/
[official-gcc.git] / libquadmath / math / powq.c
blobd38632438250d265eff4e584effced7c96126504
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Expansions and modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
33 /* __ieee754_powl(x,y) return x**y
35 * n
36 * Method: Let x = 2 * (1+f)
37 * 1. Compute and return log2(x) in two pieces:
38 * log2(x) = w1 + w2,
39 * where w1 has 113-53 = 60 bit trailing zeros.
40 * 2. Perform y*log2(x) = n+y' by simulating muti-precision
41 * arithmetic, where |y'|<=0.5.
42 * 3. Return x**y = 2**n*exp(y'*log2)
44 * Special cases:
45 * 1. (anything) ** 0 is 1
46 * 2. (anything) ** 1 is itself
47 * 3. (anything) ** NAN is NAN
48 * 4. NAN ** (anything except 0) is NAN
49 * 5. +-(|x| > 1) ** +INF is +INF
50 * 6. +-(|x| > 1) ** -INF is +0
51 * 7. +-(|x| < 1) ** +INF is +0
52 * 8. +-(|x| < 1) ** -INF is +INF
53 * 9. +-1 ** +-INF is NAN
54 * 10. +0 ** (+anything except 0, NAN) is +0
55 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
56 * 12. +0 ** (-anything except 0, NAN) is +INF
57 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
58 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
59 * 15. +INF ** (+anything except 0,NAN) is +INF
60 * 16. +INF ** (-anything except 0,NAN) is +0
61 * 17. -INF ** (anything) = -0 ** (-anything)
62 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
63 * 19. (-anything except 0 and inf) ** (non-integer) is NAN
67 #include "quadmath-imp.h"
69 static const __float128 bp[] = {
70 1.0Q,
71 1.5Q,
74 /* log_2(1.5) */
75 static const __float128 dp_h[] = {
76 0.0,
77 5.8496250072115607565592654282227158546448E-1Q
80 /* Low part of log_2(1.5) */
81 static const __float128 dp_l[] = {
82 0.0,
83 1.0579781240112554492329533686862998106046E-16Q
86 static const __float128 zero = 0.0Q,
87 one = 1.0Q,
88 two = 2.0Q,
89 two113 = 1.0384593717069655257060992658440192E34Q,
90 huge = 1.0e3000Q,
91 tiny = 1.0e-3000Q;
93 /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
94 z = (x-1)/(x+1)
95 1 <= x <= 1.25
96 Peak relative error 2.3e-37 */
97 static const __float128 LN[] =
99 -3.0779177200290054398792536829702930623200E1Q,
100 6.5135778082209159921251824580292116201640E1Q,
101 -4.6312921812152436921591152809994014413540E1Q,
102 1.2510208195629420304615674658258363295208E1Q,
103 -9.9266909031921425609179910128531667336670E-1Q
105 static const __float128 LD[] =
107 -5.129862866715009066465422805058933131960E1Q,
108 1.452015077564081884387441590064272782044E2Q,
109 -1.524043275549860505277434040464085593165E2Q,
110 7.236063513651544224319663428634139768808E1Q,
111 -1.494198912340228235853027849917095580053E1Q
112 /* 1.0E0 */
115 /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
116 0 <= x <= 0.5
117 Peak relative error 5.7e-38 */
118 static const __float128 PN[] =
120 5.081801691915377692446852383385968225675E8Q,
121 9.360895299872484512023336636427675327355E6Q,
122 4.213701282274196030811629773097579432957E4Q,
123 5.201006511142748908655720086041570288182E1Q,
124 9.088368420359444263703202925095675982530E-3Q,
126 static const __float128 PD[] =
128 3.049081015149226615468111430031590411682E9Q,
129 1.069833887183886839966085436512368982758E8Q,
130 8.259257717868875207333991924545445705394E5Q,
