Do not bias REG_N_REFS by loop_depth when optimising for size.
[official-gcc.git] / gcc / unroll.c
blob6ecef3246129b710dd22bebfd85a8fe69ff134e9
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 /* The prime factors looked for when trying to unroll a loop by some
135 number which is modulo the total number of iterations. Just checking
136 for these 4 prime factors will find at least one factor for 75% of
137 all numbers theoretically. Practically speaking, this will succeed
138 almost all of the time since loops are generally a multiple of 2
139 and/or 5. */
141 #define NUM_FACTORS 4
143 struct _factor { int factor, count; } factors[NUM_FACTORS]
144 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
146 /* Describes the different types of loop unrolling performed. */
148 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
150 #include "config.h"
151 #include "system.h"
152 #include "rtl.h"
153 #include "tm_p.h"
154 #include "insn-config.h"
155 #include "integrate.h"
156 #include "regs.h"
157 #include "recog.h"
158 #include "flags.h"
159 #include "function.h"
160 #include "expr.h"
161 #include "loop.h"
162 #include "toplev.h"
164 /* This controls which loops are unrolled, and by how much we unroll
165 them. */
167 #ifndef MAX_UNROLLED_INSNS
168 #define MAX_UNROLLED_INSNS 100
169 #endif
171 /* Indexed by register number, if non-zero, then it contains a pointer
172 to a struct induction for a DEST_REG giv which has been combined with
173 one of more address givs. This is needed because whenever such a DEST_REG
174 giv is modified, we must modify the value of all split address givs
175 that were combined with this DEST_REG giv. */
177 static struct induction **addr_combined_regs;
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the current value of the register, which depends on the
181 iteration number. */
183 static rtx *splittable_regs;
185 /* Indexed by register number, if this is a splittable induction variable,
186 this indicates if it was made from a derived giv. */
187 static char *derived_regs;
189 /* Indexed by register number, if this is a splittable induction variable,
190 then this will hold the number of instructions in the loop that modify
191 the induction variable. Used to ensure that only the last insn modifying
192 a split iv will update the original iv of the dest. */
194 static int *splittable_regs_updates;
196 /* Forward declarations. */
198 static void init_reg_map PARAMS ((struct inline_remap *, int));
199 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
200 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
201 static void final_reg_note_copy PARAMS ((rtx, struct inline_remap *));
202 static void copy_loop_body PARAMS ((rtx, rtx, struct inline_remap *, rtx, int,
203 enum unroll_types, rtx, rtx, rtx, rtx));
204 static void iteration_info PARAMS ((const struct loop *, rtx, rtx *, rtx *));
205 static int find_splittable_regs PARAMS ((const struct loop *,
206 enum unroll_types, rtx, int));
207 static int find_splittable_givs PARAMS ((const struct loop *,
208 struct iv_class *, enum unroll_types,
209 rtx, int));
210 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
211 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
212 static int verify_addresses PARAMS ((struct induction *, rtx, int));
213 static rtx remap_split_bivs PARAMS ((rtx));
214 static rtx find_common_reg_term PARAMS ((rtx, rtx));
215 static rtx subtract_reg_term PARAMS ((rtx, rtx));
216 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
218 /* Try to unroll one loop and split induction variables in the loop.
220 The loop is described by the arguments LOOP and INSN_COUNT.
221 END_INSERT_BEFORE indicates where insns should be added which need
222 to be executed when the loop falls through. STRENGTH_REDUCTION_P
223 indicates whether information generated in the strength reduction
224 pass is available.
226 This function is intended to be called from within `strength_reduce'
227 in loop.c. */
229 void
230 unroll_loop (loop, insn_count, end_insert_before, strength_reduce_p)
231 struct loop *loop;
232 int insn_count;
233 rtx end_insert_before;
234 int strength_reduce_p;
236 int i, j;
237 unsigned int r;
238 unsigned HOST_WIDE_INT temp;
239 int unroll_number = 1;
240 rtx copy_start, copy_end;
241 rtx insn, sequence, pattern, tem;
242 int max_labelno, max_insnno;
243 rtx insert_before;
244 struct inline_remap *map;
245 char *local_label = NULL;
246 char *local_regno;
247 unsigned int max_local_regnum;
248 unsigned int maxregnum;
249 rtx exit_label = 0;
250 rtx start_label;
251 struct iv_class *bl;
252 int splitting_not_safe = 0;
253 enum unroll_types unroll_type = UNROLL_NAIVE;
254 int loop_preconditioned = 0;
255 rtx safety_label;
256 /* This points to the last real insn in the loop, which should be either
257 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258 jumps). */
259 rtx last_loop_insn;
260 rtx loop_start = loop->start;
261 rtx loop_end = loop->end;
262 struct loop_info *loop_info = LOOP_INFO (loop);
264 /* Don't bother unrolling huge loops. Since the minimum factor is
265 two, loops greater than one half of MAX_UNROLLED_INSNS will never
266 be unrolled. */
267 if (insn_count > MAX_UNROLLED_INSNS / 2)
269 if (loop_dump_stream)
270 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
271 return;
274 /* When emitting debugger info, we can't unroll loops with unequal numbers
275 of block_beg and block_end notes, because that would unbalance the block
276 structure of the function. This can happen as a result of the
277 "if (foo) bar; else break;" optimization in jump.c. */
278 /* ??? Gcc has a general policy that -g is never supposed to change the code
279 that the compiler emits, so we must disable this optimization always,
280 even if debug info is not being output. This is rare, so this should
281 not be a significant performance problem. */
283 if (1 /* write_symbols != NO_DEBUG */)
285 int block_begins = 0;
286 int block_ends = 0;
288 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
290 if (GET_CODE (insn) == NOTE)
292 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
293 block_begins++;
294 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
295 block_ends++;
296 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
297 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
299 /* Note, would be nice to add code to unroll EH
300 regions, but until that time, we punt (don't
301 unroll). For the proper way of doing it, see
302 expand_inline_function. */
304 if (loop_dump_stream)
305 fprintf (loop_dump_stream,
306 "Unrolling failure: cannot unroll EH regions.\n");
307 return;
312 if (block_begins != block_ends)
314 if (loop_dump_stream)
315 fprintf (loop_dump_stream,
316 "Unrolling failure: Unbalanced block notes.\n");
317 return;
321 /* Determine type of unroll to perform. Depends on the number of iterations
322 and the size of the loop. */
324 /* If there is no strength reduce info, then set
325 loop_info->n_iterations to zero. This can happen if
326 strength_reduce can't find any bivs in the loop. A value of zero
327 indicates that the number of iterations could not be calculated. */
329 if (! strength_reduce_p)
330 loop_info->n_iterations = 0;
332 if (loop_dump_stream && loop_info->n_iterations > 0)
334 fputs ("Loop unrolling: ", loop_dump_stream);
335 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
336 loop_info->n_iterations);
337 fputs (" iterations.\n", loop_dump_stream);
340 /* Find and save a pointer to the last nonnote insn in the loop. */
342 last_loop_insn = prev_nonnote_insn (loop_end);
344 /* Calculate how many times to unroll the loop. Indicate whether or
345 not the loop is being completely unrolled. */
347 if (loop_info->n_iterations == 1)
349 /* If number of iterations is exactly 1, then eliminate the compare and
350 branch at the end of the loop since they will never be taken.
351 Then return, since no other action is needed here. */
353 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
354 don't do anything. */
356 if (GET_CODE (last_loop_insn) == BARRIER)
358 /* Delete the jump insn. This will delete the barrier also. */
359 delete_insn (PREV_INSN (last_loop_insn));
361 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
363 #ifdef HAVE_cc0
364 rtx prev = PREV_INSN (last_loop_insn);
365 #endif
366 delete_insn (last_loop_insn);
367 #ifdef HAVE_cc0
368 /* The immediately preceding insn may be a compare which must be
369 deleted. */
370 if (sets_cc0_p (prev))
371 delete_insn (prev);
372 #endif
375 /* Remove the loop notes since this is no longer a loop. */
376 if (loop->vtop)
377 delete_insn (loop->vtop);
378 if (loop->cont)
379 delete_insn (loop->cont);
380 if (loop_start)
381 delete_insn (loop_start);
382 if (loop_end)
383 delete_insn (loop_end);
385 return;
387 else if (loop_info->n_iterations > 0
388 /* Avoid overflow in the next expression. */
389 && loop_info->n_iterations < MAX_UNROLLED_INSNS
390 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
392 unroll_number = loop_info->n_iterations;
393 unroll_type = UNROLL_COMPLETELY;
395 else if (loop_info->n_iterations > 0)
397 /* Try to factor the number of iterations. Don't bother with the
398 general case, only using 2, 3, 5, and 7 will get 75% of all
399 numbers theoretically, and almost all in practice. */
401 for (i = 0; i < NUM_FACTORS; i++)
402 factors[i].count = 0;
404 temp = loop_info->n_iterations;
405 for (i = NUM_FACTORS - 1; i >= 0; i--)
406 while (temp % factors[i].factor == 0)
408 factors[i].count++;
409 temp = temp / factors[i].factor;
412 /* Start with the larger factors first so that we generally
413 get lots of unrolling. */
415 unroll_number = 1;
416 temp = insn_count;
417 for (i = 3; i >= 0; i--)
418 while (factors[i].count--)
420 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
422 unroll_number *= factors[i].factor;
423 temp *= factors[i].factor;
425 else
426 break;
429 /* If we couldn't find any factors, then unroll as in the normal
430 case. */
431 if (unroll_number == 1)
433 if (loop_dump_stream)
434 fprintf (loop_dump_stream,
435 "Loop unrolling: No factors found.\n");
437 else
438 unroll_type = UNROLL_MODULO;
442 /* Default case, calculate number of times to unroll loop based on its
443 size. */
444 if (unroll_type == UNROLL_NAIVE)
446 if (8 * insn_count < MAX_UNROLLED_INSNS)
447 unroll_number = 8;
448 else if (4 * insn_count < MAX_UNROLLED_INSNS)
449 unroll_number = 4;
450 else
451 unroll_number = 2;
454 /* Now we know how many times to unroll the loop. */
456 if (loop_dump_stream)
457 fprintf (loop_dump_stream,
458 "Unrolling loop %d times.\n", unroll_number);
461 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
463 /* Loops of these types can start with jump down to the exit condition
464 in rare circumstances.
466 Consider a pair of nested loops where the inner loop is part
467 of the exit code for the outer loop.
469 In this case jump.c will not duplicate the exit test for the outer
470 loop, so it will start with a jump to the exit code.
472 Then consider if the inner loop turns out to iterate once and
473 only once. We will end up deleting the jumps associated with
474 the inner loop. However, the loop notes are not removed from
475 the instruction stream.
477 And finally assume that we can compute the number of iterations
478 for the outer loop.
480 In this case unroll may want to unroll the outer loop even though
481 it starts with a jump to the outer loop's exit code.
483 We could try to optimize this case, but it hardly seems worth it.
484 Just return without unrolling the loop in such cases. */
486 insn = loop_start;
487 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
488 insn = NEXT_INSN (insn);
489 if (GET_CODE (insn) == JUMP_INSN)
490 return;
493 if (unroll_type == UNROLL_COMPLETELY)
495 /* Completely unrolling the loop: Delete the compare and branch at
496 the end (the last two instructions). This delete must done at the
497 very end of loop unrolling, to avoid problems with calls to
498 back_branch_in_range_p, which is called by find_splittable_regs.
