation
1317 would arise from
1319 if (i_5 > 10)
1320 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1321 if (i_5 < 5)
1322 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1324 Again i_6 and i_7 will have incompatible ranges. It would be
1325 pointless to try and do anything with i_7's range because
1326 anything dominated by 'if (i_5 < 5)' will be optimized away.
1327 Note, due to the wa in which simulation proceeds, the statement
1328 i_7 = ASSERT_EXPR <...> we would never be visited because the
1329 conditional 'if (i_5 < 5)' always evaluates to false. However,
1330 this extra check does not hurt and may protect against future
1331 changes to VRP that may get into a situation similar to the
1332 NULL pointer dereference example.
1334 Note that these compatibility tests are only needed when dealing
1335 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1336 are both anti-ranges, they will always be compatible, because two
1337 anti-ranges will always have a non-empty intersection. */
1339 var_vr = get_value_range (var);
1341 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1342 ranges or anti-ranges. */
1343 if (vr_p->type == VR_VARYING
1344 || vr_p->type == VR_UNDEFINED
1345 || var_vr->type == VR_VARYING
1346 || var_vr->type == VR_UNDEFINED
1347 || symbolic_range_p (vr_p)
1348 || symbolic_range_p (var_vr))
1349 return;
1351 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1353 /* If the two ranges have a non-empty intersection, we can
1354 refine the resulting range. Since the assert expression
1355 creates an equivalency and at the same time it asserts a
1356 predicate, we can take the intersection of the two ranges to
1357 get better precision. */
1358 if (value_ranges_intersect_p (var_vr, vr_p))
1360 /* Use the larger of the two minimums. */
1361 if (compare_values (vr_p->min, var_vr->min) == -1)
1362 min = var_vr->min;
1363 else
1364 min = vr_p->min;
1366 /* Use the smaller of the two maximums. */
1367 if (compare_values (vr_p->max, var_vr->max) == 1)
1368 max = var_vr->max;
1369 else
1370 max = vr_p->max;
1372 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1374 else
1376 /* The two ranges do not intersect, set the new range to
1377 VARYING, because we will not be able to do anything
1378 meaningful with it. */
1379 set_value_range_to_varying (vr_p);
1382 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1383 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1385 /* A range and an anti-range will cancel each other only if
1386 their ends are the same. For instance, in the example above,
1387 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1388 so VR_P should be set to VR_VARYING. */
1389 if (compare_values (var_vr->min, vr_p->min) == 0
1390 && compare_values (var_vr->max, vr_p->max) == 0)
1391 set_value_range_to_varying (vr_p);
1392 else
1394 tree min, max, anti_min, anti_max, real_min, real_max;
1395 int cmp;
1397 /* We want to compute the logical AND of the two ranges;
1398 there are three cases to consider.
1401 1. The VR_ANTI_RANGE range is completely within the
1402 VR_RANGE and the endpoints of the ranges are
1403 different. In that case the resulting range
1404 should be whichever range is more precise.
1405 Typically that will be the VR_RANGE.
1407 2. The VR_ANTI_RANGE is completely disjoint from
1408 the VR_RANGE. In this case the resulting range
1409 should be the VR_RANGE.
1411 3. There is some overlap between the VR_ANTI_RANGE
1412 and the VR_RANGE.
1414 3a. If the high limit of the VR_ANTI_RANGE resides
1415 within the VR_RANGE, then the result is a new
1416 VR_RANGE starting at the high limit of the
1417 the VR_ANTI_RANGE + 1 and extending to the
1418 high limit of the original VR_RANGE.
1420 3b. If the low limit of the VR_ANTI_RANGE resides
1421 within the VR_RANGE, then the result is a new
1422 VR_RANGE starting at the low limit of the original
1423 VR_RANGE and extending to the low limit of the
1424 VR_ANTI_RANGE - 1. */
1425 if (vr_p->type == VR_ANTI_RANGE)
1427 anti_min = vr_p->min;
1428 anti_max = vr_p->max;
1429 real_min = var_vr->min;
1430 real_max = var_vr->max;
1432 else
1434 anti_min = var_vr->min;
1435 anti_max = var_vr->max;
1436 real_min = vr_p->min;
1437 real_max = vr_p->max;
1441 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1442 not including any endpoints. */
1443 if (compare_values (anti_max, real_max) == -1
1444 && compare_values (anti_min, real_min) == 1)
1446 set_value_range (vr_p, VR_RANGE, real_min,
1447 real_max, vr_p->equiv);
1449 /* Case 2, VR_ANTI_RANGE completely disjoint from
1450 VR_RANGE. */
1451 else if (compare_values (anti_min, real_max) == 1
1452 || compare_values (anti_max, real_min) == -1)
1454 set_value_range (vr_p, VR_RANGE, real_min,
1455 real_max, vr_p->equiv);
1457 /* Case 3a, the anti-range extends into the low
1458 part of the real range. Thus creating a new
1459 low for the real range. */
1460 else if (((cmp = compare_values (anti_max, real_min)) == 1
1461 || cmp == 0)
1462 && compare_values (anti_max, real_max) == -1)
1464 gcc_assert (!is_positive_overflow_infinity (anti_max));
1465 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1466 && vrp_val_is_max (anti_max))
1468 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1470 set_value_range_to_varying (vr_p);
1471 return;
1473 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1475 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1476 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1477 anti_max,
1478 build_int_cst (TREE_TYPE (var_vr->min), 1));
1479 else
1480 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1481 anti_max, size_int (1));
1482 max = real_max;
1483 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1485 /* Case 3b, the anti-range extends into the high
1486 part of the real range. Thus creating a new
1487 higher for the real range. */
1488 else if (compare_values (anti_min, real_min) == 1
1489 && ((cmp = compare_values (anti_min, real_max)) == -1
1490 || cmp == 0))
1492 gcc_assert (!is_negative_overflow_infinity (anti_min));
1493 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1494 && vrp_val_is_min (anti_min))
1496 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1498 set_value_range_to_varying (vr_p);
1499 return;
1501 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1503 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1504 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1505 anti_min,
1506 build_int_cst (TREE_TYPE (var_vr->min), 1));
1507 else
1508 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1509 anti_min,
1510 size_int (-1));
1511 min = real_min;
1512 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1519 /* Extract range information from SSA name VAR and store it in VR. If
1520 VAR has an interesting range, use it. Otherwise, create the
1521 range [VAR, VAR] and return it. This is useful in situations where
1522 we may have conditionals testing values of VARYING names. For
1523 instance,
1525 x_3 = y_5;
1526 if (x_3 > y_5)
1529 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1530 always false. */
1532 static void
1533 extract_range_from_ssa_name (value_range_t *vr, tree var)
1535 value_range_t *var_vr = get_value_range (var);
1537 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1538 copy_value_range (vr, var_vr);
1539 else
1540 set_value_range (vr, VR_RANGE, var, var, NULL);
1542 add_equivalence (&vr->equiv, var);
1546 /* Wrapper around int_const_binop. If the operation overflows and we
1547 are not using wrapping arithmetic, then adjust the result to be
1548 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1549 NULL_TREE if we need to use an overflow infinity representation but
1550 the type does not support it. */
1552 static tree
1553 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1555 tree res;
1557 res = int_const_binop (code, val1, val2, 0);
1559 /* If we are not using wrapping arithmetic, operate symbolically
1560 on -INF and +INF. */
1561 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1563 int checkz = compare_values (res, val1);
1564 bool overflow = false;
1566 /* Ensure that res = val1 [+*] val2 >= val1
1567 or that res = val1 - val2 <= val1. */
1568 if ((code == PLUS_EXPR
1569 && !(checkz == 1 || checkz == 0))
1570 || (code == MINUS_EXPR
1571 && !(checkz == 0 || checkz == -1)))
1573 overflow = true;
1575 /* Checking for multiplication overflow is done by dividing the
1576 output of the multiplication by the first input of the
1577 multiplication. If the result of that division operation is
1578 not equal to the second input of the multiplication, then the
1579 multiplication overflowed. */
1580 else if (code == MULT_EXPR && !integer_zerop (val1))
1582 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1583 res,
1584 val1, 0);
1585 int check = compare_values (tmp, val2);
1587 if (check != 0)
1588 overflow = true;
1591 if (overflow)
1593 res = copy_node (res);
1594 TREE_OVERFLOW (res) = 1;
1598 else if ((TREE_OVERFLOW (res)
1599 && !TREE_OVERFLOW (val1)
1600 && !TREE_OVERFLOW (val2))
1601 || is_overflow_infinity (val1)
1602 || is_overflow_infinity (val2))
1604 /* If the operation overflowed but neither VAL1 nor VAL2 are
1605 overflown, return -INF or +INF depending on the operation
1606 and the combination of signs of the operands. */
1607 int sgn1 = tree_int_cst_sgn (val1);
1608 int sgn2 = tree_int_cst_sgn (val2);
1610 if (needs_overflow_infinity (TREE_TYPE (res))
1611 && !supports_overflow_infinity (TREE_TYPE (res)))
1612 return NULL_TREE;
1614 /* We have to punt on adding infinities of different signs,
1615 since we can't tell what the sign of the result should be.
1616 Likewise for subtracting infinities of the same sign. */
1617 if (((code == PLUS_EXPR && sgn1 != sgn2)
1618 || (code == MINUS_EXPR && sgn1 == sgn2))
1619 && is_overflow_infinity (val1)
1620 && is_overflow_infinity (val2))
1621 return NULL_TREE;
1623 /* Don't try to handle division or shifting of infinities. */
1624 if ((code == TRUNC_DIV_EXPR
1625 || code == FLOOR_DIV_EXPR
1626 || code == CEIL_DIV_EXPR
1627 || code == EXACT_DIV_EXPR
1628 || code == ROUND_DIV_EXPR
1629 || code == RSHIFT_EXPR)
1630 && (is_overflow_infinity (val1)
1631 || is_overflow_infinity (val2)))
1632 return NULL_TREE;
1634 /* Notice that we only need to handle the restricted set of
1635 operations handled by extract_range_from_binary_expr.
1636 Among them, only multiplication, addition and subtraction
1637 can yield overflow without overflown operands because we
1638 are working with integral types only... except in the
1639 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1640 for division too. */
1642 /* For multiplication, the sign of the overflow is given
1643 by the comparison of the signs of the operands. */
1644 if ((code == MULT_EXPR && sgn1 == sgn2)
1645 /* For addition, the operands must be of the same sign
1646 to yield an overflow. Its sign is therefore that
1647 of one of the operands, for example the first. For
1648 infinite operands X + -INF is negative, not positive. */
1649 || (code == PLUS_EXPR
1650 && (sgn1 >= 0
1651 ? !is_negative_overflow_infinity (val2)
1652 : is_positive_overflow_infinity (val2)))
1653 /* For subtraction, non-infinite operands must be of
1654 different signs to yield an overflow. Its sign is
1655 therefore that of the first operand or the opposite of
1656 that of the second operand. A first operand of 0 counts
1657 as positive here, for the corner case 0 - (-INF), which
1658 overflows, but must yield +INF. For infinite operands 0
1659 - INF is negative, not positive. */
1660 || (code == MINUS_EXPR
1661 && (sgn1 >= 0
1662 ? !is_positive_overflow_infinity (val2)
1663 : is_negative_overflow_infinity (val2)))
1664 /* We only get in here with positive shift count, so the
1665 overflow direction is the same as the sign of val1.
1666 Actually rshift does not overflow at all, but we only
1667 handle the case of shifting overflowed -INF and +INF. */
1668 || (code == RSHIFT_EXPR
1669 && sgn1 >= 0)
1670 /* For division, the only case is -INF / -1 = +INF. */
1671 || code == TRUNC_DIV_EXPR
1672 || code == FLOOR_DIV_EXPR
1673 || code == CEIL_DIV_EXPR
1674 || code == EXACT_DIV_EXPR
1675 || code == ROUND_DIV_EXPR)
1676 return (needs_overflow_infinity (TREE_TYPE (res))
1677 ? positive_overflow_infinity (TREE_TYPE (res))
1678 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1679 else
1680 return (needs_overflow_infinity (TREE_TYPE (res))
1681 ? negative_overflow_infinity (TREE_TYPE (res))
1682 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1685 return res;
1689 /* Extract range information from a binary expression EXPR based on
1690 the ranges of each of its operands and the expression code. */
1692 static void
1693 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1695 enum tree_code code = TREE_CODE (expr);
1696 enum value_range_type type;
1697 tree op0, op1, min, max;
1698 int cmp;
1699 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1700 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1702 /* Not all binary expressions can be applied to ranges in a
1703 meaningful way. Handle only arithmetic operations. */
1704 if (code != PLUS_EXPR
1705 && code != MINUS_EXPR
1706 && code != POINTER_PLUS_EXPR
1707 && code != MULT_EXPR
1708 && code != TRUNC_DIV_EXPR
1709 && code != FLOOR_DIV_EXPR
1710 && code != CEIL_DIV_EXPR
1711 && code != EXACT_DIV_EXPR
1712 && code != ROUND_DIV_EXPR
1713 && code != RSHIFT_EXPR
1714 && code != MIN_EXPR
1715 && code != MAX_EXPR
1716 && code != BIT_AND_EXPR
1717 && code != TRUTH_ANDIF_EXPR
1718 && code != TRUTH_ORIF_EXPR
1719 && code != TRUTH_AND_EXPR
1720 && code != TRUTH_OR_EXPR)
1722 set_value_range_to_varying (vr);
1723 return;
1726 /* Get value ranges for each operand. For constant operands, create
1727 a new value range with the operand to simplify processing. */
1728 op0 = TREE_OPERAND (expr, 0);
1729 if (TREE_CODE (op0) == SSA_NAME)
1730 vr0 = *(get_value_range (op0));
1731 else if (is_gimple_min_invariant (op0))
1732 set_value_range_to_value (&vr0, op0, NULL);
1733 else
1734 set_value_range_to_varying (&vr0);
1736 op1 = TREE_OPERAND (expr, 1);
1737 if (TREE_CODE (op1) == SSA_NAME)
1738 vr1 = *(get_value_range (op1));
1739 else if (is_gimple_min_invariant (op1))
1740 set_value_range_to_value (&vr1, op1, NULL);
1741 else
1742 set_value_range_to_varying (&vr1);
1744 /* If either range is UNDEFINED, so is the result. */
1745 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1747 set_value_range_to_undefined (vr);
1748 return;
1751 /* The type of the resulting value range defaults to VR0.TYPE. */
1752 type = vr0.type;
1754 /* Refuse to operate on VARYING ranges, ranges of different kinds
1755 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1756 because we may be able to derive a useful range even if one of
1757 the operands is VR_VARYING or symbolic range. TODO, we may be
1758 able to derive anti-ranges in some cases. */
1759 if (code != BIT_AND_EXPR
1760 && code != TRUTH_AND_EXPR
1761 && code != TRUTH_OR_EXPR
1762 && (vr0.type == VR_VARYING
1763 || vr1.type == VR_VARYING
1764 || vr0.type != vr1.type
1765 || symbolic_range_p (&vr0)
1766 || symbolic_range_p (&vr1)))
1768 set_value_range_to_varying (vr);
1769 return;
1772 /* Now evaluate the expression to determine the new range. */
1773 if (POINTER_TYPE_P (TREE_TYPE (expr))
1774 || POINTER_TYPE_P (TREE_TYPE (op0))
1775 || POINTER_TYPE_P (TREE_TYPE (op1)))
1777 if (code == MIN_EXPR || code == MAX_EXPR)
1779 /* For MIN/MAX expressions with pointers, we only care about
1780 nullness, if both are non null, then the result is nonnull.
