* gcc.dg/pr32912-3.c: Compile with -w.
[official-gcc.git] / gcc / dwarf2out.c
blob6c7f75a251d109ce34041257756861855fb1f6c9
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* TODO: Emit .debug_line header even when there are no functions, since
25 the file numbers are used by .debug_info. Alternately, leave
26 out locations for types and decls.
27 Avoid talking about ctors and op= for PODs.
28 Factor out common prologue sequences into multiple CIEs. */
30 /* The first part of this file deals with the DWARF 2 frame unwind
31 information, which is also used by the GCC efficient exception handling
32 mechanism. The second part, controlled only by an #ifdef
33 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
34 information. */
36 /* DWARF2 Abbreviation Glossary:
38 CFA = Canonical Frame Address
39 a fixed address on the stack which identifies a call frame.
40 We define it to be the value of SP just before the call insn.
41 The CFA register and offset, which may change during the course
42 of the function, are used to calculate its value at runtime.
44 CFI = Call Frame Instruction
45 an instruction for the DWARF2 abstract machine
47 CIE = Common Information Entry
48 information describing information common to one or more FDEs
50 DIE = Debugging Information Entry
52 FDE = Frame Description Entry
53 information describing the stack call frame, in particular,
54 how to restore registers
56 DW_CFA_... = DWARF2 CFA call frame instruction
57 DW_TAG_... = DWARF2 DIE tag */
59 #include "config.h"
60 #include "system.h"
61 #include "coretypes.h"
62 #include "tm.h"
63 #include "tree.h"
64 #include "version.h"
65 #include "flags.h"
66 #include "real.h"
67 #include "rtl.h"
68 #include "hard-reg-set.h"
69 #include "regs.h"
70 #include "insn-config.h"
71 #include "reload.h"
72 #include "function.h"
73 #include "output.h"
74 #include "expr.h"
75 #include "libfuncs.h"
76 #include "except.h"
77 #include "dwarf2.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
80 #include "toplev.h"
81 #include "varray.h"
82 #include "ggc.h"
83 #include "md5.h"
84 #include "tm_p.h"
85 #include "diagnostic.h"
86 #include "debug.h"
87 #include "target.h"
88 #include "langhooks.h"
89 #include "hashtab.h"
90 #include "cgraph.h"
91 #include "input.h"
93 #ifdef DWARF2_DEBUGGING_INFO
94 static void dwarf2out_source_line (unsigned int, const char *);
95 #endif
97 #ifndef DWARF2_FRAME_INFO
98 # ifdef DWARF2_DEBUGGING_INFO
99 # define DWARF2_FRAME_INFO \
100 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
101 # else
102 # define DWARF2_FRAME_INFO 0
103 # endif
104 #endif
106 /* Map register numbers held in the call frame info that gcc has
107 collected using DWARF_FRAME_REGNUM to those that should be output in
108 .debug_frame and .eh_frame. */
109 #ifndef DWARF2_FRAME_REG_OUT
110 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
111 #endif
113 /* Decide whether we want to emit frame unwind information for the current
114 translation unit. */
117 dwarf2out_do_frame (void)
119 /* We want to emit correct CFA location expressions or lists, so we
120 have to return true if we're going to output debug info, even if
121 we're not going to output frame or unwind info. */
122 return (write_symbols == DWARF2_DEBUG
123 || write_symbols == VMS_AND_DWARF2_DEBUG
124 || DWARF2_FRAME_INFO
125 #ifdef DWARF2_UNWIND_INFO
126 || (DWARF2_UNWIND_INFO
127 && (flag_unwind_tables
128 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
129 #endif
133 /* The size of the target's pointer type. */
134 #ifndef PTR_SIZE
135 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
136 #endif
138 /* Array of RTXes referenced by the debugging information, which therefore
139 must be kept around forever. */
140 static GTY(()) VEC(rtx,gc) *used_rtx_array;
142 /* A pointer to the base of a list of incomplete types which might be
143 completed at some later time. incomplete_types_list needs to be a
144 VEC(tree,gc) because we want to tell the garbage collector about
145 it. */
146 static GTY(()) VEC(tree,gc) *incomplete_types;
148 /* A pointer to the base of a table of references to declaration
149 scopes. This table is a display which tracks the nesting
150 of declaration scopes at the current scope and containing
151 scopes. This table is used to find the proper place to
152 define type declaration DIE's. */
153 static GTY(()) VEC(tree,gc) *decl_scope_table;
155 /* Pointers to various DWARF2 sections. */
156 static GTY(()) section *debug_info_section;
157 static GTY(()) section *debug_abbrev_section;
158 static GTY(()) section *debug_aranges_section;
159 static GTY(()) section *debug_macinfo_section;
160 static GTY(()) section *debug_line_section;
161 static GTY(()) section *debug_loc_section;
162 static GTY(()) section *debug_pubnames_section;
163 static GTY(()) section *debug_pubtypes_section;
164 static GTY(()) section *debug_str_section;
165 static GTY(()) section *debug_ranges_section;
166 static GTY(()) section *debug_frame_section;
168 /* How to start an assembler comment. */
169 #ifndef ASM_COMMENT_START
170 #define ASM_COMMENT_START ";#"
171 #endif
173 typedef struct dw_cfi_struct *dw_cfi_ref;
174 typedef struct dw_fde_struct *dw_fde_ref;
175 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
177 /* Call frames are described using a sequence of Call Frame
178 Information instructions. The register number, offset
179 and address fields are provided as possible operands;
180 their use is selected by the opcode field. */
182 enum dw_cfi_oprnd_type {
183 dw_cfi_oprnd_unused,
184 dw_cfi_oprnd_reg_num,
185 dw_cfi_oprnd_offset,
186 dw_cfi_oprnd_addr,
187 dw_cfi_oprnd_loc
190 typedef union dw_cfi_oprnd_struct GTY(())
192 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
193 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
194 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
195 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
197 dw_cfi_oprnd;
199 typedef struct dw_cfi_struct GTY(())
201 dw_cfi_ref dw_cfi_next;
202 enum dwarf_call_frame_info dw_cfi_opc;
203 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
204 dw_cfi_oprnd1;
205 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
206 dw_cfi_oprnd2;
208 dw_cfi_node;
210 /* This is how we define the location of the CFA. We use to handle it
211 as REG + OFFSET all the time, but now it can be more complex.
212 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
213 Instead of passing around REG and OFFSET, we pass a copy
214 of this structure. */
215 typedef struct cfa_loc GTY(())
217 HOST_WIDE_INT offset;
218 HOST_WIDE_INT base_offset;
219 unsigned int reg;
220 int indirect; /* 1 if CFA is accessed via a dereference. */
221 } dw_cfa_location;
223 /* All call frame descriptions (FDE's) in the GCC generated DWARF
224 refer to a single Common Information Entry (CIE), defined at
225 the beginning of the .debug_frame section. This use of a single
226 CIE obviates the need to keep track of multiple CIE's
227 in the DWARF generation routines below. */
229 typedef struct dw_fde_struct GTY(())
231 tree decl;
232 const char *dw_fde_begin;
233 const char *dw_fde_current_label;
234 const char *dw_fde_end;
235 const char *dw_fde_hot_section_label;
236 const char *dw_fde_hot_section_end_label;
237 const char *dw_fde_unlikely_section_label;
238 const char *dw_fde_unlikely_section_end_label;
239 bool dw_fde_switched_sections;
240 dw_cfi_ref dw_fde_cfi;
241 unsigned funcdef_number;
242 unsigned all_throwers_are_sibcalls : 1;
243 unsigned nothrow : 1;
244 unsigned uses_eh_lsda : 1;
246 dw_fde_node;
248 /* Maximum size (in bytes) of an artificially generated label. */
249 #define MAX_ARTIFICIAL_LABEL_BYTES 30
251 /* The size of addresses as they appear in the Dwarf 2 data.
252 Some architectures use word addresses to refer to code locations,
253 but Dwarf 2 info always uses byte addresses. On such machines,
254 Dwarf 2 addresses need to be larger than the architecture's
255 pointers. */
256 #ifndef DWARF2_ADDR_SIZE
257 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
258 #endif
260 /* The size in bytes of a DWARF field indicating an offset or length
261 relative to a debug info section, specified to be 4 bytes in the
262 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
263 as PTR_SIZE. */
265 #ifndef DWARF_OFFSET_SIZE
266 #define DWARF_OFFSET_SIZE 4
267 #endif
269 /* According to the (draft) DWARF 3 specification, the initial length
270 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
271 bytes are 0xffffffff, followed by the length stored in the next 8
272 bytes.
274 However, the SGI/MIPS ABI uses an initial length which is equal to
275 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
277 #ifndef DWARF_INITIAL_LENGTH_SIZE
278 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
279 #endif
281 #define DWARF_VERSION 2
283 /* Round SIZE up to the nearest BOUNDARY. */
284 #define DWARF_ROUND(SIZE,BOUNDARY) \
285 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
287 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
288 #ifndef DWARF_CIE_DATA_ALIGNMENT
289 #ifdef STACK_GROWS_DOWNWARD
290 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
291 #else
292 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
293 #endif
294 #endif
296 /* CIE identifier. */
297 #if HOST_BITS_PER_WIDE_INT >= 64
298 #define DWARF_CIE_ID \
299 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
300 #else
301 #define DWARF_CIE_ID DW_CIE_ID
302 #endif
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
329 struct indirect_string_node GTY(())
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344 /* Forward declarations for functions defined in this file. */
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref new_cfi (void);
349 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350 static void add_fde_cfi (const char *, dw_cfi_ref);
351 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352 static void lookup_cfa (dw_cfa_location *);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354 #ifdef DWARF2_UNWIND_INFO
355 static void initial_return_save (rtx);
356 #endif
357 static HOST_WIDE_INT stack_adjust_offset (const_rtx);
358 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
359 static void output_call_frame_info (int);
360 static void dwarf2out_stack_adjust (rtx, bool);
361 static void flush_queued_reg_saves (void);
362 static bool clobbers_queued_reg_save (const_rtx);
363 static void dwarf2out_frame_debug_expr (rtx, const char *);
365 /* Support for complex CFA locations. */
366 static void output_cfa_loc (dw_cfi_ref);
367 static void get_cfa_from_loc_descr (dw_cfa_location *,
368 struct dw_loc_descr_struct *);
369 static struct dw_loc_descr_struct *build_cfa_loc
370 (dw_cfa_location *, HOST_WIDE_INT);
371 static void def_cfa_1 (const char *, dw_cfa_location *);
373 /* How to start an assembler comment. */
374 #ifndef ASM_COMMENT_START
375 #define ASM_COMMENT_START ";#"
376 #endif
378 /* Data and reference forms for relocatable data. */
379 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
380 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
382 #ifndef DEBUG_FRAME_SECTION
383 #define DEBUG_FRAME_SECTION ".debug_frame"
384 #endif
386 #ifndef FUNC_BEGIN_LABEL
387 #define FUNC_BEGIN_LABEL "LFB"
388 #endif
390 #ifndef FUNC_END_LABEL
391 #define FUNC_END_LABEL "LFE"
392 #endif
394 #ifndef FRAME_BEGIN_LABEL
395 #define FRAME_BEGIN_LABEL "Lframe"
396 #endif
397 #define CIE_AFTER_SIZE_LABEL "LSCIE"
398 #define CIE_END_LABEL "LECIE"
399 #define FDE_LABEL "LSFDE"
400 #define FDE_AFTER_SIZE_LABEL "LASFDE"
401 #define FDE_END_LABEL "LEFDE"
402 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
403 #define LINE_NUMBER_END_LABEL "LELT"
404 #define LN_PROLOG_AS_LABEL "LASLTP"
405 #define LN_PROLOG_END_LABEL "LELTP"
406 #define DIE_LABEL_PREFIX "DW"
408 /* The DWARF 2 CFA column which tracks the return address. Normally this
409 is the column for PC, or the first column after all of the hard
410 registers. */
411 #ifndef DWARF_FRAME_RETURN_COLUMN
412 #ifdef PC_REGNUM
413 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
414 #else
415 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
416 #endif
417 #endif
419 /* The mapping from gcc register number to DWARF 2 CFA column number. By
420 default, we just provide columns for all registers. */
421 #ifndef DWARF_FRAME_REGNUM
422 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
423 #endif
425 /* Hook used by __throw. */
428 expand_builtin_dwarf_sp_column (void)
430 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
431 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
434 /* Return a pointer to a copy of the section string name S with all
435 attributes stripped off, and an asterisk prepended (for assemble_name). */
437 static inline char *
438 stripattributes (const char *s)
440 char *stripped = XNEWVEC (char, strlen (s) + 2);
441 char *p = stripped;
443 *p++ = '*';
445 while (*s && *s != ',')
446 *p++ = *s++;
448 *p = '\0';
449 return stripped;
452 /* MEM is a memory reference for the register size table, each element of
453 which has mode MODE. Initialize column C as a return address column. */
455 static void
456 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
458 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
459 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
460 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
463 /* Generate code to initialize the register size table. */
465 void
466 expand_builtin_init_dwarf_reg_sizes (tree address)
468 unsigned int i;
469 enum machine_mode mode = TYPE_MODE (char_type_node);
470 rtx addr = expand_normal (address);
471 rtx mem = gen_rtx_MEM (BLKmode, addr);
472 bool wrote_return_column = false;
474 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
476 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
478 if (rnum < DWARF_FRAME_REGISTERS)
480 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
481 enum machine_mode save_mode = reg_raw_mode[i];
482 HOST_WIDE_INT size;
484 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
485 save_mode = choose_hard_reg_mode (i, 1, true);
486 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
488 if (save_mode == VOIDmode)
489 continue;
490 wrote_return_column = true;
492 size = GET_MODE_SIZE (save_mode);
493 if (offset < 0)
494 continue;
496 emit_move_insn (adjust_address (mem, mode, offset),
497 gen_int_mode (size, mode));
501 if (!wrote_return_column)
502 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
504 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
505 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
506 #endif
508 targetm.init_dwarf_reg_sizes_extra (address);
511 /* Convert a DWARF call frame info. operation to its string name */
513 static const char *
514 dwarf_cfi_name (unsigned int cfi_opc)
516 switch (cfi_opc)
518 case DW_CFA_advance_loc:
519 return "DW_CFA_advance_loc";
520 case DW_CFA_offset:
521 return "DW_CFA_offset";
522 case DW_CFA_restore:
523 return "DW_CFA_restore";
524 case DW_CFA_nop:
525 return "DW_CFA_nop";
526 case DW_CFA_set_loc:
527 return "DW_CFA_set_loc";
528 case DW_CFA_advance_loc1:
529 return "DW_CFA_advance_loc1";
530 case DW_CFA_advance_loc2:
531 return "DW_CFA_advance_loc2";
532 case DW_CFA_advance_loc4:
533 return "DW_CFA_advance_loc4";
534 case DW_CFA_offset_extended:
535 return "DW_CFA_offset_extended";
536 case DW_CFA_restore_extended:
537 return "DW_CFA_restore_extended";
538 case DW_CFA_undefined:
539 return "DW_CFA_undefined";
540 case DW_CFA_same_value:
541 return "DW_CFA_same_value";
542 case DW_CFA_register:
543 return "DW_CFA_register";
544 case DW_CFA_remember_state:
545 return "DW_CFA_remember_state";
546 case DW_CFA_restore_state:
547 return "DW_CFA_restore_state";
548 case DW_CFA_def_cfa:
549 return "DW_CFA_def_cfa";
550 case DW_CFA_def_cfa_register:
551 return "DW_CFA_def_cfa_register";
552 case DW_CFA_def_cfa_offset:
553 return "DW_CFA_def_cfa_offset";
555 /* DWARF 3 */
556 case DW_CFA_def_cfa_expression:
557 return "DW_CFA_def_cfa_expression";
558 case DW_CFA_expression:
559 return "DW_CFA_expression";
560 case DW_CFA_offset_extended_sf:
561 return "DW_CFA_offset_extended_sf";
562 case DW_CFA_def_cfa_sf:
563 return "DW_CFA_def_cfa_sf";
564 case DW_CFA_def_cfa_offset_sf:
565 return "DW_CFA_def_cfa_offset_sf";
567 /* SGI/MIPS specific */
568 case DW_CFA_MIPS_advance_loc8:
569 return "DW_CFA_MIPS_advance_loc8";
571 /* GNU extensions */
572 case DW_CFA_GNU_window_save:
573 return "DW_CFA_GNU_window_save";
574 case DW_CFA_GNU_args_size:
575 return "DW_CFA_GNU_args_size";
576 case DW_CFA_GNU_negative_offset_extended:
577 return "DW_CFA_GNU_negative_offset_extended";
579 default:
580 return "DW_CFA_<unknown>";
584 /* Return a pointer to a newly allocated Call Frame Instruction. */
586 static inline dw_cfi_ref
587 new_cfi (void)
589 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
591 cfi->dw_cfi_next = NULL;
592 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
593 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
595 return cfi;
598 /* Add a Call Frame Instruction to list of instructions. */
600 static inline void
601 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
603 dw_cfi_ref *p;
605 /* Find the end of the chain. */
606 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
609 *p = cfi;
612 /* Generate a new label for the CFI info to refer to. */
614 char *
615 dwarf2out_cfi_label (void)
617 static char label[20];
619 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
620 ASM_OUTPUT_LABEL (asm_out_file, label);
621 return label;
624 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
625 or to the CIE if LABEL is NULL. */
627 static void
628 add_fde_cfi (const char *label, dw_cfi_ref cfi)
630 if (label)
632 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
634 if (*label == 0)
635 label = dwarf2out_cfi_label ();
637 if (fde->dw_fde_current_label == NULL
638 || strcmp (label, fde->dw_fde_current_label) != 0)
640 dw_cfi_ref xcfi;
642 label = xstrdup (label);
644 /* Set the location counter to the new label. */
645 xcfi = new_cfi ();
646 /* If we have a current label, advance from there, otherwise
647 set the location directly using set_loc. */
648 xcfi->dw_cfi_opc = fde->dw_fde_current_label
649 ? DW_CFA_advance_loc4
650 : DW_CFA_set_loc;
651 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
652 add_cfi (&fde->dw_fde_cfi, xcfi);
654 fde->dw_fde_current_label = label;
657 add_cfi (&fde->dw_fde_cfi, cfi);
660 else
661 add_cfi (&cie_cfi_head, cfi);
664 /* Subroutine of lookup_cfa. */
666 static void
667 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
669 switch (cfi->dw_cfi_opc)
671 case DW_CFA_def_cfa_offset:
672 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_offset_sf:
675 loc->offset
676 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
677 break;
678 case DW_CFA_def_cfa_register:
679 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
680 break;
681 case DW_CFA_def_cfa:
682 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
683 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
684 break;
685 case DW_CFA_def_cfa_sf:
686 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
687 loc->offset
688 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
689 break;
690 case DW_CFA_def_cfa_expression:
691 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
692 break;
693 default:
694 break;
698 /* Find the previous value for the CFA. */
700 static void
701 lookup_cfa (dw_cfa_location *loc)
703 dw_cfi_ref cfi;
705 loc->reg = INVALID_REGNUM;
706 loc->offset = 0;
707 loc->indirect = 0;
708 loc->base_offset = 0;
710 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
711 lookup_cfa_1 (cfi, loc);
713 if (fde_table_in_use)
715 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
716 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
717 lookup_cfa_1 (cfi, loc);
721 /* The current rule for calculating the DWARF2 canonical frame address. */
722 static dw_cfa_location cfa;
724 /* The register used for saving registers to the stack, and its offset
725 from the CFA. */
726 static dw_cfa_location cfa_store;
728 /* The running total of the size of arguments pushed onto the stack. */
729 static HOST_WIDE_INT args_size;
731 /* The last args_size we actually output. */
732 static HOST_WIDE_INT old_args_size;
734 /* Entry point to update the canonical frame address (CFA).
735 LABEL is passed to add_fde_cfi. The value of CFA is now to be
736 calculated from REG+OFFSET. */
738 void
739 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
741 dw_cfa_location loc;
742 loc.indirect = 0;
743 loc.base_offset = 0;
744 loc.reg = reg;
745 loc.offset = offset;
746 def_cfa_1 (label, &loc);
749 /* Determine if two dw_cfa_location structures define the same data. */
751 static bool
752 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
754 return (loc1->reg == loc2->reg
755 && loc1->offset == loc2->offset
756 && loc1->indirect == loc2->indirect
757 && (loc1->indirect == 0
758 || loc1->base_offset == loc2->base_offset));
761 /* This routine does the actual work. The CFA is now calculated from
762 the dw_cfa_location structure. */
764 static void
765 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
767 dw_cfi_ref cfi;
768 dw_cfa_location old_cfa, loc;
770 cfa = *loc_p;
771 loc = *loc_p;
773 if (cfa_store.reg == loc.reg && loc.indirect == 0)
774 cfa_store.offset = loc.offset;
776 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
777 lookup_cfa (&old_cfa);
779 /* If nothing changed, no need to issue any call frame instructions. */
780 if (cfa_equal_p (&loc, &old_cfa))
781 return;
783 cfi = new_cfi ();
785 if (loc.reg == old_cfa.reg && !loc.indirect)
787 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
788 the CFA register did not change but the offset did. */
789 if (loc.offset < 0)
791 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
792 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
794 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
795 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
797 else
799 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
800 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
804 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
805 else if (loc.offset == old_cfa.offset
806 && old_cfa.reg != INVALID_REGNUM
807 && !loc.indirect)
809 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
810 indicating the CFA register has changed to <register> but the
811 offset has not changed. */
812 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
813 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
815 #endif
817 else if (loc.indirect == 0)
819 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
820 indicating the CFA register has changed to <register> with
821 the specified offset. */
822 if (loc.offset < 0)
824 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
825 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
827 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
828 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
829 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
831 else
833 cfi->dw_cfi_opc = DW_CFA_def_cfa;
834 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
835 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
838 else
840 /* Construct a DW_CFA_def_cfa_expression instruction to
841 calculate the CFA using a full location expression since no
842 register-offset pair is available. */
843 struct dw_loc_descr_struct *loc_list;
845 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
846 loc_list = build_cfa_loc (&loc, 0);
847 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
850 add_fde_cfi (label, cfi);
853 /* Add the CFI for saving a register. REG is the CFA column number.
854 LABEL is passed to add_fde_cfi.
855 If SREG is -1, the register is saved at OFFSET from the CFA;
856 otherwise it is saved in SREG. */
858 static void
859 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
861 dw_cfi_ref cfi = new_cfi ();
863 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
865 if (sreg == INVALID_REGNUM)
867 if (reg & ~0x3f)
868 /* The register number won't fit in 6 bits, so we have to use
869 the long form. */
870 cfi->dw_cfi_opc = DW_CFA_offset_extended;
871 else
872 cfi->dw_cfi_opc = DW_CFA_offset;
874 #ifdef ENABLE_CHECKING
876 /* If we get an offset that is not a multiple of
877 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
878 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
879 description. */
880 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
882 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
884 #endif
885 offset /= DWARF_CIE_DATA_ALIGNMENT;
886 if (offset < 0)
887 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
889 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
891 else if (sreg == reg)
892 cfi->dw_cfi_opc = DW_CFA_same_value;
893 else
895 cfi->dw_cfi_opc = DW_CFA_register;
896 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
899 add_fde_cfi (label, cfi);
902 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
903 This CFI tells the unwinder that it needs to restore the window registers
904 from the previous frame's window save area.
906 ??? Perhaps we should note in the CIE where windows are saved (instead of
907 assuming 0(cfa)) and what registers are in the window. */
909 void
910 dwarf2out_window_save (const char *label)
912 dw_cfi_ref cfi = new_cfi ();
914 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
915 add_fde_cfi (label, cfi);
918 /* Add a CFI to update the running total of the size of arguments
919 pushed onto the stack. */
921 void
922 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
924 dw_cfi_ref cfi;
926 if (size == old_args_size)
927 return;
929 old_args_size = size;
931 cfi = new_cfi ();
932 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
933 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
934 add_fde_cfi (label, cfi);
937 /* Entry point for saving a register to the stack. REG is the GCC register
938 number. LABEL and OFFSET are passed to reg_save. */
940 void
941 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
943 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
946 /* Entry point for saving the return address in the stack.
947 LABEL and OFFSET are passed to reg_save. */
949 void
950 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
952 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
955 /* Entry point for saving the return address in a register.
956 LABEL and SREG are passed to reg_save. */
958 void
959 dwarf2out_return_reg (const char *label, unsigned int sreg)
961 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
964 #ifdef DWARF2_UNWIND_INFO
965 /* Record the initial position of the return address. RTL is
966 INCOMING_RETURN_ADDR_RTX. */
968 static void
969 initial_return_save (rtx rtl)
971 unsigned int reg = INVALID_REGNUM;
972 HOST_WIDE_INT offset = 0;
974 switch (GET_CODE (rtl))
976 case REG:
977 /* RA is in a register. */
978 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
979 break;
981 case MEM:
982 /* RA is on the stack. */
983 rtl = XEXP (rtl, 0);
984 switch (GET_CODE (rtl))
986 case REG:
987 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
988 offset = 0;
989 break;
991 case PLUS:
992 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
993 offset = INTVAL (XEXP (rtl, 1));
994 break;
996 case MINUS:
997 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
998 offset = -INTVAL (XEXP (rtl, 1));
999 break;
1001 default:
1002 gcc_unreachable ();
1005 break;
1007 case PLUS:
1008 /* The return address is at some offset from any value we can
1009 actually load. For instance, on the SPARC it is in %i7+8. Just
1010 ignore the offset for now; it doesn't matter for unwinding frames. */
1011 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1012 initial_return_save (XEXP (rtl, 0));
1013 return;
1015 default:
1016 gcc_unreachable ();
1019 if (reg != DWARF_FRAME_RETURN_COLUMN)
1020 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1022 #endif
1024 /* Given a SET, calculate the amount of stack adjustment it
1025 contains. */
1027 static HOST_WIDE_INT
1028 stack_adjust_offset (const_rtx pattern)
1030 const_rtx src = SET_SRC (pattern);
1031 const_rtx dest = SET_DEST (pattern);
1032 HOST_WIDE_INT offset = 0;
1033 enum rtx_code code;
1035 if (dest == stack_pointer_rtx)
1037 /* (set (reg sp) (plus (reg sp) (const_int))) */
1038 code = GET_CODE (src);
1039 if (! (code == PLUS || code == MINUS)
1040 || XEXP (src, 0) != stack_pointer_rtx
1041 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1042 return 0;
1044 offset = INTVAL (XEXP (src, 1));
1045 if (code == PLUS)
1046 offset = -offset;
1048 else if (MEM_P (dest))
1050 /* (set (mem (pre_dec (reg sp))) (foo)) */
1051 src = XEXP (dest, 0);
1052 code = GET_CODE (src);
1054 switch (code)
1056 case PRE_MODIFY:
1057 case POST_MODIFY:
1058 if (XEXP (src, 0) == stack_pointer_rtx)
1060 rtx val = XEXP (XEXP (src, 1), 1);
1061 /* We handle only adjustments by constant amount. */
1062 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1063 && GET_CODE (val) == CONST_INT);
1064 offset = -INTVAL (val);
1065 break;
1067 return 0;
1069 case PRE_DEC:
1070 case POST_DEC:
1071 if (XEXP (src, 0) == stack_pointer_rtx)
1073 offset = GET_MODE_SIZE (GET_MODE (dest));
1074 break;
1076 return 0;
1078 case PRE_INC:
1079 case POST_INC:
1080 if (XEXP (src, 0) == stack_pointer_rtx)
1082 offset = -GET_MODE_SIZE (GET_MODE (dest));
1083 break;
1085 return 0;
1087 default:
1088 return 0;
1091 else
1092 return 0;
1094 return offset;
1097 /* Check INSN to see if it looks like a push or a stack adjustment, and
1098 make a note of it if it does. EH uses this information to find out how
1099 much extra space it needs to pop off the stack. */
1101 static void
1102 dwarf2out_stack_adjust (rtx insn, bool after_p)
1104 HOST_WIDE_INT offset;
1105 const char *label;
1106 int i;
1108 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1109 with this function. Proper support would require all frame-related
1110 insns to be marked, and to be able to handle saving state around
1111 epilogues textually in the middle of the function. */
1112 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1113 return;
1115 /* If only calls can throw, and we have a frame pointer,
1116 save up adjustments until we see the CALL_INSN. */
1117 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1119 if (CALL_P (insn) && !after_p)
1121 /* Extract the size of the args from the CALL rtx itself. */
1122 insn = PATTERN (insn);
1123 if (GET_CODE (insn) == PARALLEL)
1124 insn = XVECEXP (insn, 0, 0);
1125 if (GET_CODE (insn) == SET)
1126 insn = SET_SRC (insn);
1127 gcc_assert (GET_CODE (insn) == CALL);
1128 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1130 return;
1133 if (CALL_P (insn) && !after_p)
1135 if (!flag_asynchronous_unwind_tables)
1136 dwarf2out_args_size ("", args_size);
1137 return;
1139 else if (BARRIER_P (insn))
1141 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1142 the compiler will have already emitted a stack adjustment, but
1143 doesn't bother for calls to noreturn functions. */
1144 #ifdef STACK_GROWS_DOWNWARD
1145 offset = -args_size;
1146 #else
1147 offset = args_size;
1148 #endif
1150 else if (GET_CODE (PATTERN (insn)) == SET)
1151 offset = stack_adjust_offset (PATTERN (insn));
1152 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1153 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1155 /* There may be stack adjustments inside compound insns. Search
1156 for them. */
1157 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1158 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1159 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1161 else
1162 return;
1164 if (offset == 0)
1165 return;
1167 if (cfa.reg == STACK_POINTER_REGNUM)
1168 cfa.offset += offset;
1170 #ifndef STACK_GROWS_DOWNWARD
1171 offset = -offset;
1172 #endif
1174 args_size += offset;
1175 if (args_size < 0)
1176 args_size = 0;
1178 label = dwarf2out_cfi_label ();
1179 def_cfa_1 (label, &cfa);
1180 if (flag_asynchronous_unwind_tables)
1181 dwarf2out_args_size (label, args_size);
1184 #endif
1186 /* We delay emitting a register save until either (a) we reach the end
1187 of the prologue or (b) the register is clobbered. This clusters
1188 register saves so that there are fewer pc advances. */
1190 struct queued_reg_save GTY(())
1192 struct queued_reg_save *next;
1193 rtx reg;
1194 HOST_WIDE_INT cfa_offset;
1195 rtx saved_reg;
1198 static GTY(()) struct queued_reg_save *queued_reg_saves;
1200 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1201 struct reg_saved_in_data GTY(()) {
1202 rtx orig_reg;
1203 rtx saved_in_reg;
1206 /* A list of registers saved in other registers.
1207 The list intentionally has a small maximum capacity of 4; if your
1208 port needs more than that, you might consider implementing a
1209 more efficient data structure. */
1210 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1211 static GTY(()) size_t num_regs_saved_in_regs;
1213 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1214 static const char *last_reg_save_label;
1216 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1217 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1219 static void
1220 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1222 struct queued_reg_save *q;
1224 /* Duplicates waste space, but it's also necessary to remove them
1225 for correctness, since the queue gets output in reverse
1226 order. */
1227 for (q = queued_reg_saves; q != NULL; q = q->next)
1228 if (REGNO (q->reg) == REGNO (reg))
1229 break;
1231 if (q == NULL)
1233 q = ggc_alloc (sizeof (*q));
1234 q->next = queued_reg_saves;
1235 queued_reg_saves = q;
1238 q->reg = reg;
1239 q->cfa_offset = offset;
1240 q->saved_reg = sreg;
1242 last_reg_save_label = label;
1245 /* Output all the entries in QUEUED_REG_SAVES. */
1247 static void
1248 flush_queued_reg_saves (void)
1250 struct queued_reg_save *q;
1252 for (q = queued_reg_saves; q; q = q->next)
1254 size_t i;
1255 unsigned int reg, sreg;
1257 for (i = 0; i < num_regs_saved_in_regs; i++)
1258 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1259 break;
1260 if (q->saved_reg && i == num_regs_saved_in_regs)
1262 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1263 num_regs_saved_in_regs++;
1265 if (i != num_regs_saved_in_regs)
1267 regs_saved_in_regs[i].orig_reg = q->reg;
1268 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1271 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1272 if (q->saved_reg)
1273 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1274 else
1275 sreg = INVALID_REGNUM;
1276 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1279 queued_reg_saves = NULL;
1280 last_reg_save_label = NULL;
1283 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1284 location for? Or, does it clobber a register which we've previously
1285 said that some other register is saved in, and for which we now
1286 have a new location for? */
1288 static bool
1289 clobbers_queued_reg_save (const_rtx insn)
1291 struct queued_reg_save *q;
1293 for (q = queued_reg_saves; q; q = q->next)
1295 size_t i;
1296 if (modified_in_p (q->reg, insn))
1297 return true;
1298 for (i = 0; i < num_regs_saved_in_regs; i++)
1299 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1300 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1301 return true;
1304 return false;
1307 /* Entry point for saving the first register into the second. */
1309 void
1310 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1312 size_t i;
1313 unsigned int regno, sregno;
1315 for (i = 0; i < num_regs_saved_in_regs; i++)
1316 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1317 break;
1318 if (i == num_regs_saved_in_regs)
1320 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1321 num_regs_saved_in_regs++;
1323 regs_saved_in_regs[i].orig_reg = reg;
1324 regs_saved_in_regs[i].saved_in_reg = sreg;
1326 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1327 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1328 reg_save (label, regno, sregno, 0);
1331 /* What register, if any, is currently saved in REG? */
1333 static rtx
1334 reg_saved_in (rtx reg)
1336 unsigned int regn = REGNO (reg);
1337 size_t i;
1338 struct queued_reg_save *q;
1340 for (q = queued_reg_saves; q; q = q->next)
1341 if (q->saved_reg && regn == REGNO (q->saved_reg))
1342 return q->reg;
1344 for (i = 0; i < num_regs_saved_in_regs; i++)
1345 if (regs_saved_in_regs[i].saved_in_reg
1346 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1347 return regs_saved_in_regs[i].orig_reg;
1349 return NULL_RTX;
1353 /* A temporary register holding an integral value used in adjusting SP
1354 or setting up the store_reg. The "offset" field holds the integer
1355 value, not an offset. */
1356 static dw_cfa_location cfa_temp;
1358 /* Record call frame debugging information for an expression EXPR,
1359 which either sets SP or FP (adjusting how we calculate the frame
1360 address) or saves a register to the stack or another register.
1361 LABEL indicates the address of EXPR.
1363 This function encodes a state machine mapping rtxes to actions on
1364 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1365 users need not read the source code.
1367 The High-Level Picture
1369 Changes in the register we use to calculate the CFA: Currently we
1370 assume that if you copy the CFA register into another register, we
1371 should take the other one as the new CFA register; this seems to
1372 work pretty well. If it's wrong for some target, it's simple
1373 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1375 Changes in the register we use for saving registers to the stack:
1376 This is usually SP, but not always. Again, we deduce that if you
1377 copy SP into another register (and SP is not the CFA register),
1378 then the new register is the one we will be using for register
1379 saves. This also seems to work.
1381 Register saves: There's not much guesswork about this one; if
1382 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1383 register save, and the register used to calculate the destination
1384 had better be the one we think we're using for this purpose.
1385 It's also assumed that a copy from a call-saved register to another
1386 register is saving that register if RTX_FRAME_RELATED_P is set on
1387 that instruction. If the copy is from a call-saved register to
1388 the *same* register, that means that the register is now the same
1389 value as in the caller.
1391 Except: If the register being saved is the CFA register, and the
1392 offset is nonzero, we are saving the CFA, so we assume we have to
1393 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1394 the intent is to save the value of SP from the previous frame.
1396 In addition, if a register has previously been saved to a different
1397 register,
1399 Invariants / Summaries of Rules
1401 cfa current rule for calculating the CFA. It usually
1402 consists of a register and an offset.
1403 cfa_store register used by prologue code to save things to the stack
1404 cfa_store.offset is the offset from the value of
1405 cfa_store.reg to the actual CFA
1406 cfa_temp register holding an integral value. cfa_temp.offset
1407 stores the value, which will be used to adjust the
1408 stack pointer. cfa_temp is also used like cfa_store,
1409 to track stores to the stack via fp or a temp reg.
1411 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1412 with cfa.reg as the first operand changes the cfa.reg and its
1413 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1414 cfa_temp.offset.
1416 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1417 expression yielding a constant. This sets cfa_temp.reg
1418 and cfa_temp.offset.
1420 Rule 5: Create a new register cfa_store used to save items to the
1421 stack.
1423 Rules 10-14: Save a register to the stack. Define offset as the
1424 difference of the original location and cfa_store's
1425 location (or cfa_temp's location if cfa_temp is used).
1427 The Rules
1429 "{a,b}" indicates a choice of a xor b.
1430 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1432 Rule 1:
1433 (set <reg1> <reg2>:cfa.reg)
1434 effects: cfa.reg = <reg1>
1435 cfa.offset unchanged
1436 cfa_temp.reg = <reg1>
1437 cfa_temp.offset = cfa.offset
1439 Rule 2:
1440 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1441 {<const_int>,<reg>:cfa_temp.reg}))
1442 effects: cfa.reg = sp if fp used
1443 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1444 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1445 if cfa_store.reg==sp
1447 Rule 3:
1448 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1449 effects: cfa.reg = fp
1450 cfa_offset += +/- <const_int>
1452 Rule 4:
1453 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1454 constraints: <reg1> != fp
1455 <reg1> != sp
1456 effects: cfa.reg = <reg1>
1457 cfa_temp.reg = <reg1>
1458 cfa_temp.offset = cfa.offset
1460 Rule 5:
1461 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1462 constraints: <reg1> != fp
1463 <reg1> != sp
1464 effects: cfa_store.reg = <reg1>
1465 cfa_store.offset = cfa.offset - cfa_temp.offset
1467 Rule 6:
1468 (set <reg> <const_int>)
1469 effects: cfa_temp.reg = <reg>
1470 cfa_temp.offset = <const_int>
1472 Rule 7:
1473 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1474 effects: cfa_temp.reg = <reg1>
1475 cfa_temp.offset |= <const_int>
1477 Rule 8:
1478 (set <reg> (high <exp>))
1479 effects: none
1481 Rule 9:
1482 (set <reg> (lo_sum <exp> <const_int>))
1483 effects: cfa_temp.reg = <reg>
1484 cfa_temp.offset = <const_int>
1486 Rule 10:
1487 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1488 effects: cfa_store.offset -= <const_int>
1489 cfa.offset = cfa_store.offset if cfa.reg == sp
1490 cfa.reg = sp
1491 cfa.base_offset = -cfa_store.offset
1493 Rule 11:
1494 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1495 effects: cfa_store.offset += -/+ mode_size(mem)
1496 cfa.offset = cfa_store.offset if cfa.reg == sp
1497 cfa.reg = sp
1498 cfa.base_offset = -cfa_store.offset
1500 Rule 12:
1501 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1503 <reg2>)
1504 effects: cfa.reg = <reg1>
1505 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1507 Rule 13:
1508 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1509 effects: cfa.reg = <reg1>
1510 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1512 Rule 14:
1513 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1514 effects: cfa.reg = <reg1>
1515 cfa.base_offset = -cfa_temp.offset
1516 cfa_temp.offset -= mode_size(mem)
1518 Rule 15:
1519 (set <reg> {unspec, unspec_volatile})
1520 effects: target-dependent */
1522 static void
1523 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1525 rtx src, dest;
1526 HOST_WIDE_INT offset;
1528 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1529 the PARALLEL independently. The first element is always processed if
1530 it is a SET. This is for backward compatibility. Other elements
1531 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1532 flag is set in them. */
1533 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1535 int par_index;
1536 int limit = XVECLEN (expr, 0);
1537 rtx elem;
1539 /* PARALLELs have strict read-modify-write semantics, so we
1540 ought to evaluate every rvalue before changing any lvalue.
1541 It's cumbersome to do that in general, but there's an
1542 easy approximation that is enough for all current users:
1543 handle register saves before register assignments. */
1544 if (GET_CODE (expr) == PARALLEL)
1545 for (par_index = 0; par_index < limit; par_index++)
1547 elem = XVECEXP (expr, 0, par_index);
1548 if (GET_CODE (elem) == SET
1549 && MEM_P (SET_DEST (elem))
1550 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1551 dwarf2out_frame_debug_expr (elem, label);
1554 for (par_index = 0; par_index < limit; par_index++)
1556 elem = XVECEXP (expr, 0, par_index);
1557 if (GET_CODE (elem) == SET
1558 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1559 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1560 dwarf2out_frame_debug_expr (elem, label);
1562 return;
1565 gcc_assert (GET_CODE (expr) == SET);
1567 src = SET_SRC (expr);
1568 dest = SET_DEST (expr);
1570 if (REG_P (src))
1572 rtx rsi = reg_saved_in (src);
1573 if (rsi)
1574 src = rsi;
1577 switch (GET_CODE (dest))
1579 case REG:
1580 switch (GET_CODE (src))
1582 /* Setting FP from SP. */
1583 case REG:
1584 if (cfa.reg == (unsigned) REGNO (src))
1586 /* Rule 1 */
1587 /* Update the CFA rule wrt SP or FP. Make sure src is
1588 relative to the current CFA register.
1590 We used to require that dest be either SP or FP, but the
1591 ARM copies SP to a temporary register, and from there to
1592 FP. So we just rely on the backends to only set
1593 RTX_FRAME_RELATED_P on appropriate insns. */
1594 cfa.reg = REGNO (dest);
1595 cfa_temp.reg = cfa.reg;
1596 cfa_temp.offset = cfa.offset;
1598 else
1600 /* Saving a register in a register. */
1601 gcc_assert (!fixed_regs [REGNO (dest)]
1602 /* For the SPARC and its register window. */
1603 || (DWARF_FRAME_REGNUM (REGNO (src))
1604 == DWARF_FRAME_RETURN_COLUMN));
1605 queue_reg_save (label, src, dest, 0);
1607 break;
1609 case PLUS:
1610 case MINUS:
1611 case LO_SUM:
1612 if (dest == stack_pointer_rtx)
1614 /* Rule 2 */
1615 /* Adjusting SP. */
1616 switch (GET_CODE (XEXP (src, 1)))
1618 case CONST_INT:
1619 offset = INTVAL (XEXP (src, 1));
1620 break;
1621 case REG:
1622 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1623 == cfa_temp.reg);
1624 offset = cfa_temp.offset;
1625 break;
1626 default:
1627 gcc_unreachable ();
1630 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1632 /* Restoring SP from FP in the epilogue. */
1633 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1634 cfa.reg = STACK_POINTER_REGNUM;
1636 else if (GET_CODE (src) == LO_SUM)
1637 /* Assume we've set the source reg of the LO_SUM from sp. */
1639 else
1640 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1642 if (GET_CODE (src) != MINUS)
1643 offset = -offset;
1644 if (cfa.reg == STACK_POINTER_REGNUM)
1645 cfa.offset += offset;
1646 if (cfa_store.reg == STACK_POINTER_REGNUM)
1647 cfa_store.offset += offset;
1649 else if (dest == hard_frame_pointer_rtx)
1651 /* Rule 3 */
1652 /* Either setting the FP from an offset of the SP,
1653 or adjusting the FP */
1654 gcc_assert (frame_pointer_needed);
1656 gcc_assert (REG_P (XEXP (src, 0))
1657 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1658 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1659 offset = INTVAL (XEXP (src, 1));
1660 if (GET_CODE (src) != MINUS)
1661 offset = -offset;
1662 cfa.offset += offset;
1663 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1665 else
1667 gcc_assert (GET_CODE (src) != MINUS);
1669 /* Rule 4 */
1670 if (REG_P (XEXP (src, 0))
1671 && REGNO (XEXP (src, 0)) == cfa.reg
1672 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1674 /* Setting a temporary CFA register that will be copied
1675 into the FP later on. */
1676 offset = - INTVAL (XEXP (src, 1));
1677 cfa.offset += offset;
1678 cfa.reg = REGNO (dest);
1679 /* Or used to save regs to the stack. */
1680 cfa_temp.reg = cfa.reg;
1681 cfa_temp.offset = cfa.offset;
1684 /* Rule 5 */
1685 else if (REG_P (XEXP (src, 0))
1686 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 && XEXP (src, 1) == stack_pointer_rtx)
1689 /* Setting a scratch register that we will use instead
1690 of SP for saving registers to the stack. */
1691 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1692 cfa_store.reg = REGNO (dest);
1693 cfa_store.offset = cfa.offset - cfa_temp.offset;
1696 /* Rule 9 */
1697 else if (GET_CODE (src) == LO_SUM
1698 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1700 cfa_temp.reg = REGNO (dest);
1701 cfa_temp.offset = INTVAL (XEXP (src, 1));
1703 else
1704 gcc_unreachable ();
1706 break;
1708 /* Rule 6 */
1709 case CONST_INT:
1710 cfa_temp.reg = REGNO (dest);
1711 cfa_temp.offset = INTVAL (src);
1712 break;
1714 /* Rule 7 */
1715 case IOR:
1716 gcc_assert (REG_P (XEXP (src, 0))
1717 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1718 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1720 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1721 cfa_temp.reg = REGNO (dest);
1722 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1723 break;
1725 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1726 which will fill in all of the bits. */
1727 /* Rule 8 */
1728 case HIGH:
1729 break;
1731 /* Rule 15 */
1732 case UNSPEC:
1733 case UNSPEC_VOLATILE:
1734 gcc_assert (targetm.dwarf_handle_frame_unspec);
1735 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1736 return;
1738 default:
1739 gcc_unreachable ();
1742 def_cfa_1 (label, &cfa);
1743 break;
1745 case MEM:
1746 gcc_assert (REG_P (src));
1748 /* Saving a register to the stack. Make sure dest is relative to the
1749 CFA register. */
1750 switch (GET_CODE (XEXP (dest, 0)))
1752 /* Rule 10 */
1753 /* With a push. */
1754 case PRE_MODIFY:
1755 /* We can't handle variable size modifications. */
1756 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1757 == CONST_INT);
1758 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1760 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1761 && cfa_store.reg == STACK_POINTER_REGNUM);
1763 cfa_store.offset += offset;
1764 if (cfa.reg == STACK_POINTER_REGNUM)
1765 cfa.offset = cfa_store.offset;
1767 offset = -cfa_store.offset;
1768 break;
1770 /* Rule 11 */
1771 case PRE_INC:
1772 case PRE_DEC:
1773 offset = GET_MODE_SIZE (GET_MODE (dest));
1774 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1775 offset = -offset;
1777 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1778 && cfa_store.reg == STACK_POINTER_REGNUM);
1780 cfa_store.offset += offset;
1781 if (cfa.reg == STACK_POINTER_REGNUM)
1782 cfa.offset = cfa_store.offset;
1784 offset = -cfa_store.offset;
1785 break;
1787 /* Rule 12 */
1788 /* With an offset. */
1789 case PLUS:
1790 case MINUS:
1791 case LO_SUM:
1793 int regno;
1795 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1796 && REG_P (XEXP (XEXP (dest, 0), 0)));
1797 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1798 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1799 offset = -offset;
1801 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1803 if (cfa_store.reg == (unsigned) regno)
1804 offset -= cfa_store.offset;
1805 else
1807 gcc_assert (cfa_temp.reg == (unsigned) regno);
1808 offset -= cfa_temp.offset;
1811 break;
1813 /* Rule 13 */
1814 /* Without an offset. */
1815 case REG:
1817 int regno = REGNO (XEXP (dest, 0));
1819 if (cfa_store.reg == (unsigned) regno)
1820 offset = -cfa_store.offset;
1821 else
1823 gcc_assert (cfa_temp.reg == (unsigned) regno);
1824 offset = -cfa_temp.offset;
1827 break;
1829 /* Rule 14 */
1830 case POST_INC:
1831 gcc_assert (cfa_temp.reg
1832 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1833 offset = -cfa_temp.offset;
1834 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1835 break;
1837 default:
1838 gcc_unreachable ();
1841 if (REGNO (src) != STACK_POINTER_REGNUM
1842 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1843 && (unsigned) REGNO (src) == cfa.reg)
1845 /* We're storing the current CFA reg into the stack. */
1847 if (cfa.offset == 0)
1849 /* If the source register is exactly the CFA, assume
1850 we're saving SP like any other register; this happens
1851 on the ARM. */
1852 def_cfa_1 (label, &cfa);
1853 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1854 break;
1856 else
1858 /* Otherwise, we'll need to look in the stack to
1859 calculate the CFA. */
1860 rtx x = XEXP (dest, 0);
1862 if (!REG_P (x))
1863 x = XEXP (x, 0);
1864 gcc_assert (REG_P (x));
1866 cfa.reg = REGNO (x);
1867 cfa.base_offset = offset;
1868 cfa.indirect = 1;
1869 def_cfa_1 (label, &cfa);
1870 break;
1874 def_cfa_1 (label, &cfa);
1875 queue_reg_save (label, src, NULL_RTX, offset);
1876 break;
1878 default:
1879 gcc_unreachable ();
1883 /* Record call frame debugging information for INSN, which either
1884 sets SP or FP (adjusting how we calculate the frame address) or saves a
1885 register to the stack. If INSN is NULL_RTX, initialize our state.