499 All increments of splittable bivs/givs are changed to load constant
500 instructions. */
502 copy_start = loop_start;
504 /* Set insert_before to the instruction immediately after the JUMP_INSN
505 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
506 the loop will be correctly handled by copy_loop_body. */
507 insert_before = NEXT_INSN (last_loop_insn);
509 /* Set copy_end to the insn before the jump at the end of the loop. */
510 if (GET_CODE (last_loop_insn) == BARRIER)
511 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
512 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
514 copy_end = PREV_INSN (last_loop_insn);
515 #ifdef HAVE_cc0
516 /* The instruction immediately before the JUMP_INSN may be a compare
517 instruction which we do not want to copy. */
518 if (sets_cc0_p (PREV_INSN (copy_end)))
519 copy_end = PREV_INSN (copy_end);
520 #endif
522 else
524 /* We currently can't unroll a loop if it doesn't end with a
525 JUMP_INSN. There would need to be a mechanism that recognizes
526 this case, and then inserts a jump after each loop body, which
527 jumps to after the last loop body. */
528 if (loop_dump_stream)
529 fprintf (loop_dump_stream,
530 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
531 return;
534 else if (unroll_type == UNROLL_MODULO)
536 /* Partially unrolling the loop: The compare and branch at the end
537 (the last two instructions) must remain. Don't copy the compare
538 and branch instructions at the end of the loop. Insert the unrolled
539 code immediately before the compare/branch at the end so that the
540 code will fall through to them as before. */
542 copy_start = loop_start;
544 /* Set insert_before to the jump insn at the end of the loop.
545 Set copy_end to before the jump insn at the end of the loop. */
546 if (GET_CODE (last_loop_insn) == BARRIER)
548 insert_before = PREV_INSN (last_loop_insn);
549 copy_end = PREV_INSN (insert_before);
551 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
553 insert_before = last_loop_insn;
554 #ifdef HAVE_cc0
555 /* The instruction immediately before the JUMP_INSN may be a compare
556 instruction which we do not want to copy or delete. */
557 if (sets_cc0_p (PREV_INSN (insert_before)))
558 insert_before = PREV_INSN (insert_before);
559 #endif
560 copy_end = PREV_INSN (insert_before);
562 else
564 /* We currently can't unroll a loop if it doesn't end with a
565 JUMP_INSN. There would need to be a mechanism that recognizes
566 this case, and then inserts a jump after each loop body, which
567 jumps to after the last loop body. */
568 if (loop_dump_stream)
569 fprintf (loop_dump_stream,
570 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
571 return;
574 else
576 /* Normal case: Must copy the compare and branch instructions at the
577 end of the loop. */
579 if (GET_CODE (last_loop_insn) == BARRIER)
581 /* Loop ends with an unconditional jump and a barrier.
582 Handle this like above, don't copy jump and barrier.
583 This is not strictly necessary, but doing so prevents generating
584 unconditional jumps to an immediately following label.
586 This will be corrected below if the target of this jump is
587 not the start_label. */
589 insert_before = PREV_INSN (last_loop_insn);
590 copy_end = PREV_INSN (insert_before);
592 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
594 /* Set insert_before to immediately after the JUMP_INSN, so that
595 NOTEs at the end of the loop will be correctly handled by
596 copy_loop_body. */
597 insert_before = NEXT_INSN (last_loop_insn);
598 copy_end = last_loop_insn;
600 else
602 /* We currently can't unroll a loop if it doesn't end with a
603 JUMP_INSN. There would need to be a mechanism that recognizes
604 this case, and then inserts a jump after each loop body, which
605 jumps to after the last loop body. */
606 if (loop_dump_stream)
607 fprintf (loop_dump_stream,
608 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
609 return;
612 /* If copying exit test branches because they can not be eliminated,
613 then must convert the fall through case of the branch to a jump past
614 the end of the loop. Create a label to emit after the loop and save
615 it for later use. Do not use the label after the loop, if any, since
616 it might be used by insns outside the loop, or there might be insns
617 added before it later by final_[bg]iv_value which must be after
618 the real exit label. */
619 exit_label = gen_label_rtx ();
621 insn = loop_start;
622 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
623 insn = NEXT_INSN (insn);
625 if (GET_CODE (insn) == JUMP_INSN)
627 /* The loop starts with a jump down to the exit condition test.
628 Start copying the loop after the barrier following this
629 jump insn. */
630 copy_start = NEXT_INSN (insn);
632 /* Splitting induction variables doesn't work when the loop is
633 entered via a jump to the bottom, because then we end up doing
634 a comparison against a new register for a split variable, but
635 we did not execute the set insn for the new register because
636 it was skipped over. */
637 splitting_not_safe = 1;
638 if (loop_dump_stream)
639 fprintf (loop_dump_stream,
640 "Splitting not safe, because loop not entered at top.\n");
642 else
643 copy_start = loop_start;
646 /* This should always be the first label in the loop. */
647 start_label = NEXT_INSN (copy_start);
648 /* There may be a line number note and/or a loop continue note here. */
649 while (GET_CODE (start_label) == NOTE)
650 start_label = NEXT_INSN (start_label);
651 if (GET_CODE (start_label) != CODE_LABEL)
653 /* This can happen as a result of jump threading. If the first insns in
654 the loop test the same condition as the loop's backward jump, or the
655 opposite condition, then the backward jump will be modified to point
656 to elsewhere, and the loop's start label is deleted.
658 This case currently can not be handled by the loop unrolling code. */
660 if (loop_dump_stream)
661 fprintf (loop_dump_stream,
662 "Unrolling failure: unknown insns between BEG note and loop label.\n");
663 return;
665 if (LABEL_NAME (start_label))
667 /* The jump optimization pass must have combined the original start label
668 with a named label for a goto. We can't unroll this case because
669 jumps which go to the named label must be handled differently than
670 jumps to the loop start, and it is impossible to differentiate them
671 in this case. */
672 if (loop_dump_stream)
673 fprintf (loop_dump_stream,
674 "Unrolling failure: loop start label is gone\n");
675 return;
678 if (unroll_type == UNROLL_NAIVE
679 && GET_CODE (last_loop_insn) == BARRIER
680 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
681 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
683 /* In this case, we must copy the jump and barrier, because they will
684 not be converted to jumps to an immediately following label. */
686 insert_before = NEXT_INSN (last_loop_insn);
687 copy_end = last_loop_insn;
690 if (unroll_type == UNROLL_NAIVE
691 && GET_CODE (last_loop_insn) == JUMP_INSN
692 && start_label != JUMP_LABEL (last_loop_insn))
694 /* ??? The loop ends with a conditional branch that does not branch back
695 to the loop start label. In this case, we must emit an unconditional
696 branch to the loop exit after emitting the final branch.
697 copy_loop_body does not have support for this currently, so we
698 give up. It doesn't seem worthwhile to unroll anyways since
699 unrolling would increase the number of branch instructions
700 executed. */
701 if (loop_dump_stream)
702 fprintf (loop_dump_stream,
703 "Unrolling failure: final conditional branch not to loop start\n");
704 return;
707 /* Allocate a translation table for the labels and insn numbers.
708 They will be filled in as we copy the insns in the loop. */
710 max_labelno = max_label_num ();
711 max_insnno = get_max_uid ();
713 /* Various paths through the unroll code may reach the "egress" label
714 without initializing fields within the map structure.
716 To be safe, we use xcalloc to zero the memory. */
717 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
719 /* Allocate the label map. */
721 if (max_labelno > 0)
723 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
725 local_label = (char *) xcalloc (max_labelno, sizeof (char));
728 /* Search the loop and mark all local labels, i.e. the ones which have to
729 be distinct labels when copied. For all labels which might be
730 non-local, set their label_map entries to point to themselves.
731 If they happen to be local their label_map entries will be overwritten
732 before the loop body is copied. The label_map entries for local labels
733 will be set to a different value each time the loop body is copied. */
735 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
737 rtx note;
739 if (GET_CODE (insn) == CODE_LABEL)
740 local_label[CODE_LABEL_NUMBER (insn)] = 1;
741 else if (GET_CODE (insn) == JUMP_INSN)
743 if (JUMP_LABEL (insn))
744 set_label_in_map (map,
745 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
746 JUMP_LABEL (insn));
747 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
748 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
750 rtx pat = PATTERN (insn);
751 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
752 int len = XVECLEN (pat, diff_vec_p);
753 rtx label;
755 for (i = 0; i < len; i++)
757 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
758 set_label_in_map (map,
759 CODE_LABEL_NUMBER (label),
760 label);
764 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
765 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
766 XEXP (note, 0));
769 /* Allocate space for the insn map. */
771 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
773 /* Set this to zero, to indicate that we are doing loop unrolling,
774 not function inlining. */
775 map->inline_target = 0;
777 /* The register and constant maps depend on the number of registers
778 present, so the final maps can't be created until after
779 find_splittable_regs is called. However, they are needed for
780 preconditioning, so we create temporary maps when preconditioning
781 is performed. */
783 /* The preconditioning code may allocate two new pseudo registers. */
784 maxregnum = max_reg_num ();
786 /* local_regno is only valid for regnos < max_local_regnum. */
787 max_local_regnum = maxregnum;
789 /* Allocate and zero out the splittable_regs and addr_combined_regs
790 arrays. These must be zeroed here because they will be used if
791 loop preconditioning is performed, and must be zero for that case.
793 It is safe to do this here, since the extra registers created by the
794 preconditioning code and find_splittable_regs will never be used
795 to access the splittable_regs[] and addr_combined_regs[] arrays. */
797 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
798 derived_regs = (char *) xcalloc (maxregnum, sizeof (char));
799 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
800 addr_combined_regs
801 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
802 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
804 /* Mark all local registers, i.e. the ones which are referenced only
805 inside the loop. */
806 if (INSN_UID (copy_end) < max_uid_for_loop)
808 int copy_start_luid = INSN_LUID (copy_start);
809 int copy_end_luid = INSN_LUID (copy_end);
811 /* If a register is used in the jump insn, we must not duplicate it
812 since it will also be used outside the loop. */
813 if (GET_CODE (copy_end) == JUMP_INSN)
814 copy_end_luid--;
816 /* If we have a target that uses cc0, then we also must not duplicate
817 the insn that sets cc0 before the jump insn, if one is present. */
818 #ifdef HAVE_cc0
819 if (GET_CODE (copy_end) == JUMP_INSN && sets_cc0_p (PREV_INSN (copy_end)))
820 copy_end_luid--;
821 #endif
823 /* If copy_start points to the NOTE that starts the loop, then we must
824 use the next luid, because invariant pseudo-regs moved out of the loop
825 have their lifetimes modified to start here, but they are not safe
826 to duplicate. */
827 if (copy_start == loop_start)
828 copy_start_luid++;
830 /* If a pseudo's lifetime is entirely contained within this loop, then we
831 can use a different pseudo in each unrolled copy of the loop. This
832 results in better code. */
833 /* We must limit the generic test to max_reg_before_loop, because only
834 these pseudo registers have valid regno_first_uid info. */
835 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
836 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
837 && uid_luid[REGNO_FIRST_UID (r)] >= copy_start_luid
838 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
839 && uid_luid[REGNO_LAST_UID (r)] <= copy_end_luid)
841 /* However, we must also check for loop-carried dependencies.
842 If the value the pseudo has at the end of iteration X is
843 used by iteration X+1, then we can not use a different pseudo
844 for each unrolled copy of the loop. */
845 /* A pseudo is safe if regno_first_uid is a set, and this
846 set dominates all instructions from regno_first_uid to
847 regno_last_uid. */
848 /* ??? This check is simplistic. We would get better code if
849 this check was more sophisticated. */
850 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
851 copy_start, copy_end))
852 local_regno[r] = 1;
854 if (loop_dump_stream)
856 if (local_regno[r])
857 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
858 else
859 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
863 /* Givs that have been created from multiple biv increments always have
864 local registers. */
865 for (r = first_increment_giv; r <= last_increment_giv; r++)
867 local_regno[r] = 1;
868 if (loop_dump_stream)
869 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
873 /* If this loop requires exit tests when unrolled, check to see if we
874 can precondition the loop so as to make the exit tests unnecessary.