1781 If both are null, then the result is null. Otherwise they
1782 are varying. */
1783 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1784 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1785 else if (range_is_null (&vr0) && range_is_null (&vr1))
1786 set_value_range_to_null (vr, TREE_TYPE (expr));
1787 else
1788 set_value_range_to_varying (vr);
1790 return;
1792 gcc_assert (code == POINTER_PLUS_EXPR);
1793 /* For pointer types, we are really only interested in asserting
1794 whether the expression evaluates to non-NULL. */
1795 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1796 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1797 else if (range_is_null (&vr0) && range_is_null (&vr1))
1798 set_value_range_to_null (vr, TREE_TYPE (expr));
1799 else
1800 set_value_range_to_varying (vr);
1802 return;
1805 /* For integer ranges, apply the operation to each end of the
1806 range and see what we end up with. */
1807 if (code == TRUTH_ANDIF_EXPR
1808 || code == TRUTH_ORIF_EXPR
1809 || code == TRUTH_AND_EXPR
1810 || code == TRUTH_OR_EXPR)
1812 /* If one of the operands is zero, we know that the whole
1813 expression evaluates zero. */
1814 if (code == TRUTH_AND_EXPR
1815 && ((vr0.type == VR_RANGE
1816 && integer_zerop (vr0.min)
1817 && integer_zerop (vr0.max))
1818 || (vr1.type == VR_RANGE
1819 && integer_zerop (vr1.min)
1820 && integer_zerop (vr1.max))))
1822 type = VR_RANGE;
1823 min = max = build_int_cst (TREE_TYPE (expr), 0);
1825 /* If one of the operands is one, we know that the whole
1826 expression evaluates one. */
1827 else if (code == TRUTH_OR_EXPR
1828 && ((vr0.type == VR_RANGE
1829 && integer_onep (vr0.min)
1830 && integer_onep (vr0.max))
1831 || (vr1.type == VR_RANGE
1832 && integer_onep (vr1.min)
1833 && integer_onep (vr1.max))))
1835 type = VR_RANGE;
1836 min = max = build_int_cst (TREE_TYPE (expr), 1);
1838 else if (vr0.type != VR_VARYING
1839 && vr1.type != VR_VARYING
1840 && vr0.type == vr1.type
1841 && !symbolic_range_p (&vr0)
1842 && !overflow_infinity_range_p (&vr0)
1843 && !symbolic_range_p (&vr1)
1844 && !overflow_infinity_range_p (&vr1))
1846 /* Boolean expressions cannot be folded with int_const_binop. */
1847 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1848 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1850 else
1852 /* The result of a TRUTH_*_EXPR is always true or false. */
1853 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1854 return;
1857 else if (code == PLUS_EXPR
1858 || code == MIN_EXPR
1859 || code == MAX_EXPR)
1861 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1862 VR_VARYING. It would take more effort to compute a precise
1863 range for such a case. For example, if we have op0 == 1 and
1864 op1 == -1 with their ranges both being ~[0,0], we would have
1865 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1866 Note that we are guaranteed to have vr0.type == vr1.type at
1867 this point. */
1868 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1870 set_value_range_to_varying (vr);
1871 return;
1874 /* For operations that make the resulting range directly
1875 proportional to the original ranges, apply the operation to
1876 the same end of each range. */
1877 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1878 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1880 else if (code == MULT_EXPR
1881 || code == TRUNC_DIV_EXPR
1882 || code == FLOOR_DIV_EXPR
1883 || code == CEIL_DIV_EXPR
1884 || code == EXACT_DIV_EXPR
1885 || code == ROUND_DIV_EXPR
1886 || code == RSHIFT_EXPR)
1888 tree val[4];
1889 size_t i;
1890 bool sop;
1892 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1893 drop to VR_VARYING. It would take more effort to compute a
1894 precise range for such a case. For example, if we have
1895 op0 == 65536 and op1 == 65536 with their ranges both being
1896 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1897 we cannot claim that the product is in ~[0,0]. Note that we
1898 are guaranteed to have vr0.type == vr1.type at this
1899 point. */
1900 if (code == MULT_EXPR
1901 && vr0.type == VR_ANTI_RANGE
1902 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1904 set_value_range_to_varying (vr);
1905 return;
1908 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1909 then drop to VR_VARYING. Outside of this range we get undefined
1910 behavior from the shift operation. We cannot even trust
1911 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1912 shifts, and the operation at the tree level may be widened. */
1913 if (code == RSHIFT_EXPR)
1915 if (vr1.type == VR_ANTI_RANGE
1916 || !vrp_expr_computes_nonnegative (op1, &sop)
1917 || (operand_less_p
1918 (build_int_cst (TREE_TYPE (vr1.max),
1919 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1920 vr1.max) != 0))
1922 set_value_range_to_varying (vr);
1923 return;
1927 /* Multiplications and divisions are a bit tricky to handle,
1928 depending on the mix of signs we have in the two ranges, we
1929 need to operate on different values to get the minimum and
1930 maximum values for the new range. One approach is to figure
1931 out all the variations of range combinations and do the
1932 operations.
1934 However, this involves several calls to compare_values and it
1935 is pretty convoluted. It's simpler to do the 4 operations
1936 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1937 MAX1) and then figure the smallest and largest values to form
1938 the new range. */
1940 /* Divisions by zero result in a VARYING value. */
1941 else if (code != MULT_EXPR
1942 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1944 set_value_range_to_varying (vr);
1945 return;
1948 /* Compute the 4 cross operations. */
1949 sop = false;
1950 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1951 if (val[0] == NULL_TREE)
1952 sop = true;
1954 if (vr1.max == vr1.min)
1955 val[1] = NULL_TREE;
1956 else
1958 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1959 if (val[1] == NULL_TREE)
1960 sop = true;
1963 if (vr0.max == vr0.min)
1964 val[2] = NULL_TREE;
1965 else
1967 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1968 if (val[2] == NULL_TREE)
1969 sop = true;
1972 if (vr0.min == vr0.max || vr1.min == vr1.max)
1973 val[3] = NULL_TREE;
1974 else
1976 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1977 if (val[3] == NULL_TREE)
1978 sop = true;
1981 if (sop)
1983 set_value_range_to_varying (vr);
1984 return;
1987 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1988 of VAL[i]. */
1989 min = val[0];
1990 max = val[0];
1991 for (i = 1; i < 4; i++)
1993 if (!is_gimple_min_invariant (min)
1994 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1995 || !is_gimple_min_invariant (max)
1996 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1997 break;
1999 if (val[i])
2001 if (!is_gimple_min_invariant (val[i])
2002 || (TREE_OVERFLOW (val[i])
2003 && !is_overflow_infinity (val[i])))
2005 /* If we found an overflowed value, set MIN and MAX
2006 to it so that we set the resulting range to
2007 VARYING. */
2008 min = max = val[i];
2009 break;
2012 if (compare_values (val[i], min) == -1)
2013 min = val[i];
2015 if (compare_values (val[i], max) == 1)
2016 max = val[i];
2020 else if (code == MINUS_EXPR)
2022 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2023 VR_VARYING. It would take more effort to compute a precise
2024 range for such a case. For example, if we have op0 == 1 and
2025 op1 == 1 with their ranges both being ~[0,0], we would have
2026 op0 - op1 == 0, so we cannot claim that the difference is in
2027 ~[0,0]. Note that we are guaranteed to have
2028 vr0.type == vr1.type at this point. */
2029 if (vr0.type == VR_ANTI_RANGE)
2031 set_value_range_to_varying (vr);
2032 return;
2035 /* For MINUS_EXPR, apply the operation to the opposite ends of
2036 each range. */
2037 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2038 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2040 else if (code == BIT_AND_EXPR)
2042 if (vr0.type == VR_RANGE
2043 && vr0.min == vr0.max
2044 && TREE_CODE (vr0.max) == INTEGER_CST
2045 && !TREE_OVERFLOW (vr0.max)
2046 && tree_int_cst_sgn (vr0.max) >= 0)
2048 min = build_int_cst (TREE_TYPE (expr), 0);
2049 max = vr0.max;
2051 else if (vr1.type == VR_RANGE
2052 && vr1.min == vr1.max
2053 && TREE_CODE (vr1.max) == INTEGER_CST
2054 && !TREE_OVERFLOW (vr1.max)
2055 && tree_int_cst_sgn (vr1.max) >= 0)
2057 type = VR_RANGE;
2058 min = build_int_cst (TREE_TYPE (expr), 0);
2059 max = vr1.max;
2061 else
2063 set_value_range_to_varying (vr);
2064 return;
2067 else
2068 gcc_unreachable ();
2070 /* If either MIN or MAX overflowed, then set the resulting range to
2071 VARYING. But we do accept an overflow infinity
2072 representation. */
2073 if (min == NULL_TREE
2074 || !is_gimple_min_invariant (min)
2075 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2076 || max == NULL_TREE
2077 || !is_gimple_min_invariant (max)
2078 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2080 set_value_range_to_varying (vr);
2081 return;
2084 /* We punt if:
2085 1) [-INF, +INF]
2086 2) [-INF, +-INF(OVF)]
2087 3) [+-INF(OVF), +INF]
2088 4) [+-INF(OVF), +-INF(OVF)]
2089 We learn nothing when we have INF and INF(OVF) on both sides.
2090 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2091 overflow. */
2092 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2093 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2095 set_value_range_to_varying (vr);
2096 return;
2099 cmp = compare_values (min, max);
2100 if (cmp == -2 || cmp == 1)
2102 /* If the new range has its limits swapped around (MIN > MAX),
2103 then the operation caused one of them to wrap around, mark
2104 the new range VARYING. */
2105 set_value_range_to_varying (vr);
2107 else
2108 set_value_range (vr, type, min, max, NULL);
2112 /* Extract range information from a unary expression EXPR based on
2113 the range of its operand and the expression code. */
2115 static void
2116 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2118 enum tree_code code = TREE_CODE (expr);
2119 tree min, max, op0;
2120 int cmp;
2121 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2123 /* Refuse to operate on certain unary expressions for which we
2124 cannot easily determine a resulting range. */
2125 if (code == FIX_TRUNC_EXPR
2126 || code == FLOAT_EXPR
2127 || code == BIT_NOT_EXPR
2128 || code == NON_LVALUE_EXPR
2129 || code == CONJ_EXPR)
2131 set_value_range_to_varying (vr);
2132 return;
2135 /* Get value ranges for the operand. For constant operands, create
2136 a new value range with the operand to simplify processing. */
2137 op0 = TREE_OPERAND (expr, 0);
2138 if (TREE_CODE (op0) == SSA_NAME)
2139 vr0 = *(get_value_range (op0));
2140 else if (is_gimple_min_invariant (op0))
2141 set_value_range_to_value (&vr0, op0, NULL);
2142 else
2143 set_value_range_to_varying (&vr0);
2145 /* If VR0 is UNDEFINED, so is the result. */
2146 if (vr0.type == VR_UNDEFINED)
2148 set_value_range_to_undefined (vr);
2149 return;
2152 /* Refuse to operate on symbolic ranges, or if neither operand is
2153 a pointer or integral type. */
2154 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2155 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2156 || (vr0.type != VR_VARYING
2157 && symbolic_range_p (&vr0)))
2159 set_value_range_to_varying (vr);
2160 return;
2163 /* If the expression involves pointers, we are only interested in
2164 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2165 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2167 bool sop;
2169 sop = false;
2170 if (range_is_nonnull (&vr0)
2171 || (tree_expr_nonzero_warnv_p (expr, &sop)
2172 && !sop))
2173 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2174 else if (range_is_null (&vr0))
2175 set_value_range_to_null (vr, TREE_TYPE (expr));
2176 else
2177 set_value_range_to_varying (vr);
2179 return;
2182 /* Handle unary expressions on integer ranges. */
2183 if (code == NOP_EXPR || code == CONVERT_EXPR)
2185 tree inner_type = TREE_TYPE (op0);
2186 tree outer_type = TREE_TYPE (expr);
2188 /* If VR0 represents a simple range, then try to convert
2189 the min and max values for the range to the same type
2190 as OUTER_TYPE. If the results compare equal to VR0's
2191 min and max values and the new min is still less than
2192 or equal to the new max, then we can safely use the newly
2193 computed range for EXPR. This allows us to compute
2194 accurate ranges through many casts. */
2195 if ((vr0.type == VR_RANGE
2196 && !overflow_infinity_range_p (&vr0))
2197 || (vr0.type == VR_VARYING
2198 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2200 tree new_min, new_max, orig_min, orig_max;
2202 /* Convert the input operand min/max to OUTER_TYPE. If
2203 the input has no range information, then use the min/max
2204 for the input's type. */
2205 if (vr0.type == VR_RANGE)
2207 orig_min = vr0.min;
2208 orig_max = vr0.max;
2210 else
2212 orig_min = TYPE_MIN_VALUE (inner_type);
2213 orig_max = TYPE_MAX_VALUE (inner_type);
2216 new_min = fold_convert (outer_type, orig_min);
2217 new_max = fold_convert (outer_type, orig_max);
2219 /* Verify the new min/max values are gimple values and
2220 that they compare equal to the original input's
2221 min/max values. */
2222 if (is_gimple_val (new_min)
2223 && is_gimple_val (new_max)
2224 && tree_int_cst_equal (new_min, orig_min)
2225 && tree_int_cst_equal (new_max, orig_max)
2226 && (!is_overflow_infinity (new_min)
2227 || !is_overflow_infinity (new_max))
2228 && (cmp = compare_values (new_min, new_max)) <= 0
2229 && cmp >= -1)
2231 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2232 return;
2236 /* When converting types of different sizes, set the result to
2237 VARYING. Things like sign extensions and precision loss may
2238 change the range. For instance, if x_3 is of type 'long long
2239 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2240 is impossible to know at compile time whether y_5 will be
2241 ~[0, 0]. */
2242 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2243 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2245 set_value_range_to_varying (vr);
2246 return;
2250 /* Conversion of a VR_VARYING value to a wider type can result
2251 in a usable range. So wait until after we've handled conversions
2252 before dropping the result to VR_VARYING if we had a source
2253 operand that is VR_VARYING. */
2254 if (vr0.type == VR_VARYING)
2256 set_value_range_to_varying (vr);
2257 return;
2260 /* Apply the operation to each end of the range and see what we end
2261 up with. */
2262 if (code == NEGATE_EXPR
2263 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2265 /* NEGATE_EXPR flips the range around. We need to treat
2266 TYPE_MIN_VALUE specially. */
2267 if (is_positive_overflow_infinity (vr0.max))
2268 min = negative_overflow_infinity (TREE_TYPE (expr));
2269 else if (is_negative_overflow_infinity (vr0.max))
2270 min = positive_overflow_infinity (TREE_TYPE (expr));
2271 else if (!vrp_val_is_min (vr0.max))
2272 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2273 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2275 if (supports_overflow_infinity (TREE_TYPE (expr))
2276 && !is_overflow_infinity (vr0.min)
2277 && !vrp_val_is_min (vr0.min))
2278 min = positive_overflow_infinity (TREE_TYPE (expr));
2279 else
2281 set_value_range_to_varying (vr);
2282 return;
2285 else
2286 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2288 if (is_positive_overflow_infinity (vr0.min))
2289 max = negative_overflow_infinity (TREE_TYPE (expr));
2290 else if (is_negative_overflow_infinity (vr0.min))
2291 max = positive_overflow_infinity (TREE_TYPE (expr));
2292 else if (!vrp_val_is_min (vr0.min))
2293 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2294 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2296 if (supports_overflow_infinity (TREE_TYPE (expr)))
2297 max = positive_overflow_infinity (TREE_TYPE (expr));
2298 else
2300 set_value_range_to_varying (vr);
2301 return;
2304 else
2305 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2307 else if (code == NEGATE_EXPR
2308 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2310 if (!range_includes_zero_p (&vr0))
2312 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2313 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2315 else
2317 if (range_is_null (&vr0))
2318 set_value_range_to_null (vr, TREE_TYPE (expr));
2319 else
2320 set_value_range_to_varying (vr);
2321 return;
2324 else if (code == ABS_EXPR
2325 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2327 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2328 useful range. */
2329 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2330 && ((vr0.type == VR_RANGE
2331 && vrp_val_is_min (vr0.min))
2332 || (vr0.type == VR_ANTI_RANGE
2333 && !vrp_val_is_min (vr0.min)
2334 && !range_includes_zero_p (&vr0))))
2336 set_value_range_to_varying (vr);
2337 return;
2340 /* ABS_EXPR may flip the range around, if the original range
2341 included negative values. */
2342 if (is_overflow_infinity (vr0.min))
2343 min = positive_overflow_infinity (TREE_TYPE (expr));
2344 else if (!vrp_val_is_min (vr0.min))
2345 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2346 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2347 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2348 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2349 min = positive_overflow_infinity (TREE_TYPE (expr));
2350 else
2352 set_value_range_to_varying (vr);
2353 return;
2356 if (is_overflow_infinity (vr0.max))
2357 max = positive_overflow_infinity (TREE_TYPE (expr));
2358 else if (!vrp_val_is_min (vr0.max))
2359 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2360 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2361 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2362 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2363 max = positive_overflow_infinity (TREE_TYPE (expr));
2364 else
2366 set_value_range_to_varying (vr);
2367 return;
2370 cmp = compare_values (min, max);
2372 /* If a VR_ANTI_RANGEs contains zero, then we have
2373 ~[-INF, min(MIN, MAX)]. */
2374 if (vr0.type == VR_ANTI_RANGE)
2376 if (range_includes_zero_p (&vr0))
2378 /* Take the lower of the two values. */
2379 if (cmp != 1)
2380 max = min;
2382 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2383 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2384 flag_wrapv is set and the original anti-range doesn't include
2385 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2386 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2388 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2390 min = (vr0.min != type_min_value
2391 ? int_const_binop (PLUS_EXPR, type_min_value,
2392 integer_one_node, 0)
2393 : type_min_value);
2395 else
2397 if (overflow_infinity_range_p (&vr0))
2398 min = negative_overflow_infinity (TREE_TYPE (expr));
2399 else
