* gcc.dg/pr32912-3.c: Compile with -w.
[official-gcc.git] / gcc / reload.c
blob64c011995a52371ba3d48a455bf6d91967315485
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "reload.h"
104 #include "regs.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
107 #include "flags.h"
108 #include "real.h"
109 #include "output.h"
110 #include "function.h"
111 #include "toplev.h"
112 #include "params.h"
113 #include "target.h"
114 #include "df.h"
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124 #define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
129 /* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
131 int n_reloads;
132 struct reload rld[MAX_RELOADS];
134 /* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136 int n_earlyclobbers;
137 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 int reload_n_operands;
141 /* Replacing reloads.
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
148 /* Nonzero means record the places to replace. */
149 static int replace_reloads;
151 /* Each replacement is recorded with a structure like this. */
152 struct replacement
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
161 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 /* Number of replacements currently recorded. */
164 static int n_replacements;
166 /* Used to track what is modified by an operand. */
167 struct decomposition
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
173 HOST_WIDE_INT end; /* Ending offset or register number. */
176 #ifdef SECONDARY_MEMORY_NEEDED
178 /* Save MEMs needed to copy from one class of registers to another. One MEM
179 is used per mode, but normally only one or two modes are ever used.
181 We keep two versions, before and after register elimination. The one
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
186 static rtx secondary_memlocs[NUM_MACHINE_MODES];
187 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
188 static int secondary_memlocs_elim_used = 0;
189 #endif
191 /* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193 static rtx this_insn;
195 /* Nonzero if this instruction is a user-specified asm with operands. */
196 static int this_insn_is_asm;
198 /* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201 static int hard_regs_live_known;
203 /* Indexed by hard reg number,
204 element is nonnegative if hard reg has been spilled.
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207 static short *static_reload_reg_p;
209 /* Set to 1 in subst_reg_equivs if it changes anything. */
210 static int subst_reg_equivs_changed;
212 /* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214 static int output_reloadnum;
216 /* Compare two RTX's. */
217 #define MATCHES(x, y) \
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243 #define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
250 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
252 enum insn_code *, secondary_reload_info *);
253 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
255 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static int alternative_allows_memconst (const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
271 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
272 int, enum reload_type, int, rtx);
273 static rtx subst_reg_equivs (rtx, rtx);
274 static rtx subst_indexed_address (rtx);
275 static void update_auto_inc_notes (rtx, int, int);
276 static int find_reloads_address_1 (enum machine_mode, rtx, int,
277 enum rtx_code, enum rtx_code, rtx *,
278 int, enum reload_type,int, rtx);
279 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
280 enum machine_mode, int,
281 enum reload_type, int);
282 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
283 int, rtx);
284 static void copy_replacements_1 (rtx *, rtx *, int);
285 static int find_inc_amount (rtx, rtx);
286 static int refers_to_mem_for_reload_p (rtx);
287 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
288 rtx, rtx *);
290 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
291 list yet. */
293 static void
294 push_reg_equiv_alt_mem (int regno, rtx mem)
296 rtx it;
298 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
299 if (rtx_equal_p (XEXP (it, 0), mem))
300 return;
302 reg_equiv_alt_mem_list [regno]
303 = alloc_EXPR_LIST (REG_EQUIV, mem,
304 reg_equiv_alt_mem_list [regno]);
307 /* Determine if any secondary reloads are needed for loading (if IN_P is
308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
316 static int
317 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
318 enum reg_class reload_class,
319 enum machine_mode reload_mode, enum reload_type type,
320 enum insn_code *picode, secondary_reload_info *prev_sri)
322 enum reg_class class = NO_REGS;
323 enum reg_class scratch_class;
324 enum machine_mode mode = reload_mode;
325 enum insn_code icode = CODE_FOR_nothing;
326 enum insn_code t_icode = CODE_FOR_nothing;
327 enum reload_type secondary_type;
328 int s_reload, t_reload = -1;
329 const char *scratch_constraint;
330 char letter;
331 secondary_reload_info sri;
333 if (type == RELOAD_FOR_INPUT_ADDRESS
334 || type == RELOAD_FOR_OUTPUT_ADDRESS
335 || type == RELOAD_FOR_INPADDR_ADDRESS
336 || type == RELOAD_FOR_OUTADDR_ADDRESS)
337 secondary_type = type;
338 else
339 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
341 *picode = CODE_FOR_nothing;
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
349 x = SUBREG_REG (x);
350 reload_mode = GET_MODE (x);
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
359 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
360 && reg_equiv_mem[REGNO (x)] != 0)
361 x = reg_equiv_mem[REGNO (x)];
363 sri.icode = CODE_FOR_nothing;
364 sri.prev_sri = prev_sri;
365 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
366 icode = sri.icode;
368 /* If we don't need any secondary registers, done. */
369 if (class == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
372 if (class != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
374 reload_mode, type, &t_icode, &sri);
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
379 if (icode != CODE_FOR_nothing)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (class == NO_REGS);
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 scratch_constraint));
407 class = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (class, rld[s_reload].class)
432 || reg_class_subset_p (rld[s_reload].class, class))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
440 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
441 opnum, rld[s_reload].opnum))
443 if (in_p)
444 rld[s_reload].inmode = mode;
445 if (! in_p)
446 rld[s_reload].outmode = mode;
448 if (reg_class_subset_p (class, rld[s_reload].class))
449 rld[s_reload].class = class;
451 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
452 rld[s_reload].optional &= optional;
453 rld[s_reload].secondary_p = 1;
454 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
455 opnum, rld[s_reload].opnum))
456 rld[s_reload].when_needed = RELOAD_OTHER;
459 if (s_reload == n_reloads)
461 #ifdef SECONDARY_MEMORY_NEEDED
462 /* If we need a memory location to copy between the two reload regs,
463 set it up now. Note that we do the input case before making
464 the reload and the output case after. This is due to the
465 way reloads are output. */
467 if (in_p && icode == CODE_FOR_nothing
468 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
470 get_secondary_mem (x, reload_mode, opnum, type);
472 /* We may have just added new reloads. Make sure we add
473 the new reload at the end. */
474 s_reload = n_reloads;
476 #endif
478 /* We need to make a new secondary reload for this register class. */
479 rld[s_reload].in = rld[s_reload].out = 0;
480 rld[s_reload].class = class;
482 rld[s_reload].inmode = in_p ? mode : VOIDmode;
483 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
484 rld[s_reload].reg_rtx = 0;
485 rld[s_reload].optional = optional;
486 rld[s_reload].inc = 0;
487 /* Maybe we could combine these, but it seems too tricky. */
488 rld[s_reload].nocombine = 1;
489 rld[s_reload].in_reg = 0;
490 rld[s_reload].out_reg = 0;
491 rld[s_reload].opnum = opnum;
492 rld[s_reload].when_needed = secondary_type;
493 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
494 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
495 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
496 rld[s_reload].secondary_out_icode
497 = ! in_p ? t_icode : CODE_FOR_nothing;
498 rld[s_reload].secondary_p = 1;
500 n_reloads++;
502 #ifdef SECONDARY_MEMORY_NEEDED
503 if (! in_p && icode == CODE_FOR_nothing
504 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
505 get_secondary_mem (x, mode, opnum, type);
506 #endif
509 *picode = icode;
510 return s_reload;
513 /* If a secondary reload is needed, return its class. If both an intermediate
514 register and a scratch register is needed, we return the class of the
515 intermediate register. */
516 enum reg_class
517 secondary_reload_class (bool in_p, enum reg_class class,
518 enum machine_mode mode, rtx x)
520 enum insn_code icode;
521 secondary_reload_info sri;
523 sri.icode = CODE_FOR_nothing;
524 sri.prev_sri = NULL;
525 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
526 icode = sri.icode;
528 /* If there are no secondary reloads at all, we return NO_REGS.
529 If an intermediate register is needed, we return its class. */
530 if (icode == CODE_FOR_nothing || class != NO_REGS)
531 return class;
533 /* No intermediate register is needed, but we have a special reload
534 pattern, which we assume for now needs a scratch register. */
535 return scratch_reload_class (icode);
538 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
539 three operands, verify that operand 2 is an output operand, and return
540 its register class.
541 ??? We'd like to be able to handle any pattern with at least 2 operands,
542 for zero or more scratch registers, but that needs more infrastructure. */
543 enum reg_class
544 scratch_reload_class (enum insn_code icode)
546 const char *scratch_constraint;
547 char scratch_letter;
548 enum reg_class class;
550 gcc_assert (insn_data[(int) icode].n_operands == 3);
551 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
552 gcc_assert (*scratch_constraint == '=');
553 scratch_constraint++;
554 if (*scratch_constraint == '&')
555 scratch_constraint++;
556 scratch_letter = *scratch_constraint;
557 if (scratch_letter == 'r')
558 return GENERAL_REGS;
559 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
560 scratch_constraint);
561 gcc_assert (class != NO_REGS);
562 return class;
565 #ifdef SECONDARY_MEMORY_NEEDED
567 /* Return a memory location that will be used to copy X in mode MODE.
568 If we haven't already made a location for this mode in this insn,
569 call find_reloads_address on the location being returned. */
572 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
573 int opnum, enum reload_type type)
575 rtx loc;
576 int mem_valid;
578 /* By default, if MODE is narrower than a word, widen it to a word.
579 This is required because most machines that require these memory
580 locations do not support short load and stores from all registers
581 (e.g., FP registers). */
583 #ifdef SECONDARY_MEMORY_NEEDED_MODE
584 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
585 #else
586 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
587 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
588 #endif
590 /* If we already have made a MEM for this operand in MODE, return it. */
591 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
592 return secondary_memlocs_elim[(int) mode][opnum];
594 /* If this is the first time we've tried to get a MEM for this mode,
595 allocate a new one. `something_changed' in reload will get set
596 by noticing that the frame size has changed. */
598 if (secondary_memlocs[(int) mode] == 0)
600 #ifdef SECONDARY_MEMORY_NEEDED_RTX
601 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
602 #else
603 secondary_memlocs[(int) mode]
604 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
605 #endif
608 /* Get a version of the address doing any eliminations needed. If that
609 didn't give us a new MEM, make a new one if it isn't valid. */
611 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
612 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
614 if (! mem_valid && loc == secondary_memlocs[(int) mode])
615 loc = copy_rtx (loc);
617 /* The only time the call below will do anything is if the stack
618 offset is too large. In that case IND_LEVELS doesn't matter, so we
619 can just pass a zero. Adjust the type to be the address of the
620 corresponding object. If the address was valid, save the eliminated
621 address. If it wasn't valid, we need to make a reload each time, so
622 don't save it. */
624 if (! mem_valid)
626 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
627 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
628 : RELOAD_OTHER);
630 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
631 opnum, type, 0, 0);
634 secondary_memlocs_elim[(int) mode][opnum] = loc;
635 if (secondary_memlocs_elim_used <= (int)mode)
636 secondary_memlocs_elim_used = (int)mode + 1;
637 return loc;
640 /* Clear any secondary memory locations we've made. */
642 void
643 clear_secondary_mem (void)
645 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
647 #endif /* SECONDARY_MEMORY_NEEDED */
650 /* Find the largest class which has at least one register valid in
651 mode INNER, and which for every such register, that register number
652 plus N is also valid in OUTER (if in range) and is cheap to move
653 into REGNO. Such a class must exist. */
655 static enum reg_class
656 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
657 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
658 unsigned int dest_regno ATTRIBUTE_UNUSED)
660 int best_cost = -1;
661 int class;
662 int regno;
663 enum reg_class best_class = NO_REGS;
664 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
665 unsigned int best_size = 0;
666 int cost;
668 for (class = 1; class < N_REG_CLASSES; class++)
670 int bad = 0;
671 int good = 0;
672 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
673 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
675 if (HARD_REGNO_MODE_OK (regno, inner))
677 good = 1;
678 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
679 || ! HARD_REGNO_MODE_OK (regno + n, outer))
680 bad = 1;
684 if (bad || !good)
685 continue;
686 cost = REGISTER_MOVE_COST (outer, class, dest_class);
688 if ((reg_class_size[class] > best_size
689 && (best_cost < 0 || best_cost >= cost))
690 || best_cost > cost)
692 best_class = class;
693 best_size = reg_class_size[class];
694 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
698 gcc_assert (best_size != 0);
700 return best_class;
703 /* Return the number of a previously made reload that can be combined with
704 a new one, or n_reloads if none of the existing reloads can be used.
705 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
706 push_reload, they determine the kind of the new reload that we try to
707 combine. P_IN points to the corresponding value of IN, which can be
708 modified by this function.
709 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
711 static int
712 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
713 enum reload_type type, int opnum, int dont_share)
715 rtx in = *p_in;
716 int i;
717 /* We can't merge two reloads if the output of either one is
718 earlyclobbered. */
720 if (earlyclobber_operand_p (out))
721 return n_reloads;
723 /* We can use an existing reload if the class is right
724 and at least one of IN and OUT is a match
725 and the other is at worst neutral.
726 (A zero compared against anything is neutral.)
728 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
729 for the same thing since that can cause us to need more reload registers
730 than we otherwise would. */
732 for (i = 0; i < n_reloads; i++)
733 if ((reg_class_subset_p (class, rld[i].class)
734 || reg_class_subset_p (rld[i].class, class))
735 /* If the existing reload has a register, it must fit our class. */
736 && (rld[i].reg_rtx == 0
737 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
738 true_regnum (rld[i].reg_rtx)))
739 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
740 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
741 || (out != 0 && MATCHES (rld[i].out, out)
742 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
743 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
744 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
745 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
746 return i;
748 /* Reloading a plain reg for input can match a reload to postincrement
749 that reg, since the postincrement's value is the right value.
750 Likewise, it can match a preincrement reload, since we regard
751 the preincrementation as happening before any ref in this insn
752 to that register. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our
757 class. */
758 && (rld[i].reg_rtx == 0
759 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
760 true_regnum (rld[i].reg_rtx)))
761 && out == 0 && rld[i].out == 0 && rld[i].in != 0
762 && ((REG_P (in)
763 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
764 && MATCHES (XEXP (rld[i].in, 0), in))
765 || (REG_P (rld[i].in)
766 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
767 && MATCHES (XEXP (in, 0), rld[i].in)))
768 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
769 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
770 && MERGABLE_RELOADS (type, rld[i].when_needed,
771 opnum, rld[i].opnum))
773 /* Make sure reload_in ultimately has the increment,
774 not the plain register. */
775 if (REG_P (in))
776 *p_in = rld[i].in;
777 return i;
779 return n_reloads;
782 /* Return nonzero if X is a SUBREG which will require reloading of its
783 SUBREG_REG expression. */
785 static int
786 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
788 rtx inner;
790 /* Only SUBREGs are problematical. */
791 if (GET_CODE (x) != SUBREG)
792 return 0;
794 inner = SUBREG_REG (x);
796 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
797 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
798 return 1;
800 /* If INNER is not a hard register, then INNER will not need to
801 be reloaded. */
802 if (!REG_P (inner)
803 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
804 return 0;
806 /* If INNER is not ok for MODE, then INNER will need reloading. */
807 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
808 return 1;
810 /* If the outer part is a word or smaller, INNER larger than a
811 word and the number of regs for INNER is not the same as the
812 number of words in INNER, then INNER will need reloading. */
813 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
814 && output
815 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
816 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
817 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
820 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
821 requiring an extra reload register. The caller has already found that
822 IN contains some reference to REGNO, so check that we can produce the
823 new value in a single step. E.g. if we have
824 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
825 instruction that adds one to a register, this should succeed.
826 However, if we have something like
827 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
828 needs to be loaded into a register first, we need a separate reload
829 register.
830 Such PLUS reloads are generated by find_reload_address_part.
831 The out-of-range PLUS expressions are usually introduced in the instruction
832 patterns by register elimination and substituting pseudos without a home
833 by their function-invariant equivalences. */
834 static int
835 can_reload_into (rtx in, int regno, enum machine_mode mode)
837 rtx dst, test_insn;
838 int r = 0;
839 struct recog_data save_recog_data;
841 /* For matching constraints, we often get notional input reloads where
842 we want to use the original register as the reload register. I.e.
843 technically this is a non-optional input-output reload, but IN is
844 already a valid register, and has been chosen as the reload register.
845 Speed this up, since it trivially works. */
846 if (REG_P (in))
847 return 1;
849 /* To test MEMs properly, we'd have to take into account all the reloads
850 that are already scheduled, which can become quite complicated.
851 And since we've already handled address reloads for this MEM, it
852 should always succeed anyway. */
853 if (MEM_P (in))
854 return 1;
856 /* If we can make a simple SET insn that does the job, everything should
857 be fine. */
858 dst = gen_rtx_REG (mode, regno);
859 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
860 save_recog_data = recog_data;
861 if (recog_memoized (test_insn) >= 0)
863 extract_insn (test_insn);
864 r = constrain_operands (1);
866 recog_data = save_recog_data;
867 return r;
870 /* Record one reload that needs to be performed.
871 IN is an rtx saying where the data are to be found before this instruction.
872 OUT says where they must be stored after the instruction.
873 (IN is zero for data not read, and OUT is zero for data not written.)
874 INLOC and OUTLOC point to the places in the instructions where
875 IN and OUT were found.
876 If IN and OUT are both nonzero, it means the same register must be used
877 to reload both IN and OUT.
879 CLASS is a register class required for the reloaded data.
880 INMODE is the machine mode that the instruction requires
881 for the reg that replaces IN and OUTMODE is likewise for OUT.
883 If IN is zero, then OUT's location and mode should be passed as
884 INLOC and INMODE.
886 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
888 OPTIONAL nonzero means this reload does not need to be performed:
889 it can be discarded if that is more convenient.
891 OPNUM and TYPE say what the purpose of this reload is.
893 The return value is the reload-number for this reload.
895 If both IN and OUT are nonzero, in some rare cases we might
896 want to make two separate reloads. (Actually we never do this now.)
897 Therefore, the reload-number for OUT is stored in
898 output_reloadnum when we return; the return value applies to IN.
899 Usually (presently always), when IN and OUT are nonzero,
900 the two reload-numbers are equal, but the caller should be careful to
901 distinguish them. */
904 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
905 enum reg_class class, enum machine_mode inmode,
906 enum machine_mode outmode, int strict_low, int optional,
907 int opnum, enum reload_type type)
909 int i;
910 int dont_share = 0;
911 int dont_remove_subreg = 0;
912 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
913 int secondary_in_reload = -1, secondary_out_reload = -1;
914 enum insn_code secondary_in_icode = CODE_FOR_nothing;
915 enum insn_code secondary_out_icode = CODE_FOR_nothing;
917 /* INMODE and/or OUTMODE could be VOIDmode if no mode
918 has been specified for the operand. In that case,
919 use the operand's mode as the mode to reload. */
920 if (inmode == VOIDmode && in != 0)
921 inmode = GET_MODE (in);
922 if (outmode == VOIDmode && out != 0)
923 outmode = GET_MODE (out);
925 /* If IN is a pseudo register everywhere-equivalent to a constant, and
926 it is not in a hard register, reload straight from the constant,
927 since we want to get rid of such pseudo registers.
928 Often this is done earlier, but not always in find_reloads_address. */
929 if (in != 0 && REG_P (in))
931 int regno = REGNO (in);
933 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
934 && reg_equiv_constant[regno] != 0)
935 in = reg_equiv_constant[regno];
938 /* Likewise for OUT. Of course, OUT will never be equivalent to
939 an actual constant, but it might be equivalent to a memory location
940 (in the case of a parameter). */
941 if (out != 0 && REG_P (out))
943 int regno = REGNO (out);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 out = reg_equiv_constant[regno];
950 /* If we have a read-write operand with an address side-effect,
951 change either IN or OUT so the side-effect happens only once. */
952 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
953 switch (GET_CODE (XEXP (in, 0)))
955 case POST_INC: case POST_DEC: case POST_MODIFY:
956 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
957 break;
959 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
960 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
961 break;
963 default:
964 break;
967 /* If we are reloading a (SUBREG constant ...), really reload just the
968 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
969 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
970 a pseudo and hence will become a MEM) with M1 wider than M2 and the
971 register is a pseudo, also reload the inside expression.
972 For machines that extend byte loads, do this for any SUBREG of a pseudo
973 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
974 M2 is an integral mode that gets extended when loaded.
975 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
978 (However, if OUT is nonzero, we need to reload the reg *and*
979 the subreg, so do nothing here, and let following statement handle it.)
981 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
982 we can't handle it here because CONST_INT does not indicate a mode.
984 Similarly, we must reload the inside expression if we have a
985 STRICT_LOW_PART (presumably, in == out in the cas).
987 Also reload the inner expression if it does not require a secondary
988 reload but the SUBREG does.
990 Finally, reload the inner expression if it is a register that is in
991 the class whose registers cannot be referenced in a different size
992 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
993 cannot reload just the inside since we might end up with the wrong
994 register class. But if it is inside a STRICT_LOW_PART, we have
995 no choice, so we hope we do get the right register class there. */
997 if (in != 0 && GET_CODE (in) == SUBREG
998 && (subreg_lowpart_p (in) || strict_low)
999 #ifdef CANNOT_CHANGE_MODE_CLASS
1000 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1001 #endif
1002 && (CONSTANT_P (SUBREG_REG (in))
1003 || GET_CODE (SUBREG_REG (in)) == PLUS
1004 || strict_low
1005 || (((REG_P (SUBREG_REG (in))
1006 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1007 || MEM_P (SUBREG_REG (in)))
1008 && ((GET_MODE_SIZE (inmode)
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1010 #ifdef LOAD_EXTEND_OP
1011 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 <= UNITS_PER_WORD)
1014 && (GET_MODE_SIZE (inmode)
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1016 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1017 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1018 #endif
1019 #ifdef WORD_REGISTER_OPERATIONS
1020 || ((GET_MODE_SIZE (inmode)
1021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1023 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1024 / UNITS_PER_WORD)))
1025 #endif
1027 || (REG_P (SUBREG_REG (in))
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 /* The case where out is nonzero
1030 is handled differently in the following statement. */
1031 && (out == 0 || subreg_lowpart_p (in))
1032 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 > UNITS_PER_WORD)
1035 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1036 / UNITS_PER_WORD)
1037 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1038 [GET_MODE (SUBREG_REG (in))]))
1039 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1040 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1041 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1042 SUBREG_REG (in))
1043 == NO_REGS))
1044 #ifdef CANNOT_CHANGE_MODE_CLASS
1045 || (REG_P (SUBREG_REG (in))
1046 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1047 && REG_CANNOT_CHANGE_MODE_P
1048 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1049 #endif
1052 in_subreg_loc = inloc;
1053 inloc = &SUBREG_REG (in);
1054 in = *inloc;
1055 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1056 if (MEM_P (in))
1057 /* This is supposed to happen only for paradoxical subregs made by
1058 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1059 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1060 #endif
1061 inmode = GET_MODE (in);
1064 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1065 either M1 is not valid for R or M2 is wider than a word but we only
1066 need one word to store an M2-sized quantity in R.
1068 However, we must reload the inner reg *as well as* the subreg in
1069 that case. */
1071 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1072 code above. This can happen if SUBREG_BYTE != 0. */
1074 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1076 enum reg_class in_class = class;
1078 if (REG_P (SUBREG_REG (in)))
1079 in_class
1080 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1081 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1082 GET_MODE (SUBREG_REG (in)),
1083 SUBREG_BYTE (in),
1084 GET_MODE (in)),
1085 REGNO (SUBREG_REG (in)));
1087 /* This relies on the fact that emit_reload_insns outputs the
1088 instructions for input reloads of type RELOAD_OTHER in the same
1089 order as the reloads. Thus if the outer reload is also of type
1090 RELOAD_OTHER, we are guaranteed that this inner reload will be
1091 output before the outer reload. */
1092 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1093 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1094 dont_remove_subreg = 1;
1097 /* Similarly for paradoxical and problematical SUBREGs on the output.
1098 Note that there is no reason we need worry about the previous value
1099 of SUBREG_REG (out); even if wider than out,
1100 storing in a subreg is entitled to clobber it all
1101 (except in the case of STRICT_LOW_PART,
1102 and in that case the constraint should label it input-output.) */
1103 if (out != 0 && GET_CODE (out) == SUBREG
1104 && (subreg_lowpart_p (out) || strict_low)
1105 #ifdef CANNOT_CHANGE_MODE_CLASS
1106 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1107 #endif
1108 && (CONSTANT_P (SUBREG_REG (out))
1109 || strict_low
1110 || (((REG_P (SUBREG_REG (out))
1111 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1112 || MEM_P (SUBREG_REG (out)))
1113 && ((GET_MODE_SIZE (outmode)
1114 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1115 #ifdef WORD_REGISTER_OPERATIONS
1116 || ((GET_MODE_SIZE (outmode)
1117 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1118 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1119 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1120 / UNITS_PER_WORD)))
1121 #endif
1123 || (REG_P (SUBREG_REG (out))
1124 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1125 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1126 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1127 > UNITS_PER_WORD)
1128 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1129 / UNITS_PER_WORD)
1130 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1131 [GET_MODE (SUBREG_REG (out))]))
1132 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1133 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1134 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1135 SUBREG_REG (out))
1136 == NO_REGS))
1137 #ifdef CANNOT_CHANGE_MODE_CLASS
1138 || (REG_P (SUBREG_REG (out))
1139 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1140 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1141 GET_MODE (SUBREG_REG (out)),
1142 outmode))
1143 #endif
1146 out_subreg_loc = outloc;
1147 outloc = &SUBREG_REG (out);
1148 out = *outloc;
1149 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1150 gcc_assert (!MEM_P (out)
1151 || GET_MODE_SIZE (GET_MODE (out))
1152 <= GET_MODE_SIZE (outmode));
1153 #endif
1154 outmode = GET_MODE (out);
1157 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1158 either M1 is not valid for R or M2 is wider than a word but we only
1159 need one word to store an M2-sized quantity in R.
