PR middle-end/81768
[official-gcc.git] / libgo / go / time / time.go
blob10b32461e1cd3b974c3988a9011c3ca7aa654e00
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package time provides functionality for measuring and displaying time.
6 //
7 // The calendrical calculations always assume a Gregorian calendar, with
8 // no leap seconds.
9 package time
11 import "errors"
13 // A Time represents an instant in time with nanosecond precision.
15 // Programs using times should typically store and pass them as values,
16 // not pointers. That is, time variables and struct fields should be of
17 // type time.Time, not *time.Time. A Time value can be used by
18 // multiple goroutines simultaneously.
20 // Time instants can be compared using the Before, After, and Equal methods.
21 // The Sub method subtracts two instants, producing a Duration.
22 // The Add method adds a Time and a Duration, producing a Time.
24 // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
25 // As this time is unlikely to come up in practice, the IsZero method gives
26 // a simple way of detecting a time that has not been initialized explicitly.
28 // Each Time has associated with it a Location, consulted when computing the
29 // presentation form of the time, such as in the Format, Hour, and Year methods.
30 // The methods Local, UTC, and In return a Time with a specific location.
31 // Changing the location in this way changes only the presentation; it does not
32 // change the instant in time being denoted and therefore does not affect the
33 // computations described in earlier paragraphs.
35 // Note that the Go == operator compares not just the time instant but also the
36 // Location. Therefore, Time values should not be used as map or database keys
37 // without first guaranteeing that the identical Location has been set for all
38 // values, which can be achieved through use of the UTC or Local method.
40 type Time struct {
41 // sec gives the number of seconds elapsed since
42 // January 1, year 1 00:00:00 UTC.
43 sec int64
45 // nsec specifies a non-negative nanosecond
46 // offset within the second named by Seconds.
47 // It must be in the range [0, 999999999].
48 nsec int32
50 // loc specifies the Location that should be used to
51 // determine the minute, hour, month, day, and year
52 // that correspond to this Time.
53 // The nil location means UTC.
54 // All UTC times are represented with loc==nil, never loc==&utcLoc.
55 loc *Location
58 func (t *Time) setLoc(loc *Location) {
59 if loc == &utcLoc {
60 loc = nil
62 t.loc = loc
65 // After reports whether the time instant t is after u.
66 func (t Time) After(u Time) bool {
67 return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
70 // Before reports whether the time instant t is before u.
71 func (t Time) Before(u Time) bool {
72 return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
75 // Equal reports whether t and u represent the same time instant.
76 // Two times can be equal even if they are in different locations.
77 // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
78 // Do not use == with Time values.
79 func (t Time) Equal(u Time) bool {
80 return t.sec == u.sec && t.nsec == u.nsec
83 // A Month specifies a month of the year (January = 1, ...).
84 type Month int
86 const (
87 January Month = 1 + iota
88 February
89 March
90 April
91 May
92 June
93 July
94 August
95 September
96 October
97 November
98 December
101 var months = [...]string{
102 "January",
103 "February",
104 "March",
105 "April",
106 "May",
107 "June",
108 "July",
109 "August",
110 "September",
111 "October",
112 "November",
113 "December",
116 // String returns the English name of the month ("January", "February", ...).
117 func (m Month) String() string {
118 if January <= m && m <= December {
119 return months[m-1]
121 buf := make([]byte, 20)
122 n := fmtInt(buf, uint64(m))
123 return "%!Month(" + string(buf[n:]) + ")"
126 // A Weekday specifies a day of the week (Sunday = 0, ...).
127 type Weekday int
129 const (
130 Sunday Weekday = iota
131 Monday
132 Tuesday
133 Wednesday
134 Thursday
135 Friday
136 Saturday
139 var days = [...]string{
140 "Sunday",
141 "Monday",
142 "Tuesday",
143 "Wednesday",
144 "Thursday",
145 "Friday",
146 "Saturday",
149 // String returns the English name of the day ("Sunday", "Monday", ...).
150 func (d Weekday) String() string { return days[d] }
152 // Computations on time.
154 // The zero value for a Time is defined to be
155 // January 1, year 1, 00:00:00.000000000 UTC
156 // which (1) looks like a zero, or as close as you can get in a date
157 // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
158 // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
159 // non-negative year even in time zones west of UTC, unlike 1-1-0
160 // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
162 // The zero Time value does not force a specific epoch for the time
163 // representation. For example, to use the Unix epoch internally, we
164 // could define that to distinguish a zero value from Jan 1 1970, that
165 // time would be represented by sec=-1, nsec=1e9. However, it does
166 // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
167 // epoch, and that's what we do.
