1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Ada
.Characters
.Latin_1
; use Ada
.Characters
.Latin_1
;
28 with Atree
; use Atree
;
29 with Casing
; use Casing
;
30 with Checks
; use Checks
;
31 with Debug
; use Debug
;
32 with Einfo
; use Einfo
;
33 with Elists
; use Elists
;
34 with Errout
; use Errout
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Util
; use Exp_Util
;
38 with Expander
; use Expander
;
39 with Freeze
; use Freeze
;
40 with Gnatvsn
; use Gnatvsn
;
41 with Itypes
; use Itypes
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Nlists
; use Nlists
;
45 with Nmake
; use Nmake
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Cat
; use Sem_Cat
;
54 with Sem_Ch6
; use Sem_Ch6
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch10
; use Sem_Ch10
;
57 with Sem_Dim
; use Sem_Dim
;
58 with Sem_Dist
; use Sem_Dist
;
59 with Sem_Elab
; use Sem_Elab
;
60 with Sem_Elim
; use Sem_Elim
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Prag
; use Sem_Prag
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
67 with Stand
; use Stand
;
68 with Sinfo
; use Sinfo
;
69 with Sinput
; use Sinput
;
71 with Stringt
; use Stringt
;
73 with Stylesw
; use Stylesw
;
74 with Targparm
; use Targparm
;
75 with Ttypes
; use Ttypes
;
76 with Tbuild
; use Tbuild
;
77 with Uintp
; use Uintp
;
78 with Uname
; use Uname
;
79 with Urealp
; use Urealp
;
81 with System
.CRC32
; use System
.CRC32
;
83 package body Sem_Attr
is
85 True_Value
: constant Uint
:= Uint_1
;
86 False_Value
: constant Uint
:= Uint_0
;
87 -- Synonyms to be used when these constants are used as Boolean values
89 Bad_Attribute
: exception;
90 -- Exception raised if an error is detected during attribute processing,
91 -- used so that we can abandon the processing so we don't run into
92 -- trouble with cascaded errors.
94 -- The following array is the list of attributes defined in the Ada 83 RM.
95 -- In Ada 83 mode, these are the only recognized attributes. In other Ada
96 -- modes all these attributes are recognized, even if removed in Ada 95.
98 Attribute_83
: constant Attribute_Class_Array
:= Attribute_Class_Array
'(
101 Attribute_Alignment |
104 Attribute_Constrained |
111 Attribute_First_Bit |
117 Attribute_Leading_Part |
119 Attribute_Machine_Emax |
120 Attribute_Machine_Emin |
121 Attribute_Machine_Mantissa |
122 Attribute_Machine_Overflows |
123 Attribute_Machine_Radix |
124 Attribute_Machine_Rounds |
130 Attribute_Safe_Emax |
131 Attribute_Safe_Large |
132 Attribute_Safe_Small |
135 Attribute_Storage_Size |
137 Attribute_Terminated |
140 Attribute_Width => True,
143 -- The following array is the list of attributes defined in the Ada 2005
144 -- RM which are not defined in Ada 95. These are recognized in Ada 95 mode,
145 -- but in Ada 95 they are considered to be implementation defined.
147 Attribute_05 : constant Attribute_Class_Array := Attribute_Class_Array'(
148 Attribute_Machine_Rounding |
151 Attribute_Stream_Size |
152 Attribute_Wide_Wide_Width
=> True,
155 -- The following array is the list of attributes defined in the Ada 2012
156 -- RM which are not defined in Ada 2005. These are recognized in Ada 95
157 -- and Ada 2005 modes, but are considered to be implementation defined.
159 Attribute_12
: constant Attribute_Class_Array
:= Attribute_Class_Array
'(
160 Attribute_First_Valid |
161 Attribute_Has_Same_Storage |
162 Attribute_Last_Valid |
163 Attribute_Max_Alignment_For_Allocation => True,
166 -- The following array contains all attributes that imply a modification
167 -- of their prefixes or result in an access value. Such prefixes can be
168 -- considered as lvalues.
170 Attribute_Name_Implies_Lvalue_Prefix : constant Attribute_Class_Array :=
171 Attribute_Class_Array'(
176 Attribute_Unchecked_Access |
177 Attribute_Unrestricted_Access
=> True,
180 -----------------------
181 -- Local_Subprograms --
182 -----------------------
184 procedure Eval_Attribute
(N
: Node_Id
);
185 -- Performs compile time evaluation of attributes where possible, leaving
186 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
187 -- set, and replacing the node with a literal node if the value can be
188 -- computed at compile time. All static attribute references are folded,
189 -- as well as a number of cases of non-static attributes that can always
190 -- be computed at compile time (e.g. floating-point model attributes that
191 -- are applied to non-static subtypes). Of course in such cases, the
192 -- Is_Static_Expression flag will not be set on the resulting literal.
193 -- Note that the only required action of this procedure is to catch the
194 -- static expression cases as described in the RM. Folding of other cases
195 -- is done where convenient, but some additional non-static folding is in
196 -- Expand_N_Attribute_Reference in cases where this is more convenient.
198 function Is_Anonymous_Tagged_Base
200 Typ
: Entity_Id
) return Boolean;
201 -- For derived tagged types that constrain parent discriminants we build
202 -- an anonymous unconstrained base type. We need to recognize the relation
203 -- between the two when analyzing an access attribute for a constrained
204 -- component, before the full declaration for Typ has been analyzed, and
205 -- where therefore the prefix of the attribute does not match the enclosing
208 procedure Set_Boolean_Result
(N
: Node_Id
; B
: Boolean);
209 -- Rewrites node N with an occurrence of either Standard_False or
210 -- Standard_True, depending on the value of the parameter B. The
211 -- result is marked as a static expression.
213 function Statically_Denotes_Object
(N
: Node_Id
) return Boolean;
214 -- Predicate used to check the legality of the prefix to 'Loop_Entry and
215 -- 'Old, when the prefix is not an entity name. Current RM specfies that
216 -- the prefix must be a direct or expanded name, but it has been proposed
217 -- that the prefix be allowed to be a selected component that does not
218 -- depend on a discriminant, or an indexed component with static indices.
219 -- Current code for this predicate implements this more permissive
222 -----------------------
223 -- Analyze_Attribute --
224 -----------------------
226 procedure Analyze_Attribute
(N
: Node_Id
) is
227 Loc
: constant Source_Ptr
:= Sloc
(N
);
228 Aname
: constant Name_Id
:= Attribute_Name
(N
);
229 P
: constant Node_Id
:= Prefix
(N
);
230 Exprs
: constant List_Id
:= Expressions
(N
);
231 Attr_Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
236 -- Type of prefix after analysis
238 P_Base_Type
: Entity_Id
;
239 -- Base type of prefix after analysis
241 -----------------------
242 -- Local Subprograms --
243 -----------------------
245 procedure Address_Checks
;
246 -- Semantic checks for valid use of Address attribute. This was made
247 -- a separate routine with the idea of using it for unrestricted access
248 -- which seems like it should follow the same rules, but that turned
249 -- out to be impractical. So now this is only used for Address.
251 procedure Analyze_Access_Attribute
;
252 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
253 -- Internally, Id distinguishes which of the three cases is involved.
255 procedure Analyze_Attribute_Old_Result
256 (Legal
: out Boolean;
257 Spec_Id
: out Entity_Id
);
258 -- Common processing for attributes 'Old and 'Result. The routine checks
259 -- that the attribute appears in a postcondition-like aspect or pragma
260 -- associated with a suitable subprogram or a body. Flag Legal is set
261 -- when the above criteria are met. Spec_Id denotes the entity of the
262 -- subprogram [body] or Empty if the attribute is illegal.
264 procedure Analyze_Image_Attribute
(Str_Typ
: Entity_Id
);
265 -- Common processing for attributes 'Img, 'Image, 'Wide_Image, and
266 -- 'Wide_Wide_Image. The routine checks that the prefix is valid and
267 -- sets the type of the attribute to the one specified by Str_Typ (e.g.
268 -- Standard_String for 'Image and Standard_Wide_String for 'Wide_Image).
270 procedure Bad_Attribute_For_Predicate
;
271 -- Output error message for use of a predicate (First, Last, Range) not
272 -- allowed with a type that has predicates. If the type is a generic
273 -- actual, then the message is a warning, and we generate code to raise
274 -- program error with an appropriate reason. No error message is given
275 -- for internally generated uses of the attributes. This legality rule
276 -- only applies to scalar types.
278 procedure Check_Array_Or_Scalar_Type
;
279 -- Common procedure used by First, Last, Range attribute to check
280 -- that the prefix is a constrained array or scalar type, or a name
281 -- of an array object, and that an argument appears only if appropriate
282 -- (i.e. only in the array case).
284 procedure Check_Array_Type
;
285 -- Common semantic checks for all array attributes. Checks that the
286 -- prefix is a constrained array type or the name of an array object.
287 -- The error message for non-arrays is specialized appropriately.
289 procedure Check_Asm_Attribute
;
290 -- Common semantic checks for Asm_Input and Asm_Output attributes
292 procedure Check_Component
;
293 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
294 -- Position. Checks prefix is an appropriate selected component.
296 procedure Check_Decimal_Fixed_Point_Type
;
297 -- Check that prefix of attribute N is a decimal fixed-point type
299 procedure Check_Dereference
;
300 -- If the prefix of attribute is an object of an access type, then
301 -- introduce an explicit dereference, and adjust P_Type accordingly.
303 procedure Check_Discrete_Type
;
304 -- Verify that prefix of attribute N is a discrete type
307 -- Check that no attribute arguments are present
309 procedure Check_Either_E0_Or_E1
;
310 -- Check that there are zero or one attribute arguments present
313 -- Check that exactly one attribute argument is present
316 -- Check that two attribute arguments are present
318 procedure Check_Enum_Image
;
319 -- If the prefix type of 'Image is an enumeration type, set all its
320 -- literals as referenced, since the image function could possibly end
321 -- up referencing any of the literals indirectly. Same for Enum_Val.
322 -- Set the flag only if the reference is in the main code unit. Same
323 -- restriction when resolving 'Value; otherwise an improperly set
324 -- reference when analyzing an inlined body will lose a proper
325 -- warning on a useless with_clause.
327 procedure Check_First_Last_Valid
;
328 -- Perform all checks for First_Valid and Last_Valid attributes
330 procedure Check_Fixed_Point_Type
;
331 -- Verify that prefix of attribute N is a fixed type
333 procedure Check_Fixed_Point_Type_0
;
334 -- Verify that prefix of attribute N is a fixed type and that
335 -- no attribute expressions are present.
337 procedure Check_Floating_Point_Type
;
338 -- Verify that prefix of attribute N is a float type
340 procedure Check_Floating_Point_Type_0
;
341 -- Verify that prefix of attribute N is a float type and that
342 -- no attribute expressions are present.
344 procedure Check_Floating_Point_Type_1
;
345 -- Verify that prefix of attribute N is a float type and that
346 -- exactly one attribute expression is present.
348 procedure Check_Floating_Point_Type_2
;
349 -- Verify that prefix of attribute N is a float type and that
350 -- two attribute expressions are present
352 procedure Check_SPARK_05_Restriction_On_Attribute
;
353 -- Issue an error in formal mode because attribute N is allowed
355 procedure Check_Integer_Type
;
356 -- Verify that prefix of attribute N is an integer type
358 procedure Check_Modular_Integer_Type
;
359 -- Verify that prefix of attribute N is a modular integer type
361 procedure Check_Not_CPP_Type
;
362 -- Check that P (the prefix of the attribute) is not an CPP type
363 -- for which no Ada predefined primitive is available.
365 procedure Check_Not_Incomplete_Type
;
366 -- Check that P (the prefix of the attribute) is not an incomplete
367 -- type or a private type for which no full view has been given.
369 procedure Check_Object_Reference
(P
: Node_Id
);
370 -- Check that P is an object reference
372 procedure Check_PolyORB_Attribute
;
373 -- Validity checking for PolyORB/DSA attribute
375 procedure Check_Program_Unit
;
376 -- Verify that prefix of attribute N is a program unit
378 procedure Check_Real_Type
;
379 -- Verify that prefix of attribute N is fixed or float type
381 procedure Check_Scalar_Type
;
382 -- Verify that prefix of attribute N is a scalar type
384 procedure Check_Standard_Prefix
;
385 -- Verify that prefix of attribute N is package Standard. Also checks
386 -- that there are no arguments.
388 procedure Check_Stream_Attribute
(Nam
: TSS_Name_Type
);
389 -- Validity checking for stream attribute. Nam is the TSS name of the
390 -- corresponding possible defined attribute function (e.g. for the
391 -- Read attribute, Nam will be TSS_Stream_Read).
393 procedure Check_System_Prefix
;
394 -- Verify that prefix of attribute N is package System
396 procedure Check_Task_Prefix
;
397 -- Verify that prefix of attribute N is a task or task type
399 procedure Check_Type
;
400 -- Verify that the prefix of attribute N is a type
402 procedure Check_Unit_Name
(Nod
: Node_Id
);
403 -- Check that Nod is of the form of a library unit name, i.e that
404 -- it is an identifier, or a selected component whose prefix is
405 -- itself of the form of a library unit name. Note that this is
406 -- quite different from Check_Program_Unit, since it only checks
407 -- the syntactic form of the name, not the semantic identity. This
408 -- is because it is used with attributes (Elab_Body, Elab_Spec and
409 -- Elaborated) which can refer to non-visible unit.
411 procedure Error_Attr
(Msg
: String; Error_Node
: Node_Id
);
412 pragma No_Return
(Error_Attr
);
413 procedure Error_Attr
;
414 pragma No_Return
(Error_Attr
);
415 -- Posts error using Error_Msg_N at given node, sets type of attribute
416 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
417 -- semantic processing. The message typically contains a % insertion
418 -- character which is replaced by the attribute name. The call with
419 -- no arguments is used when the caller has already generated the
420 -- required error messages.
422 procedure Error_Attr_P
(Msg
: String);
423 pragma No_Return
(Error_Attr
);
424 -- Like Error_Attr, but error is posted at the start of the prefix
426 procedure Legal_Formal_Attribute
;
427 -- Common processing for attributes Definite and Has_Discriminants.
428 -- Checks that prefix is generic indefinite formal type.
430 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
431 -- Common processing for attributes Max_Alignment_For_Allocation and
432 -- Max_Size_In_Storage_Elements.
435 -- Common processing for attributes Max and Min
437 procedure Standard_Attribute
(Val
: Int
);
438 -- Used to process attributes whose prefix is package Standard which
439 -- yield values of type Universal_Integer. The attribute reference
440 -- node is rewritten with an integer literal of the given value which
441 -- is marked as static.
443 procedure Uneval_Old_Msg
;
444 -- Called when Loop_Entry or Old is used in a potentially unevaluated
445 -- expression. Generates appropriate message or warning depending on
446 -- the setting of Opt.Uneval_Old (or flags in an N_Aspect_Specification
447 -- node in the aspect case).
449 procedure Unexpected_Argument
(En
: Node_Id
);
450 -- Signal unexpected attribute argument (En is the argument)
452 procedure Validate_Non_Static_Attribute_Function_Call
;
453 -- Called when processing an attribute that is a function call to a
454 -- non-static function, i.e. an attribute function that either takes
455 -- non-scalar arguments or returns a non-scalar result. Verifies that
456 -- such a call does not appear in a preelaborable context.
462 procedure Address_Checks
is
464 -- An Address attribute created by expansion is legal even when it
465 -- applies to other entity-denoting expressions.
467 if not Comes_From_Source
(N
) then
470 -- Address attribute on a protected object self reference is legal
472 elsif Is_Protected_Self_Reference
(P
) then
475 -- Address applied to an entity
477 elsif Is_Entity_Name
(P
) then
479 Ent
: constant Entity_Id
:= Entity
(P
);
482 if Is_Subprogram
(Ent
) then
483 Set_Address_Taken
(Ent
);
484 Kill_Current_Values
(Ent
);
486 -- An Address attribute is accepted when generated by the
487 -- compiler for dispatching operation, and an error is
488 -- issued once the subprogram is frozen (to avoid confusing
489 -- errors about implicit uses of Address in the dispatch
490 -- table initialization).
492 if Has_Pragma_Inline_Always
(Entity
(P
))
493 and then Comes_From_Source
(P
)
496 ("prefix of % attribute cannot be Inline_Always "
499 -- It is illegal to apply 'Address to an intrinsic
500 -- subprogram. This is now formalized in AI05-0095.
501 -- In an instance, an attempt to obtain 'Address of an
502 -- intrinsic subprogram (e.g the renaming of a predefined
503 -- operator that is an actual) raises Program_Error.
505 elsif Convention
(Ent
) = Convention_Intrinsic
then
508 Make_Raise_Program_Error
(Loc
,
509 Reason
=> PE_Address_Of_Intrinsic
));
512 Error_Msg_Name_1
:= Aname
;
514 ("cannot take % of intrinsic subprogram", N
);
517 -- Issue an error if prefix denotes an eliminated subprogram
520 Check_For_Eliminated_Subprogram
(P
, Ent
);
523 -- Object or label reference
525 elsif Is_Object
(Ent
) or else Ekind
(Ent
) = E_Label
then
526 Set_Address_Taken
(Ent
);
528 -- Deal with No_Implicit_Aliasing restriction
530 if Restriction_Check_Required
(No_Implicit_Aliasing
) then
531 if not Is_Aliased_View
(P
) then
532 Check_Restriction
(No_Implicit_Aliasing
, P
);
534 Check_No_Implicit_Aliasing
(P
);
538 -- If we have an address of an object, and the attribute
539 -- comes from source, then set the object as potentially
540 -- source modified. We do this because the resulting address
541 -- can potentially be used to modify the variable and we
542 -- might not detect this, leading to some junk warnings.
544 Set_Never_Set_In_Source
(Ent
, False);
546 -- Allow Address to be applied to task or protected type,
547 -- returning null address (what is that about???)
549 elsif (Is_Concurrent_Type
(Etype
(Ent
))
550 and then Etype
(Ent
) = Base_Type
(Ent
))
551 or else Ekind
(Ent
) = E_Package
552 or else Is_Generic_Unit
(Ent
)
555 New_Occurrence_Of
(RTE
(RE_Null_Address
), Sloc
(N
)));
557 -- Anything else is illegal
560 Error_Attr
("invalid prefix for % attribute", P
);
566 elsif Is_Object_Reference
(P
) then
569 -- Subprogram called using dot notation
571 elsif Nkind
(P
) = N_Selected_Component
572 and then Is_Subprogram
(Entity
(Selector_Name
(P
)))
576 -- What exactly are we allowing here ??? and is this properly
577 -- documented in the sinfo documentation for this node ???
579 elsif Relaxed_RM_Semantics
580 and then Nkind
(P
) = N_Attribute_Reference
584 -- All other non-entity name cases are illegal
587 Error_Attr
("invalid prefix for % attribute", P
);
591 ------------------------------
592 -- Analyze_Access_Attribute --
593 ------------------------------
595 procedure Analyze_Access_Attribute
is
596 Acc_Type
: Entity_Id
;
601 function Build_Access_Object_Type
(DT
: Entity_Id
) return Entity_Id
;
602 -- Build an access-to-object type whose designated type is DT,
603 -- and whose Ekind is appropriate to the attribute type. The
604 -- type that is constructed is returned as the result.
606 procedure Build_Access_Subprogram_Type
(P
: Node_Id
);
607 -- Build an access to subprogram whose designated type is the type of
608 -- the prefix. If prefix is overloaded, so is the node itself. The
609 -- result is stored in Acc_Type.
611 function OK_Self_Reference
return Boolean;
612 -- An access reference whose prefix is a type can legally appear
613 -- within an aggregate, where it is obtained by expansion of
614 -- a defaulted aggregate. The enclosing aggregate that contains
615 -- the self-referenced is flagged so that the self-reference can
616 -- be expanded into a reference to the target object (see exp_aggr).
618 ------------------------------
619 -- Build_Access_Object_Type --
620 ------------------------------
622 function Build_Access_Object_Type
(DT
: Entity_Id
) return Entity_Id
is
623 Typ
: constant Entity_Id
:=
625 (E_Access_Attribute_Type
, Current_Scope
, Loc
, 'A');
627 Set_Etype
(Typ
, Typ
);
629 Set_Associated_Node_For_Itype
(Typ
, N
);
630 Set_Directly_Designated_Type
(Typ
, DT
);
632 end Build_Access_Object_Type
;
634 ----------------------------------
635 -- Build_Access_Subprogram_Type --
636 ----------------------------------
638 procedure Build_Access_Subprogram_Type
(P
: Node_Id
) is
639 Index
: Interp_Index
;
642 procedure Check_Local_Access
(E
: Entity_Id
);
643 -- Deal with possible access to local subprogram. If we have such
644 -- an access, we set a flag to kill all tracked values on any call
645 -- because this access value may be passed around, and any called
646 -- code might use it to access a local procedure which clobbers a
647 -- tracked value. If the scope is a loop or block, indicate that
648 -- value tracking is disabled for the enclosing subprogram.
650 function Get_Kind
(E
: Entity_Id
) return Entity_Kind
;
651 -- Distinguish between access to regular/protected subprograms
653 ------------------------
654 -- Check_Local_Access --
655 ------------------------
657 procedure Check_Local_Access
(E
: Entity_Id
) is
659 if not Is_Library_Level_Entity
(E
) then
660 Set_Suppress_Value_Tracking_On_Call
(Current_Scope
);
661 Set_Suppress_Value_Tracking_On_Call
662 (Nearest_Dynamic_Scope
(Current_Scope
));
664 end Check_Local_Access
;
670 function Get_Kind
(E
: Entity_Id
) return Entity_Kind
is
672 if Convention
(E
) = Convention_Protected
then
673 return E_Access_Protected_Subprogram_Type
;
675 return E_Access_Subprogram_Type
;
679 -- Start of processing for Build_Access_Subprogram_Type
682 -- In the case of an access to subprogram, use the name of the
683 -- subprogram itself as the designated type. Type-checking in
684 -- this case compares the signatures of the designated types.
686 -- Note: This fragment of the tree is temporarily malformed
687 -- because the correct tree requires an E_Subprogram_Type entity
688 -- as the designated type. In most cases this designated type is
689 -- later overridden by the semantics with the type imposed by the
690 -- context during the resolution phase. In the specific case of
691 -- the expression Address!(Prim'Unrestricted_Access), used to
692 -- initialize slots of dispatch tables, this work will be done by
693 -- the expander (see Exp_Aggr).
695 -- The reason to temporarily add this kind of node to the tree
696 -- instead of a proper E_Subprogram_Type itype, is the following:
697 -- in case of errors found in the source file we report better
698 -- error messages. For example, instead of generating the
701 -- "expected access to subprogram with profile
702 -- defined at line X"
704 -- we currently generate:
706 -- "expected access to function Z defined at line X"
708 Set_Etype
(N
, Any_Type
);
710 if not Is_Overloaded
(P
) then
711 Check_Local_Access
(Entity
(P
));
713 if not Is_Intrinsic_Subprogram
(Entity
(P
)) then
714 Acc_Type
:= Create_Itype
(Get_Kind
(Entity
(P
)), N
);
715 Set_Is_Public
(Acc_Type
, False);
716 Set_Etype
(Acc_Type
, Acc_Type
);
717 Set_Convention
(Acc_Type
, Convention
(Entity
(P
)));
718 Set_Directly_Designated_Type
(Acc_Type
, Entity
(P
));
719 Set_Etype
(N
, Acc_Type
);
720 Freeze_Before
(N
, Acc_Type
);
724 Get_First_Interp
(P
, Index
, It
);
725 while Present
(It
.Nam
) loop
726 Check_Local_Access
(It
.Nam
);
728 if not Is_Intrinsic_Subprogram
(It
.Nam
) then
729 Acc_Type
:= Create_Itype
(Get_Kind
(It
.Nam
), N
);
730 Set_Is_Public
(Acc_Type
, False);
731 Set_Etype
(Acc_Type
, Acc_Type
);
732 Set_Convention
(Acc_Type
, Convention
(It
.Nam
));
733 Set_Directly_Designated_Type
(Acc_Type
, It
.Nam
);
734 Add_One_Interp
(N
, Acc_Type
, Acc_Type
);
735 Freeze_Before
(N
, Acc_Type
);
738 Get_Next_Interp
(Index
, It
);
742 -- Cannot be applied to intrinsic. Looking at the tests above,
743 -- the only way Etype (N) can still be set to Any_Type is if
744 -- Is_Intrinsic_Subprogram was True for some referenced entity.
746 if Etype
(N
) = Any_Type
then
747 Error_Attr_P
("prefix of % attribute cannot be intrinsic");
749 end Build_Access_Subprogram_Type
;
751 ----------------------
752 -- OK_Self_Reference --
753 ----------------------
755 function OK_Self_Reference
return Boolean is
762 (Nkind
(Par
) = N_Component_Association
763 or else Nkind
(Par
) in N_Subexpr
)
765 if Nkind_In
(Par
, N_Aggregate
, N_Extension_Aggregate
) then
766 if Etype
(Par
) = Typ
then
767 Set_Has_Self_Reference
(Par
);
769 -- Check the context: the aggregate must be part of the
770 -- initialization of a type or component, or it is the
771 -- resulting expansion in an initialization procedure.
773 if Is_Init_Proc
(Current_Scope
) then
777 while Present
(Par
) loop
778 if Nkind
(Par
) = N_Full_Type_Declaration
then
793 -- No enclosing aggregate, or not a self-reference
796 end OK_Self_Reference
;
798 -- Start of processing for Analyze_Access_Attribute
801 Check_SPARK_05_Restriction_On_Attribute
;
804 if Nkind
(P
) = N_Character_Literal
then
806 ("prefix of % attribute cannot be enumeration literal");
809 -- Case of access to subprogram
811 if Is_Entity_Name
(P
) and then Is_Overloadable
(Entity
(P
)) then
812 if Has_Pragma_Inline_Always
(Entity
(P
)) then
814 ("prefix of % attribute cannot be Inline_Always subprogram");
816 elsif Aname
= Name_Unchecked_Access
then
817 Error_Attr
("attribute% cannot be applied to a subprogram", P
);
820 -- Issue an error if the prefix denotes an eliminated subprogram
822 Check_For_Eliminated_Subprogram
(P
, Entity
(P
));
824 -- Check for obsolescent subprogram reference
826 Check_Obsolescent_2005_Entity
(Entity
(P
), P
);
828 -- Build the appropriate subprogram type
830 Build_Access_Subprogram_Type
(P
);
832 -- For P'Access or P'Unrestricted_Access, where P is a nested
833 -- subprogram, we might be passing P to another subprogram (but we
834 -- don't check that here), which might call P. P could modify
835 -- local variables, so we need to kill current values. It is
836 -- important not to do this for library-level subprograms, because
837 -- Kill_Current_Values is very inefficient in the case of library
838 -- level packages with lots of tagged types.
840 if Is_Library_Level_Entity
(Entity
(Prefix
(N
))) then
843 -- Do not kill values on nodes initializing dispatch tables
844 -- slots. The construct Prim_Ptr!(Prim'Unrestricted_Access)
845 -- is currently generated by the expander only for this
846 -- purpose. Done to keep the quality of warnings currently
847 -- generated by the compiler (otherwise any declaration of
848 -- a tagged type cleans constant indications from its scope).
850 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
851 and then (Etype
(Parent
(N
)) = RTE
(RE_Prim_Ptr
)
853 Etype
(Parent
(N
)) = RTE
(RE_Size_Ptr
))
854 and then Is_Dispatching_Operation
855 (Directly_Designated_Type
(Etype
(N
)))
863 -- In the static elaboration model, treat the attribute reference
864 -- as a call for elaboration purposes. Suppress this treatment
865 -- under debug flag. In any case, we are all done.
867 if not Dynamic_Elaboration_Checks
and not Debug_Flag_Dot_UU
then
873 -- Component is an operation of a protected type
875 elsif Nkind
(P
) = N_Selected_Component
876 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
878 if Ekind
(Entity
(Selector_Name
(P
))) = E_Entry
then
879 Error_Attr_P
("prefix of % attribute must be subprogram");
882 Build_Access_Subprogram_Type
(Selector_Name
(P
));
886 -- Deal with incorrect reference to a type, but note that some
887 -- accesses are allowed: references to the current type instance,
888 -- or in Ada 2005 self-referential pointer in a default-initialized
891 if Is_Entity_Name
(P
) then
894 -- The reference may appear in an aggregate that has been expanded
895 -- into a loop. Locate scope of type definition, if any.
897 Scop
:= Current_Scope
;
898 while Ekind
(Scop
) = E_Loop
loop
899 Scop
:= Scope
(Scop
);
902 if Is_Type
(Typ
) then
904 -- OK if we are within the scope of a limited type
905 -- let's mark the component as having per object constraint
907 if Is_Anonymous_Tagged_Base
(Scop
, Typ
) then
915 Q
: Node_Id
:= Parent
(N
);
919 and then Nkind
(Q
) /= N_Component_Declaration
925 Set_Has_Per_Object_Constraint
926 (Defining_Identifier
(Q
), True);
930 if Nkind
(P
) = N_Expanded_Name
then
932 ("current instance prefix must be a direct name", P
);
935 -- If a current instance attribute appears in a component
936 -- constraint it must appear alone; other contexts (spec-
937 -- expressions, within a task body) are not subject to this
940 if not In_Spec_Expression
941 and then not Has_Completion
(Scop
)
943 Nkind_In
(Parent
(N
), N_Discriminant_Association
,
944 N_Index_Or_Discriminant_Constraint
)
947 ("current instance attribute must appear alone", N
);
950 if Is_CPP_Class
(Root_Type
(Typ
)) then
952 ("??current instance unsupported for derivations of "
953 & "'C'P'P types", N
);
956 -- OK if we are in initialization procedure for the type
957 -- in question, in which case the reference to the type
958 -- is rewritten as a reference to the current object.
960 elsif Ekind
(Scop
) = E_Procedure
961 and then Is_Init_Proc
(Scop
)
962 and then Etype
(First_Formal
(Scop
)) = Typ
965 Make_Attribute_Reference
(Loc
,
966 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
967 Attribute_Name
=> Name_Unrestricted_Access
));
971 -- OK if a task type, this test needs sharpening up ???
973 elsif Is_Task_Type
(Typ
) then
976 -- OK if self-reference in an aggregate in Ada 2005, and
977 -- the reference comes from a copied default expression.
979 -- Note that we check legality of self-reference even if the
980 -- expression comes from source, e.g. when a single component
981 -- association in an aggregate has a box association.
983 elsif Ada_Version
>= Ada_2005
984 and then OK_Self_Reference
988 -- OK if reference to current instance of a protected object
990 elsif Is_Protected_Self_Reference
(P
) then
993 -- Otherwise we have an error case
996 Error_Attr
("% attribute cannot be applied to type", P
);
1002 -- If we fall through, we have a normal access to object case
1004 -- Unrestricted_Access is (for now) legal wherever an allocator would
1005 -- be legal, so its Etype is set to E_Allocator. The expected type
1006 -- of the other attributes is a general access type, and therefore
1007 -- we label them with E_Access_Attribute_Type.
1009 if not Is_Overloaded
(P
) then
1010 Acc_Type
:= Build_Access_Object_Type
(P_Type
);
1011 Set_Etype
(N
, Acc_Type
);
1015 Index
: Interp_Index
;
1018 Set_Etype
(N
, Any_Type
);
1019 Get_First_Interp
(P
, Index
, It
);
1020 while Present
(It
.Typ
) loop
1021 Acc_Type
:= Build_Access_Object_Type
(It
.Typ
);
1022 Add_One_Interp
(N
, Acc_Type
, Acc_Type
);
1023 Get_Next_Interp
(Index
, It
);
1028 -- Special cases when we can find a prefix that is an entity name
1037 if Is_Entity_Name
(PP
) then
1040 -- If we have an access to an object, and the attribute
1041 -- comes from source, then set the object as potentially
1042 -- source modified. We do this because the resulting access
1043 -- pointer can be used to modify the variable, and we might
1044 -- not detect this, leading to some junk warnings.
1046 -- We only do this for source references, since otherwise
1047 -- we can suppress warnings, e.g. from the unrestricted
1048 -- access generated for validity checks in -gnatVa mode.
1050 if Comes_From_Source
(N
) then
1051 Set_Never_Set_In_Source
(Ent
, False);
1054 -- Mark entity as address taken in the case of
1055 -- 'Unrestricted_Access or subprograms, and kill current
1058 if Aname
= Name_Unrestricted_Access
1059 or else Is_Subprogram
(Ent
)
1061 Set_Address_Taken
(Ent
);
1064 Kill_Current_Values
(Ent
);
1067 elsif Nkind_In
(PP
, N_Selected_Component
,
1068 N_Indexed_Component
)
1077 end Analyze_Access_Attribute
;
1079 ----------------------------------
1080 -- Analyze_Attribute_Old_Result --
1081 ----------------------------------
1083 procedure Analyze_Attribute_Old_Result
1084 (Legal
: out Boolean;
1085 Spec_Id
: out Entity_Id
)
1087 procedure Check_Placement_In_Check
(Prag
: Node_Id
);
1088 -- Verify that the attribute appears within pragma Check that mimics
1091 procedure Check_Placement_In_Contract_Cases
(Prag
: Node_Id
);
1092 -- Verify that the attribute appears within a consequence of aspect
1093 -- or pragma Contract_Cases denoted by Prag.
1095 procedure Check_Placement_In_Test_Case
(Prag
: Node_Id
);
1096 -- Verify that the attribute appears within the "Ensures" argument of
1097 -- aspect or pragma Test_Case denoted by Prag.
1101 Encl_Nod
: Node_Id
) return Boolean;
1102 -- Subsidiary to Check_Placemenet_In_XXX. Determine whether arbitrary
1103 -- node Nod is within enclosing node Encl_Nod.
1105 procedure Placement_Error
;
1106 -- Emit a general error when the attributes does not appear in a
1107 -- postcondition-like aspect or pragma.
1109 ------------------------------
1110 -- Check_Placement_In_Check --
1111 ------------------------------
1113 procedure Check_Placement_In_Check
(Prag
: Node_Id
) is
1114 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
1115 Nam
: constant Name_Id
:= Chars
(Get_Pragma_Arg
(First
(Args
)));
1118 -- The "Name" argument of pragma Check denotes a postcondition
1120 if Nam_In
(Nam
, Name_Post
,
1127 -- Otherwise the placement of the attribute is illegal
1132 end Check_Placement_In_Check
;
1134 ---------------------------------------
1135 -- Check_Placement_In_Contract_Cases --
1136 ---------------------------------------
1138 procedure Check_Placement_In_Contract_Cases
(Prag
: Node_Id
) is
1144 -- Obtain the argument of the aspect or pragma
1146 if Nkind
(Prag
) = N_Aspect_Specification
then
1149 Arg
:= First
(Pragma_Argument_Associations
(Prag
));
1152 Cases
:= Expression
(Arg
);
1154 if Present
(Component_Associations
(Cases
)) then
1155 CCase
:= First
(Component_Associations
(Cases
));
1156 while Present
(CCase
) loop
1158 -- Detect whether the attribute appears within the
1159 -- consequence of the current contract case.
1161 if Nkind
(CCase
) = N_Component_Association
1162 and then Is_Within
(N
, Expression
(CCase
))
1171 -- Otherwise aspect or pragma Contract_Cases is either malformed
1172 -- or the attribute does not appear within a consequence.
1175 ("attribute % must appear in the consequence of a contract case",
1177 end Check_Placement_In_Contract_Cases
;
1179 ----------------------------------
1180 -- Check_Placement_In_Test_Case --
1181 ----------------------------------
1183 procedure Check_Placement_In_Test_Case
(Prag
: Node_Id
) is
1184 Arg
: constant Node_Id
:=
1187 Arg_Nam
=> Name_Ensures
,
1188 From_Aspect
=> Nkind
(Prag
) = N_Aspect_Specification
);
1191 -- Detect whether the attribute appears within the "Ensures"
1192 -- expression of aspect or pragma Test_Case.
1194 if Present
(Arg
) and then Is_Within
(N
, Arg
) then
1199 ("attribute % must appear in the ensures expression of a "
1202 end Check_Placement_In_Test_Case
;
1210 Encl_Nod
: Node_Id
) return Boolean
1216 while Present
(Par
) loop
1217 if Par
= Encl_Nod
then
1220 -- Prevent the search from going too far
1222 elsif Is_Body_Or_Package_Declaration
(Par
) then
1226 Par
:= Parent
(Par
);
1232 ---------------------
1233 -- Placement_Error --
1234 ---------------------
1236 procedure Placement_Error
is
1238 if Aname
= Name_Old
then
1239 Error_Attr
("attribute % can only appear in postcondition", P
);
1241 -- Specialize the error message for attribute 'Result
1245 ("attribute % can only appear in postcondition of function",
1248 end Placement_Error
;
1254 Subp_Decl
: Node_Id
;
1256 -- Start of processing for Analyze_Attribute_Old_Result
1259 -- Assume that the attribute is illegal
1264 -- Traverse the parent chain to find the aspect or pragma where the
1265 -- attribute resides.
1268 while Present
(Prag
) loop
1269 if Nkind_In
(Prag
, N_Aspect_Specification
, N_Pragma
) then
1272 -- Prevent the search from going too far
1274 elsif Is_Body_Or_Package_Declaration
(Prag
) then
1278 Prag
:= Parent
(Prag
);
1281 -- The attribute is allowed to appear only in postcondition-like
1282 -- aspects or pragmas.
1284 if Nkind_In
(Prag
, N_Aspect_Specification
, N_Pragma
) then
1285 if Nkind
(Prag
) = N_Aspect_Specification
then
1286 Prag_Nam
:= Chars
(Identifier
(Prag
));
1288 Prag_Nam
:= Pragma_Name
(Prag
);
1291 if Prag_Nam
= Name_Check
then
1292 Check_Placement_In_Check
(Prag
);
1294 elsif Prag_Nam
= Name_Contract_Cases
then
1295 Check_Placement_In_Contract_Cases
(Prag
);
1297 -- Attribute 'Result is allowed to appear in aspect or pragma
1298 -- [Refined_]Depends (SPARK RM 6.1.5(11)).
1300 elsif Nam_In
(Prag_Nam
, Name_Depends
, Name_Refined_Depends
)
1301 and then Aname
= Name_Result
1305 elsif Nam_In
(Prag_Nam
, Name_Post
,
1312 elsif Prag_Nam
= Name_Test_Case
then
1313 Check_Placement_In_Test_Case
(Prag
);
1320 -- Otherwise the placement of the attribute is illegal
1327 -- Find the related subprogram subject to the aspect or pragma
1329 if Nkind
(Prag
) = N_Aspect_Specification
then
1330 Subp_Decl
:= Parent
(Prag
);
1332 Subp_Decl
:= Find_Related_Declaration_Or_Body
(Prag
);
1335 -- The aspect or pragma where the attribute resides should be
1336 -- associated with a subprogram declaration or a body. If this is not
1337 -- the case, then the aspect or pragma is illegal. Return as analysis
1338 -- cannot be carried out. Note that it is legal to have the aspect
1339 -- appear on a subprogram renaming, when the renamed entity is an
1340 -- attribute reference.
1342 -- Generating C code the internally built nested _postcondition
1343 -- subprograms are inlined; after expanded, inlined aspects are
1344 -- located in the internal block generated by the frontend.
1346 if Nkind
(Subp_Decl
) = N_Block_Statement
1347 and then Modify_Tree_For_C
1348 and then In_Inlined_Body
1352 elsif not Nkind_In
(Subp_Decl
, N_Abstract_Subprogram_Declaration
,
1353 N_Entry_Declaration
,
1354 N_Expression_Function
,
1355 N_Generic_Subprogram_Declaration
,
1357 N_Subprogram_Body_Stub
,
1358 N_Subprogram_Declaration
,
1359 N_Subprogram_Renaming_Declaration
)
1364 -- If we get here, then the attribute is legal
1367 Spec_Id
:= Unique_Defining_Entity
(Subp_Decl
);
1369 -- When generating C code, nested _postcondition subprograms are
1370 -- inlined by the front end to avoid problems (when unnested) with
1371 -- referenced itypes. Handle that here, since as part of inlining the
1372 -- expander nests subprogram within a dummy procedure named _parent
1373 -- (see Build_Postconditions_Procedure and Build_Body_To_Inline).