1161 However, we must reload the inner reg *as well as* the subreg in
1162 that case. In this case, the inner reg is an in-out reload. */
1164 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1166 /* This relies on the fact that emit_reload_insns outputs the
1167 instructions for output reloads of type RELOAD_OTHER in reverse
1168 order of the reloads. Thus if the outer reload is also of type
1169 RELOAD_OTHER, we are guaranteed that this inner reload will be
1170 output after the outer reload. */
1171 dont_remove_subreg = 1;
1172 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1173 &SUBREG_REG (out),
1174 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1175 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1176 GET_MODE (SUBREG_REG (out)),
1177 SUBREG_BYTE (out),
1178 GET_MODE (out)),
1179 REGNO (SUBREG_REG (out))),
1180 VOIDmode, VOIDmode, 0, 0,
1181 opnum, RELOAD_OTHER);
1184 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1185 if (in != 0 && out != 0 && MEM_P (out)
1186 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1187 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1188 dont_share = 1;
1190 /* If IN is a SUBREG of a hard register, make a new REG. This
1191 simplifies some of the cases below. */
1193 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1194 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1195 && ! dont_remove_subreg)
1196 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1198 /* Similarly for OUT. */
1199 if (out != 0 && GET_CODE (out) == SUBREG
1200 && REG_P (SUBREG_REG (out))
1201 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
1203 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1205 /* Narrow down the class of register wanted if that is
1206 desirable on this machine for efficiency. */
1208 enum reg_class preferred_class = class;
1210 if (in != 0)
1211 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1213 /* Output reloads may need analogous treatment, different in detail. */
1214 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1215 if (out != 0)
1216 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1217 #endif
1219 /* Discard what the target said if we cannot do it. */
1220 if (preferred_class != NO_REGS
1221 || (optional && type == RELOAD_FOR_OUTPUT))
1222 class = preferred_class;
1225 /* Make sure we use a class that can handle the actual pseudo
1226 inside any subreg. For example, on the 386, QImode regs
1227 can appear within SImode subregs. Although GENERAL_REGS
1228 can handle SImode, QImode needs a smaller class. */
1229 #ifdef LIMIT_RELOAD_CLASS
1230 if (in_subreg_loc)
1231 class = LIMIT_RELOAD_CLASS (inmode, class);
1232 else if (in != 0 && GET_CODE (in) == SUBREG)
1233 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1235 if (out_subreg_loc)
1236 class = LIMIT_RELOAD_CLASS (outmode, class);
1237 if (out != 0 && GET_CODE (out) == SUBREG)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1239 #endif
1241 /* Verify that this class is at least possible for the mode that
1242 is specified. */
1243 if (this_insn_is_asm)
1245 enum machine_mode mode;
1246 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1247 mode = inmode;
1248 else
1249 mode = outmode;
1250 if (mode == VOIDmode)
1252 error_for_asm (this_insn, "cannot reload integer constant "
1253 "operand in %<asm%>");
1254 mode = word_mode;
1255 if (in != 0)
1256 inmode = word_mode;
1257 if (out != 0)
1258 outmode = word_mode;
1260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1261 if (HARD_REGNO_MODE_OK (i, mode)
1262 && in_hard_reg_set_p (reg_class_contents[(int) class], mode, i))
1263 break;
1264 if (i == FIRST_PSEUDO_REGISTER)
1266 error_for_asm (this_insn, "impossible register constraint "
1267 "in %<asm%>");
1268 /* Avoid further trouble with this insn. */
1269 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1270 /* We used to continue here setting class to ALL_REGS, but it triggers
1271 sanity check on i386 for:
1272 void foo(long double d)
1274 asm("" :: "a" (d));
1276 Returning zero here ought to be safe as we take care in
1277 find_reloads to not process the reloads when instruction was
1278 replaced by USE. */
1280 return 0;
1284 /* Optional output reloads are always OK even if we have no register class,
1285 since the function of these reloads is only to have spill_reg_store etc.
1286 set, so that the storing insn can be deleted later. */
1287 gcc_assert (class != NO_REGS
1288 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1290 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1292 if (i == n_reloads)
1294 /* See if we need a secondary reload register to move between CLASS
1295 and IN or CLASS and OUT. Get the icode and push any required reloads
1296 needed for each of them if so. */
1298 if (in != 0)
1299 secondary_in_reload
1300 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1301 &secondary_in_icode, NULL);
1302 if (out != 0 && GET_CODE (out) != SCRATCH)
1303 secondary_out_reload
1304 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1305 type, &secondary_out_icode, NULL);
1307 /* We found no existing reload suitable for re-use.
1308 So add an additional reload. */
1310 #ifdef SECONDARY_MEMORY_NEEDED
1311 /* If a memory location is needed for the copy, make one. */
1312 if (in != 0
1313 && (REG_P (in)
1314 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1315 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1316 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1317 class, inmode))
1318 get_secondary_mem (in, inmode, opnum, type);
1319 #endif
1321 i = n_reloads;
1322 rld[i].in = in;
1323 rld[i].out = out;
1324 rld[i].class = class;
1325 rld[i].inmode = inmode;
1326 rld[i].outmode = outmode;
1327 rld[i].reg_rtx = 0;
1328 rld[i].optional = optional;
1329 rld[i].inc = 0;
1330 rld[i].nocombine = 0;
1331 rld[i].in_reg = inloc ? *inloc : 0;
1332 rld[i].out_reg = outloc ? *outloc : 0;
1333 rld[i].opnum = opnum;
1334 rld[i].when_needed = type;
1335 rld[i].secondary_in_reload = secondary_in_reload;
1336 rld[i].secondary_out_reload = secondary_out_reload;
1337 rld[i].secondary_in_icode = secondary_in_icode;
1338 rld[i].secondary_out_icode = secondary_out_icode;
1339 rld[i].secondary_p = 0;
1341 n_reloads++;
1343 #ifdef SECONDARY_MEMORY_NEEDED
1344 if (out != 0
1345 && (REG_P (out)
1346 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1347 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1348 && SECONDARY_MEMORY_NEEDED (class,
1349 REGNO_REG_CLASS (reg_or_subregno (out)),
1350 outmode))
1351 get_secondary_mem (out, outmode, opnum, type);
1352 #endif
1354 else
1356 /* We are reusing an existing reload,
1357 but we may have additional information for it.
1358 For example, we may now have both IN and OUT
1359 while the old one may have just one of them. */
1361 /* The modes can be different. If they are, we want to reload in
1362 the larger mode, so that the value is valid for both modes. */
1363 if (inmode != VOIDmode
1364 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1365 rld[i].inmode = inmode;
1366 if (outmode != VOIDmode
1367 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1368 rld[i].outmode = outmode;
1369 if (in != 0)
1371 rtx in_reg = inloc ? *inloc : 0;
1372 /* If we merge reloads for two distinct rtl expressions that
1373 are identical in content, there might be duplicate address
1374 reloads. Remove the extra set now, so that if we later find
1375 that we can inherit this reload, we can get rid of the
1376 address reloads altogether.
1378 Do not do this if both reloads are optional since the result
1379 would be an optional reload which could potentially leave
1380 unresolved address replacements.
1382 It is not sufficient to call transfer_replacements since
1383 choose_reload_regs will remove the replacements for address
1384 reloads of inherited reloads which results in the same
1385 problem. */
1386 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1387 && ! (rld[i].optional && optional))
1389 /* We must keep the address reload with the lower operand
1390 number alive. */
1391 if (opnum > rld[i].opnum)
1393 remove_address_replacements (in);
1394 in = rld[i].in;
1395 in_reg = rld[i].in_reg;
1397 else
1398 remove_address_replacements (rld[i].in);
1400 rld[i].in = in;
1401 rld[i].in_reg = in_reg;
1403 if (out != 0)
1405 rld[i].out = out;
1406 rld[i].out_reg = outloc ? *outloc : 0;
1408 if (reg_class_subset_p (class, rld[i].class))
1409 rld[i].class = class;
1410 rld[i].optional &= optional;
1411 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1412 opnum, rld[i].opnum))
1413 rld[i].when_needed = RELOAD_OTHER;
1414 rld[i].opnum = MIN (rld[i].opnum, opnum);
1417 /* If the ostensible rtx being reloaded differs from the rtx found
1418 in the location to substitute, this reload is not safe to combine
1419 because we cannot reliably tell whether it appears in the insn. */
1421 if (in != 0 && in != *inloc)
1422 rld[i].nocombine = 1;
1424 #if 0
1425 /* This was replaced by changes in find_reloads_address_1 and the new
1426 function inc_for_reload, which go with a new meaning of reload_inc. */
1428 /* If this is an IN/OUT reload in an insn that sets the CC,
1429 it must be for an autoincrement. It doesn't work to store
1430 the incremented value after the insn because that would clobber the CC.
1431 So we must do the increment of the value reloaded from,
1432 increment it, store it back, then decrement again. */
1433 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1435 out = 0;
1436 rld[i].out = 0;
1437 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1438 /* If we did not find a nonzero amount-to-increment-by,
1439 that contradicts the belief that IN is being incremented
1440 in an address in this insn. */
1441 gcc_assert (rld[i].inc != 0);
1443 #endif
1445 /* If we will replace IN and OUT with the reload-reg,
1446 record where they are located so that substitution need
1447 not do a tree walk. */
1449 if (replace_reloads)
1451 if (inloc != 0)
1453 struct replacement *r = &replacements[n_replacements++];
1454 r->what = i;
1455 r->subreg_loc = in_subreg_loc;
1456 r->where = inloc;
1457 r->mode = inmode;
1459 if (outloc != 0 && outloc != inloc)
1461 struct replacement *r = &replacements[n_replacements++];
1462 r->what = i;
1463 r->where = outloc;
1464 r->subreg_loc = out_subreg_loc;
1465 r->mode = outmode;
1469 /* If this reload is just being introduced and it has both
1470 an incoming quantity and an outgoing quantity that are
1471 supposed to be made to match, see if either one of the two
1472 can serve as the place to reload into.
1474 If one of them is acceptable, set rld[i].reg_rtx
1475 to that one. */
1477 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1479 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1480 inmode, outmode,
1481 rld[i].class, i,
1482 earlyclobber_operand_p (out));
1484 /* If the outgoing register already contains the same value
1485 as the incoming one, we can dispense with loading it.
1486 The easiest way to tell the caller that is to give a phony
1487 value for the incoming operand (same as outgoing one). */
1488 if (rld[i].reg_rtx == out
1489 && (REG_P (in) || CONSTANT_P (in))
1490 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1491 static_reload_reg_p, i, inmode))
1492 rld[i].in = out;
1495 /* If this is an input reload and the operand contains a register that
1496 dies in this insn and is used nowhere else, see if it is the right class
1497 to be used for this reload. Use it if so. (This occurs most commonly
1498 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1499 this if it is also an output reload that mentions the register unless
1500 the output is a SUBREG that clobbers an entire register.
1502 Note that the operand might be one of the spill regs, if it is a
1503 pseudo reg and we are in a block where spilling has not taken place.
1504 But if there is no spilling in this block, that is OK.
1505 An explicitly used hard reg cannot be a spill reg. */
1507 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1509 rtx note;
1510 int regno;
1511 enum machine_mode rel_mode = inmode;
1513 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1514 rel_mode = outmode;
1516 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1517 if (REG_NOTE_KIND (note) == REG_DEAD
1518 && REG_P (XEXP (note, 0))
1519 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1520 && reg_mentioned_p (XEXP (note, 0), in)
1521 /* Check that a former pseudo is valid; see find_dummy_reload. */
1522 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1523 || (!bitmap_bit_p (DF_LIVE_OUT (ENTRY_BLOCK_PTR),
1524 ORIGINAL_REGNO (XEXP (note, 0)))
1525 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1526 && ! refers_to_regno_for_reload_p (regno,
1527 end_hard_regno (rel_mode,
1528 regno),
1529 PATTERN (this_insn), inloc)
1530 /* If this is also an output reload, IN cannot be used as
1531 the reload register if it is set in this insn unless IN
1532 is also OUT. */
1533 && (out == 0 || in == out
1534 || ! hard_reg_set_here_p (regno,
1535 end_hard_regno (rel_mode, regno),
1536 PATTERN (this_insn)))
1537 /* ??? Why is this code so different from the previous?
1538 Is there any simple coherent way to describe the two together?
1539 What's going on here. */
1540 && (in != out
1541 || (GET_CODE (in) == SUBREG
1542 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1543 / UNITS_PER_WORD)
1544 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1545 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1546 /* Make sure the operand fits in the reg that dies. */
1547 && (GET_MODE_SIZE (rel_mode)
1548 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1549 && HARD_REGNO_MODE_OK (regno, inmode)
1550 && HARD_REGNO_MODE_OK (regno, outmode))
1552 unsigned int offs;
1553 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1554 hard_regno_nregs[regno][outmode]);
1556 for (offs = 0; offs < nregs; offs++)
1557 if (fixed_regs[regno + offs]
1558 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1559 regno + offs))
1560 break;
1562 if (offs == nregs
1563 && (! (refers_to_regno_for_reload_p
1564 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1565 || can_reload_into (in, regno, inmode)))
1567 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1568 break;
1573 if (out)
1574 output_reloadnum = i;
1576 return i;
1579 /* Record an additional place we must replace a value
1580 for which we have already recorded a reload.
1581 RELOADNUM is the value returned by push_reload
1582 when the reload was recorded.
1583 This is used in insn patterns that use match_dup. */
1585 static void
1586 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1588 if (replace_reloads)
1590 struct replacement *r = &replacements[n_replacements++];
1591 r->what = reloadnum;
1592 r->where = loc;
1593 r->subreg_loc = 0;
1594 r->mode = mode;
1598 /* Duplicate any replacement we have recorded to apply at
1599 location ORIG_LOC to also be performed at DUP_LOC.
1600 This is used in insn patterns that use match_dup. */
1602 static void
1603 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1605 int i, n = n_replacements;
1607 for (i = 0; i < n; i++)
1609 struct replacement *r = &replacements[i];
1610 if (r->where == orig_loc)
1611 push_replacement (dup_loc, r->what, r->mode);
1615 /* Transfer all replacements that used to be in reload FROM to be in
1616 reload TO. */
1618 void
1619 transfer_replacements (int to, int from)
1621 int i;
1623 for (i = 0; i < n_replacements; i++)
1624 if (replacements[i].what == from)
1625 replacements[i].what = to;
1628 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1629 or a subpart of it. If we have any replacements registered for IN_RTX,
1630 cancel the reloads that were supposed to load them.
1631 Return nonzero if we canceled any reloads. */
1633 remove_address_replacements (rtx in_rtx)
1635 int i, j;
1636 char reload_flags[MAX_RELOADS];
1637 int something_changed = 0;
1639 memset (reload_flags, 0, sizeof reload_flags);
1640 for (i = 0, j = 0; i < n_replacements; i++)
1642 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1643 reload_flags[replacements[i].what] |= 1;
1644 else
1646 replacements[j++] = replacements[i];
1647 reload_flags[replacements[i].what] |= 2;
1650 /* Note that the following store must be done before the recursive calls. */
1651 n_replacements = j;
1653 for (i = n_reloads - 1; i >= 0; i--)
1655 if (reload_flags[i] == 1)
1657 deallocate_reload_reg (i);
1658 remove_address_replacements (rld[i].in);
1659 rld[i].in = 0;
1660 something_changed = 1;
1663 return something_changed;
1666 /* If there is only one output reload, and it is not for an earlyclobber
1667 operand, try to combine it with a (logically unrelated) input reload
1668 to reduce the number of reload registers needed.
1670 This is safe if the input reload does not appear in
1671 the value being output-reloaded, because this implies
1672 it is not needed any more once the original insn completes.
1674 If that doesn't work, see we can use any of the registers that
1675 die in this insn as a reload register. We can if it is of the right
1676 class and does not appear in the value being output-reloaded. */
1678 static void
1679 combine_reloads (void)
1681 int i, regno;
1682 int output_reload = -1;
1683 int secondary_out = -1;
1684 rtx note;
1686 /* Find the output reload; return unless there is exactly one
1687 and that one is mandatory. */
1689 for (i = 0; i < n_reloads; i++)
1690 if (rld[i].out != 0)
1692 if (output_reload >= 0)
1693 return;
1694 output_reload = i;
1697 if (output_reload < 0 || rld[output_reload].optional)
1698 return;
1700 /* An input-output reload isn't combinable. */
1702 if (rld[output_reload].in != 0)
1703 return;
1705 /* If this reload is for an earlyclobber operand, we can't do anything. */
1706 if (earlyclobber_operand_p (rld[output_reload].out))
1707 return;
1709 /* If there is a reload for part of the address of this operand, we would
1710 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1711 its life to the point where doing this combine would not lower the
1712 number of spill registers needed. */
1713 for (i = 0; i < n_reloads; i++)
1714 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1715 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1716 && rld[i].opnum == rld[output_reload].opnum)
1717 return;
1719 /* Check each input reload; can we combine it? */
1721 for (i = 0; i < n_reloads; i++)
1722 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1723 /* Life span of this reload must not extend past main insn. */
1724 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1725 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1726 && rld[i].when_needed != RELOAD_OTHER
1727 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1728 == CLASS_MAX_NREGS (rld[output_reload].class,
1729 rld[output_reload].outmode))
1730 && rld[i].inc == 0
1731 && rld[i].reg_rtx == 0
1732 #ifdef SECONDARY_MEMORY_NEEDED
1733 /* Don't combine two reloads with different secondary
1734 memory locations. */
1735 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1736 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1737 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1738 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1739 #endif
1740 && (SMALL_REGISTER_CLASSES
1741 ? (rld[i].class == rld[output_reload].class)
1742 : (reg_class_subset_p (rld[i].class,
1743 rld[output_reload].class)
1744 || reg_class_subset_p (rld[output_reload].class,
1745 rld[i].class)))
1746 && (MATCHES (rld[i].in, rld[output_reload].out)
1747 /* Args reversed because the first arg seems to be
1748 the one that we imagine being modified
1749 while the second is the one that might be affected. */
1750 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1751 rld[i].in)
1752 /* However, if the input is a register that appears inside
1753 the output, then we also can't share.
1754 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1755 If the same reload reg is used for both reg 69 and the
1756 result to be stored in memory, then that result
1757 will clobber the address of the memory ref. */
1758 && ! (REG_P (rld[i].in)
1759 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1760 rld[output_reload].out))))
1761 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1762 rld[i].when_needed != RELOAD_FOR_INPUT)
1763 && (reg_class_size[(int) rld[i].class]
1764 || SMALL_REGISTER_CLASSES)
1765 /* We will allow making things slightly worse by combining an
1766 input and an output, but no worse than that. */
1767 && (rld[i].when_needed == RELOAD_FOR_INPUT
1768 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1770 int j;
1772 /* We have found a reload to combine with! */
1773 rld[i].out = rld[output_reload].out;
1774 rld[i].out_reg = rld[output_reload].out_reg;
1775 rld[i].outmode = rld[output_reload].outmode;
1776 /* Mark the old output reload as inoperative. */
1777 rld[output_reload].out = 0;
1778 /* The combined reload is needed for the entire insn. */
1779 rld[i].when_needed = RELOAD_OTHER;
1780 /* If the output reload had a secondary reload, copy it. */
1781 if (rld[output_reload].secondary_out_reload != -1)
1783 rld[i].secondary_out_reload
1784 = rld[output_reload].secondary_out_reload;
1785 rld[i].secondary_out_icode
1786 = rld[output_reload].secondary_out_icode;
1789 #ifdef SECONDARY_MEMORY_NEEDED
1790 /* Copy any secondary MEM. */
1791 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1792 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1793 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1794 #endif
1795 /* If required, minimize the register class. */
1796 if (reg_class_subset_p (rld[output_reload].class,
1797 rld[i].class))
1798 rld[i].class = rld[output_reload].class;
1800 /* Transfer all replacements from the old reload to the combined. */
1801 for (j = 0; j < n_replacements; j++)
1802 if (replacements[j].what == output_reload)
1803 replacements[j].what = i;
1805 return;
1808 /* If this insn has only one operand that is modified or written (assumed
1809 to be the first), it must be the one corresponding to this reload. It
1810 is safe to use anything that dies in this insn for that output provided
1811 that it does not occur in the output (we already know it isn't an
1812 earlyclobber. If this is an asm insn, give up. */
1814 if (INSN_CODE (this_insn) == -1)
1815 return;
1817 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1818 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1819 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1820 return;
1822 /* See if some hard register that dies in this insn and is not used in
1823 the output is the right class. Only works if the register we pick
1824 up can fully hold our output reload. */
1825 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1826 if (REG_NOTE_KIND (note) == REG_DEAD
1827 && REG_P (XEXP (note, 0))
1828 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1829 rld[output_reload].out)
1830 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1831 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1832 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1833 regno)
1834 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1835 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1836 /* Ensure that a secondary or tertiary reload for this output
1837 won't want this register. */
1838 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1839 || (!(TEST_HARD_REG_BIT
1840 (reg_class_contents[(int) rld[secondary_out].class], regno))
1841 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1842 || !(TEST_HARD_REG_BIT
1843 (reg_class_contents[(int) rld[secondary_out].class],
1844 regno)))))
1845 && !fixed_regs[regno]
1846 /* Check that a former pseudo is valid; see find_dummy_reload. */
1847 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1848 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1849 ORIGINAL_REGNO (XEXP (note, 0)))
1850 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1852 rld[output_reload].reg_rtx
1853 = gen_rtx_REG (rld[output_reload].outmode, regno);
1854 return;
1858 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1859 See if one of IN and OUT is a register that may be used;
1860 this is desirable since a spill-register won't be needed.
1861 If so, return the register rtx that proves acceptable.
1863 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1864 CLASS is the register class required for the reload.
1866 If FOR_REAL is >= 0, it is the number of the reload,
1867 and in some cases when it can be discovered that OUT doesn't need
1868 to be computed, clear out rld[FOR_REAL].out.
1870 If FOR_REAL is -1, this should not be done, because this call
1871 is just to see if a register can be found, not to find and install it.
1873 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1874 puts an additional constraint on being able to use IN for OUT since
1875 IN must not appear elsewhere in the insn (it is assumed that IN itself
1876 is safe from the earlyclobber). */
1878 static rtx
1879 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1880 enum machine_mode inmode, enum machine_mode outmode,
1881 enum reg_class class, int for_real, int earlyclobber)
1883 rtx in = real_in;
1884 rtx out = real_out;
1885 int in_offset = 0;
1886 int out_offset = 0;
1887 rtx value = 0;
1889 /* If operands exceed a word, we can't use either of them
1890 unless they have the same size. */
1891 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1892 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1893 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1894 return 0;
1896 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1897 respectively refers to a hard register. */
1899 /* Find the inside of any subregs. */
1900 while (GET_CODE (out) == SUBREG)
1902 if (REG_P (SUBREG_REG (out))
1903 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1904 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1905 GET_MODE (SUBREG_REG (out)),
1906 SUBREG_BYTE (out),
1907 GET_MODE (out));
1908 out = SUBREG_REG (out);
1910 while (GET_CODE (in) == SUBREG)
1912 if (REG_P (SUBREG_REG (in))
1913 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1914 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1915 GET_MODE (SUBREG_REG (in)),
1916 SUBREG_BYTE (in),
1917 GET_MODE (in));
1918 in = SUBREG_REG (in);
1921 /* Narrow down the reg class, the same way push_reload will;
1922 otherwise we might find a dummy now, but push_reload won't. */
1924 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1925 if (preferred_class != NO_REGS)
1926 class = preferred_class;
1929 /* See if OUT will do. */
1930 if (REG_P (out)
1931 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1933 unsigned int regno = REGNO (out) + out_offset;
1934 unsigned int nwords = hard_regno_nregs[regno][outmode];
1935 rtx saved_rtx;
1937 /* When we consider whether the insn uses OUT,
1938 ignore references within IN. They don't prevent us
1939 from copying IN into OUT, because those refs would
1940 move into the insn that reloads IN.
1942 However, we only ignore IN in its role as this reload.
1943 If the insn uses IN elsewhere and it contains OUT,
1944 that counts. We can't be sure it's the "same" operand
1945 so it might not go through this reload. */
1946 saved_rtx = *inloc;
1947 *inloc = const0_rtx;
1949 if (regno < FIRST_PSEUDO_REGISTER
1950 && HARD_REGNO_MODE_OK (regno, outmode)
1951 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1952 PATTERN (this_insn), outloc))
1954 unsigned int i;
1956 for (i = 0; i < nwords; i++)
1957 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1958 regno + i))
1959 break;
1961 if (i == nwords)
1963 if (REG_P (real_out))
1964 value = real_out;
1965 else
1966 value = gen_rtx_REG (outmode, regno);
1970 *inloc = saved_rtx;
1973 /* Consider using IN if OUT was not acceptable
1974 or if OUT dies in this insn (like the quotient in a divmod insn).
1975 We can't use IN unless it is dies in this insn,
1976 which means we must know accurately which hard regs are live.
1977 Also, the result can't go in IN if IN is used within OUT,
1978 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1979 if (hard_regs_live_known
1980 && REG_P (in)
1981 && REGNO (in) < FIRST_PSEUDO_REGISTER
1982 && (value == 0
1983 || find_reg_note (this_insn, REG_UNUSED, real_out))
1984 && find_reg_note (this_insn, REG_DEAD, real_in)
1985 && !fixed_regs[REGNO (in)]
1986 && HARD_REGNO_MODE_OK (REGNO (in),
1987 /* The only case where out and real_out might
1988 have different modes is where real_out
1989 is a subreg, and in that case, out
1990 has a real mode. */
1991 (GET_MODE (out) != VOIDmode
1992 ? GET_MODE (out) : outmode))
1993 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
1994 /* However only do this if we can be sure that this input
1995 operand doesn't correspond with an uninitialized pseudo.
