1 /* Gimple range GORI functions.
2 Copyright (C) 2017-2021 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
32 // Calculate what we can determine of the range of this unary
33 // statement's operand if the lhs of the expression has the range
34 // LHS_RANGE. Return false if nothing can be determined.
37 gimple_range_calc_op1 (irange
&r
, const gimple
*stmt
, const irange
&lhs_range
)
39 gcc_checking_assert (gimple_num_ops (stmt
) < 3);
40 // Give up on empty ranges.
41 if (lhs_range
.undefined_p ())
44 // Unary operations require the type of the first operand in the
45 // second range position.
46 tree type
= TREE_TYPE (gimple_range_operand1 (stmt
));
47 int_range
<2> type_range (type
);
48 return gimple_range_handler (stmt
)->op1_range (r
, type
, lhs_range
,
52 // Calculate what we can determine of the range of this statement's
53 // first operand if the lhs of the expression has the range LHS_RANGE
54 // and the second operand has the range OP2_RANGE. Return false if
55 // nothing can be determined.
58 gimple_range_calc_op1 (irange
&r
, const gimple
*stmt
,
59 const irange
&lhs_range
, const irange
&op2_range
)
61 // Give up on empty ranges.
62 if (lhs_range
.undefined_p ())
65 // Unary operation are allowed to pass a range in for second operand
66 // as there are often additional restrictions beyond the type which
67 // can be imposed. See operator_cast::op1_range().
68 tree type
= TREE_TYPE (gimple_range_operand1 (stmt
));
69 // If op2 is undefined, solve as if it is varying.
70 if (op2_range
.undefined_p ())
72 // This is sometimes invoked on single operand stmts.
73 if (gimple_num_ops (stmt
) < 3)
75 int_range
<2> trange (TREE_TYPE (gimple_range_operand2 (stmt
)));
76 return gimple_range_handler (stmt
)->op1_range (r
, type
, lhs_range
,
79 return gimple_range_handler (stmt
)->op1_range (r
, type
, lhs_range
,
83 // Calculate what we can determine of the range of this statement's
84 // second operand if the lhs of the expression has the range LHS_RANGE
85 // and the first operand has the range OP1_RANGE. Return false if
86 // nothing can be determined.
89 gimple_range_calc_op2 (irange
&r
, const gimple
*stmt
,
90 const irange
&lhs_range
, const irange
&op1_range
)
92 // Give up on empty ranges.
93 if (lhs_range
.undefined_p ())
96 tree type
= TREE_TYPE (gimple_range_operand2 (stmt
));
97 // If op1 is undefined, solve as if it is varying.
98 if (op1_range
.undefined_p ())
100 int_range
<2> trange (TREE_TYPE (gimple_range_operand1 (stmt
)));
101 return gimple_range_handler (stmt
)->op2_range (r
, type
, lhs_range
,
104 return gimple_range_handler (stmt
)->op2_range (r
, type
, lhs_range
,
108 // Return TRUE if GS is a logical && or || expression.
111 is_gimple_logical_p (const gimple
*gs
)
113 // Look for boolean and/or condition.
114 if (is_gimple_assign (gs
))
115 switch (gimple_expr_code (gs
))
123 // Bitwise operations on single bits are logical too.
124 if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs
)),
135 /* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
136 have range information calculated for them, and what the
137 dependencies on each other are.
139 Information for a basic block is calculated once and stored. It is
140 only calculated the first time a query is made, so if no queries
141 are made, there is little overhead.
143 The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
144 within this bitmap to indicate SSA names that are defined in the
145 SAME block and used to calculate this SSA name.
159 This dump indicates the bits set in the def_chain vector.
160 as well as demonstrates the def_chain bits for the related ssa_names.
162 Checking the chain for _2 indicates that _1 and x_4 are used in
165 Def chains also only include statements which are valid gimple
166 so a def chain will only span statements for which the range
167 engine implements operations for. */
170 // Construct a range_def_chain.
172 range_def_chain::range_def_chain ()
174 bitmap_obstack_initialize (&m_bitmaps
);
175 m_def_chain
.create (0);
176 m_def_chain
.safe_grow_cleared (num_ssa_names
);
180 // Destruct a range_def_chain.
182 range_def_chain::~range_def_chain ()
184 m_def_chain
.release ();
185 bitmap_obstack_release (&m_bitmaps
);
188 // Return true if NAME is in the def chain of DEF. If BB is provided,
189 // only return true if the defining statement of DEF is in BB.
192 range_def_chain::in_chain_p (tree name
, tree def
)
194 gcc_checking_assert (gimple_range_ssa_p (def
));
195 gcc_checking_assert (gimple_range_ssa_p (name
));
197 // Get the defintion chain for DEF.
198 bitmap chain
= get_def_chain (def
);
202 return bitmap_bit_p (chain
, SSA_NAME_VERSION (name
));
205 // Add either IMP or the import list B to the import set of DATA.