1374 -- Hence, in this context, the spec_id of _postconditions is the
1377 if Modify_Tree_For_C
1378 and then Chars
(Spec_Id
) = Name_uParent
1379 and then Chars
(Scope
(Spec_Id
)) = Name_uPostconditions
1381 -- This situation occurs only when preanalyzing the inlined body
1383 pragma Assert
(not Full_Analysis
);
1385 Spec_Id
:= Scope
(Spec_Id
);
1386 pragma Assert
(Is_Inlined
(Spec_Id
));
1388 end Analyze_Attribute_Old_Result
;
1390 -----------------------------
1391 -- Analyze_Image_Attribute --
1392 -----------------------------
1394 procedure Analyze_Image_Attribute
(Str_Typ
: Entity_Id
) is
1396 Check_SPARK_05_Restriction_On_Attribute
;
1398 -- AI12-00124: The ARG has adopted the GNAT semantics of 'Img for
1399 -- scalar types, so that the prefix can be an object, a named value,
1400 -- or a type, and there is no need for an argument in this case.
1402 if Attr_Id
= Attribute_Img
1403 or else (Ada_Version
> Ada_2005
and then Is_Object_Image
(P
))
1406 Set_Etype
(N
, Str_Typ
);
1408 if Attr_Id
= Attribute_Img
and then not Is_Object_Image
(P
) then
1410 ("prefix of % attribute must be a scalar object name");
1414 Set_Etype
(N
, Str_Typ
);
1416 -- Check that the prefix type is scalar - much in the same way as
1417 -- Check_Scalar_Type but with custom error messages to denote the
1418 -- variants of 'Image attributes.
1420 if Is_Entity_Name
(P
)
1421 and then Is_Type
(Entity
(P
))
1422 and then Ekind
(Entity
(P
)) = E_Incomplete_Type
1423 and then Present
(Full_View
(Entity
(P
)))
1425 P_Type
:= Full_View
(Entity
(P
));
1426 Set_Entity
(P
, P_Type
);
1429 if not Is_Entity_Name
(P
)
1430 or else not Is_Type
(Entity
(P
))
1431 or else not Is_Scalar_Type
(P_Type
)
1433 if Ada_Version
> Ada_2005
then
1435 ("prefix of % attribute must be a scalar type or a scalar "
1438 Error_Attr_P
("prefix of % attribute must be a scalar type");
1441 elsif Is_Protected_Self_Reference
(P
) then
1443 ("prefix of % attribute denotes current instance "
1444 & "(RM 9.4(21/2))");
1447 Resolve
(E1
, P_Base_Type
);
1448 Validate_Non_Static_Attribute_Function_Call
;
1453 -- Check restriction No_Fixed_IO. Note the check of Comes_From_Source
1454 -- to avoid giving a duplicate message for when Image attributes
1455 -- applied to object references get expanded into type-based Image
1458 if Restriction_Check_Required
(No_Fixed_IO
)
1459 and then Comes_From_Source
(N
)
1460 and then Is_Fixed_Point_Type
(P_Type
)
1462 Check_Restriction
(No_Fixed_IO
, P
);
1464 end Analyze_Image_Attribute
;
1466 ---------------------------------
1467 -- Bad_Attribute_For_Predicate --
1468 ---------------------------------
1470 procedure Bad_Attribute_For_Predicate
is
1472 if Is_Scalar_Type
(P_Type
)
1473 and then Comes_From_Source
(N
)
1475 Error_Msg_Name_1
:= Aname
;
1476 Bad_Predicated_Subtype_Use
1477 ("type& has predicates, attribute % not allowed", N
, P_Type
);
1479 end Bad_Attribute_For_Predicate
;
1481 --------------------------------
1482 -- Check_Array_Or_Scalar_Type --
1483 --------------------------------
1485 procedure Check_Array_Or_Scalar_Type
is
1486 function In_Aspect_Specification
return Boolean;
1487 -- A current instance of a type in an aspect specification is an
1488 -- object and not a type, and therefore cannot be of a scalar type
1489 -- in the prefix of one of the array attributes if the attribute
1490 -- reference is part of an aspect expression.
1492 -----------------------------
1493 -- In_Aspect_Specification --
1494 -----------------------------
1496 function In_Aspect_Specification
return Boolean is
1501 while Present
(P
) loop
1502 if Nkind
(P
) = N_Aspect_Specification
then
1503 return P_Type
= Entity
(P
);
1505 elsif Nkind
(P
) in N_Declaration
then
1513 end In_Aspect_Specification
;
1520 -- Start of processing for Check_Array_Or_Scalar_Type
1523 -- Case of string literal or string literal subtype. These cases
1524 -- cannot arise from legal Ada code, but the expander is allowed
1525 -- to generate them. They require special handling because string
1526 -- literal subtypes do not have standard bounds (the whole idea
1527 -- of these subtypes is to avoid having to generate the bounds)
1529 if Ekind
(P_Type
) = E_String_Literal_Subtype
then
1530 Set_Etype
(N
, Etype
(First_Index
(P_Base_Type
)));
1535 elsif Is_Scalar_Type
(P_Type
) then
1538 if Present
(E1
) then
1539 Error_Attr
("invalid argument in % attribute", E1
);
1541 elsif In_Aspect_Specification
then
1543 ("prefix of % attribute cannot be the current instance of a "
1544 & "scalar type", P
);
1547 Set_Etype
(N
, P_Base_Type
);
1551 -- The following is a special test to allow 'First to apply to
1552 -- private scalar types if the attribute comes from generated
1553 -- code. This occurs in the case of Normalize_Scalars code.
1555 elsif Is_Private_Type
(P_Type
)
1556 and then Present
(Full_View
(P_Type
))
1557 and then Is_Scalar_Type
(Full_View
(P_Type
))
1558 and then not Comes_From_Source
(N
)
1560 Set_Etype
(N
, Implementation_Base_Type
(P_Type
));
1562 -- Array types other than string literal subtypes handled above
1567 -- We know prefix is an array type, or the name of an array
1568 -- object, and that the expression, if present, is static
1569 -- and within the range of the dimensions of the type.
1571 pragma Assert
(Is_Array_Type
(P_Type
));
1572 Index
:= First_Index
(P_Base_Type
);
1576 -- First dimension assumed
1578 Set_Etype
(N
, Base_Type
(Etype
(Index
)));
1581 Dims
:= UI_To_Int
(Intval
(E1
));
1583 for J
in 1 .. Dims
- 1 loop
1587 Set_Etype
(N
, Base_Type
(Etype
(Index
)));
1588 Set_Etype
(E1
, Standard_Integer
);
1591 end Check_Array_Or_Scalar_Type
;
1593 ----------------------
1594 -- Check_Array_Type --
1595 ----------------------
1597 procedure Check_Array_Type
is
1599 -- Dimension number for array attributes
1602 -- If the type is a string literal type, then this must be generated
1603 -- internally, and no further check is required on its legality.
1605 if Ekind
(P_Type
) = E_String_Literal_Subtype
then
1608 -- If the type is a composite, it is an illegal aggregate, no point
1611 elsif P_Type
= Any_Composite
then
1612 raise Bad_Attribute
;
1615 -- Normal case of array type or subtype
1617 Check_Either_E0_Or_E1
;
1620 if Is_Array_Type
(P_Type
) then
1621 if not Is_Constrained
(P_Type
)
1622 and then Is_Entity_Name
(P
)
1623 and then Is_Type
(Entity
(P
))
1625 -- Note: we do not call Error_Attr here, since we prefer to
1626 -- continue, using the relevant index type of the array,
1627 -- even though it is unconstrained. This gives better error
1628 -- recovery behavior.
1630 Error_Msg_Name_1
:= Aname
;
1632 ("prefix for % attribute must be constrained array", P
);
1635 -- The attribute reference freezes the type, and thus the
1636 -- component type, even if the attribute may not depend on the
1637 -- component. Diagnose arrays with incomplete components now.
1638 -- If the prefix is an access to array, this does not freeze
1639 -- the designated type.
1641 if Nkind
(P
) /= N_Explicit_Dereference
then
1642 Check_Fully_Declared
(Component_Type
(P_Type
), P
);
1645 D
:= Number_Dimensions
(P_Type
);
1648 if Is_Private_Type
(P_Type
) then
1649 Error_Attr_P
("prefix for % attribute may not be private type");
1651 elsif Is_Access_Type
(P_Type
)
1652 and then Is_Array_Type
(Designated_Type
(P_Type
))
1653 and then Is_Entity_Name
(P
)
1654 and then Is_Type
(Entity
(P
))
1656 Error_Attr_P
("prefix of % attribute cannot be access type");
1658 elsif Attr_Id
= Attribute_First
1660 Attr_Id
= Attribute_Last
1662 Error_Attr
("invalid prefix for % attribute", P
);
1665 Error_Attr_P
("prefix for % attribute must be array");
1669 if Present
(E1
) then
1670 Resolve
(E1
, Any_Integer
);
1671 Set_Etype
(E1
, Standard_Integer
);
1673 if not Is_OK_Static_Expression
(E1
)
1674 or else Raises_Constraint_Error
(E1
)
1676 Flag_Non_Static_Expr
1677 ("expression for dimension must be static!", E1
);
1680 elsif UI_To_Int
(Expr_Value
(E1
)) > D
1681 or else UI_To_Int
(Expr_Value
(E1
)) < 1
1683 Error_Attr
("invalid dimension number for array type", E1
);
1687 if (Style_Check
and Style_Check_Array_Attribute_Index
)
1688 and then Comes_From_Source
(N
)
1690 Style
.Check_Array_Attribute_Index
(N
, E1
, D
);
1692 end Check_Array_Type
;
1694 -------------------------
1695 -- Check_Asm_Attribute --
1696 -------------------------
1698 procedure Check_Asm_Attribute
is
1703 -- Check first argument is static string expression
1705 Analyze_And_Resolve
(E1
, Standard_String
);
1707 if Etype
(E1
) = Any_Type
then
1710 elsif not Is_OK_Static_Expression
(E1
) then
1711 Flag_Non_Static_Expr
1712 ("constraint argument must be static string expression!", E1
);
1716 -- Check second argument is right type
1718 Analyze_And_Resolve
(E2
, Entity
(P
));
1720 -- Note: that is all we need to do, we don't need to check
1721 -- that it appears in a correct context. The Ada type system
1722 -- will do that for us.
1724 end Check_Asm_Attribute
;
1726 ---------------------
1727 -- Check_Component --
1728 ---------------------
1730 procedure Check_Component
is
1734 if Nkind
(P
) /= N_Selected_Component
1736 (Ekind
(Entity
(Selector_Name
(P
))) /= E_Component
1738 Ekind
(Entity
(Selector_Name
(P
))) /= E_Discriminant
)
1740 Error_Attr_P
("prefix for % attribute must be selected component");
1742 end Check_Component
;
1744 ------------------------------------
1745 -- Check_Decimal_Fixed_Point_Type --
1746 ------------------------------------
1748 procedure Check_Decimal_Fixed_Point_Type
is
1752 if not Is_Decimal_Fixed_Point_Type
(P_Type
) then
1753 Error_Attr_P
("prefix of % attribute must be decimal type");
1755 end Check_Decimal_Fixed_Point_Type
;
1757 -----------------------
1758 -- Check_Dereference --
1759 -----------------------
1761 procedure Check_Dereference
is
1764 -- Case of a subtype mark
1766 if Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)) then
1770 -- Case of an expression
1774 if Is_Access_Type
(P_Type
) then
1776 -- If there is an implicit dereference, then we must freeze the
1777 -- designated type of the access type, since the type of the
1778 -- referenced array is this type (see AI95-00106).
1780 -- As done elsewhere, freezing must not happen when pre-analyzing
1781 -- a pre- or postcondition or a default value for an object or for
1782 -- a formal parameter.
1784 if not In_Spec_Expression
then
1785 Freeze_Before
(N
, Designated_Type
(P_Type
));
1789 Make_Explicit_Dereference
(Sloc
(P
),
1790 Prefix
=> Relocate_Node
(P
)));
1792 Analyze_And_Resolve
(P
);
1793 P_Type
:= Etype
(P
);
1795 if P_Type
= Any_Type
then
1796 raise Bad_Attribute
;
1799 P_Base_Type
:= Base_Type
(P_Type
);
1801 end Check_Dereference
;
1803 -------------------------
1804 -- Check_Discrete_Type --
1805 -------------------------
1807 procedure Check_Discrete_Type
is
1811 if not Is_Discrete_Type
(P_Type
) then
1812 Error_Attr_P
("prefix of % attribute must be discrete type");
1814 end Check_Discrete_Type
;
1820 procedure Check_E0
is
1822 if Present
(E1
) then
1823 Unexpected_Argument
(E1
);
1831 procedure Check_E1
is
1833 Check_Either_E0_Or_E1
;
1837 -- Special-case attributes that are functions and that appear as
1838 -- the prefix of another attribute. Error is posted on parent.
1840 if Nkind
(Parent
(N
)) = N_Attribute_Reference
1841 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1845 Error_Msg_Name_1
:= Attribute_Name
(Parent
(N
));
1846 Error_Msg_N
("illegal prefix for % attribute", Parent
(N
));
1847 Set_Etype
(Parent
(N
), Any_Type
);
1848 Set_Entity
(Parent
(N
), Any_Type
);
1849 raise Bad_Attribute
;
1852 Error_Attr
("missing argument for % attribute", N
);
1861 procedure Check_E2
is
1864 Error_Attr
("missing arguments for % attribute (2 required)", N
);
1866 Error_Attr
("missing argument for % attribute (2 required)", N
);
1870 ---------------------------
1871 -- Check_Either_E0_Or_E1 --
1872 ---------------------------
1874 procedure Check_Either_E0_Or_E1
is
1876 if Present
(E2
) then
1877 Unexpected_Argument
(E2
);
1879 end Check_Either_E0_Or_E1
;
1881 ----------------------
1882 -- Check_Enum_Image --
1883 ----------------------
1885 procedure Check_Enum_Image
is
1889 -- When an enumeration type appears in an attribute reference, all
1890 -- literals of the type are marked as referenced. This must only be
1891 -- done if the attribute reference appears in the current source.
1892 -- Otherwise the information on references may differ between a
1893 -- normal compilation and one that performs inlining.
1895 if Is_Enumeration_Type
(P_Base_Type
)
1896 and then In_Extended_Main_Code_Unit
(N
)
1898 Lit
:= First_Literal
(P_Base_Type
);
1899 while Present
(Lit
) loop
1900 Set_Referenced
(Lit
);
1904 end Check_Enum_Image
;
1906 ----------------------------
1907 -- Check_First_Last_Valid --
1908 ----------------------------
1910 procedure Check_First_Last_Valid
is
1912 Check_Discrete_Type
;
1914 -- Freeze the subtype now, so that the following test for predicates
1915 -- works (we set the predicates stuff up at freeze time)
1917 Insert_Actions
(N
, Freeze_Entity
(P_Type
, P
));
1919 -- Now test for dynamic predicate
1921 if Has_Predicates
(P_Type
)
1922 and then not (Has_Static_Predicate
(P_Type
))
1925 ("prefix of % attribute may not have dynamic predicate");
1928 -- Check non-static subtype
1930 if not Is_OK_Static_Subtype
(P_Type
) then
1931 Error_Attr_P
("prefix of % attribute must be a static subtype");
1934 -- Test case for no values
1936 if Expr_Value
(Type_Low_Bound
(P_Type
)) >
1937 Expr_Value
(Type_High_Bound
(P_Type
))
1938 or else (Has_Predicates
(P_Type
)
1940 Is_Empty_List
(Static_Discrete_Predicate
(P_Type
)))
1943 ("prefix of % attribute must be subtype with at least one "
1946 end Check_First_Last_Valid
;
1948 ----------------------------
1949 -- Check_Fixed_Point_Type --
1950 ----------------------------
1952 procedure Check_Fixed_Point_Type
is
1956 if not Is_Fixed_Point_Type
(P_Type
) then
1957 Error_Attr_P
("prefix of % attribute must be fixed point type");
1959 end Check_Fixed_Point_Type
;
1961 ------------------------------
1962 -- Check_Fixed_Point_Type_0 --
1963 ------------------------------
1965 procedure Check_Fixed_Point_Type_0
is
1967 Check_Fixed_Point_Type
;
1969 end Check_Fixed_Point_Type_0
;
1971 -------------------------------
1972 -- Check_Floating_Point_Type --
1973 -------------------------------
1975 procedure Check_Floating_Point_Type
is
1979 if not Is_Floating_Point_Type
(P_Type
) then
1980 Error_Attr_P
("prefix of % attribute must be float type");
1982 end Check_Floating_Point_Type
;
1984 ---------------------------------
1985 -- Check_Floating_Point_Type_0 --
1986 ---------------------------------
1988 procedure Check_Floating_Point_Type_0
is
1990 Check_Floating_Point_Type
;
1992 end Check_Floating_Point_Type_0
;
1994 ---------------------------------
1995 -- Check_Floating_Point_Type_1 --
1996 ---------------------------------
1998 procedure Check_Floating_Point_Type_1
is
2000 Check_Floating_Point_Type
;
2002 end Check_Floating_Point_Type_1
;
2004 ---------------------------------
2005 -- Check_Floating_Point_Type_2 --
2006 ---------------------------------
2008 procedure Check_Floating_Point_Type_2
is
2010 Check_Floating_Point_Type
;
2012 end Check_Floating_Point_Type_2
;
2014 ------------------------
2015 -- Check_Integer_Type --
2016 ------------------------
2018 procedure Check_Integer_Type
is
2022 if not Is_Integer_Type
(P_Type
) then
2023 Error_Attr_P
("prefix of % attribute must be integer type");
2025 end Check_Integer_Type
;
2027 --------------------------------
2028 -- Check_Modular_Integer_Type --
2029 --------------------------------
2031 procedure Check_Modular_Integer_Type
is
2035 if not Is_Modular_Integer_Type
(P_Type
) then
2037 ("prefix of % attribute must be modular integer type");
2039 end Check_Modular_Integer_Type
;
2041 ------------------------
2042 -- Check_Not_CPP_Type --
2043 ------------------------
2045 procedure Check_Not_CPP_Type
is
2047 if Is_Tagged_Type
(Etype
(P
))
2048 and then Convention
(Etype
(P
)) = Convention_CPP
2049 and then Is_CPP_Class
(Root_Type
(Etype
(P
)))
2052 ("invalid use of % attribute with 'C'P'P tagged type");
2054 end Check_Not_CPP_Type
;
2056 -------------------------------
2057 -- Check_Not_Incomplete_Type --
2058 -------------------------------
2060 procedure Check_Not_Incomplete_Type
is
2065 -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
2066 -- dereference we have to check wrong uses of incomplete types
2067 -- (other wrong uses are checked at their freezing point).
2069 -- In Ada 2012, incomplete types can appear in subprogram
2070 -- profiles, but formals with incomplete types cannot be the
2071 -- prefix of attributes.
2073 -- Example 1: Limited-with
2075 -- limited with Pkg;
2077 -- type Acc is access Pkg.T;
2079 -- S : Integer := X.all'Size; -- ERROR
2082 -- Example 2: Tagged incomplete
2084 -- type T is tagged;
2085 -- type Acc is access all T;
2087 -- S : constant Integer := X.all'Size; -- ERROR
2088 -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
2090 if Ada_Version
>= Ada_2005
2091 and then Nkind
(P
) = N_Explicit_Dereference
2094 while Nkind
(E
) = N_Explicit_Dereference
loop
2100 if From_Limited_With
(Typ
) then
2102 ("prefix of % attribute cannot be an incomplete type");
2104 -- If the prefix is an access type check the designated type
2106 elsif Is_Access_Type
(Typ
)
2107 and then Nkind
(P
) = N_Explicit_Dereference
2109 Typ
:= Directly_Designated_Type
(Typ
);
2112 if Is_Class_Wide_Type
(Typ
) then
2113 Typ
:= Root_Type
(Typ
);
2116 -- A legal use of a shadow entity occurs only when the unit where
2117 -- the non-limited view resides is imported via a regular with
2118 -- clause in the current body. Such references to shadow entities
2119 -- may occur in subprogram formals.
2121 if Is_Incomplete_Type
(Typ
)
2122 and then From_Limited_With
(Typ
)
2123 and then Present
(Non_Limited_View
(Typ
))
2124 and then Is_Legal_Shadow_Entity_In_Body
(Typ
)
2126 Typ
:= Non_Limited_View
(Typ
);
2129 -- If still incomplete, it can be a local incomplete type, or a
2130 -- limited view whose scope is also a limited view.
2132 if Ekind
(Typ
) = E_Incomplete_Type
then
2133 if not From_Limited_With
(Typ
)
2134 and then No
(Full_View
(Typ
))
2137 ("prefix of % attribute cannot be an incomplete type");
2139 -- The limited view may be available indirectly through
2140 -- an intermediate unit. If the non-limited view is available
2141 -- the attribute reference is legal.
2143 elsif From_Limited_With
(Typ
)
2145 (No
(Non_Limited_View
(Typ
))
2146 or else Is_Incomplete_Type
(Non_Limited_View
(Typ
)))
2149 ("prefix of % attribute cannot be an incomplete type");
2153 -- Ada 2012 : formals in bodies may be incomplete, but no attribute
2156 elsif Is_Entity_Name
(P
)
2157 and then Is_Formal
(Entity
(P
))
2158 and then Is_Incomplete_Type
(Etype
(Etype
(P
)))
2161 ("prefix of % attribute cannot be an incomplete type");
2164 if not Is_Entity_Name
(P
)
2165 or else not Is_Type
(Entity
(P
))
2166 or else In_Spec_Expression
2170 Check_Fully_Declared
(P_Type
, P
);
2172 end Check_Not_Incomplete_Type
;
2174 ----------------------------
2175 -- Check_Object_Reference --
2176 ----------------------------
2178 procedure Check_Object_Reference
(P
: Node_Id
) is
2182 -- If we need an object, and we have a prefix that is the name of
2183 -- a function entity, convert it into a function call.
2185 if Is_Entity_Name
(P
)
2186 and then Ekind
(Entity
(P
)) = E_Function
2188 Rtyp
:= Etype
(Entity
(P
));
2191 Make_Function_Call
(Sloc
(P
),
2192 Name
=> Relocate_Node
(P
)));
2194 Analyze_And_Resolve
(P
, Rtyp
);
2196 -- Otherwise we must have an object reference
2198 elsif not Is_Object_Reference
(P
) then
2199 Error_Attr_P
("prefix of % attribute must be object");
2201 end Check_Object_Reference
;
2203 ----------------------------
2204 -- Check_PolyORB_Attribute --
2205 ----------------------------
2207 procedure Check_PolyORB_Attribute
is
2209 Validate_Non_Static_Attribute_Function_Call
;
2214 if Get_PCS_Name
/= Name_PolyORB_DSA
then
2216 ("attribute% requires the 'Poly'O'R'B 'P'C'S", N
);
2218 end Check_PolyORB_Attribute
;
2220 ------------------------
2221 -- Check_Program_Unit --
2222 ------------------------
2224 procedure Check_Program_Unit
is
2226 if Is_Entity_Name
(P
) then
2228 K
: constant Entity_Kind
:= Ekind
(Entity
(P
));
2229 T
: constant Entity_Id
:= Etype
(Entity
(P
));
2232 if K
in Subprogram_Kind
2233 or else K
in Task_Kind
2234 or else K
in Protected_Kind
2235 or else K
= E_Package
2236 or else K
in Generic_Unit_Kind
2237 or else (K
= E_Variable
2241 Is_Protected_Type
(T
)))
2248 Error_Attr_P
("prefix of % attribute must be program unit");
2249 end Check_Program_Unit
;
2251 ---------------------
2252 -- Check_Real_Type --
2253 ---------------------
2255 procedure Check_Real_Type
is
2259 if not Is_Real_Type
(P_Type
) then
2260 Error_Attr_P
("prefix of % attribute must be real type");
2262 end Check_Real_Type
;
2264 -----------------------
2265 -- Check_Scalar_Type --
2266 -----------------------
2268 procedure Check_Scalar_Type
is
2272 if not Is_Scalar_Type
(P_Type
) then
2273 Error_Attr_P
("prefix of % attribute must be scalar type");
2275 end Check_Scalar_Type
;
2277 ------------------------------------------
2278 -- Check_SPARK_05_Restriction_On_Attribute --
2279 ------------------------------------------
2281 procedure Check_SPARK_05_Restriction_On_Attribute
is
2283 Error_Msg_Name_1
:= Aname
;
2284 Check_SPARK_05_Restriction
("attribute % is not allowed", P
);
2285 end Check_SPARK_05_Restriction_On_Attribute
;
2287 ---------------------------
2288 -- Check_Standard_Prefix --
2289 ---------------------------
2291 procedure Check_Standard_Prefix
is
2295 if Nkind
(P
) /= N_Identifier
or else Chars
(P
) /= Name_Standard
then
2296 Error_Attr
("only allowed prefix for % attribute is Standard", P
);
2298 end Check_Standard_Prefix
;
2300 ----------------------------
2301 -- Check_Stream_Attribute --
2302 ----------------------------
2304 procedure Check_Stream_Attribute
(Nam
: TSS_Name_Type
) is
2308 In_Shared_Var_Procs
: Boolean;
2309 -- True when compiling System.Shared_Storage.Shared_Var_Procs body.
2310 -- For this runtime package (always compiled in GNAT mode), we allow
2311 -- stream attributes references for limited types for the case where
2312 -- shared passive objects are implemented using stream attributes,
2313 -- which is the default in GNAT's persistent storage implementation.
2316 Validate_Non_Static_Attribute_Function_Call
;
2318 -- With the exception of 'Input, Stream attributes are procedures,
2319 -- and can only appear at the position of procedure calls. We check
2320 -- for this here, before they are rewritten, to give a more precise
2323 if Nam
= TSS_Stream_Input
then
2326 elsif Is_List_Member
(N
)
2327 and then not Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
2334 ("invalid context for attribute%, which is a procedure", N
);
2338 Btyp
:= Implementation_Base_Type
(P_Type
);
2340 -- Stream attributes not allowed on limited types unless the
2341 -- attribute reference was generated by the expander (in which
2342 -- case the underlying type will be used, as described in Sinfo),
2343 -- or the attribute was specified explicitly for the type itself
2344 -- or one of its ancestors (taking visibility rules into account if
2345 -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
2346 -- (with no visibility restriction).
2349 Gen_Body
: constant Node_Id
:= Enclosing_Generic_Body
(N
);
2351 if Present
(Gen_Body
) then
2352 In_Shared_Var_Procs
:=
2353 Is_RTE
(Corresponding_Spec
(Gen_Body
), RE_Shared_Var_Procs
);
2355 In_Shared_Var_Procs
:= False;
2359 if (Comes_From_Source
(N
)
2360 and then not (In_Shared_Var_Procs
or In_Instance
))
2361 and then not Stream_Attribute_Available
(P_Type
, Nam
)
2362 and then not Has_Rep_Pragma
(Btyp
, Name_Stream_Convert
)
2364 Error_Msg_Name_1
:= Aname
;
2366 if Is_Limited_Type
(P_Type
) then
2368 ("limited type& has no% attribute", P
, P_Type
);
2369 Explain_Limited_Type
(P_Type
, P
);
2372 ("attribute% for type& is not available", P
, P_Type
);
2376 -- Check for no stream operations allowed from No_Tagged_Streams
2378 if Is_Tagged_Type
(P_Type
)
2379 and then Present
(No_Tagged_Streams_Pragma
(P_Type
))
2381 Error_Msg_Sloc
:= Sloc
(No_Tagged_Streams_Pragma
(P_Type
));
2383 ("no stream operations for & (No_Tagged_Streams #)", N
, P_Type
);
2387 -- Check restriction violations
2389 -- First check the No_Streams restriction, which prohibits the use
2390 -- of explicit stream attributes in the source program. We do not
2391 -- prevent the occurrence of stream attributes in generated code,
2392 -- for instance those generated implicitly for dispatching purposes.
2394 if Comes_From_Source
(N
) then
2395 Check_Restriction
(No_Streams
, P
);
2398 -- AI05-0057: if restriction No_Default_Stream_Attributes is active,
2399 -- it is illegal to use a predefined elementary type stream attribute
2400 -- either by itself, or more importantly as part of the attribute
2401 -- subprogram for a composite type. However, if the broader
2402 -- restriction No_Streams is active, stream operations are not
2403 -- generated, and there is no error.
2405 if Restriction_Active
(No_Default_Stream_Attributes
)
2406 and then not Restriction_Active
(No_Streams
)
2412 if Nam
= TSS_Stream_Input
2414 Nam
= TSS_Stream_Read
2417 Type_Without_Stream_Operation
(P_Type
, TSS_Stream_Read
);
2420 Type_Without_Stream_Operation
(P_Type
, TSS_Stream_Write
);
2424 Check_Restriction
(No_Default_Stream_Attributes
, N
);
2427 ("missing user-defined Stream Read or Write for type&",
2429 if not Is_Elementary_Type
(P_Type
) then
2431 ("\which is a component of type&", N
, P_Type
);
2437 -- Check special case of Exception_Id and Exception_Occurrence which
2438 -- are not allowed for restriction No_Exception_Registration.
2440 if Restriction_Check_Required
(No_Exception_Registration
)
2441 and then (Is_RTE
(P_Type
, RE_Exception_Id
)
2443 Is_RTE
(P_Type
, RE_Exception_Occurrence
))
2445 Check_Restriction
(No_Exception_Registration
, P
);
2448 -- Here we must check that the first argument is an access type
2449 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
2451 Analyze_And_Resolve
(E1
);
2454 -- Note: the double call to Root_Type here is needed because the
2455 -- root type of a class-wide type is the corresponding type (e.g.
2456 -- X for X'Class, and we really want to go to the root.)
2458 if not Is_Access_Type
(Etyp
)
2459 or else Root_Type
(Root_Type
(Designated_Type
(Etyp
))) /=
2460 RTE
(RE_Root_Stream_Type
)
2463 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1
);
2466 -- Check that the second argument is of the right type if there is
2467 -- one (the Input attribute has only one argument so this is skipped)
2469 if Present
(E2
) then
2472 if Nam
= TSS_Stream_Read
2473 and then not Is_OK_Variable_For_Out_Formal
(E2
)
2476 ("second argument of % attribute must be a variable", E2
);
2479 Resolve
(E2
, P_Type
);
2483 end Check_Stream_Attribute
;
2485 -------------------------
2486 -- Check_System_Prefix --
2487 -------------------------
2489 procedure Check_System_Prefix
is
2491 if Nkind
(P
) /= N_Identifier
or else Chars
(P
) /= Name_System
then
2492 Error_Attr
("only allowed prefix for % attribute is System", P
);
2494 end Check_System_Prefix
;
2496 -----------------------
2497 -- Check_Task_Prefix --
2498 -----------------------
2500 procedure Check_Task_Prefix
is
2504 -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
2505 -- task interface class-wide types.
2507 if Is_Task_Type
(Etype
(P
))
2508 or else (Is_Access_Type
(Etype
(P
))
2509 and then Is_Task_Type
(Designated_Type
(Etype
(P
))))
2510 or else (Ada_Version
>= Ada_2005
2511 and then Ekind
(Etype
(P
)) = E_Class_Wide_Type
2512 and then Is_Interface
(Etype
(P
))
2513 and then Is_Task_Interface
(Etype
(P
)))
2518 if Ada_Version
>= Ada_2005
then
2520 ("prefix of % attribute must be a task or a task " &
2521 "interface class-wide object");
2524 Error_Attr_P
("prefix of % attribute must be a task");
2527 end Check_Task_Prefix
;
2533 -- The possibilities are an entity name denoting a type, or an
2534 -- attribute reference that denotes a type (Base or Class). If
2535 -- the type is incomplete, replace it with its full view.
2537 procedure Check_Type
is
2539 if not Is_Entity_Name
(P
)
2540 or else not Is_Type
(Entity
(P
))
2542 Error_Attr_P
("prefix of % attribute must be a type");
2544 elsif Is_Protected_Self_Reference
(P
) then
2546 ("prefix of % attribute denotes current instance "
2547 & "(RM 9.4(21/2))");
2549 elsif Ekind
(Entity
(P
)) = E_Incomplete_Type
2550 and then Present
(Full_View
(Entity
(P
)))
2552 P_Type
:= Full_View
(Entity
(P
));
2553 Set_Entity
(P
, P_Type
);
2557 ---------------------
2558 -- Check_Unit_Name --
2559 ---------------------
2561 procedure Check_Unit_Name
(Nod
: Node_Id
) is
2563 if Nkind
(Nod
) = N_Identifier
then
2566 elsif Nkind_In
(Nod
, N_Selected_Component
, N_Expanded_Name
) then
2567 Check_Unit_Name
(Prefix
(Nod
));
2569 if Nkind
(Selector_Name
(Nod
)) = N_Identifier
then
2574 Error_Attr
("argument for % attribute must be unit name", P
);
2575 end Check_Unit_Name
;
2581 procedure Error_Attr
is
2583 Set_Etype
(N
, Any_Type
);
2584 Set_Entity
(N
, Any_Type
);
2585 raise Bad_Attribute
;
2588 procedure Error_Attr
(Msg
: String; Error_Node
: Node_Id
) is
2590 Error_Msg_Name_1
:= Aname
;
2591 Error_Msg_N
(Msg
, Error_Node
);
2599 procedure Error_Attr_P
(Msg
: String) is
2601 Error_Msg_Name_1
:= Aname
;
2602 Error_Msg_F
(Msg
, P
);
2606 ----------------------------
2607 -- Legal_Formal_Attribute --
2608 ----------------------------
2610 procedure Legal_Formal_Attribute
is
2614 if not Is_Entity_Name
(P
)
2615 or else not Is_Type
(Entity
(P
))
2617 Error_Attr_P
("prefix of % attribute must be generic type");
2619 elsif Is_Generic_Actual_Type
(Entity
(P
))
2621 or else In_Inlined_Body
2625 elsif Is_Generic_Type
(Entity
(P
)) then
2626 if Is_Definite_Subtype
(Entity
(P
)) then
2628 ("prefix of % attribute must be indefinite generic type");
2633 ("prefix of % attribute must be indefinite generic type");
2636 Set_Etype
(N
, Standard_Boolean
);
2637 end Legal_Formal_Attribute
;
2639 ---------------------------------------------------------------
2640 -- Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements --
2641 ---------------------------------------------------------------
2643 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
is
2647 Check_Not_Incomplete_Type
;
2648 Set_Etype
(N
, Universal_Integer
);
2649 end Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
2655 procedure Min_Max
is
2659 Resolve
(E1
, P_Base_Type
);
2660 Resolve
(E2
, P_Base_Type
);
2661 Set_Etype
(N
, P_Base_Type
);
2663 -- Check for comparison on unordered enumeration type
2665 if Bad_Unordered_Enumeration_Reference
(N
, P_Base_Type
) then
2666 Error_Msg_Sloc
:= Sloc
(P_Base_Type
);
2668 ("comparison on unordered enumeration type& declared#?U?",
2673 ------------------------
2674 -- Standard_Attribute --
2675 ------------------------
2677 procedure Standard_Attribute
(Val
: Int
) is
2679 Check_Standard_Prefix
;
2680 Rewrite
(N
, Make_Integer_Literal
(Loc
, Val
));
2682 Set_Is_Static_Expression
(N
, True);
2683 end Standard_Attribute
;
2685 --------------------
2686 -- Uneval_Old_Msg --
2687 --------------------
2689 procedure Uneval_Old_Msg
is
2690 Uneval_Old_Setting
: Character;
2694 -- If from aspect, then Uneval_Old_Setting comes from flags in the
2695 -- N_Aspect_Specification node that corresponds to the attribute.
2697 -- First find the pragma in which we appear (note that at this stage,
2698 -- even if we appeared originally within an aspect specification, we
2699 -- are now within the corresponding pragma).
2703 Prag
:= Parent
(Prag
);
2704 exit when No
(Prag
) or else Nkind
(Prag
) = N_Pragma
;
2707 if Present
(Prag
) then
2708 if Uneval_Old_Accept
(Prag
) then
2709 Uneval_Old_Setting
:= 'A';
2710 elsif Uneval_Old_Warn
(Prag
) then
2711 Uneval_Old_Setting
:= 'W';
2713 Uneval_Old_Setting
:= 'E';
2716 -- If we did not find the pragma, that's odd, just use the setting
2717 -- from Opt.Uneval_Old. Perhaps this is due to a previous error?
2720 Uneval_Old_Setting
:= Opt
.Uneval_Old
;
2723 -- Processing depends on the setting of Uneval_Old
2725 case Uneval_Old_Setting
is
2728 ("prefix of attribute % that is potentially "
2729 & "unevaluated must denote an entity");
2732 Error_Msg_Name_1
:= Aname
;
2734 ("??prefix of attribute % appears in potentially "
2735 & "unevaluated context, exception may be raised", P
);
2741 raise Program_Error
;
2745 -------------------------
2746 -- Unexpected Argument --
2747 -------------------------
2749 procedure Unexpected_Argument
(En
: Node_Id
) is
2751 Error_Attr
("unexpected argument for % attribute", En
);
2752 end Unexpected_Argument
;
2754 -------------------------------------------------
2755 -- Validate_Non_Static_Attribute_Function_Call --
2756 -------------------------------------------------
2758 -- This function should be moved to Sem_Dist ???
2760 procedure Validate_Non_Static_Attribute_Function_Call
is
2762 if In_Preelaborated_Unit
2763 and then not In_Subprogram_Or_Concurrent_Unit
2765 Flag_Non_Static_Expr
2766 ("non-static function call in preelaborated unit!", N
);
2768 end Validate_Non_Static_Attribute_Function_Call
;
2770 -- Start of processing for Analyze_Attribute
2773 -- Immediate return if unrecognized attribute (already diagnosed by
2774 -- parser, so there is nothing more that we need to do).
2776 if not Is_Attribute_Name
(Aname
) then
2777 raise Bad_Attribute
;
2780 Check_Restriction_No_Use_Of_Attribute
(N
);
2782 -- Deal with Ada 83 issues
2784 if Comes_From_Source
(N
) then
2785 if not Attribute_83
(Attr_Id
) then
2786 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2787 Error_Msg_Name_1
:= Aname
;
2788 Error_Msg_N
("(Ada 83) attribute% is not standard??", N
);
2791 if Attribute_Impl_Def
(Attr_Id
) then
2792 Check_Restriction
(No_Implementation_Attributes
, N
);
2797 -- Deal with Ada 2005 attributes that are implementation attributes
2798 -- because they appear in a version of Ada before Ada 2005, and
2799 -- similarly for Ada 2012 attributes appearing in an earlier version.
2801 if (Attribute_05
(Attr_Id
) and then Ada_Version
< Ada_2005
)
2803 (Attribute_12
(Attr_Id
) and then Ada_Version
< Ada_2012
)
2805 Check_Restriction
(No_Implementation_Attributes
, N
);
2808 -- Remote access to subprogram type access attribute reference needs
2809 -- unanalyzed copy for tree transformation. The analyzed copy is used
2810 -- for its semantic information (whether prefix is a remote subprogram
2811 -- name), the unanalyzed copy is used to construct new subtree rooted
2812 -- with N_Aggregate which represents a fat pointer aggregate.
2814 if Aname
= Name_Access
then
2815 Discard_Node
(Copy_Separate_Tree
(N
));
2818 -- Analyze prefix and exit if error in analysis. If the prefix is an
2819 -- incomplete type, use full view if available. Note that there are
2820 -- some attributes for which we do not analyze the prefix, since the
2821 -- prefix is not a normal name, or else needs special handling.