1996 global can assign some hardreg to it that is the same as
1997 the one assigned to a different, also live pseudo (as it
1998 can ignore the conflict). We must never introduce writes
1999 to such hardregs, as they would clobber the other live
2000 pseudo. See PR 20973. */
2001 || (!bitmap_bit_p (DF_LIVE_OUT (ENTRY_BLOCK_PTR),
2002 ORIGINAL_REGNO (in))
2003 /* Similarly, only do this if we can be sure that the death
2004 note is still valid. global can assign some hardreg to
2005 the pseudo referenced in the note and simultaneously a
2006 subword of this hardreg to a different, also live pseudo,
2007 because only another subword of the hardreg is actually
2008 used in the insn. This cannot happen if the pseudo has
2009 been assigned exactly one hardreg. See PR 33732. */
2010 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2012 unsigned int regno = REGNO (in) + in_offset;
2013 unsigned int nwords = hard_regno_nregs[regno][inmode];
2015 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2016 && ! hard_reg_set_here_p (regno, regno + nwords,
2017 PATTERN (this_insn))
2018 && (! earlyclobber
2019 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2020 PATTERN (this_insn), inloc)))
2022 unsigned int i;
2024 for (i = 0; i < nwords; i++)
2025 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2026 regno + i))
2027 break;
2029 if (i == nwords)
2031 /* If we were going to use OUT as the reload reg
2032 and changed our mind, it means OUT is a dummy that
2033 dies here. So don't bother copying value to it. */
2034 if (for_real >= 0 && value == real_out)
2035 rld[for_real].out = 0;
2036 if (REG_P (real_in))
2037 value = real_in;
2038 else
2039 value = gen_rtx_REG (inmode, regno);
2044 return value;
2047 /* This page contains subroutines used mainly for determining
2048 whether the IN or an OUT of a reload can serve as the
2049 reload register. */
2051 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2054 earlyclobber_operand_p (rtx x)
2056 int i;
2058 for (i = 0; i < n_earlyclobbers; i++)
2059 if (reload_earlyclobbers[i] == x)
2060 return 1;
2062 return 0;
2065 /* Return 1 if expression X alters a hard reg in the range
2066 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2067 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2068 X should be the body of an instruction. */
2070 static int
2071 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2073 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2075 rtx op0 = SET_DEST (x);
2077 while (GET_CODE (op0) == SUBREG)
2078 op0 = SUBREG_REG (op0);
2079 if (REG_P (op0))
2081 unsigned int r = REGNO (op0);
2083 /* See if this reg overlaps range under consideration. */
2084 if (r < end_regno
2085 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2086 return 1;
2089 else if (GET_CODE (x) == PARALLEL)
2091 int i = XVECLEN (x, 0) - 1;
2093 for (; i >= 0; i--)
2094 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2095 return 1;
2098 return 0;
2101 /* Return 1 if ADDR is a valid memory address for mode MODE,
2102 and check that each pseudo reg has the proper kind of
2103 hard reg. */
2106 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2108 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2109 return 0;
2111 win:
2112 return 1;
2115 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2116 if they are the same hard reg, and has special hacks for
2117 autoincrement and autodecrement.
2118 This is specifically intended for find_reloads to use
2119 in determining whether two operands match.
2120 X is the operand whose number is the lower of the two.
2122 The value is 2 if Y contains a pre-increment that matches
2123 a non-incrementing address in X. */
2125 /* ??? To be completely correct, we should arrange to pass
2126 for X the output operand and for Y the input operand.
2127 For now, we assume that the output operand has the lower number
2128 because that is natural in (SET output (... input ...)). */
2131 operands_match_p (rtx x, rtx y)
2133 int i;
2134 RTX_CODE code = GET_CODE (x);
2135 const char *fmt;
2136 int success_2;
2138 if (x == y)
2139 return 1;
2140 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2141 && (REG_P (y) || (GET_CODE (y) == SUBREG
2142 && REG_P (SUBREG_REG (y)))))
2144 int j;
2146 if (code == SUBREG)
2148 i = REGNO (SUBREG_REG (x));
2149 if (i >= FIRST_PSEUDO_REGISTER)
2150 goto slow;
2151 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2152 GET_MODE (SUBREG_REG (x)),
2153 SUBREG_BYTE (x),
2154 GET_MODE (x));
2156 else
2157 i = REGNO (x);
2159 if (GET_CODE (y) == SUBREG)
2161 j = REGNO (SUBREG_REG (y));
2162 if (j >= FIRST_PSEUDO_REGISTER)
2163 goto slow;
2164 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2165 GET_MODE (SUBREG_REG (y)),
2166 SUBREG_BYTE (y),
2167 GET_MODE (y));
2169 else
2170 j = REGNO (y);
2172 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2173 multiple hard register group of scalar integer registers, so that
2174 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2175 register. */
2176 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2177 && SCALAR_INT_MODE_P (GET_MODE (x))
2178 && i < FIRST_PSEUDO_REGISTER)
2179 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2180 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2181 && SCALAR_INT_MODE_P (GET_MODE (y))
2182 && j < FIRST_PSEUDO_REGISTER)
2183 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2185 return i == j;
2187 /* If two operands must match, because they are really a single
2188 operand of an assembler insn, then two postincrements are invalid
2189 because the assembler insn would increment only once.
2190 On the other hand, a postincrement matches ordinary indexing
2191 if the postincrement is the output operand. */
2192 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2193 return operands_match_p (XEXP (x, 0), y);
2194 /* Two preincrements are invalid
2195 because the assembler insn would increment only once.
2196 On the other hand, a preincrement matches ordinary indexing
2197 if the preincrement is the input operand.
2198 In this case, return 2, since some callers need to do special
2199 things when this happens. */
2200 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2201 || GET_CODE (y) == PRE_MODIFY)
2202 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2204 slow:
2206 /* Now we have disposed of all the cases in which different rtx codes
2207 can match. */
2208 if (code != GET_CODE (y))
2209 return 0;
2211 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2212 if (GET_MODE (x) != GET_MODE (y))
2213 return 0;
2215 switch (code)
2217 case CONST_INT:
2218 case CONST_DOUBLE:
2219 case CONST_FIXED:
2220 return 0;
2222 case LABEL_REF:
2223 return XEXP (x, 0) == XEXP (y, 0);
2224 case SYMBOL_REF:
2225 return XSTR (x, 0) == XSTR (y, 0);
2227 default:
2228 break;
2231 /* Compare the elements. If any pair of corresponding elements
2232 fail to match, return 0 for the whole things. */
2234 success_2 = 0;
2235 fmt = GET_RTX_FORMAT (code);
2236 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2238 int val, j;
2239 switch (fmt[i])
2241 case 'w':
2242 if (XWINT (x, i) != XWINT (y, i))
2243 return 0;
2244 break;
2246 case 'i':
2247 if (XINT (x, i) != XINT (y, i))
2248 return 0;
2249 break;
2251 case 'e':
2252 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2253 if (val == 0)
2254 return 0;
2255 /* If any subexpression returns 2,
2256 we should return 2 if we are successful. */
2257 if (val == 2)
2258 success_2 = 1;
2259 break;
2261 case '0':
2262 break;
2264 case 'E':
2265 if (XVECLEN (x, i) != XVECLEN (y, i))
2266 return 0;
2267 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2269 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2270 if (val == 0)
2271 return 0;
2272 if (val == 2)
2273 success_2 = 1;
2275 break;
2277 /* It is believed that rtx's at this level will never
2278 contain anything but integers and other rtx's,
2279 except for within LABEL_REFs and SYMBOL_REFs. */
2280 default:
2281 gcc_unreachable ();
2284 return 1 + success_2;
2287 /* Describe the range of registers or memory referenced by X.
2288 If X is a register, set REG_FLAG and put the first register
2289 number into START and the last plus one into END.
2290 If X is a memory reference, put a base address into BASE
2291 and a range of integer offsets into START and END.
2292 If X is pushing on the stack, we can assume it causes no trouble,
2293 so we set the SAFE field. */
2295 static struct decomposition
2296 decompose (rtx x)
2298 struct decomposition val;
2299 int all_const = 0;
2301 memset (&val, 0, sizeof (val));
2303 switch (GET_CODE (x))
2305 case MEM:
2307 rtx base = NULL_RTX, offset = 0;
2308 rtx addr = XEXP (x, 0);
2310 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2311 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2313 val.base = XEXP (addr, 0);
2314 val.start = -GET_MODE_SIZE (GET_MODE (x));
2315 val.end = GET_MODE_SIZE (GET_MODE (x));
2316 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2317 return val;
2320 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2322 if (GET_CODE (XEXP (addr, 1)) == PLUS
2323 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2324 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2326 val.base = XEXP (addr, 0);
2327 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2328 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2329 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2330 return val;
2334 if (GET_CODE (addr) == CONST)
2336 addr = XEXP (addr, 0);
2337 all_const = 1;
2339 if (GET_CODE (addr) == PLUS)
2341 if (CONSTANT_P (XEXP (addr, 0)))
2343 base = XEXP (addr, 1);
2344 offset = XEXP (addr, 0);
2346 else if (CONSTANT_P (XEXP (addr, 1)))
2348 base = XEXP (addr, 0);
2349 offset = XEXP (addr, 1);
2353 if (offset == 0)
2355 base = addr;
2356 offset = const0_rtx;
2358 if (GET_CODE (offset) == CONST)
2359 offset = XEXP (offset, 0);
2360 if (GET_CODE (offset) == PLUS)
2362 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2364 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2365 offset = XEXP (offset, 0);
2367 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2369 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2370 offset = XEXP (offset, 1);
2372 else
2374 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2375 offset = const0_rtx;
2378 else if (GET_CODE (offset) != CONST_INT)
2380 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2381 offset = const0_rtx;
2384 if (all_const && GET_CODE (base) == PLUS)
2385 base = gen_rtx_CONST (GET_MODE (base), base);
2387 gcc_assert (GET_CODE (offset) == CONST_INT);
2389 val.start = INTVAL (offset);
2390 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2391 val.base = base;
2393 break;
2395 case REG:
2396 val.reg_flag = 1;
2397 val.start = true_regnum (x);
2398 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2400 /* A pseudo with no hard reg. */
2401 val.start = REGNO (x);
2402 val.end = val.start + 1;
2404 else
2405 /* A hard reg. */
2406 val.end = end_hard_regno (GET_MODE (x), val.start);
2407 break;
2409 case SUBREG:
2410 if (!REG_P (SUBREG_REG (x)))
2411 /* This could be more precise, but it's good enough. */
2412 return decompose (SUBREG_REG (x));
2413 val.reg_flag = 1;
2414 val.start = true_regnum (x);
2415 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2416 return decompose (SUBREG_REG (x));
2417 else
2418 /* A hard reg. */
2419 val.end = val.start + subreg_nregs (x);
2420 break;
2422 case SCRATCH:
2423 /* This hasn't been assigned yet, so it can't conflict yet. */
2424 val.safe = 1;
2425 break;
2427 default:
2428 gcc_assert (CONSTANT_P (x));
2429 val.safe = 1;
2430 break;
2432 return val;
2435 /* Return 1 if altering Y will not modify the value of X.
2436 Y is also described by YDATA, which should be decompose (Y). */
2438 static int
2439 immune_p (rtx x, rtx y, struct decomposition ydata)
2441 struct decomposition xdata;
2443 if (ydata.reg_flag)
2444 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2445 if (ydata.safe)
2446 return 1;
2448 gcc_assert (MEM_P (y));
2449 /* If Y is memory and X is not, Y can't affect X. */
2450 if (!MEM_P (x))
2451 return 1;
2453 xdata = decompose (x);
2455 if (! rtx_equal_p (xdata.base, ydata.base))
2457 /* If bases are distinct symbolic constants, there is no overlap. */
2458 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2459 return 1;
2460 /* Constants and stack slots never overlap. */
2461 if (CONSTANT_P (xdata.base)
2462 && (ydata.base == frame_pointer_rtx
2463 || ydata.base == hard_frame_pointer_rtx
2464 || ydata.base == stack_pointer_rtx))
2465 return 1;
2466 if (CONSTANT_P (ydata.base)
2467 && (xdata.base == frame_pointer_rtx
2468 || xdata.base == hard_frame_pointer_rtx
2469 || xdata.base == stack_pointer_rtx))
2470 return 1;
2471 /* If either base is variable, we don't know anything. */
2472 return 0;
2475 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2478 /* Similar, but calls decompose. */
2481 safe_from_earlyclobber (rtx op, rtx clobber)
2483 struct decomposition early_data;
2485 early_data = decompose (clobber);
2486 return immune_p (op, clobber, early_data);
2489 /* Main entry point of this file: search the body of INSN
2490 for values that need reloading and record them with push_reload.
2491 REPLACE nonzero means record also where the values occur
2492 so that subst_reloads can be used.
2494 IND_LEVELS says how many levels of indirection are supported by this
2495 machine; a value of zero means that a memory reference is not a valid
2496 memory address.
2498 LIVE_KNOWN says we have valid information about which hard
2499 regs are live at each point in the program; this is true when
2500 we are called from global_alloc but false when stupid register
2501 allocation has been done.
2503 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2504 which is nonnegative if the reg has been commandeered for reloading into.
2505 It is copied into STATIC_RELOAD_REG_P and referenced from there
2506 by various subroutines.
2508 Return TRUE if some operands need to be changed, because of swapping
2509 commutative operands, reg_equiv_address substitution, or whatever. */
2512 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2513 short *reload_reg_p)
2515 int insn_code_number;
2516 int i, j;
2517 int noperands;
2518 /* These start out as the constraints for the insn
2519 and they are chewed up as we consider alternatives. */
2520 char *constraints[MAX_RECOG_OPERANDS];
2521 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2522 a register. */
2523 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2524 char pref_or_nothing[MAX_RECOG_OPERANDS];
2525 /* Nonzero for a MEM operand whose entire address needs a reload.
2526 May be -1 to indicate the entire address may or may not need a reload. */
2527 int address_reloaded[MAX_RECOG_OPERANDS];
2528 /* Nonzero for an address operand that needs to be completely reloaded.
2529 May be -1 to indicate the entire operand may or may not need a reload. */
2530 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2531 /* Value of enum reload_type to use for operand. */
2532 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2533 /* Value of enum reload_type to use within address of operand. */
2534 enum reload_type address_type[MAX_RECOG_OPERANDS];
2535 /* Save the usage of each operand. */
2536 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2537 int no_input_reloads = 0, no_output_reloads = 0;
2538 int n_alternatives;
2539 int this_alternative[MAX_RECOG_OPERANDS];
2540 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2541 char this_alternative_win[MAX_RECOG_OPERANDS];
2542 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2543 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2544 int this_alternative_matches[MAX_RECOG_OPERANDS];
2545 int swapped;
2546 int goal_alternative[MAX_RECOG_OPERANDS];
2547 int this_alternative_number;
2548 int goal_alternative_number = 0;
2549 int operand_reloadnum[MAX_RECOG_OPERANDS];
2550 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2551 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2552 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2553 char goal_alternative_win[MAX_RECOG_OPERANDS];
2554 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2555 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2556 int goal_alternative_swapped;
2557 int best;
2558 int commutative;
2559 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2560 rtx substed_operand[MAX_RECOG_OPERANDS];
2561 rtx body = PATTERN (insn);
2562 rtx set = single_set (insn);
2563 int goal_earlyclobber = 0, this_earlyclobber;
2564 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2565 int retval = 0;
2567 this_insn = insn;
2568 n_reloads = 0;
2569 n_replacements = 0;
2570 n_earlyclobbers = 0;
2571 replace_reloads = replace;
2572 hard_regs_live_known = live_known;
2573 static_reload_reg_p = reload_reg_p;
2575 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2576 neither are insns that SET cc0. Insns that use CC0 are not allowed
2577 to have any input reloads. */
2578 if (JUMP_P (insn) || CALL_P (insn))
2579 no_output_reloads = 1;
2581 #ifdef HAVE_cc0
2582 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2583 no_input_reloads = 1;
2584 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2585 no_output_reloads = 1;
2586 #endif
2588 #ifdef SECONDARY_MEMORY_NEEDED
2589 /* The eliminated forms of any secondary memory locations are per-insn, so
2590 clear them out here. */
2592 if (secondary_memlocs_elim_used)
2594 memset (secondary_memlocs_elim, 0,
2595 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2596 secondary_memlocs_elim_used = 0;
2598 #endif
2600 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2601 is cheap to move between them. If it is not, there may not be an insn
2602 to do the copy, so we may need a reload. */
2603 if (GET_CODE (body) == SET
2604 && REG_P (SET_DEST (body))
2605 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2606 && REG_P (SET_SRC (body))
2607 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2608 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2609 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2610 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2611 return 0;
2613 extract_insn (insn);
2615 noperands = reload_n_operands = recog_data.n_operands;
2616 n_alternatives = recog_data.n_alternatives;
2618 /* Just return "no reloads" if insn has no operands with constraints. */
2619 if (noperands == 0 || n_alternatives == 0)
2620 return 0;
2622 insn_code_number = INSN_CODE (insn);
2623 this_insn_is_asm = insn_code_number < 0;
2625 memcpy (operand_mode, recog_data.operand_mode,
2626 noperands * sizeof (enum machine_mode));
2627 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2629 commutative = -1;
2631 /* If we will need to know, later, whether some pair of operands
2632 are the same, we must compare them now and save the result.
2633 Reloading the base and index registers will clobber them
2634 and afterward they will fail to match. */
2636 for (i = 0; i < noperands; i++)
2638 char *p;
2639 int c;
2641 substed_operand[i] = recog_data.operand[i];
2642 p = constraints[i];
2644 modified[i] = RELOAD_READ;
2646 /* Scan this operand's constraint to see if it is an output operand,
2647 an in-out operand, is commutative, or should match another. */
2649 while ((c = *p))
2651 p += CONSTRAINT_LEN (c, p);
2652 switch (c)
2654 case '=':
2655 modified[i] = RELOAD_WRITE;
2656 break;
2657 case '+':
2658 modified[i] = RELOAD_READ_WRITE;
2659 break;
2660 case '%':
2662 /* The last operand should not be marked commutative. */
2663 gcc_assert (i != noperands - 1);
2665 /* We currently only support one commutative pair of
2666 operands. Some existing asm code currently uses more
2667 than one pair. Previously, that would usually work,
2668 but sometimes it would crash the compiler. We
2669 continue supporting that case as well as we can by
2670 silently ignoring all but the first pair. In the
2671 future we may handle it correctly. */
2672 if (commutative < 0)
2673 commutative = i;
2674 else
2675 gcc_assert (this_insn_is_asm);
2677 break;
2678 /* Use of ISDIGIT is tempting here, but it may get expensive because
2679 of locale support we don't want. */
2680 case '0': case '1': case '2': case '3': case '4':
2681 case '5': case '6': case '7': case '8': case '9':
2683 c = strtoul (p - 1, &p, 10);
2685 operands_match[c][i]
2686 = operands_match_p (recog_data.operand[c],
2687 recog_data.operand[i]);
2689 /* An operand may not match itself. */
2690 gcc_assert (c != i);
2692 /* If C can be commuted with C+1, and C might need to match I,
2693 then C+1 might also need to match I. */
2694 if (commutative >= 0)
2696 if (c == commutative || c == commutative + 1)
2698 int other = c + (c == commutative ? 1 : -1);
2699 operands_match[other][i]
2700 = operands_match_p (recog_data.operand[other],
2701 recog_data.operand[i]);
2703 if (i == commutative || i == commutative + 1)
2705 int other = i + (i == commutative ? 1 : -1);
2706 operands_match[c][other]
2707 = operands_match_p (recog_data.operand[c],
2708 recog_data.operand[other]);
2710 /* Note that C is supposed to be less than I.
2711 No need to consider altering both C and I because in
2712 that case we would alter one into the other. */
2719 /* Examine each operand that is a memory reference or memory address
2720 and reload parts of the addresses into index registers.
2721 Also here any references to pseudo regs that didn't get hard regs
2722 but are equivalent to constants get replaced in the insn itself
2723 with those constants. Nobody will ever see them again.
2725 Finally, set up the preferred classes of each operand. */
2727 for (i = 0; i < noperands; i++)
2729 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2731 address_reloaded[i] = 0;
2732 address_operand_reloaded[i] = 0;
2733 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2734 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2735 : RELOAD_OTHER);
2736 address_type[i]
2737 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2738 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2739 : RELOAD_OTHER);
2741 if (*constraints[i] == 0)
2742 /* Ignore things like match_operator operands. */
2744 else if (constraints[i][0] == 'p'
2745 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2747 address_operand_reloaded[i]
2748 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2749 recog_data.operand[i],
2750 recog_data.operand_loc[i],
2751 i, operand_type[i], ind_levels, insn);
2753 /* If we now have a simple operand where we used to have a
2754 PLUS or MULT, re-recognize and try again. */
2755 if ((OBJECT_P (*recog_data.operand_loc[i])
2756 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2757 && (GET_CODE (recog_data.operand[i]) == MULT
2758 || GET_CODE (recog_data.operand[i]) == PLUS))
2760 INSN_CODE (insn) = -1;
2761 retval = find_reloads (insn, replace, ind_levels, live_known,
2762 reload_reg_p);
2763 return retval;
2766 recog_data.operand[i] = *recog_data.operand_loc[i];
2767 substed_operand[i] = recog_data.operand[i];
2769 /* Address operands are reloaded in their existing mode,
2770 no matter what is specified in the machine description. */
2771 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2773 else if (code == MEM)
2775 address_reloaded[i]
2776 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2777 recog_data.operand_loc[i],
2778 XEXP (recog_data.operand[i], 0),
2779 &XEXP (recog_data.operand[i], 0),
2780 i, address_type[i], ind_levels, insn);
2781 recog_data.operand[i] = *recog_data.operand_loc[i];
2782 substed_operand[i] = recog_data.operand[i];
2784 else if (code == SUBREG)
2786 rtx reg = SUBREG_REG (recog_data.operand[i]);
2787 rtx op
2788 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2789 ind_levels,
2790 set != 0
2791 && &SET_DEST (set) == recog_data.operand_loc[i],
2792 insn,
2793 &address_reloaded[i]);
2795 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2796 that didn't get a hard register, emit a USE with a REG_EQUAL
2797 note in front so that we might inherit a previous, possibly
2798 wider reload. */
2800 if (replace
2801 && MEM_P (op)
2802 && REG_P (reg)
2803 && (GET_MODE_SIZE (GET_MODE (reg))
2804 >= GET_MODE_SIZE (GET_MODE (op)))
2805 && reg_equiv_constant[REGNO (reg)] == 0)
2806 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2807 insn),
2808 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2810 substed_operand[i] = recog_data.operand[i] = op;
2812 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2813 /* We can get a PLUS as an "operand" as a result of register
2814 elimination. See eliminate_regs and gen_reload. We handle
2815 a unary operator by reloading the operand. */
2816 substed_operand[i] = recog_data.operand[i]
2817 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2818 ind_levels, 0, insn,
2819 &address_reloaded[i]);
2820 else if (code == REG)
2822 /* This is equivalent to calling find_reloads_toplev.
2823 The code is duplicated for speed.
2824 When we find a pseudo always equivalent to a constant,
2825 we replace it by the constant. We must be sure, however,
2826 that we don't try to replace it in the insn in which it
2827 is being set. */
2828 int regno = REGNO (recog_data.operand[i]);
2829 if (reg_equiv_constant[regno] != 0
2830 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2832 /* Record the existing mode so that the check if constants are
2833 allowed will work when operand_mode isn't specified. */
2835 if (operand_mode[i] == VOIDmode)
2836 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2838 substed_operand[i] = recog_data.operand[i]
2839 = reg_equiv_constant[regno];
2841 if (reg_equiv_memory_loc[regno] != 0
2842 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2843 /* We need not give a valid is_set_dest argument since the case
2844 of a constant equivalence was checked above. */
2845 substed_operand[i] = recog_data.operand[i]
2846 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2847 ind_levels, 0, insn,
2848 &address_reloaded[i]);
2850 /* If the operand is still a register (we didn't replace it with an
2851 equivalent), get the preferred class to reload it into. */
2852 code = GET_CODE (recog_data.operand[i]);
2853 preferred_class[i]
2854 = ((code == REG && REGNO (recog_data.operand[i])
2855 >= FIRST_PSEUDO_REGISTER)
2856 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2857 : NO_REGS);
2858 pref_or_nothing[i]
2859 = (code == REG
2860 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2861 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2864 /* If this is simply a copy from operand 1 to operand 0, merge the
2865 preferred classes for the operands. */
2866 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2867 && recog_data.operand[1] == SET_SRC (set))
2869 preferred_class[0] = preferred_class[1]
2870 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2871 pref_or_nothing[0] |= pref_or_nothing[1];
2872 pref_or_nothing[1] |= pref_or_nothing[0];
2875 /* Now see what we need for pseudo-regs that didn't get hard regs
2876 or got the wrong kind of hard reg. For this, we must consider
2877 all the operands together against the register constraints. */
2879 best = MAX_RECOG_OPERANDS * 2 + 600;
2881 swapped = 0;
2882 goal_alternative_swapped = 0;
2883 try_swapped:
2885 /* The constraints are made of several alternatives.
2886 Each operand's constraint looks like foo,bar,... with commas
2887 separating the alternatives. The first alternatives for all
2888 operands go together, the second alternatives go together, etc.
2890 First loop over alternatives. */
2892 for (this_alternative_number = 0;
2893 this_alternative_number < n_alternatives;
2894 this_alternative_number++)
2896 /* Loop over operands for one constraint alternative. */
2897 /* LOSERS counts those that don't fit this alternative
2898 and would require loading. */
2899 int losers = 0;
2900 /* BAD is set to 1 if it some operand can't fit this alternative
2901 even after reloading. */
2902 int bad = 0;
2903 /* REJECT is a count of how undesirable this alternative says it is
2904 if any reloading is required. If the alternative matches exactly
2905 then REJECT is ignored, but otherwise it gets this much
2906 counted against it in addition to the reloading needed. Each
2907 ? counts three times here since we want the disparaging caused by
2908 a bad register class to only count 1/3 as much. */
2909 int reject = 0;
2911 this_earlyclobber = 0;
2913 for (i = 0; i < noperands; i++)
2915 char *p = constraints[i];
2916 char *end;
2917 int len;
2918 int win = 0;
2919 int did_match = 0;
2920 /* 0 => this operand can be reloaded somehow for this alternative. */
2921 int badop = 1;
2922 /* 0 => this operand can be reloaded if the alternative allows regs. */
2923 int winreg = 0;
2924 int c;
2925 int m;
2926 rtx operand = recog_data.operand[i];
2927 int offset = 0;
2928 /* Nonzero means this is a MEM that must be reloaded into a reg
2929 regardless of what the constraint says. */
2930 int force_reload = 0;
2931 int offmemok = 0;
2932 /* Nonzero if a constant forced into memory would be OK for this
2933 operand. */
2934 int constmemok = 0;
2935 int earlyclobber = 0;
2937 /* If the predicate accepts a unary operator, it means that
2938 we need to reload the operand, but do not do this for
2939 match_operator and friends. */
2940 if (UNARY_P (operand) && *p != 0)
2941 operand = XEXP (operand, 0);
2943 /* If the operand is a SUBREG, extract
2944 the REG or MEM (or maybe even a constant) within.