1887 If AFTER_P is false, we're being called before the insn is emitted,
1888 otherwise after. Call instructions get invoked twice. */
1890 void
1891 dwarf2out_frame_debug (rtx insn, bool after_p)
1893 const char *label;
1894 rtx src;
1896 if (insn == NULL_RTX)
1898 size_t i;
1900 /* Flush any queued register saves. */
1901 flush_queued_reg_saves ();
1903 /* Set up state for generating call frame debug info. */
1904 lookup_cfa (&cfa);
1905 gcc_assert (cfa.reg
1906 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1908 cfa.reg = STACK_POINTER_REGNUM;
1909 cfa_store = cfa;
1910 cfa_temp.reg = -1;
1911 cfa_temp.offset = 0;
1913 for (i = 0; i < num_regs_saved_in_regs; i++)
1915 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1916 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1918 num_regs_saved_in_regs = 0;
1919 return;
1922 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1923 flush_queued_reg_saves ();
1925 if (! RTX_FRAME_RELATED_P (insn))
1927 if (!ACCUMULATE_OUTGOING_ARGS)
1928 dwarf2out_stack_adjust (insn, after_p);
1929 return;
1932 label = dwarf2out_cfi_label ();
1933 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1934 if (src)
1935 insn = XEXP (src, 0);
1936 else
1937 insn = PATTERN (insn);
1939 dwarf2out_frame_debug_expr (insn, label);
1942 #endif
1944 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1945 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1946 (enum dwarf_call_frame_info cfi);
1948 static enum dw_cfi_oprnd_type
1949 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1951 switch (cfi)
1953 case DW_CFA_nop:
1954 case DW_CFA_GNU_window_save:
1955 return dw_cfi_oprnd_unused;
1957 case DW_CFA_set_loc:
1958 case DW_CFA_advance_loc1:
1959 case DW_CFA_advance_loc2:
1960 case DW_CFA_advance_loc4:
1961 case DW_CFA_MIPS_advance_loc8:
1962 return dw_cfi_oprnd_addr;
1964 case DW_CFA_offset:
1965 case DW_CFA_offset_extended:
1966 case DW_CFA_def_cfa:
1967 case DW_CFA_offset_extended_sf:
1968 case DW_CFA_def_cfa_sf:
1969 case DW_CFA_restore_extended:
1970 case DW_CFA_undefined:
1971 case DW_CFA_same_value:
1972 case DW_CFA_def_cfa_register:
1973 case DW_CFA_register:
1974 return dw_cfi_oprnd_reg_num;
1976 case DW_CFA_def_cfa_offset:
1977 case DW_CFA_GNU_args_size:
1978 case DW_CFA_def_cfa_offset_sf:
1979 return dw_cfi_oprnd_offset;
1981 case DW_CFA_def_cfa_expression:
1982 case DW_CFA_expression:
1983 return dw_cfi_oprnd_loc;
1985 default:
1986 gcc_unreachable ();
1990 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1991 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1992 (enum dwarf_call_frame_info cfi);
1994 static enum dw_cfi_oprnd_type
1995 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1997 switch (cfi)
1999 case DW_CFA_def_cfa:
2000 case DW_CFA_def_cfa_sf:
2001 case DW_CFA_offset:
2002 case DW_CFA_offset_extended_sf:
2003 case DW_CFA_offset_extended:
2004 return dw_cfi_oprnd_offset;
2006 case DW_CFA_register:
2007 return dw_cfi_oprnd_reg_num;
2009 default:
2010 return dw_cfi_oprnd_unused;
2014 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2016 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
2017 switch to the data section instead, and write out a synthetic label
2018 for collect2. */
2020 static void
2021 switch_to_eh_frame_section (void)
2023 tree label;
2025 #ifdef EH_FRAME_SECTION_NAME
2026 if (eh_frame_section == 0)
2028 int flags;
2030 if (EH_TABLES_CAN_BE_READ_ONLY)
2032 int fde_encoding;
2033 int per_encoding;
2034 int lsda_encoding;
2036 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2037 /*global=*/0);
2038 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2039 /*global=*/1);
2040 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2041 /*global=*/0);
2042 flags = ((! flag_pic
2043 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2044 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2045 && (per_encoding & 0x70) != DW_EH_PE_absptr
2046 && (per_encoding & 0x70) != DW_EH_PE_aligned
2047 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2048 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2049 ? 0 : SECTION_WRITE);
2051 else
2052 flags = SECTION_WRITE;
2053 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2055 #endif
2057 if (eh_frame_section)
2058 switch_to_section (eh_frame_section);
2059 else
2061 /* We have no special eh_frame section. Put the information in
2062 the data section and emit special labels to guide collect2. */
2063 switch_to_section (data_section);
2064 label = get_file_function_name ("F");
2065 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2066 targetm.asm_out.globalize_label (asm_out_file,
2067 IDENTIFIER_POINTER (label));
2068 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2072 /* Output a Call Frame Information opcode and its operand(s). */
2074 static void
2075 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2077 unsigned long r;
2078 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2079 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2080 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2081 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2082 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2083 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2085 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2086 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2087 "DW_CFA_offset, column 0x%lx", r);
2088 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2090 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2092 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2093 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2094 "DW_CFA_restore, column 0x%lx", r);
2096 else
2098 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2099 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2101 switch (cfi->dw_cfi_opc)
2103 case DW_CFA_set_loc:
2104 if (for_eh)
2105 dw2_asm_output_encoded_addr_rtx (
2106 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2107 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2108 false, NULL);
2109 else
2110 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2111 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2112 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2113 break;
2115 case DW_CFA_advance_loc1:
2116 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2117 fde->dw_fde_current_label, NULL);
2118 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2119 break;
2121 case DW_CFA_advance_loc2:
2122 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2123 fde->dw_fde_current_label, NULL);
2124 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2125 break;
2127 case DW_CFA_advance_loc4:
2128 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2129 fde->dw_fde_current_label, NULL);
2130 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2131 break;
2133 case DW_CFA_MIPS_advance_loc8:
2134 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2135 fde->dw_fde_current_label, NULL);
2136 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2137 break;
2139 case DW_CFA_offset_extended:
2140 case DW_CFA_def_cfa:
2141 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2142 dw2_asm_output_data_uleb128 (r, NULL);
2143 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2144 break;
2146 case DW_CFA_offset_extended_sf:
2147 case DW_CFA_def_cfa_sf:
2148 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2149 dw2_asm_output_data_uleb128 (r, NULL);
2150 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2151 break;
2153 case DW_CFA_restore_extended:
2154 case DW_CFA_undefined:
2155 case DW_CFA_same_value:
2156 case DW_CFA_def_cfa_register:
2157 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2158 dw2_asm_output_data_uleb128 (r, NULL);
2159 break;
2161 case DW_CFA_register:
2162 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2163 dw2_asm_output_data_uleb128 (r, NULL);
2164 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2165 dw2_asm_output_data_uleb128 (r, NULL);
2166 break;
2168 case DW_CFA_def_cfa_offset:
2169 case DW_CFA_GNU_args_size:
2170 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2171 break;
2173 case DW_CFA_def_cfa_offset_sf:
2174 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2175 break;
2177 case DW_CFA_GNU_window_save:
2178 break;
2180 case DW_CFA_def_cfa_expression:
2181 case DW_CFA_expression:
2182 output_cfa_loc (cfi);
2183 break;
2185 case DW_CFA_GNU_negative_offset_extended:
2186 /* Obsoleted by DW_CFA_offset_extended_sf. */
2187 gcc_unreachable ();
2189 default:
2190 break;
2195 /* Output the call frame information used to record information
2196 that relates to calculating the frame pointer, and records the
2197 location of saved registers. */
2199 static void
2200 output_call_frame_info (int for_eh)
2202 unsigned int i;
2203 dw_fde_ref fde;
2204 dw_cfi_ref cfi;
2205 char l1[20], l2[20], section_start_label[20];
2206 bool any_lsda_needed = false;
2207 char augmentation[6];
2208 int augmentation_size;
2209 int fde_encoding = DW_EH_PE_absptr;
2210 int per_encoding = DW_EH_PE_absptr;
2211 int lsda_encoding = DW_EH_PE_absptr;
2212 int return_reg;
2214 /* Don't emit a CIE if there won't be any FDEs. */
2215 if (fde_table_in_use == 0)
2216 return;
2218 /* If we make FDEs linkonce, we may have to emit an empty label for
2219 an FDE that wouldn't otherwise be emitted. We want to avoid
2220 having an FDE kept around when the function it refers to is
2221 discarded. Example where this matters: a primary function
2222 template in C++ requires EH information, but an explicit
2223 specialization doesn't. */
2224 if (TARGET_USES_WEAK_UNWIND_INFO
2225 && ! flag_asynchronous_unwind_tables
2226 && flag_exceptions
2227 && for_eh)
2228 for (i = 0; i < fde_table_in_use; i++)
2229 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2230 && !fde_table[i].uses_eh_lsda
2231 && ! DECL_WEAK (fde_table[i].decl))
2232 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2233 for_eh, /* empty */ 1);
2235 /* If we don't have any functions we'll want to unwind out of, don't
2236 emit any EH unwind information. Note that if exceptions aren't
2237 enabled, we won't have collected nothrow information, and if we
2238 asked for asynchronous tables, we always want this info. */
2239 if (for_eh)
2241 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2243 for (i = 0; i < fde_table_in_use; i++)
2244 if (fde_table[i].uses_eh_lsda)
2245 any_eh_needed = any_lsda_needed = true;
2246 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2247 any_eh_needed = true;
2248 else if (! fde_table[i].nothrow
2249 && ! fde_table[i].all_throwers_are_sibcalls)
2250 any_eh_needed = true;
2252 if (! any_eh_needed)
2253 return;
2256 /* We're going to be generating comments, so turn on app. */
2257 if (flag_debug_asm)
2258 app_enable ();
2260 if (for_eh)
2261 switch_to_eh_frame_section ();
2262 else
2264 if (!debug_frame_section)
2265 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2266 SECTION_DEBUG, NULL);
2267 switch_to_section (debug_frame_section);
2270 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2271 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2273 /* Output the CIE. */
2274 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2275 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2276 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2277 dw2_asm_output_data (4, 0xffffffff,
2278 "Initial length escape value indicating 64-bit DWARF extension");
2279 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2280 "Length of Common Information Entry");
2281 ASM_OUTPUT_LABEL (asm_out_file, l1);
2283 /* Now that the CIE pointer is PC-relative for EH,
2284 use 0 to identify the CIE. */
2285 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2286 (for_eh ? 0 : DWARF_CIE_ID),
2287 "CIE Identifier Tag");
2289 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2291 augmentation[0] = 0;
2292 augmentation_size = 0;
2293 if (for_eh)
2295 char *p;
2297 /* Augmentation:
2298 z Indicates that a uleb128 is present to size the
2299 augmentation section.
2300 L Indicates the encoding (and thus presence) of
2301 an LSDA pointer in the FDE augmentation.
2302 R Indicates a non-default pointer encoding for
2303 FDE code pointers.
2304 P Indicates the presence of an encoding + language
2305 personality routine in the CIE augmentation. */
2307 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2308 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2309 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2311 p = augmentation + 1;
2312 if (eh_personality_libfunc)
2314 *p++ = 'P';
2315 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2316 assemble_external_libcall (eh_personality_libfunc);
2318 if (any_lsda_needed)
2320 *p++ = 'L';
2321 augmentation_size += 1;
2323 if (fde_encoding != DW_EH_PE_absptr)
2325 *p++ = 'R';
2326 augmentation_size += 1;
2328 if (p > augmentation + 1)
2330 augmentation[0] = 'z';
2331 *p = '\0';
2334 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2335 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2337 int offset = ( 4 /* Length */
2338 + 4 /* CIE Id */
2339 + 1 /* CIE version */
2340 + strlen (augmentation) + 1 /* Augmentation */
2341 + size_of_uleb128 (1) /* Code alignment */
2342 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2343 + 1 /* RA column */
2344 + 1 /* Augmentation size */
2345 + 1 /* Personality encoding */ );
2346 int pad = -offset & (PTR_SIZE - 1);
2348 augmentation_size += pad;
2350 /* Augmentations should be small, so there's scarce need to
2351 iterate for a solution. Die if we exceed one uleb128 byte. */
2352 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2356 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2357 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2358 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2359 "CIE Data Alignment Factor");
2361 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2362 if (DW_CIE_VERSION == 1)
2363 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2364 else
2365 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2367 if (augmentation[0])
2369 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2370 if (eh_personality_libfunc)
2372 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2373 eh_data_format_name (per_encoding));
2374 dw2_asm_output_encoded_addr_rtx (per_encoding,
2375 eh_personality_libfunc,
2376 true, NULL);
2379 if (any_lsda_needed)
2380 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2381 eh_data_format_name (lsda_encoding));
2383 if (fde_encoding != DW_EH_PE_absptr)
2384 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2385 eh_data_format_name (fde_encoding));
2388 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2389 output_cfi (cfi, NULL, for_eh);
2391 /* Pad the CIE out to an address sized boundary. */
2392 ASM_OUTPUT_ALIGN (asm_out_file,
2393 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2394 ASM_OUTPUT_LABEL (asm_out_file, l2);
2396 /* Loop through all of the FDE's. */
2397 for (i = 0; i < fde_table_in_use; i++)
2399 fde = &fde_table[i];
2401 /* Don't emit EH unwind info for leaf functions that don't need it. */
2402 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2403 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2404 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2405 && !fde->uses_eh_lsda)
2406 continue;
2408 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2409 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2410 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2411 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2412 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2413 dw2_asm_output_data (4, 0xffffffff,
2414 "Initial length escape value indicating 64-bit DWARF extension");
2415 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2416 "FDE Length");
2417 ASM_OUTPUT_LABEL (asm_out_file, l1);
2419 if (for_eh)
2420 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2421 else
2422 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2423 debug_frame_section, "FDE CIE offset");
2425 if (for_eh)
2427 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2428 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2429 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2430 sym_ref,
2431 false,
2432 "FDE initial location");
2433 if (fde->dw_fde_switched_sections)
2435 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2436 fde->dw_fde_unlikely_section_label);
2437 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2438 fde->dw_fde_hot_section_label);
2439 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2440 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2441 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2442 "FDE initial location");
2443 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2444 fde->dw_fde_hot_section_end_label,
2445 fde->dw_fde_hot_section_label,
2446 "FDE address range");
2447 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2448 "FDE initial location");
2449 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2450 fde->dw_fde_unlikely_section_end_label,
2451 fde->dw_fde_unlikely_section_label,
2452 "FDE address range");
2454 else
2455 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2456 fde->dw_fde_end, fde->dw_fde_begin,
2457 "FDE address range");
2459 else
2461 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2462 "FDE initial location");
2463 if (fde->dw_fde_switched_sections)
2465 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2466 fde->dw_fde_hot_section_label,
2467 "FDE initial location");
2468 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2469 fde->dw_fde_hot_section_end_label,
2470 fde->dw_fde_hot_section_label,
2471 "FDE address range");
2472 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2473 fde->dw_fde_unlikely_section_label,
2474 "FDE initial location");
2475 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2476 fde->dw_fde_unlikely_section_end_label,
2477 fde->dw_fde_unlikely_section_label,
2478 "FDE address range");
2480 else
2481 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2482 fde->dw_fde_end, fde->dw_fde_begin,
2483 "FDE address range");
2486 if (augmentation[0])
2488 if (any_lsda_needed)
2490 int size = size_of_encoded_value (lsda_encoding);
2492 if (lsda_encoding == DW_EH_PE_aligned)
2494 int offset = ( 4 /* Length */
2495 + 4 /* CIE offset */
2496 + 2 * size_of_encoded_value (fde_encoding)
2497 + 1 /* Augmentation size */ );
2498 int pad = -offset & (PTR_SIZE - 1);
2500 size += pad;
2501 gcc_assert (size_of_uleb128 (size) == 1);
2504 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2506 if (fde->uses_eh_lsda)
2508 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2509 fde->funcdef_number);
2510 dw2_asm_output_encoded_addr_rtx (
2511 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2512 false, "Language Specific Data Area");
2514 else
2516 if (lsda_encoding == DW_EH_PE_aligned)
2517 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2518 dw2_asm_output_data
2519 (size_of_encoded_value (lsda_encoding), 0,
2520 "Language Specific Data Area (none)");
2523 else
2524 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2527 /* Loop through the Call Frame Instructions associated with
2528 this FDE. */
2529 fde->dw_fde_current_label = fde->dw_fde_begin;
2530 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2531 output_cfi (cfi, fde, for_eh);
2533 /* Pad the FDE out to an address sized boundary. */
2534 ASM_OUTPUT_ALIGN (asm_out_file,
2535 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2536 ASM_OUTPUT_LABEL (asm_out_file, l2);
2539 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2540 dw2_asm_output_data (4, 0, "End of Table");
2541 #ifdef MIPS_DEBUGGING_INFO
2542 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2543 get a value of 0. Putting .align 0 after the label fixes it. */
2544 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2545 #endif
2547 /* Turn off app to make assembly quicker. */
2548 if (flag_debug_asm)
2549 app_disable ();
2552 /* Output a marker (i.e. a label) for the beginning of a function, before
2553 the prologue. */
2555 void
2556 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2557 const char *file ATTRIBUTE_UNUSED)
2559 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2560 char * dup_label;
2561 dw_fde_ref fde;
2563 current_function_func_begin_label = NULL;
2565 #ifdef TARGET_UNWIND_INFO
2566 /* ??? current_function_func_begin_label is also used by except.c
2567 for call-site information. We must emit this label if it might
2568 be used. */
2569 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2570 && ! dwarf2out_do_frame ())
2571 return;
2572 #else
2573 if (! dwarf2out_do_frame ())
2574 return;
2575 #endif
2577 switch_to_section (function_section (current_function_decl));
2578 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2579 current_function_funcdef_no);
2580 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2581 current_function_funcdef_no);
2582 dup_label = xstrdup (label);
2583 current_function_func_begin_label = dup_label;
2585 #ifdef TARGET_UNWIND_INFO
2586 /* We can elide the fde allocation if we're not emitting debug info. */
2587 if (! dwarf2out_do_frame ())
2588 return;
2589 #endif
2591 /* Expand the fde table if necessary. */
2592 if (fde_table_in_use == fde_table_allocated)
2594 fde_table_allocated += FDE_TABLE_INCREMENT;
2595 fde_table = ggc_realloc (fde_table,
2596 fde_table_allocated * sizeof (dw_fde_node));
2597 memset (fde_table + fde_table_in_use, 0,
2598 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2601 /* Record the FDE associated with this function. */
2602 current_funcdef_fde = fde_table_in_use;
2604 /* Add the new FDE at the end of the fde_table. */
2605 fde = &fde_table[fde_table_in_use++];
2606 fde->decl = current_function_decl;
2607 fde->dw_fde_begin = dup_label;
2608 fde->dw_fde_current_label = dup_label;
2609 fde->dw_fde_hot_section_label = NULL;
2610 fde->dw_fde_hot_section_end_label = NULL;
2611 fde->dw_fde_unlikely_section_label = NULL;
2612 fde->dw_fde_unlikely_section_end_label = NULL;
2613 fde->dw_fde_switched_sections = false;
2614 fde->dw_fde_end = NULL;
2615 fde->dw_fde_cfi = NULL;
2616 fde->funcdef_number = current_function_funcdef_no;
2617 fde->nothrow = TREE_NOTHROW (current_function_decl);
2618 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2619 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2621 args_size = old_args_size = 0;
2623 /* We only want to output line number information for the genuine dwarf2
2624 prologue case, not the eh frame case. */
2625 #ifdef DWARF2_DEBUGGING_INFO
2626 if (file)
2627 dwarf2out_source_line (line, file);
2628 #endif
2631 /* Output a marker (i.e. a label) for the absolute end of the generated code
2632 for a function definition. This gets called *after* the epilogue code has
2633 been generated. */
2635 void
2636 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2637 const char *file ATTRIBUTE_UNUSED)
2639 dw_fde_ref fde;
2640 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2642 /* Output a label to mark the endpoint of the code generated for this
2643 function. */
2644 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2645 current_function_funcdef_no);
2646 ASM_OUTPUT_LABEL (asm_out_file, label);
2647 fde = &fde_table[fde_table_in_use - 1];
2648 fde->dw_fde_end = xstrdup (label);
2651 void
2652 dwarf2out_frame_init (void)
2654 /* Allocate the initial hunk of the fde_table. */
2655 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2656 fde_table_allocated = FDE_TABLE_INCREMENT;
2657 fde_table_in_use = 0;
2659 /* Generate the CFA instructions common to all FDE's. Do it now for the
2660 sake of lookup_cfa. */
2662 /* On entry, the Canonical Frame Address is at SP. */
2663 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2665 #ifdef DWARF2_UNWIND_INFO
2666 if (DWARF2_UNWIND_INFO || DWARF2_FRAME_INFO)
2667 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2668 #endif
2671 void
2672 dwarf2out_frame_finish (void)
2674 /* Output call frame information. */
2675 if (DWARF2_FRAME_INFO)
2676 output_call_frame_info (0);
2678 #ifndef TARGET_UNWIND_INFO
2679 /* Output another copy for the unwinder. */
2680 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2681 output_call_frame_info (1);
2682 #endif
2684 #endif
2686 /* And now, the subset of the debugging information support code necessary
2687 for emitting location expressions. */
2689 /* Data about a single source file. */
2690 struct dwarf_file_data GTY(())
2692 const char * filename;
2693 int emitted_number;
2696 /* We need some way to distinguish DW_OP_addr with a direct symbol
2697 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2698 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2701 typedef struct dw_val_struct *dw_val_ref;
2702 typedef struct die_struct *dw_die_ref;
2703 typedef const struct die_struct *const_dw_die_ref;
2704 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2705 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2707 /* Each DIE may have a series of attribute/value pairs. Values
2708 can take on several forms. The forms that are used in this
2709 implementation are listed below. */
2711 enum dw_val_class
2713 dw_val_class_addr,
2714 dw_val_class_offset,
2715 dw_val_class_loc,
2716 dw_val_class_loc_list,
2717 dw_val_class_range_list,
2718 dw_val_class_const,
2719 dw_val_class_unsigned_const,
2720 dw_val_class_long_long,
2721 dw_val_class_vec,
2722 dw_val_class_flag,
2723 dw_val_class_die_ref,
2724 dw_val_class_fde_ref,
2725 dw_val_class_lbl_id,
2726 dw_val_class_lineptr,
2727 dw_val_class_str,
2728 dw_val_class_macptr,
2729 dw_val_class_file
2732 /* Describe a double word constant value. */
2733 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2735 typedef struct dw_long_long_struct GTY(())
2737 unsigned long hi;
2738 unsigned long low;
2740 dw_long_long_const;
2742 /* Describe a floating point constant value, or a vector constant value. */
2744 typedef struct dw_vec_struct GTY(())
2746 unsigned char * GTY((length ("%h.length"))) array;
2747 unsigned length;
2748 unsigned elt_size;
2750 dw_vec_const;
2752 /* The dw_val_node describes an attribute's value, as it is
2753 represented internally. */
2755 typedef struct dw_val_struct GTY(())
2757 enum dw_val_class val_class;
2758 union dw_val_struct_union
2760 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2761 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2762 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2763 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2764 HOST_WIDE_INT GTY ((default)) val_int;
2765 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2766 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2767 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2768 struct dw_val_die_union
2770 dw_die_ref die;
2771 int external;
2772 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2773 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2774 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2775 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2776 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2777 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2779 GTY ((desc ("%1.val_class"))) v;
2781 dw_val_node;
2783 /* Locations in memory are described using a sequence of stack machine
2784 operations. */
2786 typedef struct dw_loc_descr_struct GTY(())
2788 dw_loc_descr_ref dw_loc_next;
2789 enum dwarf_location_atom dw_loc_opc;
2790 dw_val_node dw_loc_oprnd1;
2791 dw_val_node dw_loc_oprnd2;
2792 int dw_loc_addr;
2794 dw_loc_descr_node;
2796 /* Location lists are ranges + location descriptions for that range,
2797 so you can track variables that are in different places over
2798 their entire life. */
2799 typedef struct dw_loc_list_struct GTY(())
2801 dw_loc_list_ref dw_loc_next;
2802 const char *begin; /* Label for begin address of range */
2803 const char *end; /* Label for end address of range */
2804 char *ll_symbol; /* Label for beginning of location list.
2805 Only on head of list */
2806 const char *section; /* Section this loclist is relative to */
2807 dw_loc_descr_ref expr;
2808 } dw_loc_list_node;
2810 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2812 static const char *dwarf_stack_op_name (unsigned);
2813 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2814 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2815 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2816 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2817 static unsigned long size_of_locs (dw_loc_descr_ref);
2818 static void output_loc_operands (dw_loc_descr_ref);
2819 static void output_loc_sequence (dw_loc_descr_ref);
2821 /* Convert a DWARF stack opcode into its string name. */
2823 static const char *
2824 dwarf_stack_op_name (unsigned int op)
2826 switch (op)
2828 case DW_OP_addr:
2829 case INTERNAL_DW_OP_tls_addr:
2830 return "DW_OP_addr";
2831 case DW_OP_deref:
2832 return "DW_OP_deref";
2833 case DW_OP_const1u:
2834 return "DW_OP_const1u";
2835 case DW_OP_const1s:
2836 return "DW_OP_const1s";
2837 case DW_OP_const2u:
2838 return "DW_OP_const2u";
2839 case DW_OP_const2s:
2840 return "DW_OP_const2s";
2841 case DW_OP_const4u:
2842 return "DW_OP_const4u";
2843 case DW_OP_const4s:
2844 return "DW_OP_const4s";
2845 case DW_OP_const8u:
2846 return "DW_OP_const8u";
2847 case DW_OP_const8s:
2848 return "DW_OP_const8s";
2849 case DW_OP_constu:
2850 return "DW_OP_constu";
2851 case DW_OP_consts:
2852 return "DW_OP_consts";
2853 case DW_OP_dup:
2854 return "DW_OP_dup";
2855 case DW_OP_drop:
2856 return "DW_OP_drop";
2857 case DW_OP_over:
2858 return "DW_OP_over";
2859 case DW_OP_pick:
2860 return "DW_OP_pick";
2861 case DW_OP_swap:
2862 return "DW_OP_swap";
2863 case DW_OP_rot:
2864 return "DW_OP_rot";
2865 case DW_OP_xderef:
2866 return "DW_OP_xderef";
2867 case DW_OP_abs:
2868 return "DW_OP_abs";
2869 case DW_OP_and:
2870 return "DW_OP_and";
2871 case DW_OP_div:
2872 return "DW_OP_div";
2873 case DW_OP_minus:
2874 return "DW_OP_minus";
2875 case DW_OP_mod:
2876 return "DW_OP_mod";
2877 case DW_OP_mul:
2878 return "DW_OP_mul";
2879 case DW_OP_neg:
2880 return "DW_OP_neg";
2881 case DW_OP_not:
2882 return "DW_OP_not";
2883 case DW_OP_or:
2884 return "DW_OP_or";
2885 case DW_OP_plus:
2886 return "DW_OP_plus";
2887 case DW_OP_plus_uconst:
2888 return "DW_OP_plus_uconst";
2889 case DW_OP_shl:
2890 return "DW_OP_shl";
2891 case DW_OP_shr:
2892 return "DW_OP_shr";
2893 case DW_OP_shra:
2894 return "DW_OP_shra";
2895 case DW_OP_xor:
2896 return "DW_OP_xor";
2897 case DW_OP_bra:
2898 return "DW_OP_bra";
2899 case DW_OP_eq:
2900 return "DW_OP_eq";
2901 case DW_OP_ge:
2902 return "DW_OP_ge";
2903 case DW_OP_gt:
2904 return "DW_OP_gt";
2905 case DW_OP_le:
2906 return "DW_OP_le";
2907 case DW_OP_lt:
2908 return "DW_OP_lt";
2909 case DW_OP_ne:
2910 return "DW_OP_ne";
2911 case DW_OP_skip:
2912 return "DW_OP_skip";
2913 case DW_OP_lit0:
2914 return "DW_OP_lit0";
2915 case DW_OP_lit1:
2916 return "DW_OP_lit1";
2917 case DW_OP_lit2:
2918 return "DW_OP_lit2";
2919 case DW_OP_lit3:
2920 return "DW_OP_lit3";
2921 case DW_OP_lit4:
2922 return "DW_OP_lit4";
2923 case DW_OP_lit5:
2924 return "DW_OP_lit5";
2925 case DW_OP_lit6:
2926 return "DW_OP_lit6";
2927 case DW_OP_lit7:
2928 return "DW_OP_lit7";
2929 case DW_OP_lit8:
2930 return "DW_OP_lit8";
2931 case DW_OP_lit9:
2932 return "DW_OP_lit9";
2933 case DW_OP_lit10:
2934 return "DW_OP_lit10";
2935 case DW_OP_lit11:
2936 return "DW_OP_lit11";
2937 case DW_OP_lit12:
2938 return "DW_OP_lit12";
2939 case DW_OP_lit13:
2940 return "DW_OP_lit13";
2941 case DW_OP_lit14:
2942 return "DW_OP_lit14";
2943 case DW_OP_lit15:
2944 return "DW_OP_lit15";
2945 case DW_OP_lit16:
2946 return "DW_OP_lit16";
2947 case DW_OP_lit17:
2948 return "DW_OP_lit17";
2949 case DW_OP_lit18:
2950 return "DW_OP_lit18";
2951 case DW_OP_lit19:
2952 return "DW_OP_lit19";
2953 case DW_OP_lit20:
2954 return "DW_OP_lit20";
2955 case DW_OP_lit21:
2956 return "DW_OP_lit21";
2957 case DW_OP_lit22:
2958 return "DW_OP_lit22";
2959 case DW_OP_lit23:
2960 return "DW_OP_lit23";
2961 case DW_OP_lit24:
2962 return "DW_OP_lit24";
2963 case DW_OP_lit25:
2964 return "DW_OP_lit25";
2965 case DW_OP_lit26:
2966 return "DW_OP_lit26";
2967 case DW_OP_lit27:
2968 return "DW_OP_lit27";
2969 case DW_OP_lit28:
2970 return "DW_OP_lit28";
2971 case DW_OP_lit29:
2972 return "DW_OP_lit29";
2973 case DW_OP_lit30:
2974 return "DW_OP_lit30";
2975 case DW_OP_lit31:
2976 return "DW_OP_lit31";
2977 case DW_OP_reg0:
2978 return "DW_OP_reg0";
2979 case DW_OP_reg1:
2980 return "DW_OP_reg1";
2981 case DW_OP_reg2:
2982 return "DW_OP_reg2";
2983 case DW_OP_reg3:
2984 return "DW_OP_reg3";
2985 case DW_OP_reg4:
2986 return "DW_OP_reg4";
2987 case DW_OP_reg5:
2988 return "DW_OP_reg5";
2989 case DW_OP_reg6:
2990 return "DW_OP_reg6";
2991 case DW_OP_reg7:
2992 return "DW_OP_reg7";
2993 case DW_OP_reg8:
2994 return "DW_OP_reg8";
2995 case DW_OP_reg9:
2996 return "DW_OP_reg9";
2997 case DW_OP_reg10:
2998 return "DW_OP_reg10";
2999 case DW_OP_reg11:
3000 return "DW_OP_reg11";
3001 case DW_OP_reg12:
3002 return "DW_OP_reg12";
3003 case DW_OP_reg13:
3004 return "DW_OP_reg13";
3005 case DW_OP_reg14:
3006 return "DW_OP_reg14";
3007 case DW_OP_reg15:
3008 return "DW_OP_reg15";
3009 case DW_OP_reg16:
3010 return "DW_OP_reg16";
3011 case DW_OP_reg17:
3012 return "DW_OP_reg17";
3013 case DW_OP_reg18:
3014 return "DW_OP_reg18";
3015 case DW_OP_reg19:
3016 return "DW_OP_reg19";
3017 case DW_OP_reg20:
3018 return "DW_OP_reg20";
3019 case DW_OP_reg21:
3020 return "DW_OP_reg21";
3021 case DW_OP_reg22:
3022 return "DW_OP_reg22";
3023 case DW_OP_reg23:
3024 return "DW_OP_reg23";
3025 case DW_OP_reg24:
3026 return "DW_OP_reg24";
3027 case DW_OP_reg25:
3028 return "DW_OP_reg25";
3029 case DW_OP_reg26:
3030 return "DW_OP_reg26";
3031 case DW_OP_reg27:
3032 return "DW_OP_reg27";
3033 case DW_OP_reg28:
3034 return "DW_OP_reg28";
3035 case DW_OP_reg29:
3036 return "DW_OP_reg29";
3037 case DW_OP_reg30:
3038 return "DW_OP_reg30";
3039 case DW_OP_reg31:
3040 return "DW_OP_reg31";
3041 case DW_OP_breg0:
3042 return "DW_OP_breg0";
3043 case DW_OP_breg1:
3044 return "DW_OP_breg1";
3045 case DW_OP_breg2:
3046 return "DW_OP_breg2";
3047 case DW_OP_breg3:
3048 return "DW_OP_breg3";
3049 case DW_OP_breg4:
3050 return "DW_OP_breg4";
3051 case DW_OP_breg5:
3052 return "DW_OP_breg5";
3053 case DW_OP_breg6:
3054 return "DW_OP_breg6";
3055 case DW_OP_breg7:
3056 return "DW_OP_breg7";
3057 case DW_OP_breg8:
3058 return "DW_OP_breg8";
3059 case DW_OP_breg9:
3060 return "DW_OP_breg9";
3061 case DW_OP_breg10:
3062 return "DW_OP_breg10";
3063 case DW_OP_breg11:
3064 return "DW_OP_breg11";
3065 case DW_OP_breg12:
3066 return "DW_OP_breg12";
3067 case DW_OP_breg13:
3068 return "DW_OP_breg13";
3069 case DW_OP_breg14:
3070 return "DW_OP_breg14";
3071 case DW_OP_breg15:
3072 return "DW_OP_breg15";
3073 case DW_OP_breg16:
3074 return "DW_OP_breg16";
3075 case DW_OP_breg17:
3076 return "DW_OP_breg17";
3077 case DW_OP_breg18:
3078 return "DW_OP_breg18";
3079 case DW_OP_breg19:
3080 return "DW_OP_breg19";
3081 case DW_OP_breg20:
3082 return "DW_OP_breg20";
3083 case DW_OP_breg21:
3084 return "DW_OP_breg21";
3085 case DW_OP_breg22:
3086 return "DW_OP_breg22";
3087 case DW_OP_breg23:
3088 return "DW_OP_breg23";
3089 case DW_OP_breg24:
3090 return "DW_OP_breg24";
3091 case DW_OP_breg25:
3092 return "DW_OP_breg25";
3093 case DW_OP_breg26:
3094 return "DW_OP_breg26";
3095 case DW_OP_breg27:
3096 return "DW_OP_breg27";
3097 case DW_OP_breg28:
3098 return "DW_OP_breg28";
3099 case DW_OP_breg29:
3100 return "DW_OP_breg29";
3101 case DW_OP_breg30:
3102 return "DW_OP_breg30";
3103 case DW_OP_breg31:
3104 return "DW_OP_breg31";
3105 case DW_OP_regx:
3106 return "DW_OP_regx";
3107 case DW_OP_fbreg:
3108 return "DW_OP_fbreg";
3109 case DW_OP_bregx:
3110 return "DW_OP_bregx";
3111 case DW_OP_piece:
3112 return "DW_OP_piece";
3113 case DW_OP_deref_size:
3114 return "DW_OP_deref_size";
3115 case DW_OP_xderef_size:
3116 return "DW_OP_xderef_size";
3117 case DW_OP_nop:
3118 return "DW_OP_nop";
3119 case DW_OP_push_object_address:
3120 return "DW_OP_push_object_address";
3121 case DW_OP_call2:
3122 return "DW_OP_call2";
3123 case DW_OP_call4:
3124 return "DW_OP_call4";
3125 case DW_OP_call_ref:
3126 return "DW_OP_call_ref";
3127 case DW_OP_GNU_push_tls_address:
3128 return "DW_OP_GNU_push_tls_address";
3129 case DW_OP_GNU_uninit:
3130 return "DW_OP_GNU_uninit";
3131 default:
3132 return "OP_<unknown>";
3136 /* Return a pointer to a newly allocated location description. Location
3137 descriptions are simple expression terms that can be strung
3138 together to form more complicated location (address) descriptions. */
3140 static inline dw_loc_descr_ref
3141 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3142 unsigned HOST_WIDE_INT oprnd2)
3144 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3146 descr->dw_loc_opc = op;
3147 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3148 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3149 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3150 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3152 return descr;
3155 /* Add a location description term to a location description expression. */
3157 static inline void
3158 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3160 dw_loc_descr_ref *d;
3162 /* Find the end of the chain. */
3163 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3166 *d = descr;
3169 /* Return the size of a location descriptor. */
3171 static unsigned long
3172 size_of_loc_descr (dw_loc_descr_ref loc)
3174 unsigned long size = 1;
3176 switch (loc->dw_loc_opc)
3178 case DW_OP_addr:
3179 case INTERNAL_DW_OP_tls_addr:
3180 size += DWARF2_ADDR_SIZE;
3181 break;
3182 case DW_OP_const1u:
3183 case DW_OP_const1s:
3184 size += 1;
3185 break;
3186 case DW_OP_const2u:
3187 case DW_OP_const2s:
3188 size += 2;
3189 break;
3190 case DW_OP_const4u:
3191 case DW_OP_const4s:
3192 size += 4;
3193 break;
3194 case DW_OP_const8u:
3195 case DW_OP_const8s:
3196 size += 8;
3197 break;
3198 case DW_OP_constu:
3199 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3200 break;
3201 case DW_OP_consts:
3202 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3203 break;
3204 case DW_OP_pick:
3205 size += 1;
3206 break;
3207 case DW_OP_plus_uconst:
3208 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3209 break;
3210 case DW_OP_skip:
3211 case DW_OP_bra:
3212 size += 2;
3213 break;
3214 case DW_OP_breg0:
3215 case DW_OP_breg1:
3216 case DW_OP_breg2:
3217 case DW_OP_breg3:
3218 case DW_OP_breg4:
3219 case DW_OP_breg5:
3220 case DW_OP_breg6:
3221 case DW_OP_breg7:
3222 case DW_OP_breg8:
3223 case DW_OP_breg9:
3224 case DW_OP_breg10:
3225 case DW_OP_breg11:
3226 case DW_OP_breg12:
3227 case DW_OP_breg13:
3228 case DW_OP_breg14:
3229 case DW_OP_breg15:
3230 case DW_OP_breg16:
3231 case DW_OP_breg17:
3232 case DW_OP_breg18:
3233 case DW_OP_breg19:
3234 case DW_OP_breg20:
3235 case DW_OP_breg21:
3236 case DW_OP_breg22:
3237 case DW_OP_breg23:
3238 case DW_OP_breg24:
3239 case DW_OP_breg25:
3240 case DW_OP_breg26:
3241 case DW_OP_breg27:
3242 case DW_OP_breg28:
3243 case DW_OP_breg29:
3244 case DW_OP_breg30:
3245 case DW_OP_breg31:
3246 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3247 break;
3248 case DW_OP_regx:
3249 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3250 break;
3251 case DW_OP_fbreg:
3252 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3253 break;
3254 case DW_OP_bregx:
3255 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3256 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3257 break;
3258 case DW_OP_piece:
3259 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3260 break;
3261 case DW_OP_deref_size:
3262 case DW_OP_xderef_size:
3263 size += 1;
3264 break;
3265 case DW_OP_call2:
3266 size += 2;
3267 break;
3268 case DW_OP_call4:
3269 size += 4;
3270 break;
3271 case DW_OP_call_ref:
3272 size += DWARF2_ADDR_SIZE;
3273 break;
3274 default:
3275 break;
3278 return size;
3281 /* Return the size of a series of location descriptors. */
3283 static unsigned long
3284 size_of_locs (dw_loc_descr_ref loc)
3286 dw_loc_descr_ref l;
3287 unsigned long size;
3289 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3290 field, to avoid writing to a PCH file. */
3291 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3293 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3294 break;
3295 size += size_of_loc_descr (l);
3297 if (! l)
3298 return size;
3300 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3302 l->dw_loc_addr = size;
3303 size += size_of_loc_descr (l);
3306 return size;
3309 /* Output location description stack opcode's operands (if any). */
3311 static void
3312 output_loc_operands (dw_loc_descr_ref loc)
3314 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3315 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3317 switch (loc->dw_loc_opc)
3319 #ifdef DWARF2_DEBUGGING_INFO
3320 case DW_OP_addr:
3321 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3322 break;
3323 case DW_OP_const2u:
3324 case DW_OP_const2s:
3325 dw2_asm_output_data (2, val1->v.val_int, NULL);
3326 break;
3327 case DW_OP_const4u:
3328 case DW_OP_const4s:
3329 dw2_asm_output_data (4, val1->v.val_int, NULL);
3330 break;
3331 case DW_OP_const8u:
3332 case DW_OP_const8s:
3333 gcc_assert (HOST_BITS_PER_LONG >= 64);
3334 dw2_asm_output_data (8, val1->v.val_int, NULL);
3335 break;
3336 case DW_OP_skip:
3337 case DW_OP_bra:
3339 int offset;
3341 gcc_assert (val1->val_class == dw_val_class_loc);
3342 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3344 dw2_asm_output_data (2, offset, NULL);
3346 break;
3347 #else
3348 case DW_OP_addr:
3349 case DW_OP_const2u:
3350 case DW_OP_const2s:
3351 case DW_OP_const4u:
3352 case DW_OP_const4s:
3353 case DW_OP_const8u:
3354 case DW_OP_const8s:
3355 case DW_OP_skip:
3356 case DW_OP_bra:
3357 /* We currently don't make any attempt to make sure these are
3358 aligned properly like we do for the main unwind info, so
3359 don't support emitting things larger than a byte if we're
3360 only doing unwinding. */
3361 gcc_unreachable ();
3362 #endif
3363 case DW_OP_const1u:
3364 case DW_OP_const1s:
3365 dw2_asm_output_data (1, val1->v.val_int, NULL);
3366 break;
3367 case DW_OP_constu:
3368 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3369 break;
3370 case DW_OP_consts:
3371 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3372 break;
3373 case DW_OP_pick:
3374 dw2_asm_output_data (1, val1->v.val_int, NULL);
3375 break;
3376 case DW_OP_plus_uconst:
3377 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3378 break;
3379 case DW_OP_breg0:
3380 case DW_OP_breg1:
3381 case DW_OP_breg2:
3382 case DW_OP_breg3:
3383 case DW_OP_breg4:
3384 case DW_OP_breg5:
3385 case DW_OP_breg6:
3386 case DW_OP_breg7:
3387 case DW_OP_breg8:
3388 case DW_OP_breg9:
3389 case DW_OP_breg10:
3390 case DW_OP_breg11:
3391 case DW_OP_breg12:
3392 case DW_OP_breg13:
3393 case DW_OP_breg14:
3394 case DW_OP_breg15:
3395 case DW_OP_breg16:
3396 case DW_OP_breg17:
3397 case DW_OP_breg18:
3398 case DW_OP_breg19:
3399 case DW_OP_breg20:
3400 case DW_OP_breg21:
3401 case DW_OP_breg22:
3402 case DW_OP_breg23:
3403 case DW_OP_breg24:
3404 case DW_OP_breg25:
3405 case DW_OP_breg26:
3406 case DW_OP_breg27:
3407 case DW_OP_breg28:
3408 case DW_OP_breg29:
3409 case DW_OP_breg30:
3410 case DW_OP_breg31:
3411 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3412 break;
3413 case DW_OP_regx:
3414 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3415 break;
3416 case DW_OP_fbreg:
3417 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3418 break;
3419 case DW_OP_bregx:
3420 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3421 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3422 break;
3423 case DW_OP_piece:
3424 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3425 break;
3426 case DW_OP_deref_size:
3427 case DW_OP_xderef_size:
3428 dw2_asm_output_data (1, val1->v.val_int, NULL);
3429 break;
3431 case INTERNAL_DW_OP_tls_addr:
3432 if (targetm.asm_out.output_dwarf_dtprel)
3434 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3435 DWARF2_ADDR_SIZE,
3436 val1->v.val_addr);
3437 fputc ('\n', asm_out_file);
3439 else
3440 gcc_unreachable ();
3441 break;
3443 default:
3444 /* Other codes have no operands. */
3445 break;
3449 /* Output a sequence of location operations. */
3451 static void
3452 output_loc_sequence (dw_loc_descr_ref loc)
3454 for (; loc != NULL; loc = loc->dw_loc_next)
3456 /* Output the opcode. */
3457 dw2_asm_output_data (1, loc->dw_loc_opc,
3458 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3460 /* Output the operand(s) (if any). */
3461 output_loc_operands (loc);
3465 /* This routine will generate the correct assembly data for a location
3466 description based on a cfi entry with a complex address. */
3468 static void
3469 output_cfa_loc (dw_cfi_ref cfi)
3471 dw_loc_descr_ref loc;
3472 unsigned long size;
3474 /* Output the size of the block. */
3475 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3476 size = size_of_locs (loc);
3477 dw2_asm_output_data_uleb128 (size, NULL);
3479 /* Now output the operations themselves. */
3480 output_loc_sequence (loc);
3483 /* This function builds a dwarf location descriptor sequence from a
3484 dw_cfa_location, adding the given OFFSET to the result of the
3485 expression. */
3487 static struct dw_loc_descr_struct *
3488 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3490 struct dw_loc_descr_struct *head, *tmp;
3492 offset += cfa->offset;
3494 if (cfa->indirect)
3496 if (cfa->base_offset)
3498 if (cfa->reg <= 31)
3499 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3500 else
3501 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3503 else if (cfa->reg <= 31)
3504 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3505 else
3506 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3508 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3509 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3510 add_loc_descr (&head, tmp);
3511 if (offset != 0)
3513 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3514 add_loc_descr (&head, tmp);
3517 else
3519 if (offset == 0)
3520 if (cfa->reg <= 31)
3521 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3522 else
3523 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3524 else if (cfa->reg <= 31)
3525 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3526 else
3527 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3530 return head;
3533 /* This function fills in aa dw_cfa_location structure from a dwarf location
3534 descriptor sequence. */
3536 static void
3537 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3539 struct dw_loc_descr_struct *ptr;
3540 cfa->offset = 0;
3541 cfa->base_offset = 0;
3542 cfa->indirect = 0;
3543 cfa->reg = -1;
3545 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3547 enum dwarf_location_atom op = ptr->dw_loc_opc;
3549 switch (op)
3551 case DW_OP_reg0:
3552 case DW_OP_reg1:
3553 case DW_OP_reg2:
3554 case DW_OP_reg3:
3555 case DW_OP_reg4:
3556 case DW_OP_reg5:
3557 case DW_OP_reg6:
3558 case DW_OP_reg7:
3559 case DW_OP_reg8:
3560 case DW_OP_reg9:
3561 case DW_OP_reg10:
3562 case DW_OP_reg11:
3563 case DW_OP_reg12:
3564 case DW_OP_reg13:
3565 case DW_OP_reg14:
3566 case DW_OP_reg15:
3567 case DW_OP_reg16:
3568 case DW_OP_reg17:
3569 case DW_OP_reg18:
3570 case DW_OP_reg19:
3571 case DW_OP_reg20:
3572 case DW_OP_reg21:
3573 case DW_OP_reg22:
3574 case DW_OP_reg23:
3575 case DW_OP_reg24:
3576 case DW_OP_reg25:
3577 case DW_OP_reg26:
3578 case DW_OP_reg27:
3579 case DW_OP_reg28:
3580 case DW_OP_reg29:
3581 case DW_OP_reg30:
3582 case DW_OP_reg31:
3583 cfa->reg = op - DW_OP_reg0;
3584 break;
3585 case DW_OP_regx:
3586 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3587 break;
3588 case DW_OP_breg0:
3589 case DW_OP_breg1:
3590 case DW_OP_breg2:
3591 case DW_OP_breg3:
3592 case DW_OP_breg4:
3593 case DW_OP_breg5:
3594 case DW_OP_breg6:
3595 case DW_OP_breg7:
3596 case DW_OP_breg8:
3597 case DW_OP_breg9:
3598 case DW_OP_breg10:
3599 case DW_OP_breg11:
3600 case DW_OP_breg12:
3601 case DW_OP_breg13:
3602 case DW_OP_breg14:
3603 case DW_OP_breg15:
3604 case DW_OP_breg16:
3605 case DW_OP_breg17:
3606 case DW_OP_breg18:
3607 case DW_OP_breg19:
3608 case DW_OP_breg20:
3609 case DW_OP_breg21:
3610 case DW_OP_breg22:
3611 case DW_OP_breg23:
3612 case DW_OP_breg24:
3613 case DW_OP_breg25:
3614 case DW_OP_breg26:
3615 case DW_OP_breg27:
3616 case DW_OP_breg28:
3617 case DW_OP_breg29:
3618 case DW_OP_breg30:
3619 case DW_OP_breg31:
3620 cfa->reg = op - DW_OP_breg0;
3621 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3622 break;
3623 case DW_OP_bregx:
3624 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3625 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3626 break;
3627 case DW_OP_deref:
3628 cfa->indirect = 1;
3629 break;
3630 case DW_OP_plus_uconst:
3631 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3632 break;
3633 default:
3634 internal_error ("DW_LOC_OP %s not implemented",
3635 dwarf_stack_op_name (ptr->dw_loc_opc));
3639 #endif /* .debug_frame support */
3641 /* And now, the support for symbolic debugging information. */
3642 #ifdef DWARF2_DEBUGGING_INFO
3644 /* .debug_str support. */
3645 static int output_indirect_string (void **, void *);
3647 static void dwarf2out_init (const char *);
3648 static void dwarf2out_finish (const char *);
3649 static void dwarf2out_define (unsigned int, const char *);
3650 static void dwarf2out_undef (unsigned int, const char *);
3651 static void dwarf2out_start_source_file (unsigned, const char *);
3652 static void dwarf2out_end_source_file (unsigned);
3653 static void dwarf2out_begin_block (unsigned, unsigned);
3654 static void dwarf2out_end_block (unsigned, unsigned);
3655 static bool dwarf2out_ignore_block (const_tree);
3656 static void dwarf2out_global_decl (tree);
3657 static void dwarf2out_type_decl (tree, int);
3658 static void dwarf2out_imported_module_or_decl (tree, tree);
3659 static void dwarf2out_abstract_function (tree);
3660 static void dwarf2out_var_location (rtx);
3661 static void dwarf2out_begin_function (tree);
3662 static void dwarf2out_switch_text_section (void);
3664 /* The debug hooks structure. */
3666 const struct gcc_debug_hooks dwarf2_debug_hooks =
3668 dwarf2out_init,
3669 dwarf2out_finish,
3670 dwarf2out_define,
3671 dwarf2out_undef,
3672 dwarf2out_start_source_file,
3673 dwarf2out_end_source_file,
3674 dwarf2out_begin_block,
3675 dwarf2out_end_block,
3676 dwarf2out_ignore_block,
3677 dwarf2out_source_line,
3678 dwarf2out_begin_prologue,
3679 debug_nothing_int_charstar, /* end_prologue */
3680 dwarf2out_end_epilogue,
3681 dwarf2out_begin_function,
3682 debug_nothing_int, /* end_function */
3683 dwarf2out_decl, /* function_decl */
3684 dwarf2out_global_decl,
3685 dwarf2out_type_decl, /* type_decl */
3686 dwarf2out_imported_module_or_decl,
3687 debug_nothing_tree, /* deferred_inline_function */
3688 /* The DWARF 2 backend tries to reduce debugging bloat by not
3689 emitting the abstract description of inline functions until
3690 something tries to reference them. */
3691 dwarf2out_abstract_function, /* outlining_inline_function */
3692 debug_nothing_rtx, /* label */
3693 debug_nothing_int, /* handle_pch */
3694 dwarf2out_var_location,
3695 dwarf2out_switch_text_section,
3696 1 /* start_end_main_source_file */
3698 #endif
3700 /* NOTE: In the comments in this file, many references are made to
3701 "Debugging Information Entries". This term is abbreviated as `DIE'
3702 throughout the remainder of this file. */
3704 /* An internal representation of the DWARF output is built, and then
3705 walked to generate the DWARF debugging info. The walk of the internal
3706 representation is done after the entire program has been compiled.
3707 The types below are used to describe the internal representation. */
3709 /* Various DIE's use offsets relative to the beginning of the
3710 .debug_info section to refer to each other. */
3712 typedef long int dw_offset;
3714 /* Define typedefs here to avoid circular dependencies. */
3716 typedef struct dw_attr_struct *dw_attr_ref;
3717 typedef struct dw_line_info_struct *dw_line_info_ref;
3718 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3719 typedef struct pubname_struct *pubname_ref;
3720 typedef struct dw_ranges_struct *dw_ranges_ref;
3721 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
3723 /* Each entry in the line_info_table maintains the file and
3724 line number associated with the label generated for that
3725 entry. The label gives the PC value associated with
3726 the line number entry. */
3728 typedef struct dw_line_info_struct GTY(())
3730 unsigned long dw_file_num;
3731 unsigned long dw_line_num;
3733 dw_line_info_entry;
3735 /* Line information for functions in separate sections; each one gets its
3736 own sequence. */
3737 typedef struct dw_separate_line_info_struct GTY(())
3739 unsigned long dw_file_num;
3740 unsigned long dw_line_num;
3741 unsigned long function;
3743 dw_separate_line_info_entry;
3745 /* Each DIE attribute has a field specifying the attribute kind,
3746 a link to the next attribute in the chain, and an attribute value.
3747 Attributes are typically linked below the DIE they modify. */
3749 typedef struct dw_attr_struct GTY(())
3751 enum dwarf_attribute dw_attr;
3752 dw_val_node dw_attr_val;
3754 dw_attr_node;
3756 DEF_VEC_O(dw_attr_node);
3757 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3759 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3760 The children of each node form a circular list linked by
3761 die_sib. die_child points to the node *before* the "first" child node. */
3763 typedef struct die_struct GTY(())
3765 enum dwarf_tag die_tag;
3766 char *die_symbol;
3767 VEC(dw_attr_node,gc) * die_attr;
3768 dw_die_ref die_parent;
3769 dw_die_ref die_child;
3770 dw_die_ref die_sib;
3771 dw_die_ref die_definition; /* ref from a specification to its definition */
3772 dw_offset die_offset;
3773 unsigned long die_abbrev;
3774 int die_mark;
3775 /* Die is used and must not be pruned as unused. */
3776 int die_perennial_p;
3777 unsigned int decl_id;
3779 die_node;
3781 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3782 #define FOR_EACH_CHILD(die, c, expr) do { \
3783 c = die->die_child; \
3784 if (c) do { \
3785 c = c->die_sib; \
3786 expr; \
3787 } while (c != die->die_child); \
3788 } while (0)
3790 /* The pubname structure */
3792 typedef struct pubname_struct GTY(())
3794 dw_die_ref die;
3795 const char *name;
3797 pubname_entry;
3799 DEF_VEC_O(pubname_entry);
3800 DEF_VEC_ALLOC_O(pubname_entry, gc);
3802 struct dw_ranges_struct GTY(())
3804 /* If this is positive, it's a block number, otherwise it's a
3805 bitwise-negated index into dw_ranges_by_label. */
3806 int num;
3809 struct dw_ranges_by_label_struct GTY(())
3811 const char *begin;
3812 const char *end;
3815 /* The limbo die list structure. */
3816 typedef struct limbo_die_struct GTY(())
3818 dw_die_ref die;
3819 tree created_for;
3820 struct limbo_die_struct *next;
3822 limbo_die_node;
3824 /* How to start an assembler comment. */
3825 #ifndef ASM_COMMENT_START
3826 #define ASM_COMMENT_START ";#"
3827 #endif
3829 /* Define a macro which returns nonzero for a TYPE_DECL which was
3830 implicitly generated for a tagged type.
3832 Note that unlike the gcc front end (which generates a NULL named
3833 TYPE_DECL node for each complete tagged type, each array type, and
3834 each function type node created) the g++ front end generates a
3835 _named_ TYPE_DECL node for each tagged type node created.
3836 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3837 generate a DW_TAG_typedef DIE for them. */
3839 #define TYPE_DECL_IS_STUB(decl) \
3840 (DECL_NAME (decl) == NULL_TREE \
3841 || (DECL_ARTIFICIAL (decl) \
3842 && is_tagged_type (TREE_TYPE (decl)) \
3843 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3844 /* This is necessary for stub decls that \
3845 appear in nested inline functions. */ \
3846 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3847 && (decl_ultimate_origin (decl) \
3848 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3850 /* Information concerning the compilation unit's programming
3851 language, and compiler version. */
3853 /* Fixed size portion of the DWARF compilation unit header. */
3854 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3855 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3857 /* Fixed size portion of public names info. */
3858 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3860 /* Fixed size portion of the address range info. */
3861 #define DWARF_ARANGES_HEADER_SIZE \
3862 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3863 DWARF2_ADDR_SIZE * 2) \
3864 - DWARF_INITIAL_LENGTH_SIZE)
3866 /* Size of padding portion in the address range info. It must be
3867 aligned to twice the pointer size. */
3868 #define DWARF_ARANGES_PAD_SIZE \
3869 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3870 DWARF2_ADDR_SIZE * 2) \
3871 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3873 /* Use assembler line directives if available. */
3874 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3875 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3876 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3877 #else
3878 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3879 #endif
3880 #endif
3882 /* Minimum line offset in a special line info. opcode.