2823 if Aname
/= Name_Elab_Body
and then
2824 Aname
/= Name_Elab_Spec
and then
2825 Aname
/= Name_Elab_Subp_Body
and then
2826 Aname
/= Name_Enabled
and then
2830 P_Type
:= Etype
(P
);
2832 if Is_Entity_Name
(P
)
2833 and then Present
(Entity
(P
))
2834 and then Is_Type
(Entity
(P
))
2836 if Ekind
(Entity
(P
)) = E_Incomplete_Type
then
2837 P_Type
:= Get_Full_View
(P_Type
);
2838 Set_Entity
(P
, P_Type
);
2839 Set_Etype
(P
, P_Type
);
2841 elsif Entity
(P
) = Current_Scope
2842 and then Is_Record_Type
(Entity
(P
))
2844 -- Use of current instance within the type. Verify that if the
2845 -- attribute appears within a constraint, it yields an access
2846 -- type, other uses are illegal.
2854 and then Nkind
(Parent
(Par
)) /= N_Component_Definition
2856 Par
:= Parent
(Par
);
2860 and then Nkind
(Par
) = N_Subtype_Indication
2862 if Attr_Id
/= Attribute_Access
2863 and then Attr_Id
/= Attribute_Unchecked_Access
2864 and then Attr_Id
/= Attribute_Unrestricted_Access
2867 ("in a constraint the current instance can only "
2868 & "be used with an access attribute", N
);
2875 if P_Type
= Any_Type
then
2876 raise Bad_Attribute
;
2879 P_Base_Type
:= Base_Type
(P_Type
);
2882 -- Analyze expressions that may be present, exiting if an error occurs
2889 E1
:= First
(Exprs
);
2891 -- Skip analysis for case of Restriction_Set, we do not expect
2892 -- the argument to be analyzed in this case.
2894 if Aname
/= Name_Restriction_Set
then
2897 -- Check for missing/bad expression (result of previous error)
2899 if No
(E1
) or else Etype
(E1
) = Any_Type
then
2900 raise Bad_Attribute
;
2906 if Present
(E2
) then
2909 if Etype
(E2
) = Any_Type
then
2910 raise Bad_Attribute
;
2913 if Present
(Next
(E2
)) then
2914 Unexpected_Argument
(Next
(E2
));
2919 -- Cases where prefix must be resolvable by itself
2921 if Is_Overloaded
(P
)
2922 and then Aname
/= Name_Access
2923 and then Aname
/= Name_Address
2924 and then Aname
/= Name_Code_Address
2925 and then Aname
/= Name_Result
2926 and then Aname
/= Name_Unchecked_Access
2928 -- The prefix must be resolvable by itself, without reference to the
2929 -- attribute. One case that requires special handling is a prefix
2930 -- that is a function name, where one interpretation may be a
2931 -- parameterless call. Entry attributes are handled specially below.
2933 if Is_Entity_Name
(P
)
2934 and then not Nam_In
(Aname
, Name_Count
, Name_Caller
)
2936 Check_Parameterless_Call
(P
);
2939 if Is_Overloaded
(P
) then
2941 -- Ada 2005 (AI-345): Since protected and task types have
2942 -- primitive entry wrappers, the attributes Count, and Caller
2943 -- require a context check
2945 if Nam_In
(Aname
, Name_Count
, Name_Caller
) then
2947 Count
: Natural := 0;
2952 Get_First_Interp
(P
, I
, It
);
2953 while Present
(It
.Nam
) loop
2954 if Comes_From_Source
(It
.Nam
) then
2960 Get_Next_Interp
(I
, It
);
2964 Error_Attr
("ambiguous prefix for % attribute", P
);
2966 Set_Is_Overloaded
(P
, False);
2971 Error_Attr
("ambiguous prefix for % attribute", P
);
2976 -- In SPARK, attributes of private types are only allowed if the full
2977 -- type declaration is visible.
2979 -- Note: the check for Present (Entity (P)) defends against some error
2980 -- conditions where the Entity field is not set.
2982 if Is_Entity_Name
(P
) and then Present
(Entity
(P
))
2983 and then Is_Type
(Entity
(P
))
2984 and then Is_Private_Type
(P_Type
)
2985 and then not In_Open_Scopes
(Scope
(P_Type
))
2986 and then not In_Spec_Expression
2988 Check_SPARK_05_Restriction
("invisible attribute of type", N
);
2991 -- Remaining processing depends on attribute
2995 -- Attributes related to Ada 2012 iterators. Attribute specifications
2996 -- exist for these, but they cannot be queried.
2998 when Attribute_Constant_Indexing
2999 | Attribute_Default_Iterator
3000 | Attribute_Implicit_Dereference
3001 | Attribute_Iterator_Element
3002 | Attribute_Iterable
3003 | Attribute_Variable_Indexing
3005 Error_Msg_N
("illegal attribute", N
);
3007 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
3008 -- were already rejected by the parser. Thus they shouldn't appear here.
3010 when Internal_Attribute_Id
=>
3011 raise Program_Error
;
3017 when Attribute_Abort_Signal
=>
3018 Check_Standard_Prefix
;
3019 Rewrite
(N
, New_Occurrence_Of
(Stand
.Abort_Signal
, Loc
));
3026 when Attribute_Access
=>
3027 Analyze_Access_Attribute
;
3028 Check_Not_Incomplete_Type
;
3034 when Attribute_Address
=>
3037 Check_Not_Incomplete_Type
;
3038 Set_Etype
(N
, RTE
(RE_Address
));
3044 when Attribute_Address_Size
=>
3045 Standard_Attribute
(System_Address_Size
);
3051 when Attribute_Adjacent
=>
3052 Check_Floating_Point_Type_2
;
3053 Set_Etype
(N
, P_Base_Type
);
3054 Resolve
(E1
, P_Base_Type
);
3055 Resolve
(E2
, P_Base_Type
);
3061 when Attribute_Aft
=>
3062 Check_Fixed_Point_Type_0
;
3063 Set_Etype
(N
, Universal_Integer
);
3069 when Attribute_Alignment
=>
3071 -- Don't we need more checking here, cf Size ???
3074 Check_Not_Incomplete_Type
;
3076 Set_Etype
(N
, Universal_Integer
);
3082 when Attribute_Asm_Input
=>
3083 Check_Asm_Attribute
;
3085 -- The back end may need to take the address of E2
3087 if Is_Entity_Name
(E2
) then
3088 Set_Address_Taken
(Entity
(E2
));
3091 Set_Etype
(N
, RTE
(RE_Asm_Input_Operand
));
3097 when Attribute_Asm_Output
=>
3098 Check_Asm_Attribute
;
3100 if Etype
(E2
) = Any_Type
then
3103 elsif Aname
= Name_Asm_Output
then
3104 if not Is_Variable
(E2
) then
3106 ("second argument for Asm_Output is not variable", E2
);
3110 Note_Possible_Modification
(E2
, Sure
=> True);
3112 -- The back end may need to take the address of E2
3114 if Is_Entity_Name
(E2
) then
3115 Set_Address_Taken
(Entity
(E2
));
3118 Set_Etype
(N
, RTE
(RE_Asm_Output_Operand
));
3120 -----------------------------
3121 -- Atomic_Always_Lock_Free --
3122 -----------------------------
3124 when Attribute_Atomic_Always_Lock_Free
=>
3127 Set_Etype
(N
, Standard_Boolean
);
3133 -- Note: when the base attribute appears in the context of a subtype
3134 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
3135 -- the following circuit.
3137 when Attribute_Base
=> Base
: declare
3145 if Ada_Version
>= Ada_95
3146 and then not Is_Scalar_Type
(Typ
)
3147 and then not Is_Generic_Type
(Typ
)
3149 Error_Attr_P
("prefix of Base attribute must be scalar type");
3151 elsif Sloc
(Typ
) = Standard_Location
3152 and then Base_Type
(Typ
) = Typ
3153 and then Warn_On_Redundant_Constructs
3155 Error_Msg_NE
-- CODEFIX
3156 ("?r?redundant attribute, & is its own base type", N
, Typ
);
3159 if Nkind
(Parent
(N
)) /= N_Attribute_Reference
then
3160 Error_Msg_Name_1
:= Aname
;
3161 Check_SPARK_05_Restriction
3162 ("attribute% is only allowed as prefix of another attribute", P
);
3165 Set_Etype
(N
, Base_Type
(Entity
(P
)));
3166 Set_Entity
(N
, Base_Type
(Entity
(P
)));
3167 Rewrite
(N
, New_Occurrence_Of
(Entity
(N
), Loc
));
3175 when Attribute_Bit
=>
3178 if not Is_Object_Reference
(P
) then
3179 Error_Attr_P
("prefix for % attribute must be object");
3181 -- What about the access object cases ???
3187 Set_Etype
(N
, Universal_Integer
);
3193 when Attribute_Bit_Order
=>
3197 if not Is_Record_Type
(P_Type
) then
3198 Error_Attr_P
("prefix of % attribute must be record type");
3201 if Bytes_Big_Endian
xor Reverse_Bit_Order
(P_Type
) then
3203 New_Occurrence_Of
(RTE
(RE_High_Order_First
), Loc
));
3206 New_Occurrence_Of
(RTE
(RE_Low_Order_First
), Loc
));
3209 Set_Etype
(N
, RTE
(RE_Bit_Order
));
3212 -- Reset incorrect indication of staticness
3214 Set_Is_Static_Expression
(N
, False);
3220 -- Note: in generated code, we can have a Bit_Position attribute
3221 -- applied to a (naked) record component (i.e. the prefix is an
3222 -- identifier that references an E_Component or E_Discriminant
3223 -- entity directly, and this is interpreted as expected by Gigi.
3224 -- The following code will not tolerate such usage, but when the
3225 -- expander creates this special case, it marks it as analyzed
3226 -- immediately and sets an appropriate type.
3228 when Attribute_Bit_Position
=>
3229 if Comes_From_Source
(N
) then
3233 Set_Etype
(N
, Universal_Integer
);
3239 when Attribute_Body_Version
=>
3242 Set_Etype
(N
, RTE
(RE_Version_String
));
3248 when Attribute_Callable
=>
3250 Set_Etype
(N
, Standard_Boolean
);
3257 when Attribute_Caller
=> Caller
: declare
3264 if Nkind_In
(P
, N_Identifier
, N_Expanded_Name
) then
3267 if not Is_Entry
(Ent
) then
3268 Error_Attr
("invalid entry name", N
);
3272 Error_Attr
("invalid entry name", N
);
3276 for J
in reverse 0 .. Scope_Stack
.Last
loop
3277 S
:= Scope_Stack
.Table
(J
).Entity
;
3279 if S
= Scope
(Ent
) then
3280 Error_Attr
("Caller must appear in matching accept or body", N
);
3286 Set_Etype
(N
, RTE
(RO_AT_Task_Id
));
3293 when Attribute_Ceiling
=>
3294 Check_Floating_Point_Type_1
;
3295 Set_Etype
(N
, P_Base_Type
);
3296 Resolve
(E1
, P_Base_Type
);
3302 when Attribute_Class
=>
3303 Check_Restriction
(No_Dispatch
, N
);
3307 -- Applying Class to untagged incomplete type is obsolescent in Ada
3308 -- 2005. Note that we can't test Is_Tagged_Type here on P_Type, since
3309 -- this flag gets set by Find_Type in this situation.
3311 if Restriction_Check_Required
(No_Obsolescent_Features
)
3312 and then Ada_Version
>= Ada_2005
3313 and then Ekind
(P_Type
) = E_Incomplete_Type
3316 DN
: constant Node_Id
:= Declaration_Node
(P_Type
);
3318 if Nkind
(DN
) = N_Incomplete_Type_Declaration
3319 and then not Tagged_Present
(DN
)
3321 Check_Restriction
(No_Obsolescent_Features
, P
);
3330 when Attribute_Code_Address
=>
3333 if Nkind
(P
) = N_Attribute_Reference
3334 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Body
, Name_Elab_Spec
)
3338 elsif not Is_Entity_Name
(P
)
3339 or else (Ekind
(Entity
(P
)) /= E_Function
3341 Ekind
(Entity
(P
)) /= E_Procedure
)
3343 Error_Attr
("invalid prefix for % attribute", P
);
3344 Set_Address_Taken
(Entity
(P
));
3346 -- Issue an error if the prefix denotes an eliminated subprogram
3349 Check_For_Eliminated_Subprogram
(P
, Entity
(P
));
3352 Set_Etype
(N
, RTE
(RE_Address
));
3354 ----------------------
3355 -- Compiler_Version --
3356 ----------------------
3358 when Attribute_Compiler_Version
=>
3360 Check_Standard_Prefix
;
3361 Rewrite
(N
, Make_String_Literal
(Loc
, "GNAT " & Gnat_Version_String
));
3362 Analyze_And_Resolve
(N
, Standard_String
);
3363 Set_Is_Static_Expression
(N
, True);
3365 --------------------
3366 -- Component_Size --
3367 --------------------
3369 when Attribute_Component_Size
=>
3371 Set_Etype
(N
, Universal_Integer
);
3373 -- Note: unlike other array attributes, unconstrained arrays are OK
3375 if Is_Array_Type
(P_Type
) and then not Is_Constrained
(P_Type
) then
3385 when Attribute_Compose
=>
3386 Check_Floating_Point_Type_2
;
3387 Set_Etype
(N
, P_Base_Type
);
3388 Resolve
(E1
, P_Base_Type
);
3389 Resolve
(E2
, Any_Integer
);
3395 when Attribute_Constrained
=>
3397 Set_Etype
(N
, Standard_Boolean
);
3399 -- Case from RM J.4(2) of constrained applied to private type
3401 if Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)) then
3402 Check_Restriction
(No_Obsolescent_Features
, P
);
3404 if Warn_On_Obsolescent_Feature
then
3406 ("constrained for private type is an obsolescent feature "
3407 & "(RM J.4)?j?", N
);
3410 -- If we are within an instance, the attribute must be legal
3411 -- because it was valid in the generic unit. Ditto if this is
3412 -- an inlining of a function declared in an instance.
3414 if In_Instance
or else In_Inlined_Body
then
3417 -- For sure OK if we have a real private type itself, but must
3418 -- be completed, cannot apply Constrained to incomplete type.
3420 elsif Is_Private_Type
(Entity
(P
)) then
3422 -- Note: this is one of the Annex J features that does not
3423 -- generate a warning from -gnatwj, since in fact it seems
3424 -- very useful, and is used in the GNAT runtime.
3426 Check_Not_Incomplete_Type
;
3430 -- Normal (non-obsolescent case) of application to object of
3431 -- a discriminated type.
3434 Check_Object_Reference
(P
);
3436 -- If N does not come from source, then we allow the
3437 -- the attribute prefix to be of a private type whose
3438 -- full type has discriminants. This occurs in cases
3439 -- involving expanded calls to stream attributes.
3441 if not Comes_From_Source
(N
) then
3442 P_Type
:= Underlying_Type
(P_Type
);
3445 -- Must have discriminants or be an access type designating a type
3446 -- with discriminants. If it is a class-wide type it has unknown
3449 if Has_Discriminants
(P_Type
)
3450 or else Has_Unknown_Discriminants
(P_Type
)
3452 (Is_Access_Type
(P_Type
)
3453 and then Has_Discriminants
(Designated_Type
(P_Type
)))
3457 -- The rule given in 3.7.2 is part of static semantics, but the
3458 -- intent is clearly that it be treated as a legality rule, and
3459 -- rechecked in the visible part of an instance. Nevertheless
3460 -- the intent also seems to be it should legally apply to the
3461 -- actual of a formal with unknown discriminants, regardless of
3462 -- whether the actual has discriminants, in which case the value
3463 -- of the attribute is determined using the J.4 rules. This choice
3464 -- seems the most useful, and is compatible with existing tests.
3466 elsif In_Instance
then
3469 -- Also allow an object of a generic type if extensions allowed
3470 -- and allow this for any type at all. (this may be obsolete ???)
3472 elsif (Is_Generic_Type
(P_Type
)
3473 or else Is_Generic_Actual_Type
(P_Type
))
3474 and then Extensions_Allowed
3480 -- Fall through if bad prefix
3483 ("prefix of % attribute must be object of discriminated type");
3489 when Attribute_Copy_Sign
=>
3490 Check_Floating_Point_Type_2
;
3491 Set_Etype
(N
, P_Base_Type
);
3492 Resolve
(E1
, P_Base_Type
);
3493 Resolve
(E2
, P_Base_Type
);
3499 when Attribute_Count
=> Count
: declare
3507 if Nkind_In
(P
, N_Identifier
, N_Expanded_Name
) then
3510 if Ekind
(Ent
) /= E_Entry
then
3511 Error_Attr
("invalid entry name", N
);
3514 elsif Nkind
(P
) = N_Indexed_Component
then
3515 if not Is_Entity_Name
(Prefix
(P
))
3516 or else No
(Entity
(Prefix
(P
)))
3517 or else Ekind
(Entity
(Prefix
(P
))) /= E_Entry_Family
3519 if Nkind
(Prefix
(P
)) = N_Selected_Component
3520 and then Present
(Entity
(Selector_Name
(Prefix
(P
))))
3521 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) =
3525 ("attribute % must apply to entry of current task", P
);
3528 Error_Attr
("invalid entry family name", P
);
3533 Ent
:= Entity
(Prefix
(P
));
3536 elsif Nkind
(P
) = N_Selected_Component
3537 and then Present
(Entity
(Selector_Name
(P
)))
3538 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry
3541 ("attribute % must apply to entry of current task", P
);
3544 Error_Attr
("invalid entry name", N
);
3548 for J
in reverse 0 .. Scope_Stack
.Last
loop
3549 S
:= Scope_Stack
.Table
(J
).Entity
;
3551 if S
= Scope
(Ent
) then
3552 if Nkind
(P
) = N_Expanded_Name
then
3553 Tsk
:= Entity
(Prefix
(P
));
3555 -- The prefix denotes either the task type, or else a
3556 -- single task whose task type is being analyzed.
3558 if (Is_Type
(Tsk
) and then Tsk
= S
)
3559 or else (not Is_Type
(Tsk
)
3560 and then Etype
(Tsk
) = S
3561 and then not (Comes_From_Source
(S
)))
3566 ("Attribute % must apply to entry of current task", N
);
3572 elsif Ekind
(Scope
(Ent
)) in Task_Kind
3573 and then not Ekind_In
(S
, E_Block
,
3578 Error_Attr
("Attribute % cannot appear in inner unit", N
);
3580 elsif Ekind
(Scope
(Ent
)) = E_Protected_Type
3581 and then not Has_Completion
(Scope
(Ent
))
3583 Error_Attr
("attribute % can only be used inside body", N
);
3587 if Is_Overloaded
(P
) then
3589 Index
: Interp_Index
;
3593 Get_First_Interp
(P
, Index
, It
);
3594 while Present
(It
.Nam
) loop
3595 if It
.Nam
= Ent
then
3598 -- Ada 2005 (AI-345): Do not consider primitive entry
3599 -- wrappers generated for task or protected types.
3601 elsif Ada_Version
>= Ada_2005
3602 and then not Comes_From_Source
(It
.Nam
)
3607 Error_Attr
("ambiguous entry name", N
);
3610 Get_Next_Interp
(Index
, It
);
3615 Set_Etype
(N
, Universal_Integer
);
3618 -----------------------
3619 -- Default_Bit_Order --
3620 -----------------------
3622 when Attribute_Default_Bit_Order
=> Default_Bit_Order
: declare
3623 Target_Default_Bit_Order
: System
.Bit_Order
;
3626 Check_Standard_Prefix
;
3628 if Bytes_Big_Endian
then
3629 Target_Default_Bit_Order
:= System
.High_Order_First
;
3631 Target_Default_Bit_Order
:= System
.Low_Order_First
;
3635 Make_Integer_Literal
(Loc
,
3636 UI_From_Int
(System
.Bit_Order
'Pos (Target_Default_Bit_Order
))));
3638 Set_Etype
(N
, Universal_Integer
);
3639 Set_Is_Static_Expression
(N
);
3640 end Default_Bit_Order
;
3642 ----------------------------------
3643 -- Default_Scalar_Storage_Order --
3644 ----------------------------------
3646 when Attribute_Default_Scalar_Storage_Order
=> Default_SSO
: declare
3647 RE_Default_SSO
: RE_Id
;
3650 Check_Standard_Prefix
;
3652 case Opt
.Default_SSO
is
3654 if Bytes_Big_Endian
then
3655 RE_Default_SSO
:= RE_High_Order_First
;
3657 RE_Default_SSO
:= RE_Low_Order_First
;
3661 RE_Default_SSO
:= RE_High_Order_First
;
3664 RE_Default_SSO
:= RE_Low_Order_First
;
3667 raise Program_Error
;
3670 Rewrite
(N
, New_Occurrence_Of
(RTE
(RE_Default_SSO
), Loc
));
3677 when Attribute_Definite
=>
3678 Legal_Formal_Attribute
;
3684 when Attribute_Delta
=>
3685 Check_Fixed_Point_Type_0
;
3686 Set_Etype
(N
, Universal_Real
);
3692 when Attribute_Denorm
=>
3693 Check_Floating_Point_Type_0
;
3694 Set_Etype
(N
, Standard_Boolean
);
3700 when Attribute_Deref
=>
3703 Resolve
(E1
, RTE
(RE_Address
));
3704 Set_Etype
(N
, P_Type
);
3706 ---------------------
3707 -- Descriptor_Size --
3708 ---------------------
3710 when Attribute_Descriptor_Size
=>
3713 if not Is_Entity_Name
(P
) or else not Is_Type
(Entity
(P
)) then
3714 Error_Attr_P
("prefix of attribute % must denote a type");
3717 Set_Etype
(N
, Universal_Integer
);
3723 when Attribute_Digits
=>
3727 if not Is_Floating_Point_Type
(P_Type
)
3728 and then not Is_Decimal_Fixed_Point_Type
(P_Type
)
3731 ("prefix of % attribute must be float or decimal type");
3734 Set_Etype
(N
, Universal_Integer
);
3740 -- Also handles processing for Elab_Spec and Elab_Subp_Body
3742 when Attribute_Elab_Body
3743 | Attribute_Elab_Spec
3744 | Attribute_Elab_Subp_Body
3747 Check_Unit_Name
(P
);
3748 Set_Etype
(N
, Standard_Void_Type
);
3750 -- We have to manually call the expander in this case to get
3751 -- the necessary expansion (normally attributes that return
3752 -- entities are not expanded).
3760 -- Shares processing with Elab_Body
3766 when Attribute_Elaborated
=>
3768 Check_Unit_Name
(P
);
3769 Set_Etype
(N
, Standard_Boolean
);
3775 when Attribute_Emax
=>
3776 Check_Floating_Point_Type_0
;
3777 Set_Etype
(N
, Universal_Integer
);
3783 when Attribute_Enabled
=>
3784 Check_Either_E0_Or_E1
;
3786 if Present
(E1
) then
3787 if not Is_Entity_Name
(E1
) or else No
(Entity
(E1
)) then
3788 Error_Msg_N
("entity name expected for Enabled attribute", E1
);
3793 if Nkind
(P
) /= N_Identifier
then
3794 Error_Msg_N
("identifier expected (check name)", P
);
3795 elsif Get_Check_Id
(Chars
(P
)) = No_Check_Id
then
3796 Error_Msg_N
("& is not a recognized check name", P
);
3799 Set_Etype
(N
, Standard_Boolean
);
3805 when Attribute_Enum_Rep
=>
3807 -- T'Enum_Rep (X) case
3809 if Present
(E1
) then
3811 Check_Discrete_Type
;
3812 Resolve
(E1
, P_Base_Type
);
3814 -- X'Enum_Rep case. X must be an object or enumeration literal, and
3815 -- it must be of a discrete type.
3818 ((Is_Object_Reference
(P
)
3821 and then Ekind
(Entity
(P
)) = E_Enumeration_Literal
))
3822 and then Is_Discrete_Type
(Etype
(P
)))
3824 Error_Attr_P
("prefix of % attribute must be discrete object");
3827 Set_Etype
(N
, Universal_Integer
);
3833 when Attribute_Enum_Val
=>
3837 if not Is_Enumeration_Type
(P_Type
) then
3838 Error_Attr_P
("prefix of % attribute must be enumeration type");
3841 -- If the enumeration type has a standard representation, the effect
3842 -- is the same as 'Val, so rewrite the attribute as a 'Val.
3844 if not Has_Non_Standard_Rep
(P_Base_Type
) then
3846 Make_Attribute_Reference
(Loc
,
3847 Prefix
=> Relocate_Node
(Prefix
(N
)),
3848 Attribute_Name
=> Name_Val
,
3849 Expressions
=> New_List
(Relocate_Node
(E1
))));
3850 Analyze_And_Resolve
(N
, P_Base_Type
);
3852 -- Non-standard representation case (enumeration with holes)
3856 Resolve
(E1
, Any_Integer
);
3857 Set_Etype
(N
, P_Base_Type
);
3864 when Attribute_Epsilon
=>
3865 Check_Floating_Point_Type_0
;
3866 Set_Etype
(N
, Universal_Real
);
3872 when Attribute_Exponent
=>
3873 Check_Floating_Point_Type_1
;
3874 Set_Etype
(N
, Universal_Integer
);
3875 Resolve
(E1
, P_Base_Type
);
3881 when Attribute_External_Tag
=>
3885 Set_Etype
(N
, Standard_String
);
3887 if not Is_Tagged_Type
(P_Type
) then
3888 Error_Attr_P
("prefix of % attribute must be tagged");
3895 when Attribute_Fast_Math
=>
3896 Check_Standard_Prefix
;
3897 Rewrite
(N
, New_Occurrence_Of
(Boolean_Literals
(Fast_Math
), Loc
));
3899 -----------------------
3900 -- Finalization_Size --
3901 -----------------------
3903 when Attribute_Finalization_Size
=>
3906 -- The prefix denotes an object
3908 if Is_Object_Reference
(P
) then
3909 Check_Object_Reference
(P
);
3911 -- The prefix denotes a type
3913 elsif Is_Entity_Name
(P
) and then Is_Type
(Entity
(P
)) then
3915 Check_Not_Incomplete_Type
;
3917 -- Attribute 'Finalization_Size is not defined for class-wide
3918 -- types because it is not possible to know statically whether
3919 -- a definite type will have controlled components or not.
3921 if Is_Class_Wide_Type
(Etype
(P
)) then
3923 ("prefix of % attribute cannot denote a class-wide type");
3926 -- The prefix denotes an illegal construct
3930 ("prefix of % attribute must be a definite type or an object");
3933 Set_Etype
(N
, Universal_Integer
);
3939 when Attribute_First
=>
3940 Check_Array_Or_Scalar_Type
;
3941 Bad_Attribute_For_Predicate
;
3947 when Attribute_First_Bit
=>
3949 Set_Etype
(N
, Universal_Integer
);
3955 when Attribute_First_Valid
=>
3956 Check_First_Last_Valid
;
3957 Set_Etype
(N
, P_Type
);
3963 when Attribute_Fixed_Value
=>
3965 Check_Fixed_Point_Type
;
3966 Resolve
(E1
, Any_Integer
);
3967 Set_Etype
(N
, P_Base_Type
);
3973 when Attribute_Floor
=>
3974 Check_Floating_Point_Type_1
;
3975 Set_Etype
(N
, P_Base_Type
);
3976 Resolve
(E1
, P_Base_Type
);
3982 when Attribute_Fore
=>
3983 Check_Fixed_Point_Type_0
;
3984 Set_Etype
(N
, Universal_Integer
);
3990 when Attribute_Fraction
=>
3991 Check_Floating_Point_Type_1
;
3992 Set_Etype
(N
, P_Base_Type
);
3993 Resolve
(E1
, P_Base_Type
);
3999 when Attribute_From_Any
=>
4001 Check_PolyORB_Attribute
;
4002 Set_Etype
(N
, P_Base_Type
);
4004 -----------------------
4005 -- Has_Access_Values --
4006 -----------------------
4008 when Attribute_Has_Access_Values
=>
4011 Set_Etype
(N
, Standard_Boolean
);
4013 ----------------------
4014 -- Has_Same_Storage --
4015 ----------------------
4017 when Attribute_Has_Same_Storage
=>
4020 -- The arguments must be objects of any type
4022 Analyze_And_Resolve
(P
);
4023 Analyze_And_Resolve
(E1
);
4024 Check_Object_Reference
(P
);
4025 Check_Object_Reference
(E1
);
4026 Set_Etype
(N
, Standard_Boolean
);
4028 -----------------------
4029 -- Has_Tagged_Values --
4030 -----------------------
4032 when Attribute_Has_Tagged_Values
=>
4035 Set_Etype
(N
, Standard_Boolean
);
4037 -----------------------
4038 -- Has_Discriminants --
4039 -----------------------
4041 when Attribute_Has_Discriminants
=>
4042 Legal_Formal_Attribute
;
4048 when Attribute_Identity
=>
4052 if Etype
(P
) = Standard_Exception_Type
then
4053 Set_Etype
(N
, RTE
(RE_Exception_Id
));
4055 -- Ada 2005 (AI-345): Attribute 'Identity may be applied to task
4056 -- interface class-wide types.
4058 elsif Is_Task_Type
(Etype
(P
))
4059 or else (Is_Access_Type
(Etype
(P
))
4060 and then Is_Task_Type
(Designated_Type
(Etype
(P
))))
4061 or else (Ada_Version
>= Ada_2005
4062 and then Ekind
(Etype
(P
)) = E_Class_Wide_Type
4063 and then Is_Interface
(Etype
(P
))
4064 and then Is_Task_Interface
(Etype
(P
)))
4067 Set_Etype
(N
, RTE
(RO_AT_Task_Id
));
4070 if Ada_Version
>= Ada_2005
then
4072 ("prefix of % attribute must be an exception, a task or a "
4073 & "task interface class-wide object");
4076 ("prefix of % attribute must be a task or an exception");
4084 when Attribute_Image
=>
4085 if Is_Real_Type
(P_Type
) then
4086 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
4087 Error_Msg_Name_1
:= Aname
;
4089 ("(Ada 83) % attribute not allowed for real types", N
);
4093 Analyze_Image_Attribute
(Standard_String
);
4099 when Attribute_Img
=>
4100 Analyze_Image_Attribute
(Standard_String
);
4106 when Attribute_Input
=>
4108 Check_Stream_Attribute
(TSS_Stream_Input
);
4109 Set_Etype
(N
, P_Base_Type
);
4115 when Attribute_Integer_Value
=>
4118 Resolve
(E1
, Any_Fixed
);
4120 -- Signal an error if argument type is not a specific fixed-point
4121 -- subtype. An error has been signalled already if the argument
4122 -- was not of a fixed-point type.
4124 if Etype
(E1
) = Any_Fixed
and then not Error_Posted
(E1
) then
4125 Error_Attr
("argument of % must be of a fixed-point type", E1
);
4128 Set_Etype
(N
, P_Base_Type
);
4134 when Attribute_Invalid_Value
=>
4137 Set_Etype
(N
, P_Base_Type
);
4138 Invalid_Value_Used
:= True;
4144 when Attribute_Large
=>
4147 Set_Etype
(N
, Universal_Real
);
4153 when Attribute_Last
=>
4154 Check_Array_Or_Scalar_Type
;
4155 Bad_Attribute_For_Predicate
;
4161 when Attribute_Last_Bit
=>
4163 Set_Etype
(N
, Universal_Integer
);
4169 when Attribute_Last_Valid
=>
4170 Check_First_Last_Valid
;
4171 Set_Etype
(N
, P_Type
);
4177 when Attribute_Leading_Part
=>
4178 Check_Floating_Point_Type_2
;
4179 Set_Etype
(N
, P_Base_Type
);
4180 Resolve
(E1
, P_Base_Type
);
4181 Resolve
(E2
, Any_Integer
);
4187 when Attribute_Length
=>
4189 Set_Etype
(N
, Universal_Integer
);
4195 when Attribute_Library_Level
=>
4198 if not Is_Entity_Name
(P
) then
4199 Error_Attr_P
("prefix of % attribute must be an entity name");
4202 if not Inside_A_Generic
then
4203 Set_Boolean_Result
(N
,
4204 Is_Library_Level_Entity
(Entity
(P
)));
4207 Set_Etype
(N
, Standard_Boolean
);
4213 when Attribute_Lock_Free
=>
4215 Set_Etype
(N
, Standard_Boolean
);
4217 if not Is_Protected_Type
(P_Type
) then
4219 ("prefix of % attribute must be a protected object");
4226 when Attribute_Loop_Entry
=> Loop_Entry
: declare
4227 procedure Check_References_In_Prefix
(Loop_Id
: Entity_Id
);
4228 -- Inspect the prefix for any uses of entities declared within the
4229 -- related loop. Loop_Id denotes the loop identifier.
4231 --------------------------------
4232 -- Check_References_In_Prefix --
4233 --------------------------------
4235 procedure Check_References_In_Prefix
(Loop_Id
: Entity_Id
) is
4236 Loop_Decl
: constant Node_Id
:= Label_Construct
(Parent
(Loop_Id
));
4238 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
;
4239 -- Determine whether a reference mentions an entity declared
4240 -- within the related loop.
4242 function Declared_Within
(Nod
: Node_Id
) return Boolean;
4243 -- Determine whether Nod appears in the subtree of Loop_Decl
4245 ---------------------
4246 -- Check_Reference --
4247 ---------------------
4249 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
is
4251 if Nkind
(Nod
) = N_Identifier
4252 and then Present
(Entity
(Nod
))
4253 and then Declared_Within
(Declaration_Node
(Entity
(Nod
)))
4256 ("prefix of attribute % cannot reference local entities",
4262 end Check_Reference
;
4264 procedure Check_References
is new Traverse_Proc
(Check_Reference
);
4266 ---------------------
4267 -- Declared_Within --
4268 ---------------------
4270 function Declared_Within
(Nod
: Node_Id
) return Boolean is
4275 while Present
(Stmt
) loop
4276 if Stmt
= Loop_Decl
then
4279 -- Prevent the search from going too far
4281 elsif Is_Body_Or_Package_Declaration
(Stmt
) then
4285 Stmt
:= Parent
(Stmt
);
4289 end Declared_Within
;
4291 -- Start of processing for Check_Prefix_For_Local_References
4294 Check_References
(P
);
4295 end Check_References_In_Prefix
;
4299 Context
: constant Node_Id
:= Parent
(N
);
4301 Encl_Loop
: Node_Id
:= Empty
;
4302 Encl_Prag
: Node_Id
:= Empty
;
4303 Loop_Id
: Entity_Id
:= Empty
;
4307 -- Start of processing for Loop_Entry
4312 -- Set the type of the attribute now to ensure the successful
4313 -- continuation of analysis even if the attribute is misplaced.
4315 Set_Etype
(Attr
, P_Type
);
4317 -- Attribute 'Loop_Entry may appear in several flavors:
4319 -- * Prefix'Loop_Entry - in this form, the attribute applies to the
4320 -- nearest enclosing loop.
4322 -- * Prefix'Loop_Entry (Expr) - depending on what Expr denotes, the
4323 -- attribute may be related to a loop denoted by label Expr or
4324 -- the prefix may denote an array object and Expr may act as an
4325 -- indexed component.
4327 -- * Prefix'Loop_Entry (Expr1, ..., ExprN) - the attribute applies
4328 -- to the nearest enclosing loop, all expressions are part of
4329 -- an indexed component.
4331 -- * Prefix'Loop_Entry (Expr) (...) (...) - depending on what Expr
4332 -- denotes, the attribute may be related to a loop denoted by
4333 -- label Expr or the prefix may denote a multidimensional array
4334 -- array object and Expr along with the rest of the expressions
4335 -- may act as indexed components.
4337 -- Regardless of variations, the attribute reference does not have an
4338 -- expression list. Instead, all available expressions are stored as
4339 -- indexed components.
4341 -- When the attribute is part of an indexed component, find the first
4342 -- expression as it will determine the semantics of 'Loop_Entry.
4344 -- If the attribute is itself an index in an indexed component, i.e.
4345 -- a member of a list, the context itself is not relevant (the code
4346 -- below would lead to an infinite loop) and the attribute applies
4347 -- to the enclosing loop.
4349 if Nkind
(Context
) = N_Indexed_Component
4350 and then not Is_List_Member
(N
)
4352 E1
:= First
(Expressions
(Context
));
4355 -- The attribute reference appears in the following form:
4357 -- Prefix'Loop_Entry (Exp1, Expr2, ..., ExprN) [(...)]
4359 -- In this case, the loop name is omitted and no rewriting is
4362 if Present
(E2
) then
4365 -- The form of the attribute is:
4367 -- Prefix'Loop_Entry (Expr) [(...)]
4369 -- If Expr denotes a loop entry, the whole attribute and indexed
4370 -- component will have to be rewritten to reflect this relation.
4373 pragma Assert
(Present
(E1
));
4375 -- Do not expand the expression as it may have side effects.
4376 -- Simply preanalyze to determine whether it is a loop name or
4379 Preanalyze_And_Resolve
(E1
);
4381 if Is_Entity_Name
(E1
)
4382 and then Present
(Entity
(E1
))
4383 and then Ekind
(Entity
(E1
)) = E_Loop
4385 Loop_Id
:= Entity
(E1
);
4387 -- Transform the attribute and enclosing indexed component
4389 Set_Expressions
(N
, Expressions
(Context
));
4390 Rewrite
(Context
, N
);
4391 Set_Etype
(Context
, P_Type
);
4398 -- The prefix must denote an object
4400 if not Is_Object_Reference
(P
) then
4401 Error_Attr_P
("prefix of attribute % must denote an object");
4404 -- The prefix cannot be of a limited type because the expansion of
4405 -- Loop_Entry must create a constant initialized by the evaluated
4408 if Is_Limited_View
(Etype
(P
)) then
4409 Error_Attr_P
("prefix of attribute % cannot be limited");
4412 -- Climb the parent chain to verify the location of the attribute and
4413 -- find the enclosing loop.
4416 while Present
(Stmt
) loop
4418 -- Locate the corresponding enclosing pragma. Note that in the
4419 -- case of Assert[And_Cut] and Assume, we have already checked
4420 -- that the pragma appears in an appropriate loop location.
4422 if Nkind
(Original_Node
(Stmt
)) = N_Pragma
4423 and then Nam_In
(Pragma_Name_Unmapped
(Original_Node
(Stmt
)),
4424 Name_Loop_Invariant
,
4427 Name_Assert_And_Cut
,
4430 Encl_Prag
:= Original_Node
(Stmt
);
4432 -- Locate the enclosing loop (if any). Note that Ada 2012 array
4433 -- iteration may be expanded into several nested loops, we are
4434 -- interested in the outermost one which has the loop identifier,
4435 -- and comes from source.
4437 elsif Nkind
(Stmt
) = N_Loop_Statement
4438 and then Present
(Identifier
(Stmt
))
4439 and then Comes_From_Source
(Original_Node
(Stmt
))
4440 and then Nkind
(Original_Node
(Stmt
)) = N_Loop_Statement
4444 -- The original attribute reference may lack a loop name. Use
4445 -- the name of the enclosing loop because it is the related
4448 if No
(Loop_Id
) then
4449 Loop_Id
:= Entity
(Identifier
(Encl_Loop
));
4454 -- Prevent the search from going too far
4456 elsif Is_Body_Or_Package_Declaration
(Stmt
) then
4460 Stmt
:= Parent
(Stmt
);
4463 -- Loop_Entry must appear within a Loop_Assertion pragma (Assert,
4464 -- Assert_And_Cut, Assume count as loop assertion pragmas for this
4465 -- purpose if they appear in an appropriate location in a loop,
4466 -- which was already checked by the top level pragma circuit).
4468 -- Loop_Entry also denotes a value and as such can appear within an
4469 -- expression that is an argument for another loop aspect. In that
4470 -- case it will have been expanded into the corresponding assignment.
4473 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
4474 and then not Comes_From_Source
(Parent
(N
))
4478 elsif No
(Encl_Prag
) then
4479 Error_Attr
("attribute% must appear within appropriate pragma", N
);
4482 -- A Loop_Entry that applies to a given loop statement must not
4483 -- appear within a body of accept statement, if this construct is
4484 -- itself enclosed by the given loop statement.