2945 (Constants can occur as a result of reg_equiv_constant.) */
2947 while (GET_CODE (operand) == SUBREG)
2949 /* Offset only matters when operand is a REG and
2950 it is a hard reg. This is because it is passed
2951 to reg_fits_class_p if it is a REG and all pseudos
2952 return 0 from that function. */
2953 if (REG_P (SUBREG_REG (operand))
2954 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2956 if (!subreg_offset_representable_p
2957 (REGNO (SUBREG_REG (operand)),
2958 GET_MODE (SUBREG_REG (operand)),
2959 SUBREG_BYTE (operand),
2960 GET_MODE (operand)))
2961 force_reload = 1;
2962 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2963 GET_MODE (SUBREG_REG (operand)),
2964 SUBREG_BYTE (operand),
2965 GET_MODE (operand));
2967 operand = SUBREG_REG (operand);
2968 /* Force reload if this is a constant or PLUS or if there may
2969 be a problem accessing OPERAND in the outer mode. */
2970 if (CONSTANT_P (operand)
2971 || GET_CODE (operand) == PLUS
2972 /* We must force a reload of paradoxical SUBREGs
2973 of a MEM because the alignment of the inner value
2974 may not be enough to do the outer reference. On
2975 big-endian machines, it may also reference outside
2976 the object.
2978 On machines that extend byte operations and we have a
2979 SUBREG where both the inner and outer modes are no wider
2980 than a word and the inner mode is narrower, is integral,
2981 and gets extended when loaded from memory, combine.c has
2982 made assumptions about the behavior of the machine in such
2983 register access. If the data is, in fact, in memory we
2984 must always load using the size assumed to be in the
2985 register and let the insn do the different-sized
2986 accesses.
2988 This is doubly true if WORD_REGISTER_OPERATIONS. In
2989 this case eliminate_regs has left non-paradoxical
2990 subregs for push_reload to see. Make sure it does
2991 by forcing the reload.
2993 ??? When is it right at this stage to have a subreg
2994 of a mem that is _not_ to be handled specially? IMO
2995 those should have been reduced to just a mem. */
2996 || ((MEM_P (operand)
2997 || (REG_P (operand)
2998 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2999 #ifndef WORD_REGISTER_OPERATIONS
3000 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3001 < BIGGEST_ALIGNMENT)
3002 && (GET_MODE_SIZE (operand_mode[i])
3003 > GET_MODE_SIZE (GET_MODE (operand))))
3004 || BYTES_BIG_ENDIAN
3005 #ifdef LOAD_EXTEND_OP
3006 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3007 && (GET_MODE_SIZE (GET_MODE (operand))
3008 <= UNITS_PER_WORD)
3009 && (GET_MODE_SIZE (operand_mode[i])
3010 > GET_MODE_SIZE (GET_MODE (operand)))
3011 && INTEGRAL_MODE_P (GET_MODE (operand))
3012 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3013 #endif
3015 #endif
3018 force_reload = 1;
3021 this_alternative[i] = (int) NO_REGS;
3022 this_alternative_win[i] = 0;
3023 this_alternative_match_win[i] = 0;
3024 this_alternative_offmemok[i] = 0;
3025 this_alternative_earlyclobber[i] = 0;
3026 this_alternative_matches[i] = -1;
3028 /* An empty constraint or empty alternative
3029 allows anything which matched the pattern. */
3030 if (*p == 0 || *p == ',')
3031 win = 1, badop = 0;
3033 /* Scan this alternative's specs for this operand;
3034 set WIN if the operand fits any letter in this alternative.
3035 Otherwise, clear BADOP if this operand could
3036 fit some letter after reloads,
3037 or set WINREG if this operand could fit after reloads
3038 provided the constraint allows some registers. */
3041 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3043 case '\0':
3044 len = 0;
3045 break;
3046 case ',':
3047 c = '\0';
3048 break;
3050 case '=': case '+': case '*':
3051 break;
3053 case '%':
3054 /* We only support one commutative marker, the first
3055 one. We already set commutative above. */
3056 break;
3058 case '?':
3059 reject += 6;
3060 break;
3062 case '!':
3063 reject = 600;
3064 break;
3066 case '#':
3067 /* Ignore rest of this alternative as far as
3068 reloading is concerned. */
3070 p++;
3071 while (*p && *p != ',');
3072 len = 0;
3073 break;
3075 case '0': case '1': case '2': case '3': case '4':
3076 case '5': case '6': case '7': case '8': case '9':
3077 m = strtoul (p, &end, 10);
3078 p = end;
3079 len = 0;
3081 this_alternative_matches[i] = m;
3082 /* We are supposed to match a previous operand.
3083 If we do, we win if that one did.
3084 If we do not, count both of the operands as losers.
3085 (This is too conservative, since most of the time
3086 only a single reload insn will be needed to make
3087 the two operands win. As a result, this alternative
3088 may be rejected when it is actually desirable.) */
3089 if ((swapped && (m != commutative || i != commutative + 1))
3090 /* If we are matching as if two operands were swapped,
3091 also pretend that operands_match had been computed
3092 with swapped.
3093 But if I is the second of those and C is the first,
3094 don't exchange them, because operands_match is valid
3095 only on one side of its diagonal. */
3096 ? (operands_match
3097 [(m == commutative || m == commutative + 1)
3098 ? 2 * commutative + 1 - m : m]
3099 [(i == commutative || i == commutative + 1)
3100 ? 2 * commutative + 1 - i : i])
3101 : operands_match[m][i])
3103 /* If we are matching a non-offsettable address where an
3104 offsettable address was expected, then we must reject
3105 this combination, because we can't reload it. */
3106 if (this_alternative_offmemok[m]
3107 && MEM_P (recog_data.operand[m])
3108 && this_alternative[m] == (int) NO_REGS
3109 && ! this_alternative_win[m])
3110 bad = 1;
3112 did_match = this_alternative_win[m];
3114 else
3116 /* Operands don't match. */
3117 rtx value;
3118 int loc1, loc2;
3119 /* Retroactively mark the operand we had to match
3120 as a loser, if it wasn't already. */
3121 if (this_alternative_win[m])
3122 losers++;
3123 this_alternative_win[m] = 0;
3124 if (this_alternative[m] == (int) NO_REGS)
3125 bad = 1;
3126 /* But count the pair only once in the total badness of
3127 this alternative, if the pair can be a dummy reload.
3128 The pointers in operand_loc are not swapped; swap
3129 them by hand if necessary. */
3130 if (swapped && i == commutative)
3131 loc1 = commutative + 1;
3132 else if (swapped && i == commutative + 1)
3133 loc1 = commutative;
3134 else
3135 loc1 = i;
3136 if (swapped && m == commutative)
3137 loc2 = commutative + 1;
3138 else if (swapped && m == commutative + 1)
3139 loc2 = commutative;
3140 else
3141 loc2 = m;
3142 value
3143 = find_dummy_reload (recog_data.operand[i],
3144 recog_data.operand[m],
3145 recog_data.operand_loc[loc1],
3146 recog_data.operand_loc[loc2],
3147 operand_mode[i], operand_mode[m],
3148 this_alternative[m], -1,
3149 this_alternative_earlyclobber[m]);
3151 if (value != 0)
3152 losers--;
3154 /* This can be fixed with reloads if the operand
3155 we are supposed to match can be fixed with reloads. */
3156 badop = 0;
3157 this_alternative[i] = this_alternative[m];
3159 /* If we have to reload this operand and some previous
3160 operand also had to match the same thing as this
3161 operand, we don't know how to do that. So reject this
3162 alternative. */
3163 if (! did_match || force_reload)
3164 for (j = 0; j < i; j++)
3165 if (this_alternative_matches[j]
3166 == this_alternative_matches[i])
3167 badop = 1;
3168 break;
3170 case 'p':
3171 /* All necessary reloads for an address_operand
3172 were handled in find_reloads_address. */
3173 this_alternative[i]
3174 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3175 win = 1;
3176 badop = 0;
3177 break;
3179 case 'm':
3180 if (force_reload)
3181 break;
3182 if (MEM_P (operand)
3183 || (REG_P (operand)
3184 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3185 && reg_renumber[REGNO (operand)] < 0))
3186 win = 1;
3187 if (CONST_POOL_OK_P (operand))
3188 badop = 0;
3189 constmemok = 1;
3190 break;
3192 case '<':
3193 if (MEM_P (operand)
3194 && ! address_reloaded[i]
3195 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3196 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3197 win = 1;
3198 break;
3200 case '>':
3201 if (MEM_P (operand)
3202 && ! address_reloaded[i]
3203 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3204 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3205 win = 1;
3206 break;
3208 /* Memory operand whose address is not offsettable. */
3209 case 'V':
3210 if (force_reload)
3211 break;
3212 if (MEM_P (operand)
3213 && ! (ind_levels ? offsettable_memref_p (operand)
3214 : offsettable_nonstrict_memref_p (operand))
3215 /* Certain mem addresses will become offsettable
3216 after they themselves are reloaded. This is important;
3217 we don't want our own handling of unoffsettables
3218 to override the handling of reg_equiv_address. */
3219 && !(REG_P (XEXP (operand, 0))
3220 && (ind_levels == 0
3221 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3222 win = 1;
3223 break;
3225 /* Memory operand whose address is offsettable. */
3226 case 'o':
3227 if (force_reload)
3228 break;
3229 if ((MEM_P (operand)
3230 /* If IND_LEVELS, find_reloads_address won't reload a
3231 pseudo that didn't get a hard reg, so we have to
3232 reject that case. */
3233 && ((ind_levels ? offsettable_memref_p (operand)
3234 : offsettable_nonstrict_memref_p (operand))
3235 /* A reloaded address is offsettable because it is now
3236 just a simple register indirect. */
3237 || address_reloaded[i] == 1))
3238 || (REG_P (operand)
3239 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3240 && reg_renumber[REGNO (operand)] < 0
3241 /* If reg_equiv_address is nonzero, we will be
3242 loading it into a register; hence it will be
3243 offsettable, but we cannot say that reg_equiv_mem
3244 is offsettable without checking. */
3245 && ((reg_equiv_mem[REGNO (operand)] != 0
3246 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3247 || (reg_equiv_address[REGNO (operand)] != 0))))
3248 win = 1;
3249 if (CONST_POOL_OK_P (operand)
3250 || MEM_P (operand))
3251 badop = 0;
3252 constmemok = 1;
3253 offmemok = 1;
3254 break;
3256 case '&':
3257 /* Output operand that is stored before the need for the
3258 input operands (and their index registers) is over. */
3259 earlyclobber = 1, this_earlyclobber = 1;
3260 break;
3262 case 'E':
3263 case 'F':
3264 if (GET_CODE (operand) == CONST_DOUBLE
3265 || (GET_CODE (operand) == CONST_VECTOR
3266 && (GET_MODE_CLASS (GET_MODE (operand))
3267 == MODE_VECTOR_FLOAT)))
3268 win = 1;
3269 break;
3271 case 'G':
3272 case 'H':
3273 if (GET_CODE (operand) == CONST_DOUBLE
3274 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3275 win = 1;
3276 break;
3278 case 's':
3279 if (GET_CODE (operand) == CONST_INT
3280 || (GET_CODE (operand) == CONST_DOUBLE
3281 && GET_MODE (operand) == VOIDmode))
3282 break;
3283 case 'i':
3284 if (CONSTANT_P (operand)
3285 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3286 win = 1;
3287 break;
3289 case 'n':
3290 if (GET_CODE (operand) == CONST_INT
3291 || (GET_CODE (operand) == CONST_DOUBLE
3292 && GET_MODE (operand) == VOIDmode))
3293 win = 1;
3294 break;
3296 case 'I':
3297 case 'J':
3298 case 'K':
3299 case 'L':
3300 case 'M':
3301 case 'N':
3302 case 'O':
3303 case 'P':
3304 if (GET_CODE (operand) == CONST_INT
3305 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3306 win = 1;
3307 break;
3309 case 'X':
3310 force_reload = 0;
3311 win = 1;
3312 break;
3314 case 'g':
3315 if (! force_reload
3316 /* A PLUS is never a valid operand, but reload can make
3317 it from a register when eliminating registers. */
3318 && GET_CODE (operand) != PLUS
3319 /* A SCRATCH is not a valid operand. */
3320 && GET_CODE (operand) != SCRATCH
3321 && (! CONSTANT_P (operand)
3322 || ! flag_pic
3323 || LEGITIMATE_PIC_OPERAND_P (operand))
3324 && (GENERAL_REGS == ALL_REGS
3325 || !REG_P (operand)
3326 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3327 && reg_renumber[REGNO (operand)] < 0)))
3328 win = 1;
3329 /* Drop through into 'r' case. */
3331 case 'r':
3332 this_alternative[i]
3333 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3334 goto reg;
3336 default:
3337 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3339 #ifdef EXTRA_CONSTRAINT_STR
3340 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3342 if (force_reload)
3343 break;
3344 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3345 win = 1;
3346 /* If the address was already reloaded,
3347 we win as well. */
3348 else if (MEM_P (operand)
3349 && address_reloaded[i] == 1)
3350 win = 1;
3351 /* Likewise if the address will be reloaded because
3352 reg_equiv_address is nonzero. For reg_equiv_mem
3353 we have to check. */
3354 else if (REG_P (operand)
3355 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3356 && reg_renumber[REGNO (operand)] < 0
3357 && ((reg_equiv_mem[REGNO (operand)] != 0
3358 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3359 || (reg_equiv_address[REGNO (operand)] != 0)))
3360 win = 1;
3362 /* If we didn't already win, we can reload
3363 constants via force_const_mem, and other
3364 MEMs by reloading the address like for 'o'. */
3365 if (CONST_POOL_OK_P (operand)
3366 || MEM_P (operand))
3367 badop = 0;
3368 constmemok = 1;
3369 offmemok = 1;
3370 break;
3372 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3374 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3375 win = 1;
3377 /* If we didn't already win, we can reload
3378 the address into a base register. */
3379 this_alternative[i]
3380 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3381 badop = 0;
3382 break;
3385 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3386 win = 1;
3387 #endif
3388 break;
3391 this_alternative[i]
3392 = (int) (reg_class_subunion
3393 [this_alternative[i]]
3394 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3395 reg:
3396 if (GET_MODE (operand) == BLKmode)
3397 break;
3398 winreg = 1;
3399 if (REG_P (operand)
3400 && reg_fits_class_p (operand, this_alternative[i],
3401 offset, GET_MODE (recog_data.operand[i])))
3402 win = 1;
3403 break;
3405 while ((p += len), c);
3407 constraints[i] = p;
3409 /* If this operand could be handled with a reg,
3410 and some reg is allowed, then this operand can be handled. */
3411 if (winreg && this_alternative[i] != (int) NO_REGS)
3412 badop = 0;
3414 /* Record which operands fit this alternative. */
3415 this_alternative_earlyclobber[i] = earlyclobber;
3416 if (win && ! force_reload)
3417 this_alternative_win[i] = 1;
3418 else if (did_match && ! force_reload)
3419 this_alternative_match_win[i] = 1;
3420 else
3422 int const_to_mem = 0;
3424 this_alternative_offmemok[i] = offmemok;
3425 losers++;
3426 if (badop)
3427 bad = 1;
3428 /* Alternative loses if it has no regs for a reg operand. */
3429 if (REG_P (operand)
3430 && this_alternative[i] == (int) NO_REGS
3431 && this_alternative_matches[i] < 0)
3432 bad = 1;
3434 /* If this is a constant that is reloaded into the desired
3435 class by copying it to memory first, count that as another
3436 reload. This is consistent with other code and is
3437 required to avoid choosing another alternative when
3438 the constant is moved into memory by this function on
3439 an early reload pass. Note that the test here is
3440 precisely the same as in the code below that calls
3441 force_const_mem. */
3442 if (CONST_POOL_OK_P (operand)
3443 && ((PREFERRED_RELOAD_CLASS (operand,
3444 (enum reg_class) this_alternative[i])
3445 == NO_REGS)
3446 || no_input_reloads)
3447 && operand_mode[i] != VOIDmode)
3449 const_to_mem = 1;
3450 if (this_alternative[i] != (int) NO_REGS)
3451 losers++;
3454 /* Alternative loses if it requires a type of reload not
3455 permitted for this insn. We can always reload SCRATCH
3456 and objects with a REG_UNUSED note. */
3457 if (GET_CODE (operand) != SCRATCH
3458 && modified[i] != RELOAD_READ && no_output_reloads
3459 && ! find_reg_note (insn, REG_UNUSED, operand))
3460 bad = 1;
3461 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3462 && ! const_to_mem)
3463 bad = 1;
3465 /* If we can't reload this value at all, reject this
3466 alternative. Note that we could also lose due to
3467 LIMIT_RELOAD_CLASS, but we don't check that
3468 here. */
3470 if (! CONSTANT_P (operand)
3471 && (enum reg_class) this_alternative[i] != NO_REGS)
3473 if (PREFERRED_RELOAD_CLASS
3474 (operand, (enum reg_class) this_alternative[i])
3475 == NO_REGS)
3476 reject = 600;
3478 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3479 if (operand_type[i] == RELOAD_FOR_OUTPUT
3480 && PREFERRED_OUTPUT_RELOAD_CLASS
3481 (operand, (enum reg_class) this_alternative[i])
3482 == NO_REGS)
3483 reject = 600;
3484 #endif
3487 /* We prefer to reload pseudos over reloading other things,
3488 since such reloads may be able to be eliminated later.
3489 If we are reloading a SCRATCH, we won't be generating any
3490 insns, just using a register, so it is also preferred.
3491 So bump REJECT in other cases. Don't do this in the
3492 case where we are forcing a constant into memory and
3493 it will then win since we don't want to have a different
3494 alternative match then. */
3495 if (! (REG_P (operand)
3496 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3497 && GET_CODE (operand) != SCRATCH
3498 && ! (const_to_mem && constmemok))
3499 reject += 2;
3501 /* Input reloads can be inherited more often than output
3502 reloads can be removed, so penalize output reloads. */
3503 if (operand_type[i] != RELOAD_FOR_INPUT
3504 && GET_CODE (operand) != SCRATCH)
3505 reject++;
3508 /* If this operand is a pseudo register that didn't get a hard
3509 reg and this alternative accepts some register, see if the
3510 class that we want is a subset of the preferred class for this
3511 register. If not, but it intersects that class, use the
3512 preferred class instead. If it does not intersect the preferred
3513 class, show that usage of this alternative should be discouraged;
3514 it will be discouraged more still if the register is `preferred
3515 or nothing'. We do this because it increases the chance of
3516 reusing our spill register in a later insn and avoiding a pair
3517 of memory stores and loads.
3519 Don't bother with this if this alternative will accept this
3520 operand.
3522 Don't do this for a multiword operand, since it is only a
3523 small win and has the risk of requiring more spill registers,
3524 which could cause a large loss.
3526 Don't do this if the preferred class has only one register
3527 because we might otherwise exhaust the class. */
3529 if (! win && ! did_match
3530 && this_alternative[i] != (int) NO_REGS
3531 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3532 && reg_class_size [(int) preferred_class[i]] > 0
3533 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3535 if (! reg_class_subset_p (this_alternative[i],
3536 preferred_class[i]))
3538 /* Since we don't have a way of forming the intersection,
3539 we just do something special if the preferred class
3540 is a subset of the class we have; that's the most
3541 common case anyway. */
3542 if (reg_class_subset_p (preferred_class[i],
3543 this_alternative[i]))
3544 this_alternative[i] = (int) preferred_class[i];
3545 else
3546 reject += (2 + 2 * pref_or_nothing[i]);
3551 /* Now see if any output operands that are marked "earlyclobber"
3552 in this alternative conflict with any input operands
3553 or any memory addresses. */
3555 for (i = 0; i < noperands; i++)
3556 if (this_alternative_earlyclobber[i]
3557 && (this_alternative_win[i] || this_alternative_match_win[i]))
3559 struct decomposition early_data;
3561 early_data = decompose (recog_data.operand[i]);
3563 gcc_assert (modified[i] != RELOAD_READ);
3565 if (this_alternative[i] == NO_REGS)
3567 this_alternative_earlyclobber[i] = 0;
3568 gcc_assert (this_insn_is_asm);
3569 error_for_asm (this_insn,
3570 "%<&%> constraint used with no register class");
3573 for (j = 0; j < noperands; j++)
3574 /* Is this an input operand or a memory ref? */
3575 if ((MEM_P (recog_data.operand[j])
3576 || modified[j] != RELOAD_WRITE)
3577 && j != i
3578 /* Ignore things like match_operator operands. */
3579 && *recog_data.constraints[j] != 0
3580 /* Don't count an input operand that is constrained to match
3581 the early clobber operand. */
3582 && ! (this_alternative_matches[j] == i
3583 && rtx_equal_p (recog_data.operand[i],
3584 recog_data.operand[j]))
3585 /* Is it altered by storing the earlyclobber operand? */
3586 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3587 early_data))
3589 /* If the output is in a non-empty few-regs class,
3590 it's costly to reload it, so reload the input instead. */
3591 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3592 && (REG_P (recog_data.operand[j])
3593 || GET_CODE (recog_data.operand[j]) == SUBREG))
3595 losers++;
3596 this_alternative_win[j] = 0;
3597 this_alternative_match_win[j] = 0;
3599 else
3600 break;
3602 /* If an earlyclobber operand conflicts with something,
3603 it must be reloaded, so request this and count the cost. */
3604 if (j != noperands)
3606 losers++;
3607 this_alternative_win[i] = 0;
3608 this_alternative_match_win[j] = 0;
3609 for (j = 0; j < noperands; j++)
3610 if (this_alternative_matches[j] == i
3611 && this_alternative_match_win[j])
3613 this_alternative_win[j] = 0;
3614 this_alternative_match_win[j] = 0;
3615 losers++;
3620 /* If one alternative accepts all the operands, no reload required,
3621 choose that alternative; don't consider the remaining ones. */
3622 if (losers == 0)
3624 /* Unswap these so that they are never swapped at `finish'. */
3625 if (commutative >= 0)
3627 recog_data.operand[commutative] = substed_operand[commutative];
3628 recog_data.operand[commutative + 1]
3629 = substed_operand[commutative + 1];
3631 for (i = 0; i < noperands; i++)
3633 goal_alternative_win[i] = this_alternative_win[i];
3634 goal_alternative_match_win[i] = this_alternative_match_win[i];
3635 goal_alternative[i] = this_alternative[i];
3636 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3637 goal_alternative_matches[i] = this_alternative_matches[i];
3638 goal_alternative_earlyclobber[i]
3639 = this_alternative_earlyclobber[i];
3641 goal_alternative_number = this_alternative_number;
3642 goal_alternative_swapped = swapped;
3643 goal_earlyclobber = this_earlyclobber;
3644 goto finish;
3647 /* REJECT, set by the ! and ? constraint characters and when a register
3648 would be reloaded into a non-preferred class, discourages the use of
3649 this alternative for a reload goal. REJECT is incremented by six
3650 for each ? and two for each non-preferred class. */
3651 losers = losers * 6 + reject;
3653 /* If this alternative can be made to work by reloading,
3654 and it needs less reloading than the others checked so far,
3655 record it as the chosen goal for reloading. */
3656 if (! bad && best > losers)
3658 for (i = 0; i < noperands; i++)
3660 goal_alternative[i] = this_alternative[i];
3661 goal_alternative_win[i] = this_alternative_win[i];
3662 goal_alternative_match_win[i] = this_alternative_match_win[i];
3663 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3664 goal_alternative_matches[i] = this_alternative_matches[i];
3665 goal_alternative_earlyclobber[i]
3666 = this_alternative_earlyclobber[i];
3668 goal_alternative_swapped = swapped;
3669 best = losers;
3670 goal_alternative_number = this_alternative_number;
3671 goal_earlyclobber = this_earlyclobber;
3675 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3676 then we need to try each alternative twice,
3677 the second time matching those two operands
3678 as if we had exchanged them.
3679 To do this, really exchange them in operands.
3681 If we have just tried the alternatives the second time,
3682 return operands to normal and drop through. */
3684 if (commutative >= 0)
3686 swapped = !swapped;
3687 if (swapped)
3689 enum reg_class tclass;
3690 int t;
3692 recog_data.operand[commutative] = substed_operand[commutative + 1];
3693 recog_data.operand[commutative + 1] = substed_operand[commutative];
3694 /* Swap the duplicates too. */
3695 for (i = 0; i < recog_data.n_dups; i++)
3696 if (recog_data.dup_num[i] == commutative
3697 || recog_data.dup_num[i] == commutative + 1)
3698 *recog_data.dup_loc[i]
3699 = recog_data.operand[(int) recog_data.dup_num[i]];
3701 tclass = preferred_class[commutative];
3702 preferred_class[commutative] = preferred_class[commutative + 1];
3703 preferred_class[commutative + 1] = tclass;
3705 t = pref_or_nothing[commutative];
3706 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3707 pref_or_nothing[commutative + 1] = t;
3709 t = address_reloaded[commutative];
3710 address_reloaded[commutative] = address_reloaded[commutative + 1];
3711 address_reloaded[commutative + 1] = t;
3713 memcpy (constraints, recog_data.constraints,
3714 noperands * sizeof (char *));
3715 goto try_swapped;
3717 else
3719 recog_data.operand[commutative] = substed_operand[commutative];
3720 recog_data.operand[commutative + 1]
3721 = substed_operand[commutative + 1];
3722 /* Unswap the duplicates too. */
3723 for (i = 0; i < recog_data.n_dups; i++)
3724 if (recog_data.dup_num[i] == commutative
3725 || recog_data.dup_num[i] == commutative + 1)
3726 *recog_data.dup_loc[i]
3727 = recog_data.operand[(int) recog_data.dup_num[i]];
3731 /* The operands don't meet the constraints.