208 range_def_chain::set_import (struct rdc
&data
, tree imp
, bitmap b
)
210 // If there are no imports, just return
211 if (imp
== NULL_TREE
&& !b
)
214 data
.m_import
= BITMAP_ALLOC (&m_bitmaps
);
215 if (imp
!= NULL_TREE
)
216 bitmap_set_bit (data
.m_import
, SSA_NAME_VERSION (imp
));
218 bitmap_ior_into (data
.m_import
, b
);
221 // Return the import list for NAME.
224 range_def_chain::get_imports (tree name
)
226 if (!has_def_chain (name
))
227 get_def_chain (name
);
228 bitmap i
= m_def_chain
[SSA_NAME_VERSION (name
)].m_import
;
232 // Return true if IMPORT is an import to NAMEs def chain.
235 range_def_chain::chain_import_p (tree name
, tree import
)
237 bitmap b
= get_imports (name
);
239 return bitmap_bit_p (b
, SSA_NAME_VERSION (import
));
243 // Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
246 range_def_chain::register_dependency (tree name
, tree dep
, basic_block bb
)
248 if (!gimple_range_ssa_p (dep
))
251 unsigned v
= SSA_NAME_VERSION (name
);
252 if (v
>= m_def_chain
.length ())
253 m_def_chain
.safe_grow_cleared (num_ssa_names
+ 1);
254 struct rdc
&src
= m_def_chain
[v
];
255 gimple
*def_stmt
= SSA_NAME_DEF_STMT (dep
);
256 unsigned dep_v
= SSA_NAME_VERSION (dep
);
259 // Set the direct dependency cache entries.
262 else if (!src
.ssa2
&& src
.ssa1
!= dep
)
265 // Don't calculate imports or export/dep chains if BB is not provided.
266 // This is usually the case for when the temporal cache wants the direct
267 // dependencies of a stmt.
272 src
.bm
= BITMAP_ALLOC (&m_bitmaps
);
274 // Add this operand into the result.
275 bitmap_set_bit (src
.bm
, dep_v
);
277 if (gimple_bb (def_stmt
) == bb
&& !is_a
<gphi
*>(def_stmt
))
279 // Get the def chain for the operand.
280 b
= get_def_chain (dep
);
281 // If there was one, copy it into result.
283 bitmap_ior_into (src
.bm
, b
);
284 // And copy the import list.
285 set_import (src
, NULL_TREE
, get_imports (dep
));
288 // Originated outside the block, so it is an import.
289 set_import (src
, dep
, NULL
);
293 range_def_chain::def_chain_in_bitmap_p (tree name
, bitmap b
)
295 bitmap a
= get_def_chain (name
);
297 return bitmap_intersect_p (a
, b
);
302 range_def_chain::add_def_chain_to_bitmap (bitmap b
, tree name
)
304 bitmap r
= get_def_chain (name
);
306 bitmap_ior_into (b
, r
);
310 // Return TRUE if NAME has been processed for a def_chain.
313 range_def_chain::has_def_chain (tree name
)
315 // Ensure there is an entry in the internal vector.
316 unsigned v
= SSA_NAME_VERSION (name
);
317 if (v
>= m_def_chain
.length ())
318 m_def_chain
.safe_grow_cleared (num_ssa_names
+ 1);
319 return (m_def_chain
[v
].ssa1
!= 0);
324 // Calculate the def chain for NAME and all of its dependent
325 // operands. Only using names in the same BB. Return the bitmap of
326 // all names in the m_def_chain. This only works for supported range
330 range_def_chain::get_def_chain (tree name
)
332 tree ssa1
, ssa2
, ssa3
;
333 unsigned v
= SSA_NAME_VERSION (name
);
335 // If it has already been processed, just return the cached value.
336 if (has_def_chain (name
))
337 return m_def_chain
[v
].bm
;
339 // No definition chain for default defs.
340 if (SSA_NAME_IS_DEFAULT_DEF (name
))
342 // A Default def is always an import.
343 set_import (m_def_chain
[v
], name
, NULL
);
347 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
348 if (gimple_range_handler (stmt
))
350 ssa1
= gimple_range_ssa_p (gimple_range_operand1 (stmt
));
351 ssa2
= gimple_range_ssa_p (gimple_range_operand2 (stmt
));
354 else if (is_a
<gassign
*> (stmt
)
355 && gimple_assign_rhs_code (stmt
) == COND_EXPR
)
357 gassign
*st
= as_a
<gassign
*> (stmt
);
358 ssa1
= gimple_range_ssa_p (gimple_assign_rhs1 (st
));
359 ssa2
= gimple_range_ssa_p (gimple_assign_rhs2 (st
));
360 ssa3
= gimple_range_ssa_p (gimple_assign_rhs3 (st
));
364 // Stmts not understood are always imports.
365 set_import (m_def_chain
[v
], name
, NULL
);
369 // Terminate the def chains if we see too many cascading stmts.