4486 for Index
in reverse 0 .. Scope_Stack
.Last
loop
4487 Scop
:= Scope_Stack
.Table
(Index
).Entity
;
4489 if Ekind
(Scop
) = E_Loop
and then Scop
= Loop_Id
then
4491 elsif Ekind_In
(Scop
, E_Block
, E_Loop
, E_Return_Statement
) then
4495 ("attribute % cannot appear in body or accept statement", N
);
4500 -- The prefix cannot mention entities declared within the related
4501 -- loop because they will not be visible once the prefix is moved
4502 -- outside the loop.
4504 Check_References_In_Prefix
(Loop_Id
);
4506 -- The prefix must denote a static entity if the pragma does not
4507 -- apply to the innermost enclosing loop statement, or if it appears
4508 -- within a potentially unevaluated epxression.
4510 if Is_Entity_Name
(P
)
4511 or else Nkind
(Parent
(P
)) = N_Object_Renaming_Declaration
4512 or else Statically_Denotes_Object
(P
)
4516 elsif Present
(Encl_Loop
)
4517 and then Entity
(Identifier
(Encl_Loop
)) /= Loop_Id
4520 ("prefix of attribute % that applies to outer loop must denote "
4523 elsif Is_Potentially_Unevaluated
(P
) then
4527 -- Replace the Loop_Entry attribute reference by its prefix if the
4528 -- related pragma is ignored. This transformation is OK with respect
4529 -- to typing because Loop_Entry's type is that of its prefix. This
4530 -- early transformation also avoids the generation of a useless loop
4533 if Present
(Encl_Prag
) and then Is_Ignored
(Encl_Prag
) then
4534 Rewrite
(N
, Relocate_Node
(P
));
4535 Preanalyze_And_Resolve
(N
);
4538 Preanalyze_And_Resolve
(P
);
4546 when Attribute_Machine
=>
4547 Check_Floating_Point_Type_1
;
4548 Set_Etype
(N
, P_Base_Type
);
4549 Resolve
(E1
, P_Base_Type
);
4555 when Attribute_Machine_Emax
=>
4556 Check_Floating_Point_Type_0
;
4557 Set_Etype
(N
, Universal_Integer
);
4563 when Attribute_Machine_Emin
=>
4564 Check_Floating_Point_Type_0
;
4565 Set_Etype
(N
, Universal_Integer
);
4567 ----------------------
4568 -- Machine_Mantissa --
4569 ----------------------
4571 when Attribute_Machine_Mantissa
=>
4572 Check_Floating_Point_Type_0
;
4573 Set_Etype
(N
, Universal_Integer
);
4575 -----------------------
4576 -- Machine_Overflows --
4577 -----------------------
4579 when Attribute_Machine_Overflows
=>
4582 Set_Etype
(N
, Standard_Boolean
);
4588 when Attribute_Machine_Radix
=>
4591 Set_Etype
(N
, Universal_Integer
);
4593 ----------------------
4594 -- Machine_Rounding --
4595 ----------------------
4597 when Attribute_Machine_Rounding
=>
4598 Check_Floating_Point_Type_1
;
4599 Set_Etype
(N
, P_Base_Type
);
4600 Resolve
(E1
, P_Base_Type
);
4602 --------------------
4603 -- Machine_Rounds --
4604 --------------------
4606 when Attribute_Machine_Rounds
=>
4609 Set_Etype
(N
, Standard_Boolean
);
4615 when Attribute_Machine_Size
=>
4618 Check_Not_Incomplete_Type
;
4619 Set_Etype
(N
, Universal_Integer
);
4625 when Attribute_Mantissa
=>
4628 Set_Etype
(N
, Universal_Integer
);
4634 when Attribute_Max
=>
4637 ----------------------------------
4638 -- Max_Alignment_For_Allocation --
4639 ----------------------------------
4641 when Attribute_Max_Size_In_Storage_Elements
=>
4642 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
4644 ----------------------------------
4645 -- Max_Size_In_Storage_Elements --
4646 ----------------------------------
4648 when Attribute_Max_Alignment_For_Allocation
=>
4649 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements
;
4651 -----------------------
4652 -- Maximum_Alignment --
4653 -----------------------
4655 when Attribute_Maximum_Alignment
=>
4656 Standard_Attribute
(Ttypes
.Maximum_Alignment
);
4658 --------------------
4659 -- Mechanism_Code --
4660 --------------------
4662 when Attribute_Mechanism_Code
=>
4663 if not Is_Entity_Name
(P
)
4664 or else not Is_Subprogram
(Entity
(P
))
4666 Error_Attr_P
("prefix of % attribute must be subprogram");
4669 Check_Either_E0_Or_E1
;
4671 if Present
(E1
) then
4672 Resolve
(E1
, Any_Integer
);
4673 Set_Etype
(E1
, Standard_Integer
);
4675 if not Is_OK_Static_Expression
(E1
) then
4676 Flag_Non_Static_Expr
4677 ("expression for parameter number must be static!", E1
);
4680 elsif UI_To_Int
(Intval
(E1
)) > Number_Formals
(Entity
(P
))
4681 or else UI_To_Int
(Intval
(E1
)) < 0
4683 Error_Attr
("invalid parameter number for % attribute", E1
);
4687 Set_Etype
(N
, Universal_Integer
);
4693 when Attribute_Min
=>
4700 when Attribute_Mod
=>
4702 -- Note: this attribute is only allowed in Ada 2005 mode, but
4703 -- we do not need to test that here, since Mod is only recognized
4704 -- as an attribute name in Ada 2005 mode during the parse.
4707 Check_Modular_Integer_Type
;
4708 Resolve
(E1
, Any_Integer
);
4709 Set_Etype
(N
, P_Base_Type
);
4715 when Attribute_Model
=>
4716 Check_Floating_Point_Type_1
;
4717 Set_Etype
(N
, P_Base_Type
);
4718 Resolve
(E1
, P_Base_Type
);
4724 when Attribute_Model_Emin
=>
4725 Check_Floating_Point_Type_0
;
4726 Set_Etype
(N
, Universal_Integer
);
4732 when Attribute_Model_Epsilon
=>
4733 Check_Floating_Point_Type_0
;
4734 Set_Etype
(N
, Universal_Real
);
4736 --------------------
4737 -- Model_Mantissa --
4738 --------------------
4740 when Attribute_Model_Mantissa
=>
4741 Check_Floating_Point_Type_0
;
4742 Set_Etype
(N
, Universal_Integer
);
4748 when Attribute_Model_Small
=>
4749 Check_Floating_Point_Type_0
;
4750 Set_Etype
(N
, Universal_Real
);
4756 when Attribute_Modulus
=>
4758 Check_Modular_Integer_Type
;
4759 Set_Etype
(N
, Universal_Integer
);
4761 --------------------
4762 -- Null_Parameter --
4763 --------------------
4765 when Attribute_Null_Parameter
=> Null_Parameter
: declare
4766 Parnt
: constant Node_Id
:= Parent
(N
);
4767 GParnt
: constant Node_Id
:= Parent
(Parnt
);
4769 procedure Bad_Null_Parameter
(Msg
: String);
4770 -- Used if bad Null parameter attribute node is found. Issues
4771 -- given error message, and also sets the type to Any_Type to
4772 -- avoid blowups later on from dealing with a junk node.
4774 procedure Must_Be_Imported
(Proc_Ent
: Entity_Id
);
4775 -- Called to check that Proc_Ent is imported subprogram
4777 ------------------------
4778 -- Bad_Null_Parameter --
4779 ------------------------
4781 procedure Bad_Null_Parameter
(Msg
: String) is
4783 Error_Msg_N
(Msg
, N
);
4784 Set_Etype
(N
, Any_Type
);
4785 end Bad_Null_Parameter
;
4787 ----------------------
4788 -- Must_Be_Imported --
4789 ----------------------
4791 procedure Must_Be_Imported
(Proc_Ent
: Entity_Id
) is
4792 Pent
: constant Entity_Id
:= Ultimate_Alias
(Proc_Ent
);
4795 -- Ignore check if procedure not frozen yet (we will get
4796 -- another chance when the default parameter is reanalyzed)
4798 if not Is_Frozen
(Pent
) then
4801 elsif not Is_Imported
(Pent
) then
4803 ("Null_Parameter can only be used with imported subprogram");
4808 end Must_Be_Imported
;
4810 -- Start of processing for Null_Parameter
4815 Set_Etype
(N
, P_Type
);
4817 -- Case of attribute used as default expression
4819 if Nkind
(Parnt
) = N_Parameter_Specification
then
4820 Must_Be_Imported
(Defining_Entity
(GParnt
));
4822 -- Case of attribute used as actual for subprogram (positional)
4824 elsif Nkind
(Parnt
) in N_Subprogram_Call
4825 and then Is_Entity_Name
(Name
(Parnt
))
4827 Must_Be_Imported
(Entity
(Name
(Parnt
)));
4829 -- Case of attribute used as actual for subprogram (named)
4831 elsif Nkind
(Parnt
) = N_Parameter_Association
4832 and then Nkind
(GParnt
) in N_Subprogram_Call
4833 and then Is_Entity_Name
(Name
(GParnt
))
4835 Must_Be_Imported
(Entity
(Name
(GParnt
)));
4837 -- Not an allowed case
4841 ("Null_Parameter must be actual or default parameter");
4849 when Attribute_Object_Size
=>
4852 Check_Not_Incomplete_Type
;
4853 Set_Etype
(N
, Universal_Integer
);
4859 when Attribute_Old
=> Old
: declare
4860 procedure Check_References_In_Prefix
(Subp_Id
: Entity_Id
);
4861 -- Inspect the contents of the prefix and detect illegal uses of a
4862 -- nested 'Old, attribute 'Result or a use of an entity declared in
4863 -- the related postcondition expression. Subp_Id is the subprogram to
4864 -- which the related postcondition applies.
4866 --------------------------------
4867 -- Check_References_In_Prefix --
4868 --------------------------------
4870 procedure Check_References_In_Prefix
(Subp_Id
: Entity_Id
) is
4871 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
;
4872 -- Detect attribute 'Old, attribute 'Result of a use of an entity
4873 -- and perform the appropriate semantic check.
4875 ---------------------
4876 -- Check_Reference --
4877 ---------------------
4879 function Check_Reference
(Nod
: Node_Id
) return Traverse_Result
is
4881 -- Attributes 'Old and 'Result cannot appear in the prefix of
4882 -- another attribute 'Old.
4884 if Nkind
(Nod
) = N_Attribute_Reference
4885 and then Nam_In
(Attribute_Name
(Nod
), Name_Old
,
4888 Error_Msg_Name_1
:= Attribute_Name
(Nod
);
4889 Error_Msg_Name_2
:= Name_Old
;
4891 ("attribute % cannot appear in the prefix of attribute %",
4895 -- Entities mentioned within the prefix of attribute 'Old must
4896 -- be global to the related postcondition. If this is not the
4897 -- case, then the scope of the local entity is nested within
4898 -- that of the subprogram.
4900 elsif Is_Entity_Name
(Nod
)
4901 and then Present
(Entity
(Nod
))
4902 and then Scope_Within
(Scope
(Entity
(Nod
)), Subp_Id
)
4905 ("prefix of attribute % cannot reference local entities",
4909 -- Otherwise keep inspecting the prefix
4914 end Check_Reference
;
4916 procedure Check_References
is new Traverse_Proc
(Check_Reference
);
4918 -- Start of processing for Check_References_In_Prefix
4921 Check_References
(P
);
4922 end Check_References_In_Prefix
;
4927 Pref_Id
: Entity_Id
;
4928 Pref_Typ
: Entity_Id
;
4929 Spec_Id
: Entity_Id
;
4931 -- Start of processing for Old
4934 -- The attribute reference is a primary. If any expressions follow,
4935 -- then the attribute reference is an indexable object. Transform the
4936 -- attribute into an indexed component and analyze it.
4938 if Present
(E1
) then
4940 Make_Indexed_Component
(Loc
,
4942 Make_Attribute_Reference
(Loc
,
4943 Prefix
=> Relocate_Node
(P
),
4944 Attribute_Name
=> Name_Old
),
4945 Expressions
=> Expressions
(N
)));
4950 Analyze_Attribute_Old_Result
(Legal
, Spec_Id
);
4952 -- The aspect or pragma where attribute 'Old resides should be
4953 -- associated with a subprogram declaration or a body. If this is not
4954 -- the case, then the aspect or pragma is illegal. Return as analysis
4955 -- cannot be carried out.
4957 -- The exception to this rule is when generating C since in this case
4958 -- postconditions are inlined.
4961 and then Modify_Tree_For_C
4962 and then In_Inlined_Body
4964 Spec_Id
:= Entity
(P
);
4966 elsif not Legal
then
4970 -- The prefix must be preanalyzed as the full analysis will take
4971 -- place during expansion.
4973 Preanalyze_And_Resolve
(P
);
4975 -- Ensure that the prefix does not contain attributes 'Old or 'Result
4977 Check_References_In_Prefix
(Spec_Id
);
4979 -- Set the type of the attribute now to prevent cascaded errors
4981 Pref_Typ
:= Etype
(P
);
4982 Set_Etype
(N
, Pref_Typ
);
4986 if Is_Limited_Type
(Pref_Typ
) then
4987 Error_Attr
("attribute % cannot apply to limited objects", P
);
4990 -- The prefix is a simple name
4992 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
4993 Pref_Id
:= Entity
(P
);
4995 -- Emit a warning when the prefix is a constant. Note that the use
4996 -- of Error_Attr would reset the type of N to Any_Type even though
4997 -- this is a warning. Use Error_Msg_XXX instead.
4999 if Is_Constant_Object
(Pref_Id
) then
5000 Error_Msg_Name_1
:= Name_Old
;
5002 ("??attribute % applied to constant has no effect", P
);
5005 -- Otherwise the prefix is not a simple name
5008 -- Ensure that the prefix of attribute 'Old is an entity when it
5009 -- is potentially unevaluated (6.1.1 (27/3)).
5011 if Is_Potentially_Unevaluated
(N
)
5012 and then not Statically_Denotes_Object
(P
)
5016 -- Detect a possible infinite recursion when the prefix denotes
5017 -- the related function.
5019 -- function Func (...) return ...
5020 -- with Post => Func'Old ...;
5022 -- The function may be specified in qualified form X.Y where X is
5023 -- a protected object and Y is a protected function. In that case
5024 -- ensure that the qualified form has an entity.
5026 elsif Nkind
(P
) = N_Function_Call
5027 and then Nkind
(Name
(P
)) in N_Has_Entity
5029 Pref_Id
:= Entity
(Name
(P
));
5031 if Ekind_In
(Spec_Id
, E_Function
, E_Generic_Function
)
5032 and then Pref_Id
= Spec_Id
5034 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5035 Error_Msg_N
("!possible infinite recursion<<", P
);
5036 Error_Msg_N
("\!??Storage_Error ]<<", P
);
5040 -- The prefix of attribute 'Old may refer to a component of a
5041 -- formal parameter. In this case its expansion may generate
5042 -- actual subtypes that are referenced in an inner context and
5043 -- that must be elaborated within the subprogram itself. If the
5044 -- prefix includes a function call, it may involve finalization
5045 -- actions that should be inserted when the attribute has been
5046 -- rewritten as a declaration. Create a declaration for the prefix
5047 -- and insert it at the start of the enclosing subprogram. This is
5048 -- an expansion activity that has to be performed now to prevent
5049 -- out-of-order issues.
5051 -- This expansion is both harmful and not needed in SPARK mode,
5052 -- since the formal verification back end relies on the types of
5053 -- nodes (hence is not robust w.r.t. a change to base type here),
5054 -- and does not suffer from the out-of-order issue described
5055 -- above. Thus, this expansion is skipped in SPARK mode.
5057 -- The expansion is not relevant for discrete types, which will
5058 -- not generate extra declarations, and where use of the base type
5059 -- may lead to spurious errors if context is a case.
5061 if not GNATprove_Mode
then
5062 if not Is_Discrete_Type
(Pref_Typ
) then
5063 Pref_Typ
:= Base_Type
(Pref_Typ
);
5066 Set_Etype
(N
, Pref_Typ
);
5067 Set_Etype
(P
, Pref_Typ
);
5069 Analyze_Dimension
(N
);
5075 ----------------------
5076 -- Overlaps_Storage --
5077 ----------------------
5079 when Attribute_Overlaps_Storage
=>
5082 -- Both arguments must be objects of any type
5084 Analyze_And_Resolve
(P
);
5085 Analyze_And_Resolve
(E1
);
5086 Check_Object_Reference
(P
);
5087 Check_Object_Reference
(E1
);
5088 Set_Etype
(N
, Standard_Boolean
);
5094 when Attribute_Output
=>
5096 Check_Stream_Attribute
(TSS_Stream_Output
);
5097 Set_Etype
(N
, Standard_Void_Type
);
5098 Resolve
(N
, Standard_Void_Type
);
5104 when Attribute_Partition_ID
=>
5107 if P_Type
/= Any_Type
then
5108 if not Is_Library_Level_Entity
(Entity
(P
)) then
5110 ("prefix of % attribute must be library-level entity");
5112 -- The defining entity of prefix should not be declared inside a
5113 -- Pure unit. RM E.1(8). Is_Pure was set during declaration.
5115 elsif Is_Entity_Name
(P
)
5116 and then Is_Pure
(Entity
(P
))
5118 Error_Attr_P
("prefix of% attribute must not be declared pure");
5122 Set_Etype
(N
, Universal_Integer
);
5124 -------------------------
5125 -- Passed_By_Reference --
5126 -------------------------
5128 when Attribute_Passed_By_Reference
=>
5131 Set_Etype
(N
, Standard_Boolean
);
5137 when Attribute_Pool_Address
=>
5139 Set_Etype
(N
, RTE
(RE_Address
));
5145 when Attribute_Pos
=>
5146 Check_Discrete_Type
;
5149 if Is_Boolean_Type
(P_Type
) then
5150 Error_Msg_Name_1
:= Aname
;
5151 Error_Msg_Name_2
:= Chars
(P_Type
);
5152 Check_SPARK_05_Restriction
5153 ("attribute% is not allowed for type%", P
);
5156 Resolve
(E1
, P_Base_Type
);
5157 Set_Etype
(N
, Universal_Integer
);
5163 when Attribute_Position
=>
5165 Set_Etype
(N
, Universal_Integer
);
5171 when Attribute_Pred
=>
5175 if Is_Real_Type
(P_Type
) or else Is_Boolean_Type
(P_Type
) then
5176 Error_Msg_Name_1
:= Aname
;
5177 Error_Msg_Name_2
:= Chars
(P_Type
);
5178 Check_SPARK_05_Restriction
5179 ("attribute% is not allowed for type%", P
);
5182 Resolve
(E1
, P_Base_Type
);
5183 Set_Etype
(N
, P_Base_Type
);
5185 -- Since Pred works on the base type, we normally do no check for the
5186 -- floating-point case, since the base type is unconstrained. But we
5187 -- make an exception in Check_Float_Overflow mode.
5189 if Is_Floating_Point_Type
(P_Type
) then
5190 if not Range_Checks_Suppressed
(P_Base_Type
) then
5191 Set_Do_Range_Check
(E1
);
5194 -- If not modular type, test for overflow check required
5197 if not Is_Modular_Integer_Type
(P_Type
)
5198 and then not Range_Checks_Suppressed
(P_Base_Type
)
5200 Enable_Range_Check
(E1
);
5208 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5210 when Attribute_Priority
=>
5211 if Ada_Version
< Ada_2005
then
5212 Error_Attr
("% attribute is allowed only in Ada 2005 mode", P
);
5217 Check_Restriction
(No_Dynamic_Priorities
, N
);
5219 -- The prefix must be a protected object (AARM D.5.2 (2/2))
5223 if Is_Protected_Type
(Etype
(P
))
5224 or else (Is_Access_Type
(Etype
(P
))
5225 and then Is_Protected_Type
(Designated_Type
(Etype
(P
))))
5227 Resolve
(P
, Etype
(P
));
5229 Error_Attr_P
("prefix of % attribute must be a protected object");
5232 Set_Etype
(N
, Standard_Integer
);
5234 -- Must be called from within a protected procedure or entry of the
5235 -- protected object.
5242 while S
/= Etype
(P
)
5243 and then S
/= Standard_Standard
5248 if S
= Standard_Standard
then
5249 Error_Attr
("the attribute % is only allowed inside protected "
5254 Validate_Non_Static_Attribute_Function_Call
;
5260 when Attribute_Range
=>
5261 Check_Array_Or_Scalar_Type
;
5262 Bad_Attribute_For_Predicate
;
5264 if Ada_Version
= Ada_83
5265 and then Is_Scalar_Type
(P_Type
)
5266 and then Comes_From_Source
(N
)
5269 ("(Ada 83) % attribute not allowed for scalar type", P
);
5276 when Attribute_Result
=> Result
: declare
5277 function Denote_Same_Function
5278 (Pref_Id
: Entity_Id
;
5279 Spec_Id
: Entity_Id
) return Boolean;
5280 -- Determine whether the entity of the prefix Pref_Id denotes the
5281 -- same entity as that of the related subprogram Spec_Id.
5283 --------------------------
5284 -- Denote_Same_Function --
5285 --------------------------
5287 function Denote_Same_Function
5288 (Pref_Id
: Entity_Id
;
5289 Spec_Id
: Entity_Id
) return Boolean
5291 Over_Id
: constant Entity_Id
:= Overridden_Operation
(Spec_Id
);
5292 Subp_Spec
: constant Node_Id
:= Parent
(Spec_Id
);
5295 -- The prefix denotes the related subprogram
5297 if Pref_Id
= Spec_Id
then
5300 -- Account for a special case when attribute 'Result appears in
5301 -- the postcondition of a generic function.
5304 -- function Gen_Func return ...
5305 -- with Post => Gen_Func'Result ...;
5307 -- When the generic function is instantiated, the Chars field of
5308 -- the instantiated prefix still denotes the name of the generic
5309 -- function. Note that any preemptive transformation is impossible
5310 -- without a proper analysis. The structure of the wrapper package
5313 -- package Anon_Gen_Pack is
5314 -- <subtypes and renamings>
5315 -- function Subp_Decl return ...; -- (!)
5316 -- pragma Postcondition (Gen_Func'Result ...); -- (!)
5317 -- function Gen_Func ... renames Subp_Decl;
5318 -- end Anon_Gen_Pack;
5320 elsif Nkind
(Subp_Spec
) = N_Function_Specification
5321 and then Present
(Generic_Parent
(Subp_Spec
))
5322 and then Ekind_In
(Pref_Id
, E_Generic_Function
, E_Function
)
5324 if Generic_Parent
(Subp_Spec
) = Pref_Id
then
5327 elsif Present
(Alias
(Pref_Id
))
5328 and then Alias
(Pref_Id
) = Spec_Id
5333 -- Account for a special case where a primitive of a tagged type
5334 -- inherits a class-wide postcondition from a parent type. In this
5335 -- case the prefix of attribute 'Result denotes the overriding
5338 elsif Present
(Over_Id
) and then Pref_Id
= Over_Id
then
5342 -- Otherwise the prefix does not denote the related subprogram
5345 end Denote_Same_Function
;
5349 In_Inlined_C_Postcondition
: constant Boolean :=
5351 and then In_Inlined_Body
;
5354 Pref_Id
: Entity_Id
;
5355 Spec_Id
: Entity_Id
;
5357 -- Start of processing for Result
5360 -- The attribute reference is a primary. If any expressions follow,
5361 -- then the attribute reference is an indexable object. Transform the
5362 -- attribute into an indexed component and analyze it.
5364 if Present
(E1
) then
5366 Make_Indexed_Component
(Loc
,
5368 Make_Attribute_Reference
(Loc
,
5369 Prefix
=> Relocate_Node
(P
),
5370 Attribute_Name
=> Name_Result
),
5371 Expressions
=> Expressions
(N
)));
5376 Analyze_Attribute_Old_Result
(Legal
, Spec_Id
);
5378 -- The aspect or pragma where attribute 'Result resides should be
5379 -- associated with a subprogram declaration or a body. If this is not
5380 -- the case, then the aspect or pragma is illegal. Return as analysis
5381 -- cannot be carried out.
5383 -- The exception to this rule is when generating C since in this case
5384 -- postconditions are inlined.
5386 if No
(Spec_Id
) and then In_Inlined_C_Postcondition
then
5387 Spec_Id
:= Entity
(P
);
5389 elsif not Legal
then
5393 -- Attribute 'Result is part of a _Postconditions procedure. There is
5394 -- no need to perform the semantic checks below as they were already
5395 -- verified when the attribute was analyzed in its original context.
5396 -- Instead, rewrite the attribute as a reference to formal parameter
5397 -- _Result of the _Postconditions procedure.
5399 if Chars
(Spec_Id
) = Name_uPostconditions
5401 (In_Inlined_C_Postcondition
5402 and then Nkind
(Parent
(Spec_Id
)) = N_Block_Statement
)
5404 Rewrite
(N
, Make_Identifier
(Loc
, Name_uResult
));
5406 -- The type of formal parameter _Result is that of the function
5407 -- encapsulating the _Postconditions procedure. Resolution must
5408 -- be carried out against the function return type.
5410 Analyze_And_Resolve
(N
, Etype
(Scope
(Spec_Id
)));
5412 -- Otherwise attribute 'Result appears in its original context and
5413 -- all semantic checks should be carried out.
5416 -- Verify the legality of the prefix. It must denotes the entity
5417 -- of the related [generic] function.
5419 if Is_Entity_Name
(P
) then
5420 Pref_Id
:= Entity
(P
);
5422 if Ekind_In
(Pref_Id
, E_Function
, E_Generic_Function
)
5423 and then Ekind
(Spec_Id
) = Ekind
(Pref_Id
)
5425 if Denote_Same_Function
(Pref_Id
, Spec_Id
) then
5427 -- Correct the prefix of the attribute when the context
5428 -- is a generic function.
5430 if Pref_Id
/= Spec_Id
then
5431 Rewrite
(P
, New_Occurrence_Of
(Spec_Id
, Loc
));
5435 Set_Etype
(N
, Etype
(Spec_Id
));
5437 -- Otherwise the prefix denotes some unrelated function
5440 Error_Msg_Name_2
:= Chars
(Spec_Id
);
5442 ("incorrect prefix for attribute %, expected %", P
);
5445 -- Otherwise the prefix denotes some other form of subprogram
5450 ("attribute % can only appear in postcondition of "
5454 -- Otherwise the prefix is illegal
5457 Error_Msg_Name_2
:= Chars
(Spec_Id
);
5458 Error_Attr
("incorrect prefix for attribute %, expected %", P
);
5467 when Attribute_Range_Length
=>
5469 Check_Discrete_Type
;
5470 Set_Etype
(N
, Universal_Integer
);
5476 when Attribute_Read
=>
5478 Check_Stream_Attribute
(TSS_Stream_Read
);
5479 Set_Etype
(N
, Standard_Void_Type
);
5480 Resolve
(N
, Standard_Void_Type
);
5481 Note_Possible_Modification
(E2
, Sure
=> True);
5487 when Attribute_Ref
=>
5491 if Nkind
(P
) /= N_Expanded_Name
5492 or else not Is_RTE
(P_Type
, RE_Address
)
5494 Error_Attr_P
("prefix of % attribute must be System.Address");
5497 Analyze_And_Resolve
(E1
, Any_Integer
);
5498 Set_Etype
(N
, RTE
(RE_Address
));
5504 when Attribute_Remainder
=>
5505 Check_Floating_Point_Type_2
;
5506 Set_Etype
(N
, P_Base_Type
);
5507 Resolve
(E1
, P_Base_Type
);
5508 Resolve
(E2
, P_Base_Type
);
5510 ---------------------
5511 -- Restriction_Set --
5512 ---------------------
5514 when Attribute_Restriction_Set
=> Restriction_Set
: declare
5517 Unam
: Unit_Name_Type
;
5522 Check_System_Prefix
;
5524 -- No_Dependence case
5526 if Nkind
(E1
) = N_Parameter_Association
then
5527 pragma Assert
(Chars
(Selector_Name
(E1
)) = Name_No_Dependence
);
5528 U
:= Explicit_Actual_Parameter
(E1
);
5530 if not OK_No_Dependence_Unit_Name
(U
) then
5531 Set_Boolean_Result
(N
, False);
5535 -- See if there is an entry already in the table. That's the
5536 -- case in which we can return True.
5538 for J
in No_Dependences
.First
.. No_Dependences
.Last
loop
5539 if Designate_Same_Unit
(U
, No_Dependences
.Table
(J
).Unit
)
5540 and then No_Dependences
.Table
(J
).Warn
= False
5542 Set_Boolean_Result
(N
, True);
5547 -- If not in the No_Dependence table, result is False
5549 Set_Boolean_Result
(N
, False);
5551 -- In this case, we must ensure that the binder will reject any
5552 -- other unit in the partition that sets No_Dependence for this
5553 -- unit. We do that by making an entry in the special table kept
5554 -- for this purpose (if the entry is not there already).
5556 Unam
:= Get_Spec_Name
(Get_Unit_Name
(U
));
5558 for J
in Restriction_Set_Dependences
.First
..
5559 Restriction_Set_Dependences
.Last
5561 if Restriction_Set_Dependences
.Table
(J
) = Unam
then
5566 Restriction_Set_Dependences
.Append
(Unam
);
5568 -- Normal restriction case
5571 if Nkind
(E1
) /= N_Identifier
then
5572 Set_Boolean_Result
(N
, False);
5573 Error_Attr
("attribute % requires restriction identifier", E1
);
5576 R
:= Get_Restriction_Id
(Process_Restriction_Synonyms
(E1
));
5578 if R
= Not_A_Restriction_Id
then
5579 Set_Boolean_Result
(N
, False);
5580 Error_Msg_Node_1
:= E1
;
5581 Error_Attr
("invalid restriction identifier &", E1
);
5583 elsif R
not in Partition_Boolean_Restrictions
then
5584 Set_Boolean_Result
(N
, False);
5585 Error_Msg_Node_1
:= E1
;
5587 ("& is not a boolean partition-wide restriction", E1
);
5590 if Restriction_Active
(R
) then
5591 Set_Boolean_Result
(N
, True);
5593 Check_Restriction
(R
, N
);
5594 Set_Boolean_Result
(N
, False);
5598 end Restriction_Set
;
5604 when Attribute_Round
=>
5606 Check_Decimal_Fixed_Point_Type
;
5607 Set_Etype
(N
, P_Base_Type
);
5609 -- Because the context is universal_real (3.5.10(12)) it is a
5610 -- legal context for a universal fixed expression. This is the
5611 -- only attribute whose functional description involves U_R.
5613 if Etype
(E1
) = Universal_Fixed
then
5615 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
5616 Subtype_Mark
=> New_Occurrence_Of
(Universal_Real
, Loc
),
5617 Expression
=> Relocate_Node
(E1
));
5625 Resolve
(E1
, Any_Real
);
5631 when Attribute_Rounding
=>
5632 Check_Floating_Point_Type_1
;
5633 Set_Etype
(N
, P_Base_Type
);
5634 Resolve
(E1
, P_Base_Type
);
5640 when Attribute_Safe_Emax
=>
5641 Check_Floating_Point_Type_0
;
5642 Set_Etype
(N
, Universal_Integer
);
5648 when Attribute_Safe_First
=>
5649 Check_Floating_Point_Type_0
;
5650 Set_Etype
(N
, Universal_Real
);
5656 when Attribute_Safe_Large
=>
5659 Set_Etype
(N
, Universal_Real
);
5665 when Attribute_Safe_Last
=>
5666 Check_Floating_Point_Type_0
;
5667 Set_Etype
(N
, Universal_Real
);
5673 when Attribute_Safe_Small
=>
5676 Set_Etype
(N
, Universal_Real
);
5678 --------------------------
5679 -- Scalar_Storage_Order --
5680 --------------------------
5682 when Attribute_Scalar_Storage_Order
=> Scalar_Storage_Order
: declare
5683 Ent
: Entity_Id
:= Empty
;
5689 if not (Is_Record_Type
(P_Type
) or else Is_Array_Type
(P_Type
)) then
5691 -- In GNAT mode, the attribute applies to generic types as well
5692 -- as composite types, and for non-composite types always returns
5693 -- the default bit order for the target.
5695 if not (GNAT_Mode
and then Is_Generic_Type
(P_Type
))
5696 and then not In_Instance
5699 ("prefix of % attribute must be record or array type");
5701 elsif not Is_Generic_Type
(P_Type
) then
5702 if Bytes_Big_Endian
then
5703 Ent
:= RTE
(RE_High_Order_First
);
5705 Ent
:= RTE
(RE_Low_Order_First
);
5709 elsif Bytes_Big_Endian
xor Reverse_Storage_Order
(P_Type
) then
5710 Ent
:= RTE
(RE_High_Order_First
);
5713 Ent
:= RTE
(RE_Low_Order_First
);
5716 if Present
(Ent
) then
5717 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
5720 Set_Etype
(N
, RTE
(RE_Bit_Order
));
5723 -- Reset incorrect indication of staticness
5725 Set_Is_Static_Expression
(N
, False);
5726 end Scalar_Storage_Order
;
5732 when Attribute_Scale
=>
5734 Check_Decimal_Fixed_Point_Type
;
5735 Set_Etype
(N
, Universal_Integer
);
5741 when Attribute_Scaling
=>
5742 Check_Floating_Point_Type_2
;
5743 Set_Etype
(N
, P_Base_Type
);
5744 Resolve
(E1
, P_Base_Type
);
5750 when Attribute_Signed_Zeros
=>
5751 Check_Floating_Point_Type_0
;
5752 Set_Etype
(N
, Standard_Boolean
);
5759 | Attribute_VADS_Size
5763 -- If prefix is parameterless function call, rewrite and resolve
5766 if Is_Entity_Name
(P
)
5767 and then Ekind
(Entity
(P
)) = E_Function
5771 -- Similar processing for a protected function call
5773 elsif Nkind
(P
) = N_Selected_Component
5774 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Function
5779 if Is_Object_Reference
(P
) then
5780 Check_Object_Reference
(P
);
5782 elsif Is_Entity_Name
(P
)
5783 and then (Is_Type
(Entity
(P
))
5784 or else Ekind
(Entity
(P
)) = E_Enumeration_Literal
)
5788 elsif Nkind
(P
) = N_Type_Conversion
5789 and then not Comes_From_Source
(P
)
5793 -- Some other compilers allow dubious use of X'???'Size
5795 elsif Relaxed_RM_Semantics
5796 and then Nkind
(P
) = N_Attribute_Reference
5801 Error_Attr_P
("invalid prefix for % attribute");
5804 Check_Not_Incomplete_Type
;
5806 Set_Etype
(N
, Universal_Integer
);
5808 -- If we are processing pragmas Compile_Time_Warning and Compile_
5809 -- Time_Errors after the back end has been called and this occurrence
5810 -- of 'Size is known at compile time then it is safe to perform this
5811 -- evaluation. Needed to perform the static evaluation of the full
5812 -- boolean expression of these pragmas.
5814 if In_Compile_Time_Warning_Or_Error
5815 and then Is_Entity_Name
(P
)
5816 and then (Is_Type
(Entity
(P
))
5817 or else Ekind
(Entity
(P
)) = E_Enumeration_Literal
)
5818 and then Size_Known_At_Compile_Time
(Entity
(P
))
5820 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Esize
(Entity
(P
))));
5828 when Attribute_Small
=>
5831 Set_Etype
(N
, Universal_Real
);
5837 when Attribute_Storage_Pool
5838 | Attribute_Simple_Storage_Pool
5842 if Is_Access_Type
(P_Type
) then
5843 if Ekind
(P_Type
) = E_Access_Subprogram_Type
then
5845 ("cannot use % attribute for access-to-subprogram type");
5848 -- Set appropriate entity
5850 if Present
(Associated_Storage_Pool
(Root_Type
(P_Type
))) then
5851 Set_Entity
(N
, Associated_Storage_Pool
(Root_Type
(P_Type
)));
5853 Set_Entity
(N
, RTE
(RE_Global_Pool_Object
));
5856 if Attr_Id
= Attribute_Storage_Pool
then
5857 if Present
(Get_Rep_Pragma
(Etype
(Entity
(N
)),
5858 Name_Simple_Storage_Pool_Type
))
5860 Error_Msg_Name_1
:= Aname
;
5861 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5863 ("cannot use % attribute for type with simple storage "
5865 Error_Msg_N
("\Program_Error [<<", N
);
5868 (N
, Make_Raise_Program_Error
5869 (Sloc
(N
), Reason
=> PE_Explicit_Raise
));
5872 Set_Etype
(N
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
5874 -- In the Simple_Storage_Pool case, verify that the pool entity is
5875 -- actually of a simple storage pool type, and set the attribute's
5876 -- type to the pool object's type.
5879 if not Present
(Get_Rep_Pragma
(Etype
(Entity
(N
)),
5880 Name_Simple_Storage_Pool_Type
))
5883 ("cannot use % attribute for type without simple " &
5887 Set_Etype
(N
, Etype
(Entity
(N
)));
5890 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5891 -- Storage_Pool since this attribute is not defined for such
5892 -- types (RM E.2.3(22)).
5894 Validate_Remote_Access_To_Class_Wide_Type
(N
);
5897 Error_Attr_P
("prefix of % attribute must be access type");
5904 when Attribute_Storage_Size
=>
5907 if Is_Task_Type
(P_Type
) then
5908 Set_Etype
(N
, Universal_Integer
);
5910 -- Use with tasks is an obsolescent feature
5912 Check_Restriction
(No_Obsolescent_Features
, P
);
5914 elsif Is_Access_Type
(P_Type
) then
5915 if Ekind
(P_Type
) = E_Access_Subprogram_Type
then
5917 ("cannot use % attribute for access-to-subprogram type");
5920 if Is_Entity_Name
(P
)
5921 and then Is_Type
(Entity
(P
))
5924 Set_Etype
(N
, Universal_Integer
);
5926 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5927 -- Storage_Size since this attribute is not defined for
5928 -- such types (RM E.2.3(22)).
5930 Validate_Remote_Access_To_Class_Wide_Type
(N
);
5932 -- The prefix is allowed to be an implicit dereference of an
5933 -- access value designating a task.
5937 Set_Etype
(N
, Universal_Integer
);
5941 Error_Attr_P
("prefix of % attribute must be access or task type");
5948 when Attribute_Storage_Unit
=>
5949 Standard_Attribute
(Ttypes
.System_Storage_Unit
);
5955 when Attribute_Stream_Size
=>
5959 if Is_Entity_Name
(P
)
5960 and then Is_Elementary_Type
(Entity
(P
))
5962 Set_Etype
(N
, Universal_Integer
);
5964 Error_Attr_P
("invalid prefix for % attribute");
5971 when Attribute_Stub_Type
=>
5975 if Is_Remote_Access_To_Class_Wide_Type
(Base_Type
(P_Type
)) then
5977 -- For a real RACW [sub]type, use corresponding stub type
5979 if not Is_Generic_Type
(P_Type
) then
5982 (Corresponding_Stub_Type
(Base_Type
(P_Type
)), Loc
));
5984 -- For a generic type (that has been marked as an RACW using the
5985 -- Remote_Access_Type aspect or pragma), use a generic RACW stub
5986 -- type. Note that if the actual is not a remote access type, the
5987 -- instantiation will fail.
5990 -- Note: we go to the underlying type here because the view
5991 -- returned by RTE (RE_RACW_Stub_Type) might be incomplete.
5995 (Underlying_Type
(RTE
(RE_RACW_Stub_Type
)), Loc
));
6000 ("prefix of% attribute must be remote access-to-class-wide");
6007 when Attribute_Succ
=>
6011 if Is_Real_Type
(P_Type
) or else Is_Boolean_Type
(P_Type
) then
6012 Error_Msg_Name_1
:= Aname
;
6013 Error_Msg_Name_2
:= Chars
(P_Type
);
6014 Check_SPARK_05_Restriction
6015 ("attribute% is not allowed for type%", P
);
6018 Resolve
(E1
, P_Base_Type
);
6019 Set_Etype
(N
, P_Base_Type
);
6021 -- Since Pred works on the base type, we normally do no check for the
6022 -- floating-point case, since the base type is unconstrained. But we
6023 -- make an exception in Check_Float_Overflow mode.