3883 This value was chosen to give a reasonable range of values. */
3884 #define DWARF_LINE_BASE -10
3886 /* First special line opcode - leave room for the standard opcodes. */
3887 #define DWARF_LINE_OPCODE_BASE 10
3889 /* Range of line offsets in a special line info. opcode. */
3890 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3892 /* Flag that indicates the initial value of the is_stmt_start flag.
3893 In the present implementation, we do not mark any lines as
3894 the beginning of a source statement, because that information
3895 is not made available by the GCC front-end. */
3896 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3898 #ifdef DWARF2_DEBUGGING_INFO
3899 /* This location is used by calc_die_sizes() to keep track
3900 the offset of each DIE within the .debug_info section. */
3901 static unsigned long next_die_offset;
3902 #endif
3904 /* Record the root of the DIE's built for the current compilation unit. */
3905 static GTY(()) dw_die_ref comp_unit_die;
3907 /* A list of DIEs with a NULL parent waiting to be relocated. */
3908 static GTY(()) limbo_die_node *limbo_die_list;
3910 /* Filenames referenced by this compilation unit. */
3911 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3913 /* A hash table of references to DIE's that describe declarations.
3914 The key is a DECL_UID() which is a unique number identifying each decl. */
3915 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3917 /* Node of the variable location list. */
3918 struct var_loc_node GTY ((chain_next ("%h.next")))
3920 rtx GTY (()) var_loc_note;
3921 const char * GTY (()) label;
3922 const char * GTY (()) section_label;
3923 struct var_loc_node * GTY (()) next;
3926 /* Variable location list. */
3927 struct var_loc_list_def GTY (())
3929 struct var_loc_node * GTY (()) first;
3931 /* Do not mark the last element of the chained list because
3932 it is marked through the chain. */
3933 struct var_loc_node * GTY ((skip ("%h"))) last;
3935 /* DECL_UID of the variable decl. */
3936 unsigned int decl_id;
3938 typedef struct var_loc_list_def var_loc_list;
3941 /* Table of decl location linked lists. */
3942 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3944 /* A pointer to the base of a list of references to DIE's that
3945 are uniquely identified by their tag, presence/absence of
3946 children DIE's, and list of attribute/value pairs. */
3947 static GTY((length ("abbrev_die_table_allocated")))
3948 dw_die_ref *abbrev_die_table;
3950 /* Number of elements currently allocated for abbrev_die_table. */
3951 static GTY(()) unsigned abbrev_die_table_allocated;
3953 /* Number of elements in type_die_table currently in use. */
3954 static GTY(()) unsigned abbrev_die_table_in_use;
3956 /* Size (in elements) of increments by which we may expand the
3957 abbrev_die_table. */
3958 #define ABBREV_DIE_TABLE_INCREMENT 256
3960 /* A pointer to the base of a table that contains line information
3961 for each source code line in .text in the compilation unit. */
3962 static GTY((length ("line_info_table_allocated")))
3963 dw_line_info_ref line_info_table;
3965 /* Number of elements currently allocated for line_info_table. */
3966 static GTY(()) unsigned line_info_table_allocated;
3968 /* Number of elements in line_info_table currently in use. */
3969 static GTY(()) unsigned line_info_table_in_use;
3971 /* True if the compilation unit places functions in more than one section. */
3972 static GTY(()) bool have_multiple_function_sections = false;
3974 /* A pointer to the base of a table that contains line information
3975 for each source code line outside of .text in the compilation unit. */
3976 static GTY ((length ("separate_line_info_table_allocated")))
3977 dw_separate_line_info_ref separate_line_info_table;
3979 /* Number of elements currently allocated for separate_line_info_table. */
3980 static GTY(()) unsigned separate_line_info_table_allocated;
3982 /* Number of elements in separate_line_info_table currently in use. */
3983 static GTY(()) unsigned separate_line_info_table_in_use;
3985 /* Size (in elements) of increments by which we may expand the
3986 line_info_table. */
3987 #define LINE_INFO_TABLE_INCREMENT 1024
3989 /* A pointer to the base of a table that contains a list of publicly
3990 accessible names. */
3991 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3993 /* A pointer to the base of a table that contains a list of publicly
3994 accessible types. */
3995 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3997 /* Array of dies for which we should generate .debug_arange info. */
3998 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
4000 /* Number of elements currently allocated for arange_table. */
4001 static GTY(()) unsigned arange_table_allocated;
4003 /* Number of elements in arange_table currently in use. */
4004 static GTY(()) unsigned arange_table_in_use;
4006 /* Size (in elements) of increments by which we may expand the
4007 arange_table. */
4008 #define ARANGE_TABLE_INCREMENT 64
4010 /* Array of dies for which we should generate .debug_ranges info. */
4011 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
4013 /* Number of elements currently allocated for ranges_table. */
4014 static GTY(()) unsigned ranges_table_allocated;
4016 /* Number of elements in ranges_table currently in use. */
4017 static GTY(()) unsigned ranges_table_in_use;
4019 /* Array of pairs of labels referenced in ranges_table. */
4020 static GTY ((length ("ranges_by_label_allocated")))
4021 dw_ranges_by_label_ref ranges_by_label;
4023 /* Number of elements currently allocated for ranges_by_label. */
4024 static GTY(()) unsigned ranges_by_label_allocated;
4026 /* Number of elements in ranges_by_label currently in use. */
4027 static GTY(()) unsigned ranges_by_label_in_use;
4029 /* Size (in elements) of increments by which we may expand the
4030 ranges_table. */
4031 #define RANGES_TABLE_INCREMENT 64
4033 /* Whether we have location lists that need outputting */
4034 static GTY(()) bool have_location_lists;
4036 /* Unique label counter. */
4037 static GTY(()) unsigned int loclabel_num;
4039 #ifdef DWARF2_DEBUGGING_INFO
4040 /* Record whether the function being analyzed contains inlined functions. */
4041 static int current_function_has_inlines;
4042 #endif
4043 #if 0 && defined (MIPS_DEBUGGING_INFO)
4044 static int comp_unit_has_inlines;
4045 #endif
4047 /* The last file entry emitted by maybe_emit_file(). */
4048 static GTY(()) struct dwarf_file_data * last_emitted_file;
4050 /* Number of internal labels generated by gen_internal_sym(). */
4051 static GTY(()) int label_num;
4053 /* Cached result of previous call to lookup_filename. */
4054 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4056 /* Whether the default text and cold text sections have been used at
4057 all. */
4059 static GTY(()) bool text_section_used = false;
4060 static GTY(()) bool cold_text_section_used = false;
4062 /* The default cold text section. */
4063 static GTY(()) section *cold_text_section;
4065 #ifdef DWARF2_DEBUGGING_INFO
4067 /* Offset from the "steady-state frame pointer" to the frame base,
4068 within the current function. */
4069 static HOST_WIDE_INT frame_pointer_fb_offset;
4071 /* Forward declarations for functions defined in this file. */
4073 static int is_pseudo_reg (const_rtx);
4074 static tree type_main_variant (tree);
4075 static int is_tagged_type (const_tree);
4076 static const char *dwarf_tag_name (unsigned);
4077 static const char *dwarf_attr_name (unsigned);
4078 static const char *dwarf_form_name (unsigned);
4079 static tree decl_ultimate_origin (const_tree);
4080 static tree block_ultimate_origin (const_tree);
4081 static tree decl_class_context (tree);
4082 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4083 static inline enum dw_val_class AT_class (dw_attr_ref);
4084 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4085 static inline unsigned AT_flag (dw_attr_ref);
4086 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4087 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4088 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4089 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4090 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4091 unsigned long);
4092 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4093 unsigned int, unsigned char *);
4094 static hashval_t debug_str_do_hash (const void *);
4095 static int debug_str_eq (const void *, const void *);
4096 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4097 static inline const char *AT_string (dw_attr_ref);
4098 static int AT_string_form (dw_attr_ref);
4099 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4100 static void add_AT_specification (dw_die_ref, dw_die_ref);
4101 static inline dw_die_ref AT_ref (dw_attr_ref);
4102 static inline int AT_ref_external (dw_attr_ref);
4103 static inline void set_AT_ref_external (dw_attr_ref, int);
4104 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4105 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4106 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4107 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4108 dw_loc_list_ref);
4109 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4110 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4111 static inline rtx AT_addr (dw_attr_ref);
4112 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4113 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4114 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4115 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4116 unsigned HOST_WIDE_INT);
4117 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4118 unsigned long);
4119 static inline const char *AT_lbl (dw_attr_ref);
4120 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4121 static const char *get_AT_low_pc (dw_die_ref);
4122 static const char *get_AT_hi_pc (dw_die_ref);
4123 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4124 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4125 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4126 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4127 static bool is_c_family (void);
4128 static bool is_cxx (void);
4129 static bool is_java (void);
4130 static bool is_fortran (void);
4131 static bool is_ada (void);
4132 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4133 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4134 static void add_child_die (dw_die_ref, dw_die_ref);
4135 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4136 static dw_die_ref lookup_type_die (tree);
4137 static void equate_type_number_to_die (tree, dw_die_ref);
4138 static hashval_t decl_die_table_hash (const void *);
4139 static int decl_die_table_eq (const void *, const void *);
4140 static dw_die_ref lookup_decl_die (tree);
4141 static hashval_t decl_loc_table_hash (const void *);
4142 static int decl_loc_table_eq (const void *, const void *);
4143 static var_loc_list *lookup_decl_loc (const_tree);
4144 static void equate_decl_number_to_die (tree, dw_die_ref);
4145 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4146 static void print_spaces (FILE *);
4147 static void print_die (dw_die_ref, FILE *);
4148 static void print_dwarf_line_table (FILE *);
4149 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4150 static dw_die_ref pop_compile_unit (dw_die_ref);
4151 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4152 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4153 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4154 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4155 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
4156 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4157 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4158 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4159 static void compute_section_prefix (dw_die_ref);
4160 static int is_type_die (dw_die_ref);
4161 static int is_comdat_die (dw_die_ref);
4162 static int is_symbol_die (dw_die_ref);
4163 static void assign_symbol_names (dw_die_ref);
4164 static void break_out_includes (dw_die_ref);
4165 static hashval_t htab_cu_hash (const void *);
4166 static int htab_cu_eq (const void *, const void *);
4167 static void htab_cu_del (void *);
4168 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4169 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4170 static void add_sibling_attributes (dw_die_ref);
4171 static void build_abbrev_table (dw_die_ref);
4172 static void output_location_lists (dw_die_ref);
4173 static int constant_size (long unsigned);
4174 static unsigned long size_of_die (dw_die_ref);
4175 static void calc_die_sizes (dw_die_ref);
4176 static void mark_dies (dw_die_ref);
4177 static void unmark_dies (dw_die_ref);
4178 static void unmark_all_dies (dw_die_ref);
4179 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4180 static unsigned long size_of_aranges (void);
4181 static enum dwarf_form value_format (dw_attr_ref);
4182 static void output_value_format (dw_attr_ref);
4183 static void output_abbrev_section (void);
4184 static void output_die_symbol (dw_die_ref);
4185 static void output_die (dw_die_ref);
4186 static void output_compilation_unit_header (void);
4187 static void output_comp_unit (dw_die_ref, int);
4188 static const char *dwarf2_name (tree, int);
4189 static void add_pubname (tree, dw_die_ref);
4190 static void add_pubtype (tree, dw_die_ref);
4191 static void output_pubnames (VEC (pubname_entry,gc) *);
4192 static void add_arange (tree, dw_die_ref);
4193 static void output_aranges (void);
4194 static unsigned int add_ranges_num (int);
4195 static unsigned int add_ranges (const_tree);
4196 static unsigned int add_ranges_by_labels (const char *, const char *);
4197 static void output_ranges (void);
4198 static void output_line_info (void);
4199 static void output_file_names (void);
4200 static dw_die_ref base_type_die (tree);
4201 static int is_base_type (tree);
4202 static bool is_subrange_type (const_tree);
4203 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4204 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4205 static int type_is_enum (const_tree);
4206 static unsigned int dbx_reg_number (const_rtx);
4207 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4208 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
4209 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
4210 enum var_init_status);
4211 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
4212 enum var_init_status);
4213 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4214 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
4215 enum var_init_status);
4216 static int is_based_loc (const_rtx);
4217 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode,
4218 enum var_init_status);
4219 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
4220 enum var_init_status);
4221 static dw_loc_descr_ref loc_descriptor (rtx, enum var_init_status);
4222 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4223 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4224 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4225 static tree field_type (const_tree);
4226 static unsigned int simple_type_align_in_bits (const_tree);
4227 static unsigned int simple_decl_align_in_bits (const_tree);
4228 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
4229 static HOST_WIDE_INT field_byte_offset (const_tree);
4230 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4231 dw_loc_descr_ref);
4232 static void add_data_member_location_attribute (dw_die_ref, tree);
4233 static void add_const_value_attribute (dw_die_ref, rtx);
4234 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4235 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4236 static void insert_float (const_rtx, unsigned char *);
4237 static rtx rtl_for_decl_location (tree);
4238 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4239 enum dwarf_attribute);
4240 static void tree_add_const_value_attribute (dw_die_ref, tree);
4241 static void add_name_attribute (dw_die_ref, const char *);
4242 static void add_comp_dir_attribute (dw_die_ref);
4243 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4244 static void add_subscript_info (dw_die_ref, tree);
4245 static void add_byte_size_attribute (dw_die_ref, tree);
4246 static void add_bit_offset_attribute (dw_die_ref, tree);
4247 static void add_bit_size_attribute (dw_die_ref, tree);
4248 static void add_prototyped_attribute (dw_die_ref, tree);
4249 static void add_abstract_origin_attribute (dw_die_ref, tree);
4250 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4251 static void add_src_coords_attributes (dw_die_ref, tree);
4252 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4253 static void push_decl_scope (tree);
4254 static void pop_decl_scope (void);
4255 static dw_die_ref scope_die_for (tree, dw_die_ref);
4256 static inline int local_scope_p (dw_die_ref);
4257 static inline int class_or_namespace_scope_p (dw_die_ref);
4258 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4259 static void add_calling_convention_attribute (dw_die_ref, tree);
4260 static const char *type_tag (const_tree);
4261 static tree member_declared_type (const_tree);
4262 #if 0
4263 static const char *decl_start_label (tree);
4264 #endif
4265 static void gen_array_type_die (tree, dw_die_ref);
4266 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
4267 #if 0
4268 static void gen_entry_point_die (tree, dw_die_ref);
4269 #endif
4270 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4271 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4272 static void gen_inlined_union_type_die (tree, dw_die_ref);
4273 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4274 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4275 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4276 static void gen_formal_types_die (tree, dw_die_ref);
4277 static void gen_subprogram_die (tree, dw_die_ref);
4278 static void gen_variable_die (tree, dw_die_ref);
4279 static void gen_label_die (tree, dw_die_ref);
4280 static void gen_lexical_block_die (tree, dw_die_ref, int);
4281 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4282 static void gen_field_die (tree, dw_die_ref);
4283 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4284 static dw_die_ref gen_compile_unit_die (const char *);
4285 static void gen_inheritance_die (tree, tree, dw_die_ref);
4286 static void gen_member_die (tree, dw_die_ref);
4287 static void gen_struct_or_union_type_die (tree, dw_die_ref,
4288 enum debug_info_usage);
4289 static void gen_subroutine_type_die (tree, dw_die_ref);
4290 static void gen_typedef_die (tree, dw_die_ref);
4291 static void gen_type_die (tree, dw_die_ref);
4292 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4293 static void gen_block_die (tree, dw_die_ref, int);
4294 static void decls_for_scope (tree, dw_die_ref, int);
4295 static int is_redundant_typedef (const_tree);
4296 static void gen_namespace_die (tree);
4297 static void gen_decl_die (tree, dw_die_ref);
4298 static dw_die_ref force_decl_die (tree);
4299 static dw_die_ref force_type_die (tree);
4300 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4301 static void declare_in_namespace (tree, dw_die_ref);
4302 static struct dwarf_file_data * lookup_filename (const char *);
4303 static void retry_incomplete_types (void);
4304 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4305 static void splice_child_die (dw_die_ref, dw_die_ref);
4306 static int file_info_cmp (const void *, const void *);
4307 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4308 const char *, const char *, unsigned);
4309 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4310 const char *, const char *,
4311 const char *);
4312 static void output_loc_list (dw_loc_list_ref);
4313 static char *gen_internal_sym (const char *);
4315 static void prune_unmark_dies (dw_die_ref);
4316 static void prune_unused_types_mark (dw_die_ref, int);
4317 static void prune_unused_types_walk (dw_die_ref);
4318 static void prune_unused_types_walk_attribs (dw_die_ref);
4319 static void prune_unused_types_prune (dw_die_ref);
4320 static void prune_unused_types (void);
4321 static int maybe_emit_file (struct dwarf_file_data *fd);
4323 /* Section names used to hold DWARF debugging information. */
4324 #ifndef DEBUG_INFO_SECTION
4325 #define DEBUG_INFO_SECTION ".debug_info"
4326 #endif
4327 #ifndef DEBUG_ABBREV_SECTION
4328 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4329 #endif
4330 #ifndef DEBUG_ARANGES_SECTION
4331 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4332 #endif
4333 #ifndef DEBUG_MACINFO_SECTION
4334 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4335 #endif
4336 #ifndef DEBUG_LINE_SECTION
4337 #define DEBUG_LINE_SECTION ".debug_line"
4338 #endif
4339 #ifndef DEBUG_LOC_SECTION
4340 #define DEBUG_LOC_SECTION ".debug_loc"
4341 #endif
4342 #ifndef DEBUG_PUBNAMES_SECTION
4343 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4344 #endif
4345 #ifndef DEBUG_STR_SECTION
4346 #define DEBUG_STR_SECTION ".debug_str"
4347 #endif
4348 #ifndef DEBUG_RANGES_SECTION
4349 #define DEBUG_RANGES_SECTION ".debug_ranges"
4350 #endif
4352 /* Standard ELF section names for compiled code and data. */
4353 #ifndef TEXT_SECTION_NAME
4354 #define TEXT_SECTION_NAME ".text"
4355 #endif
4357 /* Section flags for .debug_str section. */
4358 #define DEBUG_STR_SECTION_FLAGS \
4359 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4360 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4361 : SECTION_DEBUG)
4363 /* Labels we insert at beginning sections we can reference instead of
4364 the section names themselves. */
4366 #ifndef TEXT_SECTION_LABEL
4367 #define TEXT_SECTION_LABEL "Ltext"
4368 #endif
4369 #ifndef COLD_TEXT_SECTION_LABEL
4370 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4371 #endif
4372 #ifndef DEBUG_LINE_SECTION_LABEL
4373 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4374 #endif
4375 #ifndef DEBUG_INFO_SECTION_LABEL
4376 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4377 #endif
4378 #ifndef DEBUG_ABBREV_SECTION_LABEL
4379 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4380 #endif
4381 #ifndef DEBUG_LOC_SECTION_LABEL
4382 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4383 #endif
4384 #ifndef DEBUG_RANGES_SECTION_LABEL
4385 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4386 #endif
4387 #ifndef DEBUG_MACINFO_SECTION_LABEL
4388 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4389 #endif
4391 /* Definitions of defaults for formats and names of various special
4392 (artificial) labels which may be generated within this file (when the -g
4393 options is used and DWARF2_DEBUGGING_INFO is in effect.
4394 If necessary, these may be overridden from within the tm.h file, but
4395 typically, overriding these defaults is unnecessary. */
4397 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4398 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4399 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4400 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4401 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4402 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4403 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4404 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4405 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4406 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4408 #ifndef TEXT_END_LABEL
4409 #define TEXT_END_LABEL "Letext"
4410 #endif
4411 #ifndef COLD_END_LABEL
4412 #define COLD_END_LABEL "Letext_cold"
4413 #endif
4414 #ifndef BLOCK_BEGIN_LABEL
4415 #define BLOCK_BEGIN_LABEL "LBB"
4416 #endif
4417 #ifndef BLOCK_END_LABEL
4418 #define BLOCK_END_LABEL "LBE"
4419 #endif
4420 #ifndef LINE_CODE_LABEL
4421 #define LINE_CODE_LABEL "LM"
4422 #endif
4423 #ifndef SEPARATE_LINE_CODE_LABEL
4424 #define SEPARATE_LINE_CODE_LABEL "LSM"
4425 #endif
4428 /* We allow a language front-end to designate a function that is to be
4429 called to "demangle" any name before it is put into a DIE. */
4431 static const char *(*demangle_name_func) (const char *);
4433 void
4434 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4436 demangle_name_func = func;
4439 /* Test if rtl node points to a pseudo register. */
4441 static inline int
4442 is_pseudo_reg (const_rtx rtl)
4444 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4445 || (GET_CODE (rtl) == SUBREG
4446 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4449 /* Return a reference to a type, with its const and volatile qualifiers
4450 removed. */
4452 static inline tree
4453 type_main_variant (tree type)
4455 type = TYPE_MAIN_VARIANT (type);
4457 /* ??? There really should be only one main variant among any group of
4458 variants of a given type (and all of the MAIN_VARIANT values for all
4459 members of the group should point to that one type) but sometimes the C
4460 front-end messes this up for array types, so we work around that bug
4461 here. */
4462 if (TREE_CODE (type) == ARRAY_TYPE)
4463 while (type != TYPE_MAIN_VARIANT (type))
4464 type = TYPE_MAIN_VARIANT (type);
4466 return type;
4469 /* Return nonzero if the given type node represents a tagged type. */
4471 static inline int
4472 is_tagged_type (const_tree type)
4474 enum tree_code code = TREE_CODE (type);
4476 return (code == RECORD_TYPE || code == UNION_TYPE
4477 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4480 /* Convert a DIE tag into its string name. */
4482 static const char *
4483 dwarf_tag_name (unsigned int tag)
4485 switch (tag)
4487 case DW_TAG_padding:
4488 return "DW_TAG_padding";
4489 case DW_TAG_array_type:
4490 return "DW_TAG_array_type";
4491 case DW_TAG_class_type:
4492 return "DW_TAG_class_type";
4493 case DW_TAG_entry_point:
4494 return "DW_TAG_entry_point";
4495 case DW_TAG_enumeration_type:
4496 return "DW_TAG_enumeration_type";
4497 case DW_TAG_formal_parameter:
4498 return "DW_TAG_formal_parameter";
4499 case DW_TAG_imported_declaration:
4500 return "DW_TAG_imported_declaration";
4501 case DW_TAG_label:
4502 return "DW_TAG_label";
4503 case DW_TAG_lexical_block:
4504 return "DW_TAG_lexical_block";
4505 case DW_TAG_member:
4506 return "DW_TAG_member";
4507 case DW_TAG_pointer_type:
4508 return "DW_TAG_pointer_type";
4509 case DW_TAG_reference_type:
4510 return "DW_TAG_reference_type";
4511 case DW_TAG_compile_unit:
4512 return "DW_TAG_compile_unit";
4513 case DW_TAG_string_type:
4514 return "DW_TAG_string_type";
4515 case DW_TAG_structure_type:
4516 return "DW_TAG_structure_type";
4517 case DW_TAG_subroutine_type:
4518 return "DW_TAG_subroutine_type";
4519 case DW_TAG_typedef:
4520 return "DW_TAG_typedef";
4521 case DW_TAG_union_type:
4522 return "DW_TAG_union_type";
4523 case DW_TAG_unspecified_parameters:
4524 return "DW_TAG_unspecified_parameters";
4525 case DW_TAG_variant:
4526 return "DW_TAG_variant";
4527 case DW_TAG_common_block:
4528 return "DW_TAG_common_block";
4529 case DW_TAG_common_inclusion:
4530 return "DW_TAG_common_inclusion";
4531 case DW_TAG_inheritance:
4532 return "DW_TAG_inheritance";
4533 case DW_TAG_inlined_subroutine:
4534 return "DW_TAG_inlined_subroutine";
4535 case DW_TAG_module:
4536 return "DW_TAG_module";
4537 case DW_TAG_ptr_to_member_type:
4538 return "DW_TAG_ptr_to_member_type";
4539 case DW_TAG_set_type:
4540 return "DW_TAG_set_type";
4541 case DW_TAG_subrange_type:
4542 return "DW_TAG_subrange_type";
4543 case DW_TAG_with_stmt:
4544 return "DW_TAG_with_stmt";
4545 case DW_TAG_access_declaration:
4546 return "DW_TAG_access_declaration";
4547 case DW_TAG_base_type:
4548 return "DW_TAG_base_type";
4549 case DW_TAG_catch_block:
4550 return "DW_TAG_catch_block";
4551 case DW_TAG_const_type:
4552 return "DW_TAG_const_type";
4553 case DW_TAG_constant:
4554 return "DW_TAG_constant";
4555 case DW_TAG_enumerator:
4556 return "DW_TAG_enumerator";
4557 case DW_TAG_file_type:
4558 return "DW_TAG_file_type";
4559 case DW_TAG_friend:
4560 return "DW_TAG_friend";
4561 case DW_TAG_namelist:
4562 return "DW_TAG_namelist";
4563 case DW_TAG_namelist_item:
4564 return "DW_TAG_namelist_item";
4565 case DW_TAG_packed_type:
4566 return "DW_TAG_packed_type";
4567 case DW_TAG_subprogram:
4568 return "DW_TAG_subprogram";
4569 case DW_TAG_template_type_param:
4570 return "DW_TAG_template_type_param";
4571 case DW_TAG_template_value_param:
4572 return "DW_TAG_template_value_param";
4573 case DW_TAG_thrown_type:
4574 return "DW_TAG_thrown_type";
4575 case DW_TAG_try_block:
4576 return "DW_TAG_try_block";
4577 case DW_TAG_variant_part:
4578 return "DW_TAG_variant_part";
4579 case DW_TAG_variable:
4580 return "DW_TAG_variable";
4581 case DW_TAG_volatile_type:
4582 return "DW_TAG_volatile_type";
4583 case DW_TAG_dwarf_procedure:
4584 return "DW_TAG_dwarf_procedure";
4585 case DW_TAG_restrict_type:
4586 return "DW_TAG_restrict_type";
4587 case DW_TAG_interface_type:
4588 return "DW_TAG_interface_type";
4589 case DW_TAG_namespace:
4590 return "DW_TAG_namespace";
4591 case DW_TAG_imported_module:
4592 return "DW_TAG_imported_module";
4593 case DW_TAG_unspecified_type:
4594 return "DW_TAG_unspecified_type";
4595 case DW_TAG_partial_unit:
4596 return "DW_TAG_partial_unit";
4597 case DW_TAG_imported_unit:
4598 return "DW_TAG_imported_unit";
4599 case DW_TAG_condition:
4600 return "DW_TAG_condition";
4601 case DW_TAG_shared_type:
4602 return "DW_TAG_shared_type";
4603 case DW_TAG_MIPS_loop:
4604 return "DW_TAG_MIPS_loop";
4605 case DW_TAG_format_label:
4606 return "DW_TAG_format_label";
4607 case DW_TAG_function_template:
4608 return "DW_TAG_function_template";
4609 case DW_TAG_class_template:
4610 return "DW_TAG_class_template";
4611 case DW_TAG_GNU_BINCL:
4612 return "DW_TAG_GNU_BINCL";
4613 case DW_TAG_GNU_EINCL:
4614 return "DW_TAG_GNU_EINCL";
4615 default:
4616 return "DW_TAG_<unknown>";
4620 /* Convert a DWARF attribute code into its string name. */
4622 static const char *
4623 dwarf_attr_name (unsigned int attr)
4625 switch (attr)
4627 case DW_AT_sibling:
4628 return "DW_AT_sibling";
4629 case DW_AT_location:
4630 return "DW_AT_location";
4631 case DW_AT_name:
4632 return "DW_AT_name";
4633 case DW_AT_ordering:
4634 return "DW_AT_ordering";
4635 case DW_AT_subscr_data:
4636 return "DW_AT_subscr_data";
4637 case DW_AT_byte_size:
4638 return "DW_AT_byte_size";
4639 case DW_AT_bit_offset:
4640 return "DW_AT_bit_offset";
4641 case DW_AT_bit_size:
4642 return "DW_AT_bit_size";
4643 case DW_AT_element_list:
4644 return "DW_AT_element_list";
4645 case DW_AT_stmt_list:
4646 return "DW_AT_stmt_list";
4647 case DW_AT_low_pc:
4648 return "DW_AT_low_pc";
4649 case DW_AT_high_pc:
4650 return "DW_AT_high_pc";
4651 case DW_AT_language:
4652 return "DW_AT_language";
4653 case DW_AT_member:
4654 return "DW_AT_member";
4655 case DW_AT_discr:
4656 return "DW_AT_discr";
4657 case DW_AT_discr_value:
4658 return "DW_AT_discr_value";
4659 case DW_AT_visibility:
4660 return "DW_AT_visibility";
4661 case DW_AT_import:
4662 return "DW_AT_import";
4663 case DW_AT_string_length:
4664 return "DW_AT_string_length";
4665 case DW_AT_common_reference:
4666 return "DW_AT_common_reference";
4667 case DW_AT_comp_dir:
4668 return "DW_AT_comp_dir";
4669 case DW_AT_const_value:
4670 return "DW_AT_const_value";
4671 case DW_AT_containing_type:
4672 return "DW_AT_containing_type";
4673 case DW_AT_default_value:
4674 return "DW_AT_default_value";
4675 case DW_AT_inline:
4676 return "DW_AT_inline";
4677 case DW_AT_is_optional:
4678 return "DW_AT_is_optional";
4679 case DW_AT_lower_bound:
4680 return "DW_AT_lower_bound";
4681 case DW_AT_producer:
4682 return "DW_AT_producer";
4683 case DW_AT_prototyped:
4684 return "DW_AT_prototyped";
4685 case DW_AT_return_addr:
4686 return "DW_AT_return_addr";
4687 case DW_AT_start_scope:
4688 return "DW_AT_start_scope";
4689 case DW_AT_bit_stride:
4690 return "DW_AT_bit_stride";
4691 case DW_AT_upper_bound:
4692 return "DW_AT_upper_bound";
4693 case DW_AT_abstract_origin:
4694 return "DW_AT_abstract_origin";
4695 case DW_AT_accessibility:
4696 return "DW_AT_accessibility";
4697 case DW_AT_address_class:
4698 return "DW_AT_address_class";
4699 case DW_AT_artificial:
4700 return "DW_AT_artificial";
4701 case DW_AT_base_types:
4702 return "DW_AT_base_types";
4703 case DW_AT_calling_convention:
4704 return "DW_AT_calling_convention";
4705 case DW_AT_count:
4706 return "DW_AT_count";
4707 case DW_AT_data_member_location:
4708 return "DW_AT_data_member_location";
4709 case DW_AT_decl_column:
4710 return "DW_AT_decl_column";
4711 case DW_AT_decl_file:
4712 return "DW_AT_decl_file";
4713 case DW_AT_decl_line:
4714 return "DW_AT_decl_line";
4715 case DW_AT_declaration:
4716 return "DW_AT_declaration";
4717 case DW_AT_discr_list:
4718 return "DW_AT_discr_list";
4719 case DW_AT_encoding:
4720 return "DW_AT_encoding";
4721 case DW_AT_external:
4722 return "DW_AT_external";
4723 case DW_AT_frame_base:
4724 return "DW_AT_frame_base";
4725 case DW_AT_friend:
4726 return "DW_AT_friend";
4727 case DW_AT_identifier_case:
4728 return "DW_AT_identifier_case";
4729 case DW_AT_macro_info:
4730 return "DW_AT_macro_info";
4731 case DW_AT_namelist_items:
4732 return "DW_AT_namelist_items";
4733 case DW_AT_priority:
4734 return "DW_AT_priority";
4735 case DW_AT_segment:
4736 return "DW_AT_segment";
4737 case DW_AT_specification:
4738 return "DW_AT_specification";
4739 case DW_AT_static_link:
4740 return "DW_AT_static_link";
4741 case DW_AT_type:
4742 return "DW_AT_type";
4743 case DW_AT_use_location:
4744 return "DW_AT_use_location";
4745 case DW_AT_variable_parameter:
4746 return "DW_AT_variable_parameter";
4747 case DW_AT_virtuality:
4748 return "DW_AT_virtuality";
4749 case DW_AT_vtable_elem_location:
4750 return "DW_AT_vtable_elem_location";
4752 case DW_AT_allocated:
4753 return "DW_AT_allocated";
4754 case DW_AT_associated:
4755 return "DW_AT_associated";
4756 case DW_AT_data_location:
4757 return "DW_AT_data_location";
4758 case DW_AT_byte_stride:
4759 return "DW_AT_byte_stride";
4760 case DW_AT_entry_pc:
4761 return "DW_AT_entry_pc";
4762 case DW_AT_use_UTF8:
4763 return "DW_AT_use_UTF8";
4764 case DW_AT_extension:
4765 return "DW_AT_extension";
4766 case DW_AT_ranges:
4767 return "DW_AT_ranges";
4768 case DW_AT_trampoline:
4769 return "DW_AT_trampoline";
4770 case DW_AT_call_column:
4771 return "DW_AT_call_column";
4772 case DW_AT_call_file:
4773 return "DW_AT_call_file";
4774 case DW_AT_call_line:
4775 return "DW_AT_call_line";
4777 case DW_AT_MIPS_fde:
4778 return "DW_AT_MIPS_fde";
4779 case DW_AT_MIPS_loop_begin:
4780 return "DW_AT_MIPS_loop_begin";
4781 case DW_AT_MIPS_tail_loop_begin:
4782 return "DW_AT_MIPS_tail_loop_begin";
4783 case DW_AT_MIPS_epilog_begin:
4784 return "DW_AT_MIPS_epilog_begin";
4785 case DW_AT_MIPS_loop_unroll_factor:
4786 return "DW_AT_MIPS_loop_unroll_factor";
4787 case DW_AT_MIPS_software_pipeline_depth:
4788 return "DW_AT_MIPS_software_pipeline_depth";
4789 case DW_AT_MIPS_linkage_name:
4790 return "DW_AT_MIPS_linkage_name";
4791 case DW_AT_MIPS_stride:
4792 return "DW_AT_MIPS_stride";
4793 case DW_AT_MIPS_abstract_name:
4794 return "DW_AT_MIPS_abstract_name";
4795 case DW_AT_MIPS_clone_origin:
4796 return "DW_AT_MIPS_clone_origin";
4797 case DW_AT_MIPS_has_inlines:
4798 return "DW_AT_MIPS_has_inlines";
4800 case DW_AT_sf_names:
4801 return "DW_AT_sf_names";
4802 case DW_AT_src_info:
4803 return "DW_AT_src_info";
4804 case DW_AT_mac_info:
4805 return "DW_AT_mac_info";
4806 case DW_AT_src_coords:
4807 return "DW_AT_src_coords";
4808 case DW_AT_body_begin:
4809 return "DW_AT_body_begin";
4810 case DW_AT_body_end:
4811 return "DW_AT_body_end";
4812 case DW_AT_GNU_vector:
4813 return "DW_AT_GNU_vector";
4815 case DW_AT_VMS_rtnbeg_pd_address:
4816 return "DW_AT_VMS_rtnbeg_pd_address";
4818 default:
4819 return "DW_AT_<unknown>";
4823 /* Convert a DWARF value form code into its string name. */
4825 static const char *
4826 dwarf_form_name (unsigned int form)
4828 switch (form)
4830 case DW_FORM_addr:
4831 return "DW_FORM_addr";
4832 case DW_FORM_block2:
4833 return "DW_FORM_block2";
4834 case DW_FORM_block4:
4835 return "DW_FORM_block4";
4836 case DW_FORM_data2:
4837 return "DW_FORM_data2";
4838 case DW_FORM_data4:
4839 return "DW_FORM_data4";
4840 case DW_FORM_data8:
4841 return "DW_FORM_data8";
4842 case DW_FORM_string:
4843 return "DW_FORM_string";
4844 case DW_FORM_block:
4845 return "DW_FORM_block";
4846 case DW_FORM_block1:
4847 return "DW_FORM_block1";
4848 case DW_FORM_data1:
4849 return "DW_FORM_data1";
4850 case DW_FORM_flag:
4851 return "DW_FORM_flag";
4852 case DW_FORM_sdata:
4853 return "DW_FORM_sdata";
4854 case DW_FORM_strp:
4855 return "DW_FORM_strp";
4856 case DW_FORM_udata:
4857 return "DW_FORM_udata";
4858 case DW_FORM_ref_addr:
4859 return "DW_FORM_ref_addr";
4860 case DW_FORM_ref1:
4861 return "DW_FORM_ref1";
4862 case DW_FORM_ref2:
4863 return "DW_FORM_ref2";
4864 case DW_FORM_ref4:
4865 return "DW_FORM_ref4";
4866 case DW_FORM_ref8:
4867 return "DW_FORM_ref8";
4868 case DW_FORM_ref_udata:
4869 return "DW_FORM_ref_udata";
4870 case DW_FORM_indirect:
4871 return "DW_FORM_indirect";
4872 default:
4873 return "DW_FORM_<unknown>";
4877 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4878 instance of an inlined instance of a decl which is local to an inline
4879 function, so we have to trace all of the way back through the origin chain
4880 to find out what sort of node actually served as the original seed for the
4881 given block. */
4883 static tree
4884 decl_ultimate_origin (const_tree decl)
4886 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4887 return NULL_TREE;
4889 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4890 nodes in the function to point to themselves; ignore that if
4891 we're trying to output the abstract instance of this function. */
4892 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4893 return NULL_TREE;
4895 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4896 most distant ancestor, this should never happen. */
4897 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4899 return DECL_ABSTRACT_ORIGIN (decl);
4902 /* Determine the "ultimate origin" of a block. The block may be an inlined
4903 instance of an inlined instance of a block which is local to an inline
4904 function, so we have to trace all of the way back through the origin chain
4905 to find out what sort of node actually served as the original seed for the
4906 given block. */
4908 static tree
4909 block_ultimate_origin (const_tree block)
4911 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4913 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4914 nodes in the function to point to themselves; ignore that if
4915 we're trying to output the abstract instance of this function. */
4916 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4917 return NULL_TREE;
4919 if (immediate_origin == NULL_TREE)
4920 return NULL_TREE;
4921 else
4923 tree ret_val;
4924 tree lookahead = immediate_origin;
4928 ret_val = lookahead;
4929 lookahead = (TREE_CODE (ret_val) == BLOCK
4930 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4932 while (lookahead != NULL && lookahead != ret_val);
4934 /* The block's abstract origin chain may not be the *ultimate* origin of
4935 the block. It could lead to a DECL that has an abstract origin set.
4936 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4937 will give us if it has one). Note that DECL's abstract origins are
4938 supposed to be the most distant ancestor (or so decl_ultimate_origin
4939 claims), so we don't need to loop following the DECL origins. */
4940 if (DECL_P (ret_val))
4941 return DECL_ORIGIN (ret_val);
4943 return ret_val;
4947 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4948 of a virtual function may refer to a base class, so we check the 'this'
4949 parameter. */
4951 static tree
4952 decl_class_context (tree decl)
4954 tree context = NULL_TREE;
4956 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4957 context = DECL_CONTEXT (decl);
4958 else
4959 context = TYPE_MAIN_VARIANT
4960 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4962 if (context && !TYPE_P (context))
4963 context = NULL_TREE;
4965 return context;
4968 /* Add an attribute/value pair to a DIE. */
4970 static inline void
4971 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4973 /* Maybe this should be an assert? */
4974 if (die == NULL)
4975 return;
4977 if (die->die_attr == NULL)
4978 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4979 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4982 static inline enum dw_val_class
4983 AT_class (dw_attr_ref a)
4985 return a->dw_attr_val.val_class;
4988 /* Add a flag value attribute to a DIE. */
4990 static inline void
4991 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4993 dw_attr_node attr;
4995 attr.dw_attr = attr_kind;
4996 attr.dw_attr_val.val_class = dw_val_class_flag;
4997 attr.dw_attr_val.v.val_flag = flag;
4998 add_dwarf_attr (die, &attr);
5001 static inline unsigned
5002 AT_flag (dw_attr_ref a)
5004 gcc_assert (a && AT_class (a) == dw_val_class_flag);
5005 return a->dw_attr_val.v.val_flag;
5008 /* Add a signed integer attribute value to a DIE. */
5010 static inline void
5011 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
5013 dw_attr_node attr;
5015 attr.dw_attr = attr_kind;
5016 attr.dw_attr_val.val_class = dw_val_class_const;
5017 attr.dw_attr_val.v.val_int = int_val;
5018 add_dwarf_attr (die, &attr);
5021 static inline HOST_WIDE_INT
5022 AT_int (dw_attr_ref a)
5024 gcc_assert (a && AT_class (a) == dw_val_class_const);
5025 return a->dw_attr_val.v.val_int;
5028 /* Add an unsigned integer attribute value to a DIE. */
5030 static inline void
5031 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
5032 unsigned HOST_WIDE_INT unsigned_val)
5034 dw_attr_node attr;
5036 attr.dw_attr = attr_kind;
5037 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
5038 attr.dw_attr_val.v.val_unsigned = unsigned_val;
5039 add_dwarf_attr (die, &attr);
5042 static inline unsigned HOST_WIDE_INT
5043 AT_unsigned (dw_attr_ref a)
5045 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
5046 return a->dw_attr_val.v.val_unsigned;
5049 /* Add an unsigned double integer attribute value to a DIE. */
5051 static inline void
5052 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
5053 long unsigned int val_hi, long unsigned int val_low)
5055 dw_attr_node attr;
5057 attr.dw_attr = attr_kind;
5058 attr.dw_attr_val.val_class = dw_val_class_long_long;
5059 attr.dw_attr_val.v.val_long_long.hi = val_hi;
5060 attr.dw_attr_val.v.val_long_long.low = val_low;
5061 add_dwarf_attr (die, &attr);
5064 /* Add a floating point attribute value to a DIE and return it. */
5066 static inline void
5067 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
5068 unsigned int length, unsigned int elt_size, unsigned char *array)
5070 dw_attr_node attr;
5072 attr.dw_attr = attr_kind;
5073 attr.dw_attr_val.val_class = dw_val_class_vec;
5074 attr.dw_attr_val.v.val_vec.length = length;
5075 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
5076 attr.dw_attr_val.v.val_vec.array = array;
5077 add_dwarf_attr (die, &attr);
5080 /* Hash and equality functions for debug_str_hash. */
5082 static hashval_t
5083 debug_str_do_hash (const void *x)
5085 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5088 static int
5089 debug_str_eq (const void *x1, const void *x2)
5091 return strcmp ((((const struct indirect_string_node *)x1)->str),
5092 (const char *)x2) == 0;
5095 /* Add a string attribute value to a DIE. */
5097 static inline void
5098 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5100 dw_attr_node attr;
5101 struct indirect_string_node *node;
5102 void **slot;
5104 if (! debug_str_hash)
5105 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5106 debug_str_eq, NULL);
5108 slot = htab_find_slot_with_hash (debug_str_hash, str,
5109 htab_hash_string (str), INSERT);
5110 if (*slot == NULL)
5112 node = (struct indirect_string_node *)
5113 ggc_alloc_cleared (sizeof (struct indirect_string_node));
5114 node->str = ggc_strdup (str);
5115 *slot = node;
5117 else
5118 node = (struct indirect_string_node *) *slot;
5120 node->refcount++;
5122 attr.dw_attr = attr_kind;
5123 attr.dw_attr_val.val_class = dw_val_class_str;
5124 attr.dw_attr_val.v.val_str = node;
5125 add_dwarf_attr (die, &attr);
5128 static inline const char *
5129 AT_string (dw_attr_ref a)
5131 gcc_assert (a && AT_class (a) == dw_val_class_str);
5132 return a->dw_attr_val.v.val_str->str;
5135 /* Find out whether a string should be output inline in DIE
5136 or out-of-line in .debug_str section. */
5138 static int
5139 AT_string_form (dw_attr_ref a)
5141 struct indirect_string_node *node;
5142 unsigned int len;
5143 char label[32];
5145 gcc_assert (a && AT_class (a) == dw_val_class_str);
5147 node = a->dw_attr_val.v.val_str;
5148 if (node->form)
5149 return node->form;
5151 len = strlen (node->str) + 1;
5153 /* If the string is shorter or equal to the size of the reference, it is
5154 always better to put it inline. */
5155 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5156 return node->form = DW_FORM_string;
5158 /* If we cannot expect the linker to merge strings in .debug_str
5159 section, only put it into .debug_str if it is worth even in this
5160 single module. */
5161 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5162 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5163 return node->form = DW_FORM_string;
5165 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5166 ++dw2_string_counter;
5167 node->label = xstrdup (label);
5169 return node->form = DW_FORM_strp;
5172 /* Add a DIE reference attribute value to a DIE. */
5174 static inline void
5175 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5177 dw_attr_node attr;
5179 attr.dw_attr = attr_kind;
5180 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5181 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5182 attr.dw_attr_val.v.val_die_ref.external = 0;
5183 add_dwarf_attr (die, &attr);
5186 /* Add an AT_specification attribute to a DIE, and also make the back
5187 pointer from the specification to the definition. */
5189 static inline void
5190 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5192 add_AT_die_ref (die, DW_AT_specification, targ_die);
5193 gcc_assert (!targ_die->die_definition);
5194 targ_die->die_definition = die;
5197 static inline dw_die_ref
5198 AT_ref (dw_attr_ref a)
5200 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5201 return a->dw_attr_val.v.val_die_ref.die;
5204 static inline int
5205 AT_ref_external (dw_attr_ref a)
5207 if (a && AT_class (a) == dw_val_class_die_ref)
5208 return a->dw_attr_val.v.val_die_ref.external;
5210 return 0;
5213 static inline void
5214 set_AT_ref_external (dw_attr_ref a, int i)
5216 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5217 a->dw_attr_val.v.val_die_ref.external = i;
5220 /* Add an FDE reference attribute value to a DIE. */
5222 static inline void
5223 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5225 dw_attr_node attr;
5227 attr.dw_attr = attr_kind;
5228 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5229 attr.dw_attr_val.v.val_fde_index = targ_fde;
5230 add_dwarf_attr (die, &attr);
5233 /* Add a location description attribute value to a DIE. */
5235 static inline void
5236 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5238 dw_attr_node attr;
5240 attr.dw_attr = attr_kind;
5241 attr.dw_attr_val.val_class = dw_val_class_loc;
5242 attr.dw_attr_val.v.val_loc = loc;
5243 add_dwarf_attr (die, &attr);
5246 static inline dw_loc_descr_ref
5247 AT_loc (dw_attr_ref a)
5249 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5250 return a->dw_attr_val.v.val_loc;
5253 static inline void
5254 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5256 dw_attr_node attr;
5258 attr.dw_attr = attr_kind;
5259 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5260 attr.dw_attr_val.v.val_loc_list = loc_list;
5261 add_dwarf_attr (die, &attr);
5262 have_location_lists = true;
5265 static inline dw_loc_list_ref
5266 AT_loc_list (dw_attr_ref a)
5268 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5269 return a->dw_attr_val.v.val_loc_list;
5272 /* Add an address constant attribute value to a DIE. */
5274 static inline void
5275 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5277 dw_attr_node attr;
5279 attr.dw_attr = attr_kind;
5280 attr.dw_attr_val.val_class = dw_val_class_addr;
5281 attr.dw_attr_val.v.val_addr = addr;
5282 add_dwarf_attr (die, &attr);
5285 /* Get the RTX from to an address DIE attribute. */
5287 static inline rtx
5288 AT_addr (dw_attr_ref a)
5290 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5291 return a->dw_attr_val.v.val_addr;
5294 /* Add a file attribute value to a DIE. */
5296 static inline void
5297 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5298 struct dwarf_file_data *fd)
5300 dw_attr_node attr;
5302 attr.dw_attr = attr_kind;
5303 attr.dw_attr_val.val_class = dw_val_class_file;
5304 attr.dw_attr_val.v.val_file = fd;
5305 add_dwarf_attr (die, &attr);
5308 /* Get the dwarf_file_data from a file DIE attribute. */
5310 static inline struct dwarf_file_data *
5311 AT_file (dw_attr_ref a)
5313 gcc_assert (a && AT_class (a) == dw_val_class_file);
5314 return a->dw_attr_val.v.val_file;
5317 /* Add a label identifier attribute value to a DIE. */
5319 static inline void
5320 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5322 dw_attr_node attr;
5324 attr.dw_attr = attr_kind;
5325 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5326 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5327 add_dwarf_attr (die, &attr);
5330 /* Add a section offset attribute value to a DIE, an offset into the
5331 debug_line section. */
5333 static inline void
5334 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5335 const char *label)
5337 dw_attr_node attr;
5339 attr.dw_attr = attr_kind;
5340 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5341 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5342 add_dwarf_attr (die, &attr);
5345 /* Add a section offset attribute value to a DIE, an offset into the
5346 debug_macinfo section. */
5348 static inline void
5349 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5350 const char *label)
5352 dw_attr_node attr;
5354 attr.dw_attr = attr_kind;
5355 attr.dw_attr_val.val_class = dw_val_class_macptr;
5356 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5357 add_dwarf_attr (die, &attr);
5360 /* Add an offset attribute value to a DIE. */
5362 static inline void
5363 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5364 unsigned HOST_WIDE_INT offset)
5366 dw_attr_node attr;
5368 attr.dw_attr = attr_kind;
5369 attr.dw_attr_val.val_class = dw_val_class_offset;
5370 attr.dw_attr_val.v.val_offset = offset;
5371 add_dwarf_attr (die, &attr);
5374 /* Add an range_list attribute value to a DIE. */
5376 static void
5377 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5378 long unsigned int offset)
5380 dw_attr_node attr;
5382 attr.dw_attr = attr_kind;
5383 attr.dw_attr_val.val_class = dw_val_class_range_list;
5384 attr.dw_attr_val.v.val_offset = offset;
5385 add_dwarf_attr (die, &attr);
5388 static inline const char *
5389 AT_lbl (dw_attr_ref a)
5391 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5392 || AT_class (a) == dw_val_class_lineptr
5393 || AT_class (a) == dw_val_class_macptr));
5394 return a->dw_attr_val.v.val_lbl_id;
5397 /* Get the attribute of type attr_kind. */
5399 static dw_attr_ref
5400 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5402 dw_attr_ref a;
5403 unsigned ix;
5404 dw_die_ref spec = NULL;
5406 if (! die)
5407 return NULL;
5409 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5410 if (a->dw_attr == attr_kind)
5411 return a;
5412 else if (a->dw_attr == DW_AT_specification
5413 || a->dw_attr == DW_AT_abstract_origin)
5414 spec = AT_ref (a);
5416 if (spec)
5417 return get_AT (spec, attr_kind);
5419 return NULL;
5422 /* Return the "low pc" attribute value, typically associated with a subprogram
5423 DIE. Return null if the "low pc" attribute is either not present, or if it
5424 cannot be represented as an assembler label identifier. */
5426 static inline const char *
5427 get_AT_low_pc (dw_die_ref die)
5429 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5431 return a ? AT_lbl (a) : NULL;
5434 /* Return the "high pc" attribute value, typically associated with a subprogram
5435 DIE. Return null if the "high pc" attribute is either not present, or if it
5436 cannot be represented as an assembler label identifier. */
5438 static inline const char *
5439 get_AT_hi_pc (dw_die_ref die)
5441 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5443 return a ? AT_lbl (a) : NULL;
5446 /* Return the value of the string attribute designated by ATTR_KIND, or
5447 NULL if it is not present. */
5449 static inline const char *
5450 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5452 dw_attr_ref a = get_AT (die, attr_kind);
5454 return a ? AT_string (a) : NULL;
5457 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5458 if it is not present. */
5460 static inline int
5461 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5463 dw_attr_ref a = get_AT (die, attr_kind);
5465 return a ? AT_flag (a) : 0;
5468 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5469 if it is not present. */
5471 static inline unsigned
5472 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5474 dw_attr_ref a = get_AT (die, attr_kind);
5476 return a ? AT_unsigned (a) : 0;
5479 static inline dw_die_ref
5480 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5482 dw_attr_ref a = get_AT (die, attr_kind);
5484 return a ? AT_ref (a) : NULL;
5487 static inline struct dwarf_file_data *
5488 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5490 dw_attr_ref a = get_AT (die, attr_kind);
5492 return a ? AT_file (a) : NULL;
5495 /* Return TRUE if the language is C or C++. */
5497 static inline bool
5498 is_c_family (void)
5500 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5502 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5503 || lang == DW_LANG_C99
5504 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5507 /* Return TRUE if the language is C++. */
5509 static inline bool
5510 is_cxx (void)
5512 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5514 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5517 /* Return TRUE if the language is Fortran. */
5519 static inline bool
5520 is_fortran (void)
5522 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5524 return (lang == DW_LANG_Fortran77
5525 || lang == DW_LANG_Fortran90
5526 || lang == DW_LANG_Fortran95);
5529 /* Return TRUE if the language is Java. */
5531 static inline bool
5532 is_java (void)
5534 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5536 return lang == DW_LANG_Java;
5539 /* Return TRUE if the language is Ada. */
5541 static inline bool
5542 is_ada (void)
5544 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5546 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5549 /* Remove the specified attribute if present. */
5551 static void
5552 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5554 dw_attr_ref a;
5555 unsigned ix;
5557 if (! die)
5558 return;
5560 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5561 if (a->dw_attr == attr_kind)
5563 if (AT_class (a) == dw_val_class_str)
5564 if (a->dw_attr_val.v.val_str->refcount)
5565 a->dw_attr_val.v.val_str->refcount--;
5567 /* VEC_ordered_remove should help reduce the number of abbrevs
5568 that are needed. */
5569 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5570 return;
5574 /* Remove CHILD from its parent. PREV must have the property that
5575 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5577 static void
5578 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5580 gcc_assert (child->die_parent == prev->die_parent);
5581 gcc_assert (prev->die_sib == child);
5582 if (prev == child)
5584 gcc_assert (child->die_parent->die_child == child);
5585 prev = NULL;
5587 else
5588 prev->die_sib = child->die_sib;
5589 if (child->die_parent->die_child == child)
5590 child->die_parent->die_child = prev;
5593 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5594 matches TAG. */
5596 static void
5597 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5599 dw_die_ref c;
5601 c = die->die_child;
5602 if (c) do {
5603 dw_die_ref prev = c;
5604 c = c->die_sib;
5605 while (c->die_tag == tag)
5607 remove_child_with_prev (c, prev);
5608 /* Might have removed every child. */
5609 if (c == c->die_sib)
5610 return;
5611 c = c->die_sib;
5613 } while (c != die->die_child);
5616 /* Add a CHILD_DIE as the last child of DIE. */
5618 static void
5619 add_child_die (dw_die_ref die, dw_die_ref child_die)
5621 /* FIXME this should probably be an assert. */
5622 if (! die || ! child_die)
5623 return;
5624 gcc_assert (die != child_die);
5626 child_die->die_parent = die;
5627 if (die->die_child)
5629 child_die->die_sib = die->die_child->die_sib;
5630 die->die_child->die_sib = child_die;
5632 else
5633 child_die->die_sib = child_die;
5634 die->die_child = child_die;
5637 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5638 is the specification, to the end of PARENT's list of children.