370 if (m_logical_depth
== param_ranger_logical_depth
)
373 // Increase the depth if we have a pair of ssa-names.
377 register_dependency (name
, ssa1
, gimple_bb (stmt
));
378 register_dependency (name
, ssa2
, gimple_bb (stmt
));
379 register_dependency (name
, ssa3
, gimple_bb (stmt
));
380 // Stmts with no understandable operands are also imports.
381 if (!ssa1
&& !ssa2
& !ssa3
)
382 set_import (m_def_chain
[v
], name
, NULL
);
387 return m_def_chain
[v
].bm
;
390 // Dump what we know for basic block BB to file F.
393 range_def_chain::dump (FILE *f
, basic_block bb
, const char *prefix
)
398 // Dump the def chain for each SSA_NAME defined in BB.
399 for (x
= 1; x
< num_ssa_names
; x
++)
401 tree name
= ssa_name (x
);
404 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
405 if (!stmt
|| (bb
&& gimple_bb (stmt
) != bb
))
407 bitmap chain
= (has_def_chain (name
) ? get_def_chain (name
) : NULL
);
408 if (chain
&& !bitmap_empty_p (chain
))
411 print_generic_expr (f
, name
, TDF_SLIM
);
414 bitmap imports
= get_imports (name
);
415 EXECUTE_IF_SET_IN_BITMAP (chain
, 0, y
, bi
)
417 print_generic_expr (f
, ssa_name (y
), TDF_SLIM
);
418 if (imports
&& bitmap_bit_p (imports
, y
))
428 // -------------------------------------------------------------------
430 /* GORI_MAP is used to accumulate what SSA names in a block can
431 generate range information, and provides tools for the block ranger
432 to enable it to efficiently calculate these ranges.
434 GORI stands for "Generates Outgoing Range Information."
436 It utilizes the range_def_chain class to contruct def_chains.
437 Information for a basic block is calculated once and stored. It is
438 only calculated the first time a query is made. If no queries are
439 made, there is little overhead.
441 one bitmap is maintained for each basic block:
442 m_outgoing : a set bit indicates a range can be generated for a name.
444 Generally speaking, the m_outgoing vector is the union of the
445 entire def_chain of all SSA names used in the last statement of the
446 block which generate ranges. */
449 // Initialize a gori-map structure.
451 gori_map::gori_map ()
453 m_outgoing
.create (0);
454 m_outgoing
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
455 m_incoming
.create (0);
456 m_incoming
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
457 m_maybe_variant
= BITMAP_ALLOC (&m_bitmaps
);
460 // Free any memory the GORI map allocated.
462 gori_map::~gori_map ()
464 m_incoming
.release ();
465 m_outgoing
.release ();
468 // Return the bitmap vector of all export from BB. Calculate if necessary.
471 gori_map::exports (basic_block bb
)
473 if (bb
->index
>= (signed int)m_outgoing
.length () || !m_outgoing
[bb
->index
])
475 return m_outgoing
[bb
->index
];
478 // Return the bitmap vector of all imports to BB. Calculate if necessary.
481 gori_map::imports (basic_block bb
)
483 if (bb
->index
>= (signed int)m_outgoing
.length () || !m_outgoing
[bb
->index
])
485 return m_incoming
[bb
->index
];
488 // Return true if NAME is can have ranges generated for it from basic
492 gori_map::is_export_p (tree name
, basic_block bb
)
494 // If no BB is specified, test if it is exported anywhere in the IL.
496 return bitmap_bit_p (m_maybe_variant
, SSA_NAME_VERSION (name
));
497 return bitmap_bit_p (exports (bb
), SSA_NAME_VERSION (name
));
500 // Clear the m_maybe_variant bit so ranges will not be tracked for NAME.
503 gori_map::set_range_invariant (tree name
)
505 bitmap_clear_bit (m_maybe_variant
, SSA_NAME_VERSION (name
));
508 // Return true if NAME is an import to block BB.
511 gori_map::is_import_p (tree name
, basic_block bb
)
513 // If no BB is specified, test if it is exported anywhere in the IL.
514 return bitmap_bit_p (imports (bb
), SSA_NAME_VERSION (name
));
517 // If NAME is non-NULL and defined in block BB, calculate the def
518 // chain and add it to m_outgoing.
521 gori_map::maybe_add_gori (tree name
, basic_block bb
)
525 // Check if there is a def chain, regardless of the block.
526 add_def_chain_to_bitmap (m_outgoing
[bb
->index
], name
);
527 // Check for any imports.
528 bitmap imp
= get_imports (name
);
529 // If there were imports, add them so we can recompute
531 bitmap_ior_into (m_incoming
[bb
->index
], imp
);
532 // This name is always an import.
533 if (gimple_bb (SSA_NAME_DEF_STMT (name
)) != bb
)
534 bitmap_set_bit (m_incoming
[bb
->index
], SSA_NAME_VERSION (name
));
536 // Def chain doesn't include itself, and even if there isn't a
537 // def chain, this name should be added to exports.