169 // The Add and Sub computations are oblivious to the choice of epoch.
171 // The presentation computations - year, month, minute, and so on - all
172 // rely heavily on division and modulus by positive constants. For
173 // calendrical calculations we want these divisions to round down, even
174 // for negative values, so that the remainder is always positive, but
175 // Go's division (like most hardware division instructions) rounds to
176 // zero. We can still do those computations and then adjust the result
177 // for a negative numerator, but it's annoying to write the adjustment
178 // over and over. Instead, we can change to a different epoch so long
179 // ago that all the times we care about will be positive, and then round
180 // to zero and round down coincide. These presentation routines already
181 // have to add the zone offset, so adding the translation to the
182 // alternate epoch is cheap. For example, having a non-negative time t
183 // means that we can write
185 // sec = t % 60
187 // instead of
189 // sec = t % 60
190 // if sec < 0 {
191 // sec += 60
192 // }
194 // everywhere.
196 // The calendar runs on an exact 400 year cycle: a 400-year calendar
197 // printed for 1970-2469 will apply as well to 2370-2769. Even the days
198 // of the week match up. It simplifies the computations to choose the
199 // cycle boundaries so that the exceptional years are always delayed as
200 // long as possible. That means choosing a year equal to 1 mod 400, so
201 // that the first leap year is the 4th year, the first missed leap year
202 // is the 100th year, and the missed missed leap year is the 400th year.
203 // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
204 // for 2401-2800.
206 // Finally, it's convenient if the delta between the Unix epoch and
207 // long-ago epoch is representable by an int64 constant.
209 // These three considerations—choose an epoch as early as possible, that
210 // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
211 // earlier than 1970—bring us to the year -292277022399. We refer to
212 // this year as the absolute zero year, and to times measured as a uint64
213 // seconds since this year as absolute times.
215 // Times measured as an int64 seconds since the year 1—the representation
216 // used for Time's sec field—are called internal times.
218 // Times measured as an int64 seconds since the year 1970 are called Unix
219 // times.
221 // It is tempting to just use the year 1 as the absolute epoch, defining
222 // that the routines are only valid for years >= 1. However, the
223 // routines would then be invalid when displaying the epoch in time zones
224 // west of UTC, since it is year 0. It doesn't seem tenable to say that
225 // printing the zero time correctly isn't supported in half the time
226 // zones. By comparison, it's reasonable to mishandle some times in
227 // the year -292277022399.
229 // All this is opaque to clients of the API and can be changed if a
230 // better implementation presents itself.
232 const (
233 // The unsigned zero year for internal calculations.
234 // Must be 1 mod 400, and times before it will not compute correctly,
235 // but otherwise can be changed at will.
236 absoluteZeroYear = -292277022399
238 // The year of the zero Time.
239 // Assumed by the unixToInternal computation below.
240 internalYear = 1
242 // Offsets to convert between internal and absolute or Unix times.
243 absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
244 internalToAbsolute = -absoluteToInternal
246 unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
247 internalToUnix int64 = -unixToInternal
250 // IsZero reports whether t represents the zero time instant,
251 // January 1, year 1, 00:00:00 UTC.
252 func (t Time) IsZero() bool {
253 return t.sec == 0 && t.nsec == 0
256 // abs returns the time t as an absolute time, adjusted by the zone offset.
257 // It is called when computing a presentation property like Month or Hour.
258 func (t Time) abs() uint64 {
259 l := t.loc
260 // Avoid function calls when possible.
261 if l == nil || l == &localLoc {
262 l = l.get()
264 sec := t.sec + internalToUnix
265 if l != &utcLoc {
266 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
267 sec += int64(l.cacheZone.offset)
268 } else {
269 _, offset, _, _, _ := l.lookup(sec)
270 sec += int64(offset)
273 return uint64(sec + (unixToInternal + internalToAbsolute))
276 // locabs is a combination of the Zone and abs methods,
277 // extracting both return values from a single zone lookup.
278 func (t Time) locabs() (name string, offset int, abs uint64) {
279 l := t.loc
280 if l == nil || l == &localLoc {
281 l = l.get()
283 // Avoid function call if we hit the local time cache.
284 sec := t.sec + internalToUnix
285 if l != &utcLoc {
286 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
287 name = l.cacheZone.name
288 offset = l.cacheZone.offset
289 } else {
290 name, offset, _, _, _ = l.lookup(sec)
292 sec += int64(offset)
293 } else {
294 name = "UTC"
296 abs = uint64(sec + (unixToInternal + internalToAbsolute))
297 return
300 // Date returns the year, month, and day in which t occurs.