5639 This is done by removing and re-adding it. */
5641 static void
5642 splice_child_die (dw_die_ref parent, dw_die_ref child)
5644 dw_die_ref p;
5646 /* We want the declaration DIE from inside the class, not the
5647 specification DIE at toplevel. */
5648 if (child->die_parent != parent)
5650 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5652 if (tmp)
5653 child = tmp;
5656 gcc_assert (child->die_parent == parent
5657 || (child->die_parent
5658 == get_AT_ref (parent, DW_AT_specification)));
5660 for (p = child->die_parent->die_child; ; p = p->die_sib)
5661 if (p->die_sib == child)
5663 remove_child_with_prev (child, p);
5664 break;
5667 add_child_die (parent, child);
5670 /* Return a pointer to a newly created DIE node. */
5672 static inline dw_die_ref
5673 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5675 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5677 die->die_tag = tag_value;
5679 if (parent_die != NULL)
5680 add_child_die (parent_die, die);
5681 else
5683 limbo_die_node *limbo_node;
5685 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5686 limbo_node->die = die;
5687 limbo_node->created_for = t;
5688 limbo_node->next = limbo_die_list;
5689 limbo_die_list = limbo_node;
5692 return die;
5695 /* Return the DIE associated with the given type specifier. */
5697 static inline dw_die_ref
5698 lookup_type_die (tree type)
5700 return TYPE_SYMTAB_DIE (type);
5703 /* Equate a DIE to a given type specifier. */
5705 static inline void
5706 equate_type_number_to_die (tree type, dw_die_ref type_die)
5708 TYPE_SYMTAB_DIE (type) = type_die;
5711 /* Returns a hash value for X (which really is a die_struct). */
5713 static hashval_t
5714 decl_die_table_hash (const void *x)
5716 return (hashval_t) ((const_dw_die_ref) x)->decl_id;
5719 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5721 static int
5722 decl_die_table_eq (const void *x, const void *y)
5724 return (((const_dw_die_ref) x)->decl_id == DECL_UID ((const_tree) y));
5727 /* Return the DIE associated with a given declaration. */
5729 static inline dw_die_ref
5730 lookup_decl_die (tree decl)
5732 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5735 /* Returns a hash value for X (which really is a var_loc_list). */
5737 static hashval_t
5738 decl_loc_table_hash (const void *x)
5740 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5743 /* Return nonzero if decl_id of var_loc_list X is the same as
5744 UID of decl *Y. */
5746 static int
5747 decl_loc_table_eq (const void *x, const void *y)
5749 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const_tree) y));
5752 /* Return the var_loc list associated with a given declaration. */
5754 static inline var_loc_list *
5755 lookup_decl_loc (const_tree decl)
5757 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5760 /* Equate a DIE to a particular declaration. */
5762 static void
5763 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5765 unsigned int decl_id = DECL_UID (decl);
5766 void **slot;
5768 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5769 *slot = decl_die;
5770 decl_die->decl_id = decl_id;
5773 /* Add a variable location node to the linked list for DECL. */
5775 static void
5776 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5778 unsigned int decl_id = DECL_UID (decl);
5779 var_loc_list *temp;
5780 void **slot;
5782 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5783 if (*slot == NULL)
5785 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5786 temp->decl_id = decl_id;
5787 *slot = temp;
5789 else
5790 temp = *slot;
5792 if (temp->last)
5794 /* If the current location is the same as the end of the list,
5795 and either both or neither of the locations is uninitialized,
5796 we have nothing to do. */
5797 if ((!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5798 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5799 || ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
5800 != NOTE_VAR_LOCATION_STATUS (loc->var_loc_note))
5801 && ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
5802 == VAR_INIT_STATUS_UNINITIALIZED)
5803 || (NOTE_VAR_LOCATION_STATUS (loc->var_loc_note)
5804 == VAR_INIT_STATUS_UNINITIALIZED))))
5806 /* Add LOC to the end of list and update LAST. */
5807 temp->last->next = loc;
5808 temp->last = loc;
5811 /* Do not add empty location to the beginning of the list. */
5812 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5814 temp->first = loc;
5815 temp->last = loc;
5819 /* Keep track of the number of spaces used to indent the
5820 output of the debugging routines that print the structure of
5821 the DIE internal representation. */
5822 static int print_indent;
5824 /* Indent the line the number of spaces given by print_indent. */
5826 static inline void
5827 print_spaces (FILE *outfile)
5829 fprintf (outfile, "%*s", print_indent, "");
5832 /* Print the information associated with a given DIE, and its children.
5833 This routine is a debugging aid only. */
5835 static void
5836 print_die (dw_die_ref die, FILE *outfile)
5838 dw_attr_ref a;
5839 dw_die_ref c;
5840 unsigned ix;
5842 print_spaces (outfile);
5843 fprintf (outfile, "DIE %4ld: %s\n",
5844 die->die_offset, dwarf_tag_name (die->die_tag));
5845 print_spaces (outfile);
5846 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5847 fprintf (outfile, " offset: %ld\n", die->die_offset);
5849 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5851 print_spaces (outfile);
5852 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5854 switch (AT_class (a))
5856 case dw_val_class_addr:
5857 fprintf (outfile, "address");
5858 break;
5859 case dw_val_class_offset:
5860 fprintf (outfile, "offset");
5861 break;
5862 case dw_val_class_loc:
5863 fprintf (outfile, "location descriptor");
5864 break;
5865 case dw_val_class_loc_list:
5866 fprintf (outfile, "location list -> label:%s",
5867 AT_loc_list (a)->ll_symbol);
5868 break;
5869 case dw_val_class_range_list:
5870 fprintf (outfile, "range list");
5871 break;
5872 case dw_val_class_const:
5873 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5874 break;
5875 case dw_val_class_unsigned_const:
5876 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5877 break;
5878 case dw_val_class_long_long:
5879 fprintf (outfile, "constant (%lu,%lu)",
5880 a->dw_attr_val.v.val_long_long.hi,
5881 a->dw_attr_val.v.val_long_long.low);
5882 break;
5883 case dw_val_class_vec:
5884 fprintf (outfile, "floating-point or vector constant");
5885 break;
5886 case dw_val_class_flag:
5887 fprintf (outfile, "%u", AT_flag (a));
5888 break;
5889 case dw_val_class_die_ref:
5890 if (AT_ref (a) != NULL)
5892 if (AT_ref (a)->die_symbol)
5893 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5894 else
5895 fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
5897 else
5898 fprintf (outfile, "die -> <null>");
5899 break;
5900 case dw_val_class_lbl_id:
5901 case dw_val_class_lineptr:
5902 case dw_val_class_macptr:
5903 fprintf (outfile, "label: %s", AT_lbl (a));
5904 break;
5905 case dw_val_class_str:
5906 if (AT_string (a) != NULL)
5907 fprintf (outfile, "\"%s\"", AT_string (a));
5908 else
5909 fprintf (outfile, "<null>");
5910 break;
5911 case dw_val_class_file:
5912 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5913 AT_file (a)->emitted_number);
5914 break;
5915 default:
5916 break;
5919 fprintf (outfile, "\n");
5922 if (die->die_child != NULL)
5924 print_indent += 4;
5925 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5926 print_indent -= 4;
5928 if (print_indent == 0)
5929 fprintf (outfile, "\n");
5932 /* Print the contents of the source code line number correspondence table.
5933 This routine is a debugging aid only. */
5935 static void
5936 print_dwarf_line_table (FILE *outfile)
5938 unsigned i;
5939 dw_line_info_ref line_info;
5941 fprintf (outfile, "\n\nDWARF source line information\n");
5942 for (i = 1; i < line_info_table_in_use; i++)
5944 line_info = &line_info_table[i];
5945 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5946 line_info->dw_file_num,
5947 line_info->dw_line_num);
5950 fprintf (outfile, "\n\n");
5953 /* Print the information collected for a given DIE. */
5955 void
5956 debug_dwarf_die (dw_die_ref die)
5958 print_die (die, stderr);
5961 /* Print all DWARF information collected for the compilation unit.
5962 This routine is a debugging aid only. */
5964 void
5965 debug_dwarf (void)
5967 print_indent = 0;
5968 print_die (comp_unit_die, stderr);
5969 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5970 print_dwarf_line_table (stderr);
5973 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5974 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5975 DIE that marks the start of the DIEs for this include file. */
5977 static dw_die_ref
5978 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5980 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5981 dw_die_ref new_unit = gen_compile_unit_die (filename);
5983 new_unit->die_sib = old_unit;
5984 return new_unit;
5987 /* Close an include-file CU and reopen the enclosing one. */
5989 static dw_die_ref
5990 pop_compile_unit (dw_die_ref old_unit)
5992 dw_die_ref new_unit = old_unit->die_sib;
5994 old_unit->die_sib = NULL;
5995 return new_unit;
5998 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5999 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
6001 /* Calculate the checksum of a location expression. */
6003 static inline void
6004 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6006 CHECKSUM (loc->dw_loc_opc);
6007 CHECKSUM (loc->dw_loc_oprnd1);
6008 CHECKSUM (loc->dw_loc_oprnd2);
6011 /* Calculate the checksum of an attribute. */
6013 static void
6014 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
6016 dw_loc_descr_ref loc;
6017 rtx r;
6019 CHECKSUM (at->dw_attr);
6021 /* We don't care that this was compiled with a different compiler
6022 snapshot; if the output is the same, that's what matters. */
6023 if (at->dw_attr == DW_AT_producer)
6024 return;
6026 switch (AT_class (at))
6028 case dw_val_class_const:
6029 CHECKSUM (at->dw_attr_val.v.val_int);
6030 break;
6031 case dw_val_class_unsigned_const:
6032 CHECKSUM (at->dw_attr_val.v.val_unsigned);
6033 break;
6034 case dw_val_class_long_long:
6035 CHECKSUM (at->dw_attr_val.v.val_long_long);
6036 break;
6037 case dw_val_class_vec:
6038 CHECKSUM (at->dw_attr_val.v.val_vec);
6039 break;
6040 case dw_val_class_flag:
6041 CHECKSUM (at->dw_attr_val.v.val_flag);
6042 break;
6043 case dw_val_class_str:
6044 CHECKSUM_STRING (AT_string (at));
6045 break;
6047 case dw_val_class_addr:
6048 r = AT_addr (at);
6049 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6050 CHECKSUM_STRING (XSTR (r, 0));
6051 break;
6053 case dw_val_class_offset:
6054 CHECKSUM (at->dw_attr_val.v.val_offset);
6055 break;
6057 case dw_val_class_loc:
6058 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6059 loc_checksum (loc, ctx);
6060 break;
6062 case dw_val_class_die_ref:
6063 die_checksum (AT_ref (at), ctx, mark);
6064 break;
6066 case dw_val_class_fde_ref:
6067 case dw_val_class_lbl_id:
6068 case dw_val_class_lineptr:
6069 case dw_val_class_macptr:
6070 break;
6072 case dw_val_class_file:
6073 CHECKSUM_STRING (AT_file (at)->filename);
6074 break;
6076 default:
6077 break;
6081 /* Calculate the checksum of a DIE. */
6083 static void
6084 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6086 dw_die_ref c;
6087 dw_attr_ref a;
6088 unsigned ix;
6090 /* To avoid infinite recursion. */
6091 if (die->die_mark)
6093 CHECKSUM (die->die_mark);
6094 return;
6096 die->die_mark = ++(*mark);
6098 CHECKSUM (die->die_tag);
6100 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6101 attr_checksum (a, ctx, mark);
6103 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6106 #undef CHECKSUM
6107 #undef CHECKSUM_STRING
6109 /* Do the location expressions look same? */
6110 static inline int
6111 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6113 return loc1->dw_loc_opc == loc2->dw_loc_opc
6114 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6115 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6118 /* Do the values look the same? */
6119 static int
6120 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6122 dw_loc_descr_ref loc1, loc2;
6123 rtx r1, r2;
6125 if (v1->val_class != v2->val_class)
6126 return 0;
6128 switch (v1->val_class)
6130 case dw_val_class_const:
6131 return v1->v.val_int == v2->v.val_int;
6132 case dw_val_class_unsigned_const:
6133 return v1->v.val_unsigned == v2->v.val_unsigned;
6134 case dw_val_class_long_long:
6135 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6136 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6137 case dw_val_class_vec:
6138 if (v1->v.val_vec.length != v2->v.val_vec.length
6139 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6140 return 0;
6141 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6142 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6143 return 0;
6144 return 1;
6145 case dw_val_class_flag:
6146 return v1->v.val_flag == v2->v.val_flag;
6147 case dw_val_class_str:
6148 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6150 case dw_val_class_addr:
6151 r1 = v1->v.val_addr;
6152 r2 = v2->v.val_addr;
6153 if (GET_CODE (r1) != GET_CODE (r2))
6154 return 0;
6155 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6156 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6158 case dw_val_class_offset:
6159 return v1->v.val_offset == v2->v.val_offset;
6161 case dw_val_class_loc:
6162 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6163 loc1 && loc2;
6164 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6165 if (!same_loc_p (loc1, loc2, mark))
6166 return 0;
6167 return !loc1 && !loc2;
6169 case dw_val_class_die_ref:
6170 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6172 case dw_val_class_fde_ref:
6173 case dw_val_class_lbl_id:
6174 case dw_val_class_lineptr:
6175 case dw_val_class_macptr:
6176 return 1;
6178 case dw_val_class_file:
6179 return v1->v.val_file == v2->v.val_file;
6181 default:
6182 return 1;
6186 /* Do the attributes look the same? */
6188 static int
6189 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6191 if (at1->dw_attr != at2->dw_attr)
6192 return 0;
6194 /* We don't care that this was compiled with a different compiler
6195 snapshot; if the output is the same, that's what matters. */
6196 if (at1->dw_attr == DW_AT_producer)
6197 return 1;
6199 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6202 /* Do the dies look the same? */
6204 static int
6205 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6207 dw_die_ref c1, c2;
6208 dw_attr_ref a1;
6209 unsigned ix;
6211 /* To avoid infinite recursion. */
6212 if (die1->die_mark)
6213 return die1->die_mark == die2->die_mark;
6214 die1->die_mark = die2->die_mark = ++(*mark);
6216 if (die1->die_tag != die2->die_tag)
6217 return 0;
6219 if (VEC_length (dw_attr_node, die1->die_attr)
6220 != VEC_length (dw_attr_node, die2->die_attr))
6221 return 0;
6223 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6224 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6225 return 0;
6227 c1 = die1->die_child;
6228 c2 = die2->die_child;
6229 if (! c1)
6231 if (c2)
6232 return 0;
6234 else
6235 for (;;)
6237 if (!same_die_p (c1, c2, mark))
6238 return 0;
6239 c1 = c1->die_sib;
6240 c2 = c2->die_sib;
6241 if (c1 == die1->die_child)
6243 if (c2 == die2->die_child)
6244 break;
6245 else
6246 return 0;
6250 return 1;
6253 /* Do the dies look the same? Wrapper around same_die_p. */
6255 static int
6256 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6258 int mark = 0;
6259 int ret = same_die_p (die1, die2, &mark);
6261 unmark_all_dies (die1);
6262 unmark_all_dies (die2);
6264 return ret;
6267 /* The prefix to attach to symbols on DIEs in the current comdat debug
6268 info section. */
6269 static char *comdat_symbol_id;
6271 /* The index of the current symbol within the current comdat CU. */
6272 static unsigned int comdat_symbol_number;
6274 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6275 children, and set comdat_symbol_id accordingly. */
6277 static void
6278 compute_section_prefix (dw_die_ref unit_die)
6280 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6281 const char *base = die_name ? lbasename (die_name) : "anonymous";
6282 char *name = alloca (strlen (base) + 64);
6283 char *p;
6284 int i, mark;
6285 unsigned char checksum[16];
6286 struct md5_ctx ctx;
6288 /* Compute the checksum of the DIE, then append part of it as hex digits to
6289 the name filename of the unit. */
6291 md5_init_ctx (&ctx);
6292 mark = 0;
6293 die_checksum (unit_die, &ctx, &mark);
6294 unmark_all_dies (unit_die);
6295 md5_finish_ctx (&ctx, checksum);
6297 sprintf (name, "%s.", base);
6298 clean_symbol_name (name);
6300 p = name + strlen (name);
6301 for (i = 0; i < 4; i++)
6303 sprintf (p, "%.2x", checksum[i]);
6304 p += 2;
6307 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6308 comdat_symbol_number = 0;
6311 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6313 static int
6314 is_type_die (dw_die_ref die)
6316 switch (die->die_tag)
6318 case DW_TAG_array_type:
6319 case DW_TAG_class_type:
6320 case DW_TAG_interface_type:
6321 case DW_TAG_enumeration_type:
6322 case DW_TAG_pointer_type:
6323 case DW_TAG_reference_type:
6324 case DW_TAG_string_type:
6325 case DW_TAG_structure_type:
6326 case DW_TAG_subroutine_type:
6327 case DW_TAG_union_type:
6328 case DW_TAG_ptr_to_member_type:
6329 case DW_TAG_set_type:
6330 case DW_TAG_subrange_type:
6331 case DW_TAG_base_type:
6332 case DW_TAG_const_type:
6333 case DW_TAG_file_type:
6334 case DW_TAG_packed_type:
6335 case DW_TAG_volatile_type:
6336 case DW_TAG_typedef:
6337 return 1;
6338 default:
6339 return 0;
6343 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6344 Basically, we want to choose the bits that are likely to be shared between
6345 compilations (types) and leave out the bits that are specific to individual
6346 compilations (functions). */
6348 static int
6349 is_comdat_die (dw_die_ref c)
6351 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6352 we do for stabs. The advantage is a greater likelihood of sharing between
6353 objects that don't include headers in the same order (and therefore would
6354 put the base types in a different comdat). jason 8/28/00 */
6356 if (c->die_tag == DW_TAG_base_type)
6357 return 0;
6359 if (c->die_tag == DW_TAG_pointer_type
6360 || c->die_tag == DW_TAG_reference_type
6361 || c->die_tag == DW_TAG_const_type
6362 || c->die_tag == DW_TAG_volatile_type)
6364 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6366 return t ? is_comdat_die (t) : 0;
6369 return is_type_die (c);
6372 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6373 compilation unit. */
6375 static int
6376 is_symbol_die (dw_die_ref c)
6378 return (is_type_die (c)
6379 || (get_AT (c, DW_AT_declaration)
6380 && !get_AT (c, DW_AT_specification))
6381 || c->die_tag == DW_TAG_namespace);
6384 static char *
6385 gen_internal_sym (const char *prefix)
6387 char buf[256];
6389 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6390 return xstrdup (buf);
6393 /* Assign symbols to all worthy DIEs under DIE. */
6395 static void
6396 assign_symbol_names (dw_die_ref die)
6398 dw_die_ref c;
6400 if (is_symbol_die (die))
6402 if (comdat_symbol_id)
6404 char *p = alloca (strlen (comdat_symbol_id) + 64);
6406 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6407 comdat_symbol_id, comdat_symbol_number++);
6408 die->die_symbol = xstrdup (p);
6410 else
6411 die->die_symbol = gen_internal_sym ("LDIE");
6414 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6417 struct cu_hash_table_entry
6419 dw_die_ref cu;
6420 unsigned min_comdat_num, max_comdat_num;
6421 struct cu_hash_table_entry *next;
6424 /* Routines to manipulate hash table of CUs. */
6425 static hashval_t
6426 htab_cu_hash (const void *of)
6428 const struct cu_hash_table_entry *entry = of;
6430 return htab_hash_string (entry->cu->die_symbol);
6433 static int
6434 htab_cu_eq (const void *of1, const void *of2)
6436 const struct cu_hash_table_entry *entry1 = of1;
6437 const struct die_struct *entry2 = of2;
6439 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6442 static void
6443 htab_cu_del (void *what)
6445 struct cu_hash_table_entry *next, *entry = what;
6447 while (entry)
6449 next = entry->next;
6450 free (entry);
6451 entry = next;
6455 /* Check whether we have already seen this CU and set up SYM_NUM
6456 accordingly. */
6457 static int
6458 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6460 struct cu_hash_table_entry dummy;
6461 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6463 dummy.max_comdat_num = 0;
6465 slot = (struct cu_hash_table_entry **)
6466 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6467 INSERT);
6468 entry = *slot;
6470 for (; entry; last = entry, entry = entry->next)
6472 if (same_die_p_wrap (cu, entry->cu))
6473 break;
6476 if (entry)
6478 *sym_num = entry->min_comdat_num;
6479 return 1;
6482 entry = XCNEW (struct cu_hash_table_entry);
6483 entry->cu = cu;
6484 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6485 entry->next = *slot;
6486 *slot = entry;
6488 return 0;
6491 /* Record SYM_NUM to record of CU in HTABLE. */
6492 static void
6493 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6495 struct cu_hash_table_entry **slot, *entry;
6497 slot = (struct cu_hash_table_entry **)
6498 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6499 NO_INSERT);
6500 entry = *slot;
6502 entry->max_comdat_num = sym_num;
6505 /* Traverse the DIE (which is always comp_unit_die), and set up
6506 additional compilation units for each of the include files we see
6507 bracketed by BINCL/EINCL. */
6509 static void
6510 break_out_includes (dw_die_ref die)
6512 dw_die_ref c;
6513 dw_die_ref unit = NULL;
6514 limbo_die_node *node, **pnode;
6515 htab_t cu_hash_table;
6517 c = die->die_child;
6518 if (c) do {
6519 dw_die_ref prev = c;
6520 c = c->die_sib;
6521 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6522 || (unit && is_comdat_die (c)))
6524 dw_die_ref next = c->die_sib;
6526 /* This DIE is for a secondary CU; remove it from the main one. */
6527 remove_child_with_prev (c, prev);
6529 if (c->die_tag == DW_TAG_GNU_BINCL)
6530 unit = push_new_compile_unit (unit, c);
6531 else if (c->die_tag == DW_TAG_GNU_EINCL)
6532 unit = pop_compile_unit (unit);
6533 else
6534 add_child_die (unit, c);
6535 c = next;
6536 if (c == die->die_child)
6537 break;
6539 } while (c != die->die_child);
6541 #if 0
6542 /* We can only use this in debugging, since the frontend doesn't check
6543 to make sure that we leave every include file we enter. */
6544 gcc_assert (!unit);
6545 #endif
6547 assign_symbol_names (die);
6548 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6549 for (node = limbo_die_list, pnode = &limbo_die_list;
6550 node;
6551 node = node->next)
6553 int is_dupl;
6555 compute_section_prefix (node->die);
6556 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6557 &comdat_symbol_number);
6558 assign_symbol_names (node->die);
6559 if (is_dupl)
6560 *pnode = node->next;
6561 else
6563 pnode = &node->next;
6564 record_comdat_symbol_number (node->die, cu_hash_table,
6565 comdat_symbol_number);
6568 htab_delete (cu_hash_table);
6571 /* Traverse the DIE and add a sibling attribute if it may have the
6572 effect of speeding up access to siblings. To save some space,
6573 avoid generating sibling attributes for DIE's without children. */
6575 static void
6576 add_sibling_attributes (dw_die_ref die)
6578 dw_die_ref c;
6580 if (! die->die_child)
6581 return;
6583 if (die->die_parent && die != die->die_parent->die_child)
6584 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6586 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6589 /* Output all location lists for the DIE and its children. */
6591 static void
6592 output_location_lists (dw_die_ref die)
6594 dw_die_ref c;
6595 dw_attr_ref a;
6596 unsigned ix;
6598 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6599 if (AT_class (a) == dw_val_class_loc_list)
6600 output_loc_list (AT_loc_list (a));
6602 FOR_EACH_CHILD (die, c, output_location_lists (c));
6605 /* The format of each DIE (and its attribute value pairs) is encoded in an
6606 abbreviation table. This routine builds the abbreviation table and assigns
6607 a unique abbreviation id for each abbreviation entry. The children of each
6608 die are visited recursively. */
6610 static void
6611 build_abbrev_table (dw_die_ref die)
6613 unsigned long abbrev_id;
6614 unsigned int n_alloc;
6615 dw_die_ref c;
6616 dw_attr_ref a;
6617 unsigned ix;
6619 /* Scan the DIE references, and mark as external any that refer to
6620 DIEs from other CUs (i.e. those which are not marked). */
6621 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6622 if (AT_class (a) == dw_val_class_die_ref
6623 && AT_ref (a)->die_mark == 0)
6625 gcc_assert (AT_ref (a)->die_symbol);
6627 set_AT_ref_external (a, 1);
6630 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6632 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6633 dw_attr_ref die_a, abbrev_a;
6634 unsigned ix;
6635 bool ok = true;
6637 if (abbrev->die_tag != die->die_tag)
6638 continue;
6639 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6640 continue;
6642 if (VEC_length (dw_attr_node, abbrev->die_attr)
6643 != VEC_length (dw_attr_node, die->die_attr))
6644 continue;
6646 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6648 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6649 if ((abbrev_a->dw_attr != die_a->dw_attr)
6650 || (value_format (abbrev_a) != value_format (die_a)))
6652 ok = false;
6653 break;
6656 if (ok)
6657 break;
6660 if (abbrev_id >= abbrev_die_table_in_use)
6662 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6664 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6665 abbrev_die_table = ggc_realloc (abbrev_die_table,
6666 sizeof (dw_die_ref) * n_alloc);
6668 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6669 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6670 abbrev_die_table_allocated = n_alloc;
6673 ++abbrev_die_table_in_use;
6674 abbrev_die_table[abbrev_id] = die;
6677 die->die_abbrev = abbrev_id;
6678 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6681 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6683 static int
6684 constant_size (long unsigned int value)
6686 int log;
6688 if (value == 0)
6689 log = 0;
6690 else
6691 log = floor_log2 (value);
6693 log = log / 8;
6694 log = 1 << (floor_log2 (log) + 1);
6696 return log;
6699 /* Return the size of a DIE as it is represented in the
6700 .debug_info section. */
6702 static unsigned long
6703 size_of_die (dw_die_ref die)
6705 unsigned long size = 0;
6706 dw_attr_ref a;
6707 unsigned ix;
6709 size += size_of_uleb128 (die->die_abbrev);
6710 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6712 switch (AT_class (a))
6714 case dw_val_class_addr:
6715 size += DWARF2_ADDR_SIZE;
6716 break;
6717 case dw_val_class_offset:
6718 size += DWARF_OFFSET_SIZE;
6719 break;
6720 case dw_val_class_loc:
6722 unsigned long lsize = size_of_locs (AT_loc (a));
6724 /* Block length. */
6725 size += constant_size (lsize);
6726 size += lsize;
6728 break;
6729 case dw_val_class_loc_list:
6730 size += DWARF_OFFSET_SIZE;
6731 break;
6732 case dw_val_class_range_list:
6733 size += DWARF_OFFSET_SIZE;
6734 break;
6735 case dw_val_class_const:
6736 size += size_of_sleb128 (AT_int (a));
6737 break;
6738 case dw_val_class_unsigned_const:
6739 size += constant_size (AT_unsigned (a));
6740 break;
6741 case dw_val_class_long_long:
6742 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6743 break;
6744 case dw_val_class_vec:
6745 size += 1 + (a->dw_attr_val.v.val_vec.length
6746 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6747 break;
6748 case dw_val_class_flag:
6749 size += 1;
6750 break;
6751 case dw_val_class_die_ref:
6752 if (AT_ref_external (a))
6753 size += DWARF2_ADDR_SIZE;
6754 else
6755 size += DWARF_OFFSET_SIZE;
6756 break;
6757 case dw_val_class_fde_ref:
6758 size += DWARF_OFFSET_SIZE;
6759 break;
6760 case dw_val_class_lbl_id:
6761 size += DWARF2_ADDR_SIZE;
6762 break;
6763 case dw_val_class_lineptr:
6764 case dw_val_class_macptr:
6765 size += DWARF_OFFSET_SIZE;
6766 break;
6767 case dw_val_class_str:
6768 if (AT_string_form (a) == DW_FORM_strp)
6769 size += DWARF_OFFSET_SIZE;
6770 else
6771 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6772 break;
6773 case dw_val_class_file:
6774 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6775 break;
6776 default:
6777 gcc_unreachable ();
6781 return size;
6784 /* Size the debugging information associated with a given DIE. Visits the
6785 DIE's children recursively. Updates the global variable next_die_offset, on
6786 each time through. Uses the current value of next_die_offset to update the
6787 die_offset field in each DIE. */
6789 static void
6790 calc_die_sizes (dw_die_ref die)
6792 dw_die_ref c;
6794 die->die_offset = next_die_offset;
6795 next_die_offset += size_of_die (die);
6797 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6799 if (die->die_child != NULL)
6800 /* Count the null byte used to terminate sibling lists. */
6801 next_die_offset += 1;
6804 /* Set the marks for a die and its children. We do this so
6805 that we know whether or not a reference needs to use FORM_ref_addr; only
6806 DIEs in the same CU will be marked. We used to clear out the offset
6807 and use that as the flag, but ran into ordering problems. */
6809 static void
6810 mark_dies (dw_die_ref die)
6812 dw_die_ref c;
6814 gcc_assert (!die->die_mark);
6816 die->die_mark = 1;
6817 FOR_EACH_CHILD (die, c, mark_dies (c));
6820 /* Clear the marks for a die and its children. */
6822 static void
6823 unmark_dies (dw_die_ref die)
6825 dw_die_ref c;
6827 gcc_assert (die->die_mark);
6829 die->die_mark = 0;
6830 FOR_EACH_CHILD (die, c, unmark_dies (c));
6833 /* Clear the marks for a die, its children and referred dies. */
6835 static void
6836 unmark_all_dies (dw_die_ref die)
6838 dw_die_ref c;
6839 dw_attr_ref a;
6840 unsigned ix;
6842 if (!die->die_mark)
6843 return;
6844 die->die_mark = 0;
6846 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6848 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6849 if (AT_class (a) == dw_val_class_die_ref)
6850 unmark_all_dies (AT_ref (a));
6853 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6854 generated for the compilation unit. */
6856 static unsigned long
6857 size_of_pubnames (VEC (pubname_entry, gc) * names)
6859 unsigned long size;
6860 unsigned i;
6861 pubname_ref p;
6863 size = DWARF_PUBNAMES_HEADER_SIZE;
6864 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6865 if (names != pubtype_table
6866 || p->die->die_offset != 0
6867 || !flag_eliminate_unused_debug_types)
6868 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6870 size += DWARF_OFFSET_SIZE;
6871 return size;
6874 /* Return the size of the information in the .debug_aranges section. */
6876 static unsigned long
6877 size_of_aranges (void)
6879 unsigned long size;
6881 size = DWARF_ARANGES_HEADER_SIZE;
6883 /* Count the address/length pair for this compilation unit. */
6884 if (text_section_used)
6885 size += 2 * DWARF2_ADDR_SIZE;
6886 if (cold_text_section_used)
6887 size += 2 * DWARF2_ADDR_SIZE;
6888 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6890 /* Count the two zero words used to terminated the address range table. */
6891 size += 2 * DWARF2_ADDR_SIZE;
6892 return size;
6895 /* Select the encoding of an attribute value. */
6897 static enum dwarf_form
6898 value_format (dw_attr_ref a)
6900 switch (a->dw_attr_val.val_class)
6902 case dw_val_class_addr:
6903 return DW_FORM_addr;
6904 case dw_val_class_range_list:
6905 case dw_val_class_offset:
6906 case dw_val_class_loc_list:
6907 switch (DWARF_OFFSET_SIZE)
6909 case 4:
6910 return DW_FORM_data4;
6911 case 8:
6912 return DW_FORM_data8;
6913 default:
6914 gcc_unreachable ();
6916 case dw_val_class_loc:
6917 switch (constant_size (size_of_locs (AT_loc (a))))
6919 case 1:
6920 return DW_FORM_block1;
6921 case 2:
6922 return DW_FORM_block2;
6923 default:
6924 gcc_unreachable ();
6926 case dw_val_class_const:
6927 return DW_FORM_sdata;
6928 case dw_val_class_unsigned_const:
6929 switch (constant_size (AT_unsigned (a)))
6931 case 1:
6932 return DW_FORM_data1;
6933 case 2:
6934 return DW_FORM_data2;
6935 case 4:
6936 return DW_FORM_data4;
6937 case 8:
6938 return DW_FORM_data8;
6939 default:
6940 gcc_unreachable ();
6942 case dw_val_class_long_long:
6943 return DW_FORM_block1;
6944 case dw_val_class_vec:
6945 return DW_FORM_block1;
6946 case dw_val_class_flag:
6947 return DW_FORM_flag;
6948 case dw_val_class_die_ref:
6949 if (AT_ref_external (a))
6950 return DW_FORM_ref_addr;
6951 else
6952 return DW_FORM_ref;
6953 case dw_val_class_fde_ref:
6954 return DW_FORM_data;
6955 case dw_val_class_lbl_id:
6956 return DW_FORM_addr;
6957 case dw_val_class_lineptr:
6958 case dw_val_class_macptr:
6959 return DW_FORM_data;
6960 case dw_val_class_str:
6961 return AT_string_form (a);
6962 case dw_val_class_file:
6963 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6965 case 1:
6966 return DW_FORM_data1;
6967 case 2:
6968 return DW_FORM_data2;
6969 case 4:
6970 return DW_FORM_data4;
6971 default:
6972 gcc_unreachable ();
6975 default:
6976 gcc_unreachable ();
6980 /* Output the encoding of an attribute value. */
6982 static void
6983 output_value_format (dw_attr_ref a)
6985 enum dwarf_form form = value_format (a);
6987 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6990 /* Output the .debug_abbrev section which defines the DIE abbreviation
6991 table. */
6993 static void
6994 output_abbrev_section (void)
6996 unsigned long abbrev_id;
6998 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
7000 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7001 unsigned ix;
7002 dw_attr_ref a_attr;
7004 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
7005 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
7006 dwarf_tag_name (abbrev->die_tag));
7008 if (abbrev->die_child != NULL)
7009 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
7010 else
7011 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
7013 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
7014 ix++)
7016 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
7017 dwarf_attr_name (a_attr->dw_attr));
7018 output_value_format (a_attr);
7021 dw2_asm_output_data (1, 0, NULL);
7022 dw2_asm_output_data (1, 0, NULL);
7025 /* Terminate the table. */
7026 dw2_asm_output_data (1, 0, NULL);
7029 /* Output a symbol we can use to refer to this DIE from another CU. */
7031 static inline void
7032 output_die_symbol (dw_die_ref die)
7034 char *sym = die->die_symbol;
7036 if (sym == 0)
7037 return;
7039 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
7040 /* We make these global, not weak; if the target doesn't support
7041 .linkonce, it doesn't support combining the sections, so debugging
7042 will break. */
7043 targetm.asm_out.globalize_label (asm_out_file, sym);
7045 ASM_OUTPUT_LABEL (asm_out_file, sym);
7048 /* Return a new location list, given the begin and end range, and the
7049 expression. gensym tells us whether to generate a new internal symbol for
7050 this location list node, which is done for the head of the list only. */
7052 static inline dw_loc_list_ref
7053 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
7054 const char *section, unsigned int gensym)
7056 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
7058 retlist->begin = begin;
7059 retlist->end = end;
7060 retlist->expr = expr;
7061 retlist->section = section;
7062 if (gensym)
7063 retlist->ll_symbol = gen_internal_sym ("LLST");
7065 return retlist;
7068 /* Add a location description expression to a location list. */
7070 static inline void
7071 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
7072 const char *begin, const char *end,
7073 const char *section)
7075 dw_loc_list_ref *d;
7077 /* Find the end of the chain. */
7078 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
7081 /* Add a new location list node to the list. */
7082 *d = new_loc_list (descr, begin, end, section, 0);
7085 /* Note that the current function section is being used for code. */
7087 static void
7088 dwarf2out_note_section_used (void)
7090 section *sec = current_function_section ();
7091 if (sec == text_section)
7092 text_section_used = true;
7093 else if (sec == cold_text_section)
7094 cold_text_section_used = true;
7097 static void
7098 dwarf2out_switch_text_section (void)
7100 dw_fde_ref fde;
7102 gcc_assert (cfun);
7104 fde = &fde_table[fde_table_in_use - 1];
7105 fde->dw_fde_switched_sections = true;
7106 fde->dw_fde_hot_section_label = cfun->hot_section_label;
7107 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
7108 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
7109 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
7110 have_multiple_function_sections = true;
7112 /* Reset the current label on switching text sections, so that we
7113 don't attempt to advance_loc4 between labels in different sections. */
7114 fde->dw_fde_current_label = NULL;
7116 dwarf2out_note_section_used ();
7119 /* Output the location list given to us. */
7121 static void
7122 output_loc_list (dw_loc_list_ref list_head)
7124 dw_loc_list_ref curr = list_head;
7126 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7128 /* Walk the location list, and output each range + expression. */
7129 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7131 unsigned long size;
7132 /* Don't output an entry that starts and ends at the same address. */
7133 if (strcmp (curr->begin, curr->end) == 0)
7134 continue;
7135 if (!have_multiple_function_sections)
7137 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7138 "Location list begin address (%s)",
7139 list_head->ll_symbol);
7140 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7141 "Location list end address (%s)",
7142 list_head->ll_symbol);
7144 else
7146 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7147 "Location list begin address (%s)",
7148 list_head->ll_symbol);
7149 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7150 "Location list end address (%s)",
7151 list_head->ll_symbol);
7153 size = size_of_locs (curr->expr);
7155 /* Output the block length for this list of location operations. */
7156 gcc_assert (size <= 0xffff);
7157 dw2_asm_output_data (2, size, "%s", "Location expression size");
7159 output_loc_sequence (curr->expr);
7162 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7163 "Location list terminator begin (%s)",
7164 list_head->ll_symbol);
7165 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7166 "Location list terminator end (%s)",
7167 list_head->ll_symbol);
7170 /* Output the DIE and its attributes. Called recursively to generate
7171 the definitions of each child DIE. */
7173 static void
7174 output_die (dw_die_ref die)
7176 dw_attr_ref a;
7177 dw_die_ref c;
7178 unsigned long size;
7179 unsigned ix;
7181 /* If someone in another CU might refer to us, set up a symbol for
7182 them to point to. */
7183 if (die->die_symbol)
7184 output_die_symbol (die);
7186 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7187 (unsigned long)die->die_offset,
7188 dwarf_tag_name (die->die_tag));
7190 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7192 const char *name = dwarf_attr_name (a->dw_attr);
7194 switch (AT_class (a))
7196 case dw_val_class_addr:
7197 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7198 break;
7200 case dw_val_class_offset:
7201 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7202 "%s", name);
7203 break;
7205 case dw_val_class_range_list:
7207 char *p = strchr (ranges_section_label, '\0');
7209 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7210 a->dw_attr_val.v.val_offset);
7211 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7212 debug_ranges_section, "%s", name);
7213 *p = '\0';
7215 break;
7217 case dw_val_class_loc:
7218 size = size_of_locs (AT_loc (a));
7220 /* Output the block length for this list of location operations. */
7221 dw2_asm_output_data (constant_size (size), size, "%s", name);
7223 output_loc_sequence (AT_loc (a));
7224 break;
7226 case dw_val_class_const:
7227 /* ??? It would be slightly more efficient to use a scheme like is
7228 used for unsigned constants below, but gdb 4.x does not sign
7229 extend. Gdb 5.x does sign extend. */
7230 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7231 break;
7233 case dw_val_class_unsigned_const:
7234 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7235 AT_unsigned (a), "%s", name);
7236 break;
7238 case dw_val_class_long_long:
7240 unsigned HOST_WIDE_INT first, second;
7242 dw2_asm_output_data (1,
7243 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7244 "%s", name);
7246 if (WORDS_BIG_ENDIAN)
7248 first = a->dw_attr_val.v.val_long_long.hi;
7249 second = a->dw_attr_val.v.val_long_long.low;
7251 else
7253 first = a->dw_attr_val.v.val_long_long.low;
7254 second = a->dw_attr_val.v.val_long_long.hi;
7257 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7258 first, "long long constant");
7259 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7260 second, NULL);
7262 break;
7264 case dw_val_class_vec:
7266 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7267 unsigned int len = a->dw_attr_val.v.val_vec.length;
7268 unsigned int i;
7269 unsigned char *p;
7271 dw2_asm_output_data (1, len * elt_size, "%s", name);
7272 if (elt_size > sizeof (HOST_WIDE_INT))
7274 elt_size /= 2;
7275 len *= 2;
7277 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7278 i < len;
7279 i++, p += elt_size)
7280 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7281 "fp or vector constant word %u", i);
7282 break;
7285 case dw_val_class_flag:
7286 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7287 break;
7289 case dw_val_class_loc_list:
7291 char *sym = AT_loc_list (a)->ll_symbol;
7293 gcc_assert (sym);
7294 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7295 "%s", name);
7297 break;
7299 case dw_val_class_die_ref:
7300 if (AT_ref_external (a))
7302 char *sym = AT_ref (a)->die_symbol;
7304 gcc_assert (sym);
7305 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7306 "%s", name);
7308 else
7310 gcc_assert (AT_ref (a)->die_offset);
7311 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7312 "%s", name);
7314 break;
7316 case dw_val_class_fde_ref:
7318 char l1[20];
7320 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7321 a->dw_attr_val.v.val_fde_index * 2);
7322 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7323 "%s", name);
7325 break;
7327 case dw_val_class_lbl_id:
7328 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7329 break;
7331 case dw_val_class_lineptr:
7332 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7333 debug_line_section, "%s", name);
7334 break;
7336 case dw_val_class_macptr:
7337 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7338 debug_macinfo_section, "%s", name);
7339 break;
7341 case dw_val_class_str:
7342 if (AT_string_form (a) == DW_FORM_strp)
7343 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7344 a->dw_attr_val.v.val_str->label,
7345 debug_str_section,
7346 "%s: \"%s\"", name, AT_string (a));
7347 else
7348 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7349 break;
7351 case dw_val_class_file:
7353 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7355 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7356 a->dw_attr_val.v.val_file->filename);
7357 break;
7360 default:
7361 gcc_unreachable ();
7365 FOR_EACH_CHILD (die, c, output_die (c));
7367 /* Add null byte to terminate sibling list. */
7368 if (die->die_child != NULL)
7369 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7370 (unsigned long) die->die_offset);
7373 /* Output the compilation unit that appears at the beginning of the
7374 .debug_info section, and precedes the DIE descriptions. */
7376 static void
7377 output_compilation_unit_header (void)
7379 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7380 dw2_asm_output_data (4, 0xffffffff,
7381 "Initial length escape value indicating 64-bit DWARF extension");
7382 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7383 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7384 "Length of Compilation Unit Info");
7385 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7386 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7387 debug_abbrev_section,
7388 "Offset Into Abbrev. Section");
7389 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7392 /* Output the compilation unit DIE and its children. */
7394 static void
7395 output_comp_unit (dw_die_ref die, int output_if_empty)
7397 const char *secname;
7398 char *oldsym, *tmp;
7400 /* Unless we are outputting main CU, we may throw away empty ones. */
7401 if (!output_if_empty && die->die_child == NULL)
7402 return;
7404 /* Even if there are no children of this DIE, we must output the information
7405 about the compilation unit. Otherwise, on an empty translation unit, we
7406 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7407 will then complain when examining the file. First mark all the DIEs in
7408 this CU so we know which get local refs. */
7409 mark_dies (die);
7411 build_abbrev_table (die);
7413 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7414 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7415 calc_die_sizes (die);
7417 oldsym = die->die_symbol;
7418 if (oldsym)
7420 tmp = alloca (strlen (oldsym) + 24);
7422 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7423 secname = tmp;
7424 die->die_symbol = NULL;
7425 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7427 else
7428 switch_to_section (debug_info_section);
7430 /* Output debugging information. */
7431 output_compilation_unit_header ();
7432 output_die (die);
7434 /* Leave the marks on the main CU, so we can check them in
7435 output_pubnames. */
7436 if (oldsym)
7438 unmark_dies (die);
7439 die->die_symbol = oldsym;
7443 /* Return the DWARF2/3 pubname associated with a decl. */
7445 static const char *
7446 dwarf2_name (tree decl, int scope)
7448 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7451 /* Add a new entry to .debug_pubnames if appropriate. */
7453 static void
7454 add_pubname (tree decl, dw_die_ref die)
7456 pubname_entry e;
7458 if (! TREE_PUBLIC (decl))
7459 return;
7461 e.die = die;
7462 e.name = xstrdup (dwarf2_name (decl, 1));
7463 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7466 /* Add a new entry to .debug_pubtypes if appropriate. */
7468 static void
7469 add_pubtype (tree decl, dw_die_ref die)
7471 pubname_entry e;
7473 e.name = NULL;
7474 if ((TREE_PUBLIC (decl)
7475 || die->die_parent == comp_unit_die)
7476 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7478 e.die = die;
7479 if (TYPE_P (decl))
7481 if (TYPE_NAME (decl))
7483 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7484 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7485 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7486 && DECL_NAME (TYPE_NAME (decl)))
7487 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7488 else
7489 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7492 else
7493 e.name = xstrdup (dwarf2_name (decl, 1));
7495 /* If we don't have a name for the type, there's no point in adding
7496 it to the table. */
7497 if (e.name && e.name[0] != '\0')
7498 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7502 /* Output the public names table used to speed up access to externally
7503 visible names; or the public types table used to find type definitions. */
7505 static void
7506 output_pubnames (VEC (pubname_entry, gc) * names)
7508 unsigned i;
7509 unsigned long pubnames_length = size_of_pubnames (names);
7510 pubname_ref pub;
7512 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7513 dw2_asm_output_data (4, 0xffffffff,
7514 "Initial length escape value indicating 64-bit DWARF extension");
7515 if (names == pubname_table)
7516 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7517 "Length of Public Names Info");
7518 else
7519 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7520 "Length of Public Type Names Info");
7521 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7522 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7523 debug_info_section,
7524 "Offset of Compilation Unit Info");
7525 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7526 "Compilation Unit Length");
7528 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7530 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7531 if (names == pubname_table)
7532 gcc_assert (pub->die->die_mark);
7534 if (names != pubtype_table
7535 || pub->die->die_offset != 0
7536 || !flag_eliminate_unused_debug_types)
7538 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7539 "DIE offset");
7541 dw2_asm_output_nstring (pub->name, -1, "external name");
7545 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7548 /* Add a new entry to .debug_aranges if appropriate. */
7550 static void
7551 add_arange (tree decl, dw_die_ref die)
7553 if (! DECL_SECTION_NAME (decl))
7554 return;
7556 if (arange_table_in_use == arange_table_allocated)
7558 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7559 arange_table = ggc_realloc (arange_table,
7560 (arange_table_allocated
7561 * sizeof (dw_die_ref)));
7562 memset (arange_table + arange_table_in_use, 0,
7563 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7566 arange_table[arange_table_in_use++] = die;
7569 /* Output the information that goes into the .debug_aranges table.
7570 Namely, define the beginning and ending address range of the
7571 text section generated for this compilation unit. */
7573 static void
7574 output_aranges (void)
7576 unsigned i;
7577 unsigned long aranges_length = size_of_aranges ();
7579 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7580 dw2_asm_output_data (4, 0xffffffff,
7581 "Initial length escape value indicating 64-bit DWARF extension");
7582 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7583 "Length of Address Ranges Info");
7584 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7585 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7586 debug_info_section,
7587 "Offset of Compilation Unit Info");
7588 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7589 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7591 /* We need to align to twice the pointer size here. */
7592 if (DWARF_ARANGES_PAD_SIZE)
7594 /* Pad using a 2 byte words so that padding is correct for any
7595 pointer size. */
7596 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7597 2 * DWARF2_ADDR_SIZE);
7598 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7599 dw2_asm_output_data (2, 0, NULL);
7602 /* It is necessary not to output these entries if the sections were
7603 not used; if the sections were not used, the length will be 0 and
7604 the address may end up as 0 if the section is discarded by ld
7605 --gc-sections, leaving an invalid (0, 0) entry that can be
7606 confused with the terminator. */
7607 if (text_section_used)
7609 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7610 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7611 text_section_label, "Length");
7613 if (cold_text_section_used)
7615 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7616 "Address");
7617 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7618 cold_text_section_label, "Length");
7621 for (i = 0; i < arange_table_in_use; i++)
7623 dw_die_ref die = arange_table[i];
7625 /* We shouldn't see aranges for DIEs outside of the main CU. */
7626 gcc_assert (die->die_mark);
7628 if (die->die_tag == DW_TAG_subprogram)
7630 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7631 "Address");
7632 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7633 get_AT_low_pc (die), "Length");
7635 else
7637 /* A static variable; extract the symbol from DW_AT_location.