3732 goal_alternative describes the alternative
3733 that we could reach by reloading the fewest operands.
3734 Reload so as to fit it. */
3736 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3738 /* No alternative works with reloads?? */
3739 if (insn_code_number >= 0)
3740 fatal_insn ("unable to generate reloads for:", insn);
3741 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3742 /* Avoid further trouble with this insn. */
3743 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3744 n_reloads = 0;
3745 return 0;
3748 /* Jump to `finish' from above if all operands are valid already.
3749 In that case, goal_alternative_win is all 1. */
3750 finish:
3752 /* Right now, for any pair of operands I and J that are required to match,
3753 with I < J,
3754 goal_alternative_matches[J] is I.
3755 Set up goal_alternative_matched as the inverse function:
3756 goal_alternative_matched[I] = J. */
3758 for (i = 0; i < noperands; i++)
3759 goal_alternative_matched[i] = -1;
3761 for (i = 0; i < noperands; i++)
3762 if (! goal_alternative_win[i]
3763 && goal_alternative_matches[i] >= 0)
3764 goal_alternative_matched[goal_alternative_matches[i]] = i;
3766 for (i = 0; i < noperands; i++)
3767 goal_alternative_win[i] |= goal_alternative_match_win[i];
3769 /* If the best alternative is with operands 1 and 2 swapped,
3770 consider them swapped before reporting the reloads. Update the
3771 operand numbers of any reloads already pushed. */
3773 if (goal_alternative_swapped)
3775 rtx tem;
3777 tem = substed_operand[commutative];
3778 substed_operand[commutative] = substed_operand[commutative + 1];
3779 substed_operand[commutative + 1] = tem;
3780 tem = recog_data.operand[commutative];
3781 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3782 recog_data.operand[commutative + 1] = tem;
3783 tem = *recog_data.operand_loc[commutative];
3784 *recog_data.operand_loc[commutative]
3785 = *recog_data.operand_loc[commutative + 1];
3786 *recog_data.operand_loc[commutative + 1] = tem;
3788 for (i = 0; i < n_reloads; i++)
3790 if (rld[i].opnum == commutative)
3791 rld[i].opnum = commutative + 1;
3792 else if (rld[i].opnum == commutative + 1)
3793 rld[i].opnum = commutative;
3797 for (i = 0; i < noperands; i++)
3799 operand_reloadnum[i] = -1;
3801 /* If this is an earlyclobber operand, we need to widen the scope.
3802 The reload must remain valid from the start of the insn being
3803 reloaded until after the operand is stored into its destination.
3804 We approximate this with RELOAD_OTHER even though we know that we
3805 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3807 One special case that is worth checking is when we have an
3808 output that is earlyclobber but isn't used past the insn (typically
3809 a SCRATCH). In this case, we only need have the reload live
3810 through the insn itself, but not for any of our input or output
3811 reloads.
3812 But we must not accidentally narrow the scope of an existing
3813 RELOAD_OTHER reload - leave these alone.
3815 In any case, anything needed to address this operand can remain
3816 however they were previously categorized. */
3818 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3819 operand_type[i]
3820 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3821 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3824 /* Any constants that aren't allowed and can't be reloaded
3825 into registers are here changed into memory references. */
3826 for (i = 0; i < noperands; i++)
3827 if (! goal_alternative_win[i]
3828 && CONST_POOL_OK_P (recog_data.operand[i])
3829 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3830 (enum reg_class) goal_alternative[i])
3831 == NO_REGS)
3832 || no_input_reloads)
3833 && operand_mode[i] != VOIDmode)
3835 substed_operand[i] = recog_data.operand[i]
3836 = find_reloads_toplev (force_const_mem (operand_mode[i],
3837 recog_data.operand[i]),
3838 i, address_type[i], ind_levels, 0, insn,
3839 NULL);
3840 if (alternative_allows_memconst (recog_data.constraints[i],
3841 goal_alternative_number))
3842 goal_alternative_win[i] = 1;
3845 /* Likewise any invalid constants appearing as operand of a PLUS
3846 that is to be reloaded. */
3847 for (i = 0; i < noperands; i++)
3848 if (! goal_alternative_win[i]
3849 && GET_CODE (recog_data.operand[i]) == PLUS
3850 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3851 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3852 (enum reg_class) goal_alternative[i])
3853 == NO_REGS)
3854 && operand_mode[i] != VOIDmode)
3856 rtx tem = force_const_mem (operand_mode[i],
3857 XEXP (recog_data.operand[i], 1));
3858 tem = gen_rtx_PLUS (operand_mode[i],
3859 XEXP (recog_data.operand[i], 0), tem);
3861 substed_operand[i] = recog_data.operand[i]
3862 = find_reloads_toplev (tem, i, address_type[i],
3863 ind_levels, 0, insn, NULL);
3866 /* Record the values of the earlyclobber operands for the caller. */
3867 if (goal_earlyclobber)
3868 for (i = 0; i < noperands; i++)
3869 if (goal_alternative_earlyclobber[i])
3870 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3872 /* Now record reloads for all the operands that need them. */
3873 for (i = 0; i < noperands; i++)
3874 if (! goal_alternative_win[i])
3876 /* Operands that match previous ones have already been handled. */
3877 if (goal_alternative_matches[i] >= 0)
3879 /* Handle an operand with a nonoffsettable address
3880 appearing where an offsettable address will do
3881 by reloading the address into a base register.
3883 ??? We can also do this when the operand is a register and
3884 reg_equiv_mem is not offsettable, but this is a bit tricky,
3885 so we don't bother with it. It may not be worth doing. */
3886 else if (goal_alternative_matched[i] == -1
3887 && goal_alternative_offmemok[i]
3888 && MEM_P (recog_data.operand[i]))
3890 /* If the address to be reloaded is a VOIDmode constant,
3891 use Pmode as mode of the reload register, as would have
3892 been done by find_reloads_address. */
3893 enum machine_mode address_mode;
3894 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3895 if (address_mode == VOIDmode)
3896 address_mode = Pmode;
3898 operand_reloadnum[i]
3899 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3900 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3901 base_reg_class (VOIDmode, MEM, SCRATCH),
3902 address_mode,
3903 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3904 rld[operand_reloadnum[i]].inc
3905 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3907 /* If this operand is an output, we will have made any
3908 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3909 now we are treating part of the operand as an input, so
3910 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3912 if (modified[i] == RELOAD_WRITE)
3914 for (j = 0; j < n_reloads; j++)
3916 if (rld[j].opnum == i)
3918 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3919 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3920 else if (rld[j].when_needed
3921 == RELOAD_FOR_OUTADDR_ADDRESS)
3922 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3927 else if (goal_alternative_matched[i] == -1)
3929 operand_reloadnum[i]
3930 = push_reload ((modified[i] != RELOAD_WRITE
3931 ? recog_data.operand[i] : 0),
3932 (modified[i] != RELOAD_READ
3933 ? recog_data.operand[i] : 0),
3934 (modified[i] != RELOAD_WRITE
3935 ? recog_data.operand_loc[i] : 0),
3936 (modified[i] != RELOAD_READ
3937 ? recog_data.operand_loc[i] : 0),
3938 (enum reg_class) goal_alternative[i],
3939 (modified[i] == RELOAD_WRITE
3940 ? VOIDmode : operand_mode[i]),
3941 (modified[i] == RELOAD_READ
3942 ? VOIDmode : operand_mode[i]),
3943 (insn_code_number < 0 ? 0
3944 : insn_data[insn_code_number].operand[i].strict_low),
3945 0, i, operand_type[i]);
3947 /* In a matching pair of operands, one must be input only
3948 and the other must be output only.
3949 Pass the input operand as IN and the other as OUT. */
3950 else if (modified[i] == RELOAD_READ
3951 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3953 operand_reloadnum[i]
3954 = push_reload (recog_data.operand[i],
3955 recog_data.operand[goal_alternative_matched[i]],
3956 recog_data.operand_loc[i],
3957 recog_data.operand_loc[goal_alternative_matched[i]],
3958 (enum reg_class) goal_alternative[i],
3959 operand_mode[i],
3960 operand_mode[goal_alternative_matched[i]],
3961 0, 0, i, RELOAD_OTHER);
3962 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3964 else if (modified[i] == RELOAD_WRITE
3965 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3967 operand_reloadnum[goal_alternative_matched[i]]
3968 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3969 recog_data.operand[i],
3970 recog_data.operand_loc[goal_alternative_matched[i]],
3971 recog_data.operand_loc[i],
3972 (enum reg_class) goal_alternative[i],
3973 operand_mode[goal_alternative_matched[i]],
3974 operand_mode[i],
3975 0, 0, i, RELOAD_OTHER);
3976 operand_reloadnum[i] = output_reloadnum;
3978 else
3980 gcc_assert (insn_code_number < 0);
3981 error_for_asm (insn, "inconsistent operand constraints "
3982 "in an %<asm%>");
3983 /* Avoid further trouble with this insn. */
3984 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3985 n_reloads = 0;
3986 return 0;
3989 else if (goal_alternative_matched[i] < 0
3990 && goal_alternative_matches[i] < 0
3991 && address_operand_reloaded[i] != 1
3992 && optimize)
3994 /* For each non-matching operand that's a MEM or a pseudo-register
3995 that didn't get a hard register, make an optional reload.
3996 This may get done even if the insn needs no reloads otherwise. */
3998 rtx operand = recog_data.operand[i];
4000 while (GET_CODE (operand) == SUBREG)
4001 operand = SUBREG_REG (operand);
4002 if ((MEM_P (operand)
4003 || (REG_P (operand)
4004 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4005 /* If this is only for an output, the optional reload would not
4006 actually cause us to use a register now, just note that
4007 something is stored here. */
4008 && ((enum reg_class) goal_alternative[i] != NO_REGS
4009 || modified[i] == RELOAD_WRITE)
4010 && ! no_input_reloads
4011 /* An optional output reload might allow to delete INSN later.
4012 We mustn't make in-out reloads on insns that are not permitted
4013 output reloads.
4014 If this is an asm, we can't delete it; we must not even call
4015 push_reload for an optional output reload in this case,
4016 because we can't be sure that the constraint allows a register,
4017 and push_reload verifies the constraints for asms. */
4018 && (modified[i] == RELOAD_READ
4019 || (! no_output_reloads && ! this_insn_is_asm)))
4020 operand_reloadnum[i]
4021 = push_reload ((modified[i] != RELOAD_WRITE
4022 ? recog_data.operand[i] : 0),
4023 (modified[i] != RELOAD_READ
4024 ? recog_data.operand[i] : 0),
4025 (modified[i] != RELOAD_WRITE
4026 ? recog_data.operand_loc[i] : 0),
4027 (modified[i] != RELOAD_READ
4028 ? recog_data.operand_loc[i] : 0),
4029 (enum reg_class) goal_alternative[i],
4030 (modified[i] == RELOAD_WRITE
4031 ? VOIDmode : operand_mode[i]),
4032 (modified[i] == RELOAD_READ
4033 ? VOIDmode : operand_mode[i]),
4034 (insn_code_number < 0 ? 0
4035 : insn_data[insn_code_number].operand[i].strict_low),
4036 1, i, operand_type[i]);
4037 /* If a memory reference remains (either as a MEM or a pseudo that
4038 did not get a hard register), yet we can't make an optional
4039 reload, check if this is actually a pseudo register reference;
4040 we then need to emit a USE and/or a CLOBBER so that reload
4041 inheritance will do the right thing. */
4042 else if (replace
4043 && (MEM_P (operand)
4044 || (REG_P (operand)
4045 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4046 && reg_renumber [REGNO (operand)] < 0)))
4048 operand = *recog_data.operand_loc[i];
4050 while (GET_CODE (operand) == SUBREG)
4051 operand = SUBREG_REG (operand);
4052 if (REG_P (operand))
4054 if (modified[i] != RELOAD_WRITE)
4055 /* We mark the USE with QImode so that we recognize
4056 it as one that can be safely deleted at the end
4057 of reload. */
4058 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4059 insn), QImode);
4060 if (modified[i] != RELOAD_READ)
4061 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4065 else if (goal_alternative_matches[i] >= 0
4066 && goal_alternative_win[goal_alternative_matches[i]]
4067 && modified[i] == RELOAD_READ
4068 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4069 && ! no_input_reloads && ! no_output_reloads
4070 && optimize)
4072 /* Similarly, make an optional reload for a pair of matching
4073 objects that are in MEM or a pseudo that didn't get a hard reg. */
4075 rtx operand = recog_data.operand[i];
4077 while (GET_CODE (operand) == SUBREG)
4078 operand = SUBREG_REG (operand);
4079 if ((MEM_P (operand)
4080 || (REG_P (operand)
4081 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4082 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4083 != NO_REGS))
4084 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4085 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4086 recog_data.operand[i],
4087 recog_data.operand_loc[goal_alternative_matches[i]],
4088 recog_data.operand_loc[i],
4089 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4090 operand_mode[goal_alternative_matches[i]],
4091 operand_mode[i],
4092 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4095 /* Perform whatever substitutions on the operands we are supposed
4096 to make due to commutativity or replacement of registers
4097 with equivalent constants or memory slots. */
4099 for (i = 0; i < noperands; i++)
4101 /* We only do this on the last pass through reload, because it is
4102 possible for some data (like reg_equiv_address) to be changed during
4103 later passes. Moreover, we lose the opportunity to get a useful
4104 reload_{in,out}_reg when we do these replacements. */
4106 if (replace)
4108 rtx substitution = substed_operand[i];
4110 *recog_data.operand_loc[i] = substitution;
4112 /* If we're replacing an operand with a LABEL_REF, we need to
4113 make sure that there's a REG_LABEL_OPERAND note attached to
4114 this instruction. */
4115 if (GET_CODE (substitution) == LABEL_REF
4116 && !find_reg_note (insn, REG_LABEL_OPERAND,
4117 XEXP (substitution, 0))
4118 /* For a JUMP_P, if it was a branch target it must have
4119 already been recorded as such. */
4120 && (!JUMP_P (insn)
4121 || !label_is_jump_target_p (XEXP (substitution, 0),
4122 insn)))
4123 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL_OPERAND,
4124 XEXP (substitution, 0),
4125 REG_NOTES (insn));
4127 else
4128 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4131 /* If this insn pattern contains any MATCH_DUP's, make sure that
4132 they will be substituted if the operands they match are substituted.
4133 Also do now any substitutions we already did on the operands.
4135 Don't do this if we aren't making replacements because we might be
4136 propagating things allocated by frame pointer elimination into places
4137 it doesn't expect. */
4139 if (insn_code_number >= 0 && replace)
4140 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4142 int opno = recog_data.dup_num[i];
4143 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4144 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4147 #if 0
4148 /* This loses because reloading of prior insns can invalidate the equivalence
4149 (or at least find_equiv_reg isn't smart enough to find it any more),
4150 causing this insn to need more reload regs than it needed before.
4151 It may be too late to make the reload regs available.
4152 Now this optimization is done safely in choose_reload_regs. */
4154 /* For each reload of a reg into some other class of reg,
4155 search for an existing equivalent reg (same value now) in the right class.
4156 We can use it as long as we don't need to change its contents. */
4157 for (i = 0; i < n_reloads; i++)
4158 if (rld[i].reg_rtx == 0
4159 && rld[i].in != 0
4160 && REG_P (rld[i].in)
4161 && rld[i].out == 0)
4163 rld[i].reg_rtx
4164 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4165 static_reload_reg_p, 0, rld[i].inmode);
4166 /* Prevent generation of insn to load the value
4167 because the one we found already has the value. */
4168 if (rld[i].reg_rtx)
4169 rld[i].in = rld[i].reg_rtx;
4171 #endif
4173 /* If we detected error and replaced asm instruction by USE, forget about the
4174 reloads. */
4175 if (GET_CODE (PATTERN (insn)) == USE
4176 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4177 n_reloads = 0;
4179 /* Perhaps an output reload can be combined with another
4180 to reduce needs by one. */
4181 if (!goal_earlyclobber)
4182 combine_reloads ();
4184 /* If we have a pair of reloads for parts of an address, they are reloading
4185 the same object, the operands themselves were not reloaded, and they
4186 are for two operands that are supposed to match, merge the reloads and
4187 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4189 for (i = 0; i < n_reloads; i++)
4191 int k;
4193 for (j = i + 1; j < n_reloads; j++)
4194 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4195 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4196 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4197 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4198 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4199 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4200 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4201 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4202 && rtx_equal_p (rld[i].in, rld[j].in)
4203 && (operand_reloadnum[rld[i].opnum] < 0
4204 || rld[operand_reloadnum[rld[i].opnum]].optional)
4205 && (operand_reloadnum[rld[j].opnum] < 0
4206 || rld[operand_reloadnum[rld[j].opnum]].optional)
4207 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4208 || (goal_alternative_matches[rld[j].opnum]
4209 == rld[i].opnum)))
4211 for (k = 0; k < n_replacements; k++)
4212 if (replacements[k].what == j)
4213 replacements[k].what = i;
4215 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4216 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4217 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4218 else
4219 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4220 rld[j].in = 0;
4224 /* Scan all the reloads and update their type.
4225 If a reload is for the address of an operand and we didn't reload
4226 that operand, change the type. Similarly, change the operand number
4227 of a reload when two operands match. If a reload is optional, treat it
4228 as though the operand isn't reloaded.
4230 ??? This latter case is somewhat odd because if we do the optional
4231 reload, it means the object is hanging around. Thus we need only
4232 do the address reload if the optional reload was NOT done.
4234 Change secondary reloads to be the address type of their operand, not
4235 the normal type.
4237 If an operand's reload is now RELOAD_OTHER, change any
4238 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4239 RELOAD_FOR_OTHER_ADDRESS. */
4241 for (i = 0; i < n_reloads; i++)
4243 if (rld[i].secondary_p
4244 && rld[i].when_needed == operand_type[rld[i].opnum])
4245 rld[i].when_needed = address_type[rld[i].opnum];
4247 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4248 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4249 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4250 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4251 && (operand_reloadnum[rld[i].opnum] < 0
4252 || rld[operand_reloadnum[rld[i].opnum]].optional))
4254 /* If we have a secondary reload to go along with this reload,
4255 change its type to RELOAD_FOR_OPADDR_ADDR. */
4257 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4258 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4259 && rld[i].secondary_in_reload != -1)
4261 int secondary_in_reload = rld[i].secondary_in_reload;
4263 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4265 /* If there's a tertiary reload we have to change it also. */
4266 if (secondary_in_reload > 0
4267 && rld[secondary_in_reload].secondary_in_reload != -1)
4268 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4269 = RELOAD_FOR_OPADDR_ADDR;
4272 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4273 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4274 && rld[i].secondary_out_reload != -1)
4276 int secondary_out_reload = rld[i].secondary_out_reload;
4278 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4280 /* If there's a tertiary reload we have to change it also. */
4281 if (secondary_out_reload
4282 && rld[secondary_out_reload].secondary_out_reload != -1)
4283 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4284 = RELOAD_FOR_OPADDR_ADDR;
4287 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4288 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4289 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4290 else
4291 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4294 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4295 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4296 && operand_reloadnum[rld[i].opnum] >= 0
4297 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4298 == RELOAD_OTHER))
4299 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4301 if (goal_alternative_matches[rld[i].opnum] >= 0)
4302 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4305 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4306 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4307 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4309 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4310 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4311 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4312 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4313 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4314 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4315 This is complicated by the fact that a single operand can have more
4316 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4317 choose_reload_regs without affecting code quality, and cases that
4318 actually fail are extremely rare, so it turns out to be better to fix
4319 the problem here by not generating cases that choose_reload_regs will
4320 fail for. */
4321 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4322 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4323 a single operand.
4324 We can reduce the register pressure by exploiting that a
4325 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4326 does not conflict with any of them, if it is only used for the first of
4327 the RELOAD_FOR_X_ADDRESS reloads. */
4329 int first_op_addr_num = -2;
4330 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4331 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4332 int need_change = 0;
4333 /* We use last_op_addr_reload and the contents of the above arrays
4334 first as flags - -2 means no instance encountered, -1 means exactly
4335 one instance encountered.
4336 If more than one instance has been encountered, we store the reload
4337 number of the first reload of the kind in question; reload numbers
4338 are known to be non-negative. */
4339 for (i = 0; i < noperands; i++)
4340 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4341 for (i = n_reloads - 1; i >= 0; i--)
4343 switch (rld[i].when_needed)
4345 case RELOAD_FOR_OPERAND_ADDRESS:
4346 if (++first_op_addr_num >= 0)
4348 first_op_addr_num = i;
4349 need_change = 1;
4351 break;
4352 case RELOAD_FOR_INPUT_ADDRESS:
4353 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4355 first_inpaddr_num[rld[i].opnum] = i;
4356 need_change = 1;
4358 break;
4359 case RELOAD_FOR_OUTPUT_ADDRESS:
4360 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4362 first_outpaddr_num[rld[i].opnum] = i;
4363 need_change = 1;
4365 break;
4366 default:
4367 break;
4371 if (need_change)
4373 for (i = 0; i < n_reloads; i++)
4375 int first_num;
4376 enum reload_type type;
4378 switch (rld[i].when_needed)
4380 case RELOAD_FOR_OPADDR_ADDR:
4381 first_num = first_op_addr_num;
4382 type = RELOAD_FOR_OPERAND_ADDRESS;
4383 break;
4384 case RELOAD_FOR_INPADDR_ADDRESS:
4385 first_num = first_inpaddr_num[rld[i].opnum];
4386 type = RELOAD_FOR_INPUT_ADDRESS;
4387 break;
4388 case RELOAD_FOR_OUTADDR_ADDRESS:
4389 first_num = first_outpaddr_num[rld[i].opnum];
4390 type = RELOAD_FOR_OUTPUT_ADDRESS;
4391 break;
4392 default:
4393 continue;
4395 if (first_num < 0)
4396 continue;
4397 else if (i > first_num)
4398 rld[i].when_needed = type;
4399 else
4401 /* Check if the only TYPE reload that uses reload I is
4402 reload FIRST_NUM. */
4403 for (j = n_reloads - 1; j > first_num; j--)
4405 if (rld[j].when_needed == type
4406 && (rld[i].secondary_p
4407 ? rld[j].secondary_in_reload == i
4408 : reg_mentioned_p (rld[i].in, rld[j].in)))
4410 rld[i].when_needed = type;
4411 break;
4419 /* See if we have any reloads that are now allowed to be merged
4420 because we've changed when the reload is needed to
4421 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4422 check for the most common cases. */
4424 for (i = 0; i < n_reloads; i++)
4425 if (rld[i].in != 0 && rld[i].out == 0
4426 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4427 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4428 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4429 for (j = 0; j < n_reloads; j++)
4430 if (i != j && rld[j].in != 0 && rld[j].out == 0
4431 && rld[j].when_needed == rld[i].when_needed
4432 && MATCHES (rld[i].in, rld[j].in)
4433 && rld[i].class == rld[j].class
4434 && !rld[i].nocombine && !rld[j].nocombine
4435 && rld[i].reg_rtx == rld[j].reg_rtx)
4437 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4438 transfer_replacements (i, j);
4439 rld[j].in = 0;
4442 #ifdef HAVE_cc0
4443 /* If we made any reloads for addresses, see if they violate a
4444 "no input reloads" requirement for this insn. But loads that we
4445 do after the insn (such as for output addresses) are fine. */
4446 if (no_input_reloads)
4447 for (i = 0; i < n_reloads; i++)
4448 gcc_assert (rld[i].in == 0
4449 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4450 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4451 #endif
4453 /* Compute reload_mode and reload_nregs. */
4454 for (i = 0; i < n_reloads; i++)
4456 rld[i].mode
4457 = (rld[i].inmode == VOIDmode
4458 || (GET_MODE_SIZE (rld[i].outmode)
4459 > GET_MODE_SIZE (rld[i].inmode)))
4460 ? rld[i].outmode : rld[i].inmode;
4462 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4465 /* Special case a simple move with an input reload and a
4466 destination of a hard reg, if the hard reg is ok, use it. */
4467 for (i = 0; i < n_reloads; i++)
4468 if (rld[i].when_needed == RELOAD_FOR_INPUT
4469 && GET_CODE (PATTERN (insn)) == SET
4470 && REG_P (SET_DEST (PATTERN (insn)))
4471 && (SET_SRC (PATTERN (insn)) == rld[i].in
4472 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4473 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4475 rtx dest = SET_DEST (PATTERN (insn));
4476 unsigned int regno = REGNO (dest);
4478 if (regno < FIRST_PSEUDO_REGISTER
4479 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4480 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4482 int nr = hard_regno_nregs[regno][rld[i].mode];
4483 int ok = 1, nri;
4485 for (nri = 1; nri < nr; nri ++)
4486 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4487 ok = 0;
4489 if (ok)
4490 rld[i].reg_rtx = dest;
4494 return retval;
4497 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4498 accepts a memory operand with constant address. */
4500 static int
4501 alternative_allows_memconst (const char *constraint, int altnum)
4503 int c;
4504 /* Skip alternatives before the one requested. */
4505 while (altnum > 0)
4507 while (*constraint++ != ',');
4508 altnum--;
4510 /* Scan the requested alternative for 'm' or 'o'.
4511 If one of them is present, this alternative accepts memory constants. */
4512 for (; (c = *constraint) && c != ',' && c != '#';
4513 constraint += CONSTRAINT_LEN (c, constraint))
4514 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4515 return 1;
4516 return 0;
4519 /* Scan X for memory references and scan the addresses for reloading.
4520 Also checks for references to "constant" regs that we want to eliminate
4521 and replaces them with the values they stand for.