538 bitmap_set_bit (m_outgoing
[bb
->index
], SSA_NAME_VERSION (name
));
542 // Calculate all the required information for BB.
545 gori_map::calculate_gori (basic_block bb
)
548 if (bb
->index
>= (signed int)m_outgoing
.length ())
550 m_outgoing
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
551 m_incoming
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
553 gcc_checking_assert (m_outgoing
[bb
->index
] == NULL
);
554 m_outgoing
[bb
->index
] = BITMAP_ALLOC (&m_bitmaps
);
555 m_incoming
[bb
->index
] = BITMAP_ALLOC (&m_bitmaps
);
557 // If this block's last statement may generate range informaiton, go
559 gimple
*stmt
= gimple_outgoing_range_stmt_p (bb
);
562 if (is_a
<gcond
*> (stmt
))
564 gcond
*gc
= as_a
<gcond
*>(stmt
);
565 name
= gimple_range_ssa_p (gimple_cond_lhs (gc
));
566 maybe_add_gori (name
, gimple_bb (stmt
));
568 name
= gimple_range_ssa_p (gimple_cond_rhs (gc
));
569 maybe_add_gori (name
, gimple_bb (stmt
));
573 // Do not process switches if they are too large.
574 if (EDGE_COUNT (bb
->succs
) > (unsigned)param_evrp_switch_limit
)
576 gswitch
*gs
= as_a
<gswitch
*>(stmt
);
577 name
= gimple_range_ssa_p (gimple_switch_index (gs
));
578 maybe_add_gori (name
, gimple_bb (stmt
));
580 // Add this bitmap to the aggregate list of all outgoing names.
581 bitmap_ior_into (m_maybe_variant
, m_outgoing
[bb
->index
]);
584 // Dump the table information for BB to file F.
587 gori_map::dump (FILE *f
, basic_block bb
, bool verbose
)
589 // BB was not processed.
590 if (!m_outgoing
[bb
->index
] || bitmap_empty_p (m_outgoing
[bb
->index
]))
595 bitmap imp
= imports (bb
);
596 if (!bitmap_empty_p (imp
))
599 fprintf (f
, "bb<%u> Imports: ",bb
->index
);
601 fprintf (f
, "Imports: ");
602 FOR_EACH_GORI_IMPORT_NAME (*this, bb
, name
)
604 print_generic_expr (f
, name
, TDF_SLIM
);
611 fprintf (f
, "bb<%u> Exports: ",bb
->index
);
613 fprintf (f
, "Exports: ");
614 // Dump the export vector.
615 FOR_EACH_GORI_EXPORT_NAME (*this, bb
, name
)
617 print_generic_expr (f
, name
, TDF_SLIM
);
622 range_def_chain::dump (f
, bb
, " ");
625 // Dump the entire GORI map structure to file F.
628 gori_map::dump (FILE *f
)
631 FOR_EACH_BB_FN (bb
, cfun
)
641 // -------------------------------------------------------------------
643 // Construct a gori_compute object.
645 gori_compute::gori_compute (int not_executable_flag
)
646 : outgoing (param_evrp_switch_limit
), tracer ("GORI ")
648 m_not_executable_flag
= not_executable_flag
;
649 // Create a boolean_type true and false range.
650 m_bool_zero
= int_range
<2> (boolean_false_node
, boolean_false_node
);
651 m_bool_one
= int_range
<2> (boolean_true_node
, boolean_true_node
);
652 if (dump_file
&& (param_ranger_debug
& RANGER_DEBUG_GORI
))
653 tracer
.enable_trace ();
656 // Given the switch S, return an evaluation in R for NAME when the lhs
657 // evaluates to LHS. Returning false means the name being looked for
658 // was not resolvable.
661 gori_compute::compute_operand_range_switch (irange
&r
, gswitch
*s
,
663 tree name
, fur_source
&src
)
665 tree op1
= gimple_switch_index (s
);
667 // If name matches, the range is simply the range from the edge.
668 // Empty ranges are viral as they are on a path which isn't
670 if (op1
== name
|| lhs
.undefined_p ())
676 // If op1 is in the defintion chain, pass lhs back.
677 if (gimple_range_ssa_p (op1
) && in_chain_p (name
, op1
))
678 return compute_operand_range (r
, SSA_NAME_DEF_STMT (op1
), lhs
, name
, src
);
684 // Return an evaluation for NAME as it would appear in STMT when the
685 // statement's lhs evaluates to LHS. If successful, return TRUE and
686 // store the evaluation in R, otherwise return FALSE.
689 gori_compute::compute_operand_range (irange
&r
, gimple
*stmt
,
690 const irange
&lhs
, tree name
,
693 // If the lhs doesn't tell us anything, neither will unwinding further.