2400 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2403 else
2405 /* All else has failed, so create the range [0, INF], even for
2406 flag_wrapv since TYPE_MIN_VALUE is in the original
2407 anti-range. */
2408 vr0.type = VR_RANGE;
2409 min = build_int_cst (TREE_TYPE (expr), 0);
2410 if (needs_overflow_infinity (TREE_TYPE (expr)))
2412 if (supports_overflow_infinity (TREE_TYPE (expr)))
2413 max = positive_overflow_infinity (TREE_TYPE (expr));
2414 else
2416 set_value_range_to_varying (vr);
2417 return;
2420 else
2421 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2425 /* If the range contains zero then we know that the minimum value in the
2426 range will be zero. */
2427 else if (range_includes_zero_p (&vr0))
2429 if (cmp == 1)
2430 max = min;
2431 min = build_int_cst (TREE_TYPE (expr), 0);
2433 else
2435 /* If the range was reversed, swap MIN and MAX. */
2436 if (cmp == 1)
2438 tree t = min;
2439 min = max;
2440 max = t;
2444 else
2446 /* Otherwise, operate on each end of the range. */
2447 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2448 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2450 if (needs_overflow_infinity (TREE_TYPE (expr)))
2452 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2454 /* If both sides have overflowed, we don't know
2455 anything. */
2456 if ((is_overflow_infinity (vr0.min)
2457 || TREE_OVERFLOW (min))
2458 && (is_overflow_infinity (vr0.max)
2459 || TREE_OVERFLOW (max)))
2461 set_value_range_to_varying (vr);
2462 return;
2465 if (is_overflow_infinity (vr0.min))
2466 min = vr0.min;
2467 else if (TREE_OVERFLOW (min))
2469 if (supports_overflow_infinity (TREE_TYPE (expr)))
2470 min = (tree_int_cst_sgn (min) >= 0
2471 ? positive_overflow_infinity (TREE_TYPE (min))
2472 : negative_overflow_infinity (TREE_TYPE (min)));
2473 else
2475 set_value_range_to_varying (vr);
2476 return;
2480 if (is_overflow_infinity (vr0.max))
2481 max = vr0.max;
2482 else if (TREE_OVERFLOW (max))
2484 if (supports_overflow_infinity (TREE_TYPE (expr)))
2485 max = (tree_int_cst_sgn (max) >= 0
2486 ? positive_overflow_infinity (TREE_TYPE (max))
2487 : negative_overflow_infinity (TREE_TYPE (max)));
2488 else
2490 set_value_range_to_varying (vr);
2491 return;
2497 cmp = compare_values (min, max);
2498 if (cmp == -2 || cmp == 1)
2500 /* If the new range has its limits swapped around (MIN > MAX),
2501 then the operation caused one of them to wrap around, mark
2502 the new range VARYING. */
2503 set_value_range_to_varying (vr);
2505 else
2506 set_value_range (vr, vr0.type, min, max, NULL);
2510 /* Extract range information from a conditional expression EXPR based on
2511 the ranges of each of its operands and the expression code. */
2513 static void
2514 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2516 tree op0, op1;
2517 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2518 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2520 /* Get value ranges for each operand. For constant operands, create
2521 a new value range with the operand to simplify processing. */
2522 op0 = COND_EXPR_THEN (expr);
2523 if (TREE_CODE (op0) == SSA_NAME)
2524 vr0 = *(get_value_range (op0));
2525 else if (is_gimple_min_invariant (op0))
2526 set_value_range_to_value (&vr0, op0, NULL);
2527 else
2528 set_value_range_to_varying (&vr0);
2530 op1 = COND_EXPR_ELSE (expr);
2531 if (TREE_CODE (op1) == SSA_NAME)
2532 vr1 = *(get_value_range (op1));
2533 else if (is_gimple_min_invariant (op1))
2534 set_value_range_to_value (&vr1, op1, NULL);
2535 else
2536 set_value_range_to_varying (&vr1);
2538 /* The resulting value range is the union of the operand ranges */
2539 vrp_meet (&vr0, &vr1);
2540 copy_value_range (vr, &vr0);
2544 /* Extract range information from a comparison expression EXPR based
2545 on the range of its operand and the expression code. */
2547 static void
2548 extract_range_from_comparison (value_range_t *vr, tree expr)
2550 bool sop = false;
2551 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2553 /* A disadvantage of using a special infinity as an overflow
2554 representation is that we lose the ability to record overflow
2555 when we don't have an infinity. So we have to ignore a result
2556 which relies on overflow. */
2558 if (val && !is_overflow_infinity (val) && !sop)
2560 /* Since this expression was found on the RHS of an assignment,
2561 its type may be different from _Bool. Convert VAL to EXPR's
2562 type. */
2563 val = fold_convert (TREE_TYPE (expr), val);
2564 if (is_gimple_min_invariant (val))
2565 set_value_range_to_value (vr, val, vr->equiv);
2566 else
2567 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2569 else
2570 /* The result of a comparison is always true or false. */
2571 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2575 /* Try to compute a useful range out of expression EXPR and store it
2576 in *VR. */
2578 static void
2579 extract_range_from_expr (value_range_t *vr, tree expr)
2581 enum tree_code code = TREE_CODE (expr);
2583 if (code == ASSERT_EXPR)
2584 extract_range_from_assert (vr, expr);
2585 else if (code == SSA_NAME)
2586 extract_range_from_ssa_name (vr, expr);
2587 else if (TREE_CODE_CLASS (code) == tcc_binary
2588 || code == TRUTH_ANDIF_EXPR
2589 || code == TRUTH_ORIF_EXPR
2590 || code == TRUTH_AND_EXPR
2591 || code == TRUTH_OR_EXPR
2592 || code == TRUTH_XOR_EXPR)
2593 extract_range_from_binary_expr (vr, expr);
2594 else if (TREE_CODE_CLASS (code) == tcc_unary)
2595 extract_range_from_unary_expr (vr, expr);
2596 else if (code == COND_EXPR)
2597 extract_range_from_cond_expr (vr, expr);
2598 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2599 extract_range_from_comparison (vr, expr);
2600 else if (is_gimple_min_invariant (expr))
2601 set_value_range_to_value (vr, expr, NULL);
2602 else
2603 set_value_range_to_varying (vr);
2605 /* If we got a varying range from the tests above, try a final
2606 time to derive a nonnegative or nonzero range. This time
2607 relying primarily on generic routines in fold in conjunction
2608 with range data. */
2609 if (vr->type == VR_VARYING)
2611 bool sop = false;
2613 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2614 && vrp_expr_computes_nonnegative (expr, &sop))
2615 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2616 sop || is_overflow_infinity (expr));
2617 else if (vrp_expr_computes_nonzero (expr, &sop)
2618 && !sop)
2619 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2623 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2624 would be profitable to adjust VR using scalar evolution information
2625 for VAR. If so, update VR with the new limits. */
2627 static void
2628 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2629 tree var)
2631 tree init, step, chrec, tmin, tmax, min, max, type;
2632 enum ev_direction dir;
2634 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2635 better opportunities than a regular range, but I'm not sure. */
2636 if (vr->type == VR_ANTI_RANGE)
2637 return;
2639 /* Ensure that there are not values in the scev cache based on assumptions
2640 on ranges of ssa names that were changed
2641 (in set_value_range/set_value_range_to_varying). Preserve cached numbers
2642 of iterations, that were computed before the start of VRP (we do not
2643 recompute these each time to save the compile time). */
2644 scev_reset_except_niters ();
2646 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2648 /* Like in PR19590, scev can return a constant function. */
2649 if (is_gimple_min_invariant (chrec))
2651 set_value_range_to_value (vr, chrec, vr->equiv);
2652 return;
2655 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2656 return;
2658 init = initial_condition_in_loop_num (chrec, loop->num);
2659 step = evolution_part_in_loop_num (chrec, loop->num);
2661 /* If STEP is symbolic, we can't know whether INIT will be the
2662 minimum or maximum value in the range. Also, unless INIT is
2663 a simple expression, compare_values and possibly other functions
2664 in tree-vrp won't be able to handle it. */
2665 if (step == NULL_TREE
2666 || !is_gimple_min_invariant (step)
2667 || !valid_value_p (init))
2668 return;
2670 dir = scev_direction (chrec);
2671 if (/* Do not adjust ranges if we do not know whether the iv increases
2672 or decreases, ... */
2673 dir == EV_DIR_UNKNOWN
2674 /* ... or if it may wrap. */
2675 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2676 true))
2677 return;
2679 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2680 negative_overflow_infinity and positive_overflow_infinity,
2681 because we have concluded that the loop probably does not
2682 wrap. */
2684 type = TREE_TYPE (var);
2685 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2686 tmin = lower_bound_in_type (type, type);
2687 else
2688 tmin = TYPE_MIN_VALUE (type);
2689 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2690 tmax = upper_bound_in_type (type, type);
2691 else
2692 tmax = TYPE_MAX_VALUE (type);
2694 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2696 min = tmin;
2697 max = tmax;
2699 /* For VARYING or UNDEFINED ranges, just about anything we get
2700 from scalar evolutions should be better. */
2702 if (dir == EV_DIR_DECREASES)
2703 max = init;
2704 else
2705 min = init;
2707 /* If we would create an invalid range, then just assume we
2708 know absolutely nothing. This may be over-conservative,
2709 but it's clearly safe, and should happen only in unreachable
2710 parts of code, or for invalid programs. */
2711 if (compare_values (min, max) == 1)
2712 return;
2714 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2716 else if (vr->type == VR_RANGE)
2718 min = vr->min;
2719 max = vr->max;
2721 if (dir == EV_DIR_DECREASES)
2723 /* INIT is the maximum value. If INIT is lower than VR->MAX
2724 but no smaller than VR->MIN, set VR->MAX to INIT. */
2725 if (compare_values (init, max) == -1)
2727 max = init;
2729 /* If we just created an invalid range with the minimum
2730 greater than the maximum, we fail conservatively.
2731 This should happen only in unreachable
2732 parts of code, or for invalid programs. */
2733 if (compare_values (min, max) == 1)
2734 return;
2737 /* According to the loop information, the variable does not
2738 overflow. If we think it does, probably because of an
2739 overflow due to arithmetic on a different INF value,
2740 reset now. */
2741 if (is_negative_overflow_infinity (min))
2742 min = tmin;
2744 else
2746 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2747 if (compare_values (init, min) == 1)
2749 min = init;
2751 /* Again, avoid creating invalid range by failing. */
2752 if (compare_values (min, max) == 1)
2753 return;
2756 if (is_positive_overflow_infinity (max))
2757 max = tmax;
2760 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2764 /* Return true if VAR may overflow at STMT. This checks any available
2765 loop information to see if we can determine that VAR does not
2766 overflow. */
2768 static bool
2769 vrp_var_may_overflow (tree var, tree stmt)
2771 struct loop *l;
2772 tree chrec, init, step;
2774 if (current_loops == NULL)
2775 return true;
2777 l = loop_containing_stmt (stmt);
2778 if (l == NULL)
2779 return true;
2781 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2782 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2783 return true;
2785 init = initial_condition_in_loop_num (chrec, l->num);
2786 step = evolution_part_in_loop_num (chrec, l->num);
2788 if (step == NULL_TREE
2789 || !is_gimple_min_invariant (step)
2790 || !valid_value_p (init))
2791 return true;
2793 /* If we get here, we know something useful about VAR based on the
2794 loop information. If it wraps, it may overflow. */
2796 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2797 true))
2798 return true;
2800 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2802 print_generic_expr (dump_file, var, 0);
2803 fprintf (dump_file, ": loop information indicates does not overflow\n");
2806 return false;
2810 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2812 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2813 all the values in the ranges.
2815 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2817 - Return NULL_TREE if it is not always possible to determine the
2818 value of the comparison.
2820 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2821 overflow infinity was used in the test. */
2824 static tree
2825 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2826 bool *strict_overflow_p)
2828 /* VARYING or UNDEFINED ranges cannot be compared. */
2829 if (vr0->type == VR_VARYING
2830 || vr0->type == VR_UNDEFINED
2831 || vr1->type == VR_VARYING
2832 || vr1->type == VR_UNDEFINED)
2833 return NULL_TREE;
2835 /* Anti-ranges need to be handled separately. */
2836 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2838 /* If both are anti-ranges, then we cannot compute any
2839 comparison. */
2840 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2841 return NULL_TREE;
2843 /* These comparisons are never statically computable. */
2844 if (comp == GT_EXPR
2845 || comp == GE_EXPR
2846 || comp == LT_EXPR
2847 || comp == LE_EXPR)
2848 return NULL_TREE;
2850 /* Equality can be computed only between a range and an
2851 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2852 if (vr0->type == VR_RANGE)
2854 /* To simplify processing, make VR0 the anti-range. */
2855 value_range_t *tmp = vr0;
2856 vr0 = vr1;
2857 vr1 = tmp;
2860 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2862 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2863 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2864 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2866 return NULL_TREE;
2869 if (!usable_range_p (vr0, strict_overflow_p)
2870 || !usable_range_p (vr1, strict_overflow_p))
2871 return NULL_TREE;
2873 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2874 operands around and change the comparison code. */
2875 if (comp == GT_EXPR || comp == GE_EXPR)
2877 value_range_t *tmp;
2878 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2879 tmp = vr0;
2880 vr0 = vr1;
2881 vr1 = tmp;
2884 if (comp == EQ_EXPR)
2886 /* Equality may only be computed if both ranges represent
2887 exactly one value. */
2888 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2889 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2891 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2892 strict_overflow_p);
2893 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2894 strict_overflow_p);
2895 if (cmp_min == 0 && cmp_max == 0)
2896 return boolean_true_node;
2897 else if (cmp_min != -2 && cmp_max != -2)
2898 return boolean_false_node;
2900 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2901 else if (compare_values_warnv (vr0->min, vr1->max,
2902 strict_overflow_p) == 1
2903 || compare_values_warnv (vr1->min, vr0->max,
2904 strict_overflow_p) == 1)
2905 return boolean_false_node;
2907 return NULL_TREE;
2909 else if (comp == NE_EXPR)
2911 int cmp1, cmp2;
2913 /* If VR0 is completely to the left or completely to the right
2914 of VR1, they are always different. Notice that we need to
2915 make sure that both comparisons yield similar results to
2916 avoid comparing values that cannot be compared at
2917 compile-time. */
2918 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2919 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2920 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2921 return boolean_true_node;
2923 /* If VR0 and VR1 represent a single value and are identical,
2924 return false. */
2925 else if (compare_values_warnv (vr0->min, vr0->max,
2926 strict_overflow_p) == 0
2927 && compare_values_warnv (vr1->min, vr1->max,
2928 strict_overflow_p) == 0
2929 && compare_values_warnv (vr0->min, vr1->min,
2930 strict_overflow_p) == 0
2931 && compare_values_warnv (vr0->max, vr1->max,
2932 strict_overflow_p) == 0)
2933 return boolean_false_node;
2935 /* Otherwise, they may or may not be different. */
2936 else
2937 return NULL_TREE;
2939 else if (comp == LT_EXPR || comp == LE_EXPR)
2941 int tst;
2943 /* If VR0 is to the left of VR1, return true. */
2944 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2945 if ((comp == LT_EXPR && tst == -1)
2946 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2948 if (overflow_infinity_range_p (vr0)
2949 || overflow_infinity_range_p (vr1))
2950 *strict_overflow_p = true;
2951 return boolean_true_node;
2954 /* If VR0 is to the right of VR1, return false. */
2955 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2956 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2957 || (comp == LE_EXPR && tst == 1))
2959 if (overflow_infinity_range_p (vr0)
2960 || overflow_infinity_range_p (vr1))
2961 *strict_overflow_p = true;
2962 return boolean_false_node;
2965 /* Otherwise, we don't know. */
2966 return NULL_TREE;
2969 gcc_unreachable ();
2973 /* Given a value range VR, a value VAL and a comparison code COMP, return
2974 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2975 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2976 always returns false. Return NULL_TREE if it is not always
2977 possible to determine the value of the comparison. Also set
2978 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2979 infinity was used in the test. */
2981 static tree
2982 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2983 bool *strict_overflow_p)
2985 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2986 return NULL_TREE;
2988 /* Anti-ranges need to be handled separately. */
2989 if (vr->type == VR_ANTI_RANGE)
2991 /* For anti-ranges, the only predicates that we can compute at
2992 compile time are equality and inequality. */
2993 if (comp == GT_EXPR
2994 || comp == GE_EXPR
2995 || comp == LT_EXPR
2996 || comp == LE_EXPR)
2997 return NULL_TREE;
2999 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3000 if (value_inside_range (val, vr) == 1)
3001 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3003 return NULL_TREE;
3006 if (!usable_range_p (vr, strict_overflow_p))
3007 return NULL_TREE;
3009 if (comp == EQ_EXPR)
3011 /* EQ_EXPR may only be computed if VR represents exactly
3012 one value. */
3013 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3015 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3016 if (cmp == 0)
3017 return boolean_true_node;
3018 else if (cmp == -1 || cmp == 1 || cmp == 2)
3019 return boolean_false_node;
3021 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3022 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3023 return boolean_false_node;
3025 return NULL_TREE;
3027 else if (comp == NE_EXPR)
3029 /* If VAL is not inside VR, then they are always different. */
3030 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3031 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3032 return boolean_true_node;
3034 /* If VR represents exactly one value equal to VAL, then return
3035 false. */