875 Just like variable splitting, this is not safe if the loop is entered
876 via a jump to the bottom. Also, can not do this if no strength
877 reduce info, because precondition_loop_p uses this info. */
879 /* Must copy the loop body for preconditioning before the following
880 find_splittable_regs call since that will emit insns which need to
881 be after the preconditioned loop copies, but immediately before the
882 unrolled loop copies. */
884 /* Also, it is not safe to split induction variables for the preconditioned
885 copies of the loop body. If we split induction variables, then the code
886 assumes that each induction variable can be represented as a function
887 of its initial value and the loop iteration number. This is not true
888 in this case, because the last preconditioned copy of the loop body
889 could be any iteration from the first up to the `unroll_number-1'th,
890 depending on the initial value of the iteration variable. Therefore
891 we can not split induction variables here, because we can not calculate
892 their value. Hence, this code must occur before find_splittable_regs
893 is called. */
895 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
897 rtx initial_value, final_value, increment;
898 enum machine_mode mode;
900 if (precondition_loop_p (loop,
901 &initial_value, &final_value, &increment,
902 &mode))
904 register rtx diff ;
905 rtx *labels;
906 int abs_inc, neg_inc;
908 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
910 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
911 "unroll_loop_precondition");
912 global_const_equiv_varray = map->const_equiv_varray;
914 init_reg_map (map, maxregnum);
916 /* Limit loop unrolling to 4, since this will make 7 copies of
917 the loop body. */
918 if (unroll_number > 4)
919 unroll_number = 4;
921 /* Save the absolute value of the increment, and also whether or
922 not it is negative. */
923 neg_inc = 0;
924 abs_inc = INTVAL (increment);
925 if (abs_inc < 0)
927 abs_inc = - abs_inc;
928 neg_inc = 1;
931 start_sequence ();
933 /* Calculate the difference between the final and initial values.
934 Final value may be a (plus (reg x) (const_int 1)) rtx.
935 Let the following cse pass simplify this if initial value is
936 a constant.
938 We must copy the final and initial values here to avoid
939 improperly shared rtl. */
941 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
942 copy_rtx (initial_value), NULL_RTX, 0,
943 OPTAB_LIB_WIDEN);
945 /* Now calculate (diff % (unroll * abs (increment))) by using an
946 and instruction. */
947 diff = expand_binop (GET_MODE (diff), and_optab, diff,
948 GEN_INT (unroll_number * abs_inc - 1),
949 NULL_RTX, 0, OPTAB_LIB_WIDEN);
951 /* Now emit a sequence of branches to jump to the proper precond
952 loop entry point. */
954 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
955 for (i = 0; i < unroll_number; i++)
956 labels[i] = gen_label_rtx ();
958 /* Check for the case where the initial value is greater than or
959 equal to the final value. In that case, we want to execute
960 exactly one loop iteration. The code below will fail for this
961 case. This check does not apply if the loop has a NE
962 comparison at the end. */
964 if (loop_info->comparison_code != NE)
966 emit_cmp_and_jump_insns (initial_value, final_value,
967 neg_inc ? LE : GE,
968 NULL_RTX, mode, 0, 0, labels[1]);
969 JUMP_LABEL (get_last_insn ()) = labels[1];
970 LABEL_NUSES (labels[1])++;
973 /* Assuming the unroll_number is 4, and the increment is 2, then
974 for a negative increment: for a positive increment:
975 diff = 0,1 precond 0 diff = 0,7 precond 0
976 diff = 2,3 precond 3 diff = 1,2 precond 1
977 diff = 4,5 precond 2 diff = 3,4 precond 2
978 diff = 6,7 precond 1 diff = 5,6 precond 3 */
980 /* We only need to emit (unroll_number - 1) branches here, the
981 last case just falls through to the following code. */
983 /* ??? This would give better code if we emitted a tree of branches
984 instead of the current linear list of branches. */
986 for (i = 0; i < unroll_number - 1; i++)
988 int cmp_const;
989 enum rtx_code cmp_code;
991 /* For negative increments, must invert the constant compared
992 against, except when comparing against zero. */
993 if (i == 0)
995 cmp_const = 0;
996 cmp_code = EQ;
998 else if (neg_inc)
1000 cmp_const = unroll_number - i;
1001 cmp_code = GE;
1003 else
1005 cmp_const = i;
1006 cmp_code = LE;
1009 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1010 cmp_code, NULL_RTX, mode, 0, 0,
1011 labels[i]);
1012 JUMP_LABEL (get_last_insn ()) = labels[i];
1013 LABEL_NUSES (labels[i])++;
1016 /* If the increment is greater than one, then we need another branch,
1017 to handle other cases equivalent to 0. */
1019 /* ??? This should be merged into the code above somehow to help
1020 simplify the code here, and reduce the number of branches emitted.
1021 For the negative increment case, the branch here could easily
1022 be merged with the `0' case branch above. For the positive
1023 increment case, it is not clear how this can be simplified. */
1025 if (abs_inc != 1)
1027 int cmp_const;
1028 enum rtx_code cmp_code;
1030 if (neg_inc)
1032 cmp_const = abs_inc - 1;
1033 cmp_code = LE;
1035 else
1037 cmp_const = abs_inc * (unroll_number - 1) + 1;
1038 cmp_code = GE;
1041 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1042 NULL_RTX, mode, 0, 0, labels[0]);
1043 JUMP_LABEL (get_last_insn ()) = labels[0];
1044 LABEL_NUSES (labels[0])++;
1047 sequence = gen_sequence ();
1048 end_sequence ();
1049 emit_insn_before (sequence, loop_start);
1051 /* Only the last copy of the loop body here needs the exit
1052 test, so set copy_end to exclude the compare/branch here,
1053 and then reset it inside the loop when get to the last
1054 copy. */
1056 if (GET_CODE (last_loop_insn) == BARRIER)
1057 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1058 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1060 copy_end = PREV_INSN (last_loop_insn);
1061 #ifdef HAVE_cc0
1062 /* The immediately preceding insn may be a compare which we do not
1063 want to copy. */
1064 if (sets_cc0_p (PREV_INSN (copy_end)))
1065 copy_end = PREV_INSN (copy_end);
1066 #endif
1068 else
1069 abort ();
1071 for (i = 1; i < unroll_number; i++)
1073 emit_label_after (labels[unroll_number - i],
1074 PREV_INSN (loop_start));
1076 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1077 bzero ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1078 (VARRAY_SIZE (map->const_equiv_varray)
1079 * sizeof (struct const_equiv_data)));
1080 map->const_age = 0;
1082 for (j = 0; j < max_labelno; j++)
1083 if (local_label[j])
1084 set_label_in_map (map, j, gen_label_rtx ());
1086 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1087 if (local_regno[r])
1089 map->reg_map[r]
1090 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1091 record_base_value (REGNO (map->reg_map[r]),
1092 regno_reg_rtx[r], 0);
1094 /* The last copy needs the compare/branch insns at the end,
1095 so reset copy_end here if the loop ends with a conditional
1096 branch. */
1098 if (i == unroll_number - 1)
1100 if (GET_CODE (last_loop_insn) == BARRIER)
1101 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1102 else
1103 copy_end = last_loop_insn;
1106 /* None of the copies are the `last_iteration', so just
1107 pass zero for that parameter. */
1108 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1109 unroll_type, start_label, loop_end,
1110 loop_start, copy_end);
1112 emit_label_after (labels[0], PREV_INSN (loop_start));
1114 if (GET_CODE (last_loop_insn) == BARRIER)
1116 insert_before = PREV_INSN (last_loop_insn);
1117 copy_end = PREV_INSN (insert_before);
1119 else
1121 insert_before = last_loop_insn;
1122 #ifdef HAVE_cc0
1123 /* The instruction immediately before the JUMP_INSN may be a compare
1124 instruction which we do not want to copy or delete. */
1125 if (sets_cc0_p (PREV_INSN (insert_before)))
1126 insert_before = PREV_INSN (insert_before);
1127 #endif
1128 copy_end = PREV_INSN (insert_before);
1131 /* Set unroll type to MODULO now. */
1132 unroll_type = UNROLL_MODULO;
1133 loop_preconditioned = 1;
1135 /* Clean up. */
1136 free (labels);
1140 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1141 the loop unless all loops are being unrolled. */
1142 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1144 if (loop_dump_stream)
1145 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1146 goto egress;
1149 /* At this point, we are guaranteed to unroll the loop. */
1151 /* Keep track of the unroll factor for the loop. */
1152 loop_info->unroll_number = unroll_number;
1154 /* For each biv and giv, determine whether it can be safely split into
1155 a different variable for each unrolled copy of the loop body.
1156 We precalculate and save this info here, since computing it is
1157 expensive.
1159 Do this before deleting any instructions from the loop, so that
1160 back_branch_in_range_p will work correctly. */
1162 if (splitting_not_safe)
1163 temp = 0;
1164 else
1165 temp = find_splittable_regs (loop, unroll_type,
1166 end_insert_before, unroll_number);
1168 /* find_splittable_regs may have created some new registers, so must
1169 reallocate the reg_map with the new larger size, and must realloc
1170 the constant maps also. */
1172 maxregnum = max_reg_num ();
1173 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1175 init_reg_map (map, maxregnum);
1177 if (map->const_equiv_varray == 0)
1178 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1179 maxregnum + temp * unroll_number * 2,
1180 "unroll_loop");
1181 global_const_equiv_varray = map->const_equiv_varray;
1183 /* Search the list of bivs and givs to find ones which need to be remapped
1184 when split, and set their reg_map entry appropriately. */
1186 for (bl = loop_iv_list; bl; bl = bl->next)
1188 if (REGNO (bl->biv->src_reg) != bl->regno)
1189 map->reg_map[bl->regno] = bl->biv->src_reg;
1190 #if 0
1191 /* Currently, non-reduced/final-value givs are never split. */
1192 for (v = bl->giv; v; v = v->next_iv)
1193 if (REGNO (v->src_reg) != bl->regno)
1194 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1195 #endif
1198 /* Use our current register alignment and pointer flags. */
1199 map->regno_pointer_flag = cfun->emit->regno_pointer_flag;
1200 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1202 /* If the loop is being partially unrolled, and the iteration variables
1203 are being split, and are being renamed for the split, then must fix up
1204 the compare/jump instruction at the end of the loop to refer to the new
1205 registers. This compare isn't copied, so the registers used in it
1206 will never be replaced if it isn't done here. */
1208 if (unroll_type == UNROLL_MODULO)
1210 insn = NEXT_INSN (copy_end);
1211 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1212 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1215 /* For unroll_number times, make a copy of each instruction
1216 between copy_start and copy_end, and insert these new instructions
1217 before the end of the loop. */
1219 for (i = 0; i < unroll_number; i++)
1221 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1222 bzero ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1223 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1224 map->const_age = 0;
1226 for (j = 0; j < max_labelno; j++)
1227 if (local_label[j])
1228 set_label_in_map (map, j, gen_label_rtx ());
1230 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1231 if (local_regno[r])
1233 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1234 record_base_value (REGNO (map->reg_map[r]),
1235 regno_reg_rtx[r], 0);
1238 /* If loop starts with a branch to the test, then fix it so that
1239 it points to the test of the first unrolled copy of the loop. */
1240 if (i == 0 && loop_start != copy_start)
1242 insn = PREV_INSN (copy_start);
1243 pattern = PATTERN (insn);
1245 tem = get_label_from_map (map,
1246 CODE_LABEL_NUMBER
1247 (XEXP (SET_SRC (pattern), 0)));
1248 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1250 /* Set the jump label so that it can be used by later loop unrolling
1251 passes. */
1252 JUMP_LABEL (insn) = tem;
1253 LABEL_NUSES (tem)++;
1256 copy_loop_body (copy_start, copy_end, map, exit_label,
1257 i == unroll_number - 1, unroll_type, start_label,
1258 loop_end, insert_before, insert_before);
1261 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1262 insn to be deleted. This prevents any runaway delete_insn call from
1263 more insns that it should, as it always stops at a CODE_LABEL. */
1265 /* Delete the compare and branch at the end of the loop if completely
1266 unrolling the loop. Deleting the backward branch at the end also
1267 deletes the code label at the start of the loop. This is done at
1268 the very end to avoid problems with back_branch_in_range_p. */
1270 if (unroll_type == UNROLL_COMPLETELY)
1271 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1272 else
1273 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1275 /* Delete all of the original loop instructions. Don't delete the
1276 LOOP_BEG note, or the first code label in the loop. */
1278 insn = NEXT_INSN (copy_start);
1279 while (insn != safety_label)
1281 /* ??? Don't delete named code labels. They will be deleted when the
1282 jump that references them is deleted. Otherwise, we end up deleting
1283 them twice, which causes them to completely disappear instead of turn
1284 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1285 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1286 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1287 associated LABEL_DECL to point to one of the new label instances. */
1288 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1289 if (insn != start_label
1290 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1291 && ! (GET_CODE (insn) == NOTE
1292 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1293 insn = delete_insn (insn);
1294 else
1295 insn = NEXT_INSN (insn);
1298 /* Can now delete the 'safety' label emitted to protect us from runaway
1299 delete_insn calls. */
1300 if (INSN_DELETED_P (safety_label))
1301 abort ();
1302 delete_insn (safety_label);
1304 /* If exit_label exists, emit it after the loop. Doing the emit here
1305 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1306 This is needed so that mostly_true_jump in reorg.c will treat jumps
1307 to this loop end label correctly, i.e. predict that they are usually
1308 not taken. */
1309 if (exit_label)
1310 emit_label_after (exit_label, loop_end);
1312 egress:
1313 if (unroll_type == UNROLL_COMPLETELY)
1315 /* Remove the loop notes since this is no longer a loop. */
1316 if (loop->vtop)
1317 delete_insn (loop->vtop);
1318 if (loop->cont)
1319 delete_insn (loop->cont);
1320 if (loop_start)
1321 delete_insn (loop_start);
1322 if (loop_end)
1323 delete_insn (loop_end);
1326 if (map->const_equiv_varray)
1327 VARRAY_FREE (map->const_equiv_varray);
1328 if (map->label_map)
1330 free (map->label_map);
1331 free (local_label);
1333 free (map->insn_map);
1334 free (splittable_regs);
1335 free (derived_regs);
1336 free (splittable_regs_updates);
1337 free (addr_combined_regs);
1338 free (local_regno);
1339 if (map->reg_map)
1340 free (map->reg_map);
1341 free (map);
1344 /* Return true if the loop can be safely, and profitably, preconditioned
1345 so that the unrolled copies of the loop body don't need exit tests.