131 1.872583833284143212651746812884298360922E3Q,
132 /* 1.0E0 */
135 static const __float128
136 /* ln 2 */
137 lg2 = 6.9314718055994530941723212145817656807550E-1Q,
138 lg2_h = 6.9314718055994528622676398299518041312695E-1Q,
139 lg2_l = 2.3190468138462996154948554638754786504121E-17Q,
140 ovt = 8.0085662595372944372e-0017Q,
141 /* 2/(3*log(2)) */
142 cp = 9.6179669392597560490661645400126142495110E-1Q,
143 cp_h = 9.6179669392597555432899980587535537779331E-1Q,
144 cp_l = 5.0577616648125906047157785230014751039424E-17Q;
146 __float128
147 powq (__float128 x, __float128 y)
149 __float128 z, ax, z_h, z_l, p_h, p_l;
150 __float128 y1, t1, t2, r, s, t, u, v, w;
151 __float128 s2, s_h, s_l, t_h, t_l;
152 int32_t i, j, k, yisint, n;
153 uint32_t ix, iy;
154 int32_t hx, hy;
155 ieee854_float128 o, p, q;
157 p.value = x;
158 hx = p.words32.w0;
159 ix = hx & 0x7fffffff;
161 q.value = y;
162 hy = q.words32.w0;
163 iy = hy & 0x7fffffff;
166 /* y==zero: x**0 = 1 */
167 if ((iy | q.words32.w1 | q.words32.w2 | q.words32.w3) == 0)
168 return one;
170 /* 1.0**y = 1; -1.0**+-Inf = 1 */
171 if (x == one)
172 return one;
173 if (x == -1.0Q && iy == 0x7fff0000
174 && (q.words32.w1 | q.words32.w2 | q.words32.w3) == 0)
175 return one;
177 /* +-NaN return x+y */
178 if ((ix > 0x7fff0000)
179 || ((ix == 0x7fff0000)
180 && ((p.words32.w1 | p.words32.w2 | p.words32.w3) != 0))
181 || (iy > 0x7fff0000)
182 || ((iy == 0x7fff0000)
183 && ((q.words32.w1 | q.words32.w2 | q.words32.w3) != 0)))
184 return x + y;
186 /* determine if y is an odd int when x < 0
187 * yisint = 0 ... y is not an integer
188 * yisint = 1 ... y is an odd int
189 * yisint = 2 ... y is an even int
191 yisint = 0;
192 if (hx < 0)
194 if (iy >= 0x40700000) /* 2^113 */
195 yisint = 2; /* even integer y */
196 else if (iy >= 0x3fff0000) /* 1.0 */
198 if (floorq (y) == y)
200 z = 0.5 * y;
201 if (floorq (z) == z)
202 yisint = 2;
203 else
204 yisint = 1;
209 /* special value of y */
210 if ((q.words32.w1 | q.words32.w2 | q.words32.w3) == 0)
212 if (iy == 0x7fff0000) /* y is +-inf */
214 if (((ix - 0x3fff0000) | p.words32.w1 | p.words32.w2 | p.words32.w3)
215 == 0)
216 return y - y; /* +-1**inf is NaN */
217 else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
218 return (hy >= 0) ? y : zero;
219 else /* (|x|<1)**-,+inf = inf,0 */
220 return (hy < 0) ? -y : zero;
222 if (iy == 0x3fff0000)
223 { /* y is +-1 */
224 if (hy < 0)
225 return one / x;
226 else
227 return x;
229 if (hy == 0x40000000)
230 return x * x; /* y is 2 */
231 if (hy == 0x3ffe0000)
232 { /* y is 0.5 */
233 if (hx >= 0) /* x >= +0 */
234 return sqrtq (x);
238 ax = fabsq (x);
239 /* special value of x */
240 if ((p.words32.w1 | p.words32.w2 | p.words32.w3) == 0)
242 if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
244 z = ax; /*x is +-0,+-inf,+-1 */
245 if (hy < 0)
246 z = one / z; /* z = (1/|x|) */
247 if (hx < 0)
249 if (((ix - 0x3fff0000) | yisint) == 0)
251 z = (z - z) / (z - z); /* (-1)**non-int is NaN */
253 else if (yisint == 1)
254 z = -z; /* (x<0)**odd = -(|x|**odd) */
256 return z;
260 /* (x<0)**(non-int) is NaN */
261 if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
262 return (x - x) / (x - x);
264 /* |y| is huge.
265 2^-16495 = 1/2 of smallest representable value.