3036 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3037 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3038 return boolean_false_node;
3040 /* Otherwise, they may or may not be different. */
3041 return NULL_TREE;
3043 else if (comp == LT_EXPR || comp == LE_EXPR)
3045 int tst;
3047 /* If VR is to the left of VAL, return true. */
3048 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3049 if ((comp == LT_EXPR && tst == -1)
3050 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3052 if (overflow_infinity_range_p (vr))
3053 *strict_overflow_p = true;
3054 return boolean_true_node;
3057 /* If VR is to the right of VAL, return false. */
3058 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3059 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3060 || (comp == LE_EXPR && tst == 1))
3062 if (overflow_infinity_range_p (vr))
3063 *strict_overflow_p = true;
3064 return boolean_false_node;
3067 /* Otherwise, we don't know. */
3068 return NULL_TREE;
3070 else if (comp == GT_EXPR || comp == GE_EXPR)
3072 int tst;
3074 /* If VR is to the right of VAL, return true. */
3075 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3076 if ((comp == GT_EXPR && tst == 1)
3077 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3079 if (overflow_infinity_range_p (vr))
3080 *strict_overflow_p = true;
3081 return boolean_true_node;
3084 /* If VR is to the left of VAL, return false. */
3085 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3086 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3087 || (comp == GE_EXPR && tst == -1))
3089 if (overflow_infinity_range_p (vr))
3090 *strict_overflow_p = true;
3091 return boolean_false_node;
3094 /* Otherwise, we don't know. */
3095 return NULL_TREE;
3098 gcc_unreachable ();
3102 /* Debugging dumps. */
3104 void dump_value_range (FILE *, value_range_t *);
3105 void debug_value_range (value_range_t *);
3106 void dump_all_value_ranges (FILE *);
3107 void debug_all_value_ranges (void);
3108 void dump_vr_equiv (FILE *, bitmap);
3109 void debug_vr_equiv (bitmap);
3112 /* Dump value range VR to FILE. */
3114 void
3115 dump_value_range (FILE *file, value_range_t *vr)
3117 if (vr == NULL)
3118 fprintf (file, "[]");
3119 else if (vr->type == VR_UNDEFINED)
3120 fprintf (file, "UNDEFINED");
3121 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3123 tree type = TREE_TYPE (vr->min);
3125 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3127 if (is_negative_overflow_infinity (vr->min))
3128 fprintf (file, "-INF(OVF)");
3129 else if (INTEGRAL_TYPE_P (type)
3130 && !TYPE_UNSIGNED (type)
3131 && vrp_val_is_min (vr->min))
3132 fprintf (file, "-INF");
3133 else
3134 print_generic_expr (file, vr->min, 0);
3136 fprintf (file, ", ");
3138 if (is_positive_overflow_infinity (vr->max))
3139 fprintf (file, "+INF(OVF)");
3140 else if (INTEGRAL_TYPE_P (type)
3141 && vrp_val_is_max (vr->max))
3142 fprintf (file, "+INF");
3143 else
3144 print_generic_expr (file, vr->max, 0);
3146 fprintf (file, "]");
3148 if (vr->equiv)
3150 bitmap_iterator bi;
3151 unsigned i, c = 0;
3153 fprintf (file, " EQUIVALENCES: { ");
3155 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3157 print_generic_expr (file, ssa_name (i), 0);
3158 fprintf (file, " ");
3159 c++;
3162 fprintf (file, "} (%u elements)", c);
3165 else if (vr->type == VR_VARYING)
3166 fprintf (file, "VARYING");
3167 else
3168 fprintf (file, "INVALID RANGE");
3172 /* Dump value range VR to stderr. */
3174 void
3175 debug_value_range (value_range_t *vr)
3177 dump_value_range (stderr, vr);
3178 fprintf (stderr, "\n");
3182 /* Dump value ranges of all SSA_NAMEs to FILE. */
3184 void
3185 dump_all_value_ranges (FILE *file)
3187 size_t i;
3189 for (i = 0; i < num_ssa_names; i++)
3191 if (vr_value[i])
3193 print_generic_expr (file, ssa_name (i), 0);
3194 fprintf (file, ": ");
3195 dump_value_range (file, vr_value[i]);
3196 fprintf (file, "\n");
3200 fprintf (file, "\n");
3204 /* Dump all value ranges to stderr. */
3206 void
3207 debug_all_value_ranges (void)
3209 dump_all_value_ranges (stderr);
3213 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3214 create a new SSA name N and return the assertion assignment
3215 'V = ASSERT_EXPR <V, V OP W>'. */
3217 static tree
3218 build_assert_expr_for (tree cond, tree v)
3220 tree n, assertion;
3222 gcc_assert (TREE_CODE (v) == SSA_NAME);
3223 n = duplicate_ssa_name (v, NULL_TREE);
3225 if (COMPARISON_CLASS_P (cond))
3227 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3228 assertion = build_gimple_modify_stmt (n, a);
3230 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3232 /* Given !V, build the assignment N = false. */
3233 tree op0 = TREE_OPERAND (cond, 0);
3234 gcc_assert (op0 == v);
3235 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3237 else if (TREE_CODE (cond) == SSA_NAME)
3239 /* Given V, build the assignment N = true. */
3240 gcc_assert (v == cond);
3241 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3243 else
3244 gcc_unreachable ();
3246 SSA_NAME_DEF_STMT (n) = assertion;
3248 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3249 operand of the ASSERT_EXPR. Register the new name and the old one
3250 in the replacement table so that we can fix the SSA web after
3251 adding all the ASSERT_EXPRs. */
3252 register_new_name_mapping (n, v);
3254 return assertion;
3258 /* Return false if EXPR is a predicate expression involving floating
3259 point values. */
3261 static inline bool
3262 fp_predicate (const_tree expr)
3264 return (COMPARISON_CLASS_P (expr)
3265 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3269 /* If the range of values taken by OP can be inferred after STMT executes,
3270 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3271 describes the inferred range. Return true if a range could be
3272 inferred. */
3274 static bool
3275 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3277 *val_p = NULL_TREE;
3278 *comp_code_p = ERROR_MARK;
3280 /* Do not attempt to infer anything in names that flow through
3281 abnormal edges. */
3282 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3283 return false;
3285 /* Similarly, don't infer anything from statements that may throw
3286 exceptions. */
3287 if (tree_could_throw_p (stmt))
3288 return false;
3290 /* If STMT is the last statement of a basic block with no
3291 successors, there is no point inferring anything about any of its
3292 operands. We would not be able to find a proper insertion point
3293 for the assertion, anyway. */
3294 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3295 return false;
3297 /* We can only assume that a pointer dereference will yield
3298 non-NULL if -fdelete-null-pointer-checks is enabled. */
3299 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3301 unsigned num_uses, num_loads, num_stores;
3303 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3304 if (num_loads + num_stores > 0)
3306 *val_p = build_int_cst (TREE_TYPE (op), 0);
3307 *comp_code_p = NE_EXPR;
3308 return true;
3312 return false;
3316 void dump_asserts_for (FILE *, tree);
3317 void debug_asserts_for (tree);
3318 void dump_all_asserts (FILE *);
3319 void debug_all_asserts (void);
3321 /* Dump all the registered assertions for NAME to FILE. */
3323 void
3324 dump_asserts_for (FILE *file, tree name)
3326 assert_locus_t loc;
3328 fprintf (file, "Assertions to be inserted for ");
3329 print_generic_expr (file, name, 0);
3330 fprintf (file, "\n");
3332 loc = asserts_for[SSA_NAME_VERSION (name)];
3333 while (loc)
3335 fprintf (file, "\t");
3336 print_generic_expr (file, bsi_stmt (loc->si), 0);
3337 fprintf (file, "\n\tBB #%d", loc->bb->index);
3338 if (loc->e)
3340 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3341 loc->e->dest->index);
3342 dump_edge_info (file, loc->e, 0);
3344 fprintf (file, "\n\tPREDICATE: ");
3345 print_generic_expr (file, name, 0);
3346 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3347 print_generic_expr (file, loc->val, 0);
3348 fprintf (file, "\n\n");
3349 loc = loc->next;
3352 fprintf (file, "\n");
3356 /* Dump all the registered assertions for NAME to stderr. */
3358 void
3359 debug_asserts_for (tree name)
3361 dump_asserts_for (stderr, name);
3365 /* Dump all the registered assertions for all the names to FILE. */
3367 void
3368 dump_all_asserts (FILE *file)
3370 unsigned i;
3371 bitmap_iterator bi;
3373 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3374 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3375 dump_asserts_for (file, ssa_name (i));
3376 fprintf (file, "\n");
3380 /* Dump all the registered assertions for all the names to stderr. */
3382 void
3383 debug_all_asserts (void)
3385 dump_all_asserts (stderr);
3389 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3390 'NAME COMP_CODE VAL' at a location that dominates block BB or
3391 E->DEST, then register this location as a possible insertion point
3392 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3394 BB, E and SI provide the exact insertion point for the new
3395 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3396 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3397 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3398 must not be NULL. */
3400 static void
3401 register_new_assert_for (tree name,
3402 enum tree_code comp_code,
3403 tree val,
3404 basic_block bb,
3405 edge e,
3406 block_stmt_iterator si)
3408 assert_locus_t n, loc, last_loc;
3409 bool found;
3410 basic_block dest_bb;
3412 #if defined ENABLE_CHECKING
3413 gcc_assert (bb == NULL || e == NULL);
3415 if (e == NULL)
3416 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3417 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3418 #endif
3420 /* The new assertion A will be inserted at BB or E. We need to
3421 determine if the new location is dominated by a previously
3422 registered location for A. If we are doing an edge insertion,
3423 assume that A will be inserted at E->DEST. Note that this is not
3424 necessarily true.
3426 If E is a critical edge, it will be split. But even if E is
3427 split, the new block will dominate the same set of blocks that
3428 E->DEST dominates.
3430 The reverse, however, is not true, blocks dominated by E->DEST
3431 will not be dominated by the new block created to split E. So,
3432 if the insertion location is on a critical edge, we will not use
3433 the new location to move another assertion previously registered
3434 at a block dominated by E->DEST. */
3435 dest_bb = (bb) ? bb : e->dest;
3437 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3438 VAL at a block dominating DEST_BB, then we don't need to insert a new
3439 one. Similarly, if the same assertion already exists at a block
3440 dominated by DEST_BB and the new location is not on a critical
3441 edge, then update the existing location for the assertion (i.e.,
3442 move the assertion up in the dominance tree).
3444 Note, this is implemented as a simple linked list because there
3445 should not be more than a handful of assertions registered per
3446 name. If this becomes a performance problem, a table hashed by
3447 COMP_CODE and VAL could be implemented. */
3448 loc = asserts_for[SSA_NAME_VERSION (name)];
3449 last_loc = loc;
3450 found = false;
3451 while (loc)
3453 if (loc->comp_code == comp_code
3454 && (loc->val == val
3455 || operand_equal_p (loc->val, val, 0)))
3457 /* If the assertion NAME COMP_CODE VAL has already been
3458 registered at a basic block that dominates DEST_BB, then
3459 we don't need to insert the same assertion again. Note
3460 that we don't check strict dominance here to avoid
3461 replicating the same assertion inside the same basic
3462 block more than once (e.g., when a pointer is
3463 dereferenced several times inside a block).
3465 An exception to this rule are edge insertions. If the
3466 new assertion is to be inserted on edge E, then it will
3467 dominate all the other insertions that we may want to
3468 insert in DEST_BB. So, if we are doing an edge
3469 insertion, don't do this dominance check. */
3470 if (e == NULL
3471 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3472 return;
3474 /* Otherwise, if E is not a critical edge and DEST_BB
3475 dominates the existing location for the assertion, move
3476 the assertion up in the dominance tree by updating its
3477 location information. */
3478 if ((e == NULL || !EDGE_CRITICAL_P (e))
3479 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3481 loc->bb = dest_bb;
3482 loc->e = e;
3483 loc->si = si;
3484 return;
3488 /* Update the last node of the list and move to the next one. */
3489 last_loc = loc;
3490 loc = loc->next;
3493 /* If we didn't find an assertion already registered for
3494 NAME COMP_CODE VAL, add a new one at the end of the list of
3495 assertions associated with NAME. */
3496 n = XNEW (struct assert_locus_d);
3497 n->bb = dest_bb;
3498 n->e = e;
3499 n->si = si;
3500 n->comp_code = comp_code;
3501 n->val = val;
3502 n->next = NULL;
3504 if (last_loc)
3505 last_loc->next = n;
3506 else
3507 asserts_for[SSA_NAME_VERSION (name)] = n;
3509 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3512 /* COND is a predicate which uses NAME. Extract a suitable test code
3513 and value and store them into *CODE_P and *VAL_P so the predicate
3514 is normalized to NAME *CODE_P *VAL_P.
3516 If no extraction was possible, return FALSE, otherwise return TRUE.
3518 If INVERT is true, then we invert the result stored into *CODE_P. */
3520 static bool
3521 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3522 enum tree_code *code_p, tree *val_p)
3524 enum tree_code comp_code;
3525 tree val;
3527 /* Predicates may be a single SSA name or NAME OP VAL. */
3528 if (cond == name)
3530 /* If the predicate is a name, it must be NAME, in which
3531 case we create the predicate NAME == true or
3532 NAME == false accordingly. */
3533 comp_code = EQ_EXPR;
3534 val = invert ? boolean_false_node : boolean_true_node;
3536 else
3538 /* Otherwise, we have a comparison of the form NAME COMP VAL
3539 or VAL COMP NAME. */
3540 if (name == TREE_OPERAND (cond, 1))
3542 /* If the predicate is of the form VAL COMP NAME, flip
3543 COMP around because we need to register NAME as the
3544 first operand in the predicate. */
3545 comp_code = swap_tree_comparison (TREE_CODE (cond));
3546 val = TREE_OPERAND (cond, 0);
3548 else
3550 /* The comparison is of the form NAME COMP VAL, so the
3551 comparison code remains unchanged. */
3552 comp_code = TREE_CODE (cond);
3553 val = TREE_OPERAND (cond, 1);
3556 /* Invert the comparison code as necessary. */
3557 if (invert)
3558 comp_code = invert_tree_comparison (comp_code, 0);
3560 /* VRP does not handle float types. */
3561 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3562 return false;
3564 /* Do not register always-false predicates.
3565 FIXME: this works around a limitation in fold() when dealing with
3566 enumerations. Given 'enum { N1, N2 } x;', fold will not
3567 fold 'if (x > N2)' to 'if (0)'. */
3568 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3569 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3571 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3572 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3574 if (comp_code == GT_EXPR
3575 && (!max
3576 || compare_values (val, max) == 0))
3577 return false;
3579 if (comp_code == LT_EXPR
3580 && (!min
3581 || compare_values (val, min) == 0))
3582 return false;
3585 *code_p = comp_code;
3586 *val_p = val;
3587 return true;
3590 /* OP is an operand of a truth value expression which is known to have
3591 a particular value. Register any asserts for OP and for any
3592 operands in OP's defining statement.
3594 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3595 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3597 static bool
3598 register_edge_assert_for_1 (tree op, enum tree_code code,
3599 edge e, block_stmt_iterator bsi)
3601 bool retval = false;
3602 tree op_def, rhs, val;
3604 /* We only care about SSA_NAMEs. */
3605 if (TREE_CODE (op) != SSA_NAME)
3606 return false;
3608 /* We know that OP will have a zero or nonzero value. If OP is used
3609 more than once go ahead and register an assert for OP.
3611 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3612 it will always be set for OP (because OP is used in a COND_EXPR in
3613 the subgraph). */
3614 if (!has_single_use (op))
3616 val = build_int_cst (TREE_TYPE (op), 0);
3617 register_new_assert_for (op, code, val, NULL, e, bsi);
3618 retval = true;
3621 /* Now look at how OP is set. If it's set from a comparison,
3622 a truth operation or some bit operations, then we may be able
3623 to register information about the operands of that assignment. */
3624 op_def = SSA_NAME_DEF_STMT (op);
3625 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3626 return retval;
3628 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3630 if (COMPARISON_CLASS_P (rhs))
3632 bool invert = (code == EQ_EXPR ? true : false);
3633 tree op0 = TREE_OPERAND (rhs, 0);
3634 tree op1 = TREE_OPERAND (rhs, 1);
3636 /* Conditionally register an assert for each SSA_NAME in the
3637 comparison. */
3638 if (TREE_CODE (op0) == SSA_NAME
3639 && !has_single_use (op0)
3640 && extract_code_and_val_from_cond (op0, rhs,
3641 invert, &code, &val))
3643 register_new_assert_for (op0, code, val, NULL, e, bsi);
3644 retval = true;
3647 /* Similarly for the second operand of the comparison. */
3648 if (TREE_CODE (op1) == SSA_NAME
3649 && !has_single_use (op1)
3650 && extract_code_and_val_from_cond (op1, rhs,
3651 invert, &code, &val))
3653 register_new_assert_for (op1, code, val, NULL, e, bsi);
3654 retval = true;
3657 else if ((code == NE_EXPR
3658 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3659 || TREE_CODE (rhs) == BIT_AND_EXPR))
3660 || (code == EQ_EXPR
3661 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3662 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3664 /* Recurse on each operand. */
3665 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3666 code, e, bsi);
3667 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3668 code, e, bsi);
3670 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3672 /* Recurse, flipping CODE. */
3673 code = invert_tree_comparison (code, false);
3674 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3675 code, e, bsi);
3677 else if (TREE_CODE (rhs) == SSA_NAME)
3679 /* Recurse through the copy. */
3680 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3682 else if (TREE_CODE (rhs) == NOP_EXPR
3683 || TREE_CODE (rhs) == CONVERT_EXPR
3684 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3686 /* Recurse through the type conversion. */
3687 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3688 code, e, bsi);
3691 return retval;
3694 /* Try to register an edge assertion for SSA name NAME on edge E for
3695 the condition COND contributing to the conditional jump pointed to by SI.