1347 This only works if final_value, initial_value and increment can be
1348 determined, and if increment is a constant power of 2.
1349 If increment is not a power of 2, then the preconditioning modulo
1350 operation would require a real modulo instead of a boolean AND, and this
1351 is not considered `profitable'. */
1353 /* ??? If the loop is known to be executed very many times, or the machine
1354 has a very cheap divide instruction, then preconditioning is a win even
1355 when the increment is not a power of 2. Use RTX_COST to compute
1356 whether divide is cheap.
1357 ??? A divide by constant doesn't actually need a divide, look at
1358 expand_divmod. The reduced cost of this optimized modulo is not
1359 reflected in RTX_COST. */
1362 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1363 const struct loop *loop;
1364 rtx *initial_value, *final_value, *increment;
1365 enum machine_mode *mode;
1367 rtx loop_start = loop->start;
1368 struct loop_info *loop_info = LOOP_INFO (loop);
1370 if (loop_info->n_iterations > 0)
1372 *initial_value = const0_rtx;
1373 *increment = const1_rtx;
1374 *final_value = GEN_INT (loop_info->n_iterations);
1375 *mode = word_mode;
1377 if (loop_dump_stream)
1379 fputs ("Preconditioning: Success, number of iterations known, ",
1380 loop_dump_stream);
1381 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1382 loop_info->n_iterations);
1383 fputs (".\n", loop_dump_stream);
1385 return 1;
1388 if (loop_info->initial_value == 0)
1390 if (loop_dump_stream)
1391 fprintf (loop_dump_stream,
1392 "Preconditioning: Could not find initial value.\n");
1393 return 0;
1395 else if (loop_info->increment == 0)
1397 if (loop_dump_stream)
1398 fprintf (loop_dump_stream,
1399 "Preconditioning: Could not find increment value.\n");
1400 return 0;
1402 else if (GET_CODE (loop_info->increment) != CONST_INT)
1404 if (loop_dump_stream)
1405 fprintf (loop_dump_stream,
1406 "Preconditioning: Increment not a constant.\n");
1407 return 0;
1409 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1410 && (exact_log2 (- INTVAL (loop_info->increment)) < 0))
1412 if (loop_dump_stream)
1413 fprintf (loop_dump_stream,
1414 "Preconditioning: Increment not a constant power of 2.\n");
1415 return 0;
1418 /* Unsigned_compare and compare_dir can be ignored here, since they do
1419 not matter for preconditioning. */
1421 if (loop_info->final_value == 0)
1423 if (loop_dump_stream)
1424 fprintf (loop_dump_stream,
1425 "Preconditioning: EQ comparison loop.\n");
1426 return 0;
1429 /* Must ensure that final_value is invariant, so call
1430 loop_invariant_p to check. Before doing so, must check regno
1431 against max_reg_before_loop to make sure that the register is in
1432 the range covered by loop_invariant_p. If it isn't, then it is
1433 most likely a biv/giv which by definition are not invariant. */
1434 if ((GET_CODE (loop_info->final_value) == REG
1435 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1436 || (GET_CODE (loop_info->final_value) == PLUS
1437 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1438 || ! loop_invariant_p (loop, loop_info->final_value))
1440 if (loop_dump_stream)
1441 fprintf (loop_dump_stream,
1442 "Preconditioning: Final value not invariant.\n");
1443 return 0;
1446 /* Fail for floating point values, since the caller of this function
1447 does not have code to deal with them. */
1448 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1449 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1451 if (loop_dump_stream)
1452 fprintf (loop_dump_stream,
1453 "Preconditioning: Floating point final or initial value.\n");
1454 return 0;
1457 /* Fail if loop_info->iteration_var is not live before loop_start,
1458 since we need to test its value in the preconditioning code. */
1460 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_info->iteration_var))]
1461 > INSN_LUID (loop_start))
1463 if (loop_dump_stream)
1464 fprintf (loop_dump_stream,
1465 "Preconditioning: Iteration var not live before loop start.\n");
1466 return 0;
1469 /* Note that iteration_info biases the initial value for GIV iterators
1470 such as "while (i-- > 0)" so that we can calculate the number of
1471 iterations just like for BIV iterators.
1473 Also note that the absolute values of initial_value and
1474 final_value are unimportant as only their difference is used for
1475 calculating the number of loop iterations. */
1476 *initial_value = loop_info->initial_value;
1477 *increment = loop_info->increment;
1478 *final_value = loop_info->final_value;
1480 /* Decide what mode to do these calculations in. Choose the larger
1481 of final_value's mode and initial_value's mode, or a full-word if
1482 both are constants. */
1483 *mode = GET_MODE (*final_value);
1484 if (*mode == VOIDmode)
1486 *mode = GET_MODE (*initial_value);
1487 if (*mode == VOIDmode)
1488 *mode = word_mode;
1490 else if (*mode != GET_MODE (*initial_value)
1491 && (GET_MODE_SIZE (*mode)
1492 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1493 *mode = GET_MODE (*initial_value);
1495 /* Success! */
1496 if (loop_dump_stream)
1497 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1498 return 1;
1502 /* All pseudo-registers must be mapped to themselves. Two hard registers
1503 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1504 REGNUM, to avoid function-inlining specific conversions of these
1505 registers. All other hard regs can not be mapped because they may be
1506 used with different
1507 modes. */
1509 static void
1510 init_reg_map (map, maxregnum)
1511 struct inline_remap *map;
1512 int maxregnum;
1514 int i;
1516 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1517 map->reg_map[i] = regno_reg_rtx[i];
1518 /* Just clear the rest of the entries. */
1519 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1520 map->reg_map[i] = 0;
1522 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1523 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1524 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1525 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1528 /* Strength-reduction will often emit code for optimized biv/givs which
1529 calculates their value in a temporary register, and then copies the result
1530 to the iv. This procedure reconstructs the pattern computing the iv;
1531 verifying that all operands are of the proper form.
1533 PATTERN must be the result of single_set.
1534 The return value is the amount that the giv is incremented by. */
1536 static rtx
1537 calculate_giv_inc (pattern, src_insn, regno)
1538 rtx pattern, src_insn;
1539 unsigned int regno;
1541 rtx increment;
1542 rtx increment_total = 0;
1543 int tries = 0;
1545 retry:
1546 /* Verify that we have an increment insn here. First check for a plus
1547 as the set source. */
1548 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1550 /* SR sometimes computes the new giv value in a temp, then copies it
1551 to the new_reg. */
1552 src_insn = PREV_INSN (src_insn);
1553 pattern = PATTERN (src_insn);
1554 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1555 abort ();
1557 /* The last insn emitted is not needed, so delete it to avoid confusing
1558 the second cse pass. This insn sets the giv unnecessarily. */
1559 delete_insn (get_last_insn ());
1562 /* Verify that we have a constant as the second operand of the plus. */
1563 increment = XEXP (SET_SRC (pattern), 1);
1564 if (GET_CODE (increment) != CONST_INT)
1566 /* SR sometimes puts the constant in a register, especially if it is
1567 too big to be an add immed operand. */
1568 src_insn = PREV_INSN (src_insn);
1569 increment = SET_SRC (PATTERN (src_insn));
1571 /* SR may have used LO_SUM to compute the constant if it is too large
1572 for a load immed operand. In this case, the constant is in operand
1573 one of the LO_SUM rtx. */
1574 if (GET_CODE (increment) == LO_SUM)
1575 increment = XEXP (increment, 1);
1577 /* Some ports store large constants in memory and add a REG_EQUAL
1578 note to the store insn. */
1579 else if (GET_CODE (increment) == MEM)
1581 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1582 if (note)
1583 increment = XEXP (note, 0);
1586 else if (GET_CODE (increment) == IOR
1587 || GET_CODE (increment) == ASHIFT
1588 || GET_CODE (increment) == PLUS)
1590 /* The rs6000 port loads some constants with IOR.