6025 if Is_Floating_Point_Type
(P_Type
) then
6026 if not Range_Checks_Suppressed
(P_Base_Type
) then
6027 Set_Do_Range_Check
(E1
);
6030 -- If not modular type, test for overflow check required
6033 if not Is_Modular_Integer_Type
(P_Type
)
6034 and then not Range_Checks_Suppressed
(P_Base_Type
)
6036 Enable_Range_Check
(E1
);
6040 --------------------------------
6041 -- System_Allocator_Alignment --
6042 --------------------------------
6044 when Attribute_System_Allocator_Alignment
=>
6045 Standard_Attribute
(Ttypes
.System_Allocator_Alignment
);
6051 when Attribute_Tag
=>
6055 if not Is_Tagged_Type
(P_Type
) then
6056 Error_Attr_P
("prefix of % attribute must be tagged");
6058 -- Next test does not apply to generated code why not, and what does
6059 -- the illegal reference mean???
6061 elsif Is_Object_Reference
(P
)
6062 and then not Is_Class_Wide_Type
(P_Type
)
6063 and then Comes_From_Source
(N
)
6066 ("% attribute can only be applied to objects " &
6067 "of class - wide type");
6070 -- The prefix cannot be an incomplete type. However, references to
6071 -- 'Tag can be generated when expanding interface conversions, and
6074 if Comes_From_Source
(N
) then
6075 Check_Not_Incomplete_Type
;
6078 -- Set appropriate type
6080 Set_Etype
(N
, RTE
(RE_Tag
));
6086 when Attribute_Target_Name
=> Target_Name
: declare
6087 TN
: constant String := Sdefault
.Target_Name
.all;
6091 Check_Standard_Prefix
;
6095 if TN
(TL
) = '/' or else TN
(TL
) = '\' then
6100 Make_String_Literal
(Loc
,
6101 Strval
=> TN
(TN
'First .. TL
)));
6102 Analyze_And_Resolve
(N
, Standard_String
);
6103 Set_Is_Static_Expression
(N
, True);
6110 when Attribute_Terminated
=>
6112 Set_Etype
(N
, Standard_Boolean
);
6119 when Attribute_To_Address
=> To_Address
: declare
6125 Check_System_Prefix
;
6127 Generate_Reference
(RTE
(RE_Address
), P
);
6128 Analyze_And_Resolve
(E1
, Any_Integer
);
6129 Set_Etype
(N
, RTE
(RE_Address
));
6131 if Is_Static_Expression
(E1
) then
6132 Set_Is_Static_Expression
(N
, True);
6135 -- OK static expression case, check range and set appropriate type
6137 if Is_OK_Static_Expression
(E1
) then
6138 Val
:= Expr_Value
(E1
);
6140 if Val
< -(2 ** UI_From_Int
(Standard
'Address_Size - 1))
6142 Val
> 2 ** UI_From_Int
(Standard
'Address_Size) - 1
6144 Error_Attr
("address value out of range for % attribute", E1
);
6147 -- In most cases the expression is a numeric literal or some other
6148 -- address expression, but if it is a declared constant it may be
6149 -- of a compatible type that must be left on the node.
6151 if Is_Entity_Name
(E1
) then
6154 -- Set type to universal integer if negative
6157 Set_Etype
(E1
, Universal_Integer
);
6159 -- Otherwise set type to Unsigned_64 to accommodate max values
6162 Set_Etype
(E1
, Standard_Unsigned_64
);
6166 Set_Is_Static_Expression
(N
, True);
6173 when Attribute_To_Any
=>
6175 Check_PolyORB_Attribute
;
6176 Set_Etype
(N
, RTE
(RE_Any
));
6182 when Attribute_Truncation
=>
6183 Check_Floating_Point_Type_1
;
6184 Resolve
(E1
, P_Base_Type
);
6185 Set_Etype
(N
, P_Base_Type
);
6191 when Attribute_Type_Class
=>
6194 Check_Not_Incomplete_Type
;
6195 Set_Etype
(N
, RTE
(RE_Type_Class
));
6201 when Attribute_TypeCode
=>
6203 Check_PolyORB_Attribute
;
6204 Set_Etype
(N
, RTE
(RE_TypeCode
));
6210 when Attribute_Type_Key
=> Type_Key
: declare
6211 Full_Name
: constant String_Id
:=
6212 Fully_Qualified_Name_String
(Entity
(P
));
6215 -- The computed signature for the type
6218 -- To simplify the handling of mutually recursive types, follow a
6219 -- single dereference link in a composite type.
6221 procedure Compute_Type_Key
(T
: Entity_Id
);
6222 -- Create a CRC integer from the declaration of the type. For a
6223 -- composite type, fold in the representation of its components in
6224 -- recursive fashion. We use directly the source representation of
6225 -- the types involved.
6227 ----------------------
6228 -- Compute_Type_Key --
6229 ----------------------
6231 procedure Compute_Type_Key
(T
: Entity_Id
) is
6232 Buffer
: Source_Buffer_Ptr
;
6236 SFI
: Source_File_Index
;
6238 procedure Process_One_Declaration
;
6239 -- Update CRC with the characters of one type declaration, or a
6240 -- representation pragma that applies to the type.
6242 -----------------------------
6243 -- Process_One_Declaration --
6244 -----------------------------
6246 procedure Process_One_Declaration
is
6248 -- Scan type declaration, skipping blanks
6250 for Ptr
in P_Min
.. P_Max
loop
6251 if Buffer
(Ptr
) /= ' ' then
6252 System
.CRC32
.Update
(CRC
, Buffer
(Ptr
));
6255 end Process_One_Declaration
;
6257 -- Start of processing for Compute_Type_Key
6260 if Is_Itype
(T
) then
6264 -- If the type is declared in Standard, there is no source, so
6265 -- just use its name.
6267 if Scope
(T
) = Standard_Standard
then
6269 Name
: constant String := Get_Name_String
(Chars
(T
));
6271 for J
in Name
'Range loop
6272 System
.CRC32
.Update
(CRC
, Name
(J
));
6279 Sloc_Range
(Enclosing_Declaration
(T
), P_Min
, P_Max
);
6280 SFI
:= Get_Source_File_Index
(P_Min
);
6281 pragma Assert
(SFI
= Get_Source_File_Index
(P_Max
));
6282 Buffer
:= Source_Text
(SFI
);
6284 Process_One_Declaration
;
6286 -- Recurse on relevant component types
6288 if Is_Array_Type
(T
) then
6289 Compute_Type_Key
(Component_Type
(T
));
6291 elsif Is_Access_Type
(T
) then
6294 Compute_Type_Key
(Designated_Type
(T
));
6297 elsif Is_Derived_Type
(T
) then
6298 Compute_Type_Key
(Etype
(T
));
6300 elsif Is_Record_Type
(T
) then
6304 Comp
:= First_Component
(T
);
6305 while Present
(Comp
) loop
6306 Compute_Type_Key
(Etype
(Comp
));
6307 Next_Component
(Comp
);
6312 if Is_First_Subtype
(T
) then
6314 -- Fold in representation aspects for the type, which appear in
6315 -- the same source buffer. If the representation aspects are in
6316 -- a different source file, then skip them; they apply to some
6317 -- other type, perhaps one we're derived from.
6319 Rep
:= First_Rep_Item
(T
);
6321 while Present
(Rep
) loop
6322 if Comes_From_Source
(Rep
) then
6323 Sloc_Range
(Rep
, P_Min
, P_Max
);
6325 if SFI
= Get_Source_File_Index
(P_Min
) then
6326 pragma Assert
(SFI
= Get_Source_File_Index
(P_Max
));
6327 Process_One_Declaration
;
6331 Rep
:= Next_Rep_Item
(Rep
);
6334 end Compute_Type_Key
;
6336 -- Start of processing for Type_Key
6345 -- Copy all characters in Full_Name but the trailing NUL
6347 for J
in 1 .. String_Length
(Full_Name
) - 1 loop
6348 Store_String_Char
(Get_String_Char
(Full_Name
, Pos
(J
)));
6351 -- Compute CRC and convert it to string one character at a time, so
6352 -- as not to use Image within the compiler.
6355 Compute_Type_Key
(Entity
(P
));
6357 if not Is_Frozen
(Entity
(P
)) then
6358 Error_Msg_N
("premature usage of Type_Key?", N
);
6362 Store_String_Char
(Character'Val (48 + (CRC
rem 10)));
6366 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
6367 Analyze_And_Resolve
(N
, Standard_String
);
6370 -----------------------
6371 -- Unbiased_Rounding --
6372 -----------------------
6374 when Attribute_Unbiased_Rounding
=>
6375 Check_Floating_Point_Type_1
;
6376 Set_Etype
(N
, P_Base_Type
);
6377 Resolve
(E1
, P_Base_Type
);
6379 ----------------------
6380 -- Unchecked_Access --
6381 ----------------------
6383 when Attribute_Unchecked_Access
=>
6384 if Comes_From_Source
(N
) then
6385 Check_Restriction
(No_Unchecked_Access
, N
);
6388 Analyze_Access_Attribute
;
6389 Check_Not_Incomplete_Type
;
6391 -------------------------
6392 -- Unconstrained_Array --
6393 -------------------------
6395 when Attribute_Unconstrained_Array
=>
6398 Check_Not_Incomplete_Type
;
6399 Set_Etype
(N
, Standard_Boolean
);
6400 Set_Is_Static_Expression
(N
, True);
6402 ------------------------------
6403 -- Universal_Literal_String --
6404 ------------------------------
6406 -- This is a GNAT specific attribute whose prefix must be a named
6407 -- number where the expression is either a single numeric literal,
6408 -- or a numeric literal immediately preceded by a minus sign. The
6409 -- result is equivalent to a string literal containing the text of
6410 -- the literal as it appeared in the source program with a possible
6411 -- leading minus sign.
6413 when Attribute_Universal_Literal_String
=>
6416 if not Is_Entity_Name
(P
)
6417 or else Ekind
(Entity
(P
)) not in Named_Kind
6419 Error_Attr_P
("prefix for % attribute must be named number");
6426 Src
: Source_Buffer_Ptr
;
6429 Expr
:= Original_Node
(Expression
(Parent
(Entity
(P
))));
6431 if Nkind
(Expr
) = N_Op_Minus
then
6433 Expr
:= Original_Node
(Right_Opnd
(Expr
));
6438 if not Nkind_In
(Expr
, N_Integer_Literal
, N_Real_Literal
) then
6440 ("named number for % attribute must be simple literal", N
);
6443 -- Build string literal corresponding to source literal text
6448 Store_String_Char
(Get_Char_Code
('-'));
6452 Src
:= Source_Text
(Get_Source_File_Index
(S
));
6454 while Src
(S
) /= ';' and then Src
(S
) /= ' ' loop
6455 Store_String_Char
(Get_Char_Code
(Src
(S
)));
6459 -- Now we rewrite the attribute with the string literal
6462 Make_String_Literal
(Loc
, End_String
));
6464 Set_Is_Static_Expression
(N
, True);
6468 -------------------------
6469 -- Unrestricted_Access --
6470 -------------------------
6472 -- This is a GNAT specific attribute which is like Access except that
6473 -- all scope checks and checks for aliased views are omitted. It is
6474 -- documented as being equivalent to the use of the Address attribute
6475 -- followed by an unchecked conversion to the target access type.
6477 when Attribute_Unrestricted_Access
=>
6479 -- If from source, deal with relevant restrictions
6481 if Comes_From_Source
(N
) then
6482 Check_Restriction
(No_Unchecked_Access
, N
);
6484 if Nkind
(P
) in N_Has_Entity
6485 and then Present
(Entity
(P
))
6486 and then Is_Object
(Entity
(P
))
6488 Check_Restriction
(No_Implicit_Aliasing
, N
);
6492 if Is_Entity_Name
(P
) then
6493 Set_Address_Taken
(Entity
(P
));
6496 -- It might seem reasonable to call Address_Checks here to apply the
6497 -- same set of semantic checks that we enforce for 'Address (after
6498 -- all we document Unrestricted_Access as being equivalent to the
6499 -- use of Address followed by an Unchecked_Conversion). However, if
6500 -- we do enable these checks, we get multiple failures in both the
6501 -- compiler run-time and in our regression test suite, so we leave
6502 -- out these checks for now. To be investigated further some time???
6506 -- Now complete analysis using common access processing
6508 Analyze_Access_Attribute
;
6514 when Attribute_Update
=> Update
: declare
6515 Common_Typ
: Entity_Id
;
6516 -- The common type of a multiple component update for a record
6518 Comps
: Elist_Id
:= No_Elist
;
6519 -- A list used in the resolution of a record update. It contains the
6520 -- entities of all record components processed so far.
6522 procedure Analyze_Array_Component_Update
(Assoc
: Node_Id
);
6523 -- Analyze and resolve array_component_association Assoc against the
6524 -- index of array type P_Type.
6526 procedure Analyze_Record_Component_Update
(Comp
: Node_Id
);
6527 -- Analyze and resolve record_component_association Comp against
6528 -- record type P_Type.
6530 ------------------------------------
6531 -- Analyze_Array_Component_Update --
6532 ------------------------------------
6534 procedure Analyze_Array_Component_Update
(Assoc
: Node_Id
) is
6538 Index_Typ
: Entity_Id
;
6542 -- The current association contains a sequence of indexes denoting
6543 -- an element of a multidimensional array:
6545 -- (Index_1, ..., Index_N)
6547 -- Examine each individual index and resolve it against the proper
6548 -- index type of the array.
6550 if Nkind
(First
(Choices
(Assoc
))) = N_Aggregate
then
6551 Expr
:= First
(Choices
(Assoc
));
6552 while Present
(Expr
) loop
6554 -- The use of others is illegal (SPARK RM 4.4.1(12))
6556 if Nkind
(Expr
) = N_Others_Choice
then
6558 ("others choice not allowed in attribute %", Expr
);
6560 -- Otherwise analyze and resolve all indexes
6563 Index
:= First
(Expressions
(Expr
));
6564 Index_Typ
:= First_Index
(P_Type
);
6565 while Present
(Index
) and then Present
(Index_Typ
) loop
6566 Analyze_And_Resolve
(Index
, Etype
(Index_Typ
));
6568 Next_Index
(Index_Typ
);
6571 -- Detect a case where the association either lacks an
6572 -- index or contains an extra index.
6574 if Present
(Index
) or else Present
(Index_Typ
) then
6576 ("dimension mismatch in index list", Assoc
);
6583 -- The current association denotes either a single component or a
6584 -- range of components of a one dimensional array:
6588 -- Resolve the index or its high and low bounds (if range) against
6589 -- the proper index type of the array.
6592 Index
:= First
(Choices
(Assoc
));
6593 Index_Typ
:= First_Index
(P_Type
);
6595 if Present
(Next_Index
(Index_Typ
)) then
6596 Error_Msg_N
("too few subscripts in array reference", Assoc
);
6599 while Present
(Index
) loop
6601 -- The use of others is illegal (SPARK RM 4.4.1(12))
6603 if Nkind
(Index
) = N_Others_Choice
then
6605 ("others choice not allowed in attribute %", Index
);
6607 -- The index denotes a range of elements
6609 elsif Nkind
(Index
) = N_Range
then
6610 Low
:= Low_Bound
(Index
);
6611 High
:= High_Bound
(Index
);
6613 Analyze_And_Resolve
(Low
, Etype
(Index_Typ
));
6614 Analyze_And_Resolve
(High
, Etype
(Index_Typ
));
6616 -- Add a range check to ensure that the bounds of the
6617 -- range are within the index type when this cannot be
6618 -- determined statically.
6620 if not Is_OK_Static_Expression
(Low
) then
6621 Set_Do_Range_Check
(Low
);
6624 if not Is_OK_Static_Expression
(High
) then
6625 Set_Do_Range_Check
(High
);
6628 -- Otherwise the index denotes a single element
6631 Analyze_And_Resolve
(Index
, Etype
(Index_Typ
));
6633 -- Add a range check to ensure that the index is within
6634 -- the index type when it is not possible to determine
6637 if not Is_OK_Static_Expression
(Index
) then
6638 Set_Do_Range_Check
(Index
);
6645 end Analyze_Array_Component_Update
;
6647 -------------------------------------
6648 -- Analyze_Record_Component_Update --
6649 -------------------------------------
6651 procedure Analyze_Record_Component_Update
(Comp
: Node_Id
) is
6652 Comp_Name
: constant Name_Id
:= Chars
(Comp
);
6653 Base_Typ
: Entity_Id
;
6654 Comp_Or_Discr
: Entity_Id
;
6657 -- Find the discriminant or component whose name corresponds to
6658 -- Comp. A simple character comparison is sufficient because all
6659 -- visible names within a record type are unique.
6661 Comp_Or_Discr
:= First_Entity
(P_Type
);
6662 while Present
(Comp_Or_Discr
) loop
6663 if Chars
(Comp_Or_Discr
) = Comp_Name
then
6665 -- Decorate the component reference by setting its entity
6666 -- and type for resolution purposes.
6668 Set_Entity
(Comp
, Comp_Or_Discr
);
6669 Set_Etype
(Comp
, Etype
(Comp_Or_Discr
));
6673 Comp_Or_Discr
:= Next_Entity
(Comp_Or_Discr
);
6676 -- Diagnose an illegal reference
6678 if Present
(Comp_Or_Discr
) then
6679 if Ekind
(Comp_Or_Discr
) = E_Discriminant
then
6681 ("attribute % may not modify record discriminants", Comp
);
6683 else pragma Assert
(Ekind
(Comp_Or_Discr
) = E_Component
);
6684 if Contains
(Comps
, Comp_Or_Discr
) then
6685 Error_Msg_N
("component & already updated", Comp
);
6687 -- Mark this component as processed
6690 Append_New_Elmt
(Comp_Or_Discr
, Comps
);
6694 -- The update aggregate mentions an entity that does not belong to
6698 Error_Msg_N
("& is not a component of aggregate subtype", Comp
);
6701 -- Verify the consistency of types when the current component is
6702 -- part of a miltiple component update.
6704 -- Comp_1, ..., Comp_N => <value>
6706 if Present
(Etype
(Comp
)) then
6707 Base_Typ
:= Base_Type
(Etype
(Comp
));
6709 -- Save the type of the first component reference as the
6710 -- remaning references (if any) must resolve to this type.
6712 if No
(Common_Typ
) then
6713 Common_Typ
:= Base_Typ
;
6715 elsif Base_Typ
/= Common_Typ
then
6717 ("components in choice list must have same type", Comp
);
6720 end Analyze_Record_Component_Update
;
6727 -- Start of processing for Update
6732 if not Is_Object_Reference
(P
) then
6733 Error_Attr_P
("prefix of attribute % must denote an object");
6735 elsif not Is_Array_Type
(P_Type
)
6736 and then not Is_Record_Type
(P_Type
)
6738 Error_Attr_P
("prefix of attribute % must be a record or array");
6740 elsif Is_Limited_View
(P_Type
) then
6741 Error_Attr
("prefix of attribute % cannot be limited", N
);
6743 elsif Nkind
(E1
) /= N_Aggregate
then
6744 Error_Attr
("attribute % requires component association list", N
);
6747 -- Inspect the update aggregate, looking at all the associations and
6748 -- choices. Perform the following checks:
6750 -- 1) Legality of "others" in all cases
6751 -- 2) Legality of <>
6752 -- 3) Component legality for arrays
6753 -- 4) Component legality for records
6755 -- The remaining checks are performed on the expanded attribute
6757 Assoc
:= First
(Component_Associations
(E1
));
6758 while Present
(Assoc
) loop
6760 -- The use of <> is illegal (SPARK RM 4.4.1(1))
6762 if Box_Present
(Assoc
) then
6764 ("default initialization not allowed in attribute %", Assoc
);
6766 -- Otherwise process the association
6769 Analyze
(Expression
(Assoc
));
6771 if Is_Array_Type
(P_Type
) then
6772 Analyze_Array_Component_Update
(Assoc
);
6774 elsif Is_Record_Type
(P_Type
) then
6776 -- Reset the common type used in a multiple component update
6777 -- as we are processing the contents of a new association.
6779 Common_Typ
:= Empty
;
6781 Comp
:= First
(Choices
(Assoc
));
6782 while Present
(Comp
) loop
6783 if Nkind
(Comp
) = N_Identifier
then
6784 Analyze_Record_Component_Update
(Comp
);
6786 -- The use of others is illegal (SPARK RM 4.4.1(5))
6788 elsif Nkind
(Comp
) = N_Others_Choice
then
6790 ("others choice not allowed in attribute %", Comp
);
6792 -- The name of a record component cannot appear in any
6797 ("name should be identifier or OTHERS", Comp
);
6808 -- The type of attribute 'Update is that of the prefix
6810 Set_Etype
(N
, P_Type
);
6812 Sem_Warn
.Warn_On_Suspicious_Update
(N
);
6819 when Attribute_Val
=>
6821 Check_Discrete_Type
;
6823 if Is_Boolean_Type
(P_Type
) then
6824 Error_Msg_Name_1
:= Aname
;
6825 Error_Msg_Name_2
:= Chars
(P_Type
);
6826 Check_SPARK_05_Restriction
6827 ("attribute% is not allowed for type%", P
);
6830 -- Note, we need a range check in general, but we wait for the
6831 -- Resolve call to do this, since we want to let Eval_Attribute
6832 -- have a chance to find an static illegality first.
6834 Resolve
(E1
, Any_Integer
);
6835 Set_Etype
(N
, P_Base_Type
);
6841 when Attribute_Valid
=>
6844 -- Ignore check for object if we have a 'Valid reference generated
6845 -- by the expanded code, since in some cases valid checks can occur
6846 -- on items that are names, but are not objects (e.g. attributes).
6848 if Comes_From_Source
(N
) then
6849 Check_Object_Reference
(P
);
6852 if not Is_Scalar_Type
(P_Type
) then
6853 Error_Attr_P
("object for % attribute must be of scalar type");
6856 -- If the attribute appears within the subtype's own predicate
6857 -- function, then issue a warning that this will cause infinite
6861 Pred_Func
: constant Entity_Id
:= Predicate_Function
(P_Type
);
6864 if Present
(Pred_Func
) and then Current_Scope
= Pred_Func
then
6866 ("attribute Valid requires a predicate check??", N
);
6867 Error_Msg_N
("\and will result in infinite recursion??", N
);
6871 Set_Etype
(N
, Standard_Boolean
);
6877 when Attribute_Valid_Scalars
=>
6879 Check_Object_Reference
(P
);
6880 Set_Etype
(N
, Standard_Boolean
);
6882 -- Following checks are only for source types
6884 if Comes_From_Source
(N
) then
6885 if not Scalar_Part_Present
(P_Type
) then
6887 ("??attribute % always True, no scalars to check");
6890 -- Not allowed for unchecked union type
6892 if Has_Unchecked_Union
(P_Type
) then
6894 ("attribute % not allowed for Unchecked_Union type");
6902 when Attribute_Value
=>
6903 Check_SPARK_05_Restriction_On_Attribute
;
6907 -- Case of enumeration type
6909 -- When an enumeration type appears in an attribute reference, all
6910 -- literals of the type are marked as referenced. This must only be
6911 -- done if the attribute reference appears in the current source.
6912 -- Otherwise the information on references may differ between a
6913 -- normal compilation and one that performs inlining.
6915 if Is_Enumeration_Type
(P_Type
)
6916 and then In_Extended_Main_Code_Unit
(N
)
6918 Check_Restriction
(No_Enumeration_Maps
, N
);
6920 -- Mark all enumeration literals as referenced, since the use of
6921 -- the Value attribute can implicitly reference any of the
6922 -- literals of the enumeration base type.
6925 Ent
: Entity_Id
:= First_Literal
(P_Base_Type
);
6927 while Present
(Ent
) loop
6928 Set_Referenced
(Ent
);
6934 -- Set Etype before resolving expression because expansion of
6935 -- expression may require enclosing type. Note that the type
6936 -- returned by 'Value is the base type of the prefix type.
6938 Set_Etype
(N
, P_Base_Type
);
6939 Validate_Non_Static_Attribute_Function_Call
;
6941 -- Check restriction No_Fixed_IO
6943 if Restriction_Check_Required
(No_Fixed_IO
)
6944 and then Is_Fixed_Point_Type
(P_Type
)
6946 Check_Restriction
(No_Fixed_IO
, P
);
6953 when Attribute_Value_Size
=>
6956 Check_Not_Incomplete_Type
;
6957 Set_Etype
(N
, Universal_Integer
);
6963 when Attribute_Version
=>
6966 Set_Etype
(N
, RTE
(RE_Version_String
));
6972 when Attribute_Wchar_T_Size
=>
6973 Standard_Attribute
(Interfaces_Wchar_T_Size
);
6979 when Attribute_Wide_Image
=>
6980 Analyze_Image_Attribute
(Standard_Wide_String
);
6982 ---------------------
6983 -- Wide_Wide_Image --
6984 ---------------------
6986 when Attribute_Wide_Wide_Image
=>
6987 Analyze_Image_Attribute
(Standard_Wide_Wide_String
);
6993 when Attribute_Wide_Value
=>
6994 Check_SPARK_05_Restriction_On_Attribute
;
6998 -- Set Etype before resolving expression because expansion
6999 -- of expression may require enclosing type.
7001 Set_Etype
(N
, P_Type
);
7002 Validate_Non_Static_Attribute_Function_Call
;
7004 -- Check restriction No_Fixed_IO
7006 if Restriction_Check_Required
(No_Fixed_IO
)
7007 and then Is_Fixed_Point_Type
(P_Type
)
7009 Check_Restriction
(No_Fixed_IO
, P
);
7012 ---------------------
7013 -- Wide_Wide_Value --
7014 ---------------------
7016 when Attribute_Wide_Wide_Value
=>
7020 -- Set Etype before resolving expression because expansion
7021 -- of expression may require enclosing type.
7023 Set_Etype
(N
, P_Type
);
7024 Validate_Non_Static_Attribute_Function_Call
;
7026 -- Check restriction No_Fixed_IO
7028 if Restriction_Check_Required
(No_Fixed_IO
)
7029 and then Is_Fixed_Point_Type
(P_Type
)
7031 Check_Restriction
(No_Fixed_IO
, P
);
7034 ---------------------
7035 -- Wide_Wide_Width --
7036 ---------------------
7038 when Attribute_Wide_Wide_Width
=>
7041 Set_Etype
(N
, Universal_Integer
);
7047 when Attribute_Wide_Width
=>
7048 Check_SPARK_05_Restriction_On_Attribute
;
7051 Set_Etype
(N
, Universal_Integer
);
7057 when Attribute_Width
=>
7058 Check_SPARK_05_Restriction_On_Attribute
;
7061 Set_Etype
(N
, Universal_Integer
);
7067 when Attribute_Word_Size
=>
7068 Standard_Attribute
(System_Word_Size
);
7074 when Attribute_Write
=>
7076 Check_Stream_Attribute
(TSS_Stream_Write
);
7077 Set_Etype
(N
, Standard_Void_Type
);
7078 Resolve
(N
, Standard_Void_Type
);
7082 -- In SPARK certain attributes (see below) depend on Tasking_State.
7083 -- Ensure that the entity is available for gnat2why by loading it.
7084 -- See SPARK RM 9(18) for the relevant rule.
7086 if GNATprove_Mode
then
7092 when Attribute_Callable
7095 | Attribute_Terminated
7097 Unused
:= RTE
(RE_Tasking_State
);
7105 -- All errors raise Bad_Attribute, so that we get out before any further
7106 -- damage occurs when an error is detected (for example, if we check for
7107 -- one attribute expression, and the check succeeds, we want to be able
7108 -- to proceed securely assuming that an expression is in fact present.
7110 -- Note: we set the attribute analyzed in this case to prevent any
7111 -- attempt at reanalysis which could generate spurious error msgs.
7114 when Bad_Attribute
=>
7116 Set_Etype
(N
, Any_Type
);
7118 end Analyze_Attribute
;
7120 --------------------
7121 -- Eval_Attribute --
7122 --------------------
7124 procedure Eval_Attribute
(N
: Node_Id
) is
7125 Loc
: constant Source_Ptr
:= Sloc
(N
);
7126 Aname
: constant Name_Id
:= Attribute_Name
(N
);
7127 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
7128 P
: constant Node_Id
:= Prefix
(N
);
7130 C_Type
: constant Entity_Id
:= Etype
(N
);
7131 -- The type imposed by the context
7134 -- First expression, or Empty if none
7137 -- Second expression, or Empty if none
7139 P_Entity
: Entity_Id
;
7140 -- Entity denoted by prefix
7143 -- The type of the prefix
7145 P_Base_Type
: Entity_Id
;
7146 -- The base type of the prefix type
7148 P_Root_Type
: Entity_Id
;
7149 -- The root type of the prefix type
7152 -- True if the result is Static. This is set by the general processing
7153 -- to true if the prefix is static, and all expressions are static. It
7154 -- can be reset as processing continues for particular attributes. This
7155 -- flag can still be True if the reference raises a constraint error.
7156 -- Is_Static_Expression (N) is set to follow this value as it is set
7157 -- and we could always reference this, but it is convenient to have a
7158 -- simple short name to use, since it is frequently referenced.
7160 Lo_Bound
, Hi_Bound
: Node_Id
;
7161 -- Expressions for low and high bounds of type or array index referenced
7162 -- by First, Last, or Length attribute for array, set by Set_Bounds.
7165 -- Constraint error node used if we have an attribute reference has
7166 -- an argument that raises a constraint error. In this case we replace
7167 -- the attribute with a raise constraint_error node. This is important
7168 -- processing, since otherwise gigi might see an attribute which it is
7169 -- unprepared to deal with.
7171 procedure Check_Concurrent_Discriminant
(Bound
: Node_Id
);
7172 -- If Bound is a reference to a discriminant of a task or protected type
7173 -- occurring within the object's body, rewrite attribute reference into
7174 -- a reference to the corresponding discriminal. Use for the expansion
7175 -- of checks against bounds of entry family index subtypes.
7177 procedure Check_Expressions
;
7178 -- In case where the attribute is not foldable, the expressions, if
7179 -- any, of the attribute, are in a non-static context. This procedure
7180 -- performs the required additional checks.
7182 function Compile_Time_Known_Bounds
(Typ
: Entity_Id
) return Boolean;
7183 -- Determines if the given type has compile time known bounds. Note
7184 -- that we enter the case statement even in cases where the prefix
7185 -- type does NOT have known bounds, so it is important to guard any
7186 -- attempt to evaluate both bounds with a call to this function.
7188 procedure Compile_Time_Known_Attribute
(N
: Node_Id
; Val
: Uint
);
7189 -- This procedure is called when the attribute N has a non-static
7190 -- but compile time known value given by Val. It includes the
7191 -- necessary checks for out of range values.
7193 function Fore_Value
return Nat
;
7194 -- Computes the Fore value for the current attribute prefix, which is
7195 -- known to be a static fixed-point type. Used by Fore and Width.
7197 function Mantissa
return Uint
;
7198 -- Returns the Mantissa value for the prefix type
7200 procedure Set_Bounds
;
7201 -- Used for First, Last and Length attributes applied to an array or
7202 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
7203 -- and high bound expressions for the index referenced by the attribute
7204 -- designator (i.e. the first index if no expression is present, and the
7205 -- N'th index if the value N is present as an expression). Also used for
7206 -- First and Last of scalar types and for First_Valid and Last_Valid.
7207 -- Static is reset to False if the type or index type is not statically
7210 function Statically_Denotes_Entity
(N
: Node_Id
) return Boolean;
7211 -- Verify that the prefix of a potentially static array attribute
7212 -- satisfies the conditions of 4.9 (14).
7214 -----------------------------------
7215 -- Check_Concurrent_Discriminant --
7216 -----------------------------------
7218 procedure Check_Concurrent_Discriminant
(Bound
: Node_Id
) is
7220 -- The concurrent (task or protected) type
7223 if Nkind
(Bound
) = N_Identifier
7224 and then Ekind
(Entity
(Bound
)) = E_Discriminant
7225 and then Is_Concurrent_Record_Type
(Scope
(Entity
(Bound
)))
7227 Tsk
:= Corresponding_Concurrent_Type
(Scope
(Entity
(Bound
)));
7229 if In_Open_Scopes
(Tsk
) and then Has_Completion
(Tsk
) then
7231 -- Find discriminant of original concurrent type, and use
7232 -- its current discriminal, which is the renaming within
7233 -- the task/protected body.
7237 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
));
7240 end Check_Concurrent_Discriminant
;
7242 -----------------------
7243 -- Check_Expressions --
7244 -----------------------
7246 procedure Check_Expressions
is
7250 while Present
(E
) loop
7251 Check_Non_Static_Context
(E
);
7254 end Check_Expressions
;
7256 ----------------------------------
7257 -- Compile_Time_Known_Attribute --
7258 ----------------------------------
7260 procedure Compile_Time_Known_Attribute
(N
: Node_Id
; Val
: Uint
) is
7261 T
: constant Entity_Id
:= Etype
(N
);
7264 Fold_Uint
(N
, Val
, False);
7266 -- Check that result is in bounds of the type if it is static
7268 if Is_In_Range
(N
, T
, Assume_Valid
=> False) then
7271 elsif Is_Out_Of_Range
(N
, T
) then
7272 Apply_Compile_Time_Constraint_Error
7273 (N
, "value not in range of}??", CE_Range_Check_Failed
);
7275 elsif not Range_Checks_Suppressed
(T
) then
7276 Enable_Range_Check
(N
);
7279 Set_Do_Range_Check
(N
, False);
7281 end Compile_Time_Known_Attribute
;
7283 -------------------------------
7284 -- Compile_Time_Known_Bounds --
7285 -------------------------------
7287 function Compile_Time_Known_Bounds
(Typ
: Entity_Id
) return Boolean is
7290 Compile_Time_Known_Value
(Type_Low_Bound
(Typ
))
7292 Compile_Time_Known_Value
(Type_High_Bound
(Typ
));
7293 end Compile_Time_Known_Bounds
;
7299 -- Note that the Fore calculation is based on the actual values
7300 -- of the bounds, and does not take into account possible rounding.
7302 function Fore_Value
return Nat
is
7303 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(P_Type
));
7304 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(P_Type
));
7305 Small
: constant Ureal
:= Small_Value
(P_Type
);
7306 Lo_Real
: constant Ureal
:= Lo
* Small
;
7307 Hi_Real
: constant Ureal
:= Hi
* Small
;
7312 -- Bounds are given in terms of small units, so first compute
7313 -- proper values as reals.
7315 T
:= UR_Max
(abs Lo_Real
, abs Hi_Real
);
7318 -- Loop to compute proper value if more than one digit required
7320 while T
>= Ureal_10
loop
7332 -- Table of mantissa values accessed by function Computed using
7335 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
7337 -- where D is T'Digits (RM83 3.5.7)
7339 Mantissa_Value
: constant array (Nat
range 1 .. 40) of Nat
:= (
7381 function Mantissa
return Uint
is
7384 UI_From_Int
(Mantissa_Value
(UI_To_Int
(Digits_Value
(P_Type
))));
7391 procedure Set_Bounds
is
7397 -- For a string literal subtype, we have to construct the bounds.
7398 -- Valid Ada code never applies attributes to string literals, but
7399 -- it is convenient to allow the expander to generate attribute
7400 -- references of this type (e.g. First and Last applied to a string
7403 -- Note that the whole point of the E_String_Literal_Subtype is to
7404 -- avoid this construction of bounds, but the cases in which we
7405 -- have to materialize them are rare enough that we don't worry.
7407 -- The low bound is simply the low bound of the base type. The
7408 -- high bound is computed from the length of the string and this
7411 if Ekind
(P_Type
) = E_String_Literal_Subtype
then
7412 Ityp
:= Etype
(First_Index
(Base_Type
(P_Type
)));
7413 Lo_Bound
:= Type_Low_Bound
(Ityp
);
7416 Make_Integer_Literal
(Sloc
(P
),
7418 Expr_Value
(Lo_Bound
) + String_Literal_Length
(P_Type
) - 1);
7420 Set_Parent
(Hi_Bound
, P
);
7421 Analyze_And_Resolve
(Hi_Bound
, Etype
(Lo_Bound
));
7424 -- For non-array case, just get bounds of scalar type
7426 elsif Is_Scalar_Type
(P_Type
) then
7429 -- For a fixed-point type, we must freeze to get the attributes
7430 -- of the fixed-point type set now so we can reference them.
7432 if Is_Fixed_Point_Type
(P_Type
)
7433 and then not Is_Frozen
(Base_Type
(P_Type
))
7434 and then Compile_Time_Known_Value
(Type_Low_Bound
(P_Type
))
7435 and then Compile_Time_Known_Value
(Type_High_Bound
(P_Type
))
7437 Freeze_Fixed_Point_Type
(Base_Type
(P_Type
));
7440 -- For array case, get type of proper index
7446 Ndim
:= UI_To_Int
(Expr_Value
(E1
));
7449 Indx
:= First_Index
(P_Type
);
7450 for J
in 1 .. Ndim
- 1 loop
7454 -- If no index type, get out (some other error occurred, and
7455 -- we don't have enough information to complete the job).
7463 Ityp
:= Etype
(Indx
);
7466 -- A discrete range in an index constraint is allowed to be a
7467 -- subtype indication. This is syntactically a pain, but should
7468 -- not propagate to the entity for the corresponding index subtype.
7469 -- After checking that the subtype indication is legal, the range
7470 -- of the subtype indication should be transfered to the entity.
7471 -- The attributes for the bounds should remain the simple retrievals
7472 -- that they are now.
7474 Lo_Bound
:= Type_Low_Bound
(Ityp
);
7475 Hi_Bound
:= Type_High_Bound
(Ityp
);
7477 -- If subtype is non-static, result is definitely non-static
7479 if not Is_Static_Subtype
(Ityp
) then
7481 Set_Is_Static_Expression
(N
, False);
7483 -- Subtype is static, does it raise CE?
7485 elsif not Is_OK_Static_Subtype
(Ityp
) then
7486 Set_Raises_Constraint_Error
(N
);
7490 -------------------------------
7491 -- Statically_Denotes_Entity --
7492 -------------------------------
7494 function Statically_Denotes_Entity
(N
: Node_Id
) return Boolean is
7498 if not Is_Entity_Name
(N
) then
7505 Nkind
(Parent
(E
)) /= N_Object_Renaming_Declaration
7506 or else Statically_Denotes_Entity
(Renamed_Object
(E
));
7507 end Statically_Denotes_Entity
;
7509 -- Start of processing for Eval_Attribute
7512 -- Initialize result as non-static, will be reset if appropriate
7514 Set_Is_Static_Expression
(N
, False);
7517 -- Acquire first two expressions (at the moment, no attributes take more
7518 -- than two expressions in any case).
7520 if Present
(Expressions
(N
)) then
7521 E1
:= First
(Expressions
(N
));
7528 -- Special processing for Enabled attribute. This attribute has a very
7529 -- special prefix, and the easiest way to avoid lots of special checks
7530 -- to protect this special prefix from causing trouble is to deal with
7531 -- this attribute immediately and be done with it.
7533 if Id
= Attribute_Enabled
then
7535 -- We skip evaluation if the expander is not active. This is not just
7536 -- an optimization. It is of key importance that we not rewrite the
7537 -- attribute in a generic template, since we want to pick up the
7538 -- setting of the check in the instance, Testing Expander_Active
7539 -- might seem an easy way of doing this, but we need to account for
7540 -- ASIS needs, so check explicitly for a generic context.