301 func (t Time) Date() (year int, month Month, day int) {
302 year, month, day, _ = t.date(true)
303 return
306 // Year returns the year in which t occurs.
307 func (t Time) Year() int {
308 year, _, _, _ := t.date(false)
309 return year
312 // Month returns the month of the year specified by t.
313 func (t Time) Month() Month {
314 _, month, _, _ := t.date(true)
315 return month
318 // Day returns the day of the month specified by t.
319 func (t Time) Day() int {
320 _, _, day, _ := t.date(true)
321 return day
324 // Weekday returns the day of the week specified by t.
325 func (t Time) Weekday() Weekday {
326 return absWeekday(t.abs())
329 // absWeekday is like Weekday but operates on an absolute time.
330 func absWeekday(abs uint64) Weekday {
331 // January 1 of the absolute year, like January 1 of 2001, was a Monday.
332 sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
333 return Weekday(int(sec) / secondsPerDay)
336 // ISOWeek returns the ISO 8601 year and week number in which t occurs.
337 // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
338 // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
339 // of year n+1.
340 func (t Time) ISOWeek() (year, week int) {
341 year, month, day, yday := t.date(true)
342 wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
343 const (
344 Mon int = iota
353 // Calculate week as number of Mondays in year up to
354 // and including today, plus 1 because the first week is week 0.
355 // Putting the + 1 inside the numerator as a + 7 keeps the
356 // numerator from being negative, which would cause it to
357 // round incorrectly.
358 week = (yday - wday + 7) / 7
360 // The week number is now correct under the assumption
361 // that the first Monday of the year is in week 1.
362 // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
363 // is actually in week 2.
364 jan1wday := (wday - yday + 7*53) % 7
365 if Tue <= jan1wday && jan1wday <= Thu {
366 week++
369 // If the week number is still 0, we're in early January but in
370 // the last week of last year.
371 if week == 0 {
372 year--
373 week = 52
374 // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
375 // meaning Jan 1 of the next year is a Friday
376 // or it was a leap year and Jan 1 of the next year is a Saturday.
377 if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
378 week++
382 // December 29 to 31 are in week 1 of next year if
383 // they are after the last Thursday of the year and
384 // December 31 is a Monday, Tuesday, or Wednesday.
385 if month == December && day >= 29 && wday < Thu {
386 if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
387 year++
388 week = 1
392 return
395 // Clock returns the hour, minute, and second within the day specified by t.
396 func (t Time) Clock() (hour, min, sec int) {
397 return absClock(t.abs())
400 // absClock is like clock but operates on an absolute time.
401 func absClock(abs uint64) (hour, min, sec int) {
402 sec = int(abs % secondsPerDay)
403 hour = sec / secondsPerHour
404 sec -= hour * secondsPerHour
405 min = sec / secondsPerMinute
406 sec -= min * secondsPerMinute
407 return
410 // Hour returns the hour within the day specified by t, in the range [0, 23].
411 func (t Time) Hour() int {
412 return int(t.abs()%secondsPerDay) / secondsPerHour
415 // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
416 func (t Time) Minute() int {
417 return int(t.abs()%secondsPerHour) / secondsPerMinute
420 // Second returns the second offset within the minute specified by t, in the range [0, 59].
421 func (t Time) Second() int {
422 return int(t.abs() % secondsPerMinute)
425 // Nanosecond returns the nanosecond offset within the second specified by t,
426 // in the range [0, 999999999].
427 func (t Time) Nanosecond() int {
428 return int(t.nsec)
431 // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
432 // and [1,366] in leap years.
433 func (t Time) YearDay() int {
434 _, _, _, yday := t.date(false)
435 return yday + 1
438 // A Duration represents the elapsed time between two instants
439 // as an int64 nanosecond count. The representation limits the
440 // largest representable duration to approximately 290 years.
441 type Duration int64
443 const (
444 minDuration Duration = -1 << 63
445 maxDuration Duration = 1<<63 - 1
448 // Common durations. There is no definition for units of Day or larger
449 // to avoid confusion across daylight savings time zone transitions.
451 // To count the number of units in a Duration, divide:
452 // second := time.Second
453 // fmt.Print(int64(second/time.Millisecond)) // prints 1000
455 // To convert an integer number of units to a Duration, multiply:
456 // seconds := 10
457 // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
459 const (
460 Nanosecond Duration = 1
461 Microsecond = 1000 * Nanosecond
462 Millisecond = 1000 * Microsecond
463 Second = 1000 * Millisecond
464 Minute = 60 * Second
465 Hour = 60 * Minute
468 // String returns a string representing the duration in the form "72h3m0.5s".