1591 The alpha port loads some constants with ASHIFT and PLUS. */
1592 rtx second_part = XEXP (increment, 1);
1593 enum rtx_code code = GET_CODE (increment);
1595 src_insn = PREV_INSN (src_insn);
1596 increment = SET_SRC (PATTERN (src_insn));
1597 /* Don't need the last insn anymore. */
1598 delete_insn (get_last_insn ());
1600 if (GET_CODE (second_part) != CONST_INT
1601 || GET_CODE (increment) != CONST_INT)
1602 abort ();
1604 if (code == IOR)
1605 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1606 else if (code == PLUS)
1607 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1608 else
1609 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1612 if (GET_CODE (increment) != CONST_INT)
1613 abort ();
1615 /* The insn loading the constant into a register is no longer needed,
1616 so delete it. */
1617 delete_insn (get_last_insn ());
1620 if (increment_total)
1621 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1622 else
1623 increment_total = increment;
1625 /* Check that the source register is the same as the register we expected
1626 to see as the source. If not, something is seriously wrong. */
1627 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1628 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1630 /* Some machines (e.g. the romp), may emit two add instructions for
1631 certain constants, so lets try looking for another add immediately
1632 before this one if we have only seen one add insn so far. */
1634 if (tries == 0)
1636 tries++;
1638 src_insn = PREV_INSN (src_insn);
1639 pattern = PATTERN (src_insn);
1641 delete_insn (get_last_insn ());
1643 goto retry;
1646 abort ();
1649 return increment_total;
1652 /* Copy REG_NOTES, except for insn references, because not all insn_map
1653 entries are valid yet. We do need to copy registers now though, because
1654 the reg_map entries can change during copying. */
1656 static rtx
1657 initial_reg_note_copy (notes, map)
1658 rtx notes;
1659 struct inline_remap *map;
1661 rtx copy;
1663 if (notes == 0)
1664 return 0;
1666 copy = rtx_alloc (GET_CODE (notes));
1667 PUT_MODE (copy, GET_MODE (notes));
1669 if (GET_CODE (notes) == EXPR_LIST)
1670 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1671 else if (GET_CODE (notes) == INSN_LIST)
1672 /* Don't substitute for these yet. */
1673 XEXP (copy, 0) = XEXP (notes, 0);
1674 else
1675 abort ();
1677 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1679 return copy;
1682 /* Fixup insn references in copied REG_NOTES. */
1684 static void
1685 final_reg_note_copy (notes, map)
1686 rtx notes;
1687 struct inline_remap *map;
1689 rtx note;
1691 for (note = notes; note; note = XEXP (note, 1))
1692 if (GET_CODE (note) == INSN_LIST)
1693 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1696 /* Copy each instruction in the loop, substituting from map as appropriate.
1697 This is very similar to a loop in expand_inline_function. */
1699 static void
1700 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1701 unroll_type, start_label, loop_end, insert_before,
1702 copy_notes_from)
1703 rtx copy_start, copy_end;
1704 struct inline_remap *map;
1705 rtx exit_label;
1706 int last_iteration;
1707 enum unroll_types unroll_type;
1708 rtx start_label, loop_end, insert_before, copy_notes_from;
1710 rtx insn, pattern;
1711 rtx set, tem, copy = NULL_RTX;
1712 int dest_reg_was_split, i;
1713 #ifdef HAVE_cc0
1714 rtx cc0_insn = 0;
1715 #endif
1716 rtx final_label = 0;
1717 rtx giv_inc, giv_dest_reg, giv_src_reg;
1719 /* If this isn't the last iteration, then map any references to the
1720 start_label to final_label. Final label will then be emitted immediately
1721 after the end of this loop body if it was ever used.
1723 If this is the last iteration, then map references to the start_label
1724 to itself. */
1725 if (! last_iteration)
1727 final_label = gen_label_rtx ();
1728 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1729 final_label);
1731 else
1732 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1734 start_sequence ();
1736 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1737 Else gen_sequence could return a raw pattern for a jump which we pass
1738 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1739 a variety of losing behaviors later. */
1740 emit_note (0, NOTE_INSN_DELETED);
1742 insn = copy_start;
1745 insn = NEXT_INSN (insn);
1747 map->orig_asm_operands_vector = 0;
1749 switch (GET_CODE (insn))
1751 case INSN:
1752 pattern = PATTERN (insn);
1753 copy = 0;
1754 giv_inc = 0;
1756 /* Check to see if this is a giv that has been combined with
1757 some split address givs. (Combined in the sense that
1758 `combine_givs' in loop.c has put two givs in the same register.)
1759 In this case, we must search all givs based on the same biv to
1760 find the address givs. Then split the address givs.
1761 Do this before splitting the giv, since that may map the
1762 SET_DEST to a new register. */
1764 if ((set = single_set (insn))
1765 && GET_CODE (SET_DEST (set)) == REG
1766 && addr_combined_regs[REGNO (SET_DEST (set))])
1768 struct iv_class *bl;
1769 struct induction *v, *tv;
1770 unsigned int regno = REGNO (SET_DEST (set));
1772 v = addr_combined_regs[REGNO (SET_DEST (set))];
1773 bl = reg_biv_class[REGNO (v->src_reg)];
1775 /* Although the giv_inc amount is not needed here, we must call
1776 calculate_giv_inc here since it might try to delete the
1777 last insn emitted. If we wait until later to call it,
1778 we might accidentally delete insns generated immediately
1779 below by emit_unrolled_add. */
1781 if (! derived_regs[regno])
1782 giv_inc = calculate_giv_inc (set, insn, regno);
1784 /* Now find all address giv's that were combined with this
1785 giv 'v'. */
1786 for (tv = bl->giv; tv; tv = tv->next_iv)
1787 if (tv->giv_type == DEST_ADDR && tv->same == v)
1789 int this_giv_inc;
1791 /* If this DEST_ADDR giv was not split, then ignore it. */
1792 if (*tv->location != tv->dest_reg)
1793 continue;
1795 /* Scale this_giv_inc if the multiplicative factors of
1796 the two givs are different. */
1797 this_giv_inc = INTVAL (giv_inc);
1798 if (tv->mult_val != v->mult_val)
1799 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1800 * INTVAL (tv->mult_val));
1802 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1803 *tv->location = tv->dest_reg;
1805 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1807 /* Must emit an insn to increment the split address
1808 giv. Add in the const_adjust field in case there
1809 was a constant eliminated from the address. */
1810 rtx value, dest_reg;
1812 /* tv->dest_reg will be either a bare register,
1813 or else a register plus a constant. */
1814 if (GET_CODE (tv->dest_reg) == REG)
1815 dest_reg = tv->dest_reg;
1816 else
1817 dest_reg = XEXP (tv->dest_reg, 0);
1819 /* Check for shared address givs, and avoid
1820 incrementing the shared pseudo reg more than
1821 once. */
1822 if (! tv->same_insn && ! tv->shared)
1824 /* tv->dest_reg may actually be a (PLUS (REG)
1825 (CONST)) here, so we must call plus_constant
1826 to add the const_adjust amount before calling
1827 emit_unrolled_add below. */
1828 value = plus_constant (tv->dest_reg,
1829 tv->const_adjust);
1831 if (GET_CODE (value) == PLUS)
1833 /* The constant could be too large for an add
1834 immediate, so can't directly emit an insn
1835 here. */
1836 emit_unrolled_add (dest_reg, XEXP (value, 0),
1837 XEXP (value, 1));
1841 /* Reset the giv to be just the register again, in case
1842 it is used after the set we have just emitted.
1843 We must subtract the const_adjust factor added in
1844 above. */
1845 tv->dest_reg = plus_constant (dest_reg,
1846 - tv->const_adjust);
1847 *tv->location = tv->dest_reg;
1852 /* If this is a setting of a splittable variable, then determine
1853 how to split the variable, create a new set based on this split,
1854 and set up the reg_map so that later uses of the variable will
1855 use the new split variable. */
1857 dest_reg_was_split = 0;
1859 if ((set = single_set (insn))
1860 && GET_CODE (SET_DEST (set)) == REG
1861 && splittable_regs[REGNO (SET_DEST (set))])
1863 unsigned int regno = REGNO (SET_DEST (set));
1864 unsigned int src_regno;
1866 dest_reg_was_split = 1;
1868 giv_dest_reg = SET_DEST (set);
1869 if (derived_regs[regno])
1871 /* ??? This relies on SET_SRC (SET) to be of
1872 the form (plus (reg) (const_int)), and thus
1873 forces recombine_givs to restrict the kind
1874 of giv derivations it does before unrolling. */
1875 giv_src_reg = XEXP (SET_SRC (set), 0);
1876 giv_inc = XEXP (SET_SRC (set), 1);
1878 else
1880 giv_src_reg = giv_dest_reg;
1881 /* Compute the increment value for the giv, if it wasn't
1882 already computed above. */
1883 if (giv_inc == 0)
1884 giv_inc = calculate_giv_inc (set, insn, regno);
1886 src_regno = REGNO (giv_src_reg);
1888 if (unroll_type == UNROLL_COMPLETELY)
1890 /* Completely unrolling the loop. Set the induction
1891 variable to a known constant value. */
1893 /* The value in splittable_regs may be an invariant
1894 value, so we must use plus_constant here. */
1895 splittable_regs[regno]
1896 = plus_constant (splittable_regs[src_regno],
1897 INTVAL (giv_inc));
1899 if (GET_CODE (splittable_regs[regno]) == PLUS)
1901 giv_src_reg = XEXP (splittable_regs[regno], 0);
1902 giv_inc = XEXP (splittable_regs[regno], 1);
1904 else
1906 /* The splittable_regs value must be a REG or a
1907 CONST_INT, so put the entire value in the giv_src_reg
1908 variable. */
1909 giv_src_reg = splittable_regs[regno];
1910 giv_inc = const0_rtx;
1913 else
1915 /* Partially unrolling loop. Create a new pseudo
1916 register for the iteration variable, and set it to
1917 be a constant plus the original register. Except
1918 on the last iteration, when the result has to
1919 go back into the original iteration var register. */
1921 /* Handle bivs which must be mapped to a new register
1922 when split. This happens for bivs which need their
1923 final value set before loop entry. The new register
1924 for the biv was stored in the biv's first struct
1925 induction entry by find_splittable_regs. */
1927 if (regno < max_reg_before_loop
1928 && REG_IV_TYPE (regno) == BASIC_INDUCT)
1930 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1931 giv_dest_reg = giv_src_reg;
1934 #if 0
1935 /* If non-reduced/final-value givs were split, then
1936 this would have to remap those givs also. See
1937 find_splittable_regs. */
1938 #endif
1940 splittable_regs[regno]
1941 = GEN_INT (INTVAL (giv_inc)
1942 + INTVAL (splittable_regs[src_regno]));
1943 giv_inc = splittable_regs[regno];
1945 /* Now split the induction variable by changing the dest
1946 of this insn to a new register, and setting its
1947 reg_map entry to point to this new register.
1949 If this is the last iteration, and this is the last insn
1950 that will update the iv, then reuse the original dest,
1951 to ensure that the iv will have the proper value when
1952 the loop exits or repeats.
1954 Using splittable_regs_updates here like this is safe,
1955 because it can only be greater than one if all
1956 instructions modifying the iv are always executed in
1957 order. */
1959 if (! last_iteration
1960 || (splittable_regs_updates[regno]-- != 1))
1962 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1963 giv_dest_reg = tem;
1964 map->reg_map[regno] = tem;
1965 record_base_value (REGNO (tem),
1966 giv_inc == const0_rtx
1967 ? giv_src_reg
1968 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1969 giv_src_reg, giv_inc),
1972 else
1973 map->reg_map[regno] = giv_src_reg;
1976 /* The constant being added could be too large for an add
1977 immediate, so can't directly emit an insn here. */
1978 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1979 copy = get_last_insn ();
1980 pattern = PATTERN (copy);
1982 else
1984 pattern = copy_rtx_and_substitute (pattern, map, 0);
1985 copy = emit_insn (pattern);
1987 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1989 #ifdef HAVE_cc0
1990 /* If this insn is setting CC0, it may need to look at
1991 the insn that uses CC0 to see what type of insn it is.
1992 In that case, the call to recog via validate_change will
1993 fail. So don't substitute constants here. Instead,
1994 do it when we emit the following insn.
1996 For example, see the pyr.md file. That machine has signed and
1997 unsigned compares. The compare patterns must check the
1998 following branch insn to see which what kind of compare to
1999 emit.
2001 If the previous insn set CC0, substitute constants on it as
2002 well. */
2003 if (sets_cc0_p (PATTERN (copy)) != 0)
2004 cc0_insn = copy;
2005 else
2007 if (cc0_insn)
2008 try_constants (cc0_insn, map);
2009 cc0_insn = 0;
2010 try_constants (copy, map);
2012 #else
2013 try_constants (copy, map);
2014 #endif
2016 /* Make split induction variable constants `permanent' since we
2017 know there are no backward branches across iteration variable
2018 settings which would invalidate this. */
2019 if (dest_reg_was_split)
2021 int regno = REGNO (SET_DEST (set));
2023 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2024 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2025 == map->const_age))
2026 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2028 break;
2030 case JUMP_INSN:
2031 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2032 copy = emit_jump_insn (pattern);
2033 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2035 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2036 && ! last_iteration)
2038 /* This is a branch to the beginning of the loop; this is the
2039 last insn being copied; and this is not the last iteration.