7638 Note that this code isn't currently hit, as we only emit
7639 aranges for functions (jason 9/23/99). */
7640 dw_attr_ref a = get_AT (die, DW_AT_location);
7641 dw_loc_descr_ref loc;
7643 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7645 loc = AT_loc (a);
7646 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7648 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7649 loc->dw_loc_oprnd1.v.val_addr, "Address");
7650 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7651 get_AT_unsigned (die, DW_AT_byte_size),
7652 "Length");
7656 /* Output the terminator words. */
7657 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7658 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7661 /* Add a new entry to .debug_ranges. Return the offset at which it
7662 was placed. */
7664 static unsigned int
7665 add_ranges_num (int num)
7667 unsigned int in_use = ranges_table_in_use;
7669 if (in_use == ranges_table_allocated)
7671 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7672 ranges_table
7673 = ggc_realloc (ranges_table, (ranges_table_allocated
7674 * sizeof (struct dw_ranges_struct)));
7675 memset (ranges_table + ranges_table_in_use, 0,
7676 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7679 ranges_table[in_use].num = num;
7680 ranges_table_in_use = in_use + 1;
7682 return in_use * 2 * DWARF2_ADDR_SIZE;
7685 /* Add a new entry to .debug_ranges corresponding to a block, or a
7686 range terminator if BLOCK is NULL. */
7688 static unsigned int
7689 add_ranges (const_tree block)
7691 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
7694 /* Add a new entry to .debug_ranges corresponding to a pair of
7695 labels. */
7697 static unsigned int
7698 add_ranges_by_labels (const char *begin, const char *end)
7700 unsigned int in_use = ranges_by_label_in_use;
7702 if (in_use == ranges_by_label_allocated)
7704 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
7705 ranges_by_label
7706 = ggc_realloc (ranges_by_label,
7707 (ranges_by_label_allocated
7708 * sizeof (struct dw_ranges_by_label_struct)));
7709 memset (ranges_by_label + ranges_by_label_in_use, 0,
7710 RANGES_TABLE_INCREMENT
7711 * sizeof (struct dw_ranges_by_label_struct));
7714 ranges_by_label[in_use].begin = begin;
7715 ranges_by_label[in_use].end = end;
7716 ranges_by_label_in_use = in_use + 1;
7718 return add_ranges_num (-(int)in_use - 1);
7721 static void
7722 output_ranges (void)
7724 unsigned i;
7725 static const char *const start_fmt = "Offset 0x%x";
7726 const char *fmt = start_fmt;
7728 for (i = 0; i < ranges_table_in_use; i++)
7730 int block_num = ranges_table[i].num;
7732 if (block_num > 0)
7734 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7735 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7737 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7738 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7740 /* If all code is in the text section, then the compilation
7741 unit base address defaults to DW_AT_low_pc, which is the
7742 base of the text section. */
7743 if (!have_multiple_function_sections)
7745 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7746 text_section_label,
7747 fmt, i * 2 * DWARF2_ADDR_SIZE);
7748 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7749 text_section_label, NULL);
7752 /* Otherwise, the compilation unit base address is zero,
7753 which allows us to use absolute addresses, and not worry
7754 about whether the target supports cross-section
7755 arithmetic. */
7756 else
7758 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7759 fmt, i * 2 * DWARF2_ADDR_SIZE);
7760 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7763 fmt = NULL;
7766 /* Negative block_num stands for an index into ranges_by_label. */
7767 else if (block_num < 0)
7769 int lab_idx = - block_num - 1;
7771 if (!have_multiple_function_sections)
7773 gcc_unreachable ();
7774 #if 0
7775 /* If we ever use add_ranges_by_labels () for a single
7776 function section, all we have to do is to take out
7777 the #if 0 above. */
7778 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
7779 ranges_by_label[lab_idx].begin,
7780 text_section_label,
7781 fmt, i * 2 * DWARF2_ADDR_SIZE);
7782 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
7783 ranges_by_label[lab_idx].end,
7784 text_section_label, NULL);
7785 #endif
7787 else
7789 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
7790 ranges_by_label[lab_idx].begin,
7791 fmt, i * 2 * DWARF2_ADDR_SIZE);
7792 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
7793 ranges_by_label[lab_idx].end,
7794 NULL);
7797 else
7799 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7800 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7801 fmt = start_fmt;
7806 /* Data structure containing information about input files. */
7807 struct file_info
7809 const char *path; /* Complete file name. */
7810 const char *fname; /* File name part. */
7811 int length; /* Length of entire string. */
7812 struct dwarf_file_data * file_idx; /* Index in input file table. */
7813 int dir_idx; /* Index in directory table. */
7816 /* Data structure containing information about directories with source
7817 files. */
7818 struct dir_info
7820 const char *path; /* Path including directory name. */
7821 int length; /* Path length. */
7822 int prefix; /* Index of directory entry which is a prefix. */
7823 int count; /* Number of files in this directory. */
7824 int dir_idx; /* Index of directory used as base. */
7827 /* Callback function for file_info comparison. We sort by looking at
7828 the directories in the path. */
7830 static int
7831 file_info_cmp (const void *p1, const void *p2)
7833 const struct file_info *s1 = p1;
7834 const struct file_info *s2 = p2;
7835 const unsigned char *cp1;
7836 const unsigned char *cp2;
7838 /* Take care of file names without directories. We need to make sure that
7839 we return consistent values to qsort since some will get confused if
7840 we return the same value when identical operands are passed in opposite
7841 orders. So if neither has a directory, return 0 and otherwise return
7842 1 or -1 depending on which one has the directory. */
7843 if ((s1->path == s1->fname || s2->path == s2->fname))
7844 return (s2->path == s2->fname) - (s1->path == s1->fname);
7846 cp1 = (const unsigned char *) s1->path;
7847 cp2 = (const unsigned char *) s2->path;
7849 while (1)
7851 ++cp1;
7852 ++cp2;
7853 /* Reached the end of the first path? If so, handle like above. */
7854 if ((cp1 == (const unsigned char *) s1->fname)
7855 || (cp2 == (const unsigned char *) s2->fname))
7856 return ((cp2 == (const unsigned char *) s2->fname)
7857 - (cp1 == (const unsigned char *) s1->fname));
7859 /* Character of current path component the same? */
7860 else if (*cp1 != *cp2)
7861 return *cp1 - *cp2;
7865 struct file_name_acquire_data
7867 struct file_info *files;
7868 int used_files;
7869 int max_files;
7872 /* Traversal function for the hash table. */
7874 static int
7875 file_name_acquire (void ** slot, void *data)
7877 struct file_name_acquire_data *fnad = data;
7878 struct dwarf_file_data *d = *slot;
7879 struct file_info *fi;
7880 const char *f;
7882 gcc_assert (fnad->max_files >= d->emitted_number);
7884 if (! d->emitted_number)
7885 return 1;
7887 gcc_assert (fnad->max_files != fnad->used_files);
7889 fi = fnad->files + fnad->used_files++;
7891 /* Skip all leading "./". */
7892 f = d->filename;
7893 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7894 f += 2;
7896 /* Create a new array entry. */
7897 fi->path = f;
7898 fi->length = strlen (f);
7899 fi->file_idx = d;
7901 /* Search for the file name part. */
7902 f = strrchr (f, DIR_SEPARATOR);
7903 #if defined (DIR_SEPARATOR_2)
7905 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7907 if (g != NULL)
7909 if (f == NULL || f < g)
7910 f = g;
7913 #endif
7915 fi->fname = f == NULL ? fi->path : f + 1;
7916 return 1;
7919 /* Output the directory table and the file name table. We try to minimize
7920 the total amount of memory needed. A heuristic is used to avoid large
7921 slowdowns with many input files. */
7923 static void
7924 output_file_names (void)
7926 struct file_name_acquire_data fnad;
7927 int numfiles;
7928 struct file_info *files;
7929 struct dir_info *dirs;
7930 int *saved;
7931 int *savehere;
7932 int *backmap;
7933 int ndirs;
7934 int idx_offset;
7935 int i;
7936 int idx;
7938 if (!last_emitted_file)
7940 dw2_asm_output_data (1, 0, "End directory table");
7941 dw2_asm_output_data (1, 0, "End file name table");
7942 return;
7945 numfiles = last_emitted_file->emitted_number;
7947 /* Allocate the various arrays we need. */
7948 files = alloca (numfiles * sizeof (struct file_info));
7949 dirs = alloca (numfiles * sizeof (struct dir_info));
7951 fnad.files = files;
7952 fnad.used_files = 0;
7953 fnad.max_files = numfiles;
7954 htab_traverse (file_table, file_name_acquire, &fnad);
7955 gcc_assert (fnad.used_files == fnad.max_files);
7957 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7959 /* Find all the different directories used. */
7960 dirs[0].path = files[0].path;
7961 dirs[0].length = files[0].fname - files[0].path;
7962 dirs[0].prefix = -1;
7963 dirs[0].count = 1;
7964 dirs[0].dir_idx = 0;
7965 files[0].dir_idx = 0;
7966 ndirs = 1;
7968 for (i = 1; i < numfiles; i++)
7969 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7970 && memcmp (dirs[ndirs - 1].path, files[i].path,
7971 dirs[ndirs - 1].length) == 0)
7973 /* Same directory as last entry. */
7974 files[i].dir_idx = ndirs - 1;
7975 ++dirs[ndirs - 1].count;
7977 else
7979 int j;
7981 /* This is a new directory. */
7982 dirs[ndirs].path = files[i].path;
7983 dirs[ndirs].length = files[i].fname - files[i].path;
7984 dirs[ndirs].count = 1;
7985 dirs[ndirs].dir_idx = ndirs;
7986 files[i].dir_idx = ndirs;
7988 /* Search for a prefix. */
7989 dirs[ndirs].prefix = -1;
7990 for (j = 0; j < ndirs; j++)
7991 if (dirs[j].length < dirs[ndirs].length
7992 && dirs[j].length > 1
7993 && (dirs[ndirs].prefix == -1
7994 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7995 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7996 dirs[ndirs].prefix = j;
7998 ++ndirs;
8001 /* Now to the actual work. We have to find a subset of the directories which
8002 allow expressing the file name using references to the directory table
8003 with the least amount of characters. We do not do an exhaustive search
8004 where we would have to check out every combination of every single
8005 possible prefix. Instead we use a heuristic which provides nearly optimal
8006 results in most cases and never is much off. */
8007 saved = alloca (ndirs * sizeof (int));
8008 savehere = alloca (ndirs * sizeof (int));
8010 memset (saved, '\0', ndirs * sizeof (saved[0]));
8011 for (i = 0; i < ndirs; i++)
8013 int j;
8014 int total;
8016 /* We can always save some space for the current directory. But this
8017 does not mean it will be enough to justify adding the directory. */
8018 savehere[i] = dirs[i].length;
8019 total = (savehere[i] - saved[i]) * dirs[i].count;
8021 for (j = i + 1; j < ndirs; j++)
8023 savehere[j] = 0;
8024 if (saved[j] < dirs[i].length)
8026 /* Determine whether the dirs[i] path is a prefix of the
8027 dirs[j] path. */
8028 int k;
8030 k = dirs[j].prefix;
8031 while (k != -1 && k != (int) i)
8032 k = dirs[k].prefix;
8034 if (k == (int) i)
8036 /* Yes it is. We can possibly save some memory by
8037 writing the filenames in dirs[j] relative to
8038 dirs[i]. */
8039 savehere[j] = dirs[i].length;
8040 total += (savehere[j] - saved[j]) * dirs[j].count;
8045 /* Check whether we can save enough to justify adding the dirs[i]
8046 directory. */
8047 if (total > dirs[i].length + 1)
8049 /* It's worthwhile adding. */
8050 for (j = i; j < ndirs; j++)
8051 if (savehere[j] > 0)
8053 /* Remember how much we saved for this directory so far. */
8054 saved[j] = savehere[j];
8056 /* Remember the prefix directory. */
8057 dirs[j].dir_idx = i;
8062 /* Emit the directory name table. */
8063 idx = 1;
8064 idx_offset = dirs[0].length > 0 ? 1 : 0;
8065 for (i = 1 - idx_offset; i < ndirs; i++)
8066 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
8067 "Directory Entry: 0x%x", i + idx_offset);
8069 dw2_asm_output_data (1, 0, "End directory table");
8071 /* We have to emit them in the order of emitted_number since that's
8072 used in the debug info generation. To do this efficiently we
8073 generate a back-mapping of the indices first. */
8074 backmap = alloca (numfiles * sizeof (int));
8075 for (i = 0; i < numfiles; i++)
8076 backmap[files[i].file_idx->emitted_number - 1] = i;
8078 /* Now write all the file names. */
8079 for (i = 0; i < numfiles; i++)
8081 int file_idx = backmap[i];
8082 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
8084 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
8085 "File Entry: 0x%x", (unsigned) i + 1);
8087 /* Include directory index. */
8088 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
8090 /* Modification time. */
8091 dw2_asm_output_data_uleb128 (0, NULL);
8093 /* File length in bytes. */
8094 dw2_asm_output_data_uleb128 (0, NULL);
8097 dw2_asm_output_data (1, 0, "End file name table");
8101 /* Output the source line number correspondence information. This
8102 information goes into the .debug_line section. */
8104 static void
8105 output_line_info (void)
8107 char l1[20], l2[20], p1[20], p2[20];
8108 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
8109 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
8110 unsigned opc;
8111 unsigned n_op_args;
8112 unsigned long lt_index;
8113 unsigned long current_line;
8114 long line_offset;
8115 long line_delta;
8116 unsigned long current_file;
8117 unsigned long function;
8119 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
8120 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
8121 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
8122 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
8124 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
8125 dw2_asm_output_data (4, 0xffffffff,
8126 "Initial length escape value indicating 64-bit DWARF extension");
8127 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
8128 "Length of Source Line Info");
8129 ASM_OUTPUT_LABEL (asm_out_file, l1);
8131 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
8132 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
8133 ASM_OUTPUT_LABEL (asm_out_file, p1);
8135 /* Define the architecture-dependent minimum instruction length (in
8136 bytes). In this implementation of DWARF, this field is used for
8137 information purposes only. Since GCC generates assembly language,
8138 we have no a priori knowledge of how many instruction bytes are
8139 generated for each source line, and therefore can use only the
8140 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
8141 commands. Accordingly, we fix this as `1', which is "correct
8142 enough" for all architectures, and don't let the target override. */
8143 dw2_asm_output_data (1, 1,
8144 "Minimum Instruction Length");
8146 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
8147 "Default is_stmt_start flag");
8148 dw2_asm_output_data (1, DWARF_LINE_BASE,
8149 "Line Base Value (Special Opcodes)");
8150 dw2_asm_output_data (1, DWARF_LINE_RANGE,
8151 "Line Range Value (Special Opcodes)");
8152 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
8153 "Special Opcode Base");
8155 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
8157 switch (opc)
8159 case DW_LNS_advance_pc:
8160 case DW_LNS_advance_line:
8161 case DW_LNS_set_file:
8162 case DW_LNS_set_column:
8163 case DW_LNS_fixed_advance_pc:
8164 n_op_args = 1;
8165 break;
8166 default:
8167 n_op_args = 0;
8168 break;
8171 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
8172 opc, n_op_args);
8175 /* Write out the information about the files we use. */
8176 output_file_names ();
8177 ASM_OUTPUT_LABEL (asm_out_file, p2);
8179 /* We used to set the address register to the first location in the text
8180 section here, but that didn't accomplish anything since we already
8181 have a line note for the opening brace of the first function. */
8183 /* Generate the line number to PC correspondence table, encoded as
8184 a series of state machine operations. */
8185 current_file = 1;
8186 current_line = 1;
8188 if (cfun && in_cold_section_p)
8189 strcpy (prev_line_label, cfun->cold_section_label);
8190 else
8191 strcpy (prev_line_label, text_section_label);
8192 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
8194 dw_line_info_ref line_info = &line_info_table[lt_index];
8196 #if 0
8197 /* Disable this optimization for now; GDB wants to see two line notes
8198 at the beginning of a function so it can find the end of the
8199 prologue. */
8201 /* Don't emit anything for redundant notes. Just updating the
8202 address doesn't accomplish anything, because we already assume
8203 that anything after the last address is this line. */
8204 if (line_info->dw_line_num == current_line
8205 && line_info->dw_file_num == current_file)
8206 continue;
8207 #endif
8209 /* Emit debug info for the address of the current line.
8211 Unfortunately, we have little choice here currently, and must always
8212 use the most general form. GCC does not know the address delta
8213 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8214 attributes which will give an upper bound on the address range. We
8215 could perhaps use length attributes to determine when it is safe to
8216 use DW_LNS_fixed_advance_pc. */
8218 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8219 if (0)
8221 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8222 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8223 "DW_LNS_fixed_advance_pc");
8224 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8226 else
8228 /* This can handle any delta. This takes
8229 4+DWARF2_ADDR_SIZE bytes. */
8230 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8231 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8232 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8233 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8236 strcpy (prev_line_label, line_label);
8238 /* Emit debug info for the source file of the current line, if
8239 different from the previous line. */
8240 if (line_info->dw_file_num != current_file)
8242 current_file = line_info->dw_file_num;
8243 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8244 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8247 /* Emit debug info for the current line number, choosing the encoding
8248 that uses the least amount of space. */
8249 if (line_info->dw_line_num != current_line)
8251 line_offset = line_info->dw_line_num - current_line;
8252 line_delta = line_offset - DWARF_LINE_BASE;
8253 current_line = line_info->dw_line_num;
8254 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8255 /* This can handle deltas from -10 to 234, using the current
8256 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8257 takes 1 byte. */
8258 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8259 "line %lu", current_line);
8260 else
8262 /* This can handle any delta. This takes at least 4 bytes,
8263 depending on the value being encoded. */
8264 dw2_asm_output_data (1, DW_LNS_advance_line,
8265 "advance to line %lu", current_line);
8266 dw2_asm_output_data_sleb128 (line_offset, NULL);
8267 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8270 else
8271 /* We still need to start a new row, so output a copy insn. */
8272 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8275 /* Emit debug info for the address of the end of the function. */
8276 if (0)
8278 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8279 "DW_LNS_fixed_advance_pc");
8280 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8282 else
8284 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8285 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8286 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8287 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8290 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8291 dw2_asm_output_data_uleb128 (1, NULL);
8292 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8294 function = 0;
8295 current_file = 1;
8296 current_line = 1;
8297 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8299 dw_separate_line_info_ref line_info
8300 = &separate_line_info_table[lt_index];
8302 #if 0
8303 /* Don't emit anything for redundant notes. */
8304 if (line_info->dw_line_num == current_line
8305 && line_info->dw_file_num == current_file
8306 && line_info->function == function)
8307 goto cont;
8308 #endif
8310 /* Emit debug info for the address of the current line. If this is
8311 a new function, or the first line of a function, then we need
8312 to handle it differently. */
8313 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8314 lt_index);
8315 if (function != line_info->function)
8317 function = line_info->function;
8319 /* Set the address register to the first line in the function. */
8320 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8321 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8322 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8323 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8325 else
8327 /* ??? See the DW_LNS_advance_pc comment above. */
8328 if (0)
8330 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8331 "DW_LNS_fixed_advance_pc");
8332 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8334 else
8336 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8337 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8338 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8339 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8343 strcpy (prev_line_label, line_label);
8345 /* Emit debug info for the source file of the current line, if
8346 different from the previous line. */
8347 if (line_info->dw_file_num != current_file)
8349 current_file = line_info->dw_file_num;
8350 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8351 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8354 /* Emit debug info for the current line number, choosing the encoding
8355 that uses the least amount of space. */
8356 if (line_info->dw_line_num != current_line)
8358 line_offset = line_info->dw_line_num - current_line;
8359 line_delta = line_offset - DWARF_LINE_BASE;
8360 current_line = line_info->dw_line_num;
8361 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8362 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8363 "line %lu", current_line);
8364 else
8366 dw2_asm_output_data (1, DW_LNS_advance_line,
8367 "advance to line %lu", current_line);
8368 dw2_asm_output_data_sleb128 (line_offset, NULL);
8369 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8372 else
8373 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8375 #if 0
8376 cont:
8377 #endif
8379 lt_index++;
8381 /* If we're done with a function, end its sequence. */
8382 if (lt_index == separate_line_info_table_in_use
8383 || separate_line_info_table[lt_index].function != function)
8385 current_file = 1;
8386 current_line = 1;
8388 /* Emit debug info for the address of the end of the function. */
8389 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8390 if (0)
8392 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8393 "DW_LNS_fixed_advance_pc");
8394 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8396 else
8398 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8399 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8400 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8401 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8404 /* Output the marker for the end of this sequence. */
8405 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8406 dw2_asm_output_data_uleb128 (1, NULL);
8407 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8411 /* Output the marker for the end of the line number info. */
8412 ASM_OUTPUT_LABEL (asm_out_file, l2);
8415 /* Given a pointer to a tree node for some base type, return a pointer to
8416 a DIE that describes the given type.
8418 This routine must only be called for GCC type nodes that correspond to
8419 Dwarf base (fundamental) types. */
8421 static dw_die_ref
8422 base_type_die (tree type)
8424 dw_die_ref base_type_result;
8425 enum dwarf_type encoding;
8427 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8428 return 0;
8430 switch (TREE_CODE (type))
8432 case INTEGER_TYPE:
8433 if (TYPE_STRING_FLAG (type))
8435 if (TYPE_UNSIGNED (type))
8436 encoding = DW_ATE_unsigned_char;
8437 else
8438 encoding = DW_ATE_signed_char;
8440 else if (TYPE_UNSIGNED (type))
8441 encoding = DW_ATE_unsigned;
8442 else
8443 encoding = DW_ATE_signed;
8444 break;
8446 case REAL_TYPE:
8447 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8448 encoding = DW_ATE_decimal_float;
8449 else
8450 encoding = DW_ATE_float;
8451 break;
8453 case FIXED_POINT_TYPE:
8454 if (TYPE_UNSIGNED (type))
8455 encoding = DW_ATE_unsigned_fixed;
8456 else
8457 encoding = DW_ATE_signed_fixed;
8458 break;
8460 /* Dwarf2 doesn't know anything about complex ints, so use
8461 a user defined type for it. */
8462 case COMPLEX_TYPE:
8463 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8464 encoding = DW_ATE_complex_float;
8465 else
8466 encoding = DW_ATE_lo_user;
8467 break;
8469 case BOOLEAN_TYPE:
8470 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8471 encoding = DW_ATE_boolean;
8472 break;
8474 default:
8475 /* No other TREE_CODEs are Dwarf fundamental types. */
8476 gcc_unreachable ();
8479 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8481 /* This probably indicates a bug. */
8482 if (! TYPE_NAME (type))
8483 add_name_attribute (base_type_result, "__unknown__");
8485 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8486 int_size_in_bytes (type));
8487 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8489 return base_type_result;
8492 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8493 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8495 static inline int
8496 is_base_type (tree type)
8498 switch (TREE_CODE (type))
8500 case ERROR_MARK:
8501 case VOID_TYPE:
8502 case INTEGER_TYPE:
8503 case REAL_TYPE:
8504 case FIXED_POINT_TYPE:
8505 case COMPLEX_TYPE:
8506 case BOOLEAN_TYPE:
8507 return 1;
8509 case ARRAY_TYPE:
8510 case RECORD_TYPE:
8511 case UNION_TYPE:
8512 case QUAL_UNION_TYPE:
8513 case ENUMERAL_TYPE:
8514 case FUNCTION_TYPE:
8515 case METHOD_TYPE:
8516 case POINTER_TYPE:
8517 case REFERENCE_TYPE:
8518 case OFFSET_TYPE:
8519 case LANG_TYPE:
8520 case VECTOR_TYPE:
8521 return 0;
8523 default:
8524 gcc_unreachable ();
8527 return 0;
8530 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8531 node, return the size in bits for the type if it is a constant, or else
8532 return the alignment for the type if the type's size is not constant, or
8533 else return BITS_PER_WORD if the type actually turns out to be an
8534 ERROR_MARK node. */
8536 static inline unsigned HOST_WIDE_INT
8537 simple_type_size_in_bits (const_tree type)
8539 if (TREE_CODE (type) == ERROR_MARK)
8540 return BITS_PER_WORD;
8541 else if (TYPE_SIZE (type) == NULL_TREE)
8542 return 0;
8543 else if (host_integerp (TYPE_SIZE (type), 1))
8544 return tree_low_cst (TYPE_SIZE (type), 1);
8545 else
8546 return TYPE_ALIGN (type);
8549 /* Return true if the debug information for the given type should be
8550 emitted as a subrange type. */
8552 static inline bool
8553 is_subrange_type (const_tree type)
8555 tree subtype = TREE_TYPE (type);
8557 /* Subrange types are identified by the fact that they are integer
8558 types, and that they have a subtype which is either an integer type
8559 or an enumeral type. */
8561 if (TREE_CODE (type) != INTEGER_TYPE
8562 || subtype == NULL_TREE)
8563 return false;
8565 if (TREE_CODE (subtype) != INTEGER_TYPE
8566 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8567 return false;
8569 if (TREE_CODE (type) == TREE_CODE (subtype)
8570 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8571 && TYPE_MIN_VALUE (type) != NULL
8572 && TYPE_MIN_VALUE (subtype) != NULL
8573 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8574 && TYPE_MAX_VALUE (type) != NULL
8575 && TYPE_MAX_VALUE (subtype) != NULL
8576 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8578 /* The type and its subtype have the same representation. If in
8579 addition the two types also have the same name, then the given
8580 type is not a subrange type, but rather a plain base type. */
8581 /* FIXME: brobecker/2004-03-22:
8582 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8583 therefore be sufficient to check the TYPE_SIZE node pointers
8584 rather than checking the actual size. Unfortunately, we have
8585 found some cases, such as in the Ada "integer" type, where
8586 this is not the case. Until this problem is solved, we need to
8587 keep checking the actual size. */
8588 tree type_name = TYPE_NAME (type);
8589 tree subtype_name = TYPE_NAME (subtype);
8591 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8592 type_name = DECL_NAME (type_name);
8594 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8595 subtype_name = DECL_NAME (subtype_name);
8597 if (type_name == subtype_name)
8598 return false;
8601 return true;
8604 /* Given a pointer to a tree node for a subrange type, return a pointer
8605 to a DIE that describes the given type. */
8607 static dw_die_ref
8608 subrange_type_die (tree type, dw_die_ref context_die)
8610 dw_die_ref subrange_die;
8611 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8613 if (context_die == NULL)
8614 context_die = comp_unit_die;
8616 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8618 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8620 /* The size of the subrange type and its base type do not match,
8621 so we need to generate a size attribute for the subrange type. */
8622 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8625 if (TYPE_MIN_VALUE (type) != NULL)
8626 add_bound_info (subrange_die, DW_AT_lower_bound,
8627 TYPE_MIN_VALUE (type));
8628 if (TYPE_MAX_VALUE (type) != NULL)
8629 add_bound_info (subrange_die, DW_AT_upper_bound,
8630 TYPE_MAX_VALUE (type));
8632 return subrange_die;
8635 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8636 entry that chains various modifiers in front of the given type. */
8638 static dw_die_ref
8639 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8640 dw_die_ref context_die)
8642 enum tree_code code = TREE_CODE (type);
8643 dw_die_ref mod_type_die;
8644 dw_die_ref sub_die = NULL;
8645 tree item_type = NULL;
8646 tree qualified_type;
8647 tree name;
8649 if (code == ERROR_MARK)
8650 return NULL;
8652 /* See if we already have the appropriately qualified variant of
8653 this type. */
8654 qualified_type
8655 = get_qualified_type (type,
8656 ((is_const_type ? TYPE_QUAL_CONST : 0)
8657 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8659 /* If we do, then we can just use its DIE, if it exists. */
8660 if (qualified_type)
8662 mod_type_die = lookup_type_die (qualified_type);
8663 if (mod_type_die)
8664 return mod_type_die;
8667 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8669 /* Handle C typedef types. */
8670 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8672 tree dtype = TREE_TYPE (name);
8674 if (qualified_type == dtype)
8676 /* For a named type, use the typedef. */
8677 gen_type_die (qualified_type, context_die);
8678 return lookup_type_die (qualified_type);
8680 else if (is_const_type < TYPE_READONLY (dtype)
8681 || is_volatile_type < TYPE_VOLATILE (dtype)
8682 || (is_const_type <= TYPE_READONLY (dtype)
8683 && is_volatile_type <= TYPE_VOLATILE (dtype)
8684 && DECL_ORIGINAL_TYPE (name) != type))
8685 /* cv-unqualified version of named type. Just use the unnamed
8686 type to which it refers. */
8687 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8688 is_const_type, is_volatile_type,
8689 context_die);
8690 /* Else cv-qualified version of named type; fall through. */
8693 if (is_const_type)
8695 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8696 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8698 else if (is_volatile_type)
8700 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8701 sub_die = modified_type_die (type, 0, 0, context_die);
8703 else if (code == POINTER_TYPE)
8705 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8706 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8707 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8708 item_type = TREE_TYPE (type);
8710 else if (code == REFERENCE_TYPE)
8712 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8713 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8714 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8715 item_type = TREE_TYPE (type);
8717 else if (is_subrange_type (type))
8719 mod_type_die = subrange_type_die (type, context_die);
8720 item_type = TREE_TYPE (type);
8722 else if (is_base_type (type))
8723 mod_type_die = base_type_die (type);
8724 else
8726 gen_type_die (type, context_die);
8728 /* We have to get the type_main_variant here (and pass that to the
8729 `lookup_type_die' routine) because the ..._TYPE node we have
8730 might simply be a *copy* of some original type node (where the
8731 copy was created to help us keep track of typedef names) and
8732 that copy might have a different TYPE_UID from the original
8733 ..._TYPE node. */
8734 if (TREE_CODE (type) != VECTOR_TYPE)
8735 return lookup_type_die (type_main_variant (type));
8736 else
8737 /* Vectors have the debugging information in the type,
8738 not the main variant. */
8739 return lookup_type_die (type);
8742 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8743 don't output a DW_TAG_typedef, since there isn't one in the
8744 user's program; just attach a DW_AT_name to the type. */
8745 if (name
8746 && (TREE_CODE (name) != TYPE_DECL
8747 || (TREE_TYPE (name) == qualified_type && DECL_NAME (name))))
8749 if (TREE_CODE (name) == TYPE_DECL)
8750 /* Could just call add_name_and_src_coords_attributes here,
8751 but since this is a builtin type it doesn't have any
8752 useful source coordinates anyway. */
8753 name = DECL_NAME (name);
8754 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8757 if (qualified_type)
8758 equate_type_number_to_die (qualified_type, mod_type_die);
8760 if (item_type)
8761 /* We must do this after the equate_type_number_to_die call, in case
8762 this is a recursive type. This ensures that the modified_type_die
8763 recursion will terminate even if the type is recursive. Recursive
8764 types are possible in Ada. */
8765 sub_die = modified_type_die (item_type,
8766 TYPE_READONLY (item_type),
8767 TYPE_VOLATILE (item_type),
8768 context_die);
8770 if (sub_die != NULL)
8771 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8773 return mod_type_die;
8776 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8777 an enumerated type. */
8779 static inline int
8780 type_is_enum (const_tree type)
8782 return TREE_CODE (type) == ENUMERAL_TYPE;
8785 /* Return the DBX register number described by a given RTL node. */
8787 static unsigned int
8788 dbx_reg_number (const_rtx rtl)
8790 unsigned regno = REGNO (rtl);
8792 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8794 #ifdef LEAF_REG_REMAP
8795 if (current_function_uses_only_leaf_regs)
8797 int leaf_reg = LEAF_REG_REMAP (regno);
8798 if (leaf_reg != -1)
8799 regno = (unsigned) leaf_reg;
8801 #endif
8803 return DBX_REGISTER_NUMBER (regno);
8806 /* Optionally add a DW_OP_piece term to a location description expression.
8807 DW_OP_piece is only added if the location description expression already
8808 doesn't end with DW_OP_piece. */
8810 static void
8811 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8813 dw_loc_descr_ref loc;
8815 if (*list_head != NULL)
8817 /* Find the end of the chain. */
8818 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8821 if (loc->dw_loc_opc != DW_OP_piece)
8822 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8826 /* Return a location descriptor that designates a machine register or
8827 zero if there is none. */
8829 static dw_loc_descr_ref
8830 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
8832 rtx regs;
8834 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8835 return 0;
8837 regs = targetm.dwarf_register_span (rtl);
8839 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8840 return multiple_reg_loc_descriptor (rtl, regs, initialized);
8841 else
8842 return one_reg_loc_descriptor (dbx_reg_number (rtl), initialized);
8845 /* Return a location descriptor that designates a machine register for
8846 a given hard register number. */
8848 static dw_loc_descr_ref
8849 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
8851 dw_loc_descr_ref reg_loc_descr;
8852 if (regno <= 31)
8853 reg_loc_descr = new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8854 else
8855 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
8857 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
8858 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
8860 return reg_loc_descr;
8863 /* Given an RTL of a register, return a location descriptor that
8864 designates a value that spans more than one register. */
8866 static dw_loc_descr_ref
8867 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
8868 enum var_init_status initialized)
8870 int nregs, size, i;
8871 unsigned reg;
8872 dw_loc_descr_ref loc_result = NULL;
8874 reg = REGNO (rtl);
8875 #ifdef LEAF_REG_REMAP
8876 if (current_function_uses_only_leaf_regs)
8878 int leaf_reg = LEAF_REG_REMAP (reg);
8879 if (leaf_reg != -1)
8880 reg = (unsigned) leaf_reg;
8882 #endif
8883 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8884 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8886 /* Simple, contiguous registers. */
8887 if (regs == NULL_RTX)
8889 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8891 loc_result = NULL;
8892 while (nregs--)
8894 dw_loc_descr_ref t;
8896 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
8897 VAR_INIT_STATUS_INITIALIZED);
8898 add_loc_descr (&loc_result, t);
8899 add_loc_descr_op_piece (&loc_result, size);
8900 ++reg;
8902 return loc_result;
8905 /* Now onto stupid register sets in non contiguous locations. */
8907 gcc_assert (GET_CODE (regs) == PARALLEL);
8909 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8910 loc_result = NULL;
8912 for (i = 0; i < XVECLEN (regs, 0); ++i)
8914 dw_loc_descr_ref t;
8916 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)),
8917 VAR_INIT_STATUS_INITIALIZED);
8918 add_loc_descr (&loc_result, t);
8919 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8920 add_loc_descr_op_piece (&loc_result, size);
8923 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
8924 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
8925 return loc_result;
8928 /* Return a location descriptor that designates a constant. */
8930 static dw_loc_descr_ref
8931 int_loc_descriptor (HOST_WIDE_INT i)
8933 enum dwarf_location_atom op;
8935 /* Pick the smallest representation of a constant, rather than just
8936 defaulting to the LEB encoding. */
8937 if (i >= 0)
8939 if (i <= 31)
8940 op = DW_OP_lit0 + i;
8941 else if (i <= 0xff)
8942 op = DW_OP_const1u;
8943 else if (i <= 0xffff)
8944 op = DW_OP_const2u;
8945 else if (HOST_BITS_PER_WIDE_INT == 32
8946 || i <= 0xffffffff)
8947 op = DW_OP_const4u;
8948 else
8949 op = DW_OP_constu;
8951 else
8953 if (i >= -0x80)
8954 op = DW_OP_const1s;
8955 else if (i >= -0x8000)
8956 op = DW_OP_const2s;
8957 else if (HOST_BITS_PER_WIDE_INT == 32
8958 || i >= -0x80000000)
8959 op = DW_OP_const4s;
8960 else
8961 op = DW_OP_consts;
8964 return new_loc_descr (op, i, 0);
8967 /* Return a location descriptor that designates a base+offset location. */
8969 static dw_loc_descr_ref
8970 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
8971 enum var_init_status initialized)
8973 unsigned int regno;
8974 dw_loc_descr_ref result;
8976 /* We only use "frame base" when we're sure we're talking about the
8977 post-prologue local stack frame. We do this by *not* running
8978 register elimination until this point, and recognizing the special
8979 argument pointer and soft frame pointer rtx's. */
8980 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8982 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8984 if (elim != reg)
8986 if (GET_CODE (elim) == PLUS)
8988 offset += INTVAL (XEXP (elim, 1));
8989 elim = XEXP (elim, 0);
8991 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8992 : stack_pointer_rtx));
8993 offset += frame_pointer_fb_offset;
8995 return new_loc_descr (DW_OP_fbreg, offset, 0);
8999 regno = dbx_reg_number (reg);
9000 if (regno <= 31)
9001 result = new_loc_descr (DW_OP_breg0 + regno, offset, 0);
9002 else
9003 result = new_loc_descr (DW_OP_bregx, regno, offset);
9005 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
9006 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9008 return result;
9011 /* Return true if this RTL expression describes a base+offset calculation. */
9013 static inline int
9014 is_based_loc (const_rtx rtl)
9016 return (GET_CODE (rtl) == PLUS
9017 && ((REG_P (XEXP (rtl, 0))
9018 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
9019 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
9022 /* Return a descriptor that describes the concatenation of N locations
9023 used to form the address of a memory location. */
9025 static dw_loc_descr_ref
9026 concatn_mem_loc_descriptor (rtx concatn, enum machine_mode mode,
9027 enum var_init_status initialized)
9029 unsigned int i;
9030 dw_loc_descr_ref cc_loc_result = NULL;
9031 unsigned int n = XVECLEN (concatn, 0);
9033 for (i = 0; i < n; ++i)
9035 dw_loc_descr_ref ref;
9036 rtx x = XVECEXP (concatn, 0, i);
9038 ref = mem_loc_descriptor (x, mode, VAR_INIT_STATUS_INITIALIZED);
9039 if (ref == NULL)
9040 return NULL;
9042 add_loc_descr (&cc_loc_result, ref);
9043 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9046 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9047 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9049 return cc_loc_result;
9052 /* The following routine converts the RTL for a variable or parameter
9053 (resident in memory) into an equivalent Dwarf representation of a
9054 mechanism for getting the address of that same variable onto the top of a
9055 hypothetical "address evaluation" stack.
9057 When creating memory location descriptors, we are effectively transforming
9058 the RTL for a memory-resident object into its Dwarf postfix expression
9059 equivalent. This routine recursively descends an RTL tree, turning
9060 it into Dwarf postfix code as it goes.
9062 MODE is the mode of the memory reference, needed to handle some
9063 autoincrement addressing modes.
9065 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
9066 location list for RTL.
9068 Return 0 if we can't represent the location. */
9070 static dw_loc_descr_ref
9071 mem_loc_descriptor (rtx rtl, enum machine_mode mode,
9072 enum var_init_status initialized)
9074 dw_loc_descr_ref mem_loc_result = NULL;
9075 enum dwarf_location_atom op;
9077 /* Note that for a dynamically sized array, the location we will generate a
9078 description of here will be the lowest numbered location which is
9079 actually within the array. That's *not* necessarily the same as the
9080 zeroth element of the array. */
9082 rtl = targetm.delegitimize_address (rtl);
9084 switch (GET_CODE (rtl))
9086 case POST_INC:
9087 case POST_DEC:
9088 case POST_MODIFY:
9089 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
9090 just fall into the SUBREG code. */
9092 /* ... fall through ... */
9094 case SUBREG:
9095 /* The case of a subreg may arise when we have a local (register)
9096 variable or a formal (register) parameter which doesn't quite fill
9097 up an entire register. For now, just assume that it is
9098 legitimate to make the Dwarf info refer to the whole register which
9099 contains the given subreg. */
9100 rtl = XEXP (rtl, 0);
9102 /* ... fall through ... */
9104 case REG:
9105 /* Whenever a register number forms a part of the description of the
9106 method for calculating the (dynamic) address of a memory resident
9107 object, DWARF rules require the register number be referred to as
9108 a "base register". This distinction is not based in any way upon
9109 what category of register the hardware believes the given register
9110 belongs to. This is strictly DWARF terminology we're dealing with
9111 here. Note that in cases where the location of a memory-resident
9112 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
9113 OP_CONST (0)) the actual DWARF location descriptor that we generate
9114 may just be OP_BASEREG (basereg). This may look deceptively like
9115 the object in question was allocated to a register (rather than in
9116 memory) so DWARF consumers need to be aware of the subtle
9117 distinction between OP_REG and OP_BASEREG. */
9118 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
9119 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
9120 break;
9122 case MEM:
9123 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
9124 VAR_INIT_STATUS_INITIALIZED);
9125 if (mem_loc_result != 0)
9126 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
9127 break;
9129 case LO_SUM:
9130 rtl = XEXP (rtl, 1);
9132 /* ... fall through ... */
9134 case LABEL_REF:
9135 /* Some ports can transform a symbol ref into a label ref, because
9136 the symbol ref is too far away and has to be dumped into a constant
9137 pool. */
9138 case CONST:
9139 case SYMBOL_REF:
9140 /* Alternatively, the symbol in the constant pool might be referenced
9141 by a different symbol. */
9142 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
9144 bool marked;
9145 rtx tmp = get_pool_constant_mark (rtl, &marked);
9147 if (GET_CODE (tmp) == SYMBOL_REF)
9149 rtl = tmp;
9150 if (CONSTANT_POOL_ADDRESS_P (tmp))
9151 get_pool_constant_mark (tmp, &marked);
9152 else
9153 marked = true;
9156 /* If all references to this pool constant were optimized away,
9157 it was not output and thus we can't represent it.
9158 FIXME: might try to use DW_OP_const_value here, though
9159 DW_OP_piece complicates it. */
9160 if (!marked)
9161 return 0;
9164 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
9165 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
9166 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
9167 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9168 break;
9170 case PRE_MODIFY:
9171 /* Extract the PLUS expression nested inside and fall into
9172 PLUS code below. */
9173 rtl = XEXP (rtl, 1);
9174 goto plus;
9176 case PRE_INC:
9177 case PRE_DEC:
9178 /* Turn these into a PLUS expression and fall into the PLUS code
9179 below. */
9180 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
9181 GEN_INT (GET_CODE (rtl) == PRE_INC
9182 ? GET_MODE_UNIT_SIZE (mode)
9183 : -GET_MODE_UNIT_SIZE (mode)));
9185 /* ... fall through ... */
9187 case PLUS:
9188 plus:
9189 if (is_based_loc (rtl))
9190 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
9191 INTVAL (XEXP (rtl, 1)),
9192 VAR_INIT_STATUS_INITIALIZED);
9193 else
9195 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
9196 VAR_INIT_STATUS_INITIALIZED);
9197 if (mem_loc_result == 0)
9198 break;
9200 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
9201 && INTVAL (XEXP (rtl, 1)) >= 0)
9202 add_loc_descr (&mem_loc_result,
9203 new_loc_descr (DW_OP_plus_uconst,
9204 INTVAL (XEXP (rtl, 1)), 0));
9205 else
9207 add_loc_descr (&mem_loc_result,
9208 mem_loc_descriptor (XEXP (rtl, 1), mode,
9209 VAR_INIT_STATUS_INITIALIZED));
9210 add_loc_descr (&mem_loc_result,
9211 new_loc_descr (DW_OP_plus, 0, 0));
9214 break;
9216 /* If a pseudo-reg is optimized away, it is possible for it to
9217 be replaced with a MEM containing a multiply or shift. */
9218 case MULT:
9219 op = DW_OP_mul;
9220 goto do_binop;
9222 case ASHIFT:
9223 op = DW_OP_shl;
9224 goto do_binop;
9226 case ASHIFTRT:
9227 op = DW_OP_shra;
9228 goto do_binop;
9230 case LSHIFTRT:
9231 op = DW_OP_shr;
9232 goto do_binop;
9234 do_binop:
9236 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
9237 VAR_INIT_STATUS_INITIALIZED);
9238 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
9239 VAR_INIT_STATUS_INITIALIZED);
9241 if (op0 == 0 || op1 == 0)
9242 break;
9244 mem_loc_result = op0;
9245 add_loc_descr (&mem_loc_result, op1);
9246 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9247 break;
9250 case CONST_INT:
9251 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9252 break;
9254 case CONCATN:
9255 mem_loc_result = concatn_mem_loc_descriptor (rtl, mode,
9256 VAR_INIT_STATUS_INITIALIZED);
9257 break;
9259 default:
9260 gcc_unreachable ();
9263 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9264 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9266 return mem_loc_result;
9269 /* Return a descriptor that describes the concatenation of two locations.
9270 This is typically a complex variable. */
9272 static dw_loc_descr_ref
9273 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
9275 dw_loc_descr_ref cc_loc_result = NULL;
9276 dw_loc_descr_ref x0_ref = loc_descriptor (x0, VAR_INIT_STATUS_INITIALIZED);
9277 dw_loc_descr_ref x1_ref = loc_descriptor (x1, VAR_INIT_STATUS_INITIALIZED);
9279 if (x0_ref == 0 || x1_ref == 0)
9280 return 0;
9282 cc_loc_result = x0_ref;
9283 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9285 add_loc_descr (&cc_loc_result, x1_ref);
9286 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9288 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
9289 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9291 return cc_loc_result;
9294 /* Return a descriptor that describes the concatenation of N
9295 locations. */
9297 static dw_loc_descr_ref
9298 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
9300 unsigned int i;
9301 dw_loc_descr_ref cc_loc_result = NULL;
9302 unsigned int n = XVECLEN (concatn, 0);
9304 for (i = 0; i < n; ++i)
9306 dw_loc_descr_ref ref;
9307 rtx x = XVECEXP (concatn, 0, i);
9309 ref = loc_descriptor (x, VAR_INIT_STATUS_INITIALIZED);
9310 if (ref == NULL)
9311 return NULL;
9313 add_loc_descr (&cc_loc_result, ref);
9314 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9317 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9318 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9320 return cc_loc_result;
9323 /* Output a proper Dwarf location descriptor for a variable or parameter
9324 which is either allocated in a register or in a memory location. For a
9325 register, we just generate an OP_REG and the register number. For a
9326 memory location we provide a Dwarf postfix expression describing how to
9327 generate the (dynamic) address of the object onto the address stack.
9329 If we don't know how to describe it, return 0. */
9331 static dw_loc_descr_ref
9332 loc_descriptor (rtx rtl, enum var_init_status initialized)
9334 dw_loc_descr_ref loc_result = NULL;
9336 switch (GET_CODE (rtl))
9338 case SUBREG:
9339 /* The case of a subreg may arise when we have a local (register)
9340 variable or a formal (register) parameter which doesn't quite fill
9341 up an entire register. For now, just assume that it is
9342 legitimate to make the Dwarf info refer to the whole register which
9343 contains the given subreg. */
9344 rtl = SUBREG_REG (rtl);
9346 /* ... fall through ... */
9348 case REG:
9349 loc_result = reg_loc_descriptor (rtl, initialized);
9350 break;
9352 case MEM:
9353 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
9354 initialized);
9355 break;
9357 case CONCAT:
9358 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
9359 initialized);
9360 break;
9362 case CONCATN:
9363 loc_result = concatn_loc_descriptor (rtl, initialized);
9364 break;
9366 case VAR_LOCATION:
9367 /* Single part. */
9368 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9370 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), initialized);
9371 break;
9374 rtl = XEXP (rtl, 1);
9375 /* FALLTHRU */
9377 case PARALLEL:
9379 rtvec par_elems = XVEC (rtl, 0);
9380 int num_elem = GET_NUM_ELEM (par_elems);
9381 enum machine_mode mode;
9382 int i;
9384 /* Create the first one, so we have something to add to. */
9385 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
9386 initialized);
9387 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9388 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9389 for (i = 1; i < num_elem; i++)
9391 dw_loc_descr_ref temp;
9393 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
9394 initialized);
9395 add_loc_descr (&loc_result, temp);
9396 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9397 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9400 break;
9402 default:
9403 gcc_unreachable ();
9406 return loc_result;
9409 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9410 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9411 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9412 top-level invocation, and we require the address of LOC; is 0 if we require
9413 the value of LOC. */
9415 static dw_loc_descr_ref
9416 loc_descriptor_from_tree_1 (tree loc, int want_address)
9418 dw_loc_descr_ref ret, ret1;
9419 int have_address = 0;
9420 enum dwarf_location_atom op;
9422 /* ??? Most of the time we do not take proper care for sign/zero
9423 extending the values properly. Hopefully this won't be a real
9424 problem... */
9426 switch (TREE_CODE (loc))
9428 case ERROR_MARK:
9429 return 0;
9431 case PLACEHOLDER_EXPR:
9432 /* This case involves extracting fields from an object to determine the
9433 position of other fields. We don't try to encode this here. The
9434 only user of this is Ada, which encodes the needed information using
9435 the names of types. */
9436 return 0;
9438 case CALL_EXPR:
9439 return 0;
9441 case PREINCREMENT_EXPR:
9442 case PREDECREMENT_EXPR:
9443 case POSTINCREMENT_EXPR:
9444 case POSTDECREMENT_EXPR:
9445 /* There are no opcodes for these operations. */
9446 return 0;
9448 case ADDR_EXPR:
9449 /* If we already want an address, there's nothing we can do. */
9450 if (want_address)
9451 return 0;
9453 /* Otherwise, process the argument and look for the address. */
9454 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9456 case VAR_DECL:
9457 if (DECL_THREAD_LOCAL_P (loc))
9459 rtx rtl;
9461 /* If this is not defined, we have no way to emit the data. */
9462 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
9463 return 0;
9465 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9466 look up addresses of objects in the current module. */
9467 if (DECL_EXTERNAL (loc))
9468 return 0;
9470 rtl = rtl_for_decl_location (loc);
9471 if (rtl == NULL_RTX)
9472 return 0;
9474 if (!MEM_P (rtl))
9475 return 0;
9476 rtl = XEXP (rtl, 0);
9477 if (! CONSTANT_P (rtl))
9478 return 0;
9480 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9481 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9482 ret->dw_loc_oprnd1.v.val_addr = rtl;
9484 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9485 add_loc_descr (&ret, ret1);
9487 have_address = 1;
9488 break;
9490 /* FALLTHRU */
9492 case PARM_DECL:
9493 if (DECL_HAS_VALUE_EXPR_P (loc))
9494 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9495 want_address);
9496 /* FALLTHRU */
9498 case RESULT_DECL:
9499 case FUNCTION_DECL:
9501 rtx rtl = rtl_for_decl_location (loc);
9503 if (rtl == NULL_RTX)
9504 return 0;
9505 else if (GET_CODE (rtl) == CONST_INT)
9507 HOST_WIDE_INT val = INTVAL (rtl);
9508 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9509 val &= GET_MODE_MASK (DECL_MODE (loc));
9510 ret = int_loc_descriptor (val);
9512 else if (GET_CODE (rtl) == CONST_STRING)
9513 return 0;
9514 else if (CONSTANT_P (rtl))
9516 ret = new_loc_descr (DW_OP_addr, 0, 0);
9517 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9518 ret->dw_loc_oprnd1.v.val_addr = rtl;
9520 else
9522 enum machine_mode mode;
9524 /* Certain constructs can only be represented at top-level. */
9525 if (want_address == 2)
9526 return loc_descriptor (rtl, VAR_INIT_STATUS_INITIALIZED);
9528 mode = GET_MODE (rtl);
9529 if (MEM_P (rtl))
9531 rtl = XEXP (rtl, 0);
9532 have_address = 1;
9534 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
9537 break;
9539 case INDIRECT_REF:
9540 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9541 have_address = 1;
9542 break;
9544 case COMPOUND_EXPR:
9545 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9547 case NOP_EXPR:
9548 case CONVERT_EXPR:
9549 case NON_LVALUE_EXPR:
9550 case VIEW_CONVERT_EXPR:
9551 case SAVE_EXPR:
9552 case GIMPLE_MODIFY_STMT:
9553 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9554 want_address);
9556 case COMPONENT_REF:
9557 case BIT_FIELD_REF:
9558 case ARRAY_REF:
9559 case ARRAY_RANGE_REF:
9561 tree obj, offset;
9562 HOST_WIDE_INT bitsize, bitpos, bytepos;
9563 enum machine_mode mode;
9564 int volatilep;
9565 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9567 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9568 &unsignedp, &volatilep, false);
9570 if (obj == loc)
9571 return 0;
9573 ret = loc_descriptor_from_tree_1 (obj, 1);
9574 if (ret == 0
9575 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9576 return 0;
9578 if (offset != NULL_TREE)
9580 /* Variable offset. */
9581 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9582 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9585 bytepos = bitpos / BITS_PER_UNIT;
9586 if (bytepos > 0)
9587 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9588 else if (bytepos < 0)
9590 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9591 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9594 have_address = 1;
9595 break;
9598 case INTEGER_CST:
9599 if (host_integerp (loc, 0))
9600 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9601 else
9602 return 0;
9603 break;
9605 case CONSTRUCTOR:
9607 /* Get an RTL for this, if something has been emitted. */
9608 rtx rtl = lookup_constant_def (loc);
9609 enum machine_mode mode;
9611 if (!rtl || !MEM_P (rtl))
9612 return 0;
9613 mode = GET_MODE (rtl);
9614 rtl = XEXP (rtl, 0);
9615 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
9616 have_address = 1;
9617 break;
9620 case TRUTH_AND_EXPR:
9621 case TRUTH_ANDIF_EXPR:
9622 case BIT_AND_EXPR:
9623 op = DW_OP_and;
9624 goto do_binop;
9626 case TRUTH_XOR_EXPR:
9627 case BIT_XOR_EXPR:
9628 op = DW_OP_xor;
9629 goto do_binop;
9631 case TRUTH_OR_EXPR:
9632 case TRUTH_ORIF_EXPR:
9633 case BIT_IOR_EXPR:
9634 op = DW_OP_or;
9635 goto do_binop;
9637 case FLOOR_DIV_EXPR:
9638 case CEIL_DIV_EXPR:
9639 case ROUND_DIV_EXPR:
9640 case TRUNC_DIV_EXPR:
9641 op = DW_OP_div;
9642 goto do_binop;
9644 case MINUS_EXPR:
9645 op = DW_OP_minus;
9646 goto do_binop;
9648 case FLOOR_MOD_EXPR:
9649 case CEIL_MOD_EXPR:
9650 case ROUND_MOD_EXPR:
9651 case TRUNC_MOD_EXPR:
9652 op = DW_OP_mod;
9653 goto do_binop;
9655 case MULT_EXPR:
9656 op = DW_OP_mul;
9657 goto do_binop;
9659 case LSHIFT_EXPR:
9660 op = DW_OP_shl;
9661 goto do_binop;
9663 case RSHIFT_EXPR:
9664 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9665 goto do_binop;
9667 case POINTER_PLUS_EXPR:
9668 case PLUS_EXPR:
9669 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9670 && host_integerp (TREE_OPERAND (loc, 1), 0))
9672 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9673 if (ret == 0)
9674 return 0;
9676 add_loc_descr (&ret,
9677 new_loc_descr (DW_OP_plus_uconst,
9678 tree_low_cst (TREE_OPERAND (loc, 1),
9680 0));
9681 break;
9684 op = DW_OP_plus;
9685 goto do_binop;
9687 case LE_EXPR:
9688 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9689 return 0;
9691 op = DW_OP_le;
9692 goto do_binop;
9694 case GE_EXPR:
9695 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9696 return 0;
9698 op = DW_OP_ge;
9699 goto do_binop;
9701 case LT_EXPR:
9702 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9703 return 0;
9705 op = DW_OP_lt;
9706 goto do_binop;
9708 case GT_EXPR:
9709 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9710 return 0;
9712 op = DW_OP_gt;
9713 goto do_binop;
9715 case EQ_EXPR:
9716 op = DW_OP_eq;
9717 goto do_binop;
9719 case NE_EXPR:
9720 op = DW_OP_ne;
9721 goto do_binop;
9723 do_binop:
9724 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9725 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9726 if (ret == 0 || ret1 == 0)
9727 return 0;
9729 add_loc_descr (&ret, ret1);
9730 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9731 break;
9733 case TRUTH_NOT_EXPR:
9734 case BIT_NOT_EXPR:
9735 op = DW_OP_not;
9736 goto do_unop;
9738 case ABS_EXPR:
9739 op = DW_OP_abs;
9740 goto do_unop;
9742 case NEGATE_EXPR:
9743 op = DW_OP_neg;
9744 goto do_unop;
9746 do_unop:
9747 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9748 if (ret == 0)
9749 return 0;
9751 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9752 break;
9754 case MIN_EXPR:
9755 case MAX_EXPR:
9757 const enum tree_code code =
9758 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9760 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9761 build2 (code, integer_type_node,
9762 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9763 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9766 /* ... fall through ... */
9768 case COND_EXPR:
9770 dw_loc_descr_ref lhs
9771 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9772 dw_loc_descr_ref rhs
9773 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9774 dw_loc_descr_ref bra_node, jump_node, tmp;
9776 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9777 if (ret == 0 || lhs == 0 || rhs == 0)
9778 return 0;
9780 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9781 add_loc_descr (&ret, bra_node);
9783 add_loc_descr (&ret, rhs);
9784 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9785 add_loc_descr (&ret, jump_node);
9787 add_loc_descr (&ret, lhs);
9788 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9789 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9791 /* ??? Need a node to point the skip at. Use a nop. */
9792 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9793 add_loc_descr (&ret, tmp);
9794 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9795 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9797 break;
9799 case FIX_TRUNC_EXPR:
9800 return 0;
9802 default:
9803 /* Leave front-end specific codes as simply unknown. This comes
9804 up, for instance, with the C STMT_EXPR. */
9805 if ((unsigned int) TREE_CODE (loc)
9806 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9807 return 0;
9809 #ifdef ENABLE_CHECKING
9810 /* Otherwise this is a generic code; we should just lists all of
9811 these explicitly. We forgot one. */
9812 gcc_unreachable ();
9813 #else
9814 /* In a release build, we want to degrade gracefully: better to
9815 generate incomplete debugging information than to crash. */
9816 return NULL;
9817 #endif
9820 /* Show if we can't fill the request for an address. */
9821 if (want_address && !have_address)
9822 return 0;
9824 /* If we've got an address and don't want one, dereference. */
9825 if (!want_address && have_address && ret)
9827 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9829 if (size > DWARF2_ADDR_SIZE || size == -1)
9830 return 0;
9831 else if (size == DWARF2_ADDR_SIZE)
9832 op = DW_OP_deref;
9833 else
9834 op = DW_OP_deref_size;
9836 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9839 return ret;
9842 static inline dw_loc_descr_ref
9843 loc_descriptor_from_tree (tree loc)
9845 return loc_descriptor_from_tree_1 (loc, 2);
9848 /* Given a value, round it up to the lowest multiple of `boundary'
9849 which is not less than the value itself. */
9851 static inline HOST_WIDE_INT
9852 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9854 return (((value + boundary - 1) / boundary) * boundary);
9857 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9858 pointer to the declared type for the relevant field variable, or return
9859 `integer_type_node' if the given node turns out to be an
9860 ERROR_MARK node. */
9862 static inline tree
9863 field_type (const_tree decl)
9865 tree type;
9867 if (TREE_CODE (decl) == ERROR_MARK)
9868 return integer_type_node;
9870 type = DECL_BIT_FIELD_TYPE (decl);
9871 if (type == NULL_TREE)
9872 type = TREE_TYPE (decl);
9874 return type;
9877 /* Given a pointer to a tree node, return the alignment in bits for
9878 it, or else return BITS_PER_WORD if the node actually turns out to
9879 be an ERROR_MARK node. */
9881 static inline unsigned
9882 simple_type_align_in_bits (const_tree type)
9884 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9887 static inline unsigned
9888 simple_decl_align_in_bits (const_tree decl)
9890 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9893 /* Return the result of rounding T up to ALIGN. */
9895 static inline HOST_WIDE_INT
9896 round_up_to_align (HOST_WIDE_INT t, unsigned int align)
9898 /* We must be careful if T is negative because HOST_WIDE_INT can be
9899 either "above" or "below" unsigned int as per the C promotion
9900 rules, depending on the host, thus making the signedness of the
9901 direct multiplication and division unpredictable. */
9902 unsigned HOST_WIDE_INT u = (unsigned HOST_WIDE_INT) t;
9904 u += align - 1;
9905 u /= align;
9906 u *= align;
9908 return (HOST_WIDE_INT) u;
9911 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9912 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9913 or return 0 if we are unable to determine what that offset is, either
9914 because the argument turns out to be a pointer to an ERROR_MARK node, or
9915 because the offset is actually variable. (We can't handle the latter case
9916 just yet). */
9918 static HOST_WIDE_INT
9919 field_byte_offset (const_tree decl)
9921 HOST_WIDE_INT object_offset_in_bits;
9922 HOST_WIDE_INT bitpos_int;
9924 if (TREE_CODE (decl) == ERROR_MARK)
9925 return 0;
9927 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9929 /* We cannot yet cope with fields whose positions are variable, so
9930 for now, when we see such things, we simply return 0. Someday, we may
9931 be able to handle such cases, but it will be damn difficult. */
9932 if (! host_integerp (bit_position (decl), 0))
9933 return 0;
9935 bitpos_int = int_bit_position (decl);
9937 #ifdef PCC_BITFIELD_TYPE_MATTERS
9938 if (PCC_BITFIELD_TYPE_MATTERS)
9940 tree type;
9941 tree field_size_tree;
9942 HOST_WIDE_INT deepest_bitpos;
9943 unsigned HOST_WIDE_INT field_size_in_bits;
9944 unsigned int type_align_in_bits;
9945 unsigned int decl_align_in_bits;
9946 unsigned HOST_WIDE_INT type_size_in_bits;
9948 type = field_type (decl);
9949 field_size_tree = DECL_SIZE (decl);
9951 /* The size could be unspecified if there was an error, or for
9952 a flexible array member. */
9953 if (! field_size_tree)
9954 field_size_tree = bitsize_zero_node;
9956 /* If we don't know the size of the field, pretend it's a full word. */
9957 if (host_integerp (field_size_tree, 1))
9958 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9959 else
9960 field_size_in_bits = BITS_PER_WORD;
9962 type_size_in_bits = simple_type_size_in_bits (type);
9963 type_align_in_bits = simple_type_align_in_bits (type);
9964 decl_align_in_bits = simple_decl_align_in_bits (decl);
9966 /* The GCC front-end doesn't make any attempt to keep track of the
9967 starting bit offset (relative to the start of the containing
9968 structure type) of the hypothetical "containing object" for a
9969 bit-field. Thus, when computing the byte offset value for the
9970 start of the "containing object" of a bit-field, we must deduce
9971 this information on our own. This can be rather tricky to do in
9972 some cases. For example, handling the following structure type
9973 definition when compiling for an i386/i486 target (which only
9974 aligns long long's to 32-bit boundaries) can be very tricky:
9976 struct S { int field1; long long field2:31; };
9978 Fortunately, there is a simple rule-of-thumb which can be used
9979 in such cases. When compiling for an i386/i486, GCC will
9980 allocate 8 bytes for the structure shown above. It decides to
9981 do this based upon one simple rule for bit-field allocation.