469 // Leading zero units are omitted. As a special case, durations less than one
470 // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
471 // that the leading digit is non-zero. The zero duration formats as 0s.
472 func (d Duration) String() string {
473 // Largest time is 2540400h10m10.000000000s
474 var buf [32]byte
475 w := len(buf)
477 u := uint64(d)
478 neg := d < 0
479 if neg {
480 u = -u
483 if u < uint64(Second) {
484 // Special case: if duration is smaller than a second,
485 // use smaller units, like 1.2ms
486 var prec int
488 buf[w] = 's'
490 switch {
491 case u == 0:
492 return "0s"
493 case u < uint64(Microsecond):
494 // print nanoseconds
495 prec = 0
496 buf[w] = 'n'
497 case u < uint64(Millisecond):
498 // print microseconds
499 prec = 3
500 // U+00B5 'µ' micro sign == 0xC2 0xB5
501 w-- // Need room for two bytes.
502 copy(buf[w:], "µ")
503 default:
504 // print milliseconds
505 prec = 6
506 buf[w] = 'm'
508 w, u = fmtFrac(buf[:w], u, prec)
509 w = fmtInt(buf[:w], u)
510 } else {
512 buf[w] = 's'
514 w, u = fmtFrac(buf[:w], u, 9)
516 // u is now integer seconds
517 w = fmtInt(buf[:w], u%60)
518 u /= 60
520 // u is now integer minutes
521 if u > 0 {
523 buf[w] = 'm'
524 w = fmtInt(buf[:w], u%60)
525 u /= 60
527 // u is now integer hours
528 // Stop at hours because days can be different lengths.
529 if u > 0 {
531 buf[w] = 'h'
532 w = fmtInt(buf[:w], u)
537 if neg {
539 buf[w] = '-'
542 return string(buf[w:])
545 // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
546 // tail of buf, omitting trailing zeros. it omits the decimal
547 // point too when the fraction is 0. It returns the index where the
548 // output bytes begin and the value v/10**prec.
549 func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
550 // Omit trailing zeros up to and including decimal point.
551 w := len(buf)
552 print := false
553 for i := 0; i < prec; i++ {
554 digit := v % 10
555 print = print || digit != 0
556 if print {
558 buf[w] = byte(digit) + '0'
560 v /= 10
562 if print {
564 buf[w] = '.'
566 return w, v
569 // fmtInt formats v into the tail of buf.
570 // It returns the index where the output begins.
571 func fmtInt(buf []byte, v uint64) int {
572 w := len(buf)
573 if v == 0 {
575 buf[w] = '0'
576 } else {
577 for v > 0 {
579 buf[w] = byte(v%10) + '0'
580 v /= 10
583 return w
586 // Nanoseconds returns the duration as an integer nanosecond count.
587 func (d Duration) Nanoseconds() int64 { return int64(d) }
589 // These methods return float64 because the dominant
590 // use case is for printing a floating point number like 1.5s, and
591 // a truncation to integer would make them not useful in those cases.
592 // Splitting the integer and fraction ourselves guarantees that
593 // converting the returned float64 to an integer rounds the same
594 // way that a pure integer conversion would have, even in cases
595 // where, say, float64(d.Nanoseconds())/1e9 would have rounded
596 // differently.
598 // Seconds returns the duration as a floating point number of seconds.
599 func (d Duration) Seconds() float64 {
600 sec := d / Second
601 nsec := d % Second
602 return float64(sec) + float64(nsec)/1e9
605 // Minutes returns the duration as a floating point number of minutes.
606 func (d Duration) Minutes() float64 {
607 min := d / Minute
608 nsec := d % Minute
609 return float64(min) + float64(nsec)/(60*1e9)
612 // Hours returns the duration as a floating point number of hours.
613 func (d Duration) Hours() float64 {
614 hour := d / Hour
615 nsec := d % Hour
616 return float64(hour) + float64(nsec)/(60*60*1e9)
619 // Add returns the time t+d.
620 func (t Time) Add(d Duration) Time {
621 t.sec += int64(d / 1e9)
622 nsec := t.nsec + int32(d%1e9)
623 if nsec >= 1e9 {
624 t.sec++
625 nsec -= 1e9
626 } else if nsec < 0 {
627 t.sec--
628 nsec += 1e9
630 t.nsec = nsec
631 return t
634 // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
635 // value that can be stored in a Duration, the maximum (or minimum) duration
636 // will be returned.
637 // To compute t-d for a duration d, use t.Add(-d).