2040 In this case, we want to change the original fall through
2041 case to be a branch past the end of the loop, and the
2042 original jump label case to fall_through. */
2044 if (invert_exp (pattern, copy))
2046 if (! redirect_exp (&pattern,
2047 get_label_from_map (map,
2048 CODE_LABEL_NUMBER
2049 (JUMP_LABEL (insn))),
2050 exit_label, copy))
2051 abort ();
2053 else
2055 rtx jmp;
2056 rtx lab = gen_label_rtx ();
2057 /* Can't do it by reversing the jump (probably because we
2058 couldn't reverse the conditions), so emit a new
2059 jump_insn after COPY, and redirect the jump around
2060 that. */
2061 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2062 jmp = emit_barrier_after (jmp);
2063 emit_label_after (lab, jmp);
2064 LABEL_NUSES (lab) = 0;
2065 if (! redirect_exp (&pattern,
2066 get_label_from_map (map,
2067 CODE_LABEL_NUMBER
2068 (JUMP_LABEL (insn))),
2069 lab, copy))
2070 abort ();
2074 #ifdef HAVE_cc0
2075 if (cc0_insn)
2076 try_constants (cc0_insn, map);
2077 cc0_insn = 0;
2078 #endif
2079 try_constants (copy, map);
2081 /* Set the jump label of COPY correctly to avoid problems with
2082 later passes of unroll_loop, if INSN had jump label set. */
2083 if (JUMP_LABEL (insn))
2085 rtx label = 0;
2087 /* Can't use the label_map for every insn, since this may be
2088 the backward branch, and hence the label was not mapped. */
2089 if ((set = single_set (copy)))
2091 tem = SET_SRC (set);
2092 if (GET_CODE (tem) == LABEL_REF)
2093 label = XEXP (tem, 0);
2094 else if (GET_CODE (tem) == IF_THEN_ELSE)
2096 if (XEXP (tem, 1) != pc_rtx)
2097 label = XEXP (XEXP (tem, 1), 0);
2098 else
2099 label = XEXP (XEXP (tem, 2), 0);
2103 if (label && GET_CODE (label) == CODE_LABEL)
2104 JUMP_LABEL (copy) = label;
2105 else
2107 /* An unrecognizable jump insn, probably the entry jump
2108 for a switch statement. This label must have been mapped,
2109 so just use the label_map to get the new jump label. */
2110 JUMP_LABEL (copy)
2111 = get_label_from_map (map,
2112 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2115 /* If this is a non-local jump, then must increase the label
2116 use count so that the label will not be deleted when the
2117 original jump is deleted. */
2118 LABEL_NUSES (JUMP_LABEL (copy))++;
2120 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2121 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2123 rtx pat = PATTERN (copy);
2124 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2125 int len = XVECLEN (pat, diff_vec_p);
2126 int i;
2128 for (i = 0; i < len; i++)
2129 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2132 /* If this used to be a conditional jump insn but whose branch
2133 direction is now known, we must do something special. */
2134 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2136 #ifdef HAVE_cc0
2137 /* If the previous insn set cc0 for us, delete it. */
2138 if (sets_cc0_p (PREV_INSN (copy)))
2139 delete_insn (PREV_INSN (copy));
2140 #endif
2142 /* If this is now a no-op, delete it. */
2143 if (map->last_pc_value == pc_rtx)
2145 /* Don't let delete_insn delete the label referenced here,
2146 because we might possibly need it later for some other
2147 instruction in the loop. */
2148 if (JUMP_LABEL (copy))
2149 LABEL_NUSES (JUMP_LABEL (copy))++;
2150 delete_insn (copy);
2151 if (JUMP_LABEL (copy))
2152 LABEL_NUSES (JUMP_LABEL (copy))--;
2153 copy = 0;
2155 else
2156 /* Otherwise, this is unconditional jump so we must put a
2157 BARRIER after it. We could do some dead code elimination
2158 here, but jump.c will do it just as well. */
2159 emit_barrier ();
2161 break;
2163 case CALL_INSN:
2164 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2165 copy = emit_call_insn (pattern);
2166 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2168 /* Because the USAGE information potentially contains objects other
2169 than hard registers, we need to copy it. */
2170 CALL_INSN_FUNCTION_USAGE (copy)
2171 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2172 map, 0);
2174 #ifdef HAVE_cc0
2175 if (cc0_insn)
2176 try_constants (cc0_insn, map);
2177 cc0_insn = 0;
2178 #endif
2179 try_constants (copy, map);
2181 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2182 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2183 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2184 break;
2186 case CODE_LABEL:
2187 /* If this is the loop start label, then we don't need to emit a
2188 copy of this label since no one will use it. */
2190 if (insn != start_label)
2192 copy = emit_label (get_label_from_map (map,
2193 CODE_LABEL_NUMBER (insn)));
2194 map->const_age++;
2196 break;
2198 case BARRIER:
2199 copy = emit_barrier ();
2200 break;
2202 case NOTE:
2203 /* VTOP and CONT notes are valid only before the loop exit test.
2204 If placed anywhere else, loop may generate bad code. */
2205 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2206 the associated rtl. We do not want to share the structure in
2207 this new block. */
2209 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2210 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2211 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2212 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2213 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2214 copy = emit_note (NOTE_SOURCE_FILE (insn),
2215 NOTE_LINE_NUMBER (insn));
2216 else
2217 copy = 0;
2218 break;
2220 default:
2221 abort ();
2224 map->insn_map[INSN_UID (insn)] = copy;
2226 while (insn != copy_end);
2228 /* Now finish coping the REG_NOTES. */
2229 insn = copy_start;
2232 insn = NEXT_INSN (insn);
2233 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2234 || GET_CODE (insn) == CALL_INSN)
2235 && map->insn_map[INSN_UID (insn)])
2236 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2238 while (insn != copy_end);
2240 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2241 each of these notes here, since there may be some important ones, such as
2242 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2243 iteration, because the original notes won't be deleted.
2245 We can't use insert_before here, because when from preconditioning,
2246 insert_before points before the loop. We can't use copy_end, because
2247 there may be insns already inserted after it (which we don't want to
2248 copy) when not from preconditioning code. */
2250 if (! last_iteration)
2252 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2254 /* VTOP notes are valid only before the loop exit test.
2255 If placed anywhere else, loop may generate bad code.
2256 There is no need to test for NOTE_INSN_LOOP_CONT notes
2257 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2258 instructions before the last insn in the loop, and if the
2259 end test is that short, there will be a VTOP note between
2260 the CONT note and the test. */
2261 if (GET_CODE (insn) == NOTE
2262 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2263 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2264 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2265 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2269 if (final_label && LABEL_NUSES (final_label) > 0)
2270 emit_label (final_label);
2272 tem = gen_sequence ();
2273 end_sequence ();
2274 emit_insn_before (tem, insert_before);
2277 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2278 emitted. This will correctly handle the case where the increment value
2279 won't fit in the immediate field of a PLUS insns. */
2281 void
2282 emit_unrolled_add (dest_reg, src_reg, increment)
2283 rtx dest_reg, src_reg, increment;
2285 rtx result;
2287 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2288 dest_reg, 0, OPTAB_LIB_WIDEN);
2290 if (dest_reg != result)
2291 emit_move_insn (dest_reg, result);
2294 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2295 is a backward branch in that range that branches to somewhere between
2296 LOOP->START and INSN. Returns 0 otherwise. */
2298 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2299 In practice, this is not a problem, because this function is seldom called,
2300 and uses a negligible amount of CPU time on average. */
2303 back_branch_in_range_p (loop, insn)
2304 const struct loop *loop;
2305 rtx insn;
2307 rtx p, q, target_insn;
2308 rtx loop_start = loop->start;
2309 rtx loop_end = loop->end;
2310 rtx orig_loop_end = loop->end;
2312 /* Stop before we get to the backward branch at the end of the loop. */
2313 loop_end = prev_nonnote_insn (loop_end);
2314 if (GET_CODE (loop_end) == BARRIER)
2315 loop_end = PREV_INSN (loop_end);
2317 /* Check in case insn has been deleted, search forward for first non
2318 deleted insn following it. */
2319 while (INSN_DELETED_P (insn))
2320 insn = NEXT_INSN (insn);
2322 /* Check for the case where insn is the last insn in the loop. Deal
2323 with the case where INSN was a deleted loop test insn, in which case
2324 it will now be the NOTE_LOOP_END. */
2325 if (insn == loop_end || insn == orig_loop_end)
2326 return 0;
2328 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2330 if (GET_CODE (p) == JUMP_INSN)
2332 target_insn = JUMP_LABEL (p);
2334 /* Search from loop_start to insn, to see if one of them is
2335 the target_insn. We can't use INSN_LUID comparisons here,
2336 since insn may not have an LUID entry. */
2337 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2338 if (q == target_insn)
2339 return 1;
2343 return 0;
2346 /* Try to generate the simplest rtx for the expression
2347 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2348 value of giv's. */
2350 static rtx
2351 fold_rtx_mult_add (mult1, mult2, add1, mode)
2352 rtx mult1, mult2, add1;
2353 enum machine_mode mode;
2355 rtx temp, mult_res;
2356 rtx result;
2358 /* The modes must all be the same. This should always be true. For now,
2359 check to make sure. */
2360 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2361 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2362 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2363 abort ();
2365 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2366 will be a constant. */
2367 if (GET_CODE (mult1) == CONST_INT)
2369 temp = mult2;
2370 mult2 = mult1;
2371 mult1 = temp;
2374 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2375 if (! mult_res)
2376 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2378 /* Again, put the constant second. */
2379 if (GET_CODE (add1) == CONST_INT)
2381 temp = add1;
2382 add1 = mult_res;
2383 mult_res = temp;
2386 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2387 if (! result)
2388 result = gen_rtx_PLUS (mode, add1, mult_res);
2390 return result;
2393 /* Searches the list of induction struct's for the biv BL, to try to calculate
2394 the total increment value for one iteration of the loop as a constant.
2396 Returns the increment value as an rtx, simplified as much as possible,
2397 if it can be calculated. Otherwise, returns 0. */
2400 biv_total_increment (bl)
2401 struct iv_class *bl;
2403 struct induction *v;
2404 rtx result;
2406 /* For increment, must check every instruction that sets it. Each
2407 instruction must be executed only once each time through the loop.
2408 To verify this, we check that the insn is always executed, and that
2409 there are no backward branches after the insn that branch to before it.
2410 Also, the insn must have a mult_val of one (to make sure it really is
2411 an increment). */
2413 result = const0_rtx;
2414 for (v = bl->biv; v; v = v->next_iv)
2416 if (v->always_computable && v->mult_val == const1_rtx
2417 && ! v->maybe_multiple)
2418 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2419 else
2420 return 0;
2423 return result;
2426 /* Determine the initial value of the iteration variable, and the amount
2427 that it is incremented each loop. Use the tables constructed by
2428 the strength reduction pass to calculate these values.