4522 We may alter X destructively if it contains a reference to such.
4523 If X is just a constant reg, we return the equivalent value
4524 instead of X.
4526 IND_LEVELS says how many levels of indirect addressing this machine
4527 supports.
4529 OPNUM and TYPE identify the purpose of the reload.
4531 IS_SET_DEST is true if X is the destination of a SET, which is not
4532 appropriate to be replaced by a constant.
4534 INSN, if nonzero, is the insn in which we do the reload. It is used
4535 to determine if we may generate output reloads, and where to put USEs
4536 for pseudos that we have to replace with stack slots.
4538 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4539 result of find_reloads_address. */
4541 static rtx
4542 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4543 int ind_levels, int is_set_dest, rtx insn,
4544 int *address_reloaded)
4546 RTX_CODE code = GET_CODE (x);
4548 const char *fmt = GET_RTX_FORMAT (code);
4549 int i;
4550 int copied;
4552 if (code == REG)
4554 /* This code is duplicated for speed in find_reloads. */
4555 int regno = REGNO (x);
4556 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4557 x = reg_equiv_constant[regno];
4558 #if 0
4559 /* This creates (subreg (mem...)) which would cause an unnecessary
4560 reload of the mem. */
4561 else if (reg_equiv_mem[regno] != 0)
4562 x = reg_equiv_mem[regno];
4563 #endif
4564 else if (reg_equiv_memory_loc[regno]
4565 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4567 rtx mem = make_memloc (x, regno);
4568 if (reg_equiv_address[regno]
4569 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4571 /* If this is not a toplevel operand, find_reloads doesn't see
4572 this substitution. We have to emit a USE of the pseudo so
4573 that delete_output_reload can see it. */
4574 if (replace_reloads && recog_data.operand[opnum] != x)
4575 /* We mark the USE with QImode so that we recognize it
4576 as one that can be safely deleted at the end of
4577 reload. */
4578 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4579 QImode);
4580 x = mem;
4581 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4582 opnum, type, ind_levels, insn);
4583 if (!rtx_equal_p (x, mem))
4584 push_reg_equiv_alt_mem (regno, x);
4585 if (address_reloaded)
4586 *address_reloaded = i;
4589 return x;
4591 if (code == MEM)
4593 rtx tem = x;
4595 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4596 opnum, type, ind_levels, insn);
4597 if (address_reloaded)
4598 *address_reloaded = i;
4600 return tem;
4603 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4605 /* Check for SUBREG containing a REG that's equivalent to a
4606 constant. If the constant has a known value, truncate it
4607 right now. Similarly if we are extracting a single-word of a
4608 multi-word constant. If the constant is symbolic, allow it
4609 to be substituted normally. push_reload will strip the
4610 subreg later. The constant must not be VOIDmode, because we
4611 will lose the mode of the register (this should never happen
4612 because one of the cases above should handle it). */
4614 int regno = REGNO (SUBREG_REG (x));
4615 rtx tem;
4617 if (regno >= FIRST_PSEUDO_REGISTER
4618 && reg_renumber[regno] < 0
4619 && reg_equiv_constant[regno] != 0)
4621 tem =
4622 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4623 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4624 gcc_assert (tem);
4625 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4627 tem = force_const_mem (GET_MODE (x), tem);
4628 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4629 &XEXP (tem, 0), opnum, type,
4630 ind_levels, insn);
4631 if (address_reloaded)
4632 *address_reloaded = i;
4634 return tem;
4637 /* If the subreg contains a reg that will be converted to a mem,
4638 convert the subreg to a narrower memref now.
4639 Otherwise, we would get (subreg (mem ...) ...),
4640 which would force reload of the mem.
4642 We also need to do this if there is an equivalent MEM that is
4643 not offsettable. In that case, alter_subreg would produce an
4644 invalid address on big-endian machines.
4646 For machines that extend byte loads, we must not reload using
4647 a wider mode if we have a paradoxical SUBREG. find_reloads will
4648 force a reload in that case. So we should not do anything here. */
4650 if (regno >= FIRST_PSEUDO_REGISTER
4651 #ifdef LOAD_EXTEND_OP
4652 && (GET_MODE_SIZE (GET_MODE (x))
4653 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4654 #endif
4655 && (reg_equiv_address[regno] != 0
4656 || (reg_equiv_mem[regno] != 0
4657 && (! strict_memory_address_p (GET_MODE (x),
4658 XEXP (reg_equiv_mem[regno], 0))
4659 || ! offsettable_memref_p (reg_equiv_mem[regno])
4660 || num_not_at_initial_offset))))
4661 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4662 insn);
4665 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4667 if (fmt[i] == 'e')
4669 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4670 ind_levels, is_set_dest, insn,
4671 address_reloaded);
4672 /* If we have replaced a reg with it's equivalent memory loc -
4673 that can still be handled here e.g. if it's in a paradoxical
4674 subreg - we must make the change in a copy, rather than using
4675 a destructive change. This way, find_reloads can still elect
4676 not to do the change. */
4677 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4679 x = shallow_copy_rtx (x);
4680 copied = 1;
4682 XEXP (x, i) = new_part;
4685 return x;
4688 /* Return a mem ref for the memory equivalent of reg REGNO.
4689 This mem ref is not shared with anything. */
4691 static rtx
4692 make_memloc (rtx ad, int regno)
4694 /* We must rerun eliminate_regs, in case the elimination
4695 offsets have changed. */
4696 rtx tem
4697 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4699 /* If TEM might contain a pseudo, we must copy it to avoid
4700 modifying it when we do the substitution for the reload. */
4701 if (rtx_varies_p (tem, 0))
4702 tem = copy_rtx (tem);
4704 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4705 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4707 /* Copy the result if it's still the same as the equivalence, to avoid
4708 modifying it when we do the substitution for the reload. */
4709 if (tem == reg_equiv_memory_loc[regno])
4710 tem = copy_rtx (tem);
4711 return tem;
4714 /* Returns true if AD could be turned into a valid memory reference
4715 to mode MODE by reloading the part pointed to by PART into a
4716 register. */
4718 static int
4719 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4721 int retv;
4722 rtx tem = *part;
4723 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4725 *part = reg;
4726 retv = memory_address_p (mode, ad);
4727 *part = tem;
4729 return retv;
4732 /* Record all reloads needed for handling memory address AD
4733 which appears in *LOC in a memory reference to mode MODE
4734 which itself is found in location *MEMREFLOC.
4735 Note that we take shortcuts assuming that no multi-reg machine mode
4736 occurs as part of an address.
4738 OPNUM and TYPE specify the purpose of this reload.
4740 IND_LEVELS says how many levels of indirect addressing this machine
4741 supports.
4743 INSN, if nonzero, is the insn in which we do the reload. It is used
4744 to determine if we may generate output reloads, and where to put USEs
4745 for pseudos that we have to replace with stack slots.
4747 Value is one if this address is reloaded or replaced as a whole; it is
4748 zero if the top level of this address was not reloaded or replaced, and
4749 it is -1 if it may or may not have been reloaded or replaced.
4751 Note that there is no verification that the address will be valid after
4752 this routine does its work. Instead, we rely on the fact that the address
4753 was valid when reload started. So we need only undo things that reload
4754 could have broken. These are wrong register types, pseudos not allocated
4755 to a hard register, and frame pointer elimination. */
4757 static int
4758 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4759 rtx *loc, int opnum, enum reload_type type,
4760 int ind_levels, rtx insn)
4762 int regno;
4763 int removed_and = 0;
4764 int op_index;
4765 rtx tem;
4767 /* If the address is a register, see if it is a legitimate address and
4768 reload if not. We first handle the cases where we need not reload
4769 or where we must reload in a non-standard way. */
4771 if (REG_P (ad))
4773 regno = REGNO (ad);
4775 /* If the register is equivalent to an invariant expression, substitute
4776 the invariant, and eliminate any eliminable register references. */
4777 tem = reg_equiv_constant[regno];
4778 if (tem != 0
4779 && (tem = eliminate_regs (tem, mode, insn))
4780 && strict_memory_address_p (mode, tem))
4782 *loc = ad = tem;
4783 return 0;
4786 tem = reg_equiv_memory_loc[regno];
4787 if (tem != 0)
4789 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4791 tem = make_memloc (ad, regno);
4792 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4794 rtx orig = tem;
4796 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4797 &XEXP (tem, 0), opnum,
4798 ADDR_TYPE (type), ind_levels, insn);
4799 if (!rtx_equal_p (tem, orig))
4800 push_reg_equiv_alt_mem (regno, tem);
4802 /* We can avoid a reload if the register's equivalent memory
4803 expression is valid as an indirect memory address.
4804 But not all addresses are valid in a mem used as an indirect
4805 address: only reg or reg+constant. */
4807 if (ind_levels > 0
4808 && strict_memory_address_p (mode, tem)
4809 && (REG_P (XEXP (tem, 0))
4810 || (GET_CODE (XEXP (tem, 0)) == PLUS
4811 && REG_P (XEXP (XEXP (tem, 0), 0))
4812 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4814 /* TEM is not the same as what we'll be replacing the
4815 pseudo with after reload, put a USE in front of INSN
4816 in the final reload pass. */
4817 if (replace_reloads
4818 && num_not_at_initial_offset
4819 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4821 *loc = tem;
4822 /* We mark the USE with QImode so that we
4823 recognize it as one that can be safely
4824 deleted at the end of reload. */
4825 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4826 insn), QImode);
4828 /* This doesn't really count as replacing the address
4829 as a whole, since it is still a memory access. */
4831 return 0;
4833 ad = tem;
4837 /* The only remaining case where we can avoid a reload is if this is a
4838 hard register that is valid as a base register and which is not the
4839 subject of a CLOBBER in this insn. */
4841 else if (regno < FIRST_PSEUDO_REGISTER
4842 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4843 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4844 return 0;
4846 /* If we do not have one of the cases above, we must do the reload. */
4847 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4848 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4849 return 1;
4852 if (strict_memory_address_p (mode, ad))
4854 /* The address appears valid, so reloads are not needed.
4855 But the address may contain an eliminable register.
4856 This can happen because a machine with indirect addressing
4857 may consider a pseudo register by itself a valid address even when
4858 it has failed to get a hard reg.
4859 So do a tree-walk to find and eliminate all such regs. */
4861 /* But first quickly dispose of a common case. */
4862 if (GET_CODE (ad) == PLUS
4863 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4864 && REG_P (XEXP (ad, 0))
4865 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4866 return 0;
4868 subst_reg_equivs_changed = 0;
4869 *loc = subst_reg_equivs (ad, insn);
4871 if (! subst_reg_equivs_changed)
4872 return 0;
4874 /* Check result for validity after substitution. */
4875 if (strict_memory_address_p (mode, ad))
4876 return 0;
4879 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4882 if (memrefloc)
4884 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4885 ind_levels, win);
4887 break;
4888 win:
4889 *memrefloc = copy_rtx (*memrefloc);
4890 XEXP (*memrefloc, 0) = ad;
4891 move_replacements (&ad, &XEXP (*memrefloc, 0));
4892 return -1;
4894 while (0);
4895 #endif
4897 /* The address is not valid. We have to figure out why. First see if
4898 we have an outer AND and remove it if so. Then analyze what's inside. */
4900 if (GET_CODE (ad) == AND)
4902 removed_and = 1;
4903 loc = &XEXP (ad, 0);
4904 ad = *loc;
4907 /* One possibility for why the address is invalid is that it is itself
4908 a MEM. This can happen when the frame pointer is being eliminated, a
4909 pseudo is not allocated to a hard register, and the offset between the
4910 frame and stack pointers is not its initial value. In that case the
4911 pseudo will have been replaced by a MEM referring to the
4912 stack pointer. */
4913 if (MEM_P (ad))
4915 /* First ensure that the address in this MEM is valid. Then, unless
4916 indirect addresses are valid, reload the MEM into a register. */
4917 tem = ad;
4918 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4919 opnum, ADDR_TYPE (type),
4920 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4922 /* If tem was changed, then we must create a new memory reference to
4923 hold it and store it back into memrefloc. */
4924 if (tem != ad && memrefloc)
4926 *memrefloc = copy_rtx (*memrefloc);
4927 copy_replacements (tem, XEXP (*memrefloc, 0));
4928 loc = &XEXP (*memrefloc, 0);
4929 if (removed_and)
4930 loc = &XEXP (*loc, 0);
4933 /* Check similar cases as for indirect addresses as above except
4934 that we can allow pseudos and a MEM since they should have been
4935 taken care of above. */
4937 if (ind_levels == 0
4938 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4939 || MEM_P (XEXP (tem, 0))
4940 || ! (REG_P (XEXP (tem, 0))
4941 || (GET_CODE (XEXP (tem, 0)) == PLUS
4942 && REG_P (XEXP (XEXP (tem, 0), 0))
4943 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4945 /* Must use TEM here, not AD, since it is the one that will
4946 have any subexpressions reloaded, if needed. */
4947 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4948 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4949 VOIDmode, 0,
4950 0, opnum, type);
4951 return ! removed_and;
4953 else
4954 return 0;
4957 /* If we have address of a stack slot but it's not valid because the
4958 displacement is too large, compute the sum in a register.
4959 Handle all base registers here, not just fp/ap/sp, because on some
4960 targets (namely SH) we can also get too large displacements from
4961 big-endian corrections. */
4962 else if (GET_CODE (ad) == PLUS
4963 && REG_P (XEXP (ad, 0))
4964 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4965 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4966 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4967 CONST_INT))
4970 /* Unshare the MEM rtx so we can safely alter it. */
4971 if (memrefloc)
4973 *memrefloc = copy_rtx (*memrefloc);
4974 loc = &XEXP (*memrefloc, 0);
4975 if (removed_and)
4976 loc = &XEXP (*loc, 0);
4979 if (double_reg_address_ok)
4981 /* Unshare the sum as well. */
4982 *loc = ad = copy_rtx (ad);
4984 /* Reload the displacement into an index reg.
4985 We assume the frame pointer or arg pointer is a base reg. */
4986 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4987 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4988 type, ind_levels);
4989 return 0;
4991 else
4993 /* If the sum of two regs is not necessarily valid,
4994 reload the sum into a base reg.
4995 That will at least work. */
4996 find_reloads_address_part (ad, loc,
4997 base_reg_class (mode, MEM, SCRATCH),
4998 Pmode, opnum, type, ind_levels);
5000 return ! removed_and;
5003 /* If we have an indexed stack slot, there are three possible reasons why
5004 it might be invalid: The index might need to be reloaded, the address
5005 might have been made by frame pointer elimination and hence have a
5006 constant out of range, or both reasons might apply.
5008 We can easily check for an index needing reload, but even if that is the
5009 case, we might also have an invalid constant. To avoid making the
5010 conservative assumption and requiring two reloads, we see if this address
5011 is valid when not interpreted strictly. If it is, the only problem is
5012 that the index needs a reload and find_reloads_address_1 will take care
5013 of it.
5015 Handle all base registers here, not just fp/ap/sp, because on some
5016 targets (namely SPARC) we can also get invalid addresses from preventive
5017 subreg big-endian corrections made by find_reloads_toplev. We
5018 can also get expressions involving LO_SUM (rather than PLUS) from
5019 find_reloads_subreg_address.
5021 If we decide to do something, it must be that `double_reg_address_ok'
5022 is true. We generate a reload of the base register + constant and
5023 rework the sum so that the reload register will be added to the index.
5024 This is safe because we know the address isn't shared.
5026 We check for the base register as both the first and second operand of
5027 the innermost PLUS and/or LO_SUM. */
5029 for (op_index = 0; op_index < 2; ++op_index)
5031 rtx operand, addend;
5032 enum rtx_code inner_code;
5034 if (GET_CODE (ad) != PLUS)
5035 continue;
5037 inner_code = GET_CODE (XEXP (ad, 0));
5038 if (!(GET_CODE (ad) == PLUS
5039 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5040 && (inner_code == PLUS || inner_code == LO_SUM)))
5041 continue;
5043 operand = XEXP (XEXP (ad, 0), op_index);
5044 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5045 continue;
5047 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5049 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5050 GET_CODE (addend))
5051 || operand == frame_pointer_rtx
5052 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5053 || operand == hard_frame_pointer_rtx
5054 #endif
5055 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5056 || operand == arg_pointer_rtx
5057 #endif
5058 || operand == stack_pointer_rtx)
5059 && ! maybe_memory_address_p (mode, ad,
5060 &XEXP (XEXP (ad, 0), 1 - op_index)))
5062 rtx offset_reg;
5063 enum reg_class cls;
5065 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5067 /* Form the adjusted address. */
5068 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5069 ad = gen_rtx_PLUS (GET_MODE (ad),
5070 op_index == 0 ? offset_reg : addend,
5071 op_index == 0 ? addend : offset_reg);
5072 else
5073 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5074 op_index == 0 ? offset_reg : addend,
5075 op_index == 0 ? addend : offset_reg);
5076 *loc = ad;
5078 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5079 find_reloads_address_part (XEXP (ad, op_index),
5080 &XEXP (ad, op_index), cls,
5081 GET_MODE (ad), opnum, type, ind_levels);
5082 find_reloads_address_1 (mode,
5083 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5084 GET_CODE (XEXP (ad, op_index)),
5085 &XEXP (ad, 1 - op_index), opnum,
5086 type, 0, insn);
5088 return 0;
5092 /* See if address becomes valid when an eliminable register
5093 in a sum is replaced. */
5095 tem = ad;
5096 if (GET_CODE (ad) == PLUS)
5097 tem = subst_indexed_address (ad);
5098 if (tem != ad && strict_memory_address_p (mode, tem))
5100 /* Ok, we win that way. Replace any additional eliminable
5101 registers. */
5103 subst_reg_equivs_changed = 0;
5104 tem = subst_reg_equivs (tem, insn);
5106 /* Make sure that didn't make the address invalid again. */
5108 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5110 *loc = tem;
5111 return 0;
5115 /* If constants aren't valid addresses, reload the constant address
5116 into a register. */
5117 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5119 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5120 Unshare it so we can safely alter it. */
5121 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5122 && CONSTANT_POOL_ADDRESS_P (ad))
5124 *memrefloc = copy_rtx (*memrefloc);
5125 loc = &XEXP (*memrefloc, 0);
5126 if (removed_and)
5127 loc = &XEXP (*loc, 0);
5130 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5131 Pmode, opnum, type, ind_levels);
5132 return ! removed_and;
5135 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5136 ind_levels, insn);
5139 /* Find all pseudo regs appearing in AD
5140 that are eliminable in favor of equivalent values
5141 and do not have hard regs; replace them by their equivalents.
5142 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5143 front of it for pseudos that we have to replace with stack slots. */
5145 static rtx
5146 subst_reg_equivs (rtx ad, rtx insn)
5148 RTX_CODE code = GET_CODE (ad);
5149 int i;
5150 const char *fmt;
5152 switch (code)
5154 case HIGH:
5155 case CONST_INT:
5156 case CONST:
5157 case CONST_DOUBLE:
5158 case CONST_FIXED:
5159 case CONST_VECTOR:
5160 case SYMBOL_REF:
5161 case LABEL_REF:
5162 case PC:
5163 case CC0:
5164 return ad;
5166 case REG:
5168 int regno = REGNO (ad);
5170 if (reg_equiv_constant[regno] != 0)
5172 subst_reg_equivs_changed = 1;
5173 return reg_equiv_constant[regno];
5175 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5177 rtx mem = make_memloc (ad, regno);
5178 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5180 subst_reg_equivs_changed = 1;
5181 /* We mark the USE with QImode so that we recognize it
5182 as one that can be safely deleted at the end of
5183 reload. */
5184 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5185 QImode);
5186 return mem;
5190 return ad;
5192 case PLUS:
5193 /* Quickly dispose of a common case. */
5194 if (XEXP (ad, 0) == frame_pointer_rtx
5195 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5196 return ad;
5197 break;
5199 default:
5200 break;
5203 fmt = GET_RTX_FORMAT (code);
5204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5205 if (fmt[i] == 'e')
5206 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5207 return ad;
5210 /* Compute the sum of X and Y, making canonicalizations assumed in an
5211 address, namely: sum constant integers, surround the sum of two
5212 constants with a CONST, put the constant as the second operand, and
5213 group the constant on the outermost sum.
5215 This routine assumes both inputs are already in canonical form. */
5218 form_sum (rtx x, rtx y)
5220 rtx tem;
5221 enum machine_mode mode = GET_MODE (x);
5223 if (mode == VOIDmode)
5224 mode = GET_MODE (y);
5226 if (mode == VOIDmode)
5227 mode = Pmode;
5229 if (GET_CODE (x) == CONST_INT)
5230 return plus_constant (y, INTVAL (x));
5231 else if (GET_CODE (y) == CONST_INT)
5232 return plus_constant (x, INTVAL (y));
5233 else if (CONSTANT_P (x))
5234 tem = x, x = y, y = tem;
5236 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5237 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5239 /* Note that if the operands of Y are specified in the opposite
5240 order in the recursive calls below, infinite recursion will occur. */
5241 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5242 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5244 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5245 constant will have been placed second. */
5246 if (CONSTANT_P (x) && CONSTANT_P (y))
5248 if (GET_CODE (x) == CONST)
5249 x = XEXP (x, 0);
5250 if (GET_CODE (y) == CONST)
5251 y = XEXP (y, 0);
5253 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5256 return gen_rtx_PLUS (mode, x, y);
5259 /* If ADDR is a sum containing a pseudo register that should be
5260 replaced with a constant (from reg_equiv_constant),
5261 return the result of doing so, and also apply the associative
5262 law so that the result is more likely to be a valid address.
5263 (But it is not guaranteed to be one.)
5265 Note that at most one register is replaced, even if more are
5266 replaceable. Also, we try to put the result into a canonical form
5267 so it is more likely to be a valid address.
5269 In all other cases, return ADDR. */
5271 static rtx
5272 subst_indexed_address (rtx addr)
5274 rtx op0 = 0, op1 = 0, op2 = 0;
5275 rtx tem;
5276 int regno;
5278 if (GET_CODE (addr) == PLUS)
5280 /* Try to find a register to replace. */
5281 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5282 if (REG_P (op0)
5283 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5284 && reg_renumber[regno] < 0
5285 && reg_equiv_constant[regno] != 0)
5286 op0 = reg_equiv_constant[regno];
5287 else if (REG_P (op1)
5288 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5289 && reg_renumber[regno] < 0
5290 && reg_equiv_constant[regno] != 0)
5291 op1 = reg_equiv_constant[regno];
5292 else if (GET_CODE (op0) == PLUS
5293 && (tem = subst_indexed_address (op0)) != op0)
5294 op0 = tem;
5295 else if (GET_CODE (op1) == PLUS
5296 && (tem = subst_indexed_address (op1)) != op1)
5297 op1 = tem;
5298 else
5299 return addr;
5301 /* Pick out up to three things to add. */
5302 if (GET_CODE (op1) == PLUS)
5303 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5304 else if (GET_CODE (op0) == PLUS)
5305 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5307 /* Compute the sum. */
5308 if (op2 != 0)
5309 op1 = form_sum (op1, op2);
5310 if (op1 != 0)
5311 op0 = form_sum (op0, op1);
5313 return op0;
5315 return addr;
5318 /* Update the REG_INC notes for an insn. It updates all REG_INC
5319 notes for the instruction which refer to REGNO the to refer
5320 to the reload number.
5322 INSN is the insn for which any REG_INC notes need updating.
5324 REGNO is the register number which has been reloaded.
5326 RELOADNUM is the reload number. */
5328 static void
5329 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5330 int reloadnum ATTRIBUTE_UNUSED)
5332 #ifdef AUTO_INC_DEC
5333 rtx link;
5335 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5336 if (REG_NOTE_KIND (link) == REG_INC
5337 && (int) REGNO (XEXP (link, 0)) == regno)
5338 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5339 #endif
5342 /* Record the pseudo registers we must reload into hard registers in a
5343 subexpression of a would-be memory address, X referring to a value
5344 in mode MODE. (This function is not called if the address we find
5345 is strictly valid.)
5347 CONTEXT = 1 means we are considering regs as index regs,
5348 = 0 means we are considering them as base regs.
5349 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5350 or an autoinc code.
5351 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5352 is the code of the index part of the address. Otherwise, pass SCRATCH
5353 for this argument.
5354 OPNUM and TYPE specify the purpose of any reloads made.
5356 IND_LEVELS says how many levels of indirect addressing are
5357 supported at this point in the address.
5359 INSN, if nonzero, is the insn in which we do the reload. It is used
5360 to determine if we may generate output reloads.
5362 We return nonzero if X, as a whole, is reloaded or replaced. */
5364 /* Note that we take shortcuts assuming that no multi-reg machine mode
5365 occurs as part of an address.
5366 Also, this is not fully machine-customizable; it works for machines
5367 such as VAXen and 68000's and 32000's, but other possible machines
5368 could have addressing modes that this does not handle right.
5369 If you add push_reload calls here, you need to make sure gen_reload
5370 handles those cases gracefully. */
5372 static int
5373 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5374 enum rtx_code outer_code, enum rtx_code index_code,
5375 rtx *loc, int opnum, enum reload_type type,
5376 int ind_levels, rtx insn)
5378 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5379 ((CONTEXT) == 0 \
5380 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5381 : REGNO_OK_FOR_INDEX_P (REGNO))
5383 enum reg_class context_reg_class;
5384 RTX_CODE code = GET_CODE (x);
5386 if (context == 1)
5387 context_reg_class = INDEX_REG_CLASS;
5388 else
5389 context_reg_class = base_reg_class (mode, outer_code, index_code);
5391 switch (code)
5393 case PLUS:
5395 rtx orig_op0 = XEXP (x, 0);
5396 rtx orig_op1 = XEXP (x, 1);
5397 RTX_CODE code0 = GET_CODE (orig_op0);
5398 RTX_CODE code1 = GET_CODE (orig_op1);
5399 rtx op0 = orig_op0;
5400 rtx op1 = orig_op1;
5402 if (GET_CODE (op0) == SUBREG)
5404 op0 = SUBREG_REG (op0);
5405 code0 = GET_CODE (op0);
5406 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5407 op0 = gen_rtx_REG (word_mode,
5408 (REGNO (op0) +
5409 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5410 GET_MODE (SUBREG_REG (orig_op0)),
5411 SUBREG_BYTE (orig_op0),
5412 GET_MODE (orig_op0))));
5415 if (GET_CODE (op1) == SUBREG)
5417 op1 = SUBREG_REG (op1);
5418 code1 = GET_CODE (op1);
5419 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5420 /* ??? Why is this given op1's mode and above for
5421 ??? op0 SUBREGs we use word_mode? */
5422 op1 = gen_rtx_REG (GET_MODE (op1),
5423 (REGNO (op1) +
5424 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5425 GET_MODE (SUBREG_REG (orig_op1)),
5426 SUBREG_BYTE (orig_op1),
5427 GET_MODE (orig_op1))));
5429 /* Plus in the index register may be created only as a result of
5430 register rematerialization for expression like &localvar*4. Reload it.