638 func (t Time) Sub(u Time) Duration {
639 d := Duration(t.sec-u.sec)*Second + Duration(t.nsec-u.nsec)
640 // Check for overflow or underflow.
641 switch {
642 case u.Add(d).Equal(t):
643 return d // d is correct
644 case t.Before(u):
645 return minDuration // t - u is negative out of range
646 default:
647 return maxDuration // t - u is positive out of range
651 // Since returns the time elapsed since t.
652 // It is shorthand for time.Now().Sub(t).
653 func Since(t Time) Duration {
654 return Now().Sub(t)
657 // Until returns the duration until t.
658 // It is shorthand for t.Sub(time.Now()).
659 func Until(t Time) Duration {
660 return t.Sub(Now())
663 // AddDate returns the time corresponding to adding the
664 // given number of years, months, and days to t.
665 // For example, AddDate(-1, 2, 3) applied to January 1, 2011
666 // returns March 4, 2010.
668 // AddDate normalizes its result in the same way that Date does,
669 // so, for example, adding one month to October 31 yields
670 // December 1, the normalized form for November 31.
671 func (t Time) AddDate(years int, months int, days int) Time {
672 year, month, day := t.Date()
673 hour, min, sec := t.Clock()
674 return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.Location())
677 const (
678 secondsPerMinute = 60
679 secondsPerHour = 60 * 60
680 secondsPerDay = 24 * secondsPerHour
681 secondsPerWeek = 7 * secondsPerDay
682 daysPer400Years = 365*400 + 97
683 daysPer100Years = 365*100 + 24
684 daysPer4Years = 365*4 + 1
687 // date computes the year, day of year, and when full=true,
688 // the month and day in which t occurs.
689 func (t Time) date(full bool) (year int, month Month, day int, yday int) {
690 return absDate(t.abs(), full)
693 // absDate is like date but operates on an absolute time.
694 func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
695 // Split into time and day.
696 d := abs / secondsPerDay
698 // Account for 400 year cycles.
699 n := d / daysPer400Years
700 y := 400 * n
701 d -= daysPer400Years * n
703 // Cut off 100-year cycles.
704 // The last cycle has one extra leap year, so on the last day
705 // of that year, day / daysPer100Years will be 4 instead of 3.
706 // Cut it back down to 3 by subtracting n>>2.
707 n = d / daysPer100Years
708 n -= n >> 2
709 y += 100 * n
710 d -= daysPer100Years * n
712 // Cut off 4-year cycles.
713 // The last cycle has a missing leap year, which does not
714 // affect the computation.
715 n = d / daysPer4Years
716 y += 4 * n
717 d -= daysPer4Years * n
719 // Cut off years within a 4-year cycle.
720 // The last year is a leap year, so on the last day of that year,
721 // day / 365 will be 4 instead of 3. Cut it back down to 3
722 // by subtracting n>>2.
723 n = d / 365
724 n -= n >> 2
725 y += n
726 d -= 365 * n
728 year = int(int64(y) + absoluteZeroYear)
729 yday = int(d)
731 if !full {
732 return
735 day = yday
736 if isLeap(year) {
737 // Leap year
738 switch {
739 case day > 31+29-1:
740 // After leap day; pretend it wasn't there.
741 day--
742 case day == 31+29-1:
743 // Leap day.
744 month = February
745 day = 29
746 return
750 // Estimate month on assumption that every month has 31 days.
751 // The estimate may be too low by at most one month, so adjust.
752 month = Month(day / 31)
753 end := int(daysBefore[month+1])
754 var begin int
755 if day >= end {
756 month++
757 begin = end
758 } else {
759 begin = int(daysBefore[month])
762 month++ // because January is 1
763 day = day - begin + 1
764 return
767 // daysBefore[m] counts the number of days in a non-leap year
768 // before month m begins. There is an entry for m=12, counting
769 // the number of days before January of next year (365).
770 var daysBefore = [...]int32{
773 31 + 28,
774 31 + 28 + 31,
775 31 + 28 + 31 + 30,
776 31 + 28 + 31 + 30 + 31,
777 31 + 28 + 31 + 30 + 31 + 30,
778 31 + 28 + 31 + 30 + 31 + 30 + 31,
779 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
780 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
781 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
782 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
783 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
786 func daysIn(m Month, year int) int {
787 if m == February && isLeap(year) {
788 return 29
790 return int(daysBefore[m] - daysBefore[m-1])
793 // Provided by package runtime.
794 func now() (sec int64, nsec int32)
796 // Now returns the current local time.
797 func Now() Time {
798 sec, nsec := now()
799 return Time{sec + unixToInternal, nsec, Local}
802 // UTC returns t with the location set to UTC.