694 if (lhs
.varying_p ())
697 // Empty ranges are viral as they are on an unexecutable path.
698 if (lhs
.undefined_p ())
703 if (is_a
<gswitch
*> (stmt
))
704 return compute_operand_range_switch (r
, as_a
<gswitch
*> (stmt
), lhs
, name
,
706 if (!gimple_range_handler (stmt
))
709 tree op1
= gimple_range_ssa_p (gimple_range_operand1 (stmt
));
710 tree op2
= gimple_range_ssa_p (gimple_range_operand2 (stmt
));
712 // Handle end of lookup first.
714 return compute_operand1_range (r
, stmt
, lhs
, name
, src
);
716 return compute_operand2_range (r
, stmt
, lhs
, name
, src
);
718 // NAME is not in this stmt, but one of the names in it ought to be
720 bool op1_in_chain
= op1
&& in_chain_p (name
, op1
);
721 bool op2_in_chain
= op2
&& in_chain_p (name
, op2
);
723 // If neither operand is derived, then this stmt tells us nothing.
724 if (!op1_in_chain
&& !op2_in_chain
)
728 // Process logicals as they have special handling.
729 if (is_gimple_logical_p (stmt
))
732 if ((idx
= tracer
.header ("compute_operand ")))
734 print_generic_expr (dump_file
, name
, TDF_SLIM
);
735 fprintf (dump_file
, " with LHS = ");
736 lhs
.dump (dump_file
);
737 fprintf (dump_file
, " at stmt ");
738 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
741 int_range_max op1_trange
, op1_frange
;
742 int_range_max op2_trange
, op2_frange
;
743 compute_logical_operands (op1_trange
, op1_frange
, stmt
, lhs
,
744 name
, src
, op1
, op1_in_chain
);
745 compute_logical_operands (op2_trange
, op2_frange
, stmt
, lhs
,
746 name
, src
, op2
, op2_in_chain
);
747 res
= logical_combine (r
, gimple_expr_code (stmt
), lhs
,
748 op1_trange
, op1_frange
, op2_trange
, op2_frange
);
750 tracer
.trailer (idx
, "compute_operand", res
, name
, r
);
752 // Follow the appropriate operands now.
753 else if (op1_in_chain
&& op2_in_chain
)
754 res
= compute_operand1_and_operand2_range (r
, stmt
, lhs
, name
, src
);
755 else if (op1_in_chain
)
756 res
= compute_operand1_range (r
, stmt
, lhs
, name
, src
);
757 else if (op2_in_chain
)
758 res
= compute_operand2_range (r
, stmt
, lhs
, name
, src
);
762 // If neither operand is derived, this statement tells us nothing.
767 // Return TRUE if range R is either a true or false compatible range.
770 range_is_either_true_or_false (const irange
&r
)
772 if (r
.undefined_p ())
775 // This is complicated by the fact that Ada has multi-bit booleans,
776 // so true can be ~[0, 0] (i.e. [1,MAX]).
777 tree type
= r
.type ();
778 gcc_checking_assert (range_compatible_p (type
, boolean_type_node
));
779 return (r
.singleton_p () || !r
.contains_p (build_zero_cst (type
)));
782 // Evaluate a binary logical expression by combining the true and
783 // false ranges for each of the operands based on the result value in
787 gori_compute::logical_combine (irange
&r
, enum tree_code code
,
789 const irange
&op1_true
, const irange
&op1_false
,
790 const irange
&op2_true
, const irange
&op2_false
)
792 if (op1_true
.varying_p () && op1_false
.varying_p ()
793 && op2_true
.varying_p () && op2_false
.varying_p ())
797 if ((idx
= tracer
.header ("logical_combine")))
803 fprintf (dump_file
, " || ");
807 fprintf (dump_file
, " && ");
812 fprintf (dump_file
, " with LHS = ");
813 lhs
.dump (dump_file
);
814 fputc ('\n', dump_file
);
816 tracer
.print (idx
, "op1_true = ");
817 op1_true
.dump (dump_file
);
818 fprintf (dump_file
, " op1_false = ");
819 op1_false
.dump (dump_file
);
820 fputc ('\n', dump_file
);
821 tracer
.print (idx
, "op2_true = ");
822 op2_true
.dump (dump_file
);
823 fprintf (dump_file
, " op2_false = ");
824 op2_false
.dump (dump_file
);
825 fputc ('\n', dump_file
);
828 // This is not a simple fold of a logical expression, rather it
829 // determines ranges which flow through the logical expression.
831 // Assuming x_8 is an unsigned char, and relational statements:
834 // consider the logical expression and branch:
838 // To determine the range of x_8 on either edge of the branch, one
839 // must first determine what the range of x_8 is when the boolean
840 // values of b_1 and b_2 are both true and false.
841 // b_1 TRUE x_8 = [0, 19]
842 // b_1 FALSE x_8 = [20, 255]
843 // b_2 TRUE x_8 = [6, 255]
844 // b_2 FALSE x_8 = [0,5].