5431 It may be possible to combine the displacement on the outer level,
5432 but it is probably not worthwhile to do so. */
5433 if (context == 1)
5435 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5436 opnum, ADDR_TYPE (type), ind_levels, insn);
5437 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5438 context_reg_class,
5439 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5440 return 1;
5443 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5444 || code0 == ZERO_EXTEND || code1 == MEM)
5446 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5447 &XEXP (x, 0), opnum, type, ind_levels,
5448 insn);
5449 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5450 &XEXP (x, 1), opnum, type, ind_levels,
5451 insn);
5454 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5455 || code1 == ZERO_EXTEND || code0 == MEM)
5457 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5458 &XEXP (x, 0), opnum, type, ind_levels,
5459 insn);
5460 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5461 &XEXP (x, 1), opnum, type, ind_levels,
5462 insn);
5465 else if (code0 == CONST_INT || code0 == CONST
5466 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5467 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5468 &XEXP (x, 1), opnum, type, ind_levels,
5469 insn);
5471 else if (code1 == CONST_INT || code1 == CONST
5472 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5473 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5474 &XEXP (x, 0), opnum, type, ind_levels,
5475 insn);
5477 else if (code0 == REG && code1 == REG)
5479 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5480 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5481 return 0;
5482 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5483 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5484 return 0;
5485 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5486 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5487 &XEXP (x, 1), opnum, type, ind_levels,
5488 insn);
5489 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5490 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5491 &XEXP (x, 0), opnum, type, ind_levels,
5492 insn);
5493 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5494 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5495 &XEXP (x, 0), opnum, type, ind_levels,
5496 insn);
5497 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5498 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5499 &XEXP (x, 1), opnum, type, ind_levels,
5500 insn);
5501 else
5503 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5504 &XEXP (x, 0), opnum, type, ind_levels,
5505 insn);
5506 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5507 &XEXP (x, 1), opnum, type, ind_levels,
5508 insn);
5512 else if (code0 == REG)
5514 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5515 &XEXP (x, 0), opnum, type, ind_levels,
5516 insn);
5517 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5518 &XEXP (x, 1), opnum, type, ind_levels,
5519 insn);
5522 else if (code1 == REG)
5524 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5525 &XEXP (x, 1), opnum, type, ind_levels,
5526 insn);
5527 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5528 &XEXP (x, 0), opnum, type, ind_levels,
5529 insn);
5533 return 0;
5535 case POST_MODIFY:
5536 case PRE_MODIFY:
5538 rtx op0 = XEXP (x, 0);
5539 rtx op1 = XEXP (x, 1);
5540 enum rtx_code index_code;
5541 int regno;
5542 int reloadnum;
5544 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5545 return 0;
5547 /* Currently, we only support {PRE,POST}_MODIFY constructs
5548 where a base register is {inc,dec}remented by the contents
5549 of another register or by a constant value. Thus, these
5550 operands must match. */
5551 gcc_assert (op0 == XEXP (op1, 0));
5553 /* Require index register (or constant). Let's just handle the
5554 register case in the meantime... If the target allows
5555 auto-modify by a constant then we could try replacing a pseudo
5556 register with its equivalent constant where applicable.
5558 We also handle the case where the register was eliminated
5559 resulting in a PLUS subexpression.
5561 If we later decide to reload the whole PRE_MODIFY or
5562 POST_MODIFY, inc_for_reload might clobber the reload register
5563 before reading the index. The index register might therefore
5564 need to live longer than a TYPE reload normally would, so be
5565 conservative and class it as RELOAD_OTHER. */
5566 if ((REG_P (XEXP (op1, 1))
5567 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5568 || GET_CODE (XEXP (op1, 1)) == PLUS)
5569 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5570 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5571 ind_levels, insn);
5573 gcc_assert (REG_P (XEXP (op1, 0)));
5575 regno = REGNO (XEXP (op1, 0));
5576 index_code = GET_CODE (XEXP (op1, 1));
5578 /* A register that is incremented cannot be constant! */
5579 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5580 || reg_equiv_constant[regno] == 0);
5582 /* Handle a register that is equivalent to a memory location
5583 which cannot be addressed directly. */
5584 if (reg_equiv_memory_loc[regno] != 0
5585 && (reg_equiv_address[regno] != 0
5586 || num_not_at_initial_offset))
5588 rtx tem = make_memloc (XEXP (x, 0), regno);
5590 if (reg_equiv_address[regno]
5591 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5593 rtx orig = tem;
5595 /* First reload the memory location's address.
5596 We can't use ADDR_TYPE (type) here, because we need to
5597 write back the value after reading it, hence we actually
5598 need two registers. */
5599 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5600 &XEXP (tem, 0), opnum,
5601 RELOAD_OTHER,
5602 ind_levels, insn);
5604 if (!rtx_equal_p (tem, orig))
5605 push_reg_equiv_alt_mem (regno, tem);
5607 /* Then reload the memory location into a base
5608 register. */
5609 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5610 &XEXP (op1, 0),
5611 base_reg_class (mode, code,
5612 index_code),
5613 GET_MODE (x), GET_MODE (x), 0,
5614 0, opnum, RELOAD_OTHER);
5616 update_auto_inc_notes (this_insn, regno, reloadnum);
5617 return 0;
5621 if (reg_renumber[regno] >= 0)
5622 regno = reg_renumber[regno];
5624 /* We require a base register here... */
5625 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5627 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5628 &XEXP (op1, 0), &XEXP (x, 0),
5629 base_reg_class (mode, code, index_code),
5630 GET_MODE (x), GET_MODE (x), 0, 0,
5631 opnum, RELOAD_OTHER);
5633 update_auto_inc_notes (this_insn, regno, reloadnum);
5634 return 0;
5637 return 0;
5639 case POST_INC:
5640 case POST_DEC:
5641 case PRE_INC:
5642 case PRE_DEC:
5643 if (REG_P (XEXP (x, 0)))
5645 int regno = REGNO (XEXP (x, 0));
5646 int value = 0;
5647 rtx x_orig = x;
5649 /* A register that is incremented cannot be constant! */
5650 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5651 || reg_equiv_constant[regno] == 0);
5653 /* Handle a register that is equivalent to a memory location
5654 which cannot be addressed directly. */
5655 if (reg_equiv_memory_loc[regno] != 0
5656 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5658 rtx tem = make_memloc (XEXP (x, 0), regno);
5659 if (reg_equiv_address[regno]
5660 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5662 rtx orig = tem;
5664 /* First reload the memory location's address.
5665 We can't use ADDR_TYPE (type) here, because we need to
5666 write back the value after reading it, hence we actually
5667 need two registers. */
5668 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5669 &XEXP (tem, 0), opnum, type,
5670 ind_levels, insn);
5671 if (!rtx_equal_p (tem, orig))
5672 push_reg_equiv_alt_mem (regno, tem);
5673 /* Put this inside a new increment-expression. */
5674 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5675 /* Proceed to reload that, as if it contained a register. */
5679 /* If we have a hard register that is ok in this incdec context,
5680 don't make a reload. If the register isn't nice enough for
5681 autoincdec, we can reload it. But, if an autoincrement of a
5682 register that we here verified as playing nice, still outside
5683 isn't "valid", it must be that no autoincrement is "valid".
5684 If that is true and something made an autoincrement anyway,
5685 this must be a special context where one is allowed.
5686 (For example, a "push" instruction.)
5687 We can't improve this address, so leave it alone. */
5689 /* Otherwise, reload the autoincrement into a suitable hard reg
5690 and record how much to increment by. */
5692 if (reg_renumber[regno] >= 0)
5693 regno = reg_renumber[regno];
5694 if (regno >= FIRST_PSEUDO_REGISTER
5695 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5696 index_code))
5698 int reloadnum;
5700 /* If we can output the register afterwards, do so, this
5701 saves the extra update.
5702 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5703 CALL_INSN - and it does not set CC0.
5704 But don't do this if we cannot directly address the
5705 memory location, since this will make it harder to
5706 reuse address reloads, and increases register pressure.
5707 Also don't do this if we can probably update x directly. */
5708 rtx equiv = (MEM_P (XEXP (x, 0))
5709 ? XEXP (x, 0)
5710 : reg_equiv_mem[regno]);
5711 int icode = (int) optab_handler (add_optab, Pmode)->insn_code;
5712 if (insn && NONJUMP_INSN_P (insn) && equiv
5713 && memory_operand (equiv, GET_MODE (equiv))
5714 #ifdef HAVE_cc0
5715 && ! sets_cc0_p (PATTERN (insn))
5716 #endif
5717 && ! (icode != CODE_FOR_nothing
5718 && ((*insn_data[icode].operand[0].predicate)
5719 (equiv, Pmode))
5720 && ((*insn_data[icode].operand[1].predicate)
5721 (equiv, Pmode))))
5723 /* We use the original pseudo for loc, so that
5724 emit_reload_insns() knows which pseudo this
5725 reload refers to and updates the pseudo rtx, not
5726 its equivalent memory location, as well as the
5727 corresponding entry in reg_last_reload_reg. */
5728 loc = &XEXP (x_orig, 0);
5729 x = XEXP (x, 0);
5730 reloadnum
5731 = push_reload (x, x, loc, loc,
5732 context_reg_class,
5733 GET_MODE (x), GET_MODE (x), 0, 0,
5734 opnum, RELOAD_OTHER);
5736 else
5738 reloadnum
5739 = push_reload (x, x, loc, (rtx*) 0,
5740 context_reg_class,
5741 GET_MODE (x), GET_MODE (x), 0, 0,
5742 opnum, type);
5743 rld[reloadnum].inc
5744 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5746 value = 1;
5749 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5750 reloadnum);
5752 return value;
5754 return 0;
5756 case TRUNCATE:
5757 case SIGN_EXTEND:
5758 case ZERO_EXTEND:
5759 /* Look for parts to reload in the inner expression and reload them
5760 too, in addition to this operation. Reloading all inner parts in
5761 addition to this one shouldn't be necessary, but at this point,
5762 we don't know if we can possibly omit any part that *can* be
5763 reloaded. Targets that are better off reloading just either part
5764 (or perhaps even a different part of an outer expression), should
5765 define LEGITIMIZE_RELOAD_ADDRESS. */
5766 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5767 context, code, SCRATCH, &XEXP (x, 0), opnum,
5768 type, ind_levels, insn);
5769 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5770 context_reg_class,
5771 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5772 return 1;
5774 case MEM:
5775 /* This is probably the result of a substitution, by eliminate_regs, of
5776 an equivalent address for a pseudo that was not allocated to a hard
5777 register. Verify that the specified address is valid and reload it
5778 into a register.
5780 Since we know we are going to reload this item, don't decrement for
5781 the indirection level.
5783 Note that this is actually conservative: it would be slightly more
5784 efficient to use the value of SPILL_INDIRECT_LEVELS from
5785 reload1.c here. */
5787 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5788 opnum, ADDR_TYPE (type), ind_levels, insn);
5789 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5790 context_reg_class,
5791 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5792 return 1;
5794 case REG:
5796 int regno = REGNO (x);
5798 if (reg_equiv_constant[regno] != 0)
5800 find_reloads_address_part (reg_equiv_constant[regno], loc,
5801 context_reg_class,
5802 GET_MODE (x), opnum, type, ind_levels);
5803 return 1;
5806 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5807 that feeds this insn. */
5808 if (reg_equiv_mem[regno] != 0)
5810 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5811 context_reg_class,
5812 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5813 return 1;
5815 #endif
5817 if (reg_equiv_memory_loc[regno]
5818 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5820 rtx tem = make_memloc (x, regno);
5821 if (reg_equiv_address[regno] != 0
5822 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5824 x = tem;
5825 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5826 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5827 ind_levels, insn);
5828 if (!rtx_equal_p (x, tem))
5829 push_reg_equiv_alt_mem (regno, x);
5833 if (reg_renumber[regno] >= 0)
5834 regno = reg_renumber[regno];
5836 if (regno >= FIRST_PSEUDO_REGISTER
5837 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5838 index_code))
5840 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5841 context_reg_class,
5842 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5843 return 1;
5846 /* If a register appearing in an address is the subject of a CLOBBER
5847 in this insn, reload it into some other register to be safe.
5848 The CLOBBER is supposed to make the register unavailable
5849 from before this insn to after it. */
5850 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5852 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5853 context_reg_class,
5854 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5855 return 1;
5858 return 0;
5860 case SUBREG:
5861 if (REG_P (SUBREG_REG (x)))
5863 /* If this is a SUBREG of a hard register and the resulting register
5864 is of the wrong class, reload the whole SUBREG. This avoids
5865 needless copies if SUBREG_REG is multi-word. */
5866 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5868 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5870 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5871 index_code))
5873 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5874 context_reg_class,
5875 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5876 return 1;
5879 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5880 is larger than the class size, then reload the whole SUBREG. */
5881 else
5883 enum reg_class class = context_reg_class;
5884 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5885 > reg_class_size[class])
5887 x = find_reloads_subreg_address (x, 0, opnum,
5888 ADDR_TYPE (type),
5889 ind_levels, insn);
5890 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5891 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5892 return 1;
5896 break;
5898 default:
5899 break;
5903 const char *fmt = GET_RTX_FORMAT (code);
5904 int i;
5906 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5908 if (fmt[i] == 'e')
5909 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5910 we get here. */
5911 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5912 &XEXP (x, i), opnum, type, ind_levels, insn);
5916 #undef REG_OK_FOR_CONTEXT
5917 return 0;
5920 /* X, which is found at *LOC, is a part of an address that needs to be
5921 reloaded into a register of class CLASS. If X is a constant, or if
5922 X is a PLUS that contains a constant, check that the constant is a
5923 legitimate operand and that we are supposed to be able to load
5924 it into the register.
5926 If not, force the constant into memory and reload the MEM instead.
5928 MODE is the mode to use, in case X is an integer constant.
5930 OPNUM and TYPE describe the purpose of any reloads made.
5932 IND_LEVELS says how many levels of indirect addressing this machine
5933 supports. */
5935 static void
5936 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5937 enum machine_mode mode, int opnum,
5938 enum reload_type type, int ind_levels)
5940 if (CONSTANT_P (x)
5941 && (! LEGITIMATE_CONSTANT_P (x)
5942 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5944 x = force_const_mem (mode, x);
5945 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
5946 opnum, type, ind_levels, 0);
5949 else if (GET_CODE (x) == PLUS
5950 && CONSTANT_P (XEXP (x, 1))
5951 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5952 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5954 rtx tem;
5956 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5957 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5958 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
5959 opnum, type, ind_levels, 0);
5962 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5963 mode, VOIDmode, 0, 0, opnum, type);
5966 /* X, a subreg of a pseudo, is a part of an address that needs to be
5967 reloaded.
5969 If the pseudo is equivalent to a memory location that cannot be directly
5970 addressed, make the necessary address reloads.
5972 If address reloads have been necessary, or if the address is changed
5973 by register elimination, return the rtx of the memory location;
5974 otherwise, return X.
5976 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5977 memory location.
5979 OPNUM and TYPE identify the purpose of the reload.
5981 IND_LEVELS says how many levels of indirect addressing are
5982 supported at this point in the address.
5984 INSN, if nonzero, is the insn in which we do the reload. It is used
5985 to determine where to put USEs for pseudos that we have to replace with
5986 stack slots. */
5988 static rtx
5989 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5990 enum reload_type type, int ind_levels, rtx insn)
5992 int regno = REGNO (SUBREG_REG (x));
5994 if (reg_equiv_memory_loc[regno])
5996 /* If the address is not directly addressable, or if the address is not
5997 offsettable, then it must be replaced. */
5998 if (! force_replace
5999 && (reg_equiv_address[regno]
6000 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6001 force_replace = 1;
6003 if (force_replace || num_not_at_initial_offset)
6005 rtx tem = make_memloc (SUBREG_REG (x), regno);
6007 /* If the address changes because of register elimination, then
6008 it must be replaced. */
6009 if (force_replace
6010 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6012 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6013 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6014 int offset;
6015 rtx orig = tem;
6016 enum machine_mode orig_mode = GET_MODE (orig);
6017 int reloaded;
6019 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6020 hold the correct (negative) byte offset. */
6021 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6022 offset = inner_size - outer_size;
6023 else
6024 offset = SUBREG_BYTE (x);
6026 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6027 PUT_MODE (tem, GET_MODE (x));
6029 /* If this was a paradoxical subreg that we replaced, the
6030 resulting memory must be sufficiently aligned to allow
6031 us to widen the mode of the memory. */
6032 if (outer_size > inner_size)
6034 rtx base;
6036 base = XEXP (tem, 0);
6037 if (GET_CODE (base) == PLUS)
6039 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6040 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6041 return x;
6042 base = XEXP (base, 0);
6044 if (!REG_P (base)
6045 || (REGNO_POINTER_ALIGN (REGNO (base))
6046 < outer_size * BITS_PER_UNIT))
6047 return x;
6050 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6051 XEXP (tem, 0), &XEXP (tem, 0),
6052 opnum, type, ind_levels, insn);
6053 /* ??? Do we need to handle nonzero offsets somehow? */
6054 if (!offset && !rtx_equal_p (tem, orig))
6055 push_reg_equiv_alt_mem (regno, tem);
6057 /* For some processors an address may be valid in the
6058 original mode but not in a smaller mode. For
6059 example, ARM accepts a scaled index register in
6060 SImode but not in HImode. find_reloads_address
6061 assumes that we pass it a valid address, and doesn't
6062 force a reload. This will probably be fine if
6063 find_reloads_address finds some reloads. But if it
6064 doesn't find any, then we may have just converted a
6065 valid address into an invalid one. Check for that
6066 here. */
6067 if (reloaded != 1
6068 && strict_memory_address_p (orig_mode, XEXP (tem, 0))
6069 && !strict_memory_address_p (GET_MODE (tem),
6070 XEXP (tem, 0)))
6071 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6072 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6073 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6074 opnum, type);
6076 /* If this is not a toplevel operand, find_reloads doesn't see
6077 this substitution. We have to emit a USE of the pseudo so
6078 that delete_output_reload can see it. */
6079 if (replace_reloads && recog_data.operand[opnum] != x)
6080 /* We mark the USE with QImode so that we recognize it
6081 as one that can be safely deleted at the end of
6082 reload. */
6083 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6084 SUBREG_REG (x)),
6085 insn), QImode);
6086 x = tem;
6090 return x;
6093 /* Substitute into the current INSN the registers into which we have reloaded
6094 the things that need reloading. The array `replacements'
6095 contains the locations of all pointers that must be changed
6096 and says what to replace them with.
6098 Return the rtx that X translates into; usually X, but modified. */
6100 void
6101 subst_reloads (rtx insn)
6103 int i;
6105 for (i = 0; i < n_replacements; i++)
6107 struct replacement *r = &replacements[i];
6108 rtx reloadreg = rld[r->what].reg_rtx;
6109 if (reloadreg)
6111 #ifdef DEBUG_RELOAD
6112 /* This checking takes a very long time on some platforms
6113 causing the gcc.c-torture/compile/limits-fnargs.c test
6114 to time out during testing. See PR 31850.
6116 Internal consistency test. Check that we don't modify
6117 anything in the equivalence arrays. Whenever something from
6118 those arrays needs to be reloaded, it must be unshared before
6119 being substituted into; the equivalence must not be modified.
6120 Otherwise, if the equivalence is used after that, it will
6121 have been modified, and the thing substituted (probably a
6122 register) is likely overwritten and not a usable equivalence. */
6123 int check_regno;
6125 for (check_regno = 0; check_regno < max_regno; check_regno++)
6127 #define CHECK_MODF(ARRAY) \
6128 gcc_assert (!ARRAY[check_regno] \
6129 || !loc_mentioned_in_p (r->where, \
6130 ARRAY[check_regno]))
6132 CHECK_MODF (reg_equiv_constant);
6133 CHECK_MODF (reg_equiv_memory_loc);
6134 CHECK_MODF (reg_equiv_address);
6135 CHECK_MODF (reg_equiv_mem);
6136 #undef CHECK_MODF
6138 #endif /* DEBUG_RELOAD */
6140 /* If we're replacing a LABEL_REF with a register, there must
6141 already be an indication (to e.g. flow) which label this
6142 register refers to. */
6143 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6144 || !JUMP_P (insn)
6145 || find_reg_note (insn,
6146 REG_LABEL_OPERAND,
6147 XEXP (*r->where, 0))
6148 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6150 /* Encapsulate RELOADREG so its machine mode matches what
6151 used to be there. Note that gen_lowpart_common will
6152 do the wrong thing if RELOADREG is multi-word. RELOADREG
6153 will always be a REG here. */
6154 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6155 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6157 /* If we are putting this into a SUBREG and RELOADREG is a
6158 SUBREG, we would be making nested SUBREGs, so we have to fix
6159 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6161 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6163 if (GET_MODE (*r->subreg_loc)
6164 == GET_MODE (SUBREG_REG (reloadreg)))
6165 *r->subreg_loc = SUBREG_REG (reloadreg);
6166 else
6168 int final_offset =
6169 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6171 /* When working with SUBREGs the rule is that the byte
6172 offset must be a multiple of the SUBREG's mode. */
6173 final_offset = (final_offset /
6174 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6175 final_offset = (final_offset *
6176 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6178 *r->where = SUBREG_REG (reloadreg);
6179 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6182 else
6183 *r->where = reloadreg;
6185 /* If reload got no reg and isn't optional, something's wrong. */
6186 else
6187 gcc_assert (rld[r->what].optional);
6191 /* Make a copy of any replacements being done into X and move those
6192 copies to locations in Y, a copy of X. */
6194 void
6195 copy_replacements (rtx x, rtx y)
6197 /* We can't support X being a SUBREG because we might then need to know its
6198 location if something inside it was replaced. */
6199 gcc_assert (GET_CODE (x) != SUBREG);
6201 copy_replacements_1 (&x, &y, n_replacements);
6204 static void
6205 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6207 int i, j;
6208 rtx x, y;
6209 struct replacement *r;
6210 enum rtx_code code;
6211 const char *fmt;
6213 for (j = 0; j < orig_replacements; j++)
6215 if (replacements[j].subreg_loc == px)
6217 r = &replacements[n_replacements++];
6218 r->where = replacements[j].where;
6219 r->subreg_loc = py;
6220 r->what = replacements[j].what;
6221 r->mode = replacements[j].mode;
6223 else if (replacements[j].where == px)
6225 r = &replacements[n_replacements++];
6226 r->where = py;
6227 r->subreg_loc = 0;
6228 r->what = replacements[j].what;
6229 r->mode = replacements[j].mode;
6233 x = *px;
6234 y = *py;
6235 code = GET_CODE (x);
6236 fmt = GET_RTX_FORMAT (code);
6238 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6240 if (fmt[i] == 'e')
6241 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6242 else if (fmt[i] == 'E')
6243 for (j = XVECLEN (x, i); --j >= 0; )
6244 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6245 orig_replacements);
6249 /* Change any replacements being done to *X to be done to *Y. */
6251 void
6252 move_replacements (rtx *x, rtx *y)
6254 int i;
6256 for (i = 0; i < n_replacements; i++)
6257 if (replacements[i].subreg_loc == x)
6258 replacements[i].subreg_loc = y;
6259 else if (replacements[i].where == x)
6261 replacements[i].where = y;
6262 replacements[i].subreg_loc = 0;
6266 /* If LOC was scheduled to be replaced by something, return the replacement.
6267 Otherwise, return *LOC. */
6270 find_replacement (rtx *loc)
6272 struct replacement *r;
6274 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6276 rtx reloadreg = rld[r->what].reg_rtx;
6278 if (reloadreg && r->where == loc)
6280 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6281 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6283 return reloadreg;
6285 else if (reloadreg && r->subreg_loc == loc)
6287 /* RELOADREG must be either a REG or a SUBREG.
6289 ??? Is it actually still ever a SUBREG? If so, why? */
6291 if (REG_P (reloadreg))
6292 return gen_rtx_REG (GET_MODE (*loc),
6293 (REGNO (reloadreg) +
6294 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6295 GET_MODE (SUBREG_REG (*loc)),
6296 SUBREG_BYTE (*loc),
6297 GET_MODE (*loc))));
6298 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6299 return reloadreg;
6300 else
6302 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6304 /* When working with SUBREGs the rule is that the byte
6305 offset must be a multiple of the SUBREG's mode. */
6306 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6307 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6308 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6309 final_offset);
6314 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6315 what's inside and make a new rtl if so. */
6316 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6317 || GET_CODE (*loc) == MULT)
6319 rtx x = find_replacement (&XEXP (*loc, 0));
6320 rtx y = find_replacement (&XEXP (*loc, 1));
6322 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6323 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6326 return *loc;
6329 /* Return nonzero if register in range [REGNO, ENDREGNO)
6330 appears either explicitly or implicitly in X
6331 other than being stored into (except for earlyclobber operands).
6333 References contained within the substructure at LOC do not count.
6334 LOC may be zero, meaning don't ignore anything.
6336 This is similar to refers_to_regno_p in rtlanal.c except that we
6337 look at equivalences for pseudos that didn't get hard registers. */
6339 static int
6340 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6341 rtx x, rtx *loc)
6343 int i;
6344 unsigned int r;
6345 RTX_CODE code;
6346 const char *fmt;
6348 if (x == 0)
6349 return 0;
6351 repeat:
6352 code = GET_CODE (x);
6354 switch (code)
6356 case REG:
6357 r = REGNO (x);
6359 /* If this is a pseudo, a hard register must not have been allocated.