803 func (t Time) UTC() Time {
804 t.setLoc(&utcLoc)
805 return t
808 // Local returns t with the location set to local time.
809 func (t Time) Local() Time {
810 t.setLoc(Local)
811 return t
814 // In returns t with the location information set to loc.
816 // In panics if loc is nil.
817 func (t Time) In(loc *Location) Time {
818 if loc == nil {
819 panic("time: missing Location in call to Time.In")
821 t.setLoc(loc)
822 return t
825 // Location returns the time zone information associated with t.
826 func (t Time) Location() *Location {
827 l := t.loc
828 if l == nil {
829 l = UTC
831 return l
834 // Zone computes the time zone in effect at time t, returning the abbreviated
835 // name of the zone (such as "CET") and its offset in seconds east of UTC.
836 func (t Time) Zone() (name string, offset int) {
837 name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
838 return
841 // Unix returns t as a Unix time, the number of seconds elapsed
842 // since January 1, 1970 UTC.
843 func (t Time) Unix() int64 {
844 return t.sec + internalToUnix
847 // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
848 // since January 1, 1970 UTC. The result is undefined if the Unix time
849 // in nanoseconds cannot be represented by an int64 (a date before the year
850 // 1678 or after 2262). Note that this means the result of calling UnixNano
851 // on the zero Time is undefined.
852 func (t Time) UnixNano() int64 {
853 return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
856 const timeBinaryVersion byte = 1
858 // MarshalBinary implements the encoding.BinaryMarshaler interface.
859 func (t Time) MarshalBinary() ([]byte, error) {
860 var offsetMin int16 // minutes east of UTC. -1 is UTC.
862 if t.Location() == UTC {
863 offsetMin = -1
864 } else {
865 _, offset := t.Zone()
866 if offset%60 != 0 {
867 return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
869 offset /= 60
870 if offset < -32768 || offset == -1 || offset > 32767 {
871 return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
873 offsetMin = int16(offset)
876 enc := []byte{
877 timeBinaryVersion, // byte 0 : version
878 byte(t.sec >> 56), // bytes 1-8: seconds
879 byte(t.sec >> 48),
880 byte(t.sec >> 40),
881 byte(t.sec >> 32),
882 byte(t.sec >> 24),
883 byte(t.sec >> 16),
884 byte(t.sec >> 8),
885 byte(t.sec),
886 byte(t.nsec >> 24), // bytes 9-12: nanoseconds
887 byte(t.nsec >> 16),
888 byte(t.nsec >> 8),
889 byte(t.nsec),
890 byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
891 byte(offsetMin),
894 return enc, nil
897 // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
898 func (t *Time) UnmarshalBinary(data []byte) error {
899 buf := data
900 if len(buf) == 0 {
901 return errors.New("Time.UnmarshalBinary: no data")
904 if buf[0] != timeBinaryVersion {
905 return errors.New("Time.UnmarshalBinary: unsupported version")
908 if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
909 return errors.New("Time.UnmarshalBinary: invalid length")
912 buf = buf[1:]
913 t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
914 int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
916 buf = buf[8:]
917 t.nsec = int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
919 buf = buf[4:]
920 offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
922 if offset == -1*60 {
923 t.setLoc(&utcLoc)
924 } else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
925 t.setLoc(Local)
926 } else {
927 t.setLoc(FixedZone("", offset))
930 return nil
933 // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
934 // The same semantics will be provided by the generic MarshalBinary, MarshalText,
935 // UnmarshalBinary, UnmarshalText.
937 // GobEncode implements the gob.GobEncoder interface.
938 func (t Time) GobEncode() ([]byte, error) {
939 return t.MarshalBinary()
942 // GobDecode implements the gob.GobDecoder interface.
943 func (t *Time) GobDecode(data []byte) error {
944 return t.UnmarshalBinary(data)
947 // MarshalJSON implements the json.Marshaler interface.
948 // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
949 func (t Time) MarshalJSON() ([]byte, error) {
950 if y := t.Year(); y < 0 || y >= 10000 {
951 // RFC 3339 is clear that years are 4 digits exactly.
952 // See golang.org/issue/4556#c15 for more discussion.
953 return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
956 b := make([]byte, 0, len(RFC3339Nano)+2)
957 b = append(b, '"')
958 b = t.AppendFormat(b, RFC3339Nano)
959 b = append(b, '"')
960 return b, nil
963 // UnmarshalJSON implements the json.Unmarshaler interface.
964 // The time is expected to be a quoted string in RFC 3339 format.
965 func (t *Time) UnmarshalJSON(data []byte) error {
966 // Ignore null, like in the main JSON package.