846 // These ranges are then combined based on the expected outcome of
847 // the branch. The range on the TRUE side of the branch must satisfy
848 // b_1 == true && b_2 == true
850 // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
851 // must be true. The range of x_8 on the true side must be the
852 // intersection of both ranges since both must be true. Thus the
853 // range of x_8 on the true side is [6, 19].
855 // To determine the ranges on the FALSE side, all 3 combinations of
856 // failing ranges must be considered, and combined as any of them
857 // can cause the false result.
859 // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
860 // FALSE results and combine them. If we fell back to VARYING any
861 // range restrictions that have been discovered up to this point
863 if (!range_is_either_true_or_false (lhs
))
867 if (logical_combine (r1
, code
, m_bool_zero
, op1_true
, op1_false
,
869 && logical_combine (r
, code
, m_bool_one
, op1_true
, op1_false
,
870 op2_true
, op2_false
))
878 tracer
.trailer (idx
, "logical_combine", res
, NULL_TREE
, r
);
883 // A logical AND combines ranges from 2 boolean conditions.
889 // The TRUE side is the intersection of the the 2 true ranges.
891 r
.intersect (op2_true
);
895 // The FALSE side is the union of the other 3 cases.
896 int_range_max
ff (op1_false
);
897 ff
.intersect (op2_false
);
898 int_range_max
tf (op1_true
);
899 tf
.intersect (op2_false
);
900 int_range_max
ft (op1_false
);
901 ft
.intersect (op2_true
);
907 // A logical OR combines ranges from 2 boolean conditons.
913 // An OR operation will only take the FALSE path if both
914 // operands are false simlulateously, which means they should
915 // be intersected. !(x || y) == !x && !y
917 r
.intersect (op2_false
);
921 // The TRUE side of an OR operation will be the union of
922 // the other three combinations.
923 int_range_max
tt (op1_true
);
924 tt
.intersect (op2_true
);
925 int_range_max
tf (op1_true
);
926 tf
.intersect (op2_false
);
927 int_range_max
ft (op1_false
);
928 ft
.intersect (op2_true
);
939 tracer
.trailer (idx
, "logical_combine", true, NULL_TREE
, r
);
944 // Given a logical STMT, calculate true and false ranges for each
945 // potential path of NAME, assuming NAME came through the OP chain if
946 // OP_IN_CHAIN is true.
949 gori_compute::compute_logical_operands (irange
&true_range
, irange
&false_range
,
952 tree name
, fur_source
&src
,
953 tree op
, bool op_in_chain
)
955 gimple
*src_stmt
= gimple_range_ssa_p (op
) ? SSA_NAME_DEF_STMT (op
) : NULL
;
956 if (!op_in_chain
|| !src_stmt
|| chain_import_p (gimple_get_lhs (stmt
), op
))
958 // If op is not in the def chain, or defined in this block,
959 // use its known value on entry to the block.
960 src
.get_operand (true_range
, name
);
961 false_range
= true_range
;
963 if ((idx
= tracer
.header ("logical_operand")))
965 print_generic_expr (dump_file
, op
, TDF_SLIM
);
966 fprintf (dump_file
, " not in computation chain. Queried.\n");
967 tracer
.trailer (idx
, "logical_operand", true, NULL_TREE
, true_range
);
972 enum tree_code code
= gimple_expr_code (stmt
);
973 // Optimize [0 = x | y], since neither operand can ever be non-zero.
974 if ((code
== BIT_IOR_EXPR
|| code
== TRUTH_OR_EXPR
) && lhs
.zero_p ())
976 if (!compute_operand_range (false_range
, src_stmt
, m_bool_zero
, name
,
978 src
.get_operand (false_range
, name
);
979 true_range
= false_range
;
983 // Optimize [1 = x & y], since neither operand can ever be zero.
984 if ((code
== BIT_AND_EXPR
|| code
== TRUTH_AND_EXPR
) && lhs
== m_bool_one
)
986 if (!compute_operand_range (true_range
, src_stmt
, m_bool_one
, name
, src
))
987 src
.get_operand (true_range
, name
);
988 false_range
= true_range
;
992 // Calculate ranges for true and false on both sides, since the false
993 // path is not always a simple inversion of the true side.
994 if (!compute_operand_range (true_range
, src_stmt
, m_bool_one
, name
, src
))
995 src
.get_operand (true_range
, name
);
996 if (!compute_operand_range (false_range
, src_stmt
, m_bool_zero
, name
, src
))
997 src
.get_operand (false_range
, name
);
1000 // Calculate a range for NAME from the operand 1 position of STMT
1001 // assuming the result of the statement is LHS. Return the range in
1002 // R, or false if no range could be calculated.