9982 GCC allocates each "containing object" for each bit-field at
9983 the first (i.e. lowest addressed) legitimate alignment boundary
9984 (based upon the required minimum alignment for the declared
9985 type of the field) which it can possibly use, subject to the
9986 condition that there is still enough available space remaining
9987 in the containing object (when allocated at the selected point)
9988 to fully accommodate all of the bits of the bit-field itself.
9990 This simple rule makes it obvious why GCC allocates 8 bytes for
9991 each object of the structure type shown above. When looking
9992 for a place to allocate the "containing object" for `field2',
9993 the compiler simply tries to allocate a 64-bit "containing
9994 object" at each successive 32-bit boundary (starting at zero)
9995 until it finds a place to allocate that 64- bit field such that
9996 at least 31 contiguous (and previously unallocated) bits remain
9997 within that selected 64 bit field. (As it turns out, for the
9998 example above, the compiler finds it is OK to allocate the
9999 "containing object" 64-bit field at bit-offset zero within the
10000 structure type.)
10002 Here we attempt to work backwards from the limited set of facts
10003 we're given, and we try to deduce from those facts, where GCC
10004 must have believed that the containing object started (within
10005 the structure type). The value we deduce is then used (by the
10006 callers of this routine) to generate DW_AT_location and
10007 DW_AT_bit_offset attributes for fields (both bit-fields and, in
10008 the case of DW_AT_location, regular fields as well). */
10010 /* Figure out the bit-distance from the start of the structure to
10011 the "deepest" bit of the bit-field. */
10012 deepest_bitpos = bitpos_int + field_size_in_bits;
10014 /* This is the tricky part. Use some fancy footwork to deduce
10015 where the lowest addressed bit of the containing object must
10016 be. */
10017 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
10019 /* Round up to type_align by default. This works best for
10020 bitfields. */
10021 object_offset_in_bits
10022 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
10024 if (object_offset_in_bits > bitpos_int)
10026 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
10028 /* Round up to decl_align instead. */
10029 object_offset_in_bits
10030 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
10033 else
10034 #endif
10035 object_offset_in_bits = bitpos_int;
10037 return object_offset_in_bits / BITS_PER_UNIT;
10040 /* The following routines define various Dwarf attributes and any data
10041 associated with them. */
10043 /* Add a location description attribute value to a DIE.
10045 This emits location attributes suitable for whole variables and
10046 whole parameters. Note that the location attributes for struct fields are
10047 generated by the routine `data_member_location_attribute' below. */
10049 static inline void
10050 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
10051 dw_loc_descr_ref descr)
10053 if (descr != 0)
10054 add_AT_loc (die, attr_kind, descr);
10057 /* Attach the specialized form of location attribute used for data members of
10058 struct and union types. In the special case of a FIELD_DECL node which
10059 represents a bit-field, the "offset" part of this special location
10060 descriptor must indicate the distance in bytes from the lowest-addressed
10061 byte of the containing struct or union type to the lowest-addressed byte of
10062 the "containing object" for the bit-field. (See the `field_byte_offset'
10063 function above).
10065 For any given bit-field, the "containing object" is a hypothetical object
10066 (of some integral or enum type) within which the given bit-field lives. The
10067 type of this hypothetical "containing object" is always the same as the
10068 declared type of the individual bit-field itself (for GCC anyway... the
10069 DWARF spec doesn't actually mandate this). Note that it is the size (in
10070 bytes) of the hypothetical "containing object" which will be given in the
10071 DW_AT_byte_size attribute for this bit-field. (See the
10072 `byte_size_attribute' function below.) It is also used when calculating the
10073 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
10074 function below.) */
10076 static void
10077 add_data_member_location_attribute (dw_die_ref die, tree decl)
10079 HOST_WIDE_INT offset;
10080 dw_loc_descr_ref loc_descr = 0;
10082 if (TREE_CODE (decl) == TREE_BINFO)
10084 /* We're working on the TAG_inheritance for a base class. */
10085 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
10087 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
10088 aren't at a fixed offset from all (sub)objects of the same
10089 type. We need to extract the appropriate offset from our
10090 vtable. The following dwarf expression means
10092 BaseAddr = ObAddr + *((*ObAddr) - Offset)
10094 This is specific to the V3 ABI, of course. */
10096 dw_loc_descr_ref tmp;
10098 /* Make a copy of the object address. */
10099 tmp = new_loc_descr (DW_OP_dup, 0, 0);
10100 add_loc_descr (&loc_descr, tmp);
10102 /* Extract the vtable address. */
10103 tmp = new_loc_descr (DW_OP_deref, 0, 0);
10104 add_loc_descr (&loc_descr, tmp);
10106 /* Calculate the address of the offset. */
10107 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
10108 gcc_assert (offset < 0);
10110 tmp = int_loc_descriptor (-offset);
10111 add_loc_descr (&loc_descr, tmp);
10112 tmp = new_loc_descr (DW_OP_minus, 0, 0);
10113 add_loc_descr (&loc_descr, tmp);
10115 /* Extract the offset. */
10116 tmp = new_loc_descr (DW_OP_deref, 0, 0);
10117 add_loc_descr (&loc_descr, tmp);
10119 /* Add it to the object address. */
10120 tmp = new_loc_descr (DW_OP_plus, 0, 0);
10121 add_loc_descr (&loc_descr, tmp);
10123 else
10124 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
10126 else
10127 offset = field_byte_offset (decl);
10129 if (! loc_descr)
10131 enum dwarf_location_atom op;
10133 /* The DWARF2 standard says that we should assume that the structure
10134 address is already on the stack, so we can specify a structure field
10135 address by using DW_OP_plus_uconst. */
10137 #ifdef MIPS_DEBUGGING_INFO
10138 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
10139 operator correctly. It works only if we leave the offset on the
10140 stack. */
10141 op = DW_OP_constu;
10142 #else
10143 op = DW_OP_plus_uconst;
10144 #endif
10146 loc_descr = new_loc_descr (op, offset, 0);
10149 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
10152 /* Writes integer values to dw_vec_const array. */
10154 static void
10155 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
10157 while (size != 0)
10159 *dest++ = val & 0xff;
10160 val >>= 8;
10161 --size;
10165 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
10167 static HOST_WIDE_INT
10168 extract_int (const unsigned char *src, unsigned int size)
10170 HOST_WIDE_INT val = 0;
10172 src += size;
10173 while (size != 0)
10175 val <<= 8;
10176 val |= *--src & 0xff;
10177 --size;
10179 return val;
10182 /* Writes floating point values to dw_vec_const array. */
10184 static void
10185 insert_float (const_rtx rtl, unsigned char *array)
10187 REAL_VALUE_TYPE rv;
10188 long val[4];
10189 int i;
10191 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
10192 real_to_target (val, &rv, GET_MODE (rtl));
10194 /* real_to_target puts 32-bit pieces in each long. Pack them. */
10195 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
10197 insert_int (val[i], 4, array);
10198 array += 4;
10202 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
10203 does not have a "location" either in memory or in a register. These
10204 things can arise in GNU C when a constant is passed as an actual parameter
10205 to an inlined function. They can also arise in C++ where declared
10206 constants do not necessarily get memory "homes". */
10208 static void
10209 add_const_value_attribute (dw_die_ref die, rtx rtl)
10211 switch (GET_CODE (rtl))
10213 case CONST_INT:
10215 HOST_WIDE_INT val = INTVAL (rtl);
10217 if (val < 0)
10218 add_AT_int (die, DW_AT_const_value, val);
10219 else
10220 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
10222 break;
10224 case CONST_DOUBLE:
10225 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
10226 floating-point constant. A CONST_DOUBLE is used whenever the
10227 constant requires more than one word in order to be adequately
10228 represented. We output CONST_DOUBLEs as blocks. */
10230 enum machine_mode mode = GET_MODE (rtl);
10232 if (SCALAR_FLOAT_MODE_P (mode))
10234 unsigned int length = GET_MODE_SIZE (mode);
10235 unsigned char *array = ggc_alloc (length);
10237 insert_float (rtl, array);
10238 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
10240 else
10242 /* ??? We really should be using HOST_WIDE_INT throughout. */
10243 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
10245 add_AT_long_long (die, DW_AT_const_value,
10246 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
10249 break;
10251 case CONST_VECTOR:
10253 enum machine_mode mode = GET_MODE (rtl);
10254 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
10255 unsigned int length = CONST_VECTOR_NUNITS (rtl);
10256 unsigned char *array = ggc_alloc (length * elt_size);
10257 unsigned int i;
10258 unsigned char *p;
10260 switch (GET_MODE_CLASS (mode))
10262 case MODE_VECTOR_INT:
10263 for (i = 0, p = array; i < length; i++, p += elt_size)
10265 rtx elt = CONST_VECTOR_ELT (rtl, i);
10266 HOST_WIDE_INT lo, hi;
10268 switch (GET_CODE (elt))
10270 case CONST_INT:
10271 lo = INTVAL (elt);
10272 hi = -(lo < 0);
10273 break;
10275 case CONST_DOUBLE:
10276 lo = CONST_DOUBLE_LOW (elt);
10277 hi = CONST_DOUBLE_HIGH (elt);
10278 break;
10280 default:
10281 gcc_unreachable ();
10284 if (elt_size <= sizeof (HOST_WIDE_INT))
10285 insert_int (lo, elt_size, p);
10286 else
10288 unsigned char *p0 = p;
10289 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
10291 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
10292 if (WORDS_BIG_ENDIAN)
10294 p0 = p1;
10295 p1 = p;
10297 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
10298 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
10301 break;
10303 case MODE_VECTOR_FLOAT:
10304 for (i = 0, p = array; i < length; i++, p += elt_size)
10306 rtx elt = CONST_VECTOR_ELT (rtl, i);
10307 insert_float (elt, p);
10309 break;
10311 default:
10312 gcc_unreachable ();
10315 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10317 break;
10319 case CONST_STRING:
10320 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10321 break;
10323 case SYMBOL_REF:
10324 case LABEL_REF:
10325 case CONST:
10326 add_AT_addr (die, DW_AT_const_value, rtl);
10327 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10328 break;
10330 case PLUS:
10331 /* In cases where an inlined instance of an inline function is passed
10332 the address of an `auto' variable (which is local to the caller) we
10333 can get a situation where the DECL_RTL of the artificial local
10334 variable (for the inlining) which acts as a stand-in for the
10335 corresponding formal parameter (of the inline function) will look
10336 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10337 exactly a compile-time constant expression, but it isn't the address
10338 of the (artificial) local variable either. Rather, it represents the
10339 *value* which the artificial local variable always has during its
10340 lifetime. We currently have no way to represent such quasi-constant
10341 values in Dwarf, so for now we just punt and generate nothing. */
10342 break;
10344 default:
10345 /* No other kinds of rtx should be possible here. */
10346 gcc_unreachable ();
10351 /* Determine whether the evaluation of EXPR references any variables
10352 or functions which aren't otherwise used (and therefore may not be
10353 output). */
10354 static tree
10355 reference_to_unused (tree * tp, int * walk_subtrees,
10356 void * data ATTRIBUTE_UNUSED)
10358 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10359 *walk_subtrees = 0;
10361 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10362 && ! TREE_ASM_WRITTEN (*tp))
10363 return *tp;
10364 else if (!flag_unit_at_a_time)
10365 return NULL_TREE;
10366 /* ??? The C++ FE emits debug information for using decls, so
10367 putting gcc_unreachable here falls over. See PR31899. For now
10368 be conservative. */
10369 else if (!cgraph_global_info_ready
10370 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
10371 return *tp;
10372 else if (DECL_P (*tp) && TREE_CODE (*tp) == VAR_DECL)
10374 struct varpool_node *node = varpool_node (*tp);
10375 if (!node->needed)
10376 return *tp;
10378 else if (DECL_P (*tp) && TREE_CODE (*tp) == FUNCTION_DECL
10379 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
10381 struct cgraph_node *node = cgraph_node (*tp);
10382 if (!node->output)
10383 return *tp;
10385 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
10386 return *tp;
10388 return NULL_TREE;
10391 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10392 for use in a later add_const_value_attribute call. */
10394 static rtx
10395 rtl_for_decl_init (tree init, tree type)
10397 rtx rtl = NULL_RTX;
10399 /* If a variable is initialized with a string constant without embedded
10400 zeros, build CONST_STRING. */
10401 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10403 tree enttype = TREE_TYPE (type);
10404 tree domain = TYPE_DOMAIN (type);
10405 enum machine_mode mode = TYPE_MODE (enttype);
10407 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10408 && domain
10409 && integer_zerop (TYPE_MIN_VALUE (domain))
10410 && compare_tree_int (TYPE_MAX_VALUE (domain),
10411 TREE_STRING_LENGTH (init) - 1) == 0
10412 && ((size_t) TREE_STRING_LENGTH (init)
10413 == strlen (TREE_STRING_POINTER (init)) + 1))
10414 rtl = gen_rtx_CONST_STRING (VOIDmode,
10415 ggc_strdup (TREE_STRING_POINTER (init)));
10417 /* Other aggregates, and complex values, could be represented using
10418 CONCAT: FIXME! */
10419 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10421 /* Vectors only work if their mode is supported by the target.
10422 FIXME: generic vectors ought to work too. */
10423 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10425 /* If the initializer is something that we know will expand into an
10426 immediate RTL constant, expand it now. We must be careful not to
10427 reference variables which won't be output. */
10428 else if (initializer_constant_valid_p (init, type)
10429 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10431 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
10432 possible. */
10433 if (TREE_CODE (type) == VECTOR_TYPE)
10434 switch (TREE_CODE (init))
10436 case VECTOR_CST:
10437 break;
10438 case CONSTRUCTOR:
10439 if (TREE_CONSTANT (init))
10441 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
10442 bool constant_p = true;
10443 tree value;
10444 unsigned HOST_WIDE_INT ix;
10446 /* Even when ctor is constant, it might contain non-*_CST
10447 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
10448 belong into VECTOR_CST nodes. */
10449 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
10450 if (!CONSTANT_CLASS_P (value))
10452 constant_p = false;
10453 break;
10456 if (constant_p)
10458 init = build_vector_from_ctor (type, elts);
10459 break;
10462 /* FALLTHRU */
10464 default:
10465 return NULL;
10468 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10470 /* If expand_expr returns a MEM, it wasn't immediate. */
10471 gcc_assert (!rtl || !MEM_P (rtl));
10474 return rtl;
10477 /* Generate RTL for the variable DECL to represent its location. */
10479 static rtx
10480 rtl_for_decl_location (tree decl)
10482 rtx rtl;
10484 /* Here we have to decide where we are going to say the parameter "lives"
10485 (as far as the debugger is concerned). We only have a couple of
10486 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10488 DECL_RTL normally indicates where the parameter lives during most of the
10489 activation of the function. If optimization is enabled however, this
10490 could be either NULL or else a pseudo-reg. Both of those cases indicate
10491 that the parameter doesn't really live anywhere (as far as the code
10492 generation parts of GCC are concerned) during most of the function's
10493 activation. That will happen (for example) if the parameter is never
10494 referenced within the function.
10496 We could just generate a location descriptor here for all non-NULL
10497 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10498 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10499 where DECL_RTL is NULL or is a pseudo-reg.
10501 Note however that we can only get away with using DECL_INCOMING_RTL as
10502 a backup substitute for DECL_RTL in certain limited cases. In cases
10503 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10504 we can be sure that the parameter was passed using the same type as it is
10505 declared to have within the function, and that its DECL_INCOMING_RTL
10506 points us to a place where a value of that type is passed.
10508 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10509 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10510 because in these cases DECL_INCOMING_RTL points us to a value of some
10511 type which is *different* from the type of the parameter itself. Thus,
10512 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10513 such cases, the debugger would end up (for example) trying to fetch a
10514 `float' from a place which actually contains the first part of a
10515 `double'. That would lead to really incorrect and confusing
10516 output at debug-time.
10518 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10519 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10520 are a couple of exceptions however. On little-endian machines we can
10521 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10522 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10523 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10524 when (on a little-endian machine) a non-prototyped function has a
10525 parameter declared to be of type `short' or `char'. In such cases,
10526 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10527 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10528 passed `int' value. If the debugger then uses that address to fetch
10529 a `short' or a `char' (on a little-endian machine) the result will be
10530 the correct data, so we allow for such exceptional cases below.
10532 Note that our goal here is to describe the place where the given formal
10533 parameter lives during most of the function's activation (i.e. between the
10534 end of the prologue and the start of the epilogue). We'll do that as best
10535 as we can. Note however that if the given formal parameter is modified
10536 sometime during the execution of the function, then a stack backtrace (at
10537 debug-time) will show the function as having been called with the *new*
10538 value rather than the value which was originally passed in. This happens
10539 rarely enough that it is not a major problem, but it *is* a problem, and
10540 I'd like to fix it.
10542 A future version of dwarf2out.c may generate two additional attributes for
10543 any given DW_TAG_formal_parameter DIE which will describe the "passed
10544 type" and the "passed location" for the given formal parameter in addition
10545 to the attributes we now generate to indicate the "declared type" and the
10546 "active location" for each parameter. This additional set of attributes
10547 could be used by debuggers for stack backtraces. Separately, note that
10548 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10549 This happens (for example) for inlined-instances of inline function formal
10550 parameters which are never referenced. This really shouldn't be
10551 happening. All PARM_DECL nodes should get valid non-NULL
10552 DECL_INCOMING_RTL values. FIXME. */
10554 /* Use DECL_RTL as the "location" unless we find something better. */
10555 rtl = DECL_RTL_IF_SET (decl);
10557 /* When generating abstract instances, ignore everything except
10558 constants, symbols living in memory, and symbols living in
10559 fixed registers. */
10560 if (! reload_completed)
10562 if (rtl
10563 && (CONSTANT_P (rtl)
10564 || (MEM_P (rtl)
10565 && CONSTANT_P (XEXP (rtl, 0)))
10566 || (REG_P (rtl)
10567 && TREE_CODE (decl) == VAR_DECL
10568 && TREE_STATIC (decl))))
10570 rtl = targetm.delegitimize_address (rtl);
10571 return rtl;
10573 rtl = NULL_RTX;
10575 else if (TREE_CODE (decl) == PARM_DECL)
10577 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10579 tree declared_type = TREE_TYPE (decl);
10580 tree passed_type = DECL_ARG_TYPE (decl);
10581 enum machine_mode dmode = TYPE_MODE (declared_type);
10582 enum machine_mode pmode = TYPE_MODE (passed_type);
10584 /* This decl represents a formal parameter which was optimized out.
10585 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10586 all cases where (rtl == NULL_RTX) just below. */
10587 if (dmode == pmode)
10588 rtl = DECL_INCOMING_RTL (decl);
10589 else if (SCALAR_INT_MODE_P (dmode)
10590 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10591 && DECL_INCOMING_RTL (decl))
10593 rtx inc = DECL_INCOMING_RTL (decl);
10594 if (REG_P (inc))
10595 rtl = inc;
10596 else if (MEM_P (inc))
10598 if (BYTES_BIG_ENDIAN)
10599 rtl = adjust_address_nv (inc, dmode,
10600 GET_MODE_SIZE (pmode)
10601 - GET_MODE_SIZE (dmode));
10602 else
10603 rtl = inc;
10608 /* If the parm was passed in registers, but lives on the stack, then
10609 make a big endian correction if the mode of the type of the
10610 parameter is not the same as the mode of the rtl. */
10611 /* ??? This is the same series of checks that are made in dbxout.c before
10612 we reach the big endian correction code there. It isn't clear if all
10613 of these checks are necessary here, but keeping them all is the safe
10614 thing to do. */
10615 else if (MEM_P (rtl)
10616 && XEXP (rtl, 0) != const0_rtx
10617 && ! CONSTANT_P (XEXP (rtl, 0))
10618 /* Not passed in memory. */
10619 && !MEM_P (DECL_INCOMING_RTL (decl))
10620 /* Not passed by invisible reference. */
10621 && (!REG_P (XEXP (rtl, 0))
10622 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10623 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10624 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10625 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10626 #endif
10628 /* Big endian correction check. */
10629 && BYTES_BIG_ENDIAN
10630 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10631 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10632 < UNITS_PER_WORD))
10634 int offset = (UNITS_PER_WORD
10635 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10637 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10638 plus_constant (XEXP (rtl, 0), offset));
10641 else if (TREE_CODE (decl) == VAR_DECL
10642 && rtl
10643 && MEM_P (rtl)
10644 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10645 && BYTES_BIG_ENDIAN)
10647 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10648 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10650 /* If a variable is declared "register" yet is smaller than
10651 a register, then if we store the variable to memory, it
10652 looks like we're storing a register-sized value, when in
10653 fact we are not. We need to adjust the offset of the
10654 storage location to reflect the actual value's bytes,
10655 else gdb will not be able to display it. */
10656 if (rsize > dsize)
10657 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10658 plus_constant (XEXP (rtl, 0), rsize-dsize));
10661 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10662 and will have been substituted directly into all expressions that use it.
10663 C does not have such a concept, but C++ and other languages do. */
10664 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10665 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10667 if (rtl)
10668 rtl = targetm.delegitimize_address (rtl);
10670 /* If we don't look past the constant pool, we risk emitting a
10671 reference to a constant pool entry that isn't referenced from
10672 code, and thus is not emitted. */
10673 if (rtl)
10674 rtl = avoid_constant_pool_reference (rtl);
10676 return rtl;
10679 /* We need to figure out what section we should use as the base for the
10680 address ranges where a given location is valid.
10681 1. If this particular DECL has a section associated with it, use that.
10682 2. If this function has a section associated with it, use that.
10683 3. Otherwise, use the text section.
10684 XXX: If you split a variable across multiple sections, we won't notice. */
10686 static const char *
10687 secname_for_decl (const_tree decl)
10689 const char *secname;
10691 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10693 tree sectree = DECL_SECTION_NAME (decl);
10694 secname = TREE_STRING_POINTER (sectree);
10696 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10698 tree sectree = DECL_SECTION_NAME (current_function_decl);
10699 secname = TREE_STRING_POINTER (sectree);
10701 else if (cfun && in_cold_section_p)
10702 secname = cfun->cold_section_label;
10703 else
10704 secname = text_section_label;
10706 return secname;
10709 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10710 data attribute for a variable or a parameter. We generate the
10711 DW_AT_const_value attribute only in those cases where the given variable
10712 or parameter does not have a true "location" either in memory or in a
10713 register. This can happen (for example) when a constant is passed as an
10714 actual argument in a call to an inline function. (It's possible that
10715 these things can crop up in other ways also.) Note that one type of
10716 constant value which can be passed into an inlined function is a constant
10717 pointer. This can happen for example if an actual argument in an inlined
10718 function call evaluates to a compile-time constant address. */
10720 static void
10721 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10722 enum dwarf_attribute attr)
10724 rtx rtl;
10725 dw_loc_descr_ref descr;
10726 var_loc_list *loc_list;
10727 struct var_loc_node *node;
10728 if (TREE_CODE (decl) == ERROR_MARK)
10729 return;
10731 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10732 || TREE_CODE (decl) == RESULT_DECL);
10734 /* See if we possibly have multiple locations for this variable. */
10735 loc_list = lookup_decl_loc (decl);
10737 /* If it truly has multiple locations, the first and last node will
10738 differ. */
10739 if (loc_list && loc_list->first != loc_list->last)
10741 const char *endname, *secname;
10742 dw_loc_list_ref list;
10743 rtx varloc;
10744 enum var_init_status initialized;
10746 /* Now that we know what section we are using for a base,
10747 actually construct the list of locations.
10748 The first location information is what is passed to the
10749 function that creates the location list, and the remaining
10750 locations just get added on to that list.
10751 Note that we only know the start address for a location
10752 (IE location changes), so to build the range, we use
10753 the range [current location start, next location start].
10754 This means we have to special case the last node, and generate
10755 a range of [last location start, end of function label]. */
10757 node = loc_list->first;
10758 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10759 secname = secname_for_decl (decl);
10761 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note))
10762 initialized = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10763 else
10764 initialized = VAR_INIT_STATUS_INITIALIZED;
10766 list = new_loc_list (loc_descriptor (varloc, initialized),
10767 node->label, node->next->label, secname, 1);
10768 node = node->next;
10770 for (; node->next; node = node->next)
10771 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10773 /* The variable has a location between NODE->LABEL and
10774 NODE->NEXT->LABEL. */
10775 enum var_init_status initialized =
10776 NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10777 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10778 add_loc_descr_to_loc_list (&list,
10779 loc_descriptor (varloc, initialized),
10780 node->label, node->next->label, secname);
10783 /* If the variable has a location at the last label
10784 it keeps its location until the end of function. */
10785 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10787 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10788 enum var_init_status initialized =
10789 NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10791 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10792 if (!current_function_decl)
10793 endname = text_end_label;
10794 else
10796 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10797 current_function_funcdef_no);
10798 endname = ggc_strdup (label_id);
10800 add_loc_descr_to_loc_list (&list,
10801 loc_descriptor (varloc, initialized),
10802 node->label, endname, secname);
10805 /* Finally, add the location list to the DIE, and we are done. */
10806 add_AT_loc_list (die, attr, list);
10807 return;
10810 /* Try to get some constant RTL for this decl, and use that as the value of
10811 the location. */
10813 rtl = rtl_for_decl_location (decl);
10814 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10816 add_const_value_attribute (die, rtl);
10817 return;
10820 /* If we have tried to generate the location otherwise, and it
10821 didn't work out (we wouldn't be here if we did), and we have a one entry
10822 location list, try generating a location from that. */
10823 if (loc_list && loc_list->first)
10825 enum var_init_status status;
10826 node = loc_list->first;
10827 status = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10828 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note), status);
10829 if (descr)
10831 add_AT_location_description (die, attr, descr);
10832 return;
10836 /* We couldn't get any rtl, so try directly generating the location
10837 description from the tree. */
10838 descr = loc_descriptor_from_tree (decl);
10839 if (descr)
10841 add_AT_location_description (die, attr, descr);
10842 return;
10844 /* None of that worked, so it must not really have a location;
10845 try adding a constant value attribute from the DECL_INITIAL. */
10846 tree_add_const_value_attribute (die, decl);
10849 /* If we don't have a copy of this variable in memory for some reason (such
10850 as a C++ member constant that doesn't have an out-of-line definition),
10851 we should tell the debugger about the constant value. */
10853 static void
10854 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10856 tree init = DECL_INITIAL (decl);
10857 tree type = TREE_TYPE (decl);
10858 rtx rtl;
10860 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10861 /* OK */;
10862 else
10863 return;
10865 rtl = rtl_for_decl_init (init, type);
10866 if (rtl)
10867 add_const_value_attribute (var_die, rtl);
10870 /* Convert the CFI instructions for the current function into a
10871 location list. This is used for DW_AT_frame_base when we targeting
10872 a dwarf2 consumer that does not support the dwarf3
10873 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10874 expressions. */
10876 static dw_loc_list_ref
10877 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10879 dw_fde_ref fde;
10880 dw_loc_list_ref list, *list_tail;
10881 dw_cfi_ref cfi;
10882 dw_cfa_location last_cfa, next_cfa;
10883 const char *start_label, *last_label, *section;
10885 fde = &fde_table[fde_table_in_use - 1];
10887 section = secname_for_decl (current_function_decl);
10888 list_tail = &list;
10889 list = NULL;
10891 next_cfa.reg = INVALID_REGNUM;
10892 next_cfa.offset = 0;
10893 next_cfa.indirect = 0;
10894 next_cfa.base_offset = 0;
10896 start_label = fde->dw_fde_begin;
10898 /* ??? Bald assumption that the CIE opcode list does not contain
10899 advance opcodes. */
10900 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10901 lookup_cfa_1 (cfi, &next_cfa);
10903 last_cfa = next_cfa;
10904 last_label = start_label;
10906 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10907 switch (cfi->dw_cfi_opc)
10909 case DW_CFA_set_loc:
10910 case DW_CFA_advance_loc1:
10911 case DW_CFA_advance_loc2:
10912 case DW_CFA_advance_loc4:
10913 if (!cfa_equal_p (&last_cfa, &next_cfa))
10915 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10916 start_label, last_label, section,
10917 list == NULL);
10919 list_tail = &(*list_tail)->dw_loc_next;
10920 last_cfa = next_cfa;
10921 start_label = last_label;
10923 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10924 break;
10926 case DW_CFA_advance_loc:
10927 /* The encoding is complex enough that we should never emit this. */
10928 case DW_CFA_remember_state:
10929 case DW_CFA_restore_state:
10930 /* We don't handle these two in this function. It would be possible
10931 if it were to be required. */
10932 gcc_unreachable ();
10934 default:
10935 lookup_cfa_1 (cfi, &next_cfa);
10936 break;
10939 if (!cfa_equal_p (&last_cfa, &next_cfa))
10941 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10942 start_label, last_label, section,
10943 list == NULL);
10944 list_tail = &(*list_tail)->dw_loc_next;
10945 start_label = last_label;
10947 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10948 start_label, fde->dw_fde_end, section,
10949 list == NULL);
10951 return list;
10954 /* Compute a displacement from the "steady-state frame pointer" to the
10955 frame base (often the same as the CFA), and store it in
10956 frame_pointer_fb_offset. OFFSET is added to the displacement
10957 before the latter is negated. */
10959 static void
10960 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10962 rtx reg, elim;
10964 #ifdef FRAME_POINTER_CFA_OFFSET
10965 reg = frame_pointer_rtx;
10966 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10967 #else
10968 reg = arg_pointer_rtx;
10969 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10970 #endif
10972 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10973 if (GET_CODE (elim) == PLUS)
10975 offset += INTVAL (XEXP (elim, 1));
10976 elim = XEXP (elim, 0);
10978 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10979 : stack_pointer_rtx));
10981 frame_pointer_fb_offset = -offset;
10984 /* Generate a DW_AT_name attribute given some string value to be included as
10985 the value of the attribute. */
10987 static void
10988 add_name_attribute (dw_die_ref die, const char *name_string)
10990 if (name_string != NULL && *name_string != 0)
10992 if (demangle_name_func)
10993 name_string = (*demangle_name_func) (name_string);
10995 add_AT_string (die, DW_AT_name, name_string);
10999 /* Generate a DW_AT_comp_dir attribute for DIE. */
11001 static void
11002 add_comp_dir_attribute (dw_die_ref die)
11004 const char *wd = get_src_pwd ();
11005 if (wd != NULL)
11006 add_AT_string (die, DW_AT_comp_dir, remap_debug_filename (wd));
11009 /* Given a tree node describing an array bound (either lower or upper) output
11010 a representation for that bound. */
11012 static void
11013 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
11015 switch (TREE_CODE (bound))
11017 case ERROR_MARK:
11018 return;
11020 /* All fixed-bounds are represented by INTEGER_CST nodes. */
11021 case INTEGER_CST:
11022 if (! host_integerp (bound, 0)
11023 || (bound_attr == DW_AT_lower_bound
11024 && (((is_c_family () || is_java ()) && integer_zerop (bound))
11025 || (is_fortran () && integer_onep (bound)))))
11026 /* Use the default. */
11028 else
11029 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
11030 break;
11032 case CONVERT_EXPR:
11033 case NOP_EXPR:
11034 case NON_LVALUE_EXPR:
11035 case VIEW_CONVERT_EXPR:
11036 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
11037 break;
11039 case SAVE_EXPR:
11040 break;
11042 case VAR_DECL:
11043 case PARM_DECL:
11044 case RESULT_DECL:
11046 dw_die_ref decl_die = lookup_decl_die (bound);
11048 /* ??? Can this happen, or should the variable have been bound
11049 first? Probably it can, since I imagine that we try to create
11050 the types of parameters in the order in which they exist in
11051 the list, and won't have created a forward reference to a
11052 later parameter. */
11053 if (decl_die != NULL)
11054 add_AT_die_ref (subrange_die, bound_attr, decl_die);
11055 break;
11058 default:
11060 /* Otherwise try to create a stack operation procedure to
11061 evaluate the value of the array bound. */
11063 dw_die_ref ctx, decl_die;
11064 dw_loc_descr_ref loc;
11066 loc = loc_descriptor_from_tree (bound);
11067 if (loc == NULL)
11068 break;
11070 if (current_function_decl == 0)
11071 ctx = comp_unit_die;
11072 else
11073 ctx = lookup_decl_die (current_function_decl);
11075 decl_die = new_die (DW_TAG_variable, ctx, bound);
11076 add_AT_flag (decl_die, DW_AT_artificial, 1);
11077 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
11078 add_AT_loc (decl_die, DW_AT_location, loc);
11080 add_AT_die_ref (subrange_die, bound_attr, decl_die);
11081 break;
11086 /* Note that the block of subscript information for an array type also
11087 includes information about the element type of type given array type. */
11089 static void
11090 add_subscript_info (dw_die_ref type_die, tree type)
11092 #ifndef MIPS_DEBUGGING_INFO
11093 unsigned dimension_number;
11094 #endif
11095 tree lower, upper;
11096 dw_die_ref subrange_die;
11098 /* The GNU compilers represent multidimensional array types as sequences of
11099 one dimensional array types whose element types are themselves array
11100 types. Here we squish that down, so that each multidimensional array
11101 type gets only one array_type DIE in the Dwarf debugging info. The draft
11102 Dwarf specification say that we are allowed to do this kind of
11103 compression in C (because there is no difference between an array or
11104 arrays and a multidimensional array in C) but for other source languages
11105 (e.g. Ada) we probably shouldn't do this. */
11107 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11108 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11109 We work around this by disabling this feature. See also
11110 gen_array_type_die. */
11111 #ifndef MIPS_DEBUGGING_INFO
11112 for (dimension_number = 0;
11113 TREE_CODE (type) == ARRAY_TYPE;
11114 type = TREE_TYPE (type), dimension_number++)
11115 #endif
11117 tree domain = TYPE_DOMAIN (type);
11119 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
11120 and (in GNU C only) variable bounds. Handle all three forms
11121 here. */
11122 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
11123 if (domain)
11125 /* We have an array type with specified bounds. */
11126 lower = TYPE_MIN_VALUE (domain);
11127 upper = TYPE_MAX_VALUE (domain);
11129 /* Define the index type. */
11130 if (TREE_TYPE (domain))
11132 /* ??? This is probably an Ada unnamed subrange type. Ignore the
11133 TREE_TYPE field. We can't emit debug info for this
11134 because it is an unnamed integral type. */
11135 if (TREE_CODE (domain) == INTEGER_TYPE
11136 && TYPE_NAME (domain) == NULL_TREE
11137 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
11138 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
11140 else
11141 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
11142 type_die);
11145 /* ??? If upper is NULL, the array has unspecified length,
11146 but it does have a lower bound. This happens with Fortran
11147 dimension arr(N:*)
11148 Since the debugger is definitely going to need to know N
11149 to produce useful results, go ahead and output the lower
11150 bound solo, and hope the debugger can cope. */
11152 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
11153 if (upper)
11154 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
11157 /* Otherwise we have an array type with an unspecified length. The
11158 DWARF-2 spec does not say how to handle this; let's just leave out the
11159 bounds. */
11163 static void
11164 add_byte_size_attribute (dw_die_ref die, tree tree_node)
11166 unsigned size;
11168 switch (TREE_CODE (tree_node))
11170 case ERROR_MARK:
11171 size = 0;
11172 break;
11173 case ENUMERAL_TYPE:
11174 case RECORD_TYPE:
11175 case UNION_TYPE:
11176 case QUAL_UNION_TYPE:
11177 size = int_size_in_bytes (tree_node);
11178 break;
11179 case FIELD_DECL:
11180 /* For a data member of a struct or union, the DW_AT_byte_size is
11181 generally given as the number of bytes normally allocated for an
11182 object of the *declared* type of the member itself. This is true
11183 even for bit-fields. */
11184 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
11185 break;
11186 default:
11187 gcc_unreachable ();
11190 /* Note that `size' might be -1 when we get to this point. If it is, that
11191 indicates that the byte size of the entity in question is variable. We
11192 have no good way of expressing this fact in Dwarf at the present time,
11193 so just let the -1 pass on through. */
11194 add_AT_unsigned (die, DW_AT_byte_size, size);
11197 /* For a FIELD_DECL node which represents a bit-field, output an attribute
11198 which specifies the distance in bits from the highest order bit of the
11199 "containing object" for the bit-field to the highest order bit of the
11200 bit-field itself.
11202 For any given bit-field, the "containing object" is a hypothetical object
11203 (of some integral or enum type) within which the given bit-field lives. The
11204 type of this hypothetical "containing object" is always the same as the
11205 declared type of the individual bit-field itself. The determination of the
11206 exact location of the "containing object" for a bit-field is rather
11207 complicated. It's handled by the `field_byte_offset' function (above).
11209 Note that it is the size (in bytes) of the hypothetical "containing object"
11210 which will be given in the DW_AT_byte_size attribute for this bit-field.
11211 (See `byte_size_attribute' above). */
11213 static inline void
11214 add_bit_offset_attribute (dw_die_ref die, tree decl)
11216 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
11217 tree type = DECL_BIT_FIELD_TYPE (decl);
11218 HOST_WIDE_INT bitpos_int;
11219 HOST_WIDE_INT highest_order_object_bit_offset;
11220 HOST_WIDE_INT highest_order_field_bit_offset;
11221 HOST_WIDE_INT unsigned bit_offset;
11223 /* Must be a field and a bit field. */
11224 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
11226 /* We can't yet handle bit-fields whose offsets are variable, so if we
11227 encounter such things, just return without generating any attribute
11228 whatsoever. Likewise for variable or too large size. */
11229 if (! host_integerp (bit_position (decl), 0)
11230 || ! host_integerp (DECL_SIZE (decl), 1))
11231 return;
11233 bitpos_int = int_bit_position (decl);
11235 /* Note that the bit offset is always the distance (in bits) from the
11236 highest-order bit of the "containing object" to the highest-order bit of
11237 the bit-field itself. Since the "high-order end" of any object or field
11238 is different on big-endian and little-endian machines, the computation
11239 below must take account of these differences. */
11240 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
11241 highest_order_field_bit_offset = bitpos_int;
11243 if (! BYTES_BIG_ENDIAN)
11245 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
11246 highest_order_object_bit_offset += simple_type_size_in_bits (type);
11249 bit_offset
11250 = (! BYTES_BIG_ENDIAN
11251 ? highest_order_object_bit_offset - highest_order_field_bit_offset
11252 : highest_order_field_bit_offset - highest_order_object_bit_offset);
11254 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
11257 /* For a FIELD_DECL node which represents a bit field, output an attribute
11258 which specifies the length in bits of the given field. */
11260 static inline void
11261 add_bit_size_attribute (dw_die_ref die, tree decl)
11263 /* Must be a field and a bit field. */
11264 gcc_assert (TREE_CODE (decl) == FIELD_DECL
11265 && DECL_BIT_FIELD_TYPE (decl));
11267 if (host_integerp (DECL_SIZE (decl), 1))
11268 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
11271 /* If the compiled language is ANSI C, then add a 'prototyped'
11272 attribute, if arg types are given for the parameters of a function. */
11274 static inline void
11275 add_prototyped_attribute (dw_die_ref die, tree func_type)
11277 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
11278 && TYPE_ARG_TYPES (func_type) != NULL)
11279 add_AT_flag (die, DW_AT_prototyped, 1);
11282 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
11283 by looking in either the type declaration or object declaration
11284 equate table. */
11286 static inline void
11287 add_abstract_origin_attribute (dw_die_ref die, tree origin)
11289 dw_die_ref origin_die = NULL;
11291 if (TREE_CODE (origin) != FUNCTION_DECL)
11293 /* We may have gotten separated from the block for the inlined
11294 function, if we're in an exception handler or some such; make
11295 sure that the abstract function has been written out.
11297 Doing this for nested functions is wrong, however; functions are
11298 distinct units, and our context might not even be inline. */
11299 tree fn = origin;
11301 if (TYPE_P (fn))
11302 fn = TYPE_STUB_DECL (fn);
11304 fn = decl_function_context (fn);
11305 if (fn)
11306 dwarf2out_abstract_function (fn);
11309 if (DECL_P (origin))
11310 origin_die = lookup_decl_die (origin);
11311 else if (TYPE_P (origin))
11312 origin_die = lookup_type_die (origin);
11314 /* XXX: Functions that are never lowered don't always have correct block
11315 trees (in the case of java, they simply have no block tree, in some other
11316 languages). For these functions, there is nothing we can really do to
11317 output correct debug info for inlined functions in all cases. Rather
11318 than die, we'll just produce deficient debug info now, in that we will
11319 have variables without a proper abstract origin. In the future, when all
11320 functions are lowered, we should re-add a gcc_assert (origin_die)
11321 here. */
11323 if (origin_die)
11324 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
11327 /* We do not currently support the pure_virtual attribute. */
11329 static inline void
11330 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
11332 if (DECL_VINDEX (func_decl))
11334 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11336 if (host_integerp (DECL_VINDEX (func_decl), 0))
11337 add_AT_loc (die, DW_AT_vtable_elem_location,
11338 new_loc_descr (DW_OP_constu,
11339 tree_low_cst (DECL_VINDEX (func_decl), 0),
11340 0));
11342 /* GNU extension: Record what type this method came from originally. */
11343 if (debug_info_level > DINFO_LEVEL_TERSE)
11344 add_AT_die_ref (die, DW_AT_containing_type,
11345 lookup_type_die (DECL_CONTEXT (func_decl)));
11349 /* Add source coordinate attributes for the given decl. */
11351 static void
11352 add_src_coords_attributes (dw_die_ref die, tree decl)
11354 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11356 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
11357 add_AT_unsigned (die, DW_AT_decl_line, s.line);
11360 /* Add a DW_AT_name attribute and source coordinate attribute for the
11361 given decl, but only if it actually has a name. */
11363 static void
11364 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
11366 tree decl_name;
11368 decl_name = DECL_NAME (decl);
11369 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
11371 add_name_attribute (die, dwarf2_name (decl, 0));
11372 if (! DECL_ARTIFICIAL (decl))
11373 add_src_coords_attributes (die, decl);
11375 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
11376 && TREE_PUBLIC (decl)
11377 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
11378 && !DECL_ABSTRACT (decl)
11379 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
11380 && !is_fortran ())
11381 add_AT_string (die, DW_AT_MIPS_linkage_name,
11382 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
11385 #ifdef VMS_DEBUGGING_INFO
11386 /* Get the function's name, as described by its RTL. This may be different
11387 from the DECL_NAME name used in the source file. */
11388 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11390 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11391 XEXP (DECL_RTL (decl), 0));
11392 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11394 #endif
11397 /* Push a new declaration scope. */
11399 static void
11400 push_decl_scope (tree scope)
11402 VEC_safe_push (tree, gc, decl_scope_table, scope);
11405 /* Pop a declaration scope. */
11407 static inline void
11408 pop_decl_scope (void)
11410 VEC_pop (tree, decl_scope_table);
11413 /* Return the DIE for the scope that immediately contains this type.