266 If (1 - 1/131072)^y underflows, y > 1.4986e9 */
267 if (iy > 0x401d654b)
269 /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
270 if (iy > 0x407d654b)
272 if (ix <= 0x3ffeffff)
273 return (hy < 0) ? huge * huge : tiny * tiny;
274 if (ix >= 0x3fff0000)
275 return (hy > 0) ? huge * huge : tiny * tiny;
277 /* over/underflow if x is not close to one */
278 if (ix < 0x3ffeffff)
279 return (hy < 0) ? huge * huge : tiny * tiny;
280 if (ix > 0x3fff0000)
281 return (hy > 0) ? huge * huge : tiny * tiny;
284 n = 0;
285 /* take care subnormal number */
286 if (ix < 0x00010000)
288 ax *= two113;
289 n -= 113;
290 o.value = ax;
291 ix = o.words32.w0;
293 n += ((ix) >> 16) - 0x3fff;
294 j = ix & 0x0000ffff;
295 /* determine interval */
296 ix = j | 0x3fff0000; /* normalize ix */
297 if (j <= 0x3988)
298 k = 0; /* |x|<sqrt(3/2) */
299 else if (j < 0xbb67)
300 k = 1; /* |x|<sqrt(3) */
301 else
303 k = 0;
304 n += 1;
305 ix -= 0x00010000;
308 o.value = ax;
309 o.words32.w0 = ix;
310 ax = o.value;
312 /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
313 u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
314 v = one / (ax + bp[k]);
315 s = u * v;
316 s_h = s;
318 o.value = s_h;
319 o.words32.w3 = 0;
320 o.words32.w2 &= 0xf8000000;
321 s_h = o.value;
322 /* t_h=ax+bp[k] High */
323 t_h = ax + bp[k];
324 o.value = t_h;
325 o.words32.w3 = 0;
326 o.words32.w2 &= 0xf8000000;
327 t_h = o.value;
328 t_l = ax - (t_h - bp[k]);
329 s_l = v * ((u - s_h * t_h) - s_h * t_l);
330 /* compute log(ax) */
331 s2 = s * s;
332 u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
333 v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
334 r = s2 * s2 * u / v;
335 r += s_l * (s_h + s);
336 s2 = s_h * s_h;
337 t_h = 3.0 + s2 + r;
338 o.value = t_h;
339 o.words32.w3 = 0;
340 o.words32.w2 &= 0xf8000000;
341 t_h = o.value;
342 t_l = r - ((t_h - 3.0) - s2);
343 /* u+v = s*(1+...) */
344 u = s_h * t_h;
345 v = s_l * t_h + t_l * s;
346 /* 2/(3log2)*(s+...) */
347 p_h = u + v;
348 o.value = p_h;
349 o.words32.w3 = 0;
350 o.words32.w2 &= 0xf8000000;
351 p_h = o.value;
352 p_l = v - (p_h - u);
353 z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
354 z_l = cp_l * p_h + p_l * cp + dp_l[k];
355 /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
356 t = (__float128) n;
357 t1 = (((z_h + z_l) + dp_h[k]) + t);
358 o.value = t1;
359 o.words32.w3 = 0;
360 o.words32.w2 &= 0xf8000000;
361 t1 = o.value;
362 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
364 /* s (sign of result -ve**odd) = -1 else = 1 */
365 s = one;
366 if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
367 s = -one; /* (-ve)**(odd int) */
369 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
370 y1 = y;
371 o.value = y1;
372 o.words32.w3 = 0;
373 o.words32.w2 &= 0xf8000000;
374 y1 = o.value;
375 p_l = (y - y1) * t1 + y * t2;
376 p_h = y1 * t1;
377 z = p_l + p_h;
378 o.value = z;
379 j = o.words32.w0;
380 if (j >= 0x400d0000) /* z >= 16384 */
382 /* if z > 16384 */
383 if (((j - 0x400d0000) | o.words32.w1 | o.words32.w2 | o.words32.w3) != 0)
384 return s * huge * huge; /* overflow */
385 else
387 if (p_l + ovt > z - p_h)
388 return s * huge * huge; /* overflow */
391 else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
393 /* z < -16495 */
394 if (((j - 0xc00d01bc) | o.words32.w1 | o.words32.w2 | o.words32.w3)
395 != 0)
396 return s * tiny * tiny; /* underflow */
397 else
399 if (p_l <= z - p_h)
400 return s * tiny * tiny; /* underflow */
403 /* compute 2**(p_h+p_l) */
404 i = j & 0x7fffffff;
405 k = (i >> 16) - 0x3fff;
406 n = 0;
407 if (i > 0x3ffe0000)
408 { /* if |z| > 0.5, set n = [z+0.5] */
409 n = floorq (z + 0.5Q);
410 t = n;
411 p_h -= t;
413 t = p_l + p_h;
414 o.value = t;
415 o.words32.w3 = 0;
416 o.words32.w2 &= 0xf8000000;
417 t = o.value;
418 u = t * lg2_h;
419 v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
420 z = u + v;
421 w = v - (z - u);
422 /* exp(z) */
423 t = z * z;
424 u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
425 v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
426 t1 = z - t * u / v;
427 r = (z * t1) / (t1 - two) - (w + z * w);
428 z = one - (r - z);
429 o.value = z;
430 j = o.words32.w0;
431 j += (n << 16);
432 if ((j >> 16) <= 0)
433 z = scalbnq (z, n); /* subnormal output */
434 else
436 o.words32.w0 = j;
437 z = o.value;
439 return s * z;