1005 gori_compute::compute_operand1_range (irange
&r
, gimple
*stmt
,
1006 const irange
&lhs
, tree name
,
1009 int_range_max op1_range
, op2_range
;
1010 tree op1
= gimple_range_operand1 (stmt
);
1011 tree op2
= gimple_range_operand2 (stmt
);
1013 // Fetch the known range for op1 in this block.
1014 src
.get_operand (op1_range
, op1
);
1016 // Now range-op calcuate and put that result in r.
1019 src
.get_operand (op2_range
, op2
);
1020 if (!gimple_range_calc_op1 (r
, stmt
, lhs
, op2_range
))
1025 // We pass op1_range to the unary operation. Nomally it's a
1026 // hidden range_for_type parameter, but sometimes having the
1027 // actual range can result in better information.
1028 if (!gimple_range_calc_op1 (r
, stmt
, lhs
, op1_range
))
1033 if ((idx
= tracer
.header ("compute op 1 (")))
1035 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
1036 fprintf (dump_file
, ") at ");
1037 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1038 tracer
.print (idx
, "LHS =");
1039 lhs
.dump (dump_file
);
1040 if (op2
&& TREE_CODE (op2
) == SSA_NAME
)
1042 fprintf (dump_file
, ", ");
1043 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
1044 fprintf (dump_file
, " = ");
1045 op2_range
.dump (dump_file
);
1047 fprintf (dump_file
, "\n");
1048 tracer
.print (idx
, "Computes ");
1049 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
1050 fprintf (dump_file
, " = ");
1052 fprintf (dump_file
, " intersect Known range : ");
1053 op1_range
.dump (dump_file
);
1054 fputc ('\n', dump_file
);
1056 // Intersect the calculated result with the known result and return if done.
1059 r
.intersect (op1_range
);
1061 tracer
.trailer (idx
, "produces ", true, name
, r
);
1064 // If the calculation continues, we're using op1_range as the new LHS.
1065 op1_range
.intersect (r
);
1068 tracer
.trailer (idx
, "produces ", true, op1
, op1_range
);
1069 gimple
*src_stmt
= SSA_NAME_DEF_STMT (op1
);
1070 gcc_checking_assert (src_stmt
);
1072 // Then feed this range back as the LHS of the defining statement.
1073 return compute_operand_range (r
, src_stmt
, op1_range
, name
, src
);
1077 // Calculate a range for NAME from the operand 2 position of S
1078 // assuming the result of the statement is LHS. Return the range in
1079 // R, or false if no range could be calculated.
1082 gori_compute::compute_operand2_range (irange
&r
, gimple
*stmt
,
1083 const irange
&lhs
, tree name
,
1086 int_range_max op1_range
, op2_range
;
1087 tree op1
= gimple_range_operand1 (stmt
);
1088 tree op2
= gimple_range_operand2 (stmt
);
1090 src
.get_operand (op1_range
, op1
);
1091 src
.get_operand (op2_range
, op2
);
1093 // Intersect with range for op2 based on lhs and op1.
1094 if (!gimple_range_calc_op2 (r
, stmt
, lhs
, op1_range
))
1098 if ((idx
= tracer
.header ("compute op 2 (")))
1100 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
1101 fprintf (dump_file
, ") at ");
1102 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1103 tracer
.print (idx
, "LHS = ");
1104 lhs
.dump (dump_file
);
1105 if (TREE_CODE (op1
) == SSA_NAME
)
1107 fprintf (dump_file
, ", ");
1108 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
1109 fprintf (dump_file
, " = ");
1110 op1_range
.dump (dump_file
);
1112 fprintf (dump_file
, "\n");
1113 tracer
.print (idx
, "Computes ");
1114 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
1115 fprintf (dump_file
, " = ");
1117 fprintf (dump_file
, " intersect Known range : ");
1118 op2_range
.dump (dump_file
);
1119 fputc ('\n', dump_file
);
1121 // Intersect the calculated result with the known result and return if done.
1124 r
.intersect (op2_range
);
1126 tracer
.trailer (idx
, " produces ", true, NULL_TREE
, r
);
1129 // If the calculation continues, we're using op2_range as the new LHS.
1130 op2_range
.intersect (r
);
1133 tracer
.trailer (idx
, " produces ", true, op2
, op2_range
);
1134 gimple
*src_stmt
= SSA_NAME_DEF_STMT (op2
);
1135 gcc_checking_assert (src_stmt
);
1136 // gcc_checking_assert (!is_import_p (op2, find.bb));
1138 // Then feed this range back as the LHS of the defining statement.
1139 return compute_operand_range (r
, src_stmt
, op2_range
, name
, src
);
1142 // Calculate a range for NAME from both operand positions of S
1143 // assuming the result of the statement is LHS. Return the range in
1144 // R, or false if no range could be calculated.
1147 gori_compute::compute_operand1_and_operand2_range (irange
&r
,
1153 int_range_max op_range
;
1155 // Calculate a good a range for op2. Since op1 == op2, this will
1156 // have already included whatever the actual range of name is.