11414 Non-named types get global scope. Named types nested in other
11415 types get their containing scope if it's open, or global scope
11416 otherwise. All other types (i.e. function-local named types) get
11417 the current active scope. */
11419 static dw_die_ref
11420 scope_die_for (tree t, dw_die_ref context_die)
11422 dw_die_ref scope_die = NULL;
11423 tree containing_scope;
11424 int i;
11426 /* Non-types always go in the current scope. */
11427 gcc_assert (TYPE_P (t));
11429 containing_scope = TYPE_CONTEXT (t);
11431 /* Use the containing namespace if it was passed in (for a declaration). */
11432 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11434 if (context_die == lookup_decl_die (containing_scope))
11435 /* OK */;
11436 else
11437 containing_scope = NULL_TREE;
11440 /* Ignore function type "scopes" from the C frontend. They mean that
11441 a tagged type is local to a parmlist of a function declarator, but
11442 that isn't useful to DWARF. */
11443 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11444 containing_scope = NULL_TREE;
11446 if (containing_scope == NULL_TREE)
11447 scope_die = comp_unit_die;
11448 else if (TYPE_P (containing_scope))
11450 /* For types, we can just look up the appropriate DIE. But
11451 first we check to see if we're in the middle of emitting it
11452 so we know where the new DIE should go. */
11453 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11454 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11455 break;
11457 if (i < 0)
11459 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11460 || TREE_ASM_WRITTEN (containing_scope));
11462 /* If none of the current dies are suitable, we get file scope. */
11463 scope_die = comp_unit_die;
11465 else
11466 scope_die = lookup_type_die (containing_scope);
11468 else
11469 scope_die = context_die;
11471 return scope_die;
11474 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11476 static inline int
11477 local_scope_p (dw_die_ref context_die)
11479 for (; context_die; context_die = context_die->die_parent)
11480 if (context_die->die_tag == DW_TAG_inlined_subroutine
11481 || context_die->die_tag == DW_TAG_subprogram)
11482 return 1;
11484 return 0;
11487 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11488 whether or not to treat a DIE in this context as a declaration. */
11490 static inline int
11491 class_or_namespace_scope_p (dw_die_ref context_die)
11493 return (context_die
11494 && (context_die->die_tag == DW_TAG_structure_type
11495 || context_die->die_tag == DW_TAG_class_type
11496 || context_die->die_tag == DW_TAG_interface_type
11497 || context_die->die_tag == DW_TAG_union_type
11498 || context_die->die_tag == DW_TAG_namespace));
11501 /* Many forms of DIEs require a "type description" attribute. This
11502 routine locates the proper "type descriptor" die for the type given
11503 by 'type', and adds a DW_AT_type attribute below the given die. */
11505 static void
11506 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11507 int decl_volatile, dw_die_ref context_die)
11509 enum tree_code code = TREE_CODE (type);
11510 dw_die_ref type_die = NULL;
11512 /* ??? If this type is an unnamed subrange type of an integral, floating-point
11513 or fixed-point type, use the inner type. This is because we have no
11514 support for unnamed types in base_type_die. This can happen if this is
11515 an Ada subrange type. Correct solution is emit a subrange type die. */
11516 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
11517 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11518 type = TREE_TYPE (type), code = TREE_CODE (type);
11520 if (code == ERROR_MARK
11521 /* Handle a special case. For functions whose return type is void, we
11522 generate *no* type attribute. (Note that no object may have type
11523 `void', so this only applies to function return types). */
11524 || code == VOID_TYPE)
11525 return;
11527 type_die = modified_type_die (type,
11528 decl_const || TYPE_READONLY (type),
11529 decl_volatile || TYPE_VOLATILE (type),
11530 context_die);
11532 if (type_die != NULL)
11533 add_AT_die_ref (object_die, DW_AT_type, type_die);
11536 /* Given an object die, add the calling convention attribute for the
11537 function call type. */
11538 static void
11539 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
11541 enum dwarf_calling_convention value = DW_CC_normal;
11543 value = targetm.dwarf_calling_convention (TREE_TYPE (decl));
11545 /* DWARF doesn't provide a way to identify a program's source-level
11546 entry point. DW_AT_calling_convention attributes are only meant
11547 to describe functions' calling conventions. However, lacking a
11548 better way to signal the Fortran main program, we use this for the
11549 time being, following existing custom. */
11550 if (is_fortran ()
11551 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
11552 value = DW_CC_program;
11554 /* Only add the attribute if the backend requests it, and
11555 is not DW_CC_normal. */
11556 if (value && (value != DW_CC_normal))
11557 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11560 /* Given a tree pointer to a struct, class, union, or enum type node, return
11561 a pointer to the (string) tag name for the given type, or zero if the type
11562 was declared without a tag. */
11564 static const char *
11565 type_tag (const_tree type)
11567 const char *name = 0;
11569 if (TYPE_NAME (type) != 0)
11571 tree t = 0;
11573 /* Find the IDENTIFIER_NODE for the type name. */
11574 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11575 t = TYPE_NAME (type);
11577 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11578 a TYPE_DECL node, regardless of whether or not a `typedef' was
11579 involved. */
11580 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11581 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11583 /* We want to be extra verbose. Don't call dwarf_name if
11584 DECL_NAME isn't set. The default hook for decl_printable_name
11585 doesn't like that, and in this context it's correct to return
11586 0, instead of "<anonymous>" or the like. */
11587 if (DECL_NAME (TYPE_NAME (type)))
11588 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
11591 /* Now get the name as a string, or invent one. */
11592 if (!name && t != 0)
11593 name = IDENTIFIER_POINTER (t);
11596 return (name == 0 || *name == '\0') ? 0 : name;
11599 /* Return the type associated with a data member, make a special check
11600 for bit field types. */
11602 static inline tree
11603 member_declared_type (const_tree member)
11605 return (DECL_BIT_FIELD_TYPE (member)
11606 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11609 /* Get the decl's label, as described by its RTL. This may be different
11610 from the DECL_NAME name used in the source file. */
11612 #if 0
11613 static const char *
11614 decl_start_label (tree decl)
11616 rtx x;
11617 const char *fnname;
11619 x = DECL_RTL (decl);
11620 gcc_assert (MEM_P (x));
11622 x = XEXP (x, 0);
11623 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11625 fnname = XSTR (x, 0);
11626 return fnname;
11628 #endif
11630 /* These routines generate the internal representation of the DIE's for
11631 the compilation unit. Debugging information is collected by walking
11632 the declaration trees passed in from dwarf2out_decl(). */
11634 static void
11635 gen_array_type_die (tree type, dw_die_ref context_die)
11637 dw_die_ref scope_die = scope_die_for (type, context_die);
11638 dw_die_ref array_die;
11639 tree element_type;
11641 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11642 the inner array type comes before the outer array type. Thus we must
11643 call gen_type_die before we call new_die. See below also. */
11644 #ifdef MIPS_DEBUGGING_INFO
11645 gen_type_die (TREE_TYPE (type), context_die);
11646 #endif
11648 array_die = new_die (DW_TAG_array_type, scope_die, type);
11649 add_name_attribute (array_die, type_tag (type));
11650 equate_type_number_to_die (type, array_die);
11652 if (TREE_CODE (type) == VECTOR_TYPE)
11654 /* The frontend feeds us a representation for the vector as a struct
11655 containing an array. Pull out the array type. */
11656 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11657 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11660 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
11661 if (is_fortran ()
11662 && TREE_CODE (type) == ARRAY_TYPE
11663 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
11664 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
11666 #if 0
11667 /* We default the array ordering. SDB will probably do
11668 the right things even if DW_AT_ordering is not present. It's not even
11669 an issue until we start to get into multidimensional arrays anyway. If
11670 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11671 then we'll have to put the DW_AT_ordering attribute back in. (But if
11672 and when we find out that we need to put these in, we will only do so
11673 for multidimensional arrays. */
11674 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11675 #endif
11677 #ifdef MIPS_DEBUGGING_INFO
11678 /* The SGI compilers handle arrays of unknown bound by setting
11679 AT_declaration and not emitting any subrange DIEs. */
11680 if (! TYPE_DOMAIN (type))
11681 add_AT_flag (array_die, DW_AT_declaration, 1);
11682 else
11683 #endif
11684 add_subscript_info (array_die, type);
11686 /* Add representation of the type of the elements of this array type. */
11687 element_type = TREE_TYPE (type);
11689 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11690 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11691 We work around this by disabling this feature. See also
11692 add_subscript_info. */
11693 #ifndef MIPS_DEBUGGING_INFO
11694 while (TREE_CODE (element_type) == ARRAY_TYPE)
11695 element_type = TREE_TYPE (element_type);
11697 gen_type_die (element_type, context_die);
11698 #endif
11700 add_type_attribute (array_die, element_type, 0, 0, context_die);
11702 if (get_AT (array_die, DW_AT_name))
11703 add_pubtype (type, array_die);
11706 static dw_loc_descr_ref
11707 descr_info_loc (tree val, tree base_decl)
11709 HOST_WIDE_INT size;
11710 dw_loc_descr_ref loc, loc2;
11711 enum dwarf_location_atom op;
11713 if (val == base_decl)
11714 return new_loc_descr (DW_OP_push_object_address, 0, 0);
11716 switch (TREE_CODE (val))
11718 case NOP_EXPR:
11719 case CONVERT_EXPR:
11720 return descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11721 case INTEGER_CST:
11722 if (host_integerp (val, 0))
11723 return int_loc_descriptor (tree_low_cst (val, 0));
11724 break;
11725 case INDIRECT_REF:
11726 size = int_size_in_bytes (TREE_TYPE (val));
11727 if (size < 0)
11728 break;
11729 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11730 if (!loc)
11731 break;
11732 if (size == DWARF2_ADDR_SIZE)
11733 add_loc_descr (&loc, new_loc_descr (DW_OP_deref, 0, 0));
11734 else
11735 add_loc_descr (&loc, new_loc_descr (DW_OP_deref_size, size, 0));
11736 return loc;
11737 case POINTER_PLUS_EXPR:
11738 case PLUS_EXPR:
11739 if (host_integerp (TREE_OPERAND (val, 1), 1)
11740 && (unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (val, 1), 1)
11741 < 16384)
11743 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11744 if (!loc)
11745 break;
11746 add_loc_descr (&loc,
11747 new_loc_descr (DW_OP_plus_uconst,
11748 tree_low_cst (TREE_OPERAND (val, 1),
11749 1), 0));
11751 else
11753 op = DW_OP_plus;
11754 do_binop:
11755 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11756 if (!loc)
11757 break;
11758 loc2 = descr_info_loc (TREE_OPERAND (val, 1), base_decl);
11759 if (!loc2)
11760 break;
11761 add_loc_descr (&loc, loc2);
11762 add_loc_descr (&loc2, new_loc_descr (op, 0, 0));
11764 return loc;
11765 case MINUS_EXPR:
11766 op = DW_OP_minus;
11767 goto do_binop;
11768 case MULT_EXPR:
11769 op = DW_OP_mul;
11770 goto do_binop;
11771 case EQ_EXPR:
11772 op = DW_OP_eq;
11773 goto do_binop;
11774 case NE_EXPR:
11775 op = DW_OP_ne;
11776 goto do_binop;
11777 default:
11778 break;
11780 return NULL;
11783 static void
11784 add_descr_info_field (dw_die_ref die, enum dwarf_attribute attr,
11785 tree val, tree base_decl)
11787 dw_loc_descr_ref loc;
11789 if (host_integerp (val, 0))
11791 add_AT_unsigned (die, attr, tree_low_cst (val, 0));
11792 return;
11795 loc = descr_info_loc (val, base_decl);
11796 if (!loc)
11797 return;
11799 add_AT_loc (die, attr, loc);
11802 /* This routine generates DIE for array with hidden descriptor, details
11803 are filled into *info by a langhook. */
11805 static void
11806 gen_descr_array_type_die (tree type, struct array_descr_info *info,
11807 dw_die_ref context_die)
11809 dw_die_ref scope_die = scope_die_for (type, context_die);
11810 dw_die_ref array_die;
11811 int dim;
11813 array_die = new_die (DW_TAG_array_type, scope_die, type);
11814 add_name_attribute (array_die, type_tag (type));
11815 equate_type_number_to_die (type, array_die);
11817 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
11818 if (is_fortran ()
11819 && info->ndimensions >= 2)
11820 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
11822 if (info->data_location)
11823 add_descr_info_field (array_die, DW_AT_data_location, info->data_location,
11824 info->base_decl);
11825 if (info->associated)
11826 add_descr_info_field (array_die, DW_AT_associated, info->associated,
11827 info->base_decl);
11828 if (info->allocated)
11829 add_descr_info_field (array_die, DW_AT_allocated, info->allocated,
11830 info->base_decl);
11832 for (dim = 0; dim < info->ndimensions; dim++)
11834 dw_die_ref subrange_die
11835 = new_die (DW_TAG_subrange_type, array_die, NULL);
11837 if (info->dimen[dim].lower_bound)
11839 /* If it is the default value, omit it. */
11840 if ((is_c_family () || is_java ())
11841 && integer_zerop (info->dimen[dim].lower_bound))
11843 else if (is_fortran ()
11844 && integer_onep (info->dimen[dim].lower_bound))
11846 else
11847 add_descr_info_field (subrange_die, DW_AT_lower_bound,
11848 info->dimen[dim].lower_bound,
11849 info->base_decl);
11851 if (info->dimen[dim].upper_bound)
11852 add_descr_info_field (subrange_die, DW_AT_upper_bound,
11853 info->dimen[dim].upper_bound,
11854 info->base_decl);
11855 if (info->dimen[dim].stride)
11856 add_descr_info_field (subrange_die, DW_AT_byte_stride,
11857 info->dimen[dim].stride,
11858 info->base_decl);
11861 gen_type_die (info->element_type, context_die);
11862 add_type_attribute (array_die, info->element_type, 0, 0, context_die);
11864 if (get_AT (array_die, DW_AT_name))
11865 add_pubtype (type, array_die);
11868 #if 0
11869 static void
11870 gen_entry_point_die (tree decl, dw_die_ref context_die)
11872 tree origin = decl_ultimate_origin (decl);
11873 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11875 if (origin != NULL)
11876 add_abstract_origin_attribute (decl_die, origin);
11877 else
11879 add_name_and_src_coords_attributes (decl_die, decl);
11880 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11881 0, 0, context_die);
11884 if (DECL_ABSTRACT (decl))
11885 equate_decl_number_to_die (decl, decl_die);
11886 else
11887 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11889 #endif
11891 /* Walk through the list of incomplete types again, trying once more to
11892 emit full debugging info for them. */
11894 static void
11895 retry_incomplete_types (void)
11897 int i;
11899 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11900 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11903 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11905 static void
11906 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11908 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11910 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11911 be incomplete and such types are not marked. */
11912 add_abstract_origin_attribute (type_die, type);
11915 /* Determine what tag to use for a record type. */
11917 static enum dwarf_tag
11918 record_type_tag (tree type)
11920 if (! lang_hooks.types.classify_record)
11921 return DW_TAG_structure_type;
11923 switch (lang_hooks.types.classify_record (type))
11925 case RECORD_IS_STRUCT:
11926 return DW_TAG_structure_type;
11928 case RECORD_IS_CLASS:
11929 return DW_TAG_class_type;
11931 case RECORD_IS_INTERFACE:
11932 return DW_TAG_interface_type;
11934 default:
11935 gcc_unreachable ();
11939 /* Generate a DIE to represent an inlined instance of a structure type. */
11941 static void
11942 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11944 dw_die_ref type_die = new_die (record_type_tag (type), context_die, type);
11946 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11947 be incomplete and such types are not marked. */
11948 add_abstract_origin_attribute (type_die, type);
11951 /* Generate a DIE to represent an inlined instance of a union type. */
11953 static void
11954 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11956 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11958 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11959 be incomplete and such types are not marked. */
11960 add_abstract_origin_attribute (type_die, type);
11963 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11964 include all of the information about the enumeration values also. Each
11965 enumerated type name/value is listed as a child of the enumerated type
11966 DIE. */
11968 static dw_die_ref
11969 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11971 dw_die_ref type_die = lookup_type_die (type);
11973 if (type_die == NULL)
11975 type_die = new_die (DW_TAG_enumeration_type,
11976 scope_die_for (type, context_die), type);
11977 equate_type_number_to_die (type, type_die);
11978 add_name_attribute (type_die, type_tag (type));
11980 else if (! TYPE_SIZE (type))
11981 return type_die;
11982 else
11983 remove_AT (type_die, DW_AT_declaration);
11985 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11986 given enum type is incomplete, do not generate the DW_AT_byte_size
11987 attribute or the DW_AT_element_list attribute. */
11988 if (TYPE_SIZE (type))
11990 tree link;
11992 TREE_ASM_WRITTEN (type) = 1;
11993 add_byte_size_attribute (type_die, type);
11994 if (TYPE_STUB_DECL (type) != NULL_TREE)
11995 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11997 /* If the first reference to this type was as the return type of an
11998 inline function, then it may not have a parent. Fix this now. */
11999 if (type_die->die_parent == NULL)
12000 add_child_die (scope_die_for (type, context_die), type_die);
12002 for (link = TYPE_VALUES (type);
12003 link != NULL; link = TREE_CHAIN (link))
12005 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
12006 tree value = TREE_VALUE (link);
12008 add_name_attribute (enum_die,
12009 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
12011 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
12012 /* DWARF2 does not provide a way of indicating whether or
12013 not enumeration constants are signed or unsigned. GDB
12014 always assumes the values are signed, so we output all
12015 values as if they were signed. That means that
12016 enumeration constants with very large unsigned values
12017 will appear to have negative values in the debugger. */
12018 add_AT_int (enum_die, DW_AT_const_value,
12019 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
12022 else
12023 add_AT_flag (type_die, DW_AT_declaration, 1);
12025 if (get_AT (type_die, DW_AT_name))
12026 add_pubtype (type, type_die);
12028 return type_die;
12031 /* Generate a DIE to represent either a real live formal parameter decl or to
12032 represent just the type of some formal parameter position in some function
12033 type.
12035 Note that this routine is a bit unusual because its argument may be a
12036 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
12037 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
12038 node. If it's the former then this function is being called to output a
12039 DIE to represent a formal parameter object (or some inlining thereof). If
12040 it's the latter, then this function is only being called to output a
12041 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
12042 argument type of some subprogram type. */
12044 static dw_die_ref
12045 gen_formal_parameter_die (tree node, dw_die_ref context_die)
12047 dw_die_ref parm_die
12048 = new_die (DW_TAG_formal_parameter, context_die, node);
12049 tree origin;
12051 switch (TREE_CODE_CLASS (TREE_CODE (node)))
12053 case tcc_declaration:
12054 origin = decl_ultimate_origin (node);
12055 if (origin != NULL)
12056 add_abstract_origin_attribute (parm_die, origin);
12057 else
12059 tree type = TREE_TYPE (node);
12060 add_name_and_src_coords_attributes (parm_die, node);
12061 if (DECL_BY_REFERENCE (node))
12062 type = TREE_TYPE (type);
12063 add_type_attribute (parm_die, type,
12064 TREE_READONLY (node),
12065 TREE_THIS_VOLATILE (node),
12066 context_die);
12067 if (DECL_ARTIFICIAL (node))
12068 add_AT_flag (parm_die, DW_AT_artificial, 1);
12071 equate_decl_number_to_die (node, parm_die);
12072 if (! DECL_ABSTRACT (node))
12073 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
12075 break;
12077 case tcc_type:
12078 /* We were called with some kind of a ..._TYPE node. */
12079 add_type_attribute (parm_die, node, 0, 0, context_die);
12080 break;
12082 default:
12083 gcc_unreachable ();
12086 return parm_die;
12089 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
12090 at the end of an (ANSI prototyped) formal parameters list. */
12092 static void
12093 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
12095 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
12098 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
12099 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
12100 parameters as specified in some function type specification (except for
12101 those which appear as part of a function *definition*). */
12103 static void
12104 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
12106 tree link;
12107 tree formal_type = NULL;
12108 tree first_parm_type;
12109 tree arg;
12111 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
12113 arg = DECL_ARGUMENTS (function_or_method_type);
12114 function_or_method_type = TREE_TYPE (function_or_method_type);
12116 else
12117 arg = NULL_TREE;
12119 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
12121 /* Make our first pass over the list of formal parameter types and output a
12122 DW_TAG_formal_parameter DIE for each one. */
12123 for (link = first_parm_type; link; )
12125 dw_die_ref parm_die;
12127 formal_type = TREE_VALUE (link);
12128 if (formal_type == void_type_node)
12129 break;
12131 /* Output a (nameless) DIE to represent the formal parameter itself. */
12132 parm_die = gen_formal_parameter_die (formal_type, context_die);
12133 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
12134 && link == first_parm_type)
12135 || (arg && DECL_ARTIFICIAL (arg)))
12136 add_AT_flag (parm_die, DW_AT_artificial, 1);
12138 link = TREE_CHAIN (link);
12139 if (arg)
12140 arg = TREE_CHAIN (arg);
12143 /* If this function type has an ellipsis, add a
12144 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
12145 if (formal_type != void_type_node)
12146 gen_unspecified_parameters_die (function_or_method_type, context_die);
12148 /* Make our second (and final) pass over the list of formal parameter types
12149 and output DIEs to represent those types (as necessary). */
12150 for (link = TYPE_ARG_TYPES (function_or_method_type);
12151 link && TREE_VALUE (link);
12152 link = TREE_CHAIN (link))
12153 gen_type_die (TREE_VALUE (link), context_die);
12156 /* We want to generate the DIE for TYPE so that we can generate the
12157 die for MEMBER, which has been defined; we will need to refer back
12158 to the member declaration nested within TYPE. If we're trying to
12159 generate minimal debug info for TYPE, processing TYPE won't do the
12160 trick; we need to attach the member declaration by hand. */
12162 static void
12163 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
12165 gen_type_die (type, context_die);
12167 /* If we're trying to avoid duplicate debug info, we may not have
12168 emitted the member decl for this function. Emit it now. */
12169 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
12170 && ! lookup_decl_die (member))
12172 dw_die_ref type_die;
12173 gcc_assert (!decl_ultimate_origin (member));
12175 push_decl_scope (type);
12176 type_die = lookup_type_die (type);
12177 if (TREE_CODE (member) == FUNCTION_DECL)
12178 gen_subprogram_die (member, type_die);
12179 else if (TREE_CODE (member) == FIELD_DECL)
12181 /* Ignore the nameless fields that are used to skip bits but handle
12182 C++ anonymous unions and structs. */
12183 if (DECL_NAME (member) != NULL_TREE
12184 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
12185 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
12187 gen_type_die (member_declared_type (member), type_die);
12188 gen_field_die (member, type_die);
12191 else
12192 gen_variable_die (member, type_die);
12194 pop_decl_scope ();
12198 /* Generate the DWARF2 info for the "abstract" instance of a function which we
12199 may later generate inlined and/or out-of-line instances of. */
12201 static void
12202 dwarf2out_abstract_function (tree decl)
12204 dw_die_ref old_die;
12205 tree save_fn;
12206 tree context;
12207 int was_abstract = DECL_ABSTRACT (decl);
12209 /* Make sure we have the actual abstract inline, not a clone. */
12210 decl = DECL_ORIGIN (decl);
12212 old_die = lookup_decl_die (decl);
12213 if (old_die && get_AT (old_die, DW_AT_inline))
12214 /* We've already generated the abstract instance. */
12215 return;
12217 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
12218 we don't get confused by DECL_ABSTRACT. */
12219 if (debug_info_level > DINFO_LEVEL_TERSE)
12221 context = decl_class_context (decl);
12222 if (context)
12223 gen_type_die_for_member
12224 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
12227 /* Pretend we've just finished compiling this function. */
12228 save_fn = current_function_decl;
12229 current_function_decl = decl;
12230 push_cfun (DECL_STRUCT_FUNCTION (decl));
12232 set_decl_abstract_flags (decl, 1);
12233 dwarf2out_decl (decl);
12234 if (! was_abstract)
12235 set_decl_abstract_flags (decl, 0);
12237 current_function_decl = save_fn;
12238 pop_cfun ();
12241 /* Helper function of premark_used_types() which gets called through
12242 htab_traverse_resize().
12244 Marks the DIE of a given type in *SLOT as perennial, so it never gets
12245 marked as unused by prune_unused_types. */
12246 static int
12247 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
12249 tree type;
12250 dw_die_ref die;
12252 type = *slot;
12253 die = lookup_type_die (type);
12254 if (die != NULL)
12255 die->die_perennial_p = 1;
12256 return 1;
12259 /* Mark all members of used_types_hash as perennial. */
12260 static void
12261 premark_used_types (void)
12263 if (cfun && cfun->used_types_hash)
12264 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
12267 /* Generate a DIE to represent a declared function (either file-scope or
12268 block-local). */
12270 static void
12271 gen_subprogram_die (tree decl, dw_die_ref context_die)
12273 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
12274 tree origin = decl_ultimate_origin (decl);
12275 dw_die_ref subr_die;
12276 tree fn_arg_types;
12277 tree outer_scope;
12278 dw_die_ref old_die = lookup_decl_die (decl);
12279 int declaration = (current_function_decl != decl
12280 || class_or_namespace_scope_p (context_die));
12282 premark_used_types ();
12284 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
12285 started to generate the abstract instance of an inline, decided to output
12286 its containing class, and proceeded to emit the declaration of the inline
12287 from the member list for the class. If so, DECLARATION takes priority;
12288 we'll get back to the abstract instance when done with the class. */
12290 /* The class-scope declaration DIE must be the primary DIE. */
12291 if (origin && declaration && class_or_namespace_scope_p (context_die))
12293 origin = NULL;
12294 gcc_assert (!old_die);
12297 /* Now that the C++ front end lazily declares artificial member fns, we
12298 might need to retrofit the declaration into its class. */
12299 if (!declaration && !origin && !old_die
12300 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
12301 && !class_or_namespace_scope_p (context_die)
12302 && debug_info_level > DINFO_LEVEL_TERSE)
12303 old_die = force_decl_die (decl);
12305 if (origin != NULL)
12307 gcc_assert (!declaration || local_scope_p (context_die));
12309 /* Fixup die_parent for the abstract instance of a nested
12310 inline function. */
12311 if (old_die && old_die->die_parent == NULL)
12312 add_child_die (context_die, old_die);
12314 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12315 add_abstract_origin_attribute (subr_die, origin);
12317 else if (old_die)
12319 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12320 struct dwarf_file_data * file_index = lookup_filename (s.file);
12322 if (!get_AT_flag (old_die, DW_AT_declaration)
12323 /* We can have a normal definition following an inline one in the
12324 case of redefinition of GNU C extern inlines.
12325 It seems reasonable to use AT_specification in this case. */
12326 && !get_AT (old_die, DW_AT_inline))
12328 /* Detect and ignore this case, where we are trying to output
12329 something we have already output. */
12330 return;
12333 /* If the definition comes from the same place as the declaration,
12334 maybe use the old DIE. We always want the DIE for this function
12335 that has the *_pc attributes to be under comp_unit_die so the
12336 debugger can find it. We also need to do this for abstract
12337 instances of inlines, since the spec requires the out-of-line copy
12338 to have the same parent. For local class methods, this doesn't
12339 apply; we just use the old DIE. */
12340 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
12341 && (DECL_ARTIFICIAL (decl)
12342 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
12343 && (get_AT_unsigned (old_die, DW_AT_decl_line)
12344 == (unsigned) s.line))))
12346 subr_die = old_die;
12348 /* Clear out the declaration attribute and the formal parameters.
12349 Do not remove all children, because it is possible that this
12350 declaration die was forced using force_decl_die(). In such
12351 cases die that forced declaration die (e.g. TAG_imported_module)
12352 is one of the children that we do not want to remove. */
12353 remove_AT (subr_die, DW_AT_declaration);
12354 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
12356 else
12358 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12359 add_AT_specification (subr_die, old_die);
12360 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12361 add_AT_file (subr_die, DW_AT_decl_file, file_index);
12362 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12363 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
12366 else
12368 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12370 if (TREE_PUBLIC (decl))
12371 add_AT_flag (subr_die, DW_AT_external, 1);
12373 add_name_and_src_coords_attributes (subr_die, decl);
12374 if (debug_info_level > DINFO_LEVEL_TERSE)
12376 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
12377 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
12378 0, 0, context_die);
12381 add_pure_or_virtual_attribute (subr_die, decl);
12382 if (DECL_ARTIFICIAL (decl))
12383 add_AT_flag (subr_die, DW_AT_artificial, 1);
12385 if (TREE_PROTECTED (decl))
12386 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
12387 else if (TREE_PRIVATE (decl))
12388 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
12391 if (declaration)
12393 if (!old_die || !get_AT (old_die, DW_AT_inline))
12395 add_AT_flag (subr_die, DW_AT_declaration, 1);
12397 /* The first time we see a member function, it is in the context of
12398 the class to which it belongs. We make sure of this by emitting
12399 the class first. The next time is the definition, which is
12400 handled above. The two may come from the same source text.
12402 Note that force_decl_die() forces function declaration die. It is
12403 later reused to represent definition. */
12404 equate_decl_number_to_die (decl, subr_die);
12407 else if (DECL_ABSTRACT (decl))
12409 if (DECL_DECLARED_INLINE_P (decl))
12411 if (cgraph_function_possibly_inlined_p (decl))
12412 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
12413 else
12414 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
12416 else
12418 if (cgraph_function_possibly_inlined_p (decl))
12419 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
12420 else
12421 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
12424 if (DECL_DECLARED_INLINE_P (decl)
12425 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
12426 add_AT_flag (subr_die, DW_AT_artificial, 1);
12428 equate_decl_number_to_die (decl, subr_die);
12430 else if (!DECL_EXTERNAL (decl))
12432 HOST_WIDE_INT cfa_fb_offset;
12434 if (!old_die || !get_AT (old_die, DW_AT_inline))
12435 equate_decl_number_to_die (decl, subr_die);
12437 if (!flag_reorder_blocks_and_partition)
12439 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
12440 current_function_funcdef_no);
12441 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
12442 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
12443 current_function_funcdef_no);
12444 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
12446 add_pubname (decl, subr_die);
12447 add_arange (decl, subr_die);
12449 else
12450 { /* Do nothing for now; maybe need to duplicate die, one for
12451 hot section and ond for cold section, then use the hot/cold
12452 section begin/end labels to generate the aranges... */
12454 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
12455 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
12456 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
12457 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
12459 add_pubname (decl, subr_die);
12460 add_arange (decl, subr_die);
12461 add_arange (decl, subr_die);
12465 #ifdef MIPS_DEBUGGING_INFO
12466 /* Add a reference to the FDE for this routine. */
12467 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
12468 #endif
12470 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
12472 /* We define the "frame base" as the function's CFA. This is more
12473 convenient for several reasons: (1) It's stable across the prologue
12474 and epilogue, which makes it better than just a frame pointer,
12475 (2) With dwarf3, there exists a one-byte encoding that allows us
12476 to reference the .debug_frame data by proxy, but failing that,
12477 (3) We can at least reuse the code inspection and interpretation
12478 code that determines the CFA position at various points in the
12479 function. */
12480 /* ??? Use some command-line or configury switch to enable the use
12481 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
12482 consumers that understand it; fall back to "pure" dwarf2 and
12483 convert the CFA data into a location list. */
12485 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
12486 if (list->dw_loc_next)
12487 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
12488 else
12489 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
12492 /* Compute a displacement from the "steady-state frame pointer" to
12493 the CFA. The former is what all stack slots and argument slots
12494 will reference in the rtl; the later is what we've told the
12495 debugger about. We'll need to adjust all frame_base references
12496 by this displacement. */
12497 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
12499 if (cfun->static_chain_decl)
12500 add_AT_location_description (subr_die, DW_AT_static_link,
12501 loc_descriptor_from_tree (cfun->static_chain_decl));
12504 /* Now output descriptions of the arguments for this function. This gets
12505 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
12506 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
12507 `...' at the end of the formal parameter list. In order to find out if
12508 there was a trailing ellipsis or not, we must instead look at the type
12509 associated with the FUNCTION_DECL. This will be a node of type
12510 FUNCTION_TYPE. If the chain of type nodes hanging off of this
12511 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
12512 an ellipsis at the end. */
12514 /* In the case where we are describing a mere function declaration, all we
12515 need to do here (and all we *can* do here) is to describe the *types* of
12516 its formal parameters. */
12517 if (debug_info_level <= DINFO_LEVEL_TERSE)
12519 else if (declaration)
12520 gen_formal_types_die (decl, subr_die);
12521 else
12523 /* Generate DIEs to represent all known formal parameters. */
12524 tree arg_decls = DECL_ARGUMENTS (decl);
12525 tree parm;
12527 /* When generating DIEs, generate the unspecified_parameters DIE
12528 instead if we come across the arg "__builtin_va_alist" */
12529 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
12530 if (TREE_CODE (parm) == PARM_DECL)
12532 if (DECL_NAME (parm)
12533 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
12534 "__builtin_va_alist"))
12535 gen_unspecified_parameters_die (parm, subr_die);
12536 else
12537 gen_decl_die (parm, subr_die);
12540 /* Decide whether we need an unspecified_parameters DIE at the end.
12541 There are 2 more cases to do this for: 1) the ansi ... declaration -
12542 this is detectable when the end of the arg list is not a
12543 void_type_node 2) an unprototyped function declaration (not a
12544 definition). This just means that we have no info about the
12545 parameters at all. */
12546 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
12547 if (fn_arg_types != NULL)
12549 /* This is the prototyped case, check for.... */
12550 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
12551 gen_unspecified_parameters_die (decl, subr_die);
12553 else if (DECL_INITIAL (decl) == NULL_TREE)
12554 gen_unspecified_parameters_die (decl, subr_die);
12557 /* Output Dwarf info for all of the stuff within the body of the function
12558 (if it has one - it may be just a declaration). */
12559 outer_scope = DECL_INITIAL (decl);
12561 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
12562 a function. This BLOCK actually represents the outermost binding contour
12563 for the function, i.e. the contour in which the function's formal
12564 parameters and labels get declared. Curiously, it appears that the front
12565 end doesn't actually put the PARM_DECL nodes for the current function onto
12566 the BLOCK_VARS list for this outer scope, but are strung off of the
12567 DECL_ARGUMENTS list for the function instead.
12569 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
12570 the LABEL_DECL nodes for the function however, and we output DWARF info
12571 for those in decls_for_scope. Just within the `outer_scope' there will be
12572 a BLOCK node representing the function's outermost pair of curly braces,
12573 and any blocks used for the base and member initializers of a C++
12574 constructor function. */
12575 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
12577 /* Emit a DW_TAG_variable DIE for a named return value. */
12578 if (DECL_NAME (DECL_RESULT (decl)))
12579 gen_decl_die (DECL_RESULT (decl), subr_die);
12581 current_function_has_inlines = 0;
12582 decls_for_scope (outer_scope, subr_die, 0);
12584 #if 0 && defined (MIPS_DEBUGGING_INFO)
12585 if (current_function_has_inlines)
12587 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
12588 if (! comp_unit_has_inlines)
12590 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
12591 comp_unit_has_inlines = 1;
12594 #endif
12596 /* Add the calling convention attribute if requested. */
12597 add_calling_convention_attribute (subr_die, decl);
12601 /* Generate a DIE to represent a declared data object. */
12603 static void
12604 gen_variable_die (tree decl, dw_die_ref context_die)
12606 tree origin = decl_ultimate_origin (decl);
12607 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12609 dw_die_ref old_die = lookup_decl_die (decl);
12610 int declaration = (DECL_EXTERNAL (decl)
12611 /* If DECL is COMDAT and has not actually been
12612 emitted, we cannot take its address; there
12613 might end up being no definition anywhere in
12614 the program. For example, consider the C++
12615 test case:
12617 template <class T>
12618 struct S { static const int i = 7; };
12620 template <class T>
12621 const int S<T>::i;
12623 int f() { return S<int>::i; }
12625 Here, S<int>::i is not DECL_EXTERNAL, but no
12626 definition is required, so the compiler will
12627 not emit a definition. */
12628 || (TREE_CODE (decl) == VAR_DECL
12629 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12630 || class_or_namespace_scope_p (context_die));
12632 if (origin != NULL)
12633 add_abstract_origin_attribute (var_die, origin);
12635 /* Loop unrolling can create multiple blocks that refer to the same
12636 static variable, so we must test for the DW_AT_declaration flag.
12638 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12639 copy decls and set the DECL_ABSTRACT flag on them instead of
12640 sharing them.
12642 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12644 ??? The declare_in_namespace support causes us to get two DIEs for one
12645 variable, both of which are declarations. We want to avoid considering
12646 one to be a specification, so we must test that this DIE is not a
12647 declaration. */
12648 else if (old_die && TREE_STATIC (decl) && ! declaration
12649 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12651 /* This is a definition of a C++ class level static. */
12652 add_AT_specification (var_die, old_die);
12653 if (DECL_NAME (decl))
12655 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12656 struct dwarf_file_data * file_index = lookup_filename (s.file);
12658 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12659 add_AT_file (var_die, DW_AT_decl_file, file_index);
12661 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12662 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12665 else
12667 tree type = TREE_TYPE (decl);
12668 if ((TREE_CODE (decl) == PARM_DECL
12669 || TREE_CODE (decl) == RESULT_DECL)
12670 && DECL_BY_REFERENCE (decl))
12671 type = TREE_TYPE (type);
12673 add_name_and_src_coords_attributes (var_die, decl);
12674 add_type_attribute (var_die, type, TREE_READONLY (decl),
12675 TREE_THIS_VOLATILE (decl), context_die);
12677 if (TREE_PUBLIC (decl))
12678 add_AT_flag (var_die, DW_AT_external, 1);
12680 if (DECL_ARTIFICIAL (decl))
12681 add_AT_flag (var_die, DW_AT_artificial, 1);
12683 if (TREE_PROTECTED (decl))
12684 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12685 else if (TREE_PRIVATE (decl))
12686 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12689 if (declaration)
12690 add_AT_flag (var_die, DW_AT_declaration, 1);
12692 if (DECL_ABSTRACT (decl) || declaration)
12693 equate_decl_number_to_die (decl, var_die);
12695 if (! declaration && ! DECL_ABSTRACT (decl))
12697 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12698 add_pubname (decl, var_die);
12700 else
12701 tree_add_const_value_attribute (var_die, decl);
12704 /* Generate a DIE to represent a label identifier. */
12706 static void
12707 gen_label_die (tree decl, dw_die_ref context_die)
12709 tree origin = decl_ultimate_origin (decl);
12710 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12711 rtx insn;
12712 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12714 if (origin != NULL)
12715 add_abstract_origin_attribute (lbl_die, origin);
12716 else
12717 add_name_and_src_coords_attributes (lbl_die, decl);
12719 if (DECL_ABSTRACT (decl))
12720 equate_decl_number_to_die (decl, lbl_die);
12721 else
12723 insn = DECL_RTL_IF_SET (decl);
12725 /* Deleted labels are programmer specified labels which have been
12726 eliminated because of various optimizations. We still emit them
12727 here so that it is possible to put breakpoints on them. */
12728 if (insn
12729 && (LABEL_P (insn)
12730 || ((NOTE_P (insn)
12731 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
12733 /* When optimization is enabled (via -O) some parts of the compiler
12734 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12735 represent source-level labels which were explicitly declared by
12736 the user. This really shouldn't be happening though, so catch
12737 it if it ever does happen. */
12738 gcc_assert (!INSN_DELETED_P (insn));
12740 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12741 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12746 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12747 attributes to the DIE for a block STMT, to describe where the inlined
12748 function was called from. This is similar to add_src_coords_attributes. */
12750 static inline void
12751 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12753 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12755 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12756 add_AT_unsigned (die, DW_AT_call_line, s.line);
12760 /* If STMT's abstract origin is a function declaration and STMT's
12761 first subblock's abstract origin is the function's outermost block,
12762 then we're looking at the main entry point. */
12763 static bool
12764 is_inlined_entry_point (const_tree stmt)
12766 tree decl, block;
12768 if (!stmt || TREE_CODE (stmt) != BLOCK)
12769 return false;
12771 decl = block_ultimate_origin (stmt);
12773 if (!decl || TREE_CODE (decl) != FUNCTION_DECL)
12774 return false;
12776 block = BLOCK_SUBBLOCKS (stmt);
12778 if (block)
12780 if (TREE_CODE (block) != BLOCK)
12781 return false;
12783 block = block_ultimate_origin (block);
12786 return block == DECL_INITIAL (decl);
12789 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12790 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12792 static inline void
12793 add_high_low_attributes (tree stmt, dw_die_ref die)
12795 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12797 if (BLOCK_FRAGMENT_CHAIN (stmt))
12799 tree chain;
12801 if (is_inlined_entry_point (stmt))
12803 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12804 BLOCK_NUMBER (stmt));
12805 add_AT_lbl_id (die, DW_AT_entry_pc, label);
12808 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12810 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12813 add_ranges (chain);
12814 chain = BLOCK_FRAGMENT_CHAIN (chain);
12816 while (chain);
12817 add_ranges (NULL);
12819 else
12821 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12822 BLOCK_NUMBER (stmt));
12823 add_AT_lbl_id (die, DW_AT_low_pc, label);
12824 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12825 BLOCK_NUMBER (stmt));
12826 add_AT_lbl_id (die, DW_AT_high_pc, label);
12830 /* Generate a DIE for a lexical block. */
12832 static void
12833 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12835 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12837 if (! BLOCK_ABSTRACT (stmt))
12838 add_high_low_attributes (stmt, stmt_die);
12840 decls_for_scope (stmt, stmt_die, depth);
12843 /* Generate a DIE for an inlined subprogram. */
12845 static void
12846 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12848 tree decl = block_ultimate_origin (stmt);
12850 /* Emit info for the abstract instance first, if we haven't yet. We
12851 must emit this even if the block is abstract, otherwise when we
12852 emit the block below (or elsewhere), we may end up trying to emit
12853 a die whose origin die hasn't been emitted, and crashing. */
12854 dwarf2out_abstract_function (decl);
12856 if (! BLOCK_ABSTRACT (stmt))
12858 dw_die_ref subr_die
12859 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12861 add_abstract_origin_attribute (subr_die, decl);
12862 add_high_low_attributes (stmt, subr_die);
12863 add_call_src_coords_attributes (stmt, subr_die);
12865 decls_for_scope (stmt, subr_die, depth);
12866 current_function_has_inlines = 1;
12868 else
12869 /* We may get here if we're the outer block of function A that was
12870 inlined into function B that was inlined into function C. When
12871 generating debugging info for C, dwarf2out_abstract_function(B)
12872 would mark all inlined blocks as abstract, including this one.
12873 So, we wouldn't (and shouldn't) expect labels to be generated
12874 for this one. Instead, just emit debugging info for
12875 declarations within the block. This is particularly important
12876 in the case of initializers of arguments passed from B to us:
12877 if they're statement expressions containing declarations, we
12878 wouldn't generate dies for their abstract variables, and then,
12879 when generating dies for the real variables, we'd die (pun
12880 intended :-) */
12881 gen_lexical_block_die (stmt, context_die, depth);
12884 /* Generate a DIE for a field in a record, or structure. */
12886 static void
12887 gen_field_die (tree decl, dw_die_ref context_die)
12889 dw_die_ref decl_die;
12891 if (TREE_TYPE (decl) == error_mark_node)
12892 return;
12894 decl_die = new_die (DW_TAG_member, context_die, decl);
12895 add_name_and_src_coords_attributes (decl_die, decl);
12896 add_type_attribute (decl_die, member_declared_type (decl),
12897 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12898 context_die);
12900 if (DECL_BIT_FIELD_TYPE (decl))
12902 add_byte_size_attribute (decl_die, decl);
12903 add_bit_size_attribute (decl_die, decl);
12904 add_bit_offset_attribute (decl_die, decl);
12907 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12908 add_data_member_location_attribute (decl_die, decl);
12910 if (DECL_ARTIFICIAL (decl))
12911 add_AT_flag (decl_die, DW_AT_artificial, 1);
12913 if (TREE_PROTECTED (decl))
12914 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12915 else if (TREE_PRIVATE (decl))
12916 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12918 /* Equate decl number to die, so that we can look up this decl later on. */
12919 equate_decl_number_to_die (decl, decl_die);
12922 #if 0
12923 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12924 Use modified_type_die instead.
12925 We keep this code here just in case these types of DIEs may be needed to
12926 represent certain things in other languages (e.g. Pascal) someday. */
12928 static void
12929 gen_pointer_type_die (tree type, dw_die_ref context_die)
12931 dw_die_ref ptr_die
12932 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12934 equate_type_number_to_die (type, ptr_die);
12935 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12936 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12939 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12940 Use modified_type_die instead.
12941 We keep this code here just in case these types of DIEs may be needed to
12942 represent certain things in other languages (e.g. Pascal) someday. */
12944 static void
12945 gen_reference_type_die (tree type, dw_die_ref context_die)
12947 dw_die_ref ref_die
12948 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12950 equate_type_number_to_die (type, ref_die);
12951 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12952 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12954 #endif
12956 /* Generate a DIE for a pointer to a member type. */
12958 static void
12959 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12961 dw_die_ref ptr_die
12962 = new_die (DW_TAG_ptr_to_member_type,
12963 scope_die_for (type, context_die), type);
12965 equate_type_number_to_die (type, ptr_die);
12966 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12967 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12968 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12971 /* Generate the DIE for the compilation unit. */
12973 static dw_die_ref
12974 gen_compile_unit_die (const char *filename)
12976 dw_die_ref die;
12977 char producer[250];
12978 const char *language_string = lang_hooks.name;
12979 int language;
12981 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12983 if (filename)
12985 add_name_attribute (die, filename);
12986 /* Don't add cwd for <built-in>. */
12987 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12988 add_comp_dir_attribute (die);
12991 sprintf (producer, "%s %s", language_string, version_string);
12993 #ifdef MIPS_DEBUGGING_INFO
12994 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12995 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12996 not appear in the producer string, the debugger reaches the conclusion
12997 that the object file is stripped and has no debugging information.
12998 To get the MIPS/SGI debugger to believe that there is debugging
12999 information in the object file, we add a -g to the producer string. */
13000 if (debug_info_level > DINFO_LEVEL_TERSE)
13001 strcat (producer, " -g");
13002 #endif
13004 add_AT_string (die, DW_AT_producer, producer);
13006 if (strcmp (language_string, "GNU C++") == 0)
13007 language = DW_LANG_C_plus_plus;
13008 else if (strcmp (language_string, "GNU Ada") == 0)
13009 language = DW_LANG_Ada95;
13010 else if (strcmp (language_string, "GNU F77") == 0)
13011 language = DW_LANG_Fortran77;
13012 else if (strcmp (language_string, "GNU F95") == 0)
13013 language = DW_LANG_Fortran95;
13014 else if (strcmp (language_string, "GNU Pascal") == 0)
13015 language = DW_LANG_Pascal83;
13016 else if (strcmp (language_string, "GNU Java") == 0)
13017 language = DW_LANG_Java;
13018 else if (strcmp (language_string, "GNU Objective-C") == 0)
13019 language = DW_LANG_ObjC;
13020 else if (strcmp (language_string, "GNU Objective-C++") == 0)
13021 language = DW_LANG_ObjC_plus_plus;
13022 else
13023 language = DW_LANG_C89;
13025 add_AT_unsigned (die, DW_AT_language, language);
13026 return die;
13029 /* Generate the DIE for a base class. */
13031 static void
13032 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
13034 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
13036 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
13037 add_data_member_location_attribute (die, binfo);
13039 if (BINFO_VIRTUAL_P (binfo))
13040 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
13042 if (access == access_public_node)
13043 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
13044 else if (access == access_protected_node)
13045 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
13048 /* Generate a DIE for a class member. */
13050 static void
13051 gen_member_die (tree type, dw_die_ref context_die)
13053 tree member;
13054 tree binfo = TYPE_BINFO (type);
13055 dw_die_ref child;
13057 /* If this is not an incomplete type, output descriptions of each of its
13058 members. Note that as we output the DIEs necessary to represent the
13059 members of this record or union type, we will also be trying to output
13060 DIEs to represent the *types* of those members. However the `type'
13061 function (above) will specifically avoid generating type DIEs for member
13062 types *within* the list of member DIEs for this (containing) type except
13063 for those types (of members) which are explicitly marked as also being
13064 members of this (containing) type themselves. The g++ front- end can
13065 force any given type to be treated as a member of some other (containing)
13066 type by setting the TYPE_CONTEXT of the given (member) type to point to
13067 the TREE node representing the appropriate (containing) type. */
13069 /* First output info about the base classes. */
13070 if (binfo)
13072 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
13073 int i;
13074 tree base;
13076 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
13077 gen_inheritance_die (base,
13078 (accesses ? VEC_index (tree, accesses, i)
13079 : access_public_node), context_die);
13082 /* Now output info about the data members and type members. */
13083 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
13085 /* If we thought we were generating minimal debug info for TYPE
13086 and then changed our minds, some of the member declarations
13087 may have already been defined. Don't define them again, but
13088 do put them in the right order. */
13090 child = lookup_decl_die (member);
13091 if (child)
13092 splice_child_die (context_die, child);
13093 else
13094 gen_decl_die (member, context_die);
13097 /* Now output info about the function members (if any). */
13098 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
13100 /* Don't include clones in the member list. */
13101 if (DECL_ABSTRACT_ORIGIN (member))
13102 continue;
13104 child = lookup_decl_die (member);
13105 if (child)
13106 splice_child_die (context_die, child);
13107 else
13108 gen_decl_die (member, context_die);
13112 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
13113 is set, we pretend that the type was never defined, so we only get the
13114 member DIEs needed by later specification DIEs. */
13116 static void
13117 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
13118 enum debug_info_usage usage)
13120 dw_die_ref type_die = lookup_type_die (type);
13121 dw_die_ref scope_die = 0;
13122 int nested = 0;
13123 int complete = (TYPE_SIZE (type)
13124 && (! TYPE_STUB_DECL (type)
13125 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
13126 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
13127 complete = complete && should_emit_struct_debug (type, usage);
13129 if (type_die && ! complete)
13130 return;
13132 if (TYPE_CONTEXT (type) != NULL_TREE
13133 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
13134 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
13135 nested = 1;
13137 scope_die = scope_die_for (type, context_die);
13139 if (! type_die || (nested && scope_die == comp_unit_die))
13140 /* First occurrence of type or toplevel definition of nested class. */
13142 dw_die_ref old_die = type_die;
13144 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
13145 ? record_type_tag (type) : DW_TAG_union_type,
13146 scope_die, type);
13147 equate_type_number_to_die (type, type_die);
13148 if (old_die)
13149 add_AT_specification (type_die, old_die);
13150 else
13151 add_name_attribute (type_die, type_tag (type));
13153 else
13154 remove_AT (type_die, DW_AT_declaration);
13156 /* If this type has been completed, then give it a byte_size attribute and
13157 then give a list of members. */
13158 if (complete && !ns_decl)
13160 /* Prevent infinite recursion in cases where the type of some member of
13161 this type is expressed in terms of this type itself. */
13162 TREE_ASM_WRITTEN (type) = 1;
13163 add_byte_size_attribute (type_die, type);
13164 if (TYPE_STUB_DECL (type) != NULL_TREE)
13165 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
13167 /* If the first reference to this type was as the return type of an
13168 inline function, then it may not have a parent. Fix this now. */
13169 if (type_die->die_parent == NULL)
13170 add_child_die (scope_die, type_die);
13172 push_decl_scope (type);
13173 gen_member_die (type, type_die);
13174 pop_decl_scope ();
13176 /* GNU extension: Record what type our vtable lives in. */
13177 if (TYPE_VFIELD (type))
13179 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
13181 gen_type_die (vtype, context_die);
13182 add_AT_die_ref (type_die, DW_AT_containing_type,
13183 lookup_type_die (vtype));
13186 else
13188 add_AT_flag (type_die, DW_AT_declaration, 1);
13190 /* We don't need to do this for function-local types. */
13191 if (TYPE_STUB_DECL (type)
13192 && ! decl_function_context (TYPE_STUB_DECL (type)))
13193 VEC_safe_push (tree, gc, incomplete_types, type);
13196 if (get_AT (type_die, DW_AT_name))
13197 add_pubtype (type, type_die);
13200 /* Generate a DIE for a subroutine _type_. */
13202 static void
13203 gen_subroutine_type_die (tree type, dw_die_ref context_die)
13205 tree return_type = TREE_TYPE (type);
13206 dw_die_ref subr_die
13207 = new_die (DW_TAG_subroutine_type,
13208 scope_die_for (type, context_die), type);
13210 equate_type_number_to_die (type, subr_die);
13211 add_prototyped_attribute (subr_die, type);
13212 add_type_attribute (subr_die, return_type, 0, 0, context_die);
13213 gen_formal_types_die (type, subr_die);
13215 if (get_AT (subr_die, DW_AT_name))
13216 add_pubtype (type, subr_die);
13219 /* Generate a DIE for a type definition. */
13221 static void
13222 gen_typedef_die (tree decl, dw_die_ref context_die)
13224 dw_die_ref type_die;
13225 tree origin;
13227 if (TREE_ASM_WRITTEN (decl))
13228 return;
13230 TREE_ASM_WRITTEN (decl) = 1;
13231 type_die = new_die (DW_TAG_typedef, context_die, decl);
13232 origin = decl_ultimate_origin (decl);
13233 if (origin != NULL)
13234 add_abstract_origin_attribute (type_die, origin);
13235 else
13237 tree type;
13239 add_name_and_src_coords_attributes (type_die, decl);
13240 if (DECL_ORIGINAL_TYPE (decl))
13242 type = DECL_ORIGINAL_TYPE (decl);
13244 gcc_assert (type != TREE_TYPE (decl));
13245 equate_type_number_to_die (TREE_TYPE (decl), type_die);
13247 else
13248 type = TREE_TYPE (decl);
13250 add_type_attribute (type_die, type, TREE_READONLY (decl),
13251 TREE_THIS_VOLATILE (decl), context_die);
13254 if (DECL_ABSTRACT (decl))
13255 equate_decl_number_to_die (decl, type_die);
13257 if (get_AT (type_die, DW_AT_name))
13258 add_pubtype (decl, type_die);
13261 /* Generate a type description DIE. */
13263 static void
13264 gen_type_die_with_usage (tree type, dw_die_ref context_die,
13265 enum debug_info_usage usage)
13267 int need_pop;
13268 struct array_descr_info info;
13270 if (type == NULL_TREE || type == error_mark_node)
13271 return;
13273 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
13274 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
13276 if (TREE_ASM_WRITTEN (type))
13277 return;
13279 /* Prevent broken recursion; we can't hand off to the same type. */
13280 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
13282 TREE_ASM_WRITTEN (type) = 1;
13283 gen_decl_die (TYPE_NAME (type), context_die);
13284 return;
13287 /* If this is an array type with hidden descriptor, handle it first. */
13288 if (!TREE_ASM_WRITTEN (type)
13289 && lang_hooks.types.get_array_descr_info
13290 && lang_hooks.types.get_array_descr_info (type, &info))
13292 gen_descr_array_type_die (type, &info, context_die);
13293 TREE_ASM_WRITTEN (type) = 1;
13294 return;
13297 /* We are going to output a DIE to represent the unqualified version
13298 of this type (i.e. without any const or volatile qualifiers) so
13299 get the main variant (i.e. the unqualified version) of this type
13300 now. (Vectors are special because the debugging info is in the
13301 cloned type itself). */
13302 if (TREE_CODE (type) != VECTOR_TYPE)
13303 type = type_main_variant (type);
13305 if (TREE_ASM_WRITTEN (type))
13306 return;
13308 switch (TREE_CODE (type))
13310 case ERROR_MARK:
13311 break;
13313 case POINTER_TYPE:
13314 case REFERENCE_TYPE:
13315 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
13316 ensures that the gen_type_die recursion will terminate even if the
13317 type is recursive. Recursive types are possible in Ada. */
13318 /* ??? We could perhaps do this for all types before the switch
13319 statement. */
13320 TREE_ASM_WRITTEN (type) = 1;
13322 /* For these types, all that is required is that we output a DIE (or a
13323 set of DIEs) to represent the "basis" type. */
13324 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13325 DINFO_USAGE_IND_USE);
13326 break;
13328 case OFFSET_TYPE:
13329 /* This code is used for C++ pointer-to-data-member types.