3696 Return true if an assertion for NAME could be registered. */
3698 static bool
3699 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3701 tree val;
3702 enum tree_code comp_code;
3703 bool retval = false;
3704 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3706 /* Do not attempt to infer anything in names that flow through
3707 abnormal edges. */
3708 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3709 return false;
3711 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3712 &comp_code, &val))
3713 return false;
3715 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3716 reachable from E. */
3717 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3719 register_new_assert_for (name, comp_code, val, NULL, e, si);
3720 retval = true;
3723 /* If COND is effectively an equality test of an SSA_NAME against
3724 the value zero or one, then we may be able to assert values
3725 for SSA_NAMEs which flow into COND. */
3727 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3728 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3729 have nonzero value. */
3730 if (((comp_code == EQ_EXPR && integer_onep (val))
3731 || (comp_code == NE_EXPR && integer_zerop (val))))
3733 tree def_stmt = SSA_NAME_DEF_STMT (name);
3735 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3736 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3737 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3739 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3740 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3741 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3742 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3746 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3747 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3748 have zero value. */
3749 if (((comp_code == EQ_EXPR && integer_zerop (val))
3750 || (comp_code == NE_EXPR && integer_onep (val))))
3752 tree def_stmt = SSA_NAME_DEF_STMT (name);
3754 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3755 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3756 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3758 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3759 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3760 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3761 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3765 return retval;
3769 static bool find_assert_locations (basic_block bb);
3771 /* Determine whether the outgoing edges of BB should receive an
3772 ASSERT_EXPR for each of the operands of BB's LAST statement.
3773 The last statement of BB must be a COND_EXPR.
3775 If any of the sub-graphs rooted at BB have an interesting use of
3776 the predicate operands, an assert location node is added to the
3777 list of assertions for the corresponding operands. */
3779 static bool
3780 find_conditional_asserts (basic_block bb, tree last)
3782 bool need_assert;
3783 block_stmt_iterator bsi;
3784 tree op;
3785 edge_iterator ei;
3786 edge e;
3787 ssa_op_iter iter;
3789 need_assert = false;
3790 bsi = bsi_for_stmt (last);
3792 /* Look for uses of the operands in each of the sub-graphs
3793 rooted at BB. We need to check each of the outgoing edges
3794 separately, so that we know what kind of ASSERT_EXPR to
3795 insert. */
3796 FOR_EACH_EDGE (e, ei, bb->succs)
3798 if (e->dest == bb)
3799 continue;
3801 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3802 Otherwise, when we finish traversing each of the sub-graphs, we
3803 won't know whether the variables were found in the sub-graphs or
3804 if they had been found in a block upstream from BB.
3806 This is actually a bad idea is some cases, particularly jump
3807 threading. Consider a CFG like the following:
3817 Assume that one or more operands in the conditional at the
3818 end of block 0 are used in a conditional in block 2, but not
3819 anywhere in block 1. In this case we will not insert any
3820 assert statements in block 1, which may cause us to miss
3821 opportunities to optimize, particularly for jump threading. */
3822 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3823 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3825 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3826 to determine if any of the operands in the conditional
3827 predicate are used. */
3828 if (e->dest != bb)
3829 need_assert |= find_assert_locations (e->dest);
3831 /* Register the necessary assertions for each operand in the
3832 conditional predicate. */
3833 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3834 need_assert |= register_edge_assert_for (op, e, bsi,
3835 COND_EXPR_COND (last));
3838 /* Finally, indicate that we have found the operands in the
3839 conditional. */
3840 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3841 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3843 return need_assert;
3846 /* Compare two case labels sorting first by the destination label uid
3847 and then by the case value. */
3849 static int
3850 compare_case_labels (const void *p1, const void *p2)
3852 const_tree const case1 = *(const_tree const*)p1;
3853 const_tree const case2 = *(const_tree const*)p2;
3854 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3855 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3857 if (uid1 < uid2)
3858 return -1;
3859 else if (uid1 == uid2)
3861 /* Make sure the default label is first in a group. */
3862 if (!CASE_LOW (case1))
3863 return -1;
3864 else if (!CASE_LOW (case2))
3865 return 1;
3866 else
3867 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3869 else
3870 return 1;
3873 /* Determine whether the outgoing edges of BB should receive an
3874 ASSERT_EXPR for each of the operands of BB's LAST statement.
3875 The last statement of BB must be a SWITCH_EXPR.
3877 If any of the sub-graphs rooted at BB have an interesting use of
3878 the predicate operands, an assert location node is added to the
3879 list of assertions for the corresponding operands. */
3881 static bool
3882 find_switch_asserts (basic_block bb, tree last)
3884 bool need_assert;
3885 block_stmt_iterator bsi;
3886 tree op, cond;
3887 edge e;
3888 tree vec = SWITCH_LABELS (last), vec2;
3889 size_t n = TREE_VEC_LENGTH (vec);
3890 unsigned int idx;
3892 need_assert = false;
3893 bsi = bsi_for_stmt (last);
3894 op = TREE_OPERAND (last, 0);
3895 if (TREE_CODE (op) != SSA_NAME)
3896 return false;
3898 /* Build a vector of case labels sorted by destination label. */
3899 vec2 = make_tree_vec (n);
3900 for (idx = 0; idx < n; ++idx)
3901 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3902 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3904 for (idx = 0; idx < n; ++idx)
3906 tree min, max;
3907 tree cl = TREE_VEC_ELT (vec2, idx);
3909 min = CASE_LOW (cl);
3910 max = CASE_HIGH (cl);
3912 /* If there are multiple case labels with the same destination
3913 we need to combine them to a single value range for the edge. */
3914 if (idx + 1 < n
3915 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3917 /* Skip labels until the last of the group. */
3918 do {
3919 ++idx;
3920 } while (idx < n
3921 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3922 --idx;
3924 /* Pick up the maximum of the case label range. */
3925 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3926 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3927 else
3928 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3931 /* Nothing to do if the range includes the default label until we
3932 can register anti-ranges. */
3933 if (min == NULL_TREE)
3934 continue;
3936 /* Find the edge to register the assert expr on. */
3937 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3939 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3940 Otherwise, when we finish traversing each of the sub-graphs, we
3941 won't know whether the variables were found in the sub-graphs or
3942 if they had been found in a block upstream from BB. */
3943 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3945 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3946 to determine if any of the operands in the conditional
3947 predicate are used. */
3948 if (e->dest != bb)
3949 need_assert |= find_assert_locations (e->dest);
3951 /* Register the necessary assertions for the operand in the
3952 SWITCH_EXPR. */
3953 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3954 op, fold_convert (TREE_TYPE (op), min));
3955 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3956 if (max)
3958 cond = build2 (LE_EXPR, boolean_type_node,
3959 op, fold_convert (TREE_TYPE (op), max));
3960 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3964 /* Finally, indicate that we have found the operand in the
3965 SWITCH_EXPR. */
3966 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3968 return need_assert;
3972 /* Traverse all the statements in block BB looking for statements that
3973 may generate useful assertions for the SSA names in their operand.
3974 If a statement produces a useful assertion A for name N_i, then the
3975 list of assertions already generated for N_i is scanned to
3976 determine if A is actually needed.
3978 If N_i already had the assertion A at a location dominating the
3979 current location, then nothing needs to be done. Otherwise, the
3980 new location for A is recorded instead.
3982 1- For every statement S in BB, all the variables used by S are
3983 added to bitmap FOUND_IN_SUBGRAPH.
3985 2- If statement S uses an operand N in a way that exposes a known
3986 value range for N, then if N was not already generated by an
3987 ASSERT_EXPR, create a new assert location for N. For instance,
3988 if N is a pointer and the statement dereferences it, we can
3989 assume that N is not NULL.
3991 3- COND_EXPRs are a special case of #2. We can derive range
3992 information from the predicate but need to insert different
3993 ASSERT_EXPRs for each of the sub-graphs rooted at the
3994 conditional block. If the last statement of BB is a conditional
3995 expression of the form 'X op Y', then
3997 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3999 b) If the conditional is the only entry point to the sub-graph
4000 corresponding to the THEN_CLAUSE, recurse into it. On
4001 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4002 an ASSERT_EXPR is added for the corresponding variable.
4004 c) Repeat step (b) on the ELSE_CLAUSE.
4006 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4008 For instance,
4010 if (a == 9)
4011 b = a;
4012 else
4013 b = c + 1;
4015 In this case, an assertion on the THEN clause is useful to
4016 determine that 'a' is always 9 on that edge. However, an assertion
4017 on the ELSE clause would be unnecessary.
4019 4- If BB does not end in a conditional expression, then we recurse
4020 into BB's dominator children.
4022 At the end of the recursive traversal, every SSA name will have a
4023 list of locations where ASSERT_EXPRs should be added. When a new
4024 location for name N is found, it is registered by calling
4025 register_new_assert_for. That function keeps track of all the
4026 registered assertions to prevent adding unnecessary assertions.
4027 For instance, if a pointer P_4 is dereferenced more than once in a
4028 dominator tree, only the location dominating all the dereference of
4029 P_4 will receive an ASSERT_EXPR.
4031 If this function returns true, then it means that there are names
4032 for which we need to generate ASSERT_EXPRs. Those assertions are
4033 inserted by process_assert_insertions. */
4035 static bool
4036 find_assert_locations (basic_block bb)
4038 block_stmt_iterator si;
4039 tree last, phi;
4040 bool need_assert;
4041 basic_block son;
4043 if (TEST_BIT (blocks_visited, bb->index))
4044 return false;
4046 SET_BIT (blocks_visited, bb->index);
4048 need_assert = false;
4050 /* Traverse all PHI nodes in BB marking used operands. */
4051 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4053 use_operand_p arg_p;
4054 ssa_op_iter i;
4056 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4058 tree arg = USE_FROM_PTR (arg_p);
4059 if (TREE_CODE (arg) == SSA_NAME)
4061 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4062 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4067 /* Traverse all the statements in BB marking used names and looking
4068 for statements that may infer assertions for their used operands. */
4069 last = NULL_TREE;
4070 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4072 tree stmt, op;
4073 ssa_op_iter i;
4075 stmt = bsi_stmt (si);
4077 /* See if we can derive an assertion for any of STMT's operands. */
4078 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4080 tree value;
4081 enum tree_code comp_code;
4083 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4084 the sub-graph of a conditional block, when we return from
4085 this recursive walk, our parent will use the
4086 FOUND_IN_SUBGRAPH bitset to determine if one of the
4087 operands it was looking for was present in the sub-graph. */
4088 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4090 /* If OP is used in such a way that we can infer a value
4091 range for it, and we don't find a previous assertion for
4092 it, create a new assertion location node for OP. */
4093 if (infer_value_range (stmt, op, &comp_code, &value))
4095 /* If we are able to infer a nonzero value range for OP,
4096 then walk backwards through the use-def chain to see if OP
4097 was set via a typecast.
4099 If so, then we can also infer a nonzero value range
4100 for the operand of the NOP_EXPR. */
4101 if (comp_code == NE_EXPR && integer_zerop (value))
4103 tree t = op;
4104 tree def_stmt = SSA_NAME_DEF_STMT (t);
4106 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4107 && TREE_CODE
4108 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4109 && TREE_CODE
4110 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4111 0)) == SSA_NAME
4112 && POINTER_TYPE_P
4113 (TREE_TYPE (TREE_OPERAND
4114 (GIMPLE_STMT_OPERAND (def_stmt,
4115 1), 0))))
4117 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4118 def_stmt = SSA_NAME_DEF_STMT (t);
4120 /* Note we want to register the assert for the
4121 operand of the NOP_EXPR after SI, not after the
4122 conversion. */
4123 if (! has_single_use (t))
4125 register_new_assert_for (t, comp_code, value,
4126 bb, NULL, si);
4127 need_assert = true;
4132 /* If OP is used only once, namely in this STMT, don't
4133 bother creating an ASSERT_EXPR for it. Such an
4134 ASSERT_EXPR would do nothing but increase compile time. */
4135 if (!has_single_use (op))
4137 register_new_assert_for (op, comp_code, value, bb, NULL, si);
4138 need_assert = true;
4143 /* Remember the last statement of the block. */
4144 last = stmt;
4147 /* If BB's last statement is a conditional expression
4148 involving integer operands, recurse into each of the sub-graphs
4149 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4150 if (last
4151 && TREE_CODE (last) == COND_EXPR
4152 && !fp_predicate (COND_EXPR_COND (last))
4153 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4154 need_assert |= find_conditional_asserts (bb, last);
4156 if (last
4157 && TREE_CODE (last) == SWITCH_EXPR
4158 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4159 need_assert |= find_switch_asserts (bb, last);
4161 /* Recurse into the dominator children of BB. */
4162 for (son = first_dom_son (CDI_DOMINATORS, bb);
4163 son;
4164 son = next_dom_son (CDI_DOMINATORS, son))
4165 need_assert |= find_assert_locations (son);
4167 return need_assert;
4171 /* Create an ASSERT_EXPR for NAME and insert it in the location
4172 indicated by LOC. Return true if we made any edge insertions. */
4174 static bool
4175 process_assert_insertions_for (tree name, assert_locus_t loc)
4177 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4178 tree stmt, cond, assert_expr;
4179 edge_iterator ei;
4180 edge e;
4182 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
4183 assert_expr = build_assert_expr_for (cond, name);
4185 if (loc->e)
4187 /* We have been asked to insert the assertion on an edge. This
4188 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4189 #if defined ENABLE_CHECKING
4190 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4191 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4192 #endif
4194 bsi_insert_on_edge (loc->e, assert_expr);
4195 return true;
4198 /* Otherwise, we can insert right after LOC->SI iff the
4199 statement must not be the last statement in the block. */
4200 stmt = bsi_stmt (loc->si);
4201 if (!stmt_ends_bb_p (stmt))
4203 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4204 return false;
4207 /* If STMT must be the last statement in BB, we can only insert new
4208 assertions on the non-abnormal edge out of BB. Note that since
4209 STMT is not control flow, there may only be one non-abnormal edge
4210 out of BB. */
4211 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4212 if (!(e->flags & EDGE_ABNORMAL))
4214 bsi_insert_on_edge (e, assert_expr);
4215 return true;
4218 gcc_unreachable ();
4222 /* Process all the insertions registered for every name N_i registered
4223 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4224 found in ASSERTS_FOR[i]. */
4226 static void
4227 process_assert_insertions (void)
4229 unsigned i;
4230 bitmap_iterator bi;
4231 bool update_edges_p = false;
4232 int num_asserts = 0;
4234 if (dump_file && (dump_flags & TDF_DETAILS))
4235 dump_all_asserts (dump_file);
4237 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4239 assert_locus_t loc = asserts_for[i];
4240 gcc_assert (loc);
4242 while (loc)
4244 assert_locus_t next = loc->next;
4245 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4246 free (loc);
4247 loc = next;
4248 num_asserts++;
4252 if (update_edges_p)
4253 bsi_commit_edge_inserts ();
4255 if (dump_file && (dump_flags & TDF_STATS))
4256 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4257 num_asserts);
4261 /* Traverse the flowgraph looking for conditional jumps to insert range
4262 expressions. These range expressions are meant to provide information
4263 to optimizations that need to reason in terms of value ranges. They
4264 will not be expanded into RTL. For instance, given:
4266 x = ...
4267 y = ...
4268 if (x < y)
4269 y = x - 2;
4270 else
4271 x = y + 3;
4273 this pass will transform the code into:
4275 x = ...
4276 y = ...