6360 X must therefore either be a constant or be in memory. */
6361 if (r >= FIRST_PSEUDO_REGISTER)
6363 if (reg_equiv_memory_loc[r])
6364 return refers_to_regno_for_reload_p (regno, endregno,
6365 reg_equiv_memory_loc[r],
6366 (rtx*) 0);
6368 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6369 return 0;
6372 return (endregno > r
6373 && regno < r + (r < FIRST_PSEUDO_REGISTER
6374 ? hard_regno_nregs[r][GET_MODE (x)]
6375 : 1));
6377 case SUBREG:
6378 /* If this is a SUBREG of a hard reg, we can see exactly which
6379 registers are being modified. Otherwise, handle normally. */
6380 if (REG_P (SUBREG_REG (x))
6381 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6383 unsigned int inner_regno = subreg_regno (x);
6384 unsigned int inner_endregno
6385 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6386 ? subreg_nregs (x) : 1);
6388 return endregno > inner_regno && regno < inner_endregno;
6390 break;
6392 case CLOBBER:
6393 case SET:
6394 if (&SET_DEST (x) != loc
6395 /* Note setting a SUBREG counts as referring to the REG it is in for
6396 a pseudo but not for hard registers since we can
6397 treat each word individually. */
6398 && ((GET_CODE (SET_DEST (x)) == SUBREG
6399 && loc != &SUBREG_REG (SET_DEST (x))
6400 && REG_P (SUBREG_REG (SET_DEST (x)))
6401 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6402 && refers_to_regno_for_reload_p (regno, endregno,
6403 SUBREG_REG (SET_DEST (x)),
6404 loc))
6405 /* If the output is an earlyclobber operand, this is
6406 a conflict. */
6407 || ((!REG_P (SET_DEST (x))
6408 || earlyclobber_operand_p (SET_DEST (x)))
6409 && refers_to_regno_for_reload_p (regno, endregno,
6410 SET_DEST (x), loc))))
6411 return 1;
6413 if (code == CLOBBER || loc == &SET_SRC (x))
6414 return 0;
6415 x = SET_SRC (x);
6416 goto repeat;
6418 default:
6419 break;
6422 /* X does not match, so try its subexpressions. */
6424 fmt = GET_RTX_FORMAT (code);
6425 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6427 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6429 if (i == 0)
6431 x = XEXP (x, 0);
6432 goto repeat;
6434 else
6435 if (refers_to_regno_for_reload_p (regno, endregno,
6436 XEXP (x, i), loc))
6437 return 1;
6439 else if (fmt[i] == 'E')
6441 int j;
6442 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6443 if (loc != &XVECEXP (x, i, j)
6444 && refers_to_regno_for_reload_p (regno, endregno,
6445 XVECEXP (x, i, j), loc))
6446 return 1;
6449 return 0;
6452 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6453 we check if any register number in X conflicts with the relevant register
6454 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6455 contains a MEM (we don't bother checking for memory addresses that can't
6456 conflict because we expect this to be a rare case.
6458 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6459 that we look at equivalences for pseudos that didn't get hard registers. */
6462 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6464 int regno, endregno;
6466 /* Overly conservative. */
6467 if (GET_CODE (x) == STRICT_LOW_PART
6468 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6469 x = XEXP (x, 0);
6471 /* If either argument is a constant, then modifying X can not affect IN. */
6472 if (CONSTANT_P (x) || CONSTANT_P (in))
6473 return 0;
6474 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6475 return refers_to_mem_for_reload_p (in);
6476 else if (GET_CODE (x) == SUBREG)
6478 regno = REGNO (SUBREG_REG (x));
6479 if (regno < FIRST_PSEUDO_REGISTER)
6480 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6481 GET_MODE (SUBREG_REG (x)),
6482 SUBREG_BYTE (x),
6483 GET_MODE (x));
6484 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6485 ? subreg_nregs (x) : 1);
6487 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6489 else if (REG_P (x))
6491 regno = REGNO (x);
6493 /* If this is a pseudo, it must not have been assigned a hard register.
6494 Therefore, it must either be in memory or be a constant. */
6496 if (regno >= FIRST_PSEUDO_REGISTER)
6498 if (reg_equiv_memory_loc[regno])
6499 return refers_to_mem_for_reload_p (in);
6500 gcc_assert (reg_equiv_constant[regno]);
6501 return 0;
6504 endregno = END_HARD_REGNO (x);
6506 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6508 else if (MEM_P (x))
6509 return refers_to_mem_for_reload_p (in);
6510 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6511 || GET_CODE (x) == CC0)
6512 return reg_mentioned_p (x, in);
6513 else
6515 gcc_assert (GET_CODE (x) == PLUS);
6517 /* We actually want to know if X is mentioned somewhere inside IN.
6518 We must not say that (plus (sp) (const_int 124)) is in
6519 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6520 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6521 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6522 while (MEM_P (in))
6523 in = XEXP (in, 0);
6524 if (REG_P (in))
6525 return 0;
6526 else if (GET_CODE (in) == PLUS)
6527 return (rtx_equal_p (x, in)
6528 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6529 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6530 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6531 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6534 gcc_unreachable ();
6537 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6538 registers. */
6540 static int
6541 refers_to_mem_for_reload_p (rtx x)
6543 const char *fmt;
6544 int i;
6546 if (MEM_P (x))
6547 return 1;
6549 if (REG_P (x))
6550 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6551 && reg_equiv_memory_loc[REGNO (x)]);
6553 fmt = GET_RTX_FORMAT (GET_CODE (x));
6554 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6555 if (fmt[i] == 'e'
6556 && (MEM_P (XEXP (x, i))
6557 || refers_to_mem_for_reload_p (XEXP (x, i))))
6558 return 1;
6560 return 0;
6563 /* Check the insns before INSN to see if there is a suitable register
6564 containing the same value as GOAL.
6565 If OTHER is -1, look for a register in class CLASS.
6566 Otherwise, just see if register number OTHER shares GOAL's value.
6568 Return an rtx for the register found, or zero if none is found.
6570 If RELOAD_REG_P is (short *)1,
6571 we reject any hard reg that appears in reload_reg_rtx
6572 because such a hard reg is also needed coming into this insn.
6574 If RELOAD_REG_P is any other nonzero value,
6575 it is a vector indexed by hard reg number
6576 and we reject any hard reg whose element in the vector is nonnegative
6577 as well as any that appears in reload_reg_rtx.
6579 If GOAL is zero, then GOALREG is a register number; we look
6580 for an equivalent for that register.
6582 MODE is the machine mode of the value we want an equivalence for.
6583 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6585 This function is used by jump.c as well as in the reload pass.
6587 If GOAL is the sum of the stack pointer and a constant, we treat it
6588 as if it were a constant except that sp is required to be unchanging. */
6591 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6592 short *reload_reg_p, int goalreg, enum machine_mode mode)
6594 rtx p = insn;
6595 rtx goaltry, valtry, value, where;
6596 rtx pat;
6597 int regno = -1;
6598 int valueno;
6599 int goal_mem = 0;
6600 int goal_const = 0;
6601 int goal_mem_addr_varies = 0;
6602 int need_stable_sp = 0;
6603 int nregs;
6604 int valuenregs;
6605 int num = 0;
6607 if (goal == 0)
6608 regno = goalreg;
6609 else if (REG_P (goal))
6610 regno = REGNO (goal);
6611 else if (MEM_P (goal))
6613 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6614 if (MEM_VOLATILE_P (goal))
6615 return 0;
6616 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6617 return 0;
6618 /* An address with side effects must be reexecuted. */
6619 switch (code)
6621 case POST_INC:
6622 case PRE_INC:
6623 case POST_DEC:
6624 case PRE_DEC:
6625 case POST_MODIFY:
6626 case PRE_MODIFY:
6627 return 0;
6628 default:
6629 break;
6631 goal_mem = 1;
6633 else if (CONSTANT_P (goal))
6634 goal_const = 1;
6635 else if (GET_CODE (goal) == PLUS
6636 && XEXP (goal, 0) == stack_pointer_rtx
6637 && CONSTANT_P (XEXP (goal, 1)))
6638 goal_const = need_stable_sp = 1;
6639 else if (GET_CODE (goal) == PLUS
6640 && XEXP (goal, 0) == frame_pointer_rtx
6641 && CONSTANT_P (XEXP (goal, 1)))
6642 goal_const = 1;
6643 else
6644 return 0;
6646 num = 0;
6647 /* Scan insns back from INSN, looking for one that copies
6648 a value into or out of GOAL.
6649 Stop and give up if we reach a label. */
6651 while (1)
6653 p = PREV_INSN (p);
6654 num++;
6655 if (p == 0 || LABEL_P (p)
6656 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6657 return 0;
6659 if (NONJUMP_INSN_P (p)
6660 /* If we don't want spill regs ... */
6661 && (! (reload_reg_p != 0
6662 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6663 /* ... then ignore insns introduced by reload; they aren't
6664 useful and can cause results in reload_as_needed to be
6665 different from what they were when calculating the need for
6666 spills. If we notice an input-reload insn here, we will
6667 reject it below, but it might hide a usable equivalent.
6668 That makes bad code. It may even fail: perhaps no reg was
6669 spilled for this insn because it was assumed we would find
6670 that equivalent. */
6671 || INSN_UID (p) < reload_first_uid))
6673 rtx tem;
6674 pat = single_set (p);
6676 /* First check for something that sets some reg equal to GOAL. */
6677 if (pat != 0
6678 && ((regno >= 0
6679 && true_regnum (SET_SRC (pat)) == regno
6680 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6682 (regno >= 0
6683 && true_regnum (SET_DEST (pat)) == regno
6684 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6686 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6687 /* When looking for stack pointer + const,
6688 make sure we don't use a stack adjust. */
6689 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6690 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6691 || (goal_mem
6692 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6693 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6694 || (goal_mem
6695 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6696 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6697 /* If we are looking for a constant,
6698 and something equivalent to that constant was copied
6699 into a reg, we can use that reg. */
6700 || (goal_const && REG_NOTES (p) != 0
6701 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6702 && ((rtx_equal_p (XEXP (tem, 0), goal)
6703 && (valueno
6704 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6705 || (REG_P (SET_DEST (pat))
6706 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6707 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6708 && GET_CODE (goal) == CONST_INT
6709 && 0 != (goaltry
6710 = operand_subword (XEXP (tem, 0), 0, 0,
6711 VOIDmode))
6712 && rtx_equal_p (goal, goaltry)
6713 && (valtry
6714 = operand_subword (SET_DEST (pat), 0, 0,
6715 VOIDmode))
6716 && (valueno = true_regnum (valtry)) >= 0)))
6717 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6718 NULL_RTX))
6719 && REG_P (SET_DEST (pat))
6720 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6721 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6722 && GET_CODE (goal) == CONST_INT
6723 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6724 VOIDmode))
6725 && rtx_equal_p (goal, goaltry)
6726 && (valtry
6727 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6728 && (valueno = true_regnum (valtry)) >= 0)))
6730 if (other >= 0)
6732 if (valueno != other)
6733 continue;
6735 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6736 continue;
6737 else if (!in_hard_reg_set_p (reg_class_contents[(int) class],
6738 mode, valueno))
6739 continue;
6740 value = valtry;
6741 where = p;
6742 break;
6747 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6748 (or copying VALUE into GOAL, if GOAL is also a register).
6749 Now verify that VALUE is really valid. */
6751 /* VALUENO is the register number of VALUE; a hard register. */
6753 /* Don't try to re-use something that is killed in this insn. We want
6754 to be able to trust REG_UNUSED notes. */
6755 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6756 return 0;
6758 /* If we propose to get the value from the stack pointer or if GOAL is
6759 a MEM based on the stack pointer, we need a stable SP. */
6760 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6761 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6762 goal)))
6763 need_stable_sp = 1;
6765 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6766 if (GET_MODE (value) != mode)
6767 return 0;
6769 /* Reject VALUE if it was loaded from GOAL
6770 and is also a register that appears in the address of GOAL. */
6772 if (goal_mem && value == SET_DEST (single_set (where))
6773 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6774 goal, (rtx*) 0))
6775 return 0;
6777 /* Reject registers that overlap GOAL. */
6779 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6780 nregs = hard_regno_nregs[regno][mode];
6781 else
6782 nregs = 1;
6783 valuenregs = hard_regno_nregs[valueno][mode];
6785 if (!goal_mem && !goal_const
6786 && regno + nregs > valueno && regno < valueno + valuenregs)
6787 return 0;
6789 /* Reject VALUE if it is one of the regs reserved for reloads.
6790 Reload1 knows how to reuse them anyway, and it would get
6791 confused if we allocated one without its knowledge.
6792 (Now that insns introduced by reload are ignored above,
6793 this case shouldn't happen, but I'm not positive.) */
6795 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6797 int i;
6798 for (i = 0; i < valuenregs; ++i)
6799 if (reload_reg_p[valueno + i] >= 0)
6800 return 0;
6803 /* Reject VALUE if it is a register being used for an input reload
6804 even if it is not one of those reserved. */
6806 if (reload_reg_p != 0)
6808 int i;
6809 for (i = 0; i < n_reloads; i++)
6810 if (rld[i].reg_rtx != 0 && rld[i].in)
6812 int regno1 = REGNO (rld[i].reg_rtx);
6813 int nregs1 = hard_regno_nregs[regno1]
6814 [GET_MODE (rld[i].reg_rtx)];
6815 if (regno1 < valueno + valuenregs
6816 && regno1 + nregs1 > valueno)
6817 return 0;
6821 if (goal_mem)
6822 /* We must treat frame pointer as varying here,
6823 since it can vary--in a nonlocal goto as generated by expand_goto. */
6824 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6826 /* Now verify that the values of GOAL and VALUE remain unaltered
6827 until INSN is reached. */
6829 p = insn;
6830 while (1)
6832 p = PREV_INSN (p);
6833 if (p == where)
6834 return value;
6836 /* Don't trust the conversion past a function call
6837 if either of the two is in a call-clobbered register, or memory. */
6838 if (CALL_P (p))
6840 int i;
6842 if (goal_mem || need_stable_sp)
6843 return 0;
6845 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6846 for (i = 0; i < nregs; ++i)
6847 if (call_used_regs[regno + i]
6848 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6849 return 0;
6851 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6852 for (i = 0; i < valuenregs; ++i)
6853 if (call_used_regs[valueno + i]
6854 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6855 return 0;
6858 if (INSN_P (p))
6860 pat = PATTERN (p);
6862 /* Watch out for unspec_volatile, and volatile asms. */
6863 if (volatile_insn_p (pat))
6864 return 0;
6866 /* If this insn P stores in either GOAL or VALUE, return 0.
6867 If GOAL is a memory ref and this insn writes memory, return 0.
6868 If GOAL is a memory ref and its address is not constant,
6869 and this insn P changes a register used in GOAL, return 0. */
6871 if (GET_CODE (pat) == COND_EXEC)
6872 pat = COND_EXEC_CODE (pat);
6873 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6875 rtx dest = SET_DEST (pat);
6876 while (GET_CODE (dest) == SUBREG
6877 || GET_CODE (dest) == ZERO_EXTRACT
6878 || GET_CODE (dest) == STRICT_LOW_PART)
6879 dest = XEXP (dest, 0);
6880 if (REG_P (dest))
6882 int xregno = REGNO (dest);
6883 int xnregs;
6884 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6885 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6886 else
6887 xnregs = 1;
6888 if (xregno < regno + nregs && xregno + xnregs > regno)
6889 return 0;
6890 if (xregno < valueno + valuenregs
6891 && xregno + xnregs > valueno)
6892 return 0;
6893 if (goal_mem_addr_varies
6894 && reg_overlap_mentioned_for_reload_p (dest, goal))
6895 return 0;
6896 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6897 return 0;
6899 else if (goal_mem && MEM_P (dest)
6900 && ! push_operand (dest, GET_MODE (dest)))
6901 return 0;
6902 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6903 && reg_equiv_memory_loc[regno] != 0)
6904 return 0;
6905 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6906 return 0;
6908 else if (GET_CODE (pat) == PARALLEL)
6910 int i;
6911 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6913 rtx v1 = XVECEXP (pat, 0, i);
6914 if (GET_CODE (v1) == COND_EXEC)
6915 v1 = COND_EXEC_CODE (v1);
6916 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6918 rtx dest = SET_DEST (v1);
6919 while (GET_CODE (dest) == SUBREG
6920 || GET_CODE (dest) == ZERO_EXTRACT
6921 || GET_CODE (dest) == STRICT_LOW_PART)
6922 dest = XEXP (dest, 0);
6923 if (REG_P (dest))
6925 int xregno = REGNO (dest);
6926 int xnregs;
6927 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6928 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6929 else
6930 xnregs = 1;
6931 if (xregno < regno + nregs
6932 && xregno + xnregs > regno)
6933 return 0;
6934 if (xregno < valueno + valuenregs
6935 && xregno + xnregs > valueno)
6936 return 0;
6937 if (goal_mem_addr_varies
6938 && reg_overlap_mentioned_for_reload_p (dest,
6939 goal))
6940 return 0;
6941 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6942 return 0;
6944 else if (goal_mem && MEM_P (dest)
6945 && ! push_operand (dest, GET_MODE (dest)))
6946 return 0;
6947 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6948 && reg_equiv_memory_loc[regno] != 0)
6949 return 0;
6950 else if (need_stable_sp
6951 && push_operand (dest, GET_MODE (dest)))
6952 return 0;
6957 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6959 rtx link;
6961 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6962 link = XEXP (link, 1))
6964 pat = XEXP (link, 0);
6965 if (GET_CODE (pat) == CLOBBER)
6967 rtx dest = SET_DEST (pat);
6969 if (REG_P (dest))
6971 int xregno = REGNO (dest);
6972 int xnregs
6973 = hard_regno_nregs[xregno][GET_MODE (dest)];
6975 if (xregno < regno + nregs
6976 && xregno + xnregs > regno)
6977 return 0;
6978 else if (xregno < valueno + valuenregs
6979 && xregno + xnregs > valueno)
6980 return 0;
6981 else if (goal_mem_addr_varies
6982 && reg_overlap_mentioned_for_reload_p (dest,
6983 goal))
6984 return 0;
6987 else if (goal_mem && MEM_P (dest)
6988 && ! push_operand (dest, GET_MODE (dest)))
6989 return 0;
6990 else if (need_stable_sp
6991 && push_operand (dest, GET_MODE (dest)))
6992 return 0;
6997 #ifdef AUTO_INC_DEC
6998 /* If this insn auto-increments or auto-decrements
6999 either regno or valueno, return 0 now.
7000 If GOAL is a memory ref and its address is not constant,
7001 and this insn P increments a register used in GOAL, return 0. */
7003 rtx link;
7005 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7006 if (REG_NOTE_KIND (link) == REG_INC
7007 && REG_P (XEXP (link, 0)))
7009 int incno = REGNO (XEXP (link, 0));
7010 if (incno < regno + nregs && incno >= regno)
7011 return 0;
7012 if (incno < valueno + valuenregs && incno >= valueno)
7013 return 0;
7014 if (goal_mem_addr_varies
7015 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7016 goal))
7017 return 0;
7020 #endif
7025 /* Find a place where INCED appears in an increment or decrement operator
7026 within X, and return the amount INCED is incremented or decremented by.
7027 The value is always positive. */
7029 static int
7030 find_inc_amount (rtx x, rtx inced)
7032 enum rtx_code code = GET_CODE (x);
7033 const char *fmt;
7034 int i;
7036 if (code == MEM)
7038 rtx addr = XEXP (x, 0);
7039 if ((GET_CODE (addr) == PRE_DEC
7040 || GET_CODE (addr) == POST_DEC
7041 || GET_CODE (addr) == PRE_INC
7042 || GET_CODE (addr) == POST_INC)
7043 && XEXP (addr, 0) == inced)
7044 return GET_MODE_SIZE (GET_MODE (x));
7045 else if ((GET_CODE (addr) == PRE_MODIFY
7046 || GET_CODE (addr) == POST_MODIFY)
7047 && GET_CODE (XEXP (addr, 1)) == PLUS
7048 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7049 && XEXP (addr, 0) == inced
7050 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7052 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7053 return i < 0 ? -i : i;
7057 fmt = GET_RTX_FORMAT (code);
7058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7060 if (fmt[i] == 'e')
7062 int tem = find_inc_amount (XEXP (x, i), inced);
7063 if (tem != 0)
7064 return tem;
7066 if (fmt[i] == 'E')
7068 int j;
7069 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7071 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7072 if (tem != 0)
7073 return tem;
7078 return 0;
7081 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7082 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7084 #ifdef AUTO_INC_DEC
7085 static int
7086 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7087 rtx insn)
7089 rtx link;
7091 gcc_assert (insn);
7093 if (! INSN_P (insn))
7094 return 0;
7096 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7097 if (REG_NOTE_KIND (link) == REG_INC)
7099 unsigned int test = (int) REGNO (XEXP (link, 0));
7100 if (test >= regno && test < endregno)
7101 return 1;
7103 return 0;
7105 #else
7107 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7109 #endif
7111 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7112 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7113 REG_INC. REGNO must refer to a hard register. */
7116 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7117 int sets)
7119 unsigned int nregs, endregno;
7121 /* regno must be a hard register. */
7122 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7124 nregs = hard_regno_nregs[regno][mode];
7125 endregno = regno + nregs;
7127 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7128 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7129 && REG_P (XEXP (PATTERN (insn), 0)))
7131 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7133 return test >= regno && test < endregno;
7136 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7137 return 1;
7139 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7141 int i = XVECLEN (PATTERN (insn), 0) - 1;
7143 for (; i >= 0; i--)
7145 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7146 if ((GET_CODE (elt) == CLOBBER
7147 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7148 && REG_P (XEXP (elt, 0)))
7150 unsigned int test = REGNO (XEXP (elt, 0));
7152 if (test >= regno && test < endregno)
7153 return 1;
7155 if (sets == 2
7156 && reg_inc_found_and_valid_p (regno, endregno, elt))
7157 return 1;
7161 return 0;
7164 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7166 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7168 int regno;
7170 if (GET_MODE (reloadreg) == mode)
7171 return reloadreg;
7173 regno = REGNO (reloadreg);
7175 if (WORDS_BIG_ENDIAN)
7176 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7177 - (int) hard_regno_nregs[regno][mode];
7179 return gen_rtx_REG (mode, regno);
7182 static const char *const reload_when_needed_name[] =
7184 "RELOAD_FOR_INPUT",
7185 "RELOAD_FOR_OUTPUT",
7186 "RELOAD_FOR_INSN",
7187 "RELOAD_FOR_INPUT_ADDRESS",
7188 "RELOAD_FOR_INPADDR_ADDRESS",
7189 "RELOAD_FOR_OUTPUT_ADDRESS",
7190 "RELOAD_FOR_OUTADDR_ADDRESS",
7191 "RELOAD_FOR_OPERAND_ADDRESS",
7192 "RELOAD_FOR_OPADDR_ADDR",
7193 "RELOAD_OTHER",
7194 "RELOAD_FOR_OTHER_ADDRESS"
7197 /* These functions are used to print the variables set by 'find_reloads' */
7199 void
7200 debug_reload_to_stream (FILE *f)
7202 int r;
7203 const char *prefix;
7205 if (! f)
7206 f = stderr;
7207 for (r = 0; r < n_reloads; r++)
7209 fprintf (f, "Reload %d: ", r);
7211 if (rld[r].in != 0)
7213 fprintf (f, "reload_in (%s) = ",
7214 GET_MODE_NAME (rld[r].inmode));
7215 print_inline_rtx (f, rld[r].in, 24);
7216 fprintf (f, "\n\t");
7219 if (rld[r].out != 0)
7221 fprintf (f, "reload_out (%s) = ",
7222 GET_MODE_NAME (rld[r].outmode));
7223 print_inline_rtx (f, rld[r].out, 24);
7224 fprintf (f, "\n\t");
7227 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7229 fprintf (f, "%s (opnum = %d)",
7230 reload_when_needed_name[(int) rld[r].when_needed],
7231 rld[r].opnum);
7233 if (rld[r].optional)
7234 fprintf (f, ", optional");
7236 if (rld[r].nongroup)
7237 fprintf (f, ", nongroup");
7239 if (rld[r].inc != 0)
7240 fprintf (f, ", inc by %d", rld[r].inc);
7242 if (rld[r].nocombine)
7243 fprintf (f, ", can't combine");
7245 if (rld[r].secondary_p)
7246 fprintf (f, ", secondary_reload_p");
7248 if (rld[r].in_reg != 0)
7250 fprintf (f, "\n\treload_in_reg: ");
7251 print_inline_rtx (f, rld[r].in_reg, 24);
7254 if (rld[r].out_reg != 0)
7256 fprintf (f, "\n\treload_out_reg: ");
7257 print_inline_rtx (f, rld[r].out_reg, 24);
7260 if (rld[r].reg_rtx != 0)
7262 fprintf (f, "\n\treload_reg_rtx: ");
7263 print_inline_rtx (f, rld[r].reg_rtx, 24);
7266 prefix = "\n\t";
7267 if (rld[r].secondary_in_reload != -1)
7269 fprintf (f, "%ssecondary_in_reload = %d",
7270 prefix, rld[r].secondary_in_reload);
7271 prefix = ", ";
7274 if (rld[r].secondary_out_reload != -1)
7275 fprintf (f, "%ssecondary_out_reload = %d\n",
7276 prefix, rld[r].secondary_out_reload);
7278 prefix = "\n\t";
7279 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7281 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7282 insn_data[rld[r].secondary_in_icode].name);
7283 prefix = ", ";
7286 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7287 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7288 insn_data[rld[r].secondary_out_icode].name);
7290 fprintf (f, "\n");
7294 void
7295 debug_reload (void)
7297 debug_reload_to_stream (stderr);