13330 Output a description of the relevant class type. */
13331 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
13332 DINFO_USAGE_IND_USE);
13334 /* Output a description of the type of the object pointed to. */
13335 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13336 DINFO_USAGE_IND_USE);
13338 /* Now output a DIE to represent this pointer-to-data-member type
13339 itself. */
13340 gen_ptr_to_mbr_type_die (type, context_die);
13341 break;
13343 case FUNCTION_TYPE:
13344 /* Force out return type (in case it wasn't forced out already). */
13345 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13346 DINFO_USAGE_DIR_USE);
13347 gen_subroutine_type_die (type, context_die);
13348 break;
13350 case METHOD_TYPE:
13351 /* Force out return type (in case it wasn't forced out already). */
13352 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13353 DINFO_USAGE_DIR_USE);
13354 gen_subroutine_type_die (type, context_die);
13355 break;
13357 case ARRAY_TYPE:
13358 gen_array_type_die (type, context_die);
13359 break;
13361 case VECTOR_TYPE:
13362 gen_array_type_die (type, context_die);
13363 break;
13365 case ENUMERAL_TYPE:
13366 case RECORD_TYPE:
13367 case UNION_TYPE:
13368 case QUAL_UNION_TYPE:
13369 /* If this is a nested type whose containing class hasn't been written
13370 out yet, writing it out will cover this one, too. This does not apply
13371 to instantiations of member class templates; they need to be added to
13372 the containing class as they are generated. FIXME: This hurts the
13373 idea of combining type decls from multiple TUs, since we can't predict
13374 what set of template instantiations we'll get. */
13375 if (TYPE_CONTEXT (type)
13376 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
13377 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
13379 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
13381 if (TREE_ASM_WRITTEN (type))
13382 return;
13384 /* If that failed, attach ourselves to the stub. */
13385 push_decl_scope (TYPE_CONTEXT (type));
13386 context_die = lookup_type_die (TYPE_CONTEXT (type));
13387 need_pop = 1;
13389 else
13391 declare_in_namespace (type, context_die);
13392 need_pop = 0;
13395 if (TREE_CODE (type) == ENUMERAL_TYPE)
13397 /* This might have been written out by the call to
13398 declare_in_namespace. */
13399 if (!TREE_ASM_WRITTEN (type))
13400 gen_enumeration_type_die (type, context_die);
13402 else
13403 gen_struct_or_union_type_die (type, context_die, usage);
13405 if (need_pop)
13406 pop_decl_scope ();
13408 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
13409 it up if it is ever completed. gen_*_type_die will set it for us
13410 when appropriate. */
13411 return;
13413 case VOID_TYPE:
13414 case INTEGER_TYPE:
13415 case REAL_TYPE:
13416 case FIXED_POINT_TYPE:
13417 case COMPLEX_TYPE:
13418 case BOOLEAN_TYPE:
13419 /* No DIEs needed for fundamental types. */
13420 break;
13422 case LANG_TYPE:
13423 /* No Dwarf representation currently defined. */
13424 break;
13426 default:
13427 gcc_unreachable ();
13430 TREE_ASM_WRITTEN (type) = 1;
13433 static void
13434 gen_type_die (tree type, dw_die_ref context_die)
13436 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
13439 /* Generate a DIE for a tagged type instantiation. */
13441 static void
13442 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
13444 if (type == NULL_TREE || type == error_mark_node)
13445 return;
13447 /* We are going to output a DIE to represent the unqualified version of
13448 this type (i.e. without any const or volatile qualifiers) so make sure
13449 that we have the main variant (i.e. the unqualified version) of this
13450 type now. */
13451 gcc_assert (type == type_main_variant (type));
13453 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
13454 an instance of an unresolved type. */
13456 switch (TREE_CODE (type))
13458 case ERROR_MARK:
13459 break;
13461 case ENUMERAL_TYPE:
13462 gen_inlined_enumeration_type_die (type, context_die);
13463 break;
13465 case RECORD_TYPE:
13466 gen_inlined_structure_type_die (type, context_die);
13467 break;
13469 case UNION_TYPE:
13470 case QUAL_UNION_TYPE:
13471 gen_inlined_union_type_die (type, context_die);
13472 break;
13474 default:
13475 gcc_unreachable ();
13479 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
13480 things which are local to the given block. */
13482 static void
13483 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
13485 int must_output_die = 0;
13486 tree origin;
13487 tree decl;
13488 enum tree_code origin_code;
13490 /* Ignore blocks that are NULL. */
13491 if (stmt == NULL_TREE)
13492 return;
13494 /* If the block is one fragment of a non-contiguous block, do not
13495 process the variables, since they will have been done by the
13496 origin block. Do process subblocks. */
13497 if (BLOCK_FRAGMENT_ORIGIN (stmt))
13499 tree sub;
13501 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
13502 gen_block_die (sub, context_die, depth + 1);
13504 return;
13507 /* Determine the "ultimate origin" of this block. This block may be an
13508 inlined instance of an inlined instance of inline function, so we have
13509 to trace all of the way back through the origin chain to find out what
13510 sort of node actually served as the original seed for the creation of
13511 the current block. */
13512 origin = block_ultimate_origin (stmt);
13513 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
13515 /* Determine if we need to output any Dwarf DIEs at all to represent this
13516 block. */
13517 if (origin_code == FUNCTION_DECL)
13518 /* The outer scopes for inlinings *must* always be represented. We
13519 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
13520 must_output_die = 1;
13521 else
13523 /* In the case where the current block represents an inlining of the
13524 "body block" of an inline function, we must *NOT* output any DIE for
13525 this block because we have already output a DIE to represent the whole
13526 inlined function scope and the "body block" of any function doesn't
13527 really represent a different scope according to ANSI C rules. So we
13528 check here to make sure that this block does not represent a "body
13529 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
13530 if (! is_body_block (origin ? origin : stmt))
13532 /* Determine if this block directly contains any "significant"
13533 local declarations which we will need to output DIEs for. */
13534 if (debug_info_level > DINFO_LEVEL_TERSE)
13535 /* We are not in terse mode so *any* local declaration counts
13536 as being a "significant" one. */
13537 must_output_die = (BLOCK_VARS (stmt) != NULL
13538 && (TREE_USED (stmt)
13539 || TREE_ASM_WRITTEN (stmt)
13540 || BLOCK_ABSTRACT (stmt)));
13541 else
13542 /* We are in terse mode, so only local (nested) function
13543 definitions count as "significant" local declarations. */
13544 for (decl = BLOCK_VARS (stmt);
13545 decl != NULL; decl = TREE_CHAIN (decl))
13546 if (TREE_CODE (decl) == FUNCTION_DECL
13547 && DECL_INITIAL (decl))
13549 must_output_die = 1;
13550 break;
13555 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
13556 DIE for any block which contains no significant local declarations at
13557 all. Rather, in such cases we just call `decls_for_scope' so that any
13558 needed Dwarf info for any sub-blocks will get properly generated. Note
13559 that in terse mode, our definition of what constitutes a "significant"
13560 local declaration gets restricted to include only inlined function
13561 instances and local (nested) function definitions. */
13562 if (must_output_die)
13564 if (origin_code == FUNCTION_DECL)
13565 gen_inlined_subroutine_die (stmt, context_die, depth);
13566 else
13567 gen_lexical_block_die (stmt, context_die, depth);
13569 else
13570 decls_for_scope (stmt, context_die, depth);
13573 /* Generate all of the decls declared within a given scope and (recursively)
13574 all of its sub-blocks. */
13576 static void
13577 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
13579 tree decl;
13580 tree subblocks;
13582 /* Ignore NULL blocks. */
13583 if (stmt == NULL_TREE)
13584 return;
13586 if (TREE_USED (stmt))
13588 /* Output the DIEs to represent all of the data objects and typedefs
13589 declared directly within this block but not within any nested
13590 sub-blocks. Also, nested function and tag DIEs have been
13591 generated with a parent of NULL; fix that up now. */
13592 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
13594 dw_die_ref die;
13596 if (TREE_CODE (decl) == FUNCTION_DECL)
13597 die = lookup_decl_die (decl);
13598 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
13599 die = lookup_type_die (TREE_TYPE (decl));
13600 else
13601 die = NULL;
13603 if (die != NULL && die->die_parent == NULL)
13604 add_child_die (context_die, die);
13605 /* Do not produce debug information for static variables since
13606 these might be optimized out. We are called for these later
13607 in varpool_analyze_pending_decls. */
13608 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
13610 else
13611 gen_decl_die (decl, context_die);
13615 /* If we're at -g1, we're not interested in subblocks. */
13616 if (debug_info_level <= DINFO_LEVEL_TERSE)
13617 return;
13619 /* Output the DIEs to represent all sub-blocks (and the items declared
13620 therein) of this block. */
13621 for (subblocks = BLOCK_SUBBLOCKS (stmt);
13622 subblocks != NULL;
13623 subblocks = BLOCK_CHAIN (subblocks))
13624 gen_block_die (subblocks, context_die, depth + 1);
13627 /* Is this a typedef we can avoid emitting? */
13629 static inline int
13630 is_redundant_typedef (const_tree decl)
13632 if (TYPE_DECL_IS_STUB (decl))
13633 return 1;
13635 if (DECL_ARTIFICIAL (decl)
13636 && DECL_CONTEXT (decl)
13637 && is_tagged_type (DECL_CONTEXT (decl))
13638 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
13639 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
13640 /* Also ignore the artificial member typedef for the class name. */
13641 return 1;
13643 return 0;
13646 /* Returns the DIE for decl. A DIE will always be returned. */
13648 static dw_die_ref
13649 force_decl_die (tree decl)
13651 dw_die_ref decl_die;
13652 unsigned saved_external_flag;
13653 tree save_fn = NULL_TREE;
13654 decl_die = lookup_decl_die (decl);
13655 if (!decl_die)
13657 dw_die_ref context_die;
13658 tree decl_context = DECL_CONTEXT (decl);
13659 if (decl_context)
13661 /* Find die that represents this context. */
13662 if (TYPE_P (decl_context))
13663 context_die = force_type_die (decl_context);
13664 else
13665 context_die = force_decl_die (decl_context);
13667 else
13668 context_die = comp_unit_die;
13670 decl_die = lookup_decl_die (decl);
13671 if (decl_die)
13672 return decl_die;
13674 switch (TREE_CODE (decl))
13676 case FUNCTION_DECL:
13677 /* Clear current_function_decl, so that gen_subprogram_die thinks
13678 that this is a declaration. At this point, we just want to force
13679 declaration die. */
13680 save_fn = current_function_decl;
13681 current_function_decl = NULL_TREE;
13682 gen_subprogram_die (decl, context_die);
13683 current_function_decl = save_fn;
13684 break;
13686 case VAR_DECL:
13687 /* Set external flag to force declaration die. Restore it after
13688 gen_decl_die() call. */
13689 saved_external_flag = DECL_EXTERNAL (decl);
13690 DECL_EXTERNAL (decl) = 1;
13691 gen_decl_die (decl, context_die);
13692 DECL_EXTERNAL (decl) = saved_external_flag;
13693 break;
13695 case NAMESPACE_DECL:
13696 dwarf2out_decl (decl);
13697 break;
13699 default:
13700 gcc_unreachable ();
13703 /* We should be able to find the DIE now. */
13704 if (!decl_die)
13705 decl_die = lookup_decl_die (decl);
13706 gcc_assert (decl_die);
13709 return decl_die;
13712 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
13713 always returned. */
13715 static dw_die_ref
13716 force_type_die (tree type)
13718 dw_die_ref type_die;
13720 type_die = lookup_type_die (type);
13721 if (!type_die)
13723 dw_die_ref context_die;
13724 if (TYPE_CONTEXT (type))
13726 if (TYPE_P (TYPE_CONTEXT (type)))
13727 context_die = force_type_die (TYPE_CONTEXT (type));
13728 else
13729 context_die = force_decl_die (TYPE_CONTEXT (type));
13731 else
13732 context_die = comp_unit_die;
13734 type_die = lookup_type_die (type);
13735 if (type_die)
13736 return type_die;
13737 gen_type_die (type, context_die);
13738 type_die = lookup_type_die (type);
13739 gcc_assert (type_die);
13741 return type_die;
13744 /* Force out any required namespaces to be able to output DECL,
13745 and return the new context_die for it, if it's changed. */
13747 static dw_die_ref
13748 setup_namespace_context (tree thing, dw_die_ref context_die)
13750 tree context = (DECL_P (thing)
13751 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13752 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13753 /* Force out the namespace. */
13754 context_die = force_decl_die (context);
13756 return context_die;
13759 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13760 type) within its namespace, if appropriate.
13762 For compatibility with older debuggers, namespace DIEs only contain
13763 declarations; all definitions are emitted at CU scope. */
13765 static void
13766 declare_in_namespace (tree thing, dw_die_ref context_die)
13768 dw_die_ref ns_context;
13770 if (debug_info_level <= DINFO_LEVEL_TERSE)
13771 return;
13773 /* If this decl is from an inlined function, then don't try to emit it in its
13774 namespace, as we will get confused. It would have already been emitted
13775 when the abstract instance of the inline function was emitted anyways. */
13776 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13777 return;
13779 ns_context = setup_namespace_context (thing, context_die);
13781 if (ns_context != context_die)
13783 if (DECL_P (thing))
13784 gen_decl_die (thing, ns_context);
13785 else
13786 gen_type_die (thing, ns_context);
13790 /* Generate a DIE for a namespace or namespace alias. */
13792 static void
13793 gen_namespace_die (tree decl)
13795 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13797 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13798 they are an alias of. */
13799 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13801 /* Output a real namespace. */
13802 dw_die_ref namespace_die
13803 = new_die (DW_TAG_namespace, context_die, decl);
13804 add_name_and_src_coords_attributes (namespace_die, decl);
13805 equate_decl_number_to_die (decl, namespace_die);
13807 else
13809 /* Output a namespace alias. */
13811 /* Force out the namespace we are an alias of, if necessary. */
13812 dw_die_ref origin_die
13813 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13815 /* Now create the namespace alias DIE. */
13816 dw_die_ref namespace_die
13817 = new_die (DW_TAG_imported_declaration, context_die, decl);
13818 add_name_and_src_coords_attributes (namespace_die, decl);
13819 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13820 equate_decl_number_to_die (decl, namespace_die);
13824 /* Generate Dwarf debug information for a decl described by DECL. */
13826 static void
13827 gen_decl_die (tree decl, dw_die_ref context_die)
13829 tree origin;
13831 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13832 return;
13834 switch (TREE_CODE (decl))
13836 case ERROR_MARK:
13837 break;
13839 case CONST_DECL:
13840 /* The individual enumerators of an enum type get output when we output
13841 the Dwarf representation of the relevant enum type itself. */
13842 break;
13844 case FUNCTION_DECL:
13845 /* Don't output any DIEs to represent mere function declarations,
13846 unless they are class members or explicit block externs. */
13847 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13848 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13849 break;
13851 #if 0
13852 /* FIXME */
13853 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13854 on local redeclarations of global functions. That seems broken. */
13855 if (current_function_decl != decl)
13856 /* This is only a declaration. */;
13857 #endif
13859 /* If we're emitting a clone, emit info for the abstract instance. */
13860 if (DECL_ORIGIN (decl) != decl)
13861 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13863 /* If we're emitting an out-of-line copy of an inline function,
13864 emit info for the abstract instance and set up to refer to it. */
13865 else if (cgraph_function_possibly_inlined_p (decl)
13866 && ! DECL_ABSTRACT (decl)
13867 && ! class_or_namespace_scope_p (context_die)
13868 /* dwarf2out_abstract_function won't emit a die if this is just
13869 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13870 that case, because that works only if we have a die. */
13871 && DECL_INITIAL (decl) != NULL_TREE)
13873 dwarf2out_abstract_function (decl);
13874 set_decl_origin_self (decl);
13877 /* Otherwise we're emitting the primary DIE for this decl. */
13878 else if (debug_info_level > DINFO_LEVEL_TERSE)
13880 /* Before we describe the FUNCTION_DECL itself, make sure that we
13881 have described its return type. */
13882 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13884 /* And its virtual context. */
13885 if (DECL_VINDEX (decl) != NULL_TREE)
13886 gen_type_die (DECL_CONTEXT (decl), context_die);
13888 /* And its containing type. */
13889 origin = decl_class_context (decl);
13890 if (origin != NULL_TREE)
13891 gen_type_die_for_member (origin, decl, context_die);
13893 /* And its containing namespace. */
13894 declare_in_namespace (decl, context_die);
13897 /* Now output a DIE to represent the function itself. */
13898 gen_subprogram_die (decl, context_die);
13899 break;
13901 case TYPE_DECL:
13902 /* If we are in terse mode, don't generate any DIEs to represent any
13903 actual typedefs. */
13904 if (debug_info_level <= DINFO_LEVEL_TERSE)
13905 break;
13907 /* In the special case of a TYPE_DECL node representing the declaration
13908 of some type tag, if the given TYPE_DECL is marked as having been
13909 instantiated from some other (original) TYPE_DECL node (e.g. one which
13910 was generated within the original definition of an inline function) we
13911 have to generate a special (abbreviated) DW_TAG_structure_type,
13912 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13913 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE
13914 && is_tagged_type (TREE_TYPE (decl)))
13916 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13917 break;
13920 if (is_redundant_typedef (decl))
13921 gen_type_die (TREE_TYPE (decl), context_die);
13922 else
13923 /* Output a DIE to represent the typedef itself. */
13924 gen_typedef_die (decl, context_die);
13925 break;
13927 case LABEL_DECL:
13928 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13929 gen_label_die (decl, context_die);
13930 break;
13932 case VAR_DECL:
13933 case RESULT_DECL:
13934 /* If we are in terse mode, don't generate any DIEs to represent any
13935 variable declarations or definitions. */
13936 if (debug_info_level <= DINFO_LEVEL_TERSE)
13937 break;
13939 /* Output any DIEs that are needed to specify the type of this data
13940 object. */
13941 if (TREE_CODE (decl) == RESULT_DECL && DECL_BY_REFERENCE (decl))
13942 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13943 else
13944 gen_type_die (TREE_TYPE (decl), context_die);
13946 /* And its containing type. */
13947 origin = decl_class_context (decl);
13948 if (origin != NULL_TREE)
13949 gen_type_die_for_member (origin, decl, context_die);
13951 /* And its containing namespace. */
13952 declare_in_namespace (decl, context_die);
13954 /* Now output the DIE to represent the data object itself. This gets
13955 complicated because of the possibility that the VAR_DECL really
13956 represents an inlined instance of a formal parameter for an inline
13957 function. */
13958 origin = decl_ultimate_origin (decl);
13959 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13960 gen_formal_parameter_die (decl, context_die);
13961 else
13962 gen_variable_die (decl, context_die);
13963 break;
13965 case FIELD_DECL:
13966 /* Ignore the nameless fields that are used to skip bits but handle C++
13967 anonymous unions and structs. */
13968 if (DECL_NAME (decl) != NULL_TREE
13969 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13970 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13972 gen_type_die (member_declared_type (decl), context_die);
13973 gen_field_die (decl, context_die);
13975 break;
13977 case PARM_DECL:
13978 if (DECL_BY_REFERENCE (decl))
13979 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13980 else
13981 gen_type_die (TREE_TYPE (decl), context_die);
13982 gen_formal_parameter_die (decl, context_die);
13983 break;
13985 case NAMESPACE_DECL:
13986 gen_namespace_die (decl);
13987 break;
13989 default:
13990 /* Probably some frontend-internal decl. Assume we don't care. */
13991 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13992 break;
13996 /* Output debug information for global decl DECL. Called from toplev.c after
13997 compilation proper has finished. */
13999 static void
14000 dwarf2out_global_decl (tree decl)
14002 /* Output DWARF2 information for file-scope tentative data object
14003 declarations, file-scope (extern) function declarations (which had no
14004 corresponding body) and file-scope tagged type declarations and
14005 definitions which have not yet been forced out. */
14006 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
14007 dwarf2out_decl (decl);
14010 /* Output debug information for type decl DECL. Called from toplev.c
14011 and from language front ends (to record built-in types). */
14012 static void
14013 dwarf2out_type_decl (tree decl, int local)
14015 if (!local)
14016 dwarf2out_decl (decl);
14019 /* Output debug information for imported module or decl. */
14021 static void
14022 dwarf2out_imported_module_or_decl (tree decl, tree context)
14024 dw_die_ref imported_die, at_import_die;
14025 dw_die_ref scope_die;
14026 expanded_location xloc;
14028 if (debug_info_level <= DINFO_LEVEL_TERSE)
14029 return;
14031 gcc_assert (decl);
14033 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
14034 We need decl DIE for reference and scope die. First, get DIE for the decl
14035 itself. */
14037 /* Get the scope die for decl context. Use comp_unit_die for global module
14038 or decl. If die is not found for non globals, force new die. */
14039 if (!context)
14040 scope_die = comp_unit_die;
14041 else if (TYPE_P (context))
14043 if (!should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
14044 return;
14045 scope_die = force_type_die (context);
14047 else
14048 scope_die = force_decl_die (context);
14050 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
14051 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
14053 if (is_base_type (TREE_TYPE (decl)))
14054 at_import_die = base_type_die (TREE_TYPE (decl));
14055 else
14056 at_import_die = force_type_die (TREE_TYPE (decl));
14058 else
14060 at_import_die = lookup_decl_die (decl);
14061 if (!at_import_die)
14063 /* If we're trying to avoid duplicate debug info, we may not have
14064 emitted the member decl for this field. Emit it now. */
14065 if (TREE_CODE (decl) == FIELD_DECL)
14067 tree type = DECL_CONTEXT (decl);
14068 dw_die_ref type_context_die;
14070 if (TYPE_CONTEXT (type))
14071 if (TYPE_P (TYPE_CONTEXT (type)))
14073 if (!should_emit_struct_debug (TYPE_CONTEXT (type),
14074 DINFO_USAGE_DIR_USE))
14075 return;
14076 type_context_die = force_type_die (TYPE_CONTEXT (type));
14078 else
14079 type_context_die = force_decl_die (TYPE_CONTEXT (type));
14080 else
14081 type_context_die = comp_unit_die;
14082 gen_type_die_for_member (type, decl, type_context_die);
14084 at_import_die = force_decl_die (decl);
14088 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
14089 if (TREE_CODE (decl) == NAMESPACE_DECL)
14090 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
14091 else
14092 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
14094 xloc = expand_location (input_location);
14095 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
14096 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
14097 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
14100 /* Write the debugging output for DECL. */
14102 void
14103 dwarf2out_decl (tree decl)
14105 dw_die_ref context_die = comp_unit_die;
14107 switch (TREE_CODE (decl))
14109 case ERROR_MARK:
14110 return;
14112 case FUNCTION_DECL:
14113 /* What we would really like to do here is to filter out all mere
14114 file-scope declarations of file-scope functions which are never
14115 referenced later within this translation unit (and keep all of ones
14116 that *are* referenced later on) but we aren't clairvoyant, so we have
14117 no idea which functions will be referenced in the future (i.e. later
14118 on within the current translation unit). So here we just ignore all
14119 file-scope function declarations which are not also definitions. If
14120 and when the debugger needs to know something about these functions,
14121 it will have to hunt around and find the DWARF information associated
14122 with the definition of the function.
14124 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
14125 nodes represent definitions and which ones represent mere
14126 declarations. We have to check DECL_INITIAL instead. That's because
14127 the C front-end supports some weird semantics for "extern inline"
14128 function definitions. These can get inlined within the current
14129 translation unit (and thus, we need to generate Dwarf info for their
14130 abstract instances so that the Dwarf info for the concrete inlined
14131 instances can have something to refer to) but the compiler never
14132 generates any out-of-lines instances of such things (despite the fact
14133 that they *are* definitions).
14135 The important point is that the C front-end marks these "extern
14136 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
14137 them anyway. Note that the C++ front-end also plays some similar games
14138 for inline function definitions appearing within include files which
14139 also contain `#pragma interface' pragmas. */
14140 if (DECL_INITIAL (decl) == NULL_TREE)
14141 return;
14143 /* If we're a nested function, initially use a parent of NULL; if we're
14144 a plain function, this will be fixed up in decls_for_scope. If
14145 we're a method, it will be ignored, since we already have a DIE. */
14146 if (decl_function_context (decl)
14147 /* But if we're in terse mode, we don't care about scope. */
14148 && debug_info_level > DINFO_LEVEL_TERSE)
14149 context_die = NULL;
14150 break;
14152 case VAR_DECL:
14153 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
14154 declaration and if the declaration was never even referenced from
14155 within this entire compilation unit. We suppress these DIEs in
14156 order to save space in the .debug section (by eliminating entries
14157 which are probably useless). Note that we must not suppress
14158 block-local extern declarations (whether used or not) because that
14159 would screw-up the debugger's name lookup mechanism and cause it to
14160 miss things which really ought to be in scope at a given point. */
14161 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
14162 return;
14164 /* For local statics lookup proper context die. */
14165 if (TREE_STATIC (decl) && decl_function_context (decl))
14166 context_die = lookup_decl_die (DECL_CONTEXT (decl));
14168 /* If we are in terse mode, don't generate any DIEs to represent any
14169 variable declarations or definitions. */
14170 if (debug_info_level <= DINFO_LEVEL_TERSE)
14171 return;
14172 break;
14174 case NAMESPACE_DECL:
14175 if (debug_info_level <= DINFO_LEVEL_TERSE)
14176 return;
14177 if (lookup_decl_die (decl) != NULL)
14178 return;
14179 break;
14181 case TYPE_DECL:
14182 /* Don't emit stubs for types unless they are needed by other DIEs. */
14183 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
14184 return;
14186 /* Don't bother trying to generate any DIEs to represent any of the
14187 normal built-in types for the language we are compiling. */
14188 if (DECL_IS_BUILTIN (decl))
14190 /* OK, we need to generate one for `bool' so GDB knows what type
14191 comparisons have. */
14192 if (is_cxx ()
14193 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
14194 && ! DECL_IGNORED_P (decl))
14195 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
14197 return;
14200 /* If we are in terse mode, don't generate any DIEs for types. */
14201 if (debug_info_level <= DINFO_LEVEL_TERSE)
14202 return;
14204 /* If we're a function-scope tag, initially use a parent of NULL;
14205 this will be fixed up in decls_for_scope. */
14206 if (decl_function_context (decl))
14207 context_die = NULL;
14209 break;
14211 default:
14212 return;
14215 gen_decl_die (decl, context_die);
14218 /* Output a marker (i.e. a label) for the beginning of the generated code for
14219 a lexical block. */
14221 static void
14222 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
14223 unsigned int blocknum)
14225 switch_to_section (current_function_section ());
14226 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
14229 /* Output a marker (i.e. a label) for the end of the generated code for a
14230 lexical block. */
14232 static void
14233 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
14235 switch_to_section (current_function_section ());
14236 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
14239 /* Returns nonzero if it is appropriate not to emit any debugging
14240 information for BLOCK, because it doesn't contain any instructions.
14242 Don't allow this for blocks with nested functions or local classes
14243 as we would end up with orphans, and in the presence of scheduling
14244 we may end up calling them anyway. */
14246 static bool
14247 dwarf2out_ignore_block (const_tree block)
14249 tree decl;
14251 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
14252 if (TREE_CODE (decl) == FUNCTION_DECL
14253 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
14254 return 0;
14256 return 1;
14259 /* Hash table routines for file_hash. */
14261 static int
14262 file_table_eq (const void *p1_p, const void *p2_p)
14264 const struct dwarf_file_data * p1 = p1_p;
14265 const char * p2 = p2_p;
14266 return strcmp (p1->filename, p2) == 0;
14269 static hashval_t
14270 file_table_hash (const void *p_p)
14272 const struct dwarf_file_data * p = p_p;
14273 return htab_hash_string (p->filename);
14276 /* Lookup FILE_NAME (in the list of filenames that we know about here in
14277 dwarf2out.c) and return its "index". The index of each (known) filename is
14278 just a unique number which is associated with only that one filename. We
14279 need such numbers for the sake of generating labels (in the .debug_sfnames
14280 section) and references to those files numbers (in the .debug_srcinfo
14281 and.debug_macinfo sections). If the filename given as an argument is not
14282 found in our current list, add it to the list and assign it the next
14283 available unique index number. In order to speed up searches, we remember
14284 the index of the filename was looked up last. This handles the majority of
14285 all searches. */
14287 static struct dwarf_file_data *
14288 lookup_filename (const char *file_name)
14290 void ** slot;
14291 struct dwarf_file_data * created;
14293 /* Check to see if the file name that was searched on the previous
14294 call matches this file name. If so, return the index. */
14295 if (file_table_last_lookup
14296 && (file_name == file_table_last_lookup->filename
14297 || strcmp (file_table_last_lookup->filename, file_name) == 0))
14298 return file_table_last_lookup;
14300 /* Didn't match the previous lookup, search the table. */
14301 slot = htab_find_slot_with_hash (file_table, file_name,
14302 htab_hash_string (file_name), INSERT);
14303 if (*slot)
14304 return *slot;
14306 created = ggc_alloc (sizeof (struct dwarf_file_data));
14307 created->filename = file_name;
14308 created->emitted_number = 0;
14309 *slot = created;
14310 return created;
14313 /* If the assembler will construct the file table, then translate the compiler
14314 internal file table number into the assembler file table number, and emit
14315 a .file directive if we haven't already emitted one yet. The file table
14316 numbers are different because we prune debug info for unused variables and
14317 types, which may include filenames. */
14319 static int
14320 maybe_emit_file (struct dwarf_file_data * fd)
14322 if (! fd->emitted_number)
14324 if (last_emitted_file)
14325 fd->emitted_number = last_emitted_file->emitted_number + 1;
14326 else
14327 fd->emitted_number = 1;
14328 last_emitted_file = fd;
14330 if (DWARF2_ASM_LINE_DEBUG_INFO)
14332 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
14333 output_quoted_string (asm_out_file,
14334 remap_debug_filename (fd->filename));
14335 fputc ('\n', asm_out_file);
14339 return fd->emitted_number;
14342 /* Called by the final INSN scan whenever we see a var location. We
14343 use it to drop labels in the right places, and throw the location in
14344 our lookup table. */
14346 static void
14347 dwarf2out_var_location (rtx loc_note)
14349 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
14350 struct var_loc_node *newloc;
14351 rtx prev_insn;
14352 static rtx last_insn;
14353 static const char *last_label;
14354 tree decl;
14356 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
14357 return;
14358 prev_insn = PREV_INSN (loc_note);
14360 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
14361 /* If the insn we processed last time is the previous insn
14362 and it is also a var location note, use the label we emitted
14363 last time. */
14364 if (last_insn != NULL_RTX
14365 && last_insn == prev_insn
14366 && NOTE_P (prev_insn)
14367 && NOTE_KIND (prev_insn) == NOTE_INSN_VAR_LOCATION)
14369 newloc->label = last_label;
14371 else
14373 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
14374 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
14375 loclabel_num++;
14376 newloc->label = ggc_strdup (loclabel);
14378 newloc->var_loc_note = loc_note;
14379 newloc->next = NULL;
14381 if (cfun && in_cold_section_p)
14382 newloc->section_label = cfun->cold_section_label;
14383 else
14384 newloc->section_label = text_section_label;
14386 last_insn = loc_note;
14387 last_label = newloc->label;
14388 decl = NOTE_VAR_LOCATION_DECL (loc_note);
14389 add_var_loc_to_decl (decl, newloc);
14392 /* We need to reset the locations at the beginning of each
14393 function. We can't do this in the end_function hook, because the
14394 declarations that use the locations won't have been output when
14395 that hook is called. Also compute have_multiple_function_sections here. */
14397 static void
14398 dwarf2out_begin_function (tree fun)
14400 htab_empty (decl_loc_table);
14402 if (function_section (fun) != text_section)
14403 have_multiple_function_sections = true;
14405 dwarf2out_note_section_used ();
14408 /* Output a label to mark the beginning of a source code line entry
14409 and record information relating to this source line, in
14410 'line_info_table' for later output of the .debug_line section. */
14412 static void
14413 dwarf2out_source_line (unsigned int line, const char *filename)
14415 if (debug_info_level >= DINFO_LEVEL_NORMAL
14416 && line != 0)
14418 int file_num = maybe_emit_file (lookup_filename (filename));
14420 switch_to_section (current_function_section ());
14422 /* If requested, emit something human-readable. */
14423 if (flag_debug_asm)
14424 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
14425 filename, line);
14427 if (DWARF2_ASM_LINE_DEBUG_INFO)
14429 /* Emit the .loc directive understood by GNU as. */
14430 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
14432 /* Indicate that line number info exists. */
14433 line_info_table_in_use++;
14435 else if (function_section (current_function_decl) != text_section)
14437 dw_separate_line_info_ref line_info;
14438 targetm.asm_out.internal_label (asm_out_file,
14439 SEPARATE_LINE_CODE_LABEL,
14440 separate_line_info_table_in_use);
14442 /* Expand the line info table if necessary. */
14443 if (separate_line_info_table_in_use
14444 == separate_line_info_table_allocated)
14446 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
14447 separate_line_info_table
14448 = ggc_realloc (separate_line_info_table,
14449 separate_line_info_table_allocated
14450 * sizeof (dw_separate_line_info_entry));
14451 memset (separate_line_info_table
14452 + separate_line_info_table_in_use,
14454 (LINE_INFO_TABLE_INCREMENT
14455 * sizeof (dw_separate_line_info_entry)));
14458 /* Add the new entry at the end of the line_info_table. */
14459 line_info
14460 = &separate_line_info_table[separate_line_info_table_in_use++];
14461 line_info->dw_file_num = file_num;
14462 line_info->dw_line_num = line;
14463 line_info->function = current_function_funcdef_no;
14465 else
14467 dw_line_info_ref line_info;
14469 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
14470 line_info_table_in_use);
14472 /* Expand the line info table if necessary. */
14473 if (line_info_table_in_use == line_info_table_allocated)
14475 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
14476 line_info_table
14477 = ggc_realloc (line_info_table,
14478 (line_info_table_allocated
14479 * sizeof (dw_line_info_entry)));
14480 memset (line_info_table + line_info_table_in_use, 0,
14481 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
14484 /* Add the new entry at the end of the line_info_table. */
14485 line_info = &line_info_table[line_info_table_in_use++];
14486 line_info->dw_file_num = file_num;
14487 line_info->dw_line_num = line;
14492 /* Record the beginning of a new source file. */
14494 static void
14495 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
14497 if (flag_eliminate_dwarf2_dups)
14499 /* Record the beginning of the file for break_out_includes. */
14500 dw_die_ref bincl_die;
14502 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
14503 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
14506 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14508 int file_num = maybe_emit_file (lookup_filename (filename));
14510 switch_to_section (debug_macinfo_section);
14511 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
14512 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
14513 lineno);
14515 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
14519 /* Record the end of a source file. */
14521 static void
14522 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
14524 if (flag_eliminate_dwarf2_dups)
14525 /* Record the end of the file for break_out_includes. */
14526 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
14528 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14530 switch_to_section (debug_macinfo_section);
14531 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
14535 /* Called from debug_define in toplev.c. The `buffer' parameter contains
14536 the tail part of the directive line, i.e. the part which is past the
14537 initial whitespace, #, whitespace, directive-name, whitespace part. */
14539 static void
14540 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
14541 const char *buffer ATTRIBUTE_UNUSED)
14543 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14545 switch_to_section (debug_macinfo_section);
14546 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
14547 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
14548 dw2_asm_output_nstring (buffer, -1, "The macro");
14552 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
14553 the tail part of the directive line, i.e. the part which is past the
14554 initial whitespace, #, whitespace, directive-name, whitespace part. */
14556 static void
14557 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
14558 const char *buffer ATTRIBUTE_UNUSED)
14560 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14562 switch_to_section (debug_macinfo_section);
14563 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
14564 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
14565 dw2_asm_output_nstring (buffer, -1, "The macro");
14569 /* Set up for Dwarf output at the start of compilation. */
14571 static void
14572 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
14574 /* Allocate the file_table. */
14575 file_table = htab_create_ggc (50, file_table_hash,
14576 file_table_eq, NULL);
14578 /* Allocate the decl_die_table. */
14579 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
14580 decl_die_table_eq, NULL);
14582 /* Allocate the decl_loc_table. */
14583 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
14584 decl_loc_table_eq, NULL);
14586 /* Allocate the initial hunk of the decl_scope_table. */
14587 decl_scope_table = VEC_alloc (tree, gc, 256);
14589 /* Allocate the initial hunk of the abbrev_die_table. */
14590 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
14591 * sizeof (dw_die_ref));
14592 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
14593 /* Zero-th entry is allocated, but unused. */
14594 abbrev_die_table_in_use = 1;
14596 /* Allocate the initial hunk of the line_info_table. */
14597 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
14598 * sizeof (dw_line_info_entry));
14599 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
14601 /* Zero-th entry is allocated, but unused. */
14602 line_info_table_in_use = 1;
14604 /* Allocate the pubtypes and pubnames vectors. */
14605 pubname_table = VEC_alloc (pubname_entry, gc, 32);
14606 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
14608 /* Generate the initial DIE for the .debug section. Note that the (string)
14609 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
14610 will (typically) be a relative pathname and that this pathname should be
14611 taken as being relative to the directory from which the compiler was
14612 invoked when the given (base) source file was compiled. We will fill
14613 in this value in dwarf2out_finish. */
14614 comp_unit_die = gen_compile_unit_die (NULL);
14616 incomplete_types = VEC_alloc (tree, gc, 64);
14618 used_rtx_array = VEC_alloc (rtx, gc, 32);
14620 debug_info_section = get_section (DEBUG_INFO_SECTION,
14621 SECTION_DEBUG, NULL);
14622 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
14623 SECTION_DEBUG, NULL);
14624 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
14625 SECTION_DEBUG, NULL);
14626 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
14627 SECTION_DEBUG, NULL);
14628 debug_line_section = get_section (DEBUG_LINE_SECTION,
14629 SECTION_DEBUG, NULL);
14630 debug_loc_section = get_section (DEBUG_LOC_SECTION,
14631 SECTION_DEBUG, NULL);
14632 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
14633 SECTION_DEBUG, NULL);
14634 #ifdef DEBUG_PUBTYPES_SECTION
14635 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
14636 SECTION_DEBUG, NULL);
14637 #endif
14638 debug_str_section = get_section (DEBUG_STR_SECTION,
14639 DEBUG_STR_SECTION_FLAGS, NULL);
14640 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
14641 SECTION_DEBUG, NULL);
14642 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
14643 SECTION_DEBUG, NULL);
14645 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
14646 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
14647 DEBUG_ABBREV_SECTION_LABEL, 0);
14648 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
14649 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
14650 COLD_TEXT_SECTION_LABEL, 0);
14651 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
14653 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
14654 DEBUG_INFO_SECTION_LABEL, 0);
14655 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
14656 DEBUG_LINE_SECTION_LABEL, 0);
14657 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
14658 DEBUG_RANGES_SECTION_LABEL, 0);
14659 switch_to_section (debug_abbrev_section);
14660 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
14661 switch_to_section (debug_info_section);
14662 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
14663 switch_to_section (debug_line_section);
14664 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
14666 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14668 switch_to_section (debug_macinfo_section);
14669 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
14670 DEBUG_MACINFO_SECTION_LABEL, 0);
14671 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
14674 switch_to_section (text_section);
14675 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
14676 if (flag_reorder_blocks_and_partition)
14678 cold_text_section = unlikely_text_section ();
14679 switch_to_section (cold_text_section);
14680 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
14684 /* A helper function for dwarf2out_finish called through
14685 ht_forall. Emit one queued .debug_str string. */
14687 static int
14688 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
14690 struct indirect_string_node *node = (struct indirect_string_node *) *h;
14692 if (node->form == DW_FORM_strp)
14694 switch_to_section (debug_str_section);
14695 ASM_OUTPUT_LABEL (asm_out_file, node->label);
14696 assemble_string (node->str, strlen (node->str) + 1);
14699 return 1;
14702 #if ENABLE_ASSERT_CHECKING
14703 /* Verify that all marks are clear. */
14705 static void
14706 verify_marks_clear (dw_die_ref die)
14708 dw_die_ref c;
14710 gcc_assert (! die->die_mark);
14711 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14713 #endif /* ENABLE_ASSERT_CHECKING */
14715 /* Clear the marks for a die and its children.
14716 Be cool if the mark isn't set. */
14718 static void
14719 prune_unmark_dies (dw_die_ref die)
14721 dw_die_ref c;
14723 if (die->die_mark)
14724 die->die_mark = 0;
14725 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14728 /* Given DIE that we're marking as used, find any other dies
14729 it references as attributes and mark them as used. */
14731 static void
14732 prune_unused_types_walk_attribs (dw_die_ref die)
14734 dw_attr_ref a;
14735 unsigned ix;
14737 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14739 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14741 /* A reference to another DIE.
14742 Make sure that it will get emitted. */
14743 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14745 /* Set the string's refcount to 0 so that prune_unused_types_mark
14746 accounts properly for it. */
14747 if (AT_class (a) == dw_val_class_str)
14748 a->dw_attr_val.v.val_str->refcount = 0;
14753 /* Mark DIE as being used. If DOKIDS is true, then walk down
14754 to DIE's children. */
14756 static void
14757 prune_unused_types_mark (dw_die_ref die, int dokids)
14759 dw_die_ref c;
14761 if (die->die_mark == 0)
14763 /* We haven't done this node yet. Mark it as used. */
14764 die->die_mark = 1;
14766 /* We also have to mark its parents as used.
14767 (But we don't want to mark our parents' kids due to this.) */
14768 if (die->die_parent)
14769 prune_unused_types_mark (die->die_parent, 0);
14771 /* Mark any referenced nodes. */
14772 prune_unused_types_walk_attribs (die);
14774 /* If this node is a specification,
14775 also mark the definition, if it exists. */
14776 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14777 prune_unused_types_mark (die->die_definition, 1);
14780 if (dokids && die->die_mark != 2)
14782 /* We need to walk the children, but haven't done so yet.
14783 Remember that we've walked the kids. */
14784 die->die_mark = 2;
14786 /* If this is an array type, we need to make sure our
14787 kids get marked, even if they're types. */
14788 if (die->die_tag == DW_TAG_array_type)
14789 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14790 else
14791 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14796 /* Walk the tree DIE and mark types that we actually use. */
14798 static void
14799 prune_unused_types_walk (dw_die_ref die)
14801 dw_die_ref c;
14803 /* Don't do anything if this node is already marked. */
14804 if (die->die_mark)
14805 return;
14807 switch (die->die_tag)
14809 case DW_TAG_const_type:
14810 case DW_TAG_packed_type:
14811 case DW_TAG_pointer_type:
14812 case DW_TAG_reference_type:
14813 case DW_TAG_volatile_type:
14814 case DW_TAG_typedef:
14815 case DW_TAG_array_type:
14816 case DW_TAG_structure_type:
14817 case DW_TAG_union_type:
14818 case DW_TAG_class_type:
14819 case DW_TAG_interface_type:
14820 case DW_TAG_friend:
14821 case DW_TAG_variant_part:
14822 case DW_TAG_enumeration_type:
14823 case DW_TAG_subroutine_type:
14824 case DW_TAG_string_type:
14825 case DW_TAG_set_type:
14826 case DW_TAG_subrange_type:
14827 case DW_TAG_ptr_to_member_type:
14828 case DW_TAG_file_type:
14829 if (die->die_perennial_p)
14830 break;
14832 /* It's a type node --- don't mark it. */
14833 return;
14835 default:
14836 /* Mark everything else. */
14837 break;
14840 die->die_mark = 1;
14842 /* Now, mark any dies referenced from here. */
14843 prune_unused_types_walk_attribs (die);
14845 /* Mark children. */
14846 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14849 /* Increment the string counts on strings referred to from DIE's
14850 attributes. */
14852 static void
14853 prune_unused_types_update_strings (dw_die_ref die)
14855 dw_attr_ref a;
14856 unsigned ix;
14858 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14859 if (AT_class (a) == dw_val_class_str)
14861 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14862 s->refcount++;
14863 /* Avoid unnecessarily putting strings that are used less than
14864 twice in the hash table. */
14865 if (s->refcount
14866 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14868 void ** slot;
14869 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14870 htab_hash_string (s->str),
14871 INSERT);
14872 gcc_assert (*slot == NULL);
14873 *slot = s;
14878 /* Remove from the tree DIE any dies that aren't marked. */
14880 static void
14881 prune_unused_types_prune (dw_die_ref die)
14883 dw_die_ref c;
14885 gcc_assert (die->die_mark);
14886 prune_unused_types_update_strings (die);
14888 if (! die->die_child)
14889 return;
14891 c = die->die_child;
14892 do {
14893 dw_die_ref prev = c;
14894 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14895 if (c == die->die_child)
14897 /* No marked children between 'prev' and the end of the list. */
14898 if (prev == c)
14899 /* No marked children at all. */
14900 die->die_child = NULL;
14901 else
14903 prev->die_sib = c->die_sib;
14904 die->die_child = prev;
14906 return;
14909 if (c != prev->die_sib)
14910 prev->die_sib = c;
14911 prune_unused_types_prune (c);
14912 } while (c != die->die_child);
14916 /* Remove dies representing declarations that we never use. */
14918 static void
14919 prune_unused_types (void)
14921 unsigned int i;
14922 limbo_die_node *node;
14923 pubname_ref pub;
14925 #if ENABLE_ASSERT_CHECKING
14926 /* All the marks should already be clear. */
14927 verify_marks_clear (comp_unit_die);
14928 for (node = limbo_die_list; node; node = node->next)
14929 verify_marks_clear (node->die);
14930 #endif /* ENABLE_ASSERT_CHECKING */
14932 /* Set the mark on nodes that are actually used. */
14933 prune_unused_types_walk (comp_unit_die);
14934 for (node = limbo_die_list; node; node = node->next)
14935 prune_unused_types_walk (node->die);
14937 /* Also set the mark on nodes referenced from the
14938 pubname_table or arange_table. */
14939 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14940 prune_unused_types_mark (pub->die, 1);
14941 for (i = 0; i < arange_table_in_use; i++)
14942 prune_unused_types_mark (arange_table[i], 1);
14944 /* Get rid of nodes that aren't marked; and update the string counts. */
14945 if (debug_str_hash)
14946 htab_empty (debug_str_hash);
14947 prune_unused_types_prune (comp_unit_die);
14948 for (node = limbo_die_list; node; node = node->next)
14949 prune_unused_types_prune (node->die);
14951 /* Leave the marks clear. */
14952 prune_unmark_dies (comp_unit_die);
14953 for (node = limbo_die_list; node; node = node->next)
14954 prune_unmark_dies (node->die);
14957 /* Set the parameter to true if there are any relative pathnames in
14958 the file table. */
14959 static int
14960 file_table_relative_p (void ** slot, void *param)
14962 bool *p = param;
14963 struct dwarf_file_data *d = *slot;
14964 if (!IS_ABSOLUTE_PATH (d->filename))
14966 *p = true;
14967 return 0;
14969 return 1;
14972 /* Output stuff that dwarf requires at the end of every file,
14973 and generate the DWARF-2 debugging info. */
14975 static void
14976 dwarf2out_finish (const char *filename)
14978 limbo_die_node *node, *next_node;
14979 dw_die_ref die = 0;
14981 /* Add the name for the main input file now. We delayed this from
14982 dwarf2out_init to avoid complications with PCH. */
14983 add_name_attribute (comp_unit_die, remap_debug_filename (filename));
14984 if (!IS_ABSOLUTE_PATH (filename))
14985 add_comp_dir_attribute (comp_unit_die);
14986 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14988 bool p = false;
14989 htab_traverse (file_table, file_table_relative_p, &p);
14990 if (p)
14991 add_comp_dir_attribute (comp_unit_die);
14994 /* Traverse the limbo die list, and add parent/child links. The only
14995 dies without parents that should be here are concrete instances of
14996 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14997 For concrete instances, we can get the parent die from the abstract
14998 instance. */
14999 for (node = limbo_die_list; node; node = next_node)
15001 next_node = node->next;
15002 die = node->die;
15004 if (die->die_parent == NULL)
15006 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
15008 if (origin)
15009 add_child_die (origin->die_parent, die);
15010 else if (die == comp_unit_die)
15012 else if (errorcount > 0 || sorrycount > 0)
15013 /* It's OK to be confused by errors in the input. */
15014 add_child_die (comp_unit_die, die);
15015 else
15017 /* In certain situations, the lexical block containing a
15018 nested function can be optimized away, which results
15019 in the nested function die being orphaned. Likewise
15020 with the return type of that nested function. Force
15021 this to be a child of the containing function.
15023 It may happen that even the containing function got fully
15024 inlined and optimized out. In that case we are lost and
15025 assign the empty child. This should not be big issue as
15026 the function is likely unreachable too. */
15027 tree context = NULL_TREE;
15029 gcc_assert (node->created_for);
15031 if (DECL_P (node->created_for))
15032 context = DECL_CONTEXT (node->created_for);
15033 else if (TYPE_P (node->created_for))
15034 context = TYPE_CONTEXT (node->created_for);
15036 gcc_assert (context
15037 && (TREE_CODE (context) == FUNCTION_DECL
15038 || TREE_CODE (context) == NAMESPACE_DECL));
15040 origin = lookup_decl_die (context);
15041 if (origin)
15042 add_child_die (origin, die);
15043 else
15044 add_child_die (comp_unit_die, die);
15049 limbo_die_list = NULL;
15051 /* Walk through the list of incomplete types again, trying once more to
15052 emit full debugging info for them. */
15053 retry_incomplete_types ();
15055 if (flag_eliminate_unused_debug_types)
15056 prune_unused_types ();
15058 /* Generate separate CUs for each of the include files we've seen.
15059 They will go into limbo_die_list. */
15060 if (flag_eliminate_dwarf2_dups)
15061 break_out_includes (comp_unit_die);
15063 /* Traverse the DIE's and add add sibling attributes to those DIE's
15064 that have children. */
15065 add_sibling_attributes (comp_unit_die);
15066 for (node = limbo_die_list; node; node = node->next)
15067 add_sibling_attributes (node->die);
15069 /* Output a terminator label for the .text section. */
15070 switch_to_section (text_section);
15071 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
15072 if (flag_reorder_blocks_and_partition)
15074 switch_to_section (unlikely_text_section ());
15075 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
15078 /* We can only use the low/high_pc attributes if all of the code was
15079 in .text. */
15080 if (!have_multiple_function_sections)
15082 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
15083 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
15086 else
15088 unsigned fde_idx = 0;
15090 /* We need to give .debug_loc and .debug_ranges an appropriate
15091 "base address". Use zero so that these addresses become
15092 absolute. Historically, we've emitted the unexpected
15093 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
15094 Emit both to give time for other tools to adapt. */
15095 add_AT_addr (comp_unit_die, DW_AT_low_pc, const0_rtx);
15096 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
15098 add_AT_range_list (comp_unit_die, DW_AT_ranges,
15099 add_ranges_by_labels (text_section_label,
15100 text_end_label));
15101 if (flag_reorder_blocks_and_partition)
15102 add_ranges_by_labels (cold_text_section_label,
15103 cold_end_label);
15105 for (fde_idx = 0; fde_idx < fde_table_in_use; fde_idx++)
15107 dw_fde_ref fde = &fde_table[fde_idx];
15109 if (fde->dw_fde_switched_sections)
15111 add_ranges_by_labels (fde->dw_fde_hot_section_label,
15112 fde->dw_fde_hot_section_end_label);
15113 add_ranges_by_labels (fde->dw_fde_unlikely_section_label,
15114 fde->dw_fde_unlikely_section_end_label);
15116 else
15117 add_ranges_by_labels (fde->dw_fde_begin,
15118 fde->dw_fde_end);
15121 add_ranges (NULL);
15124 /* Output location list section if necessary. */
15125 if (have_location_lists)
15127 /* Output the location lists info. */
15128 switch_to_section (debug_loc_section);
15129 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
15130 DEBUG_LOC_SECTION_LABEL, 0);
15131 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
15132 output_location_lists (die);
15135 if (debug_info_level >= DINFO_LEVEL_NORMAL)
15136 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
15137 debug_line_section_label);
15139 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
15140 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
15142 /* Output all of the compilation units. We put the main one last so that
15143 the offsets are available to output_pubnames. */
15144 for (node = limbo_die_list; node; node = node->next)
15145 output_comp_unit (node->die, 0);
15147 output_comp_unit (comp_unit_die, 0);
15149 /* Output the abbreviation table. */
15150 switch_to_section (debug_abbrev_section);
15151 output_abbrev_section ();
15153 /* Output public names table if necessary. */
15154 if (!VEC_empty (pubname_entry, pubname_table))
15156 switch_to_section (debug_pubnames_section);
15157 output_pubnames (pubname_table);
15160 #ifdef DEBUG_PUBTYPES_SECTION
15161 /* Output public types table if necessary. */
15162 if (!VEC_empty (pubname_entry, pubtype_table))
15164 switch_to_section (debug_pubtypes_section);
15165 output_pubnames (pubtype_table);
15167 #endif
15169 /* Output the address range information. We only put functions in the arange
15170 table, so don't write it out if we don't have any. */
15171 if (fde_table_in_use)
15173 switch_to_section (debug_aranges_section);
15174 output_aranges ();
15177 /* Output ranges section if necessary. */
15178 if (ranges_table_in_use)
15180 switch_to_section (debug_ranges_section);
15181 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
15182 output_ranges ();
15185 /* Output the source line correspondence table. We must do this
15186 even if there is no line information. Otherwise, on an empty
15187 translation unit, we will generate a present, but empty,
15188 .debug_info section. IRIX 6.5 `nm' will then complain when
15189 examining the file. This is done late so that any filenames
15190 used by the debug_info section are marked as 'used'. */
15191 if (! DWARF2_ASM_LINE_DEBUG_INFO)
15193 switch_to_section (debug_line_section);
15194 output_line_info ();
15197 /* Have to end the macro section. */
15198 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
15200 switch_to_section (debug_macinfo_section);
15201 dw2_asm_output_data (1, 0, "End compilation unit");
15204 /* If we emitted any DW_FORM_strp form attribute, output the string
15205 table too. */
15206 if (debug_str_hash)
15207 htab_traverse (debug_str_hash, output_indirect_string, NULL);
15209 #else
15211 /* This should never be used, but its address is needed for comparisons. */
15212 const struct gcc_debug_hooks dwarf2_debug_hooks;
15214 #endif /* DWARF2_DEBUGGING_INFO */
15216 #include "gt-dwarf2out.h"