4277 if (x < y)
4279 x = ASSERT_EXPR <x, x < y>
4280 y = x - 2
4282 else
4284 y = ASSERT_EXPR <y, x <= y>
4285 x = y + 3
4288 The idea is that once copy and constant propagation have run, other
4289 optimizations will be able to determine what ranges of values can 'x'
4290 take in different paths of the code, simply by checking the reaching
4291 definition of 'x'. */
4293 static void
4294 insert_range_assertions (void)
4296 edge e;
4297 edge_iterator ei;
4298 bool update_ssa_p;
4300 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4301 sbitmap_zero (found_in_subgraph);
4303 blocks_visited = sbitmap_alloc (last_basic_block);
4304 sbitmap_zero (blocks_visited);
4306 need_assert_for = BITMAP_ALLOC (NULL);
4307 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4309 calculate_dominance_info (CDI_DOMINATORS);
4311 update_ssa_p = false;
4312 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4313 if (find_assert_locations (e->dest))
4314 update_ssa_p = true;
4316 if (update_ssa_p)
4318 process_assert_insertions ();
4319 update_ssa (TODO_update_ssa_no_phi);
4322 if (dump_file && (dump_flags & TDF_DETAILS))
4324 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4325 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4328 sbitmap_free (found_in_subgraph);
4329 free (asserts_for);
4330 BITMAP_FREE (need_assert_for);
4333 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4334 and "struct" hacks. If VRP can determine that the
4335 array subscript is a constant, check if it is outside valid
4336 range. If the array subscript is a RANGE, warn if it is
4337 non-overlapping with valid range.
4338 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4340 static void
4341 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4343 value_range_t* vr = NULL;
4344 tree low_sub, up_sub;
4345 tree low_bound, up_bound = array_ref_up_bound (ref);
4347 low_sub = up_sub = TREE_OPERAND (ref, 1);
4349 if (!up_bound || TREE_NO_WARNING (ref)
4350 || TREE_CODE (up_bound) != INTEGER_CST
4351 /* Can not check flexible arrays. */
4352 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4353 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4354 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4355 /* Accesses after the end of arrays of size 0 (gcc
4356 extension) and 1 are likely intentional ("struct
4357 hack"). */
4358 || compare_tree_int (up_bound, 1) <= 0)
4359 return;
4361 low_bound = array_ref_low_bound (ref);
4363 if (TREE_CODE (low_sub) == SSA_NAME)
4365 vr = get_value_range (low_sub);
4366 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4368 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4369 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4373 if (vr && vr->type == VR_ANTI_RANGE)
4375 if (TREE_CODE (up_sub) == INTEGER_CST
4376 && tree_int_cst_lt (up_bound, up_sub)
4377 && TREE_CODE (low_sub) == INTEGER_CST
4378 && tree_int_cst_lt (low_sub, low_bound))
4380 warning (OPT_Warray_bounds,
4381 "%Harray subscript is outside array bounds", locus);
4382 TREE_NO_WARNING (ref) = 1;
4385 else if (TREE_CODE (up_sub) == INTEGER_CST
4386 && tree_int_cst_lt (up_bound, up_sub)
4387 && !tree_int_cst_equal (up_bound, up_sub)
4388 && (!ignore_off_by_one
4389 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4390 up_bound,
4391 integer_one_node,
4393 up_sub)))
4395 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4396 locus);
4397 TREE_NO_WARNING (ref) = 1;
4399 else if (TREE_CODE (low_sub) == INTEGER_CST
4400 && tree_int_cst_lt (low_sub, low_bound))
4402 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4403 locus);
4404 TREE_NO_WARNING (ref) = 1;
4408 /* Searches if the expr T, located at LOCATION computes
4409 address of an ARRAY_REF, and call check_array_ref on it. */
4411 static void
4412 search_for_addr_array(tree t, location_t* location)
4414 while (TREE_CODE (t) == SSA_NAME)
4416 t = SSA_NAME_DEF_STMT (t);
4417 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4418 return;
4419 t = GIMPLE_STMT_OPERAND (t, 1);
4423 /* We are only interested in addresses of ARRAY_REF's. */
4424 if (TREE_CODE (t) != ADDR_EXPR)
4425 return;
4427 /* Check each ARRAY_REFs in the reference chain. */
4430 if (TREE_CODE (t) == ARRAY_REF)
4431 check_array_ref (t, location, true /*ignore_off_by_one*/);
4433 t = TREE_OPERAND(t,0);
4435 while (handled_component_p (t));
4438 /* walk_tree() callback that checks if *TP is
4439 an ARRAY_REF inside an ADDR_EXPR (in which an array
4440 subscript one outside the valid range is allowed). Call
4441 check_array_ref for each ARRAY_REF found. The location is
4442 passed in DATA. */
4444 static tree
4445 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4447 tree t = *tp;
4448 tree stmt = (tree)data;
4449 location_t *location = EXPR_LOCUS (stmt);
4451 if (!EXPR_HAS_LOCATION (stmt))
4453 *walk_subtree = FALSE;
4454 return NULL_TREE;
4457 *walk_subtree = TRUE;
4459 if (TREE_CODE (t) == ARRAY_REF)
4460 check_array_ref (t, location, false /*ignore_off_by_one*/);
4462 if (TREE_CODE (t) == INDIRECT_REF
4463 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4464 search_for_addr_array (TREE_OPERAND (t, 0), location);
4465 else if (TREE_CODE (t) == CALL_EXPR)
4467 tree arg;
4468 call_expr_arg_iterator iter;
4470 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4471 search_for_addr_array (arg, location);
4474 if (TREE_CODE (t) == ADDR_EXPR)
4475 *walk_subtree = FALSE;
4477 return NULL_TREE;
4480 /* Walk over all statements of all reachable BBs and call check_array_bounds
4481 on them. */
4483 static void
4484 check_all_array_refs (void)
4486 basic_block bb;
4487 block_stmt_iterator si;
4489 FOR_EACH_BB (bb)
4491 /* Skip bb's that are clearly unreachable. */
4492 if (single_pred_p (bb))
4494 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4495 tree ls = NULL_TREE;
4497 if (!bsi_end_p (bsi_last (pred_bb)))
4498 ls = bsi_stmt (bsi_last (pred_bb));
4500 if (ls && TREE_CODE (ls) == COND_EXPR
4501 && ((COND_EXPR_COND (ls) == boolean_false_node
4502 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4503 || (COND_EXPR_COND (ls) == boolean_true_node
4504 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4505 continue;
4507 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4508 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4509 bsi_stmt (si), NULL);
4513 /* Convert range assertion expressions into the implied copies and
4514 copy propagate away the copies. Doing the trivial copy propagation
4515 here avoids the need to run the full copy propagation pass after
4516 VRP.
4518 FIXME, this will eventually lead to copy propagation removing the
4519 names that had useful range information attached to them. For
4520 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4521 then N_i will have the range [3, +INF].
4523 However, by converting the assertion into the implied copy
4524 operation N_i = N_j, we will then copy-propagate N_j into the uses
4525 of N_i and lose the range information. We may want to hold on to
4526 ASSERT_EXPRs a little while longer as the ranges could be used in
4527 things like jump threading.
4529 The problem with keeping ASSERT_EXPRs around is that passes after
4530 VRP need to handle them appropriately.
4532 Another approach would be to make the range information a first
4533 class property of the SSA_NAME so that it can be queried from
4534 any pass. This is made somewhat more complex by the need for
4535 multiple ranges to be associated with one SSA_NAME. */
4537 static void
4538 remove_range_assertions (void)
4540 basic_block bb;
4541 block_stmt_iterator si;
4543 /* Note that the BSI iterator bump happens at the bottom of the
4544 loop and no bump is necessary if we're removing the statement
4545 referenced by the current BSI. */
4546 FOR_EACH_BB (bb)
4547 for (si = bsi_start (bb); !bsi_end_p (si);)
4549 tree stmt = bsi_stmt (si);
4550 tree use_stmt;
4552 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4553 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4555 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4556 tree cond = fold (ASSERT_EXPR_COND (rhs));
4557 use_operand_p use_p;
4558 imm_use_iterator iter;
4560 gcc_assert (cond != boolean_false_node);
4562 /* Propagate the RHS into every use of the LHS. */
4563 var = ASSERT_EXPR_VAR (rhs);
4564 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4565 GIMPLE_STMT_OPERAND (stmt, 0))
4566 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4568 SET_USE (use_p, var);
4569 gcc_assert (TREE_CODE (var) == SSA_NAME);
4572 /* And finally, remove the copy, it is not needed. */
4573 bsi_remove (&si, true);
4574 release_defs (stmt);
4576 else
4577 bsi_next (&si);
4580 sbitmap_free (blocks_visited);
4584 /* Return true if STMT is interesting for VRP. */
4586 static bool
4587 stmt_interesting_for_vrp (tree stmt)
4589 if (TREE_CODE (stmt) == PHI_NODE
4590 && is_gimple_reg (PHI_RESULT (stmt))
4591 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4592 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4593 return true;
4594 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4596 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4597 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4599 /* In general, assignments with virtual operands are not useful
4600 for deriving ranges, with the obvious exception of calls to
4601 builtin functions. */
4602 if (TREE_CODE (lhs) == SSA_NAME
4603 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4604 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4605 && ((TREE_CODE (rhs) == CALL_EXPR
4606 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4607 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4608 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4609 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4610 return true;
4612 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4613 return true;
4615 return false;
4619 /* Initialize local data structures for VRP. */
4621 static void
4622 vrp_initialize (void)
4624 basic_block bb;
4626 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4627 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4629 FOR_EACH_BB (bb)
4631 block_stmt_iterator si;
4632 tree phi;
4634 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4636 if (!stmt_interesting_for_vrp (phi))
4638 tree lhs = PHI_RESULT (phi);
4639 set_value_range_to_varying (get_value_range (lhs));
4640 DONT_SIMULATE_AGAIN (phi) = true;
4642 else
4643 DONT_SIMULATE_AGAIN (phi) = false;
4646 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4648 tree stmt = bsi_stmt (si);
4650 if (!stmt_interesting_for_vrp (stmt))
4652 ssa_op_iter i;
4653 tree def;
4654 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4655 set_value_range_to_varying (get_value_range (def));
4656 DONT_SIMULATE_AGAIN (stmt) = true;
4658 else
4660 DONT_SIMULATE_AGAIN (stmt) = false;
4667 /* Visit assignment STMT. If it produces an interesting range, record
4668 the SSA name in *OUTPUT_P. */
4670 static enum ssa_prop_result
4671 vrp_visit_assignment (tree stmt, tree *output_p)
4673 tree lhs, rhs, def;
4674 ssa_op_iter iter;
4676 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4677 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4679 /* We only keep track of ranges in integral and pointer types. */
4680 if (TREE_CODE (lhs) == SSA_NAME
4681 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4682 /* It is valid to have NULL MIN/MAX values on a type. See
4683 build_range_type. */
4684 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4685 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4686 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4688 struct loop *l;
4689 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4691 extract_range_from_expr (&new_vr, rhs);
4693 /* If STMT is inside a loop, we may be able to know something
4694 else about the range of LHS by examining scalar evolution
4695 information. */
4696 if (current_loops && (l = loop_containing_stmt (stmt)))
4697 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4699 if (update_value_range (lhs, &new_vr))
4701 *output_p = lhs;
4703 if (dump_file && (dump_flags & TDF_DETAILS))
4705 fprintf (dump_file, "Found new range for ");
4706 print_generic_expr (dump_file, lhs, 0);
4707 fprintf (dump_file, ": ");
4708 dump_value_range (dump_file, &new_vr);
4709 fprintf (dump_file, "\n\n");
4712 if (new_vr.type == VR_VARYING)
4713 return SSA_PROP_VARYING;
4715 return SSA_PROP_INTERESTING;
4718 return SSA_PROP_NOT_INTERESTING;
4721 /* Every other statement produces no useful ranges. */
4722 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4723 set_value_range_to_varying (get_value_range (def));
4725 return SSA_PROP_VARYING;
4728 /* Helper that gets the value range of the SSA_NAME with version I
4729 or a symbolic range containing the SSA_NAME only if the value range
4730 is varying or undefined. */
4732 static inline value_range_t
4733 get_vr_for_comparison (int i)
4735 value_range_t vr = *(vr_value[i]);
4737 /* If name N_i does not have a valid range, use N_i as its own
4738 range. This allows us to compare against names that may
4739 have N_i in their ranges. */
4740 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
4742 vr.type = VR_RANGE;
4743 vr.min = ssa_name (i);
4744 vr.max = ssa_name (i);
4747 return vr;
4750 /* Compare all the value ranges for names equivalent to VAR with VAL
4751 using comparison code COMP. Return the same value returned by
4752 compare_range_with_value, including the setting of
4753 *STRICT_OVERFLOW_P. */
4755 static tree
4756 compare_name_with_value (enum tree_code comp, tree var, tree val,
4757 bool *strict_overflow_p)
4759 bitmap_iterator bi;
4760 unsigned i;
4761 bitmap e;
4762 tree retval, t;
4763 int used_strict_overflow;
4764 bool sop;
4765 value_range_t equiv_vr;
4767 /* Get the set of equivalences for VAR. */
4768 e = get_value_range (var)->equiv;
4770 /* Start at -1. Set it to 0 if we do a comparison without relying
4771 on overflow, or 1 if all comparisons rely on overflow. */
4772 used_strict_overflow = -1;
4774 /* Compare vars' value range with val. */
4775 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
4776 sop = false;
4777 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
4778 if (retval)
4779 used_strict_overflow = sop ? 1 : 0;
4781 /* If the equiv set is empty we have done all work we need to do. */
4782 if (e == NULL)
4784 if (retval
4785 && used_strict_overflow > 0)
4786 *strict_overflow_p = true;
4787 return retval;
4790 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4792 equiv_vr = get_vr_for_comparison (i);
4793 sop = false;
4794 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4795 if (t)
4797 /* If we get different answers from different members
4798 of the equivalence set this check must be in a dead
4799 code region. Folding it to a trap representation
4800 would be correct here. For now just return don't-know. */
4801 if (retval != NULL
4802 && t != retval)
4804 retval = NULL_TREE;
4805 break;
4807 retval = t;
4809 if (!sop)
4810 used_strict_overflow = 0;
4811 else if (used_strict_overflow < 0)
4812 used_strict_overflow = 1;
4816 if (retval
4817 && used_strict_overflow > 0)
4818 *strict_overflow_p = true;
4820 return retval;
4824 /* Given a comparison code COMP and names N1 and N2, compare all the
4825 ranges equivalent to N1 against all the ranges equivalent to N2
4826 to determine the value of N1 COMP N2. Return the same value
4827 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4828 whether we relied on an overflow infinity in the comparison. */
4831 static tree
4832 compare_names (enum tree_code comp, tree n1, tree n2,
4833 bool *strict_overflow_p)
4835 tree t, retval;
4836 bitmap e1, e2;
4837 bitmap_iterator bi1, bi2;
4838 unsigned i1, i2;
4839 int used_strict_overflow;
4840 static bitmap_obstack *s_obstack = NULL;
4841 static bitmap s_e1 = NULL, s_e2 = NULL;
4843 /* Compare the ranges of every name equivalent to N1 against the
4844 ranges of every name equivalent to N2. */
4845 e1 = get_value_range (n1)->equiv;
4846 e2 = get_value_range (n2)->equiv;
4848 /* Use the fake bitmaps if e1 or e2 are not available. */
4849 if (s_obstack == NULL)
4851 s_obstack = XNEW (bitmap_obstack);
4852 bitmap_obstack_initialize (s_obstack);
4853 s_e1 = BITMAP_ALLOC (s_obstack);
4854 s_e2 = BITMAP_ALLOC (s_obstack);
4856 if (e1 == NULL)
4857 e1 = s_e1;
4858 if (e2 == NULL)
4859 e2 = s_e2;
4861 /* Add N1 and N2 to their own set of equivalences to avoid
4862 duplicating the body of the loop just to check N1 and N2
4863 ranges. */
4864 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4865 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4867 /* If the equivalence sets have a common intersection, then the two
4868 names can be compared without checking their ranges. */
4869 if (bitmap_intersect_p (e1, e2))
4871 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4872 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4874 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4875 ? boolean_true_node
4876 : boolean_false_node;
4879 /* Start at -1. Set it to 0 if we do a comparison without relying
4880 on overflow, or 1 if all comparisons rely on overflow. */
4881 used_strict_overflow = -1;
4883 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4884 N2 to their own set of equivalences to avoid duplicating the body
4885 of the loop just to check N1 and N2 ranges. */
4886 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4888 value_range_t vr1 = get_vr_for_comparison (i1);
4890 t = retval = NULL_TREE;
4891 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4893 bool sop = false;
4895 value_range_t vr2 = get_vr_for_comparison (i2);
4897 t = compare_ranges (comp, &vr1, &vr2, &sop);
4898 if (t)
4900 /* If we get different answers from different members
4901 of the equivalence set this check must be in a dead
4902 code region. Folding it to a trap representation
4903 would be correct here. For now just return don't-know. */
4904 if (retval != NULL
4905 && t != retval)
4907 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4908 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4909 return NULL_TREE;
4911 retval = t;
4913 if (!sop)
4914 used_strict_overflow = 0;
4915 else if (used_strict_overflow < 0)
4916 used_strict_overflow = 1;
4920 if (retval)
4922 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4923 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4924 if (used_strict_overflow > 0)
4925 *strict_overflow_p = true;
4926 return retval;
4930 /* None of the equivalent ranges are useful in computing this
4931 comparison. */
4932 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4933 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4934 return NULL_TREE;
4938 /* Given a conditional predicate COND, try to determine if COND yields
4939 true or false based on the value ranges of its operands. Return
4940 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4941 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4942 NULL if the conditional cannot be evaluated at compile time.