7542 if not Inside_A_Generic
then
7544 C
: constant Check_Id
:= Get_Check_Id
(Chars
(P
));
7549 if C
in Predefined_Check_Id
then
7550 R
:= Scope_Suppress
.Suppress
(C
);
7552 R
:= Is_Check_Suppressed
(Empty
, C
);
7556 R
:= Is_Check_Suppressed
(Entity
(E1
), C
);
7559 Rewrite
(N
, New_Occurrence_Of
(Boolean_Literals
(not R
), Loc
));
7566 -- Attribute 'Img applied to a static enumeration value is static, and
7567 -- we will do the folding right here (things get confused if we let this
7568 -- case go through the normal circuitry).
7570 if Attribute_Name
(N
) = Name_Img
7571 and then Is_Entity_Name
(P
)
7572 and then Is_Enumeration_Type
(Etype
(Entity
(P
)))
7573 and then Is_OK_Static_Expression
(P
)
7576 Lit
: constant Entity_Id
:= Expr_Value_E
(P
);
7581 Get_Unqualified_Decoded_Name_String
(Chars
(Lit
));
7582 Set_Casing
(All_Upper_Case
);
7583 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
7586 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Str
));
7587 Analyze_And_Resolve
(N
, Standard_String
);
7588 Set_Is_Static_Expression
(N
, True);
7594 -- Special processing for cases where the prefix is an object. For this
7595 -- purpose, a string literal counts as an object (attributes of string
7596 -- literals can only appear in generated code).
7598 if Is_Object_Reference
(P
) or else Nkind
(P
) = N_String_Literal
then
7600 -- For Component_Size, the prefix is an array object, and we apply
7601 -- the attribute to the type of the object. This is allowed for both
7602 -- unconstrained and constrained arrays, since the bounds have no
7603 -- influence on the value of this attribute.
7605 if Id
= Attribute_Component_Size
then
7606 P_Entity
:= Etype
(P
);
7608 -- For Enum_Rep, evaluation depends on the nature of the prefix and
7609 -- the optional argument.
7611 elsif Id
= Attribute_Enum_Rep
then
7612 if Is_Entity_Name
(P
) then
7615 Enum_Expr
: Node_Id
;
7616 -- The enumeration-type expression of interest
7621 if Ekind_In
(Entity
(P
), E_Constant
,
7622 E_Enumeration_Literal
)
7626 -- Enum_Type'Enum_Rep (E1) case
7628 elsif Is_Enumeration_Type
(Entity
(P
)) then
7631 -- Otherwise the attribute must be expanded into a
7632 -- conversion and evaluated at run time.
7639 -- We can fold if the expression is an enumeration
7640 -- literal, or if it denotes a constant whose value
7641 -- is known at compile time.
7643 if Nkind
(Enum_Expr
) in N_Has_Entity
7644 and then (Ekind
(Entity
(Enum_Expr
)) =
7645 E_Enumeration_Literal
7647 (Ekind
(Entity
(Enum_Expr
)) = E_Constant
7648 and then Nkind
(Parent
(Entity
(Enum_Expr
))) =
7649 N_Object_Declaration
7650 and then Compile_Time_Known_Value
7651 (Expression
(Parent
(Entity
(P
))))))
7653 P_Entity
:= Etype
(P
);
7660 -- Otherwise the attribute is illegal, do not attempt to perform
7661 -- any kind of folding.
7667 -- For First and Last, the prefix is an array object, and we apply
7668 -- the attribute to the type of the array, but we need a constrained
7669 -- type for this, so we use the actual subtype if available.
7671 elsif Id
= Attribute_First
or else
7672 Id
= Attribute_Last
or else
7673 Id
= Attribute_Length
7676 AS
: constant Entity_Id
:= Get_Actual_Subtype_If_Available
(P
);
7679 if Present
(AS
) and then Is_Constrained
(AS
) then
7682 -- If we have an unconstrained type we cannot fold
7690 -- For Size, give size of object if available, otherwise we
7691 -- cannot fold Size.
7693 elsif Id
= Attribute_Size
then
7694 if Is_Entity_Name
(P
)
7695 and then Known_Esize
(Entity
(P
))
7697 Compile_Time_Known_Attribute
(N
, Esize
(Entity
(P
)));
7705 -- For Alignment, give size of object if available, otherwise we
7706 -- cannot fold Alignment.
7708 elsif Id
= Attribute_Alignment
then
7709 if Is_Entity_Name
(P
)
7710 and then Known_Alignment
(Entity
(P
))
7712 Fold_Uint
(N
, Alignment
(Entity
(P
)), Static
);
7720 -- For Lock_Free, we apply the attribute to the type of the object.
7721 -- This is allowed since we have already verified that the type is a
7724 elsif Id
= Attribute_Lock_Free
then
7725 P_Entity
:= Etype
(P
);
7727 -- No other attributes for objects are folded
7734 -- Cases where P is not an object. Cannot do anything if P is not the
7735 -- name of an entity.
7737 elsif not Is_Entity_Name
(P
) then
7741 -- Otherwise get prefix entity
7744 P_Entity
:= Entity
(P
);
7747 -- If we are asked to evaluate an attribute where the prefix is a
7748 -- non-frozen generic actual type whose RM_Size is still set to zero,
7749 -- then abandon the effort.
7751 if Is_Type
(P_Entity
)
7752 and then (not Is_Frozen
(P_Entity
)
7753 and then Is_Generic_Actual_Type
(P_Entity
)
7754 and then RM_Size
(P_Entity
) = 0)
7756 -- However, the attribute Unconstrained_Array must be evaluated,
7757 -- since it is documented to be a static attribute (and can for
7758 -- example appear in a Compile_Time_Warning pragma). The frozen
7759 -- status of the type does not affect its evaluation.
7761 and then Id
/= Attribute_Unconstrained_Array
7766 -- At this stage P_Entity is the entity to which the attribute
7767 -- is to be applied. This is usually simply the entity of the
7768 -- prefix, except in some cases of attributes for objects, where
7769 -- as described above, we apply the attribute to the object type.
7771 -- Here is where we make sure that static attributes are properly
7772 -- marked as such. These are attributes whose prefix is a static
7773 -- scalar subtype, whose result is scalar, and whose arguments, if
7774 -- present, are static scalar expressions. Note that such references
7775 -- are static expressions even if they raise Constraint_Error.
7777 -- For example, Boolean'Pos (1/0 = 0) is a static expression, even
7778 -- though evaluating it raises constraint error. This means that a
7779 -- declaration like:
7781 -- X : constant := (if True then 1 else Boolean'Pos (1/0 = 0));
7783 -- is legal, since here this expression appears in a statically
7784 -- unevaluated position, so it does not actually raise an exception.
7786 if Is_Scalar_Type
(P_Entity
)
7787 and then (not Is_Generic_Type
(P_Entity
))
7788 and then Is_Static_Subtype
(P_Entity
)
7789 and then Is_Scalar_Type
(Etype
(N
))
7792 or else (Is_Static_Expression
(E1
)
7793 and then Is_Scalar_Type
(Etype
(E1
))))
7796 or else (Is_Static_Expression
(E2
)
7797 and then Is_Scalar_Type
(Etype
(E1
))))
7800 Set_Is_Static_Expression
(N
, True);
7803 -- First foldable possibility is a scalar or array type (RM 4.9(7))
7804 -- that is not generic (generic types are eliminated by RM 4.9(25)).
7805 -- Note we allow non-static non-generic types at this stage as further
7808 if Is_Type
(P_Entity
)
7809 and then (Is_Scalar_Type
(P_Entity
) or Is_Array_Type
(P_Entity
))
7810 and then (not Is_Generic_Type
(P_Entity
))
7814 -- Second foldable possibility is an array object (RM 4.9(8))
7816 elsif Ekind_In
(P_Entity
, E_Variable
, E_Constant
)
7817 and then Is_Array_Type
(Etype
(P_Entity
))
7818 and then (not Is_Generic_Type
(Etype
(P_Entity
)))
7820 P_Type
:= Etype
(P_Entity
);
7822 -- If the entity is an array constant with an unconstrained nominal
7823 -- subtype then get the type from the initial value. If the value has
7824 -- been expanded into assignments, there is no expression and the
7825 -- attribute reference remains dynamic.
7827 -- We could do better here and retrieve the type ???
7829 if Ekind
(P_Entity
) = E_Constant
7830 and then not Is_Constrained
(P_Type
)
7832 if No
(Constant_Value
(P_Entity
)) then
7835 P_Type
:= Etype
(Constant_Value
(P_Entity
));
7839 -- Definite must be folded if the prefix is not a generic type, that
7840 -- is to say if we are within an instantiation. Same processing applies
7841 -- to the GNAT attributes Atomic_Always_Lock_Free, Has_Discriminants,
7842 -- Lock_Free, Type_Class, Has_Tagged_Value, and Unconstrained_Array.
7844 elsif (Id
= Attribute_Atomic_Always_Lock_Free
or else
7845 Id
= Attribute_Definite
or else
7846 Id
= Attribute_Has_Access_Values
or else
7847 Id
= Attribute_Has_Discriminants
or else
7848 Id
= Attribute_Has_Tagged_Values
or else
7849 Id
= Attribute_Lock_Free
or else
7850 Id
= Attribute_Type_Class
or else
7851 Id
= Attribute_Unconstrained_Array
or else
7852 Id
= Attribute_Max_Alignment_For_Allocation
)
7853 and then not Is_Generic_Type
(P_Entity
)
7857 -- We can fold 'Size applied to a type if the size is known (as happens
7858 -- for a size from an attribute definition clause). At this stage, this
7859 -- can happen only for types (e.g. record types) for which the size is
7860 -- always non-static. We exclude generic types from consideration (since
7861 -- they have bogus sizes set within templates).
7863 elsif Id
= Attribute_Size
7864 and then Is_Type
(P_Entity
)
7865 and then (not Is_Generic_Type
(P_Entity
))
7866 and then Known_Static_RM_Size
(P_Entity
)
7868 Compile_Time_Known_Attribute
(N
, RM_Size
(P_Entity
));
7871 -- We can fold 'Alignment applied to a type if the alignment is known
7872 -- (as happens for an alignment from an attribute definition clause).
7873 -- At this stage, this can happen only for types (e.g. record types) for
7874 -- which the size is always non-static. We exclude generic types from
7875 -- consideration (since they have bogus sizes set within templates).
7877 elsif Id
= Attribute_Alignment
7878 and then Is_Type
(P_Entity
)
7879 and then (not Is_Generic_Type
(P_Entity
))
7880 and then Known_Alignment
(P_Entity
)
7882 Compile_Time_Known_Attribute
(N
, Alignment
(P_Entity
));
7885 -- If this is an access attribute that is known to fail accessibility
7886 -- check, rewrite accordingly.
7888 elsif Attribute_Name
(N
) = Name_Access
7889 and then Raises_Constraint_Error
(N
)
7892 Make_Raise_Program_Error
(Loc
,
7893 Reason
=> PE_Accessibility_Check_Failed
));
7894 Set_Etype
(N
, C_Type
);
7897 -- No other cases are foldable (they certainly aren't static, and at
7898 -- the moment we don't try to fold any cases other than the ones above).
7905 -- If either attribute or the prefix is Any_Type, then propagate
7906 -- Any_Type to the result and don't do anything else at all.
7908 if P_Type
= Any_Type
7909 or else (Present
(E1
) and then Etype
(E1
) = Any_Type
)
7910 or else (Present
(E2
) and then Etype
(E2
) = Any_Type
)
7912 Set_Etype
(N
, Any_Type
);
7916 -- Scalar subtype case. We have not yet enforced the static requirement
7917 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
7918 -- of non-static attribute references (e.g. S'Digits for a non-static
7919 -- floating-point type, which we can compute at compile time).
7921 -- Note: this folding of non-static attributes is not simply a case of
7922 -- optimization. For many of the attributes affected, Gigi cannot handle
7923 -- the attribute and depends on the front end having folded them away.
7925 -- Note: although we don't require staticness at this stage, we do set
7926 -- the Static variable to record the staticness, for easy reference by
7927 -- those attributes where it matters (e.g. Succ and Pred), and also to
7928 -- be used to ensure that non-static folded things are not marked as
7929 -- being static (a check that is done right at the end).
7931 P_Root_Type
:= Root_Type
(P_Type
);
7932 P_Base_Type
:= Base_Type
(P_Type
);
7934 -- If the root type or base type is generic, then we cannot fold. This
7935 -- test is needed because subtypes of generic types are not always
7936 -- marked as being generic themselves (which seems odd???)
7938 if Is_Generic_Type
(P_Root_Type
)
7939 or else Is_Generic_Type
(P_Base_Type
)
7944 if Is_Scalar_Type
(P_Type
) then
7945 if not Is_Static_Subtype
(P_Type
) then
7947 Set_Is_Static_Expression
(N
, False);
7948 elsif not Is_OK_Static_Subtype
(P_Type
) then
7949 Set_Raises_Constraint_Error
(N
);
7952 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
7953 -- since we can't do anything with unconstrained arrays. In addition,
7954 -- only the First, Last and Length attributes are possibly static.
7956 -- Atomic_Always_Lock_Free, Definite, Has_Access_Values,
7957 -- Has_Discriminants, Has_Tagged_Values, Lock_Free, Type_Class, and
7958 -- Unconstrained_Array are again exceptions, because they apply as well
7959 -- to unconstrained types.
7961 -- In addition Component_Size is an exception since it is possibly
7962 -- foldable, even though it is never static, and it does apply to
7963 -- unconstrained arrays. Furthermore, it is essential to fold this
7964 -- in the packed case, since otherwise the value will be incorrect.
7966 elsif Id
= Attribute_Atomic_Always_Lock_Free
or else
7967 Id
= Attribute_Definite
or else
7968 Id
= Attribute_Has_Access_Values
or else
7969 Id
= Attribute_Has_Discriminants
or else
7970 Id
= Attribute_Has_Tagged_Values
or else
7971 Id
= Attribute_Lock_Free
or else
7972 Id
= Attribute_Type_Class
or else
7973 Id
= Attribute_Unconstrained_Array
or else
7974 Id
= Attribute_Component_Size
7977 Set_Is_Static_Expression
(N
, False);
7979 elsif Id
/= Attribute_Max_Alignment_For_Allocation
then
7980 if not Is_Constrained
(P_Type
)
7981 or else (Id
/= Attribute_First
and then
7982 Id
/= Attribute_Last
and then
7983 Id
/= Attribute_Length
)
7989 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
7990 -- scalar case, we hold off on enforcing staticness, since there are
7991 -- cases which we can fold at compile time even though they are not
7992 -- static (e.g. 'Length applied to a static index, even though other
7993 -- non-static indexes make the array type non-static). This is only
7994 -- an optimization, but it falls out essentially free, so why not.
7995 -- Again we compute the variable Static for easy reference later
7996 -- (note that no array attributes are static in Ada 83).
7998 -- We also need to set Static properly for subsequent legality checks
7999 -- which might otherwise accept non-static constants in contexts
8000 -- where they are not legal.
8003 Ada_Version
>= Ada_95
and then Statically_Denotes_Entity
(P
);
8004 Set_Is_Static_Expression
(N
, Static
);
8010 Nod
:= First_Index
(P_Type
);
8012 -- The expression is static if the array type is constrained
8013 -- by given bounds, and not by an initial expression. Constant
8014 -- strings are static in any case.
8016 if Root_Type
(P_Type
) /= Standard_String
then
8018 Static
and then not Is_Constr_Subt_For_U_Nominal
(P_Type
);
8019 Set_Is_Static_Expression
(N
, Static
);
8022 while Present
(Nod
) loop
8023 if not Is_Static_Subtype
(Etype
(Nod
)) then
8025 Set_Is_Static_Expression
(N
, False);
8027 elsif not Is_OK_Static_Subtype
(Etype
(Nod
)) then
8028 Set_Raises_Constraint_Error
(N
);
8030 Set_Is_Static_Expression
(N
, False);
8033 -- If however the index type is generic, or derived from
8034 -- one, attributes cannot be folded.
8036 if Is_Generic_Type
(Root_Type
(Etype
(Nod
)))
8037 and then Id
/= Attribute_Component_Size
8047 -- Check any expressions that are present. Note that these expressions,
8048 -- depending on the particular attribute type, are either part of the
8049 -- attribute designator, or they are arguments in a case where the
8050 -- attribute reference returns a function. In the latter case, the
8051 -- rule in (RM 4.9(22)) applies and in particular requires the type
8052 -- of the expressions to be scalar in order for the attribute to be
8053 -- considered to be static.
8061 while Present
(E
) loop
8063 -- If expression is not static, then the attribute reference
8064 -- result certainly cannot be static.
8066 if not Is_Static_Expression
(E
) then
8068 Set_Is_Static_Expression
(N
, False);
8071 if Raises_Constraint_Error
(E
) then
8072 Set_Raises_Constraint_Error
(N
);
8075 -- If the result is not known at compile time, or is not of
8076 -- a scalar type, then the result is definitely not static,
8077 -- so we can quit now.
8079 if not Compile_Time_Known_Value
(E
)
8080 or else not Is_Scalar_Type
(Etype
(E
))
8082 -- An odd special case, if this is a Pos attribute, this
8083 -- is where we need to apply a range check since it does
8084 -- not get done anywhere else.
8086 if Id
= Attribute_Pos
then
8087 if Is_Integer_Type
(Etype
(E
)) then
8088 Apply_Range_Check
(E
, Etype
(N
));
8095 -- If the expression raises a constraint error, then so does
8096 -- the attribute reference. We keep going in this case because
8097 -- we are still interested in whether the attribute reference
8098 -- is static even if it is not static.
8100 elsif Raises_Constraint_Error
(E
) then
8101 Set_Raises_Constraint_Error
(N
);
8107 if Raises_Constraint_Error
(Prefix
(N
)) then
8108 Set_Is_Static_Expression
(N
, False);
8113 -- Deal with the case of a static attribute reference that raises
8114 -- constraint error. The Raises_Constraint_Error flag will already
8115 -- have been set, and the Static flag shows whether the attribute
8116 -- reference is static. In any case we certainly can't fold such an
8117 -- attribute reference.
8119 -- Note that the rewriting of the attribute node with the constraint
8120 -- error node is essential in this case, because otherwise Gigi might
8121 -- blow up on one of the attributes it never expects to see.
8123 -- The constraint_error node must have the type imposed by the context,
8124 -- to avoid spurious errors in the enclosing expression.
8126 if Raises_Constraint_Error
(N
) then
8128 Make_Raise_Constraint_Error
(Sloc
(N
),
8129 Reason
=> CE_Range_Check_Failed
);
8130 Set_Etype
(CE_Node
, Etype
(N
));
8131 Set_Raises_Constraint_Error
(CE_Node
);
8133 Rewrite
(N
, Relocate_Node
(CE_Node
));
8134 Set_Raises_Constraint_Error
(N
, True);
8138 -- At this point we have a potentially foldable attribute reference.
8139 -- If Static is set, then the attribute reference definitely obeys
8140 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
8141 -- folded. If Static is not set, then the attribute may or may not
8142 -- be foldable, and the individual attribute processing routines
8143 -- test Static as required in cases where it makes a difference.
8145 -- In the case where Static is not set, we do know that all the
8146 -- expressions present are at least known at compile time (we assumed
8147 -- above that if this was not the case, then there was no hope of static
8148 -- evaluation). However, we did not require that the bounds of the
8149 -- prefix type be compile time known, let alone static). That's because
8150 -- there are many attributes that can be computed at compile time on
8151 -- non-static subtypes, even though such references are not static
8154 -- For VAX float, the root type is an IEEE type. So make sure to use the
8155 -- base type instead of the root-type for floating point attributes.
8159 -- Attributes related to Ada 2012 iterators; nothing to evaluate for
8162 when Attribute_Constant_Indexing
8163 | Attribute_Default_Iterator
8164 | Attribute_Implicit_Dereference
8165 | Attribute_Iterator_Element
8166 | Attribute_Iterable
8167 | Attribute_Variable_Indexing
8171 -- Internal attributes used to deal with Ada 2012 delayed aspects.
8172 -- These were already rejected by the parser. Thus they shouldn't
8175 when Internal_Attribute_Id
=>
8176 raise Program_Error
;
8182 when Attribute_Adjacent
=>
8186 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value_R
(E2
)),
8193 when Attribute_Aft
=>
8194 Fold_Uint
(N
, Aft_Value
(P_Type
), Static
);
8200 when Attribute_Alignment
=> Alignment_Block
: declare
8201 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
8204 -- Fold if alignment is set and not otherwise
8206 if Known_Alignment
(P_TypeA
) then
8207 Fold_Uint
(N
, Alignment
(P_TypeA
), Static
);
8209 end Alignment_Block
;
8211 -----------------------------
8212 -- Atomic_Always_Lock_Free --
8213 -----------------------------
8215 -- Atomic_Always_Lock_Free attribute is a Boolean, thus no need to fold
8218 when Attribute_Atomic_Always_Lock_Free
=> Atomic_Always_Lock_Free
:
8220 V
: constant Entity_Id
:=
8222 (Support_Atomic_Primitives_On_Target
8223 and then Support_Atomic_Primitives
(P_Type
));
8226 Rewrite
(N
, New_Occurrence_Of
(V
, Loc
));
8228 -- Analyze and resolve as boolean. Note that this attribute is a
8229 -- static attribute in GNAT.
8231 Analyze_And_Resolve
(N
, Standard_Boolean
);
8233 Set_Is_Static_Expression
(N
, True);
8234 end Atomic_Always_Lock_Free
;
8240 -- Bit can never be folded
8242 when Attribute_Bit
=>
8249 -- Body_version can never be static
8251 when Attribute_Body_Version
=>
8258 when Attribute_Ceiling
=>
8260 (N
, Eval_Fat
.Ceiling
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8262 --------------------
8263 -- Component_Size --
8264 --------------------
8266 when Attribute_Component_Size
=>
8267 if Known_Static_Component_Size
(P_Type
) then
8268 Fold_Uint
(N
, Component_Size
(P_Type
), Static
);
8275 when Attribute_Compose
=>
8278 Eval_Fat
.Compose
(P_Base_Type
, Expr_Value_R
(E1
), Expr_Value
(E2
)),
8285 -- Constrained is never folded for now, there may be cases that
8286 -- could be handled at compile time. To be looked at later.
8288 when Attribute_Constrained
=>
8290 -- The expander might fold it and set the static flag accordingly,
8291 -- but with expansion disabled (as in ASIS), it remains as an
8292 -- attribute reference, and this reference is not static.
8294 Set_Is_Static_Expression
(N
, False);
8301 when Attribute_Copy_Sign
=>
8305 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value_R
(E2
)),
8312 when Attribute_Definite
=>
8313 Rewrite
(N
, New_Occurrence_Of
(
8314 Boolean_Literals
(Is_Definite_Subtype
(P_Entity
)), Loc
));
8315 Analyze_And_Resolve
(N
, Standard_Boolean
);
8321 when Attribute_Delta
=>
8322 Fold_Ureal
(N
, Delta_Value
(P_Type
), True);
8328 when Attribute_Denorm
=>
8330 (N
, UI_From_Int
(Boolean'Pos (Has_Denormals
(P_Type
))), Static
);
8332 ---------------------
8333 -- Descriptor_Size --
8334 ---------------------
8336 when Attribute_Descriptor_Size
=>
8343 when Attribute_Digits
=>
8344 Fold_Uint
(N
, Digits_Value
(P_Type
), Static
);
8350 when Attribute_Emax
=>
8352 -- Ada 83 attribute is defined as (RM83 3.5.8)
8354 -- T'Emax = 4 * T'Mantissa
8356 Fold_Uint
(N
, 4 * Mantissa
, Static
);
8362 when Attribute_Enum_Rep
=> Enum_Rep
: declare
8366 -- The attribute appears in the form:
8368 -- Enum_Typ'Enum_Rep (Const)
8369 -- Enum_Typ'Enum_Rep (Enum_Lit)
8371 if Present
(E1
) then
8374 -- Otherwise the prefix denotes a constant or enumeration literal:
8377 -- Enum_Lit'Enum_Rep
8383 -- For an enumeration type with a non-standard representation use
8384 -- the Enumeration_Rep field of the proper constant. Note that this
8385 -- will not work for types Character/Wide_[Wide-]Character, since no
8386 -- real entities are created for the enumeration literals, but that
8387 -- does not matter since these two types do not have non-standard
8388 -- representations anyway.
8390 if Is_Enumeration_Type
(P_Type
)
8391 and then Has_Non_Standard_Rep
(P_Type
)
8393 Fold_Uint
(N
, Enumeration_Rep
(Expr_Value_E
(Val
)), Static
);
8395 -- For enumeration types with standard representations and all other
8396 -- cases (i.e. all integer and modular types), Enum_Rep is equivalent
8400 Fold_Uint
(N
, Expr_Value
(Val
), Static
);
8408 when Attribute_Enum_Val
=> Enum_Val
: declare
8412 -- We have something like Enum_Type'Enum_Val (23), so search for a
8413 -- corresponding value in the list of Enum_Rep values for the type.
8415 Lit
:= First_Literal
(P_Base_Type
);
8417 if Enumeration_Rep
(Lit
) = Expr_Value
(E1
) then
8418 Fold_Uint
(N
, Enumeration_Pos
(Lit
), Static
);
8425 Apply_Compile_Time_Constraint_Error
8426 (N
, "no representation value matches",
8427 CE_Range_Check_Failed
,
8428 Warn
=> not Static
);
8438 when Attribute_Epsilon
=>
8440 -- Ada 83 attribute is defined as (RM83 3.5.8)
8442 -- T'Epsilon = 2.0**(1 - T'Mantissa)
8444 Fold_Ureal
(N
, Ureal_2
** (1 - Mantissa
), True);
8450 when Attribute_Exponent
=>
8452 Eval_Fat
.Exponent
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8454 -----------------------
8455 -- Finalization_Size --
8456 -----------------------
8458 when Attribute_Finalization_Size
=>
8465 when Attribute_First
=>
8468 if Compile_Time_Known_Value
(Lo_Bound
) then
8469 if Is_Real_Type
(P_Type
) then
8470 Fold_Ureal
(N
, Expr_Value_R
(Lo_Bound
), Static
);
8472 Fold_Uint
(N
, Expr_Value
(Lo_Bound
), Static
);
8476 Check_Concurrent_Discriminant
(Lo_Bound
);
8483 when Attribute_First_Valid
=>
8484 if Has_Predicates
(P_Type
)
8485 and then Has_Static_Predicate
(P_Type
)
8488 FirstN
: constant Node_Id
:=
8489 First
(Static_Discrete_Predicate
(P_Type
));
8491 if Nkind
(FirstN
) = N_Range
then
8492 Fold_Uint
(N
, Expr_Value
(Low_Bound
(FirstN
)), Static
);
8494 Fold_Uint
(N
, Expr_Value
(FirstN
), Static
);
8500 Fold_Uint
(N
, Expr_Value
(Lo_Bound
), Static
);
8507 when Attribute_Fixed_Value
=>
8514 when Attribute_Floor
=>
8516 (N
, Eval_Fat
.Floor
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8522 when Attribute_Fore
=>
8523 if Compile_Time_Known_Bounds
(P_Type
) then
8524 Fold_Uint
(N
, UI_From_Int
(Fore_Value
), Static
);
8531 when Attribute_Fraction
=>
8533 (N
, Eval_Fat
.Fraction
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8535 -----------------------
8536 -- Has_Access_Values --
8537 -----------------------
8539 when Attribute_Has_Access_Values
=>
8540 Rewrite
(N
, New_Occurrence_Of
8541 (Boolean_Literals
(Has_Access_Values
(P_Root_Type
)), Loc
));
8542 Analyze_And_Resolve
(N
, Standard_Boolean
);
8544 -----------------------
8545 -- Has_Discriminants --
8546 -----------------------
8548 when Attribute_Has_Discriminants
=>
8549 Rewrite
(N
, New_Occurrence_Of
(
8550 Boolean_Literals
(Has_Discriminants
(P_Entity
)), Loc
));
8551 Analyze_And_Resolve
(N
, Standard_Boolean
);
8553 ----------------------
8554 -- Has_Same_Storage --
8555 ----------------------
8557 when Attribute_Has_Same_Storage
=>
8560 -----------------------
8561 -- Has_Tagged_Values --
8562 -----------------------
8564 when Attribute_Has_Tagged_Values
=>
8565 Rewrite
(N
, New_Occurrence_Of
8566 (Boolean_Literals
(Has_Tagged_Component
(P_Root_Type
)), Loc
));
8567 Analyze_And_Resolve
(N
, Standard_Boolean
);
8573 when Attribute_Identity
=>
8580 -- Image is a scalar attribute, but is never static, because it is
8581 -- not a static function (having a non-scalar argument (RM 4.9(22))
8582 -- However, we can constant-fold the image of an enumeration literal
8583 -- if names are available.
8585 when Attribute_Image
=>
8586 if Is_Entity_Name
(E1
)
8587 and then Ekind
(Entity
(E1
)) = E_Enumeration_Literal
8588 and then not Discard_Names
(First_Subtype
(Etype
(E1
)))
8589 and then not Global_Discard_Names
8592 Lit
: constant Entity_Id
:= Entity
(E1
);
8596 Get_Unqualified_Decoded_Name_String
(Chars
(Lit
));
8597 Set_Casing
(All_Upper_Case
);
8598 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
8600 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Str
));
8601 Analyze_And_Resolve
(N
, Standard_String
);
8602 Set_Is_Static_Expression
(N
, False);
8610 -- We never try to fold Integer_Value (though perhaps we could???)
8612 when Attribute_Integer_Value
=>
8619 -- Invalid_Value is a scalar attribute that is never static, because
8620 -- the value is by design out of range.
8622 when Attribute_Invalid_Value
=>
8629 when Attribute_Large
=>
8631 -- For fixed-point, we use the identity:
8633 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
8635 if Is_Fixed_Point_Type
(P_Type
) then
8637 Make_Op_Multiply
(Loc
,
8639 Make_Op_Subtract
(Loc
,
8643 Make_Real_Literal
(Loc
, Ureal_2
),
8645 Make_Attribute_Reference
(Loc
,
8647 Attribute_Name
=> Name_Mantissa
)),
8648 Right_Opnd
=> Make_Real_Literal
(Loc
, Ureal_1
)),
8651 Make_Real_Literal
(Loc
, Small_Value
(Entity
(P
)))));
8653 Analyze_And_Resolve
(N
, C_Type
);
8655 -- Floating-point (Ada 83 compatibility)
8658 -- Ada 83 attribute is defined as (RM83 3.5.8)
8660 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
8664 -- T'Emax = 4 * T'Mantissa
8668 Ureal_2
** (4 * Mantissa
) * (Ureal_1
- Ureal_2
** (-Mantissa
)),
8676 when Attribute_Lock_Free
=> Lock_Free
: declare
8677 V
: constant Entity_Id
:= Boolean_Literals
(Uses_Lock_Free
(P_Type
));
8680 Rewrite
(N
, New_Occurrence_Of
(V
, Loc
));
8682 -- Analyze and resolve as boolean. Note that this attribute is a
8683 -- static attribute in GNAT.
8685 Analyze_And_Resolve
(N
, Standard_Boolean
);
8687 Set_Is_Static_Expression
(N
, True);
8694 when Attribute_Last
=>
8697 if Compile_Time_Known_Value
(Hi_Bound
) then
8698 if Is_Real_Type
(P_Type
) then
8699 Fold_Ureal
(N
, Expr_Value_R
(Hi_Bound
), Static
);
8701 Fold_Uint
(N
, Expr_Value
(Hi_Bound
), Static
);
8705 Check_Concurrent_Discriminant
(Hi_Bound
);
8712 when Attribute_Last_Valid
=>
8713 if Has_Predicates
(P_Type
)
8714 and then Has_Static_Predicate
(P_Type
)
8717 LastN
: constant Node_Id
:=
8718 Last
(Static_Discrete_Predicate
(P_Type
));
8720 if Nkind
(LastN
) = N_Range
then
8721 Fold_Uint
(N
, Expr_Value
(High_Bound
(LastN
)), Static
);
8723 Fold_Uint
(N
, Expr_Value
(LastN
), Static
);
8729 Fold_Uint
(N
, Expr_Value
(Hi_Bound
), Static
);
8736 when Attribute_Leading_Part
=>
8739 Eval_Fat
.Leading_Part
8740 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value
(E2
)),
8747 when Attribute_Length
=> Length
: declare
8751 -- If any index type is a formal type, or derived from one, the
8752 -- bounds are not static. Treating them as static can produce
8753 -- spurious warnings or improper constant folding.
8755 Ind
:= First_Index
(P_Type
);
8756 while Present
(Ind
) loop
8757 if Is_Generic_Type
(Root_Type
(Etype
(Ind
))) then
8766 -- For two compile time values, we can compute length
8768 if Compile_Time_Known_Value
(Lo_Bound
)
8769 and then Compile_Time_Known_Value
(Hi_Bound
)
8772 UI_Max
(0, 1 + (Expr_Value
(Hi_Bound
) - Expr_Value
(Lo_Bound
))),
8776 -- One more case is where Hi_Bound and Lo_Bound are compile-time
8777 -- comparable, and we can figure out the difference between them.
8780 Diff
: aliased Uint
;
8784 Compile_Time_Compare
8785 (Lo_Bound
, Hi_Bound
, Diff
'Access, Assume_Valid
=> False)
8788 Fold_Uint
(N
, Uint_1
, Static
);
8791 Fold_Uint
(N
, Uint_0
, Static
);
8794 if Diff
/= No_Uint
then
8795 Fold_Uint
(N
, Diff
+ 1, Static
);
8808 -- Loop_Entry acts as an alias of a constant initialized to the prefix
8809 -- of the said attribute at the point of entry into the related loop. As
8810 -- such, the attribute reference does not need to be evaluated because
8811 -- the prefix is the one that is evaluted.
8813 when Attribute_Loop_Entry
=>
8820 when Attribute_Machine
=>
8824 (P_Base_Type
, Expr_Value_R
(E1
), Eval_Fat
.Round
, N
),
8831 when Attribute_Machine_Emax
=>
8832 Fold_Uint
(N
, Machine_Emax_Value
(P_Type
), Static
);
8838 when Attribute_Machine_Emin
=>
8839 Fold_Uint
(N
, Machine_Emin_Value
(P_Type
), Static
);
8841 ----------------------
8842 -- Machine_Mantissa --
8843 ----------------------
8845 when Attribute_Machine_Mantissa
=>
8846 Fold_Uint
(N
, Machine_Mantissa_Value
(P_Type
), Static
);
8848 -----------------------
8849 -- Machine_Overflows --
8850 -----------------------
8852 when Attribute_Machine_Overflows
=>
8854 -- Always true for fixed-point
8856 if Is_Fixed_Point_Type
(P_Type
) then
8857 Fold_Uint
(N
, True_Value
, Static
);
8859 -- Floating point case
8863 UI_From_Int
(Boolean'Pos (Machine_Overflows_On_Target
)),
8871 when Attribute_Machine_Radix
=>
8872 if Is_Fixed_Point_Type
(P_Type
) then
8873 if Is_Decimal_Fixed_Point_Type
(P_Type
)
8874 and then Machine_Radix_10
(P_Type
)
8876 Fold_Uint
(N
, Uint_10
, Static
);
8878 Fold_Uint
(N
, Uint_2
, Static
);
8881 -- All floating-point type always have radix 2
8884 Fold_Uint
(N
, Uint_2
, Static
);
8887 ----------------------
8888 -- Machine_Rounding --
8889 ----------------------
8891 -- Note: for the folding case, it is fine to treat Machine_Rounding
8892 -- exactly the same way as Rounding, since this is one of the allowed
8893 -- behaviors, and performance is not an issue here. It might be a bit
8894 -- better to give the same result as it would give at run time, even
8895 -- though the non-determinism is certainly permitted.
8897 when Attribute_Machine_Rounding
=>
8899 (N
, Eval_Fat
.Rounding
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
8901 --------------------
8902 -- Machine_Rounds --
8903 --------------------
8905 when Attribute_Machine_Rounds
=>
8907 -- Always False for fixed-point
8909 if Is_Fixed_Point_Type
(P_Type
) then
8910 Fold_Uint
(N
, False_Value
, Static
);
8912 -- Else yield proper floating-point result
8916 (N
, UI_From_Int
(Boolean'Pos (Machine_Rounds_On_Target
)),
8924 -- Note: Machine_Size is identical to Object_Size
8926 when Attribute_Machine_Size
=> Machine_Size
: declare
8927 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
8930 if Known_Esize
(P_TypeA
) then
8931 Fold_Uint
(N
, Esize
(P_TypeA
), Static
);
8939 when Attribute_Mantissa
=>
8941 -- Fixed-point mantissa
8943 if Is_Fixed_Point_Type
(P_Type
) then
8945 -- Compile time foldable case
8947 if Compile_Time_Known_Value
(Type_Low_Bound
(P_Type
))
8949 Compile_Time_Known_Value
(Type_High_Bound
(P_Type
))
8951 -- The calculation of the obsolete Ada 83 attribute Mantissa
8952 -- is annoying, because of AI00143, quoted here:
8954 -- !question 84-01-10
8956 -- Consider the model numbers for F:
8958 -- type F is delta 1.0 range -7.0 .. 8.0;
8960 -- The wording requires that F'MANTISSA be the SMALLEST
8961 -- integer number for which each bound of the specified
8962 -- range is either a model number or lies at most small
8963 -- distant from a model number. This means F'MANTISSA
8964 -- is required to be 3 since the range -7.0 .. 7.0 fits
8965 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
8966 -- number, namely, 7. Is this analysis correct? Note that
8967 -- this implies the upper bound of the range is not
8968 -- represented as a model number.
8970 -- !response 84-03-17
8972 -- The analysis is correct. The upper and lower bounds for
8973 -- a fixed point type can lie outside the range of model
8984 LBound
:= Expr_Value_R
(Type_Low_Bound
(P_Type
));
8985 UBound
:= Expr_Value_R
(Type_High_Bound
(P_Type
));
8986 Bound
:= UR_Max
(UR_Abs
(LBound
), UR_Abs
(UBound
));
8987 Max_Man
:= UR_Trunc
(Bound
/ Small_Value
(P_Type
));
8989 -- If the Bound is exactly a model number, i.e. a multiple
8990 -- of Small, then we back it off by one to get the integer
8991 -- value that must be representable.
8993 if Small_Value
(P_Type
) * Max_Man
= Bound
then
8994 Max_Man
:= Max_Man
- 1;
8997 -- Now find corresponding size = Mantissa value
9000 while 2 ** Siz
< Max_Man
loop
9004 Fold_Uint
(N
, Siz
, Static
);
9008 -- The case of dynamic bounds cannot be evaluated at compile
9009 -- time. Instead we use a runtime routine (see Exp_Attr).
9014 -- Floating-point Mantissa
9017 Fold_Uint
(N
, Mantissa
, Static
);
9024 when Attribute_Max
=>
9025 if Is_Real_Type
(P_Type
) then
9027 (N
, UR_Max
(Expr_Value_R
(E1
), Expr_Value_R
(E2
)), Static
);
9029 Fold_Uint
(N
, UI_Max
(Expr_Value
(E1
), Expr_Value
(E2
)), Static
);
9032 ----------------------------------
9033 -- Max_Alignment_For_Allocation --
9034 ----------------------------------
9036 -- Max_Alignment_For_Allocation is usually the Alignment. However,
9037 -- arrays are allocated with dope, so we need to take into account both
9038 -- the alignment of the array, which comes from the component alignment,
9039 -- and the alignment of the dope. Also, if the alignment is unknown, we
9040 -- use the max (it's OK to be pessimistic).
9042 when Attribute_Max_Alignment_For_Allocation
=> Max_Align
: declare
9043 A
: Uint
:= UI_From_Int
(Ttypes
.Maximum_Alignment
);
9045 if Known_Alignment
(P_Type
)
9046 and then (not Is_Array_Type
(P_Type
) or else Alignment
(P_Type
) > A
)
9048 A
:= Alignment
(P_Type
);
9051 Fold_Uint
(N
, A
, Static
);
9054 ----------------------------------
9055 -- Max_Size_In_Storage_Elements --
9056 ----------------------------------
9058 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
9059 -- Storage_Unit boundary. We can fold any cases for which the size
9060 -- is known by the front end.