967 if string(data) == "null" {
968 return nil
970 // Fractional seconds are handled implicitly by Parse.
971 var err error
972 *t, err = Parse(`"`+RFC3339+`"`, string(data))
973 return err
976 // MarshalText implements the encoding.TextMarshaler interface.
977 // The time is formatted in RFC 3339 format, with sub-second precision added if present.
978 func (t Time) MarshalText() ([]byte, error) {
979 if y := t.Year(); y < 0 || y >= 10000 {
980 return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
983 b := make([]byte, 0, len(RFC3339Nano))
984 return t.AppendFormat(b, RFC3339Nano), nil
987 // UnmarshalText implements the encoding.TextUnmarshaler interface.
988 // The time is expected to be in RFC 3339 format.
989 func (t *Time) UnmarshalText(data []byte) error {
990 // Fractional seconds are handled implicitly by Parse.
991 var err error
992 *t, err = Parse(RFC3339, string(data))
993 return err
996 // Unix returns the local Time corresponding to the given Unix time,
997 // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
998 // It is valid to pass nsec outside the range [0, 999999999].
999 // Not all sec values have a corresponding time value. One such
1000 // value is 1<<63-1 (the largest int64 value).
1001 func Unix(sec int64, nsec int64) Time {
1002 if nsec < 0 || nsec >= 1e9 {
1003 n := nsec / 1e9
1004 sec += n
1005 nsec -= n * 1e9
1006 if nsec < 0 {
1007 nsec += 1e9
1008 sec--
1011 return Time{sec + unixToInternal, int32(nsec), Local}
1014 func isLeap(year int) bool {
1015 return year%4 == 0 && (year%100 != 0 || year%400 == 0)
1018 // norm returns nhi, nlo such that
1019 // hi * base + lo == nhi * base + nlo
1020 // 0 <= nlo < base
1021 func norm(hi, lo, base int) (nhi, nlo int) {
1022 if lo < 0 {
1023 n := (-lo-1)/base + 1
1024 hi -= n
1025 lo += n * base
1027 if lo >= base {
1028 n := lo / base
1029 hi += n
1030 lo -= n * base
1032 return hi, lo
1035 // Date returns the Time corresponding to
1036 // yyyy-mm-dd hh:mm:ss + nsec nanoseconds
1037 // in the appropriate zone for that time in the given location.
1039 // The month, day, hour, min, sec, and nsec values may be outside
1040 // their usual ranges and will be normalized during the conversion.
1041 // For example, October 32 converts to November 1.
1043 // A daylight savings time transition skips or repeats times.
1044 // For example, in the United States, March 13, 2011 2:15am never occurred,
1045 // while November 6, 2011 1:15am occurred twice. In such cases, the
1046 // choice of time zone, and therefore the time, is not well-defined.
1047 // Date returns a time that is correct in one of the two zones involved
1048 // in the transition, but it does not guarantee which.
1050 // Date panics if loc is nil.
1051 func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
1052 if loc == nil {
1053 panic("time: missing Location in call to Date")
1056 // Normalize month, overflowing into year.
1057 m := int(month) - 1
1058 year, m = norm(year, m, 12)
1059 month = Month(m) + 1
1061 // Normalize nsec, sec, min, hour, overflowing into day.
1062 sec, nsec = norm(sec, nsec, 1e9)
1063 min, sec = norm(min, sec, 60)
1064 hour, min = norm(hour, min, 60)
1065 day, hour = norm(day, hour, 24)
1067 y := uint64(int64(year) - absoluteZeroYear)
1069 // Compute days since the absolute epoch.
1071 // Add in days from 400-year cycles.
1072 n := y / 400
1073 y -= 400 * n
1074 d := daysPer400Years * n
1076 // Add in 100-year cycles.
1077 n = y / 100
1078 y -= 100 * n
1079 d += daysPer100Years * n
1081 // Add in 4-year cycles.
1082 n = y / 4
1083 y -= 4 * n
1084 d += daysPer4Years * n
1086 // Add in non-leap years.
1087 n = y
1088 d += 365 * n
1090 // Add in days before this month.
1091 d += uint64(daysBefore[month-1])
1092 if isLeap(year) && month >= March {
1093 d++ // February 29
1096 // Add in days before today.
1097 d += uint64(day - 1)
1099 // Add in time elapsed today.
1100 abs := d * secondsPerDay
1101 abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
1103 unix := int64(abs) + (absoluteToInternal + internalToUnix)
1105 // Look for zone offset for t, so we can adjust to UTC.