4944 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4945 the operands in COND are used when trying to compute its value.
4946 This is only used during final substitution. During propagation,
4947 we only check the range of each variable and not its equivalents.
4949 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4950 infinity to produce the result. */
4952 static tree
4953 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4954 bool *strict_overflow_p)
4956 gcc_assert (TREE_CODE (cond) == SSA_NAME
4957 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4959 if (TREE_CODE (cond) == SSA_NAME)
4961 value_range_t *vr;
4962 tree retval;
4964 if (use_equiv_p)
4965 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4966 strict_overflow_p);
4967 else
4969 value_range_t *vr = get_value_range (cond);
4970 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4971 strict_overflow_p);
4974 /* If COND has a known boolean range, return it. */
4975 if (retval)
4976 return retval;
4978 /* Otherwise, if COND has a symbolic range of exactly one value,
4979 return it. */
4980 vr = get_value_range (cond);
4981 if (vr->type == VR_RANGE && vr->min == vr->max)
4982 return vr->min;
4984 else
4986 tree op0 = TREE_OPERAND (cond, 0);
4987 tree op1 = TREE_OPERAND (cond, 1);
4989 /* We only deal with integral and pointer types. */
4990 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4991 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4992 return NULL_TREE;
4994 if (use_equiv_p)
4996 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4997 return compare_names (TREE_CODE (cond), op0, op1,
4998 strict_overflow_p);
4999 else if (TREE_CODE (op0) == SSA_NAME)
5000 return compare_name_with_value (TREE_CODE (cond), op0, op1,
5001 strict_overflow_p);
5002 else if (TREE_CODE (op1) == SSA_NAME)
5003 return (compare_name_with_value
5004 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
5005 strict_overflow_p));
5007 else
5009 value_range_t *vr0, *vr1;
5011 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5012 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5014 if (vr0 && vr1)
5015 return compare_ranges (TREE_CODE (cond), vr0, vr1,
5016 strict_overflow_p);
5017 else if (vr0 && vr1 == NULL)
5018 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
5019 strict_overflow_p);
5020 else if (vr0 == NULL && vr1)
5021 return (compare_range_with_value
5022 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
5023 strict_overflow_p));
5027 /* Anything else cannot be computed statically. */
5028 return NULL_TREE;
5031 /* Given COND within STMT, try to simplify it based on value range
5032 information. Return NULL if the conditional can not be evaluated.
5033 The ranges of all the names equivalent with the operands in COND
5034 will be used when trying to compute the value. If the result is
5035 based on undefined signed overflow, issue a warning if
5036 appropriate. */
5038 tree
5039 vrp_evaluate_conditional (tree cond, tree stmt)
5041 bool sop;
5042 tree ret;
5044 sop = false;
5045 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
5047 if (ret && sop)
5049 enum warn_strict_overflow_code wc;
5050 const char* warnmsg;
5052 if (is_gimple_min_invariant (ret))
5054 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5055 warnmsg = G_("assuming signed overflow does not occur when "
5056 "simplifying conditional to constant");
5058 else
5060 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5061 warnmsg = G_("assuming signed overflow does not occur when "
5062 "simplifying conditional");
5065 if (issue_strict_overflow_warning (wc))
5067 location_t locus;
5069 if (!EXPR_HAS_LOCATION (stmt))
5070 locus = input_location;
5071 else
5072 locus = EXPR_LOCATION (stmt);
5073 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5077 return ret;
5081 /* Visit conditional statement STMT. If we can determine which edge
5082 will be taken out of STMT's basic block, record it in
5083 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5084 SSA_PROP_VARYING. */
5086 static enum ssa_prop_result
5087 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5089 tree cond, val;
5090 bool sop;
5092 *taken_edge_p = NULL;
5094 /* FIXME. Handle SWITCH_EXPRs. */
5095 if (TREE_CODE (stmt) == SWITCH_EXPR)
5096 return SSA_PROP_VARYING;
5098 cond = COND_EXPR_COND (stmt);
5100 if (dump_file && (dump_flags & TDF_DETAILS))
5102 tree use;
5103 ssa_op_iter i;
5105 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5106 print_generic_expr (dump_file, cond, 0);
5107 fprintf (dump_file, "\nWith known ranges\n");
5109 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5111 fprintf (dump_file, "\t");
5112 print_generic_expr (dump_file, use, 0);
5113 fprintf (dump_file, ": ");
5114 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5117 fprintf (dump_file, "\n");
5120 /* Compute the value of the predicate COND by checking the known
5121 ranges of each of its operands.
5123 Note that we cannot evaluate all the equivalent ranges here
5124 because those ranges may not yet be final and with the current
5125 propagation strategy, we cannot determine when the value ranges
5126 of the names in the equivalence set have changed.
5128 For instance, given the following code fragment
5130 i_5 = PHI <8, i_13>
5132 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5133 if (i_14 == 1)
5136 Assume that on the first visit to i_14, i_5 has the temporary
5137 range [8, 8] because the second argument to the PHI function is
5138 not yet executable. We derive the range ~[0, 0] for i_14 and the
5139 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5140 the first time, since i_14 is equivalent to the range [8, 8], we
5141 determine that the predicate is always false.
5143 On the next round of propagation, i_13 is determined to be
5144 VARYING, which causes i_5 to drop down to VARYING. So, another
5145 visit to i_14 is scheduled. In this second visit, we compute the
5146 exact same range and equivalence set for i_14, namely ~[0, 0] and
5147 { i_5 }. But we did not have the previous range for i_5
5148 registered, so vrp_visit_assignment thinks that the range for
5149 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5150 is not visited again, which stops propagation from visiting
5151 statements in the THEN clause of that if().
5153 To properly fix this we would need to keep the previous range
5154 value for the names in the equivalence set. This way we would've
5155 discovered that from one visit to the other i_5 changed from
5156 range [8, 8] to VR_VARYING.
5158 However, fixing this apparent limitation may not be worth the
5159 additional checking. Testing on several code bases (GCC, DLV,
5160 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5161 4 more predicates folded in SPEC. */
5162 sop = false;
5163 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
5164 if (val)
5166 if (!sop)
5167 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5168 else
5170 if (dump_file && (dump_flags & TDF_DETAILS))
5171 fprintf (dump_file,
5172 "\nIgnoring predicate evaluation because "
5173 "it assumes that signed overflow is undefined");
5174 val = NULL_TREE;
5178 if (dump_file && (dump_flags & TDF_DETAILS))
5180 fprintf (dump_file, "\nPredicate evaluates to: ");
5181 if (val == NULL_TREE)
5182 fprintf (dump_file, "DON'T KNOW\n");
5183 else
5184 print_generic_stmt (dump_file, val, 0);
5187 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5191 /* Evaluate statement STMT. If the statement produces a useful range,
5192 return SSA_PROP_INTERESTING and record the SSA name with the
5193 interesting range into *OUTPUT_P.
5195 If STMT is a conditional branch and we can determine its truth
5196 value, the taken edge is recorded in *TAKEN_EDGE_P.
5198 If STMT produces a varying value, return SSA_PROP_VARYING. */
5200 static enum ssa_prop_result
5201 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5203 tree def;
5204 ssa_op_iter iter;
5205 stmt_ann_t ann;
5207 if (dump_file && (dump_flags & TDF_DETAILS))
5209 fprintf (dump_file, "\nVisiting statement:\n");
5210 print_generic_stmt (dump_file, stmt, dump_flags);
5211 fprintf (dump_file, "\n");
5214 ann = stmt_ann (stmt);
5215 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5217 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5219 /* In general, assignments with virtual operands are not useful
5220 for deriving ranges, with the obvious exception of calls to
5221 builtin functions. */
5222 if ((TREE_CODE (rhs) == CALL_EXPR
5223 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5224 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5225 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5226 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5227 return vrp_visit_assignment (stmt, output_p);
5229 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5230 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5232 /* All other statements produce nothing of interest for VRP, so mark
5233 their outputs varying and prevent further simulation. */
5234 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5235 set_value_range_to_varying (get_value_range (def));
5237 return SSA_PROP_VARYING;
5241 /* Meet operation for value ranges. Given two value ranges VR0 and
5242 VR1, store in VR0 a range that contains both VR0 and VR1. This
5243 may not be the smallest possible such range. */
5245 static void
5246 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5248 if (vr0->type == VR_UNDEFINED)
5250 copy_value_range (vr0, vr1);
5251 return;
5254 if (vr1->type == VR_UNDEFINED)
5256 /* Nothing to do. VR0 already has the resulting range. */
5257 return;
5260 if (vr0->type == VR_VARYING)
5262 /* Nothing to do. VR0 already has the resulting range. */
5263 return;
5266 if (vr1->type == VR_VARYING)
5268 set_value_range_to_varying (vr0);
5269 return;
5272 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5274 int cmp;
5275 tree min, max;
5277 /* Compute the convex hull of the ranges. The lower limit of
5278 the new range is the minimum of the two ranges. If they
5279 cannot be compared, then give up. */
5280 cmp = compare_values (vr0->min, vr1->min);
5281 if (cmp == 0 || cmp == 1)
5282 min = vr1->min;
5283 else if (cmp == -1)
5284 min = vr0->min;
5285 else
5286 goto give_up;
5288 /* Similarly, the upper limit of the new range is the maximum
5289 of the two ranges. If they cannot be compared, then
5290 give up. */
5291 cmp = compare_values (vr0->max, vr1->max);
5292 if (cmp == 0 || cmp == -1)
5293 max = vr1->max;
5294 else if (cmp == 1)
5295 max = vr0->max;
5296 else
5297 goto give_up;
5299 /* Check for useless ranges. */
5300 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5301 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5302 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5303 goto give_up;
5305 /* The resulting set of equivalences is the intersection of
5306 the two sets. */
5307 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5308 bitmap_and_into (vr0->equiv, vr1->equiv);
5309 else if (vr0->equiv && !vr1->equiv)
5310 bitmap_clear (vr0->equiv);
5312 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5314 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5316 /* Two anti-ranges meet only if their complements intersect.
5317 Only handle the case of identical ranges. */
5318 if (compare_values (vr0->min, vr1->min) == 0
5319 && compare_values (vr0->max, vr1->max) == 0
5320 && compare_values (vr0->min, vr0->max) == 0)
5322 /* The resulting set of equivalences is the intersection of
5323 the two sets. */
5324 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5325 bitmap_and_into (vr0->equiv, vr1->equiv);
5326 else if (vr0->equiv && !vr1->equiv)
5327 bitmap_clear (vr0->equiv);
5329 else
5330 goto give_up;
5332 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5334 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5335 only handle the case where the ranges have an empty intersection.
5336 The result of the meet operation is the anti-range. */
5337 if (!symbolic_range_p (vr0)
5338 && !symbolic_range_p (vr1)
5339 && !value_ranges_intersect_p (vr0, vr1))
5341 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5342 set. We need to compute the intersection of the two
5343 equivalence sets. */
5344 if (vr1->type == VR_ANTI_RANGE)
5345 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5347 /* The resulting set of equivalences is the intersection of
5348 the two sets. */
5349 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5350 bitmap_and_into (vr0->equiv, vr1->equiv);
5351 else if (vr0->equiv && !vr1->equiv)
5352 bitmap_clear (vr0->equiv);
5354 else
5355 goto give_up;
5357 else
5358 gcc_unreachable ();
5360 return;
5362 give_up:
5363 /* Failed to find an efficient meet. Before giving up and setting
5364 the result to VARYING, see if we can at least derive a useful
5365 anti-range. FIXME, all this nonsense about distinguishing
5366 anti-ranges from ranges is necessary because of the odd
5367 semantics of range_includes_zero_p and friends. */
5368 if (!symbolic_range_p (vr0)
5369 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5370 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5371 && !symbolic_range_p (vr1)
5372 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5373 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5375 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5377 /* Since this meet operation did not result from the meeting of
5378 two equivalent names, VR0 cannot have any equivalences. */
5379 if (vr0->equiv)
5380 bitmap_clear (vr0->equiv);
5382 else
5383 set_value_range_to_varying (vr0);
5387 /* Visit all arguments for PHI node PHI that flow through executable
5388 edges. If a valid value range can be derived from all the incoming
5389 value ranges, set a new range for the LHS of PHI. */
5391 static enum ssa_prop_result
5392 vrp_visit_phi_node (tree phi)
5394 int i;
5395 tree lhs = PHI_RESULT (phi);
5396 value_range_t *lhs_vr = get_value_range (lhs);
5397 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5398 int edges, old_edges;
5400 copy_value_range (&vr_result, lhs_vr);
5402 if (dump_file && (dump_flags & TDF_DETAILS))
5404 fprintf (dump_file, "\nVisiting PHI node: ");
5405 print_generic_expr (dump_file, phi, dump_flags);
5408 edges = 0;
5409 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5411 edge e = PHI_ARG_EDGE (phi, i);
5413 if (dump_file && (dump_flags & TDF_DETAILS))
5415 fprintf (dump_file,
5416 "\n Argument #%d (%d -> %d %sexecutable)\n",
5417 i, e->src->index, e->dest->index,
5418 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5421 if (e->flags & EDGE_EXECUTABLE)
5423 tree arg = PHI_ARG_DEF (phi, i);
5424 value_range_t vr_arg;
5426 ++edges;
5428 if (TREE_CODE (arg) == SSA_NAME)
5430 vr_arg = *(get_value_range (arg));
5432 else
5434 if (is_overflow_infinity (arg))
5436 arg = copy_node (arg);
5437 TREE_OVERFLOW (arg) = 0;
5440 vr_arg.type = VR_RANGE;
5441 vr_arg.min = arg;
5442 vr_arg.max = arg;
5443 vr_arg.equiv = NULL;
5446 if (dump_file && (dump_flags & TDF_DETAILS))
5448 fprintf (dump_file, "\t");
5449 print_generic_expr (dump_file, arg, dump_flags);
5450 fprintf (dump_file, "\n\tValue: ");
5451 dump_value_range (dump_file, &vr_arg);
5452 fprintf (dump_file, "\n");
5455 vrp_meet (&vr_result, &vr_arg);
5457 if (vr_result.type == VR_VARYING)
5458 break;
5462 if (vr_result.type == VR_VARYING)
5463 goto varying;
5465 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5466 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5468 /* To prevent infinite iterations in the algorithm, derive ranges
5469 when the new value is slightly bigger or smaller than the
5470 previous one. We don't do this if we have seen a new executable
5471 edge; this helps us avoid an overflow infinity for conditionals
5472 which are not in a loop. */
5473 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5474 && edges <= old_edges)
5476 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5478 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5479 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5481 /* If the new minimum is smaller or larger than the previous
5482 one, go all the way to -INF. In the first case, to avoid
5483 iterating millions of times to reach -INF, and in the
5484 other case to avoid infinite bouncing between different
5485 minimums. */
5486 if (cmp_min > 0 || cmp_min < 0)
5488 /* If we will end up with a (-INF, +INF) range, set it
5489 to VARYING. */
5490 if (vrp_val_is_max (vr_result.max))
5491 goto varying;
5493 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5494 || !vrp_var_may_overflow (lhs, phi))
5495 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5496 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5497 vr_result.min =
5498 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5499 else
5500 goto varying;
5503 /* Similarly, if the new maximum is smaller or larger than
5504 the previous one, go all the way to +INF. */
5505 if (cmp_max < 0 || cmp_max > 0)
5507 /* If we will end up with a (-INF, +INF) range, set it
5508 to VARYING. */
5509 if (vrp_val_is_min (vr_result.min))
5510 goto varying;
5512 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
5513 || !vrp_var_may_overflow (lhs, phi))
5514 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5515 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5516 vr_result.max =
5517 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5518 else
5519 goto varying;
5524 /* If the new range is different than the previous value, keep
5525 iterating. */
5526 if (update_value_range (lhs, &vr_result))
5527 return SSA_PROP_INTERESTING;
5529 /* Nothing changed, don't add outgoing edges. */
5530 return SSA_PROP_NOT_INTERESTING;
5532 /* No match found. Set the LHS to VARYING. */
5533 varying:
5534 set_value_range_to_varying (lhs_vr);
5535 return SSA_PROP_VARYING;
5538 /* Simplify a division or modulo operator to a right shift or
5539 bitwise and if the first operand is unsigned or is greater
5540 than zero and the second operand is an exact power of two. */
5542 static void
5543 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5545 tree val = NULL;
5546 tree op = TREE_OPERAND (rhs, 0);
5547 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5549 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5551 val = integer_one_node;
5553 else
5555 bool sop = false;
5557 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
5559 if (val
5560 && sop
5561 && integer_onep (val)
5562 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5564 location_t locus;
5566 if (!EXPR_HAS_LOCATION (stmt))
5567 locus = input_location;
5568 else
5569 locus = EXPR_LOCATION (stmt);
5570 warning (OPT_Wstrict_overflow,
5571 ("%Hassuming signed overflow does not occur when "
5572 "simplifying / or %% to >> or &"),
5573 &locus);
5577 if (val && integer_onep (val))
5579 tree t;
5580 tree op0 = TREE_OPERAND (rhs, 0);
5581 tree op1 = TREE_OPERAND (rhs, 1);
5583 if (rhs_code == TRUNC_DIV_EXPR)
5585 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5586 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5588 else
5590 t = build_int_cst (TREE_TYPE (op1), 1);
5591 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5592 t = fold_convert (TREE_TYPE (op0), t);
5593 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5596 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5597 update_stmt (stmt);
5601 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5602 ABS_EXPR. If the operand is <= 0, then simplify the
5603 ABS_EXPR into a NEGATE_EXPR. */
5605 static void
5606 simplify_abs_using_ranges (tree stmt, tree rhs)
5608 tree val = NULL;
5609 tree op = TREE_OPERAND (rhs, 0);
5610 tree type = TREE_TYPE (op);
5611 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5613 if (TYPE_UNSIGNED (type))
5615 val = integer_zero_node;
5617 else if (vr)
5619 bool sop = false;
5621 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5622 if (!val)
5624 sop = false;
5625 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5626 &sop);
5628 if (val)
5630 if (integer_zerop (val))
5631 val = integer_one_node;
5632 else if (integer_onep (val))
5633 val = integer_zero_node;
5637 if (val
5638 && (integer_onep (val) || integer_zerop (val)))
5640 tree t;
5642 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5644 location_t locus;
5646 if (!EXPR_HAS_LOCATION (stmt))
5647 locus = input_location;
5648 else
5649 locus = EXPR_LOCATION (stmt);
5650 warning (OPT_Wstrict_overflow,
5651 ("%Hassuming signed overflow does not occur when "
5652 "simplifying abs (X) to X or -X"),
5653 &locus);
5656 if (integer_onep (val))
5657 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5658 else
5659 t = op;
5661 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5662 update_stmt (stmt);
5667 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5668 a known value range VR.