2430 Initial_value and/or increment are set to zero if their values could not
2431 be calculated. */
2433 static void
2434 iteration_info (loop, iteration_var, initial_value, increment)
2435 const struct loop *loop ATTRIBUTE_UNUSED;
2436 rtx iteration_var, *initial_value, *increment;
2438 struct iv_class *bl;
2440 /* Clear the result values, in case no answer can be found. */
2441 *initial_value = 0;
2442 *increment = 0;
2444 /* The iteration variable can be either a giv or a biv. Check to see
2445 which it is, and compute the variable's initial value, and increment
2446 value if possible. */
2448 /* If this is a new register, can't handle it since we don't have any
2449 reg_iv_type entry for it. */
2450 if ((unsigned) REGNO (iteration_var) >= reg_iv_type->num_elements)
2452 if (loop_dump_stream)
2453 fprintf (loop_dump_stream,
2454 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2455 return;
2458 /* Reject iteration variables larger than the host wide int size, since they
2459 could result in a number of iterations greater than the range of our
2460 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
2461 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2462 > HOST_BITS_PER_WIDE_INT))
2464 if (loop_dump_stream)
2465 fprintf (loop_dump_stream,
2466 "Loop unrolling: Iteration var rejected because mode too large.\n");
2467 return;
2469 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2471 if (loop_dump_stream)
2472 fprintf (loop_dump_stream,
2473 "Loop unrolling: Iteration var not an integer.\n");
2474 return;
2476 else if (REG_IV_TYPE (REGNO (iteration_var)) == BASIC_INDUCT)
2478 /* When reg_iv_type / reg_iv_info is resized for biv increments
2479 that are turned into givs, reg_biv_class is not resized.
2480 So check here that we don't make an out-of-bounds access. */
2481 if (REGNO (iteration_var) >= max_reg_before_loop)
2482 abort ();
2484 /* Grab initial value, only useful if it is a constant. */
2485 bl = reg_biv_class[REGNO (iteration_var)];
2486 *initial_value = bl->initial_value;
2488 *increment = biv_total_increment (bl);
2490 else if (REG_IV_TYPE (REGNO (iteration_var)) == GENERAL_INDUCT)
2492 HOST_WIDE_INT offset = 0;
2493 struct induction *v = REG_IV_INFO (REGNO (iteration_var));
2495 if (REGNO (v->src_reg) >= max_reg_before_loop)
2496 abort ();
2498 bl = reg_biv_class[REGNO (v->src_reg)];
2500 /* Increment value is mult_val times the increment value of the biv. */
2502 *increment = biv_total_increment (bl);
2503 if (*increment)
2505 struct induction *biv_inc;
2507 *increment
2508 = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx, v->mode);
2509 /* The caller assumes that one full increment has occured at the
2510 first loop test. But that's not true when the biv is incremented
2511 after the giv is set (which is the usual case), e.g.:
2512 i = 6; do {;} while (i++ < 9) .
2513 Therefore, we bias the initial value by subtracting the amount of
2514 the increment that occurs between the giv set and the giv test. */
2515 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
2517 if (loop_insn_first_p (v->insn, biv_inc->insn))
2518 offset -= INTVAL (biv_inc->add_val);
2520 offset *= INTVAL (v->mult_val);
2522 if (loop_dump_stream)
2523 fprintf (loop_dump_stream,
2524 "Loop unrolling: Giv iterator, initial value bias %ld.\n",
2525 (long) offset);
2526 /* Initial value is mult_val times the biv's initial value plus
2527 add_val. Only useful if it is a constant. */
2528 *initial_value
2529 = fold_rtx_mult_add (v->mult_val,
2530 plus_constant (bl->initial_value, offset),
2531 v->add_val, v->mode);
2533 else
2535 if (loop_dump_stream)
2536 fprintf (loop_dump_stream,
2537 "Loop unrolling: Not basic or general induction var.\n");
2538 return;
2543 /* For each biv and giv, determine whether it can be safely split into
2544 a different variable for each unrolled copy of the loop body. If it
2545 is safe to split, then indicate that by saving some useful info
2546 in the splittable_regs array.
2548 If the loop is being completely unrolled, then splittable_regs will hold
2549 the current value of the induction variable while the loop is unrolled.
2550 It must be set to the initial value of the induction variable here.
2551 Otherwise, splittable_regs will hold the difference between the current
2552 value of the induction variable and the value the induction variable had
2553 at the top of the loop. It must be set to the value 0 here.
2555 Returns the total number of instructions that set registers that are
2556 splittable. */
2558 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2559 constant values are unnecessary, since we can easily calculate increment
2560 values in this case even if nothing is constant. The increment value
2561 should not involve a multiply however. */
2563 /* ?? Even if the biv/giv increment values aren't constant, it may still
2564 be beneficial to split the variable if the loop is only unrolled a few
2565 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2567 static int
2568 find_splittable_regs (loop, unroll_type, end_insert_before, unroll_number)
2569 const struct loop *loop;
2570 enum unroll_types unroll_type;
2571 rtx end_insert_before;
2572 int unroll_number;
2574 struct iv_class *bl;
2575 struct induction *v;
2576 rtx increment, tem;
2577 rtx biv_final_value;
2578 int biv_splittable;
2579 int result = 0;
2580 rtx loop_start = loop->start;
2581 rtx loop_end = loop->end;
2583 for (bl = loop_iv_list; bl; bl = bl->next)
2585 /* Biv_total_increment must return a constant value,
2586 otherwise we can not calculate the split values. */
2588 increment = biv_total_increment (bl);
2589 if (! increment || GET_CODE (increment) != CONST_INT)
2590 continue;
2592 /* The loop must be unrolled completely, or else have a known number
2593 of iterations and only one exit, or else the biv must be dead
2594 outside the loop, or else the final value must be known. Otherwise,
2595 it is unsafe to split the biv since it may not have the proper
2596 value on loop exit. */
2598 /* loop_number_exit_count is non-zero if the loop has an exit other than
2599 a fall through at the end. */
2601 biv_splittable = 1;
2602 biv_final_value = 0;
2603 if (unroll_type != UNROLL_COMPLETELY
2604 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2605 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2606 || ! bl->init_insn
2607 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2608 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2609 < INSN_LUID (bl->init_insn))
2610 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2611 && ! (biv_final_value = final_biv_value (loop, bl)))
2612 biv_splittable = 0;
2614 /* If any of the insns setting the BIV don't do so with a simple
2615 PLUS, we don't know how to split it. */
2616 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2617 if ((tem = single_set (v->insn)) == 0
2618 || GET_CODE (SET_DEST (tem)) != REG
2619 || REGNO (SET_DEST (tem)) != bl->regno
2620 || GET_CODE (SET_SRC (tem)) != PLUS)
2621 biv_splittable = 0;
2623 /* If final value is non-zero, then must emit an instruction which sets
2624 the value of the biv to the proper value. This is done after
2625 handling all of the givs, since some of them may need to use the
2626 biv's value in their initialization code. */
2628 /* This biv is splittable. If completely unrolling the loop, save
2629 the biv's initial value. Otherwise, save the constant zero. */
2631 if (biv_splittable == 1)
2633 if (unroll_type == UNROLL_COMPLETELY)
2635 /* If the initial value of the biv is itself (i.e. it is too
2636 complicated for strength_reduce to compute), or is a hard
2637 register, or it isn't invariant, then we must create a new
2638 pseudo reg to hold the initial value of the biv. */
2640 if (GET_CODE (bl->initial_value) == REG
2641 && (REGNO (bl->initial_value) == bl->regno
2642 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2643 || ! loop_invariant_p (loop, bl->initial_value)))
2645 rtx tem = gen_reg_rtx (bl->biv->mode);
2647 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2648 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2649 loop_start);
2651 if (loop_dump_stream)
2652 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2653 bl->regno, REGNO (tem));
2655 splittable_regs[bl->regno] = tem;
2657 else
2658 splittable_regs[bl->regno] = bl->initial_value;
2660 else
2661 splittable_regs[bl->regno] = const0_rtx;
2663 /* Save the number of instructions that modify the biv, so that
2664 we can treat the last one specially. */
2666 splittable_regs_updates[bl->regno] = bl->biv_count;
2667 result += bl->biv_count;
2669 if (loop_dump_stream)
2670 fprintf (loop_dump_stream,
2671 "Biv %d safe to split.\n", bl->regno);
2674 /* Check every giv that depends on this biv to see whether it is
2675 splittable also. Even if the biv isn't splittable, givs which
2676 depend on it may be splittable if the biv is live outside the
2677 loop, and the givs aren't. */
2679 result += find_splittable_givs (loop, bl, unroll_type, increment,
2680 unroll_number);
2682 /* If final value is non-zero, then must emit an instruction which sets
2683 the value of the biv to the proper value. This is done after
2684 handling all of the givs, since some of them may need to use the
2685 biv's value in their initialization code. */
2686 if (biv_final_value)
2688 /* If the loop has multiple exits, emit the insns before the
2689 loop to ensure that it will always be executed no matter
2690 how the loop exits. Otherwise emit the insn after the loop,
2691 since this is slightly more efficient. */
2692 if (! loop->exit_count)
2693 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2694 biv_final_value),
2695 end_insert_before);
2696 else
2698 /* Create a new register to hold the value of the biv, and then
2699 set the biv to its final value before the loop start. The biv
2700 is set to its final value before loop start to ensure that
2701 this insn will always be executed, no matter how the loop
2702 exits. */
2703 rtx tem = gen_reg_rtx (bl->biv->mode);
2704 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2706 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2707 loop_start);
2708 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2709 biv_final_value),
2710 loop_start);
2712 if (loop_dump_stream)
2713 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2714 REGNO (bl->biv->src_reg), REGNO (tem));
2716 /* Set up the mapping from the original biv register to the new
2717 register. */
2718 bl->biv->src_reg = tem;
2722 return result;
2725 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2726 for the instruction that is using it. Do not make any changes to that
2727 instruction. */
2729 static int
2730 verify_addresses (v, giv_inc, unroll_number)
2731 struct induction *v;
2732 rtx giv_inc;
2733 int unroll_number;
2735 int ret = 1;
2736 rtx orig_addr = *v->location;
2737 rtx last_addr = plus_constant (v->dest_reg,
2738 INTVAL (giv_inc) * (unroll_number - 1));
2740 /* First check to see if either address would fail. Handle the fact
2741 that we have may have a match_dup. */
2742 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2743 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2744 ret = 0;
2746 /* Now put things back the way they were before. This should always
2747 succeed. */
2748 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2749 abort ();
2751 return ret;
2754 /* For every giv based on the biv BL, check to determine whether it is
2755 splittable. This is a subroutine to find_splittable_regs ().
2757 Return the number of instructions that set splittable registers. */
2759 static int
2760 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2761 const struct loop *loop;
2762 struct iv_class *bl;
2763 enum unroll_types unroll_type;
2764 rtx increment;
2765 int unroll_number;
2767 struct induction *v, *v2;
2768 rtx final_value;
2769 rtx tem;
2770 int result = 0;
2772 /* Scan the list of givs, and set the same_insn field when there are
2773 multiple identical givs in the same insn. */
2774 for (v = bl->giv; v; v = v->next_iv)
2775 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2776 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2777 && ! v2->same_insn)
2778 v2->same_insn = v;
2780 for (v = bl->giv; v; v = v->next_iv)
2782 rtx giv_inc, value;
2784 /* Only split the giv if it has already been reduced, or if the loop is
2785 being completely unrolled. */
2786 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2787 continue;
2789 /* The giv can be split if the insn that sets the giv is executed once
2790 and only once on every iteration of the loop. */
2791 /* An address giv can always be split. v->insn is just a use not a set,
2792 and hence it does not matter whether it is always executed. All that
2793 matters is that all the biv increments are always executed, and we
2794 won't reach here if they aren't. */
2795 if (v->giv_type != DEST_ADDR
2796 && (! v->always_computable
2797 || back_branch_in_range_p (loop, v->insn)))
2798 continue;
2800 /* The giv increment value must be a constant. */
2801 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2802 v->mode);
2803 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2804 continue;
2806 /* The loop must be unrolled completely, or else have a known number of
2807 iterations and only one exit, or else the giv must be dead outside
2808 the loop, or else the final value of the giv must be known.