9062 when Attribute_Max_Size_In_Storage_Elements
=>
9063 if Known_Esize
(P_Type
) then
9065 (Esize
(P_Type
) + System_Storage_Unit
- 1) /
9066 System_Storage_Unit
,
9070 --------------------
9071 -- Mechanism_Code --
9072 --------------------
9074 when Attribute_Mechanism_Code
=> Mechanism_Code
: declare
9076 Mech
: Mechanism_Type
;
9081 Mech
:= Mechanism
(P_Entity
);
9084 Val
:= UI_To_Int
(Expr_Value
(E1
));
9086 Formal
:= First_Formal
(P_Entity
);
9087 for J
in 1 .. Val
- 1 loop
9088 Next_Formal
(Formal
);
9091 Mech
:= Mechanism
(Formal
);
9095 Fold_Uint
(N
, UI_From_Int
(Int
(-Mech
)), Static
);
9103 when Attribute_Min
=>
9104 if Is_Real_Type
(P_Type
) then
9106 (N
, UR_Min
(Expr_Value_R
(E1
), Expr_Value_R
(E2
)), Static
);
9109 (N
, UI_Min
(Expr_Value
(E1
), Expr_Value
(E2
)), Static
);
9116 when Attribute_Mod
=>
9118 (N
, UI_Mod
(Expr_Value
(E1
), Modulus
(P_Base_Type
)), Static
);
9124 when Attribute_Model
=>
9126 (N
, Eval_Fat
.Model
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9132 when Attribute_Model_Emin
=>
9133 Fold_Uint
(N
, Model_Emin_Value
(P_Base_Type
), Static
);
9139 when Attribute_Model_Epsilon
=>
9140 Fold_Ureal
(N
, Model_Epsilon_Value
(P_Base_Type
), Static
);
9142 --------------------
9143 -- Model_Mantissa --
9144 --------------------
9146 when Attribute_Model_Mantissa
=>
9147 Fold_Uint
(N
, Model_Mantissa_Value
(P_Base_Type
), Static
);
9153 when Attribute_Model_Small
=>
9154 Fold_Ureal
(N
, Model_Small_Value
(P_Base_Type
), Static
);
9160 when Attribute_Modulus
=>
9161 Fold_Uint
(N
, Modulus
(P_Type
), Static
);
9163 --------------------
9164 -- Null_Parameter --
9165 --------------------
9167 -- Cannot fold, we know the value sort of, but the whole point is
9168 -- that there is no way to talk about this imaginary value except
9169 -- by using the attribute, so we leave it the way it is.
9171 when Attribute_Null_Parameter
=>
9178 -- The Object_Size attribute for a type returns the Esize of the
9179 -- type and can be folded if this value is known.
9181 when Attribute_Object_Size
=> Object_Size
: declare
9182 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9185 if Known_Esize
(P_TypeA
) then
9186 Fold_Uint
(N
, Esize
(P_TypeA
), Static
);
9190 ----------------------
9191 -- Overlaps_Storage --
9192 ----------------------
9194 when Attribute_Overlaps_Storage
=>
9197 -------------------------
9198 -- Passed_By_Reference --
9199 -------------------------
9201 -- Scalar types are never passed by reference
9203 when Attribute_Passed_By_Reference
=>
9204 Fold_Uint
(N
, False_Value
, Static
);
9210 when Attribute_Pos
=>
9211 Fold_Uint
(N
, Expr_Value
(E1
), Static
);
9217 when Attribute_Pred
=>
9219 -- Floating-point case
9221 if Is_Floating_Point_Type
(P_Type
) then
9223 (N
, Eval_Fat
.Pred
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9227 elsif Is_Fixed_Point_Type
(P_Type
) then
9229 (N
, Expr_Value_R
(E1
) - Small_Value
(P_Type
), True);
9231 -- Modular integer case (wraps)
9233 elsif Is_Modular_Integer_Type
(P_Type
) then
9234 Fold_Uint
(N
, (Expr_Value
(E1
) - 1) mod Modulus
(P_Type
), Static
);
9236 -- Other scalar cases
9239 pragma Assert
(Is_Scalar_Type
(P_Type
));
9241 if Is_Enumeration_Type
(P_Type
)
9242 and then Expr_Value
(E1
) =
9243 Expr_Value
(Type_Low_Bound
(P_Base_Type
))
9245 Apply_Compile_Time_Constraint_Error
9246 (N
, "Pred of `&''First`",
9247 CE_Overflow_Check_Failed
,
9249 Warn
=> not Static
);
9255 Fold_Uint
(N
, Expr_Value
(E1
) - 1, Static
);
9262 -- No processing required, because by this stage, Range has been
9263 -- replaced by First .. Last, so this branch can never be taken.
9265 when Attribute_Range
=>
9266 raise Program_Error
;
9272 when Attribute_Range_Length
=> Range_Length
: declare
9273 Diff
: aliased Uint
;
9278 -- Can fold if both bounds are compile time known
9280 if Compile_Time_Known_Value
(Hi_Bound
)
9281 and then Compile_Time_Known_Value
(Lo_Bound
)
9285 (0, Expr_Value
(Hi_Bound
) - Expr_Value
(Lo_Bound
) + 1),
9289 -- One more case is where Hi_Bound and Lo_Bound are compile-time
9290 -- comparable, and we can figure out the difference between them.
9292 case Compile_Time_Compare
9293 (Lo_Bound
, Hi_Bound
, Diff
'Access, Assume_Valid
=> False)
9296 Fold_Uint
(N
, Uint_1
, Static
);
9299 Fold_Uint
(N
, Uint_0
, Static
);
9302 if Diff
/= No_Uint
then
9303 Fold_Uint
(N
, Diff
+ 1, Static
);
9315 when Attribute_Ref
=>
9316 Fold_Uint
(N
, Expr_Value
(E1
), Static
);
9322 when Attribute_Remainder
=> Remainder
: declare
9323 X
: constant Ureal
:= Expr_Value_R
(E1
);
9324 Y
: constant Ureal
:= Expr_Value_R
(E2
);
9327 if UR_Is_Zero
(Y
) then
9328 Apply_Compile_Time_Constraint_Error
9329 (N
, "division by zero in Remainder",
9330 CE_Overflow_Check_Failed
,
9331 Warn
=> not Static
);
9337 Fold_Ureal
(N
, Eval_Fat
.Remainder
(P_Base_Type
, X
, Y
), Static
);
9344 when Attribute_Restriction_Set
=>
9345 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
9346 Set_Is_Static_Expression
(N
);
9352 when Attribute_Round
=> Round
: declare
9357 -- First we get the (exact result) in units of small
9359 Sr
:= Expr_Value_R
(E1
) / Small_Value
(C_Type
);
9361 -- Now round that exactly to an integer
9363 Si
:= UR_To_Uint
(Sr
);
9365 -- Finally the result is obtained by converting back to real
9367 Fold_Ureal
(N
, Si
* Small_Value
(C_Type
), Static
);
9374 when Attribute_Rounding
=>
9376 (N
, Eval_Fat
.Rounding
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9382 when Attribute_Safe_Emax
=>
9383 Fold_Uint
(N
, Safe_Emax_Value
(P_Type
), Static
);
9389 when Attribute_Safe_First
=>
9390 Fold_Ureal
(N
, Safe_First_Value
(P_Type
), Static
);
9396 when Attribute_Safe_Large
=>
9397 if Is_Fixed_Point_Type
(P_Type
) then
9399 (N
, Expr_Value_R
(Type_High_Bound
(P_Base_Type
)), Static
);
9401 Fold_Ureal
(N
, Safe_Last_Value
(P_Type
), Static
);
9408 when Attribute_Safe_Last
=>
9409 Fold_Ureal
(N
, Safe_Last_Value
(P_Type
), Static
);
9415 when Attribute_Safe_Small
=>
9417 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
9418 -- for fixed-point, since is the same as Small, but we implement
9419 -- it for backwards compatibility.
9421 if Is_Fixed_Point_Type
(P_Type
) then
9422 Fold_Ureal
(N
, Small_Value
(P_Type
), Static
);
9424 -- Ada 83 Safe_Small for floating-point cases
9427 Fold_Ureal
(N
, Model_Small_Value
(P_Type
), Static
);
9434 when Attribute_Scale
=>
9435 Fold_Uint
(N
, Scale_Value
(P_Type
), Static
);
9441 when Attribute_Scaling
=>
9445 (P_Base_Type
, Expr_Value_R
(E1
), Expr_Value
(E2
)),
9452 when Attribute_Signed_Zeros
=>
9454 (N
, UI_From_Int
(Boolean'Pos (Has_Signed_Zeros
(P_Type
))), Static
);
9460 -- Size attribute returns the RM size. All scalar types can be folded,
9461 -- as well as any types for which the size is known by the front end,
9462 -- including any type for which a size attribute is specified. This is
9463 -- one of the places where it is annoying that a size of zero means two
9464 -- things (zero size for scalars, unspecified size for non-scalars).
9467 | Attribute_VADS_Size
9470 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9473 if Is_Scalar_Type
(P_TypeA
)
9474 or else RM_Size
(P_TypeA
) /= Uint_0
9478 if Id
= Attribute_VADS_Size
or else Use_VADS_Size
then
9480 S
: constant Node_Id
:= Size_Clause
(P_TypeA
);
9483 -- If a size clause applies, then use the size from it.
9484 -- This is one of the rare cases where we can use the
9485 -- Size_Clause field for a subtype when Has_Size_Clause
9486 -- is False. Consider:
9488 -- type x is range 1 .. 64;
9489 -- for x'size use 12;
9490 -- subtype y is x range 0 .. 3;
9492 -- Here y has a size clause inherited from x, but
9493 -- normally it does not apply, and y'size is 2. However,
9494 -- y'VADS_Size is indeed 12 and not 2.
9497 and then Is_OK_Static_Expression
(Expression
(S
))
9499 Fold_Uint
(N
, Expr_Value
(Expression
(S
)), Static
);
9501 -- If no size is specified, then we simply use the object
9502 -- size in the VADS_Size case (e.g. Natural'Size is equal
9503 -- to Integer'Size, not one less).
9506 Fold_Uint
(N
, Esize
(P_TypeA
), Static
);
9510 -- Normal case (Size) in which case we want the RM_Size
9513 Fold_Uint
(N
, RM_Size
(P_TypeA
), Static
);
9522 when Attribute_Small
=>
9524 -- The floating-point case is present only for Ada 83 compatibility.
9525 -- Note that strictly this is an illegal addition, since we are
9526 -- extending an Ada 95 defined attribute, but we anticipate an
9527 -- ARG ruling that will permit this.
9529 if Is_Floating_Point_Type
(P_Type
) then
9531 -- Ada 83 attribute is defined as (RM83 3.5.8)
9533 -- T'Small = 2.0**(-T'Emax - 1)
9537 -- T'Emax = 4 * T'Mantissa
9539 Fold_Ureal
(N
, Ureal_2
** ((-(4 * Mantissa
)) - 1), Static
);
9541 -- Normal Ada 95 fixed-point case
9544 Fold_Ureal
(N
, Small_Value
(P_Type
), True);
9551 when Attribute_Stream_Size
=>
9558 when Attribute_Succ
=>
9559 -- Floating-point case
9561 if Is_Floating_Point_Type
(P_Type
) then
9563 (N
, Eval_Fat
.Succ
(P_Base_Type
, Expr_Value_R
(E1
)), Static
);
9567 elsif Is_Fixed_Point_Type
(P_Type
) then
9568 Fold_Ureal
(N
, Expr_Value_R
(E1
) + Small_Value
(P_Type
), Static
);
9570 -- Modular integer case (wraps)
9572 elsif Is_Modular_Integer_Type
(P_Type
) then
9573 Fold_Uint
(N
, (Expr_Value
(E1
) + 1) mod Modulus
(P_Type
), Static
);
9575 -- Other scalar cases
9578 pragma Assert
(Is_Scalar_Type
(P_Type
));
9580 if Is_Enumeration_Type
(P_Type
)
9581 and then Expr_Value
(E1
) =
9582 Expr_Value
(Type_High_Bound
(P_Base_Type
))
9584 Apply_Compile_Time_Constraint_Error
9585 (N
, "Succ of `&''Last`",
9586 CE_Overflow_Check_Failed
,
9588 Warn
=> not Static
);
9593 Fold_Uint
(N
, Expr_Value
(E1
) + 1, Static
);
9601 when Attribute_Truncation
=>
9604 Eval_Fat
.Truncation
(P_Base_Type
, Expr_Value_R
(E1
)),
9611 when Attribute_Type_Class
=> Type_Class
: declare
9612 Typ
: constant Entity_Id
:= Underlying_Type
(P_Base_Type
);
9616 if Is_Descendant_Of_Address
(Typ
) then
9617 Id
:= RE_Type_Class_Address
;
9619 elsif Is_Enumeration_Type
(Typ
) then
9620 Id
:= RE_Type_Class_Enumeration
;
9622 elsif Is_Integer_Type
(Typ
) then
9623 Id
:= RE_Type_Class_Integer
;
9625 elsif Is_Fixed_Point_Type
(Typ
) then
9626 Id
:= RE_Type_Class_Fixed_Point
;
9628 elsif Is_Floating_Point_Type
(Typ
) then
9629 Id
:= RE_Type_Class_Floating_Point
;
9631 elsif Is_Array_Type
(Typ
) then
9632 Id
:= RE_Type_Class_Array
;
9634 elsif Is_Record_Type
(Typ
) then
9635 Id
:= RE_Type_Class_Record
;
9637 elsif Is_Access_Type
(Typ
) then
9638 Id
:= RE_Type_Class_Access
;
9640 elsif Is_Task_Type
(Typ
) then
9641 Id
:= RE_Type_Class_Task
;
9643 -- We treat protected types like task types. It would make more
9644 -- sense to have another enumeration value, but after all the
9645 -- whole point of this feature is to be exactly DEC compatible,
9646 -- and changing the type Type_Class would not meet this requirement.
9648 elsif Is_Protected_Type
(Typ
) then
9649 Id
:= RE_Type_Class_Task
;
9651 -- Not clear if there are any other possibilities, but if there
9652 -- are, then we will treat them as the address case.
9655 Id
:= RE_Type_Class_Address
;
9658 Rewrite
(N
, New_Occurrence_Of
(RTE
(Id
), Loc
));
9661 -----------------------
9662 -- Unbiased_Rounding --
9663 -----------------------
9665 when Attribute_Unbiased_Rounding
=>
9668 Eval_Fat
.Unbiased_Rounding
(P_Base_Type
, Expr_Value_R
(E1
)),
9671 -------------------------
9672 -- Unconstrained_Array --
9673 -------------------------
9675 when Attribute_Unconstrained_Array
=> Unconstrained_Array
: declare
9676 Typ
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9679 Rewrite
(N
, New_Occurrence_Of
(
9681 Is_Array_Type
(P_Type
)
9682 and then not Is_Constrained
(Typ
)), Loc
));
9684 -- Analyze and resolve as boolean, note that this attribute is
9685 -- a static attribute in GNAT.
9687 Analyze_And_Resolve
(N
, Standard_Boolean
);
9689 Set_Is_Static_Expression
(N
, True);
9690 end Unconstrained_Array
;
9692 -- Attribute Update is never static
9694 when Attribute_Update
=>
9701 -- Processing is shared with Size
9707 when Attribute_Val
=>
9708 if Expr_Value
(E1
) < Expr_Value
(Type_Low_Bound
(P_Base_Type
))
9710 Expr_Value
(E1
) > Expr_Value
(Type_High_Bound
(P_Base_Type
))
9712 Apply_Compile_Time_Constraint_Error
9713 (N
, "Val expression out of range",
9714 CE_Range_Check_Failed
,
9715 Warn
=> not Static
);
9721 Fold_Uint
(N
, Expr_Value
(E1
), Static
);
9728 -- The Value_Size attribute for a type returns the RM size of the type.
9729 -- This an always be folded for scalar types, and can also be folded for
9730 -- non-scalar types if the size is set. This is one of the places where
9731 -- it is annoying that a size of zero means two things!
9733 when Attribute_Value_Size
=> Value_Size
: declare
9734 P_TypeA
: constant Entity_Id
:= Underlying_Type
(P_Type
);
9737 if Is_Scalar_Type
(P_TypeA
) or else RM_Size
(P_TypeA
) /= Uint_0
then
9738 Fold_Uint
(N
, RM_Size
(P_TypeA
), Static
);
9746 -- Version can never be static
9748 when Attribute_Version
=>
9755 -- Wide_Image is a scalar attribute, but is never static, because it
9756 -- is not a static function (having a non-scalar argument (RM 4.9(22))
9758 when Attribute_Wide_Image
=>
9761 ---------------------
9762 -- Wide_Wide_Image --
9763 ---------------------
9765 -- Wide_Wide_Image is a scalar attribute but is never static, because it
9766 -- is not a static function (having a non-scalar argument (RM 4.9(22)).
9768 when Attribute_Wide_Wide_Image
=>
9771 ---------------------
9772 -- Wide_Wide_Width --
9773 ---------------------
9775 -- Processing for Wide_Wide_Width is combined with Width
9781 -- Processing for Wide_Width is combined with Width
9787 -- This processing also handles the case of Wide_[Wide_]Width
9789 when Attribute_Width
9790 | Attribute_Wide_Width
9791 | Attribute_Wide_Wide_Width
9793 if Compile_Time_Known_Bounds
(P_Type
) then
9795 -- Floating-point types
9797 if Is_Floating_Point_Type
(P_Type
) then
9799 -- Width is zero for a null range (RM 3.5 (38))
9801 if Expr_Value_R
(Type_High_Bound
(P_Type
)) <
9802 Expr_Value_R
(Type_Low_Bound
(P_Type
))
9804 Fold_Uint
(N
, Uint_0
, Static
);
9807 -- For floating-point, we have +N.dddE+nnn where length
9808 -- of ddd is determined by type'Digits - 1, but is one
9809 -- if Digits is one (RM 3.5 (33)).
9811 -- nnn is set to 2 for Short_Float and Float (32 bit
9812 -- floats), and 3 for Long_Float and Long_Long_Float.
9813 -- For machines where Long_Long_Float is the IEEE
9814 -- extended precision type, the exponent takes 4 digits.
9818 Int
'Max (2, UI_To_Int
(Digits_Value
(P_Type
)));
9821 if Esize
(P_Type
) <= 32 then
9823 elsif Esize
(P_Type
) = 64 then
9829 Fold_Uint
(N
, UI_From_Int
(Len
), Static
);
9833 -- Fixed-point types
9835 elsif Is_Fixed_Point_Type
(P_Type
) then
9837 -- Width is zero for a null range (RM 3.5 (38))
9839 if Expr_Value
(Type_High_Bound
(P_Type
)) <
9840 Expr_Value
(Type_Low_Bound
(P_Type
))
9842 Fold_Uint
(N
, Uint_0
, Static
);
9844 -- The non-null case depends on the specific real type
9847 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
9850 (N
, UI_From_Int
(Fore_Value
+ 1) + Aft_Value
(P_Type
),
9858 R
: constant Entity_Id
:= Root_Type
(P_Type
);
9859 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(P_Type
));
9860 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(P_Type
));
9873 -- Width for types derived from Standard.Character
9874 -- and Standard.Wide_[Wide_]Character.
9876 elsif Is_Standard_Character_Type
(P_Type
) then
9879 -- Set W larger if needed
9881 for J
in UI_To_Int
(Lo
) .. UI_To_Int
(Hi
) loop
9883 -- All wide characters look like Hex_hhhhhhhh
9887 -- No need to compute this more than once
9892 C
:= Character'Val (J
);
9894 -- Test for all cases where Character'Image
9895 -- yields an image that is longer than three
9896 -- characters. First the cases of Reserved_xxx
9897 -- names (length = 12).
9975 | No_Break_Space
.. LC_Y_Diaeresis
9977 -- Special case of soft hyphen in Ada 2005
9979 if C
= Character'Val (16#AD#
)
9980 and then Ada_Version
>= Ada_2005
9988 W
:= Int
'Max (W
, Wt
);
9992 -- Width for types derived from Standard.Boolean
9994 elsif R
= Standard_Boolean
then
10001 -- Width for integer types
10003 elsif Is_Integer_Type
(P_Type
) then
10004 T
:= UI_Max
(abs Lo
, abs Hi
);
10012 -- User declared enum type with discard names
10014 elsif Discard_Names
(R
) then
10016 -- If range is null, result is zero, that has already
10017 -- been dealt with, so what we need is the power of ten
10018 -- that accommodates the Pos of the largest value, which
10019 -- is the high bound of the range + one for the space.
10028 -- Only remaining possibility is user declared enum type
10029 -- with normal case of Discard_Names not active.
10032 pragma Assert
(Is_Enumeration_Type
(P_Type
));
10035 L
:= First_Literal
(P_Type
);
10036 while Present
(L
) loop
10038 -- Only pay attention to in range characters
10040 if Lo
<= Enumeration_Pos
(L
)
10041 and then Enumeration_Pos
(L
) <= Hi
10043 -- For Width case, use decoded name
10045 if Id
= Attribute_Width
then
10046 Get_Decoded_Name_String
(Chars
(L
));
10047 Wt
:= Nat
(Name_Len
);
10049 -- For Wide_[Wide_]Width, use encoded name, and
10050 -- then adjust for the encoding.
10053 Get_Name_String
(Chars
(L
));
10055 -- Character literals are always of length 3
10057 if Name_Buffer
(1) = 'Q' then
10060 -- Otherwise loop to adjust for upper/wide chars
10063 Wt
:= Nat
(Name_Len
);
10065 for J
in 1 .. Name_Len
loop
10066 if Name_Buffer
(J
) = 'U' then
10068 elsif Name_Buffer
(J
) = 'W' then
10075 W
:= Int
'Max (W
, Wt
);
10082 Fold_Uint
(N
, UI_From_Int
(W
), Static
);
10087 -- The following attributes denote functions that cannot be folded
10089 when Attribute_From_Any
10091 | Attribute_TypeCode
10095 -- The following attributes can never be folded, and furthermore we
10096 -- should not even have entered the case statement for any of these.
10097 -- Note that in some cases, the values have already been folded as
10098 -- a result of the processing in Analyze_Attribute or earlier in
10101 when Attribute_Abort_Signal
10103 | Attribute_Address
10104 | Attribute_Address_Size
10105 | Attribute_Asm_Input
10106 | Attribute_Asm_Output
10108 | Attribute_Bit_Order
10109 | Attribute_Bit_Position
10110 | Attribute_Callable
10113 | Attribute_Code_Address
10114 | Attribute_Compiler_Version
10116 | Attribute_Default_Bit_Order
10117 | Attribute_Default_Scalar_Storage_Order
10119 | Attribute_Elaborated
10120 | Attribute_Elab_Body
10121 | Attribute_Elab_Spec
10122 | Attribute_Elab_Subp_Body
10123 | Attribute_Enabled
10124 | Attribute_External_Tag
10125 | Attribute_Fast_Math
10126 | Attribute_First_Bit
10129 | Attribute_Last_Bit
10130 | Attribute_Library_Level
10131 | Attribute_Maximum_Alignment
10134 | Attribute_Partition_ID
10135 | Attribute_Pool_Address
10136 | Attribute_Position
10137 | Attribute_Priority
10140 | Attribute_Scalar_Storage_Order
10141 | Attribute_Simple_Storage_Pool
10142 | Attribute_Storage_Pool
10143 | Attribute_Storage_Size
10144 | Attribute_Storage_Unit
10145 | Attribute_Stub_Type
10146 | Attribute_System_Allocator_Alignment
10148 | Attribute_Target_Name
10149 | Attribute_Terminated
10150 | Attribute_To_Address
10151 | Attribute_Type_Key
10152 | Attribute_Unchecked_Access
10153 | Attribute_Universal_Literal_String
10154 | Attribute_Unrestricted_Access
10156 | Attribute_Valid_Scalars
10158 | Attribute_Wchar_T_Size
10159 | Attribute_Wide_Value
10160 | Attribute_Wide_Wide_Value
10161 | Attribute_Word_Size
10164 raise Program_Error
;
10167 -- At the end of the case, one more check. If we did a static evaluation
10168 -- so that the result is now a literal, then set Is_Static_Expression
10169 -- in the constant only if the prefix type is a static subtype. For
10170 -- non-static subtypes, the folding is still OK, but not static.
10172 -- An exception is the GNAT attribute Constrained_Array which is
10173 -- defined to be a static attribute in all cases.
10175 if Nkind_In
(N
, N_Integer_Literal
,
10177 N_Character_Literal
,
10179 or else (Is_Entity_Name
(N
)
10180 and then Ekind
(Entity
(N
)) = E_Enumeration_Literal
)
10182 Set_Is_Static_Expression
(N
, Static
);
10184 -- If this is still an attribute reference, then it has not been folded
10185 -- and that means that its expressions are in a non-static context.
10187 elsif Nkind
(N
) = N_Attribute_Reference
then
10190 -- Note: the else case not covered here are odd cases where the
10191 -- processing has transformed the attribute into something other
10192 -- than a constant. Nothing more to do in such cases.
10197 end Eval_Attribute
;
10199 ------------------------------
10200 -- Is_Anonymous_Tagged_Base --
10201 ------------------------------
10203 function Is_Anonymous_Tagged_Base
10205 Typ
: Entity_Id
) return Boolean
10209 Anon
= Current_Scope
10210 and then Is_Itype
(Anon
)
10211 and then Associated_Node_For_Itype
(Anon
) = Parent
(Typ
);
10212 end Is_Anonymous_Tagged_Base
;
10214 --------------------------------
10215 -- Name_Implies_Lvalue_Prefix --
10216 --------------------------------
10218 function Name_Implies_Lvalue_Prefix
(Nam
: Name_Id
) return Boolean is
10219 pragma Assert
(Is_Attribute_Name
(Nam
));
10221 return Attribute_Name_Implies_Lvalue_Prefix
(Get_Attribute_Id
(Nam
));
10222 end Name_Implies_Lvalue_Prefix
;
10224 -----------------------
10225 -- Resolve_Attribute --
10226 -----------------------
10228 procedure Resolve_Attribute
(N
: Node_Id
; Typ
: Entity_Id
) is
10229 Loc
: constant Source_Ptr
:= Sloc
(N
);
10230 P
: constant Node_Id
:= Prefix
(N
);
10231 Aname
: constant Name_Id
:= Attribute_Name
(N
);
10232 Attr_Id
: constant Attribute_Id
:= Get_Attribute_Id
(Aname
);
10233 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
10234 Des_Btyp
: Entity_Id
;
10235 Index
: Interp_Index
;
10237 Nom_Subt
: Entity_Id
;
10239 procedure Accessibility_Message
;
10240 -- Error, or warning within an instance, if the static accessibility
10241 -- rules of 3.10.2 are violated.
10243 function Declared_Within_Generic_Unit
10244 (Entity
: Entity_Id
;
10245 Generic_Unit
: Node_Id
) return Boolean;
10246 -- Returns True if Declared_Entity is declared within the declarative
10247 -- region of Generic_Unit; otherwise returns False.
10249 ---------------------------
10250 -- Accessibility_Message --
10251 ---------------------------
10253 procedure Accessibility_Message
is
10254 Indic
: Node_Id
:= Parent
(Parent
(N
));
10257 -- In an instance, this is a runtime check, but one we
10258 -- know will fail, so generate an appropriate warning.
10260 if In_Instance_Body
then
10261 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10263 ("non-local pointer cannot point to local object<<", P
);
10264 Error_Msg_F
("\Program_Error [<<", P
);
10266 Make_Raise_Program_Error
(Loc
,
10267 Reason
=> PE_Accessibility_Check_Failed
));
10268 Set_Etype
(N
, Typ
);
10272 Error_Msg_F
("non-local pointer cannot point to local object", P
);
10274 -- Check for case where we have a missing access definition
10276 if Is_Record_Type
(Current_Scope
)
10278 Nkind_In
(Parent
(N
), N_Discriminant_Association
,
10279 N_Index_Or_Discriminant_Constraint
)
10281 Indic
:= Parent
(Parent
(N
));
10282 while Present
(Indic
)
10283 and then Nkind
(Indic
) /= N_Subtype_Indication
10285 Indic
:= Parent
(Indic
);
10288 if Present
(Indic
) then
10290 ("\use an access definition for" &
10291 " the access discriminant of&",
10292 N
, Entity
(Subtype_Mark
(Indic
)));
10296 end Accessibility_Message
;
10298 ----------------------------------
10299 -- Declared_Within_Generic_Unit --
10300 ----------------------------------
10302 function Declared_Within_Generic_Unit
10303 (Entity
: Entity_Id
;
10304 Generic_Unit
: Node_Id
) return Boolean
10306 Generic_Encloser
: Node_Id
:= Enclosing_Generic_Unit
(Entity
);
10309 while Present
(Generic_Encloser
) loop
10310 if Generic_Encloser
= Generic_Unit
then
10314 -- We have to step to the scope of the generic's entity, because
10315 -- otherwise we'll just get back the same generic.
10317 Generic_Encloser
:=
10318 Enclosing_Generic_Unit
10319 (Scope
(Defining_Entity
(Generic_Encloser
)));
10323 end Declared_Within_Generic_Unit
;
10325 -- Start of processing for Resolve_Attribute
10328 -- If error during analysis, no point in continuing, except for array
10329 -- types, where we get better recovery by using unconstrained indexes
10330 -- than nothing at all (see Check_Array_Type).
10332 if Error_Posted
(N
)
10333 and then Attr_Id
/= Attribute_First
10334 and then Attr_Id
/= Attribute_Last
10335 and then Attr_Id
/= Attribute_Length
10336 and then Attr_Id
/= Attribute_Range
10341 -- If attribute was universal type, reset to actual type
10343 if Etype
(N
) = Universal_Integer
10344 or else Etype
(N
) = Universal_Real
10346 Set_Etype
(N
, Typ
);
10349 -- Remaining processing depends on attribute
10357 -- For access attributes, if the prefix denotes an entity, it is
10358 -- interpreted as a name, never as a call. It may be overloaded,
10359 -- in which case resolution uses the profile of the context type.
10360 -- Otherwise prefix must be resolved.
10362 when Attribute_Access
10363 | Attribute_Unchecked_Access
10364 | Attribute_Unrestricted_Access
10366 -- Note possible modification if we have a variable
10368 if Is_Variable
(P
) then
10370 PN
: constant Node_Id
:= Parent
(N
);
10373 Note
: Boolean := True;
10374 -- Skip this for the case of Unrestricted_Access occuring in
10375 -- the context of a Valid check, since this otherwise leads
10376 -- to a missed warning (the Valid check does not really
10377 -- modify!) If this case, Note will be reset to False.
10379 -- Skip it as well if the type is an Acccess_To_Constant,
10380 -- given that no use of the value can modify the prefix.
10383 if Attr_Id
= Attribute_Unrestricted_Access
10384 and then Nkind
(PN
) = N_Function_Call
10388 if Nkind
(Nm
) = N_Expanded_Name
10389 and then Chars
(Nm
) = Name_Valid
10390 and then Nkind
(Prefix
(Nm
)) = N_Identifier
10391 and then Chars
(Prefix
(Nm
)) = Name_Attr_Long_Float
10396 elsif Is_Access_Constant
(Typ
) then
10401 Note_Possible_Modification
(P
, Sure
=> False);
10406 -- The following comes from a query concerning improper use of
10407 -- universal_access in equality tests involving anonymous access
10408 -- types. Another good reason for 'Ref, but for now disable the
10409 -- test, which breaks several filed tests???
10411 if Ekind
(Typ
) = E_Anonymous_Access_Type
10412 and then Nkind_In
(Parent
(N
), N_Op_Eq
, N_Op_Ne
)
10415 Error_Msg_N
("need unique type to resolve 'Access", N
);
10416 Error_Msg_N
("\qualify attribute with some access type", N
);
10419 -- Case where prefix is an entity name
10421 if Is_Entity_Name
(P
) then
10423 -- Deal with case where prefix itself is overloaded
10425 if Is_Overloaded
(P
) then
10426 Get_First_Interp
(P
, Index
, It
);
10427 while Present
(It
.Nam
) loop
10428 if Type_Conformant
(Designated_Type
(Typ
), It
.Nam
) then
10429 Set_Entity
(P
, It
.Nam
);
10431 -- The prefix is definitely NOT overloaded anymore at
10432 -- this point, so we reset the Is_Overloaded flag to
10433 -- avoid any confusion when reanalyzing the node.
10435 Set_Is_Overloaded
(P
, False);
10436 Set_Is_Overloaded
(N
, False);
10437 Generate_Reference
(Entity
(P
), P
);
10441 Get_Next_Interp
(Index
, It
);
10444 -- If Prefix is a subprogram name, this reference freezes,
10445 -- but not if within spec expression mode. The profile of
10446 -- the subprogram is not frozen at this point.
10448 if not In_Spec_Expression
then
10449 Freeze_Before
(N
, Entity
(P
), Do_Freeze_Profile
=> False);
10452 -- If it is a type, there is nothing to resolve.
10453 -- If it is a subprogram, do not freeze its profile.
10454 -- If it is an object, complete its resolution.
10456 elsif Is_Overloadable
(Entity
(P
)) then
10457 if not In_Spec_Expression
then
10458 Freeze_Before
(N
, Entity
(P
), Do_Freeze_Profile
=> False);
10461 -- Nothing to do if prefix is a type name
10463 elsif Is_Type
(Entity
(P
)) then
10466 -- Otherwise non-overloaded other case, resolve the prefix
10472 -- Some further error checks
10474 Error_Msg_Name_1
:= Aname
;
10476 if not Is_Entity_Name
(P
) then
10479 elsif Is_Overloadable
(Entity
(P
))
10480 and then Is_Abstract_Subprogram
(Entity
(P
))
10482 Error_Msg_F
("prefix of % attribute cannot be abstract", P
);
10483 Set_Etype
(N
, Any_Type
);
10485 elsif Ekind
(Entity
(P
)) = E_Enumeration_Literal
then
10487 ("prefix of % attribute cannot be enumeration literal", P
);
10488 Set_Etype
(N
, Any_Type
);
10490 -- An attempt to take 'Access of a function that renames an
10491 -- enumeration literal. Issue a specialized error message.
10493 elsif Ekind
(Entity
(P
)) = E_Function
10494 and then Present
(Alias
(Entity
(P
)))
10495 and then Ekind
(Alias
(Entity
(P
))) = E_Enumeration_Literal
10498 ("prefix of % attribute cannot be function renaming "
10499 & "an enumeration literal", P
);
10500 Set_Etype
(N
, Any_Type
);
10502 elsif Convention
(Entity
(P
)) = Convention_Intrinsic
then
10503 Error_Msg_F
("prefix of % attribute cannot be intrinsic", P
);
10504 Set_Etype
(N
, Any_Type
);
10507 -- Assignments, return statements, components of aggregates,
10508 -- generic instantiations will require convention checks if
10509 -- the type is an access to subprogram. Given that there will
10510 -- also be accessibility checks on those, this is where the
10511 -- checks can eventually be centralized ???
10513 if Ekind_In
(Btyp
, E_Access_Protected_Subprogram_Type
,
10514 E_Access_Subprogram_Type
,
10515 E_Anonymous_Access_Protected_Subprogram_Type
,
10516 E_Anonymous_Access_Subprogram_Type
)
10518 -- Deal with convention mismatch
10520 if Convention
(Designated_Type
(Btyp
)) /=
10521 Convention
(Entity
(P
))
10523 -- The rule in 6.3.1 (8) deserves a special error
10526 if Convention
(Btyp
) = Convention_Intrinsic
10527 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
10528 and then Is_Entity_Name
(Name
(Parent
(N
)))
10529 and then Inside_A_Generic
10532 Subp
: constant Entity_Id
:=
10533 Entity
(Name
(Parent
(N
)));
10535 if Convention
(Subp
) = Convention_Intrinsic
then
10537 ("?subprogram and its formal access "
10538 & "parameters have convention Intrinsic",
10541 ("actual cannot be access attribute", N
);
10547 ("subprogram & has wrong convention", P
, Entity
(P
));
10548 Error_Msg_Sloc
:= Sloc
(Btyp
);
10549 Error_Msg_FE
("\does not match & declared#", P
, Btyp
);
10552 if not Is_Itype
(Btyp
)
10553 and then not Has_Convention_Pragma
(Btyp
)
10556 ("\probable missing pragma Convention for &",
10561 Check_Subtype_Conformant
10562 (New_Id
=> Entity
(P
),
10563 Old_Id
=> Designated_Type
(Btyp
),
10567 if Attr_Id
= Attribute_Unchecked_Access
then
10568 Error_Msg_Name_1
:= Aname
;
10570 ("attribute% cannot be applied to a subprogram", P
);
10572 elsif Aname
= Name_Unrestricted_Access
then
10573 null; -- Nothing to check
10575 -- Check the static accessibility rule of 3.10.2(32).
10576 -- This rule also applies within the private part of an
10577 -- instantiation. This rule does not apply to anonymous
10578 -- access-to-subprogram types in access parameters.
10580 elsif Attr_Id
= Attribute_Access
10581 and then not In_Instance_Body
10583 (Ekind
(Btyp
) = E_Access_Subprogram_Type
10584 or else Is_Local_Anonymous_Access
(Btyp
))
10585 and then Subprogram_Access_Level
(Entity
(P
)) >
10586 Type_Access_Level
(Btyp
)
10589 ("subprogram must not be deeper than access type", P
);
10591 -- Check the restriction of 3.10.2(32) that disallows the
10592 -- access attribute within a generic body when the ultimate
10593 -- ancestor of the type of the attribute is declared outside
10594 -- of the generic unit and the subprogram is declared within
10595 -- that generic unit. This includes any such attribute that
10596 -- occurs within the body of a generic unit that is a child
10597 -- of the generic unit where the subprogram is declared.
10599 -- The rule also prohibits applying the attribute when the
10600 -- access type is a generic formal access type (since the
10601 -- level of the actual type is not known). This restriction
10602 -- does not apply when the attribute type is an anonymous
10603 -- access-to-subprogram type. Note that this check was
10604 -- revised by AI-229, because the original Ada 95 rule
10605 -- was too lax. The original rule only applied when the
10606 -- subprogram was declared within the body of the generic,
10607 -- which allowed the possibility of dangling references).
10608 -- The rule was also too strict in some cases, in that it
10609 -- didn't permit the access to be declared in the generic
10610 -- spec, whereas the revised rule does (as long as it's not
10613 -- There are a couple of subtleties of the test for applying
10614 -- the check that are worth noting. First, we only apply it
10615 -- when the levels of the subprogram and access type are the
10616 -- same (the case where the subprogram is statically deeper
10617 -- was applied above, and the case where the type is deeper
10618 -- is always safe). Second, we want the check to apply
10619 -- within nested generic bodies and generic child unit
10620 -- bodies, but not to apply to an attribute that appears in
10621 -- the generic unit's specification. This is done by testing
10622 -- that the attribute's innermost enclosing generic body is
10623 -- not the same as the innermost generic body enclosing the
10624 -- generic unit where the subprogram is declared (we don't
10625 -- want the check to apply when the access attribute is in
10626 -- the spec and there's some other generic body enclosing
10627 -- generic). Finally, there's no point applying the check
10628 -- when within an instance, because any violations will have
10629 -- been caught by the compilation of the generic unit.
10631 -- We relax this check in Relaxed_RM_Semantics mode for
10632 -- compatibility with legacy code for use by Ada source
10633 -- code analyzers (e.g. CodePeer).
10635 elsif Attr_Id
= Attribute_Access
10636 and then not Relaxed_RM_Semantics
10637 and then not In_Instance
10638 and then Present
(Enclosing_Generic_Unit
(Entity
(P
)))
10639 and then Present
(Enclosing_Generic_Body
(N
))
10640 and then Enclosing_Generic_Body
(N
) /=
10641 Enclosing_Generic_Body
10642 (Enclosing_Generic_Unit
(Entity
(P
)))
10643 and then Subprogram_Access_Level
(Entity
(P
)) =
10644 Type_Access_Level
(Btyp
)
10645 and then Ekind
(Btyp
) /=
10646 E_Anonymous_Access_Subprogram_Type
10647 and then Ekind
(Btyp
) /=
10648 E_Anonymous_Access_Protected_Subprogram_Type
10650 -- The attribute type's ultimate ancestor must be
10651 -- declared within the same generic unit as the
10652 -- subprogram is declared (including within another
10653 -- nested generic unit). The error message is
10654 -- specialized to say "ancestor" for the case where the
10655 -- access type is not its own ancestor, since saying
10656 -- simply "access type" would be very confusing.