1106 // The lookup function expects UTC, so we pass t in the
1107 // hope that it will not be too close to a zone transition,
1108 // and then adjust if it is.
1109 _, offset, _, start, end := loc.lookup(unix)
1110 if offset != 0 {
1111 switch utc := unix - int64(offset); {
1112 case utc < start:
1113 _, offset, _, _, _ = loc.lookup(start - 1)
1114 case utc >= end:
1115 _, offset, _, _, _ = loc.lookup(end)
1117 unix -= int64(offset)
1120 t := Time{unix + unixToInternal, int32(nsec), nil}
1121 t.setLoc(loc)
1122 return t
1125 // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
1126 // If d <= 0, Truncate returns t unchanged.
1128 // Truncate operates on the time as an absolute duration since the
1129 // zero time; it does not operate on the presentation form of the
1130 // time. Thus, Truncate(Hour) may return a time with a non-zero
1131 // minute, depending on the time's Location.
1132 func (t Time) Truncate(d Duration) Time {
1133 if d <= 0 {
1134 return t
1136 _, r := div(t, d)
1137 return t.Add(-r)
1140 // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
1141 // The rounding behavior for halfway values is to round up.
1142 // If d <= 0, Round returns t unchanged.
1144 // Round operates on the time as an absolute duration since the
1145 // zero time; it does not operate on the presentation form of the
1146 // time. Thus, Round(Hour) may return a time with a non-zero
1147 // minute, depending on the time's Location.
1148 func (t Time) Round(d Duration) Time {
1149 if d <= 0 {
1150 return t
1152 _, r := div(t, d)
1153 if r+r < d {
1154 return t.Add(-r)
1156 return t.Add(d - r)
1159 // div divides t by d and returns the quotient parity and remainder.
1160 // We don't use the quotient parity anymore (round half up instead of round to even)
1161 // but it's still here in case we change our minds.
1162 func div(t Time, d Duration) (qmod2 int, r Duration) {
1163 neg := false
1164 nsec := t.nsec
1165 if t.sec < 0 {
1166 // Operate on absolute value.
1167 neg = true
1168 t.sec = -t.sec
1169 nsec = -nsec
1170 if nsec < 0 {
1171 nsec += 1e9
1172 t.sec-- // t.sec >= 1 before the -- so safe
1176 switch {
1177 // Special case: 2d divides 1 second.
1178 case d < Second && Second%(d+d) == 0:
1179 qmod2 = int(nsec/int32(d)) & 1
1180 r = Duration(nsec % int32(d))
1182 // Special case: d is a multiple of 1 second.
1183 case d%Second == 0:
1184 d1 := int64(d / Second)
1185 qmod2 = int(t.sec/d1) & 1
1186 r = Duration(t.sec%d1)*Second + Duration(nsec)
1188 // General case.
1189 // This could be faster if more cleverness were applied,
1190 // but it's really only here to avoid special case restrictions in the API.
1191 // No one will care about these cases.
1192 default:
1193 // Compute nanoseconds as 128-bit number.
1194 sec := uint64(t.sec)
1195 tmp := (sec >> 32) * 1e9
1196 u1 := tmp >> 32
1197 u0 := tmp << 32
1198 tmp = (sec & 0xFFFFFFFF) * 1e9
1199 u0x, u0 := u0, u0+tmp
1200 if u0 < u0x {
1201 u1++
1203 u0x, u0 = u0, u0+uint64(nsec)
1204 if u0 < u0x {
1205 u1++
1208 // Compute remainder by subtracting r<<k for decreasing k.
1209 // Quotient parity is whether we subtract on last round.
1210 d1 := uint64(d)
1211 for d1>>63 != 1 {
1212 d1 <<= 1
1214 d0 := uint64(0)
1215 for {
1216 qmod2 = 0
1217 if u1 > d1 || u1 == d1 && u0 >= d0 {
1218 // subtract
1219 qmod2 = 1
1220 u0x, u0 = u0, u0-d0
1221 if u0 > u0x {
1222 u1--
1224 u1 -= d1
1226 if d1 == 0 && d0 == uint64(d) {
1227 break
1229 d0 >>= 1
1230 d0 |= (d1 & 1) << 63
1231 d1 >>= 1
1233 r = Duration(u0)
1236 if neg && r != 0 {
1237 // If input was negative and not an exact multiple of d, we computed q, r such that
1238 // q*d + r = -t
1239 // But the right answers are given by -(q-1), d-r:
1240 // q*d + r = -t
1241 // -q*d - r = t
1242 // -(q-1)*d + (d - r) = t
1243 qmod2 ^= 1
1244 r = d - r
1246 return