5670 If there is one and only one value which will satisfy the
5671 conditional, then return that value. Else return NULL. */
5673 static tree
5674 test_for_singularity (enum tree_code cond_code, tree op0,
5675 tree op1, value_range_t *vr)
5677 tree min = NULL;
5678 tree max = NULL;
5680 /* Extract minimum/maximum values which satisfy the
5681 the conditional as it was written. */
5682 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5684 /* This should not be negative infinity; there is no overflow
5685 here. */
5686 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5688 max = op1;
5689 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5691 tree one = build_int_cst (TREE_TYPE (op0), 1);
5692 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5693 if (EXPR_P (max))
5694 TREE_NO_WARNING (max) = 1;
5697 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5699 /* This should not be positive infinity; there is no overflow
5700 here. */
5701 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5703 min = op1;
5704 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5706 tree one = build_int_cst (TREE_TYPE (op0), 1);
5707 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5708 if (EXPR_P (min))
5709 TREE_NO_WARNING (min) = 1;
5713 /* Now refine the minimum and maximum values using any
5714 value range information we have for op0. */
5715 if (min && max)
5717 if (compare_values (vr->min, min) == -1)
5718 min = min;
5719 else
5720 min = vr->min;
5721 if (compare_values (vr->max, max) == 1)
5722 max = max;
5723 else
5724 max = vr->max;
5726 /* If the new min/max values have converged to a single value,
5727 then there is only one value which can satisfy the condition,
5728 return that value. */
5729 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5730 return min;
5732 return NULL;
5735 /* Simplify a conditional using a relational operator to an equality
5736 test if the range information indicates only one value can satisfy
5737 the original conditional. */
5739 static void
5740 simplify_cond_using_ranges (tree stmt)
5742 tree cond = COND_EXPR_COND (stmt);
5743 tree op0 = TREE_OPERAND (cond, 0);
5744 tree op1 = TREE_OPERAND (cond, 1);
5745 enum tree_code cond_code = TREE_CODE (cond);
5747 if (cond_code != NE_EXPR
5748 && cond_code != EQ_EXPR
5749 && TREE_CODE (op0) == SSA_NAME
5750 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5751 && is_gimple_min_invariant (op1))
5753 value_range_t *vr = get_value_range (op0);
5755 /* If we have range information for OP0, then we might be
5756 able to simplify this conditional. */
5757 if (vr->type == VR_RANGE)
5759 tree new = test_for_singularity (cond_code, op0, op1, vr);
5761 if (new)
5763 if (dump_file)
5765 fprintf (dump_file, "Simplified relational ");
5766 print_generic_expr (dump_file, cond, 0);
5767 fprintf (dump_file, " into ");
5770 COND_EXPR_COND (stmt)
5771 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5772 update_stmt (stmt);
5774 if (dump_file)
5776 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5777 fprintf (dump_file, "\n");
5779 return;
5783 /* Try again after inverting the condition. We only deal
5784 with integral types here, so no need to worry about
5785 issues with inverting FP comparisons. */
5786 cond_code = invert_tree_comparison (cond_code, false);
5787 new = test_for_singularity (cond_code, op0, op1, vr);
5789 if (new)
5791 if (dump_file)
5793 fprintf (dump_file, "Simplified relational ");
5794 print_generic_expr (dump_file, cond, 0);
5795 fprintf (dump_file, " into ");
5798 COND_EXPR_COND (stmt)
5799 = build2 (NE_EXPR, boolean_type_node, op0, new);
5800 update_stmt (stmt);
5802 if (dump_file)
5804 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5805 fprintf (dump_file, "\n");
5807 return;
5814 /* Simplify STMT using ranges if possible. */
5816 void
5817 simplify_stmt_using_ranges (tree stmt)
5819 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5821 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5822 enum tree_code rhs_code = TREE_CODE (rhs);
5824 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5825 and BIT_AND_EXPR respectively if the first operand is greater
5826 than zero and the second operand is an exact power of two. */
5827 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5828 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5829 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5830 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5832 /* Transform ABS (X) into X or -X as appropriate. */
5833 if (rhs_code == ABS_EXPR
5834 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5835 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5836 simplify_abs_using_ranges (stmt, rhs);
5838 else if (TREE_CODE (stmt) == COND_EXPR
5839 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5841 simplify_cond_using_ranges (stmt);
5845 /* Stack of dest,src equivalency pairs that need to be restored after
5846 each attempt to thread a block's incoming edge to an outgoing edge.
5848 A NULL entry is used to mark the end of pairs which need to be
5849 restored. */
5850 static VEC(tree,heap) *stack;
5852 /* A trivial wrapper so that we can present the generic jump threading
5853 code with a simple API for simplifying statements. STMT is the
5854 statement we want to simplify, WITHIN_STMT provides the location
5855 for any overflow warnings. */
5857 static tree
5858 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5860 /* We only use VRP information to simplify conditionals. This is
5861 overly conservative, but it's unclear if doing more would be
5862 worth the compile time cost. */
5863 if (TREE_CODE (stmt) != COND_EXPR)
5864 return NULL;
5866 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5869 /* Blocks which have more than one predecessor and more than
5870 one successor present jump threading opportunities. ie,
5871 when the block is reached from a specific predecessor, we
5872 may be able to determine which of the outgoing edges will
5873 be traversed. When this optimization applies, we are able
5874 to avoid conditionals at runtime and we may expose secondary
5875 optimization opportunities.
5877 This routine is effectively a driver for the generic jump
5878 threading code. It basically just presents the generic code
5879 with edges that may be suitable for jump threading.
5881 Unlike DOM, we do not iterate VRP if jump threading was successful.
5882 While iterating may expose new opportunities for VRP, it is expected
5883 those opportunities would be very limited and the compile time cost
5884 to expose those opportunities would be significant.
5886 As jump threading opportunities are discovered, they are registered
5887 for later realization. */
5889 static void
5890 identify_jump_threads (void)
5892 basic_block bb;
5893 tree dummy;
5895 /* Ugh. When substituting values earlier in this pass we can
5896 wipe the dominance information. So rebuild the dominator
5897 information as we need it within the jump threading code. */
5898 calculate_dominance_info (CDI_DOMINATORS);
5900 /* We do not allow VRP information to be used for jump threading
5901 across a back edge in the CFG. Otherwise it becomes too
5902 difficult to avoid eliminating loop exit tests. Of course
5903 EDGE_DFS_BACK is not accurate at this time so we have to
5904 recompute it. */
5905 mark_dfs_back_edges ();
5907 /* Allocate our unwinder stack to unwind any temporary equivalences
5908 that might be recorded. */
5909 stack = VEC_alloc (tree, heap, 20);
5911 /* To avoid lots of silly node creation, we create a single
5912 conditional and just modify it in-place when attempting to
5913 thread jumps. */
5914 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5915 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5917 /* Walk through all the blocks finding those which present a
5918 potential jump threading opportunity. We could set this up
5919 as a dominator walker and record data during the walk, but
5920 I doubt it's worth the effort for the classes of jump
5921 threading opportunities we are trying to identify at this
5922 point in compilation. */
5923 FOR_EACH_BB (bb)
5925 tree last, cond;
5927 /* If the generic jump threading code does not find this block
5928 interesting, then there is nothing to do. */
5929 if (! potentially_threadable_block (bb))
5930 continue;
5932 /* We only care about blocks ending in a COND_EXPR. While there
5933 may be some value in handling SWITCH_EXPR here, I doubt it's
5934 terribly important. */
5935 last = bsi_stmt (bsi_last (bb));
5936 if (TREE_CODE (last) != COND_EXPR)
5937 continue;
5939 /* We're basically looking for any kind of conditional with
5940 integral type arguments. */
5941 cond = COND_EXPR_COND (last);
5942 if ((TREE_CODE (cond) == SSA_NAME
5943 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5944 || (COMPARISON_CLASS_P (cond)
5945 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5946 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5947 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5948 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5949 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5951 edge_iterator ei;
5952 edge e;
5954 /* We've got a block with multiple predecessors and multiple
5955 successors which also ends in a suitable conditional. For
5956 each predecessor, see if we can thread it to a specific
5957 successor. */
5958 FOR_EACH_EDGE (e, ei, bb->preds)
5960 /* Do not thread across back edges or abnormal edges
5961 in the CFG. */
5962 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5963 continue;
5965 thread_across_edge (dummy, e, true,
5966 &stack,
5967 simplify_stmt_for_jump_threading);
5972 /* We do not actually update the CFG or SSA graphs at this point as
5973 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5974 handle ASSERT_EXPRs gracefully. */
5977 /* We identified all the jump threading opportunities earlier, but could
5978 not transform the CFG at that time. This routine transforms the
5979 CFG and arranges for the dominator tree to be rebuilt if necessary.
5981 Note the SSA graph update will occur during the normal TODO
5982 processing by the pass manager. */
5983 static void
5984 finalize_jump_threads (void)
5986 thread_through_all_blocks (false);
5987 VEC_free (tree, heap, stack);
5991 /* Traverse all the blocks folding conditionals with known ranges. */
5993 static void
5994 vrp_finalize (void)
5996 size_t i;
5997 prop_value_t *single_val_range;
5998 bool do_value_subst_p;
6000 if (dump_file)
6002 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6003 dump_all_value_ranges (dump_file);
6004 fprintf (dump_file, "\n");
6007 /* We may have ended with ranges that have exactly one value. Those
6008 values can be substituted as any other copy/const propagated
6009 value using substitute_and_fold. */
6010 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
6012 do_value_subst_p = false;
6013 for (i = 0; i < num_ssa_names; i++)
6014 if (vr_value[i]
6015 && vr_value[i]->type == VR_RANGE
6016 && vr_value[i]->min == vr_value[i]->max)
6018 single_val_range[i].value = vr_value[i]->min;
6019 do_value_subst_p = true;
6022 if (!do_value_subst_p)
6024 /* We found no single-valued ranges, don't waste time trying to
6025 do single value substitution in substitute_and_fold. */
6026 free (single_val_range);
6027 single_val_range = NULL;
6030 substitute_and_fold (single_val_range, true);
6032 if (warn_array_bounds)
6033 check_all_array_refs ();
6035 /* We must identify jump threading opportunities before we release
6036 the datastructures built by VRP. */
6037 identify_jump_threads ();
6039 /* Free allocated memory. */
6040 for (i = 0; i < num_ssa_names; i++)
6041 if (vr_value[i])
6043 BITMAP_FREE (vr_value[i]->equiv);
6044 free (vr_value[i]);
6047 free (single_val_range);
6048 free (vr_value);
6049 free (vr_phi_edge_counts);
6051 /* So that we can distinguish between VRP data being available
6052 and not available. */
6053 vr_value = NULL;
6054 vr_phi_edge_counts = NULL;
6057 /* Calculates number of iterations for all loops, to ensure that they are
6058 cached. */
6060 static void
6061 record_numbers_of_iterations (void)
6063 loop_iterator li;
6064 struct loop *loop;
6066 FOR_EACH_LOOP (li, loop, 0)
6068 number_of_latch_executions (loop);
6072 /* Main entry point to VRP (Value Range Propagation). This pass is
6073 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6074 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6075 Programming Language Design and Implementation, pp. 67-78, 1995.
6076 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6078 This is essentially an SSA-CCP pass modified to deal with ranges
6079 instead of constants.
6081 While propagating ranges, we may find that two or more SSA name
6082 have equivalent, though distinct ranges. For instance,
6084 1 x_9 = p_3->a;
6085 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6086 3 if (p_4 == q_2)
6087 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6088 5 endif
6089 6 if (q_2)
6091 In the code above, pointer p_5 has range [q_2, q_2], but from the
6092 code we can also determine that p_5 cannot be NULL and, if q_2 had
6093 a non-varying range, p_5's range should also be compatible with it.
6095 These equivalences are created by two expressions: ASSERT_EXPR and
6096 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6097 result of another assertion, then we can use the fact that p_5 and
6098 p_4 are equivalent when evaluating p_5's range.
6100 Together with value ranges, we also propagate these equivalences
6101 between names so that we can take advantage of information from
6102 multiple ranges when doing final replacement. Note that this
6103 equivalency relation is transitive but not symmetric.
6105 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6106 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6107 in contexts where that assertion does not hold (e.g., in line 6).
6109 TODO, the main difference between this pass and Patterson's is that
6110 we do not propagate edge probabilities. We only compute whether
6111 edges can be taken or not. That is, instead of having a spectrum
6112 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6113 DON'T KNOW. In the future, it may be worthwhile to propagate
6114 probabilities to aid branch prediction. */
6116 static unsigned int
6117 execute_vrp (void)
6119 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6120 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6121 scev_initialize ();
6123 insert_range_assertions ();
6125 /* Compute the # of iterations for each loop before we start the VRP
6126 analysis. The value ranges determined by VRP are used in expression
6127 simplification, that is also used by the # of iterations analysis.
6128 However, in the middle of the VRP analysis, the value ranges do not take
6129 all the possible paths in CFG into account, so they do not have to be
6130 correct, and the # of iterations analysis can obtain wrong results.
6131 This is a problem, since the results of the # of iterations analysis
6132 are cached, so these mistakes would not be corrected when the value
6133 ranges are corrected. */
6134 record_numbers_of_iterations ();
6136 vrp_initialize ();
6137 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6138 vrp_finalize ();
6140 /* ASSERT_EXPRs must be removed before finalizing jump threads
6141 as finalizing jump threads calls the CFG cleanup code which
6142 does not properly handle ASSERT_EXPRs. */
6143 remove_range_assertions ();
6145 /* If we exposed any new variables, go ahead and put them into
6146 SSA form now, before we handle jump threading. This simplifies
6147 interactions between rewriting of _DECL nodes into SSA form
6148 and rewriting SSA_NAME nodes into SSA form after block
6149 duplication and CFG manipulation. */
6150 update_ssa (TODO_update_ssa);
6152 finalize_jump_threads ();
6153 scev_finalize ();
6154 loop_optimizer_finalize ();
6156 return 0;
6159 static bool
6160 gate_vrp (void)
6162 return flag_tree_vrp != 0;
6165 struct tree_opt_pass pass_vrp =
6167 "vrp", /* name */
6168 gate_vrp, /* gate */
6169 execute_vrp, /* execute */
6170 NULL, /* sub */
6171 NULL, /* next */
6172 0, /* static_pass_number */
6173 TV_TREE_VRP, /* tv_id */
6174 PROP_ssa | PROP_alias, /* properties_required */
6175 0, /* properties_provided */
6176 0, /* properties_destroyed */
6177 0, /* todo_flags_start */
6178 TODO_cleanup_cfg
6179 | TODO_ggc_collect
6180 | TODO_verify_ssa
6181 | TODO_dump_func
6182 | TODO_update_ssa, /* todo_flags_finish */
6183 0 /* letter */