10658 if not Declared_Within_Generic_Unit
10660 Enclosing_Generic_Unit
(Entity
(P
)))
10663 ("''Access attribute not allowed in generic body",
10666 if Root_Type
(Btyp
) = Btyp
then
10669 "access type & is declared outside " &
10670 "generic unit (RM 3.10.2(32))", N
, Btyp
);
10673 ("\because ancestor of " &
10674 "access type & is declared outside " &
10675 "generic unit (RM 3.10.2(32))", N
, Btyp
);
10679 ("\move ''Access to private part, or " &
10680 "(Ada 2005) use anonymous access type instead of &",
10683 -- If the ultimate ancestor of the attribute's type is
10684 -- a formal type, then the attribute is illegal because
10685 -- the actual type might be declared at a higher level.
10686 -- The error message is specialized to say "ancestor"
10687 -- for the case where the access type is not its own
10688 -- ancestor, since saying simply "access type" would be
10691 elsif Is_Generic_Type
(Root_Type
(Btyp
)) then
10692 if Root_Type
(Btyp
) = Btyp
then
10694 ("access type must not be a generic formal type",
10698 ("ancestor access type must not be a generic " &
10705 -- If this is a renaming, an inherited operation, or a
10706 -- subprogram instance, use the original entity. This may make
10707 -- the node type-inconsistent, so this transformation can only
10708 -- be done if the node will not be reanalyzed. In particular,
10709 -- if it is within a default expression, the transformation
10710 -- must be delayed until the default subprogram is created for
10711 -- it, when the enclosing subprogram is frozen.
10713 if Is_Entity_Name
(P
)
10714 and then Is_Overloadable
(Entity
(P
))
10715 and then Present
(Alias
(Entity
(P
)))
10716 and then Expander_Active
10719 New_Occurrence_Of
(Alias
(Entity
(P
)), Sloc
(P
)));
10722 elsif Nkind
(P
) = N_Selected_Component
10723 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
10725 -- Protected operation. If operation is overloaded, must
10726 -- disambiguate. Prefix that denotes protected object itself
10727 -- is resolved with its own type.
10729 if Attr_Id
= Attribute_Unchecked_Access
then
10730 Error_Msg_Name_1
:= Aname
;
10732 ("attribute% cannot be applied to protected operation", P
);
10735 Resolve
(Prefix
(P
));
10736 Generate_Reference
(Entity
(Selector_Name
(P
)), P
);
10738 -- Implement check implied by 3.10.2 (18.1/2) : F.all'access is
10739 -- statically illegal if F is an anonymous access to subprogram.
10741 elsif Nkind
(P
) = N_Explicit_Dereference
10742 and then Is_Entity_Name
(Prefix
(P
))
10743 and then Ekind
(Etype
(Entity
(Prefix
(P
)))) =
10744 E_Anonymous_Access_Subprogram_Type
10746 Error_Msg_N
("anonymous access to subprogram "
10747 & "has deeper accessibility than any master", P
);
10749 elsif Is_Overloaded
(P
) then
10751 -- Use the designated type of the context to disambiguate
10752 -- Note that this was not strictly conformant to Ada 95,
10753 -- but was the implementation adopted by most Ada 95 compilers.
10754 -- The use of the context type to resolve an Access attribute
10755 -- reference is now mandated in AI-235 for Ada 2005.
10758 Index
: Interp_Index
;
10762 Get_First_Interp
(P
, Index
, It
);
10763 while Present
(It
.Typ
) loop
10764 if Covers
(Designated_Type
(Typ
), It
.Typ
) then
10765 Resolve
(P
, It
.Typ
);
10769 Get_Next_Interp
(Index
, It
);
10776 -- X'Access is illegal if X denotes a constant and the access type
10777 -- is access-to-variable. Same for 'Unchecked_Access. The rule
10778 -- does not apply to 'Unrestricted_Access. If the reference is a
10779 -- default-initialized aggregate component for a self-referential
10780 -- type the reference is legal.
10782 if not (Ekind
(Btyp
) = E_Access_Subprogram_Type
10783 or else Ekind
(Btyp
) = E_Anonymous_Access_Subprogram_Type
10784 or else (Is_Record_Type
(Btyp
)
10786 Present
(Corresponding_Remote_Type
(Btyp
)))
10787 or else Ekind
(Btyp
) = E_Access_Protected_Subprogram_Type
10788 or else Ekind
(Btyp
)
10789 = E_Anonymous_Access_Protected_Subprogram_Type
10790 or else Is_Access_Constant
(Btyp
)
10791 or else Is_Variable
(P
)
10792 or else Attr_Id
= Attribute_Unrestricted_Access
)
10794 if Is_Entity_Name
(P
)
10795 and then Is_Type
(Entity
(P
))
10797 -- Legality of a self-reference through an access
10798 -- attribute has been verified in Analyze_Access_Attribute.
10802 elsif Comes_From_Source
(N
) then
10803 Error_Msg_F
("access-to-variable designates constant", P
);
10807 Des_Btyp
:= Designated_Type
(Btyp
);
10809 if Ada_Version
>= Ada_2005
10810 and then Is_Incomplete_Type
(Des_Btyp
)
10812 -- Ada 2005 (AI-412): If the (sub)type is a limited view of an
10813 -- imported entity, and the non-limited view is visible, make
10814 -- use of it. If it is an incomplete subtype, use the base type
10817 if From_Limited_With
(Des_Btyp
)
10818 and then Present
(Non_Limited_View
(Des_Btyp
))
10820 Des_Btyp
:= Non_Limited_View
(Des_Btyp
);
10822 elsif Ekind
(Des_Btyp
) = E_Incomplete_Subtype
then
10823 Des_Btyp
:= Etype
(Des_Btyp
);
10827 if (Attr_Id
= Attribute_Access
10829 Attr_Id
= Attribute_Unchecked_Access
)
10830 and then (Ekind
(Btyp
) = E_General_Access_Type
10831 or else Ekind
(Btyp
) = E_Anonymous_Access_Type
)
10833 -- Ada 2005 (AI-230): Check the accessibility of anonymous
10834 -- access types for stand-alone objects, record and array
10835 -- components, and return objects. For a component definition
10836 -- the level is the same of the enclosing composite type.
10838 if Ada_Version
>= Ada_2005
10839 and then (Is_Local_Anonymous_Access
(Btyp
)
10841 -- Handle cases where Btyp is the anonymous access
10842 -- type of an Ada 2012 stand-alone object.
10844 or else Nkind
(Associated_Node_For_Itype
(Btyp
)) =
10845 N_Object_Declaration
)
10847 Object_Access_Level
(P
) > Deepest_Type_Access_Level
(Btyp
)
10848 and then Attr_Id
= Attribute_Access
10850 -- In an instance, this is a runtime check, but one we know
10851 -- will fail, so generate an appropriate warning. As usual,
10852 -- this kind of warning is an error in SPARK mode.
10854 if In_Instance_Body
then
10855 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10857 ("non-local pointer cannot point to local object<<", P
);
10858 Error_Msg_F
("\Program_Error [<<", P
);
10861 Make_Raise_Program_Error
(Loc
,
10862 Reason
=> PE_Accessibility_Check_Failed
));
10863 Set_Etype
(N
, Typ
);
10867 ("non-local pointer cannot point to local object", P
);
10871 if Is_Dependent_Component_Of_Mutable_Object
(P
) then
10873 ("illegal attribute for discriminant-dependent component",
10877 -- Check static matching rule of 3.10.2(27). Nominal subtype
10878 -- of the prefix must statically match the designated type.
10880 Nom_Subt
:= Etype
(P
);
10882 if Is_Constr_Subt_For_U_Nominal
(Nom_Subt
) then
10883 Nom_Subt
:= Base_Type
(Nom_Subt
);
10886 if Is_Tagged_Type
(Designated_Type
(Typ
)) then
10888 -- If the attribute is in the context of an access
10889 -- parameter, then the prefix is allowed to be of
10890 -- the class-wide type (by AI-127).
10892 if Ekind
(Typ
) = E_Anonymous_Access_Type
then
10893 if not Covers
(Designated_Type
(Typ
), Nom_Subt
)
10894 and then not Covers
(Nom_Subt
, Designated_Type
(Typ
))
10900 Desig
:= Designated_Type
(Typ
);
10902 if Is_Class_Wide_Type
(Desig
) then
10903 Desig
:= Etype
(Desig
);
10906 if Is_Anonymous_Tagged_Base
(Nom_Subt
, Desig
) then
10911 ("type of prefix: & not compatible",
10914 ("\with &, the expected designated type",
10915 P
, Designated_Type
(Typ
));
10920 elsif not Covers
(Designated_Type
(Typ
), Nom_Subt
)
10922 (not Is_Class_Wide_Type
(Designated_Type
(Typ
))
10923 and then Is_Class_Wide_Type
(Nom_Subt
))
10926 ("type of prefix: & is not covered", P
, Nom_Subt
);
10928 ("\by &, the expected designated type" &
10929 " (RM 3.10.2 (27))", P
, Designated_Type
(Typ
));
10932 if Is_Class_Wide_Type
(Designated_Type
(Typ
))
10933 and then Has_Discriminants
(Etype
(Designated_Type
(Typ
)))
10934 and then Is_Constrained
(Etype
(Designated_Type
(Typ
)))
10935 and then Designated_Type
(Typ
) /= Nom_Subt
10937 Apply_Discriminant_Check
10938 (N
, Etype
(Designated_Type
(Typ
)));
10941 -- Ada 2005 (AI-363): Require static matching when designated
10942 -- type has discriminants and a constrained partial view, since
10943 -- in general objects of such types are mutable, so we can't
10944 -- allow the access value to designate a constrained object
10945 -- (because access values must be assumed to designate mutable
10946 -- objects when designated type does not impose a constraint).
10948 elsif Subtypes_Statically_Match
(Des_Btyp
, Nom_Subt
) then
10951 elsif Has_Discriminants
(Designated_Type
(Typ
))
10952 and then not Is_Constrained
(Des_Btyp
)
10954 (Ada_Version
< Ada_2005
10956 not Object_Type_Has_Constrained_Partial_View
10957 (Typ
=> Designated_Type
(Base_Type
(Typ
)),
10958 Scop
=> Current_Scope
))
10964 ("object subtype must statically match "
10965 & "designated subtype", P
);
10967 if Is_Entity_Name
(P
)
10968 and then Is_Array_Type
(Designated_Type
(Typ
))
10971 D
: constant Node_Id
:= Declaration_Node
(Entity
(P
));
10974 ("aliased object has explicit bounds??", D
);
10976 ("\declare without bounds (and with explicit "
10977 & "initialization)??", D
);
10979 ("\for use with unconstrained access??", D
);
10984 -- Check the static accessibility rule of 3.10.2(28). Note that
10985 -- this check is not performed for the case of an anonymous
10986 -- access type, since the access attribute is always legal
10987 -- in such a context.
10989 if Attr_Id
/= Attribute_Unchecked_Access
10990 and then Ekind
(Btyp
) = E_General_Access_Type
10992 Object_Access_Level
(P
) > Deepest_Type_Access_Level
(Btyp
)
10994 Accessibility_Message
;
10999 if Ekind_In
(Btyp
, E_Access_Protected_Subprogram_Type
,
11000 E_Anonymous_Access_Protected_Subprogram_Type
)
11002 if Is_Entity_Name
(P
)
11003 and then not Is_Protected_Type
(Scope
(Entity
(P
)))
11005 Error_Msg_F
("context requires a protected subprogram", P
);
11007 -- Check accessibility of protected object against that of the
11008 -- access type, but only on user code, because the expander
11009 -- creates access references for handlers. If the context is an
11010 -- anonymous_access_to_protected, there are no accessibility
11011 -- checks either. Omit check entirely for Unrestricted_Access.
11013 elsif Object_Access_Level
(P
) > Deepest_Type_Access_Level
(Btyp
)
11014 and then Comes_From_Source
(N
)
11015 and then Ekind
(Btyp
) = E_Access_Protected_Subprogram_Type
11016 and then Attr_Id
/= Attribute_Unrestricted_Access
11018 Accessibility_Message
;
11021 -- AI05-0225: If the context is not an access to protected
11022 -- function, the prefix must be a variable, given that it may
11023 -- be used subsequently in a protected call.
11025 elsif Nkind
(P
) = N_Selected_Component
11026 and then not Is_Variable
(Prefix
(P
))
11027 and then Ekind
(Entity
(Selector_Name
(P
))) /= E_Function
11030 ("target object of access to protected procedure "
11031 & "must be variable", N
);
11033 elsif Is_Entity_Name
(P
) then
11034 Check_Internal_Protected_Use
(N
, Entity
(P
));
11037 elsif Ekind_In
(Btyp
, E_Access_Subprogram_Type
,
11038 E_Anonymous_Access_Subprogram_Type
)
11039 and then Ekind
(Etype
(N
)) = E_Access_Protected_Subprogram_Type
11041 Error_Msg_F
("context requires a non-protected subprogram", P
);
11044 -- The context cannot be a pool-specific type, but this is a
11045 -- legality rule, not a resolution rule, so it must be checked
11046 -- separately, after possibly disambiguation (see AI-245).
11048 if Ekind
(Btyp
) = E_Access_Type
11049 and then Attr_Id
/= Attribute_Unrestricted_Access
11051 Wrong_Type
(N
, Typ
);
11054 -- The context may be a constrained access type (however ill-
11055 -- advised such subtypes might be) so in order to generate a
11056 -- constraint check when needed set the type of the attribute
11057 -- reference to the base type of the context.
11059 Set_Etype
(N
, Btyp
);
11061 -- Check for incorrect atomic/volatile reference (RM C.6(12))
11063 if Attr_Id
/= Attribute_Unrestricted_Access
then
11064 if Is_Atomic_Object
(P
)
11065 and then not Is_Atomic
(Designated_Type
(Typ
))
11068 ("access to atomic object cannot yield access-to-" &
11069 "non-atomic type", P
);
11071 elsif Is_Volatile_Object
(P
)
11072 and then not Is_Volatile
(Designated_Type
(Typ
))
11075 ("access to volatile object cannot yield access-to-" &
11076 "non-volatile type", P
);
11080 -- Check for aliased view. We allow a nonaliased prefix when in
11081 -- an instance because the prefix may have been a tagged formal
11082 -- object, which is defined to be aliased even when the actual
11083 -- might not be (other instance cases will have been caught in
11084 -- the generic). Similarly, within an inlined body we know that
11085 -- the attribute is legal in the original subprogram, therefore
11086 -- legal in the expansion.
11088 if not (Is_Entity_Name
(P
)
11089 and then Is_Overloadable
(Entity
(P
)))
11090 and then not (Nkind
(P
) = N_Selected_Component
11092 Is_Overloadable
(Entity
(Selector_Name
(P
))))
11093 and then not Is_Aliased_View
(P
)
11094 and then not In_Instance
11095 and then not In_Inlined_Body
11096 and then Comes_From_Source
(N
)
11098 -- Here we have a non-aliased view. This is illegal unless we
11099 -- have the case of Unrestricted_Access, where for now we allow
11100 -- this (we will reject later if expected type is access to an
11101 -- unconstrained array with a thin pointer).
11103 -- No need for an error message on a generated access reference
11104 -- for the controlling argument in a dispatching call: error
11105 -- will be reported when resolving the call.
11107 if Attr_Id
/= Attribute_Unrestricted_Access
then
11108 Error_Msg_N
("prefix of % attribute must be aliased", P
);
11110 -- Check for unrestricted access where expected type is a thin
11111 -- pointer to an unconstrained array.
11113 elsif Has_Size_Clause
(Typ
)
11114 and then RM_Size
(Typ
) = System_Address_Size
11117 DT
: constant Entity_Id
:= Designated_Type
(Typ
);
11119 if Is_Array_Type
(DT
)
11120 and then not Is_Constrained
(DT
)
11123 ("illegal use of Unrestricted_Access attribute", P
);
11125 ("\attempt to generate thin pointer to unaliased "
11132 -- Mark that address of entity is taken in case of
11133 -- 'Unrestricted_Access or in case of a subprogram.
11135 if Is_Entity_Name
(P
)
11136 and then (Attr_Id
= Attribute_Unrestricted_Access
11137 or else Is_Subprogram
(Entity
(P
)))
11139 Set_Address_Taken
(Entity
(P
));
11142 -- Deal with possible elaboration check
11144 if Is_Entity_Name
(P
) and then Is_Subprogram
(Entity
(P
)) then
11146 Subp_Id
: constant Entity_Id
:= Entity
(P
);
11147 Scop
: constant Entity_Id
:= Scope
(Subp_Id
);
11148 Subp_Decl
: constant Node_Id
:=
11149 Unit_Declaration_Node
(Subp_Id
);
11150 Flag_Id
: Entity_Id
;
11151 Subp_Body
: Node_Id
;
11153 -- If the access has been taken and the body of the subprogram
11154 -- has not been see yet, indirect calls must be protected with
11155 -- elaboration checks. We have the proper elaboration machinery
11156 -- for subprograms declared in packages, but within a block or
11157 -- a subprogram the body will appear in the same declarative
11158 -- part, and we must insert a check in the eventual body itself
11159 -- using the elaboration flag that we generate now. The check
11160 -- is then inserted when the body is expanded. This processing
11161 -- is not needed for a stand alone expression function because
11162 -- the internally generated spec and body are always inserted
11163 -- as a pair in the same declarative list.
11167 and then Comes_From_Source
(Subp_Id
)
11168 and then Comes_From_Source
(N
)
11169 and then In_Open_Scopes
(Scop
)
11170 and then Ekind_In
(Scop
, E_Block
, E_Procedure
, E_Function
)
11171 and then not Has_Completion
(Subp_Id
)
11172 and then No
(Elaboration_Entity
(Subp_Id
))
11173 and then Nkind
(Subp_Decl
) = N_Subprogram_Declaration
11174 and then Nkind
(Original_Node
(Subp_Decl
)) /=
11175 N_Expression_Function
11177 -- Create elaboration variable for it
11179 Flag_Id
:= Make_Temporary
(Loc
, 'E');
11180 Set_Elaboration_Entity
(Subp_Id
, Flag_Id
);
11181 Set_Is_Frozen
(Flag_Id
);
11183 -- Insert declaration for flag after subprogram
11184 -- declaration. Note that attribute reference may
11185 -- appear within a nested scope.
11187 Insert_After_And_Analyze
(Subp_Decl
,
11188 Make_Object_Declaration
(Loc
,
11189 Defining_Identifier
=> Flag_Id
,
11190 Object_Definition
=>
11191 New_Occurrence_Of
(Standard_Short_Integer
, Loc
),
11193 Make_Integer_Literal
(Loc
, Uint_0
)));
11196 -- Taking the 'Access of an expression function freezes its
11197 -- expression (RM 13.14 10.3/3). This does not apply to an
11198 -- expression function that acts as a completion because the
11199 -- generated body is immediately analyzed and the expression
11200 -- is automatically frozen.
11202 if Is_Expression_Function
(Subp_Id
)
11203 and then Present
(Corresponding_Body
(Subp_Decl
))
11206 Unit_Declaration_Node
(Corresponding_Body
(Subp_Decl
));
11208 -- The body has already been analyzed when the expression
11209 -- function acts as a completion.
11211 if Analyzed
(Subp_Body
) then
11214 -- Attribute 'Access may appear within the generated body
11215 -- of the expression function subject to the attribute:
11217 -- function F is (... F'Access ...);
11219 -- If the expression function is on the scope stack, then
11220 -- the body is currently being analyzed. Do not reanalyze
11221 -- it because this will lead to infinite recursion.
11223 elsif In_Open_Scopes
(Subp_Id
) then
11226 -- If reference to the expression function appears in an
11227 -- inner scope, for example as an actual in an instance,
11228 -- this is not a freeze point either.
11230 elsif Scope
(Subp_Id
) /= Current_Scope
then
11233 -- Analyze the body of the expression function to freeze
11234 -- the expression. This takes care of the case where the
11235 -- 'Access is part of dispatch table initialization and
11236 -- the generated body of the expression function has not
11237 -- been analyzed yet.
11240 Analyze
(Subp_Body
);
11250 -- Deal with resolving the type for Address attribute, overloading
11251 -- is not permitted here, since there is no context to resolve it.
11253 when Attribute_Address
11254 | Attribute_Code_Address
11256 -- To be safe, assume that if the address of a variable is taken,
11257 -- it may be modified via this address, so note modification.
11259 if Is_Variable
(P
) then
11260 Note_Possible_Modification
(P
, Sure
=> False);
11263 if Nkind
(P
) in N_Subexpr
11264 and then Is_Overloaded
(P
)
11266 Get_First_Interp
(P
, Index
, It
);
11267 Get_Next_Interp
(Index
, It
);
11269 if Present
(It
.Nam
) then
11270 Error_Msg_Name_1
:= Aname
;
11272 ("prefix of % attribute cannot be overloaded", P
);
11276 if not Is_Entity_Name
(P
)
11277 or else not Is_Overloadable
(Entity
(P
))
11279 if not Is_Task_Type
(Etype
(P
))
11280 or else Nkind
(P
) = N_Explicit_Dereference
11286 -- If this is the name of a derived subprogram, or that of a
11287 -- generic actual, the address is that of the original entity.
11289 if Is_Entity_Name
(P
)
11290 and then Is_Overloadable
(Entity
(P
))
11291 and then Present
(Alias
(Entity
(P
)))
11294 New_Occurrence_Of
(Alias
(Entity
(P
)), Sloc
(P
)));
11297 if Is_Entity_Name
(P
) then
11298 Set_Address_Taken
(Entity
(P
));
11301 if Nkind
(P
) = N_Slice
then
11303 -- Arr (X .. Y)'address is identical to Arr (X)'address,
11304 -- even if the array is packed and the slice itself is not
11305 -- addressable. Transform the prefix into an indexed component.
11307 -- Note that the transformation is safe only if we know that
11308 -- the slice is non-null. That is because a null slice can have
11309 -- an out of bounds index value.
11311 -- Right now, gigi blows up if given 'Address on a slice as a
11312 -- result of some incorrect freeze nodes generated by the front
11313 -- end, and this covers up that bug in one case, but the bug is
11314 -- likely still there in the cases not handled by this code ???
11316 -- It's not clear what 'Address *should* return for a null
11317 -- slice with out of bounds indexes, this might be worth an ARG
11320 -- One approach would be to do a length check unconditionally,
11321 -- and then do the transformation below unconditionally, but
11322 -- analyze with checks off, avoiding the problem of the out of
11323 -- bounds index. This approach would interpret the address of
11324 -- an out of bounds null slice as being the address where the
11325 -- array element would be if there was one, which is probably
11326 -- as reasonable an interpretation as any ???
11329 Loc
: constant Source_Ptr
:= Sloc
(P
);
11330 D
: constant Node_Id
:= Discrete_Range
(P
);
11334 if Is_Entity_Name
(D
)
11337 (Type_Low_Bound
(Entity
(D
)),
11338 Type_High_Bound
(Entity
(D
)))
11341 Make_Attribute_Reference
(Loc
,
11342 Prefix
=> (New_Occurrence_Of
(Entity
(D
), Loc
)),
11343 Attribute_Name
=> Name_First
);
11345 elsif Nkind
(D
) = N_Range
11346 and then Not_Null_Range
(Low_Bound
(D
), High_Bound
(D
))
11348 Lo
:= Low_Bound
(D
);
11354 if Present
(Lo
) then
11356 Make_Indexed_Component
(Loc
,
11357 Prefix
=> Relocate_Node
(Prefix
(P
)),
11358 Expressions
=> New_List
(Lo
)));
11360 Analyze_And_Resolve
(P
);
11369 -- Prefix of Body_Version attribute can be a subprogram name which
11370 -- must not be resolved, since this is not a call.
11372 when Attribute_Body_Version
=>
11379 -- Prefix of Caller attribute is an entry name which must not
11380 -- be resolved, since this is definitely not an entry call.
11382 when Attribute_Caller
=>
11389 -- Shares processing with Address attribute
11395 -- If the prefix of the Count attribute is an entry name it must not
11396 -- be resolved, since this is definitely not an entry call. However,
11397 -- if it is an element of an entry family, the index itself may
11398 -- have to be resolved because it can be a general expression.
11400 when Attribute_Count
=>
11401 if Nkind
(P
) = N_Indexed_Component
11402 and then Is_Entity_Name
(Prefix
(P
))
11405 Indx
: constant Node_Id
:= First
(Expressions
(P
));
11406 Fam
: constant Entity_Id
:= Entity
(Prefix
(P
));
11408 Resolve
(Indx
, Entry_Index_Type
(Fam
));
11409 Apply_Range_Check
(Indx
, Entry_Index_Type
(Fam
));
11417 -- Prefix of the Elaborated attribute is a subprogram name which
11418 -- must not be resolved, since this is definitely not a call. Note
11419 -- that it is a library unit, so it cannot be overloaded here.
11421 when Attribute_Elaborated
=>
11428 -- Prefix of Enabled attribute is a check name, which must be treated
11429 -- specially and not touched by Resolve.
11431 when Attribute_Enabled
=>
11438 -- Do not resolve the prefix of Loop_Entry, instead wait until the
11439 -- attribute has been expanded (see Expand_Loop_Entry_Attributes).
11440 -- The delay ensures that any generated checks or temporaries are
11441 -- inserted before the relocated prefix.
11443 when Attribute_Loop_Entry
=>
11446 --------------------
11447 -- Mechanism_Code --
11448 --------------------
11450 -- Prefix of the Mechanism_Code attribute is a function name
11451 -- which must not be resolved. Should we check for overloaded ???
11453 when Attribute_Mechanism_Code
=>
11460 -- Most processing is done in sem_dist, after determining the
11461 -- context type. Node is rewritten as a conversion to a runtime call.
11463 when Attribute_Partition_ID
=>
11464 Process_Partition_Id
(N
);
11471 when Attribute_Pool_Address
=>
11478 -- We replace the Range attribute node with a range expression whose
11479 -- bounds are the 'First and 'Last attributes applied to the same
11480 -- prefix. The reason that we do this transformation here instead of
11481 -- in the expander is that it simplifies other parts of the semantic
11482 -- analysis which assume that the Range has been replaced; thus it
11483 -- must be done even when in semantic-only mode (note that the RM
11484 -- specifically mentions this equivalence, we take care that the
11485 -- prefix is only evaluated once).
11487 when Attribute_Range
=> Range_Attribute
: declare
11493 if not Is_Entity_Name
(P
) or else not Is_Type
(Entity
(P
)) then
11497 Dims
:= Expressions
(N
);
11500 Make_Attribute_Reference
(Loc
,
11501 Prefix
=> Duplicate_Subexpr
(P
, Name_Req
=> True),
11502 Attribute_Name
=> Name_Last
,
11503 Expressions
=> Dims
);
11506 Make_Attribute_Reference
(Loc
,
11508 Attribute_Name
=> Name_First
,
11509 Expressions
=> (Dims
));
11511 -- Do not share the dimension indicator, if present. Even though
11512 -- it is a static constant, its source location may be modified
11513 -- when printing expanded code and node sharing will lead to chaos
11516 if Present
(Dims
) then
11517 Set_Expressions
(LB
, New_List
(New_Copy_Tree
(First
(Dims
))));
11520 -- If the original was marked as Must_Not_Freeze (see code in
11521 -- Sem_Ch3.Make_Index), then make sure the rewriting does not
11524 if Must_Not_Freeze
(N
) then
11525 Set_Must_Not_Freeze
(HB
);
11526 Set_Must_Not_Freeze
(LB
);
11527 Set_Must_Not_Freeze
(Prefix
(HB
));
11528 Set_Must_Not_Freeze
(Prefix
(LB
));
11531 if Raises_Constraint_Error
(Prefix
(N
)) then
11533 -- Preserve Sloc of prefix in the new bounds, so that the
11534 -- posted warning can be removed if we are within unreachable
11537 Set_Sloc
(LB
, Sloc
(Prefix
(N
)));
11538 Set_Sloc
(HB
, Sloc
(Prefix
(N
)));
11541 Rewrite
(N
, Make_Range
(Loc
, LB
, HB
));
11542 Analyze_And_Resolve
(N
, Typ
);
11544 -- Ensure that the expanded range does not have side effects
11546 Force_Evaluation
(LB
);
11547 Force_Evaluation
(HB
);
11549 -- Normally after resolving attribute nodes, Eval_Attribute
11550 -- is called to do any possible static evaluation of the node.
11551 -- However, here since the Range attribute has just been
11552 -- transformed into a range expression it is no longer an
11553 -- attribute node and therefore the call needs to be avoided
11554 -- and is accomplished by simply returning from the procedure.
11557 end Range_Attribute
;
11563 -- We will only come here during the prescan of a spec expression
11564 -- containing a Result attribute. In that case the proper Etype has
11565 -- already been set, and nothing more needs to be done here.
11567 when Attribute_Result
=>
11570 ----------------------
11571 -- Unchecked_Access --
11572 ----------------------
11574 -- Processing is shared with Access
11576 -------------------------
11577 -- Unrestricted_Access --
11578 -------------------------
11580 -- Processing is shared with Access
11586 -- Resolve aggregate components in component associations
11588 when Attribute_Update
=> Update
: declare
11589 Aggr
: constant Node_Id
:= First
(Expressions
(N
));
11590 Typ
: constant Entity_Id
:= Etype
(Prefix
(N
));
11596 -- Set the Etype of the aggregate to that of the prefix, even
11597 -- though the aggregate may not be a proper representation of a
11598 -- value of the type (missing or duplicated associations, etc.)
11599 -- Complete resolution of the prefix. Note that in Ada 2012 it
11600 -- can be a qualified expression that is e.g. an aggregate.
11602 Set_Etype
(Aggr
, Typ
);
11603 Resolve
(Prefix
(N
), Typ
);
11605 -- For an array type, resolve expressions with the component type
11606 -- of the array, and apply constraint checks when needed.
11608 if Is_Array_Type
(Typ
) then
11609 Assoc
:= First
(Component_Associations
(Aggr
));
11610 while Present
(Assoc
) loop
11611 Expr
:= Expression
(Assoc
);
11612 Resolve
(Expr
, Component_Type
(Typ
));
11614 -- For scalar array components set Do_Range_Check when
11615 -- needed. Constraint checking on non-scalar components
11616 -- is done in Aggregate_Constraint_Checks, but only if
11617 -- full analysis is enabled. These flags are not set in
11618 -- the front-end in GnatProve mode.
11620 if Is_Scalar_Type
(Component_Type
(Typ
))
11621 and then not Is_OK_Static_Expression
(Expr
)
11622 and then not Range_Checks_Suppressed
(Component_Type
(Typ
))
11624 if Is_Entity_Name
(Expr
)
11625 and then Etype
(Expr
) = Component_Type
(Typ
)
11630 Set_Do_Range_Check
(Expr
);
11634 -- The choices in the association are static constants,
11635 -- or static aggregates each of whose components belongs
11636 -- to the proper index type. However, they must also
11637 -- belong to the index subtype (s) of the prefix, which
11638 -- may be a subtype (e.g. given by a slice).
11640 -- Choices may also be identifiers with no staticness
11641 -- requirements, in which case they must resolve to the
11650 C
:= First
(Choices
(Assoc
));
11651 while Present
(C
) loop
11652 Indx
:= First_Index
(Etype
(Prefix
(N
)));
11654 if Nkind
(C
) /= N_Aggregate
then
11655 Analyze_And_Resolve
(C
, Etype
(Indx
));
11656 Apply_Constraint_Check
(C
, Etype
(Indx
));
11657 Check_Non_Static_Context
(C
);
11660 C_E
:= First
(Expressions
(C
));
11661 while Present
(C_E
) loop
11662 Analyze_And_Resolve
(C_E
, Etype
(Indx
));
11663 Apply_Constraint_Check
(C_E
, Etype
(Indx
));
11664 Check_Non_Static_Context
(C_E
);
11678 -- For a record type, use type of each component, which is
11679 -- recorded during analysis.
11682 Assoc
:= First
(Component_Associations
(Aggr
));
11683 while Present
(Assoc
) loop
11684 Comp
:= First
(Choices
(Assoc
));
11685 Expr
:= Expression
(Assoc
);
11687 if Nkind
(Comp
) /= N_Others_Choice
11688 and then not Error_Posted
(Comp
)
11690 Resolve
(Expr
, Etype
(Entity
(Comp
)));
11692 if Is_Scalar_Type
(Etype
(Entity
(Comp
)))
11693 and then not Is_OK_Static_Expression
(Expr
)
11694 and then not Range_Checks_Suppressed
11695 (Etype
(Entity
(Comp
)))
11697 Set_Do_Range_Check
(Expr
);
11710 -- Apply range check. Note that we did not do this during the
11711 -- analysis phase, since we wanted Eval_Attribute to have a
11712 -- chance at finding an illegal out of range value.
11714 when Attribute_Val
=>
11716 -- Note that we do our own Eval_Attribute call here rather than
11717 -- use the common one, because we need to do processing after
11718 -- the call, as per above comment.
11720 Eval_Attribute
(N
);
11722 -- Eval_Attribute may replace the node with a raise CE, or
11723 -- fold it to a constant. Obviously we only apply a scalar
11724 -- range check if this did not happen.
11726 if Nkind
(N
) = N_Attribute_Reference
11727 and then Attribute_Name
(N
) = Name_Val
11729 Apply_Scalar_Range_Check
(First
(Expressions
(N
)), Btyp
);
11738 -- Prefix of Version attribute can be a subprogram name which
11739 -- must not be resolved, since this is not a call.
11741 when Attribute_Version
=>
11744 ----------------------
11745 -- Other Attributes --
11746 ----------------------
11748 -- For other attributes, resolve prefix unless it is a type. If
11749 -- the attribute reference itself is a type name ('Base and 'Class)
11750 -- then this is only legal within a task or protected record.
11753 if not Is_Entity_Name
(P
) or else not Is_Type
(Entity
(P
)) then
11757 -- If the attribute reference itself is a type name ('Base,
11758 -- 'Class) then this is only legal within a task or protected
11759 -- record. What is this all about ???
11761 if Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
11762 if Is_Concurrent_Type
(Entity
(N
))
11763 and then In_Open_Scopes
(Entity
(P
))
11768 ("invalid use of subtype name in expression or call", N
);
11772 -- For attributes whose argument may be a string, complete
11773 -- resolution of argument now. This avoids premature expansion
11774 -- (and the creation of transient scopes) before the attribute
11775 -- reference is resolved.
11778 when Attribute_Value
=>
11779 Resolve
(First
(Expressions
(N
)), Standard_String
);
11781 when Attribute_Wide_Value
=>
11782 Resolve
(First
(Expressions
(N
)), Standard_Wide_String
);
11784 when Attribute_Wide_Wide_Value
=>
11785 Resolve
(First
(Expressions
(N
)), Standard_Wide_Wide_String
);
11787 when others => null;
11790 -- If the prefix of the attribute is a class-wide type then it
11791 -- will be expanded into a dispatching call to a predefined
11792 -- primitive. Therefore we must check for potential violation
11793 -- of such restriction.
11795 if Is_Class_Wide_Type
(Etype
(P
)) then
11796 Check_Restriction
(No_Dispatching_Calls
, N
);
11800 -- Mark use clauses of the original prefix if the attribute is applied
11803 if Nkind
(Original_Node
(P
)) in N_Has_Entity
11804 and then Present
(Entity
(Original_Node
(P
)))
11806 Mark_Use_Clauses
(Original_Node
(P
));
11809 -- Normally the Freezing is done by Resolve but sometimes the Prefix
11810 -- is not resolved, in which case the freezing must be done now.
11812 -- For an elaboration check on a subprogram, we do not freeze its type.
11813 -- It may be declared in an unrelated scope, in particular in the case
11814 -- of a generic function whose type may remain unelaborated.
11816 if Attr_Id
= Attribute_Elaborated
then
11820 Freeze_Expression
(P
);
11823 -- Finally perform static evaluation on the attribute reference
11825 Analyze_Dimension
(N
);
11826 Eval_Attribute
(N
);
11827 end Resolve_Attribute
;
11829 ------------------------
11830 -- Set_Boolean_Result --
11831 ------------------------
11833 procedure Set_Boolean_Result
(N
: Node_Id
; B
: Boolean) is
11834 Loc
: constant Source_Ptr
:= Sloc
(N
);
11837 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
11839 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
11841 end Set_Boolean_Result
;
11843 -------------------------------
11844 -- Statically_Denotes_Object --
11845 -------------------------------
11847 function Statically_Denotes_Object
(N
: Node_Id
) return Boolean is
11851 if Is_Entity_Name
(N
) then
11854 elsif Nkind
(N
) = N_Selected_Component
11855 and then Statically_Denotes_Object
(Prefix
(N
))
11856 and then Present
(Entity
(Selector_Name
(N
)))
11859 Sel_Id
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
11860 Comp_Decl
: constant Node_Id
:= Parent
(Sel_Id
);
11863 if Depends_On_Discriminant
(Sel_Id
) then
11866 elsif Nkind
(Parent
(Parent
(Comp_Decl
))) = N_Variant
then
11874 elsif Nkind
(N
) = N_Indexed_Component
11875 and then Statically_Denotes_Object
(Prefix
(N
))
11876 and then Is_Constrained
(Etype
(Prefix
(N
)))
11878 Indx
:= First
(Expressions
(N
));
11879 while Present
(Indx
) loop
11880 if not Compile_Time_Known_Value
(Indx
)
11881 or else Do_Range_Check
(Indx
)
11894 end Statically_Denotes_Object
;
11896 --------------------------------
11897 -- Stream_Attribute_Available --
11898 --------------------------------
11900 function Stream_Attribute_Available
11902 Nam
: TSS_Name_Type
;
11903 Partial_View
: Node_Id
:= Empty
) return Boolean
11905 Etyp
: Entity_Id
:= Typ
;
11907 -- Start of processing for Stream_Attribute_Available
11910 -- We need some comments in this body ???
11912 if Has_Stream_Attribute_Definition
(Typ
, Nam
) then
11916 if Is_Class_Wide_Type
(Typ
) then
11917 return not Is_Limited_Type
(Typ
)
11918 or else Stream_Attribute_Available
(Etype
(Typ
), Nam
);
11921 if Nam
= TSS_Stream_Input
11922 and then Is_Abstract_Type
(Typ
)
11923 and then not Is_Class_Wide_Type
(Typ
)
11928 if not (Is_Limited_Type
(Typ
)
11929 or else (Present
(Partial_View
)
11930 and then Is_Limited_Type
(Partial_View
)))
11935 -- In Ada 2005, Input can invoke Read, and Output can invoke Write
11937 if Nam
= TSS_Stream_Input
11938 and then Ada_Version
>= Ada_2005
11939 and then Stream_Attribute_Available
(Etyp
, TSS_Stream_Read
)
11943 elsif Nam
= TSS_Stream_Output
11944 and then Ada_Version
>= Ada_2005
11945 and then Stream_Attribute_Available
(Etyp
, TSS_Stream_Write
)
11950 -- Case of Read and Write: check for attribute definition clause that
11951 -- applies to an ancestor type.
11953 while Etype
(Etyp
) /= Etyp
loop
11954 Etyp
:= Etype
(Etyp
);
11956 if Has_Stream_Attribute_Definition
(Etyp
, Nam
) then
11961 if Ada_Version
< Ada_2005
then
11963 -- In Ada 95 mode, also consider a non-visible definition
11966 Btyp
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
11969 and then Stream_Attribute_Available
11970 (Btyp
, Nam
, Partial_View
=> Typ
);
11975 end Stream_Attribute_Available
;