1157 if (!compute_operand2_range (op_range
, stmt
, lhs
, name
, src
))
1160 // Now get the range thru op1.
1161 if (!compute_operand1_range (r
, stmt
, lhs
, name
, src
))
1164 // Both operands have to be simultaneously true, so perform an intersection.
1165 r
.intersect (op_range
);
1168 // Return TRUE if a range can be calculated or recomputed for NAME on edge E.
1171 gori_compute::has_edge_range_p (tree name
, edge e
)
1173 // Check if NAME is an export or can be recomputed.
1175 return is_export_p (name
, e
->src
) || may_recompute_p (name
, e
);
1177 // If no edge is specified, check if NAME can have a range calculated
1179 return is_export_p (name
) || may_recompute_p (name
);
1182 // Dump what is known to GORI computes to listing file F.
1185 gori_compute::dump (FILE *f
)
1190 // Return TRUE if NAME can be recomputed on edge E. If any direct dependant
1191 // is exported on edge E, it may change the computed value of NAME.
1194 gori_compute::may_recompute_p (tree name
, edge e
)
1196 tree dep1
= depend1 (name
);
1197 tree dep2
= depend2 (name
);
1199 // If the first dependency is not set, there is no recompuation.
1203 // Don't recalculate PHIs or statements with side_effects.
1204 gimple
*s
= SSA_NAME_DEF_STMT (name
);
1205 if (is_a
<gphi
*> (s
) || gimple_has_side_effects (s
))
1208 // If edge is specified, check if NAME can be recalculated on that edge.
1210 return ((is_export_p (dep1
, e
->src
))
1211 || (dep2
&& is_export_p (dep2
, e
->src
)));
1213 return (is_export_p (dep1
)) || (dep2
&& is_export_p (dep2
));
1216 // Calculate a range on edge E and return it in R. Try to evaluate a
1217 // range for NAME on this edge. Return FALSE if this is either not a
1218 // control edge or NAME is not defined by this edge.
1221 gori_compute::outgoing_edge_range_p (irange
&r
, edge e
, tree name
,
1227 if ((e
->flags
& m_not_executable_flag
))
1230 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1231 fprintf (dump_file
, "Outgoing edge %d->%d unexecutable.\n",
1232 e
->src
->index
, e
->dest
->index
);
1236 gcc_checking_assert (gimple_range_ssa_p (name
));
1237 // Determine if there is an outgoing edge.
1238 gimple
*stmt
= outgoing
.edge_range_p (lhs
, e
);
1242 fur_stmt
src (stmt
, &q
);
1243 // If NAME can be calculated on the edge, use that.
1244 if (is_export_p (name
, e
->src
))
1247 if ((idx
= tracer
.header ("outgoing_edge")))
1249 fprintf (dump_file
, " for ");
1250 print_generic_expr (dump_file
, name
, TDF_SLIM
);
1251 fprintf (dump_file
, " on edge %d->%d\n",
1252 e
->src
->index
, e
->dest
->index
);
1254 if ((res
= compute_operand_range (r
, stmt
, lhs
, name
, src
)))
1256 // Sometimes compatible types get interchanged. See PR97360.
1257 // Make sure we are returning the type of the thing we asked for.
1258 if (!r
.undefined_p () && r
.type () != TREE_TYPE (name
))
1260 gcc_checking_assert (range_compatible_p (r
.type (),
1262 range_cast (r
, TREE_TYPE (name
));
1266 tracer
.trailer (idx
, "outgoing_edge", res
, name
, r
);
1269 // If NAME isn't exported, check if it can be recomputed.
1270 else if (may_recompute_p (name
, e
))
1272 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1274 if ((idx
= tracer
.header ("recomputation")))
1276 fprintf (dump_file
, " attempt on edge %d->%d for ",
1277 e
->src
->index
, e
->dest
->index
);
1278 print_gimple_stmt (dump_file
, def_stmt
, 0, TDF_SLIM
);
1280 // Simply calculate DEF_STMT on edge E using the range query Q.
1281 fold_range (r
, def_stmt
, e
, &q
);
1283 tracer
.trailer (idx
, "recomputation", true, name
, r
);
1290 // ------------------------------------------------------------------------
1291 // GORI iterator. Although we have bitmap iterators, don't expose that it
1292 // is currently a bitmap. Use an export iterator to hide future changes.
1294 // Construct a basic iterator over an export bitmap.
1296 gori_export_iterator::gori_export_iterator (bitmap b
)
1300 bmp_iter_set_init (&bi
, b
, 1, &y
);
1304 // Move to the next export bitmap spot.
1307 gori_export_iterator::next ()
1309 bmp_iter_next (&bi
, &y
);
1313 // Fetch the name of the next export in the export list. Return NULL if
1314 // iteration is done.
1317 gori_export_iterator::get_name ()
1322 while (bmp_iter_set (&bi
, &y
))
1324 tree t
= ssa_name (y
);