2809 Otherwise, it is not safe to split the giv since it may not have the
2810 proper value on loop exit. */
2812 /* The used outside loop test will fail for DEST_ADDR givs. They are
2813 never used outside the loop anyways, so it is always safe to split a
2814 DEST_ADDR giv. */
2816 final_value = 0;
2817 if (unroll_type != UNROLL_COMPLETELY
2818 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2819 && v->giv_type != DEST_ADDR
2820 /* The next part is true if the pseudo is used outside the loop.
2821 We assume that this is true for any pseudo created after loop
2822 starts, because we don't have a reg_n_info entry for them. */
2823 && (REGNO (v->dest_reg) >= max_reg_before_loop
2824 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2825 /* Check for the case where the pseudo is set by a shift/add
2826 sequence, in which case the first insn setting the pseudo
2827 is the first insn of the shift/add sequence. */
2828 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2829 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2830 != INSN_UID (XEXP (tem, 0)))))
2831 /* Line above always fails if INSN was moved by loop opt. */
2832 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2833 >= INSN_LUID (loop->end)))
2834 /* Givs made from biv increments are missed by the above test, so
2835 test explicitly for them. */
2836 && (REGNO (v->dest_reg) < first_increment_giv
2837 || REGNO (v->dest_reg) > last_increment_giv)
2838 && ! (final_value = v->final_value))
2839 continue;
2841 #if 0
2842 /* Currently, non-reduced/final-value givs are never split. */
2843 /* Should emit insns after the loop if possible, as the biv final value
2844 code below does. */
2846 /* If the final value is non-zero, and the giv has not been reduced,
2847 then must emit an instruction to set the final value. */
2848 if (final_value && !v->new_reg)
2850 /* Create a new register to hold the value of the giv, and then set
2851 the giv to its final value before the loop start. The giv is set
2852 to its final value before loop start to ensure that this insn
2853 will always be executed, no matter how we exit. */
2854 tem = gen_reg_rtx (v->mode);
2855 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2856 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2857 loop_start);
2859 if (loop_dump_stream)
2860 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2861 REGNO (v->dest_reg), REGNO (tem));
2863 v->src_reg = tem;
2865 #endif
2867 /* This giv is splittable. If completely unrolling the loop, save the
2868 giv's initial value. Otherwise, save the constant zero for it. */
2870 if (unroll_type == UNROLL_COMPLETELY)
2872 /* It is not safe to use bl->initial_value here, because it may not
2873 be invariant. It is safe to use the initial value stored in
2874 the splittable_regs array if it is set. In rare cases, it won't
2875 be set, so then we do exactly the same thing as
2876 find_splittable_regs does to get a safe value. */
2877 rtx biv_initial_value;
2879 if (splittable_regs[bl->regno])
2880 biv_initial_value = splittable_regs[bl->regno];
2881 else if (GET_CODE (bl->initial_value) != REG
2882 || (REGNO (bl->initial_value) != bl->regno
2883 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2884 biv_initial_value = bl->initial_value;
2885 else
2887 rtx tem = gen_reg_rtx (bl->biv->mode);
2889 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2890 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2891 loop->start);
2892 biv_initial_value = tem;
2894 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2895 v->add_val, v->mode);
2897 else
2898 value = const0_rtx;
2900 if (v->new_reg)
2902 /* If a giv was combined with another giv, then we can only split
2903 this giv if the giv it was combined with was reduced. This
2904 is because the value of v->new_reg is meaningless in this
2905 case. */
2906 if (v->same && ! v->same->new_reg)
2908 if (loop_dump_stream)
2909 fprintf (loop_dump_stream,
2910 "giv combined with unreduced giv not split.\n");
2911 continue;
2913 /* If the giv is an address destination, it could be something other
2914 than a simple register, these have to be treated differently. */
2915 else if (v->giv_type == DEST_REG)
2917 /* If value is not a constant, register, or register plus
2918 constant, then compute its value into a register before
2919 loop start. This prevents invalid rtx sharing, and should
2920 generate better code. We can use bl->initial_value here
2921 instead of splittable_regs[bl->regno] because this code
2922 is going before the loop start. */
2923 if (unroll_type == UNROLL_COMPLETELY
2924 && GET_CODE (value) != CONST_INT
2925 && GET_CODE (value) != REG
2926 && (GET_CODE (value) != PLUS
2927 || GET_CODE (XEXP (value, 0)) != REG
2928 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2930 rtx tem = gen_reg_rtx (v->mode);
2931 record_base_value (REGNO (tem), v->add_val, 0);
2932 emit_iv_add_mult (bl->initial_value, v->mult_val,
2933 v->add_val, tem, loop->start);
2934 value = tem;
2937 splittable_regs[REGNO (v->new_reg)] = value;
2938 derived_regs[REGNO (v->new_reg)] = v->derived_from != 0;
2940 else
2942 /* Splitting address givs is useful since it will often allow us
2943 to eliminate some increment insns for the base giv as
2944 unnecessary. */
2946 /* If the addr giv is combined with a dest_reg giv, then all
2947 references to that dest reg will be remapped, which is NOT
2948 what we want for split addr regs. We always create a new
2949 register for the split addr giv, just to be safe. */
2951 /* If we have multiple identical address givs within a
2952 single instruction, then use a single pseudo reg for
2953 both. This is necessary in case one is a match_dup
2954 of the other. */
2956 v->const_adjust = 0;
2958 if (v->same_insn)
2960 v->dest_reg = v->same_insn->dest_reg;
2961 if (loop_dump_stream)
2962 fprintf (loop_dump_stream,
2963 "Sharing address givs in insn %d\n",
2964 INSN_UID (v->insn));
2966 /* If multiple address GIVs have been combined with the
2967 same dest_reg GIV, do not create a new register for
2968 each. */
2969 else if (unroll_type != UNROLL_COMPLETELY
2970 && v->giv_type == DEST_ADDR
2971 && v->same && v->same->giv_type == DEST_ADDR
2972 && v->same->unrolled
2973 /* combine_givs_p may return true for some cases
2974 where the add and mult values are not equal.
2975 To share a register here, the values must be
2976 equal. */
2977 && rtx_equal_p (v->same->mult_val, v->mult_val)
2978 && rtx_equal_p (v->same->add_val, v->add_val)
2979 /* If the memory references have different modes,
2980 then the address may not be valid and we must
2981 not share registers. */
2982 && verify_addresses (v, giv_inc, unroll_number))
2984 v->dest_reg = v->same->dest_reg;
2985 v->shared = 1;
2987 else if (unroll_type != UNROLL_COMPLETELY)
2989 /* If not completely unrolling the loop, then create a new
2990 register to hold the split value of the DEST_ADDR giv.
2991 Emit insn to initialize its value before loop start. */
2993 rtx tem = gen_reg_rtx (v->mode);
2994 struct induction *same = v->same;
2995 rtx new_reg = v->new_reg;
2996 record_base_value (REGNO (tem), v->add_val, 0);
2998 if (same && same->derived_from)
3000 /* calculate_giv_inc doesn't work for derived givs.
3001 copy_loop_body works around the problem for the
3002 DEST_REG givs themselves, but it can't handle
3003 DEST_ADDR givs that have been combined with
3004 a derived DEST_REG giv.
3005 So Handle V as if the giv from which V->SAME has
3006 been derived has been combined with V.
3007 recombine_givs only derives givs from givs that
3008 are reduced the ordinary, so we need not worry
3009 about same->derived_from being in turn derived. */
3011 same = same->derived_from;
3012 new_reg = express_from (same, v);
3013 new_reg = replace_rtx (new_reg, same->dest_reg,
3014 same->new_reg);
3017 /* If the address giv has a constant in its new_reg value,
3018 then this constant can be pulled out and put in value,
3019 instead of being part of the initialization code. */
3021 if (GET_CODE (new_reg) == PLUS
3022 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
3024 v->dest_reg
3025 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
3027 /* Only succeed if this will give valid addresses.
3028 Try to validate both the first and the last
3029 address resulting from loop unrolling, if
3030 one fails, then can't do const elim here. */
3031 if (verify_addresses (v, giv_inc, unroll_number))
3033 /* Save the negative of the eliminated const, so
3034 that we can calculate the dest_reg's increment
3035 value later. */
3036 v->const_adjust = - INTVAL (XEXP (new_reg, 1));
3038 new_reg = XEXP (new_reg, 0);
3039 if (loop_dump_stream)
3040 fprintf (loop_dump_stream,
3041 "Eliminating constant from giv %d\n",
3042 REGNO (tem));
3044 else
3045 v->dest_reg = tem;
3047 else
3048 v->dest_reg = tem;
3050 /* If the address hasn't been checked for validity yet, do so
3051 now, and fail completely if either the first or the last
3052 unrolled copy of the address is not a valid address
3053 for the instruction that uses it. */
3054 if (v->dest_reg == tem
3055 && ! verify_addresses (v, giv_inc, unroll_number))
3057 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3058 if (v2->same_insn == v)
3059 v2->same_insn = 0;
3061 if (loop_dump_stream)
3062 fprintf (loop_dump_stream,
3063 "Invalid address for giv at insn %d\n",
3064 INSN_UID (v->insn));
3065 continue;
3068 v->new_reg = new_reg;
3069 v->same = same;
3071 /* We set this after the address check, to guarantee that
3072 the register will be initialized. */
3073 v->unrolled = 1;
3075 /* To initialize the new register, just move the value of
3076 new_reg into it. This is not guaranteed to give a valid
3077 instruction on machines with complex addressing modes.
3078 If we can't recognize it, then delete it and emit insns
3079 to calculate the value from scratch. */
3080 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
3081 copy_rtx (v->new_reg)),
3082 loop->start);
3083 if (recog_memoized (PREV_INSN (loop->start)) < 0)
3085 rtx sequence, ret;
3087 /* We can't use bl->initial_value to compute the initial
3088 value, because the loop may have been preconditioned.
3089 We must calculate it from NEW_REG. Try using
3090 force_operand instead of emit_iv_add_mult. */
3091 delete_insn (PREV_INSN (loop->start));
3093 start_sequence ();
3094 ret = force_operand (v->new_reg, tem);
3095 if (ret != tem)
3096 emit_move_insn (tem, ret);
3097 sequence = gen_sequence ();
3098 end_sequence ();
3099 emit_insn_before (sequence, loop->start);
3101 if (loop_dump_stream)
3102 fprintf (loop_dump_stream,
3103 "Invalid init insn, rewritten.\n");
3106 else
3108 v->dest_reg = value;
3110 /* Check the resulting address for validity, and fail
3111 if the resulting address would be invalid. */
3112 if (! verify_addresses (v, giv_inc, unroll_number))
3114 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3115 if (v2->same_insn == v)
3116 v2->same_insn = 0;
3118 if (loop_dump_stream)
3119 fprintf (loop_dump_stream,
3120 "Invalid address for giv at insn %d\n",
3121 INSN_UID (v->insn));
3122 continue;
3124 if (v->same && v->same->derived_from)
3126 /* Handle V as if the giv from which V->SAME has
3127 been derived has been combined with V. */
3129 v->same = v->same->derived_from;
3130 v->new_reg = express_from (v->same, v);
3131 v->new_reg = replace_rtx (v->new_reg, v->same->dest_reg,
3132 v->same->new_reg);
3137 /* Store the value of dest_reg into the insn. This sharing
3138 will not be a problem as this insn will always be copied
3139 later. */
3141 *v->location = v->dest_reg;
3143 /* If this address giv is combined with a dest reg giv, then
3144 save the base giv's induction pointer so that we will be
3145 able to handle this address giv properly. The base giv
3146 itself does not have to be splittable. */
3148 if (v->same && v->same->giv_type == DEST_REG)
3149 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3151 if (GET_CODE (v->new_reg) == REG)
3153 /* This giv maybe hasn't been combined with any others.
3154 Make sure that it's giv is marked as splittable here. */
3156 splittable_regs[REGNO (v->new_reg)] = value;
3157 derived_regs[REGNO (v->new_reg)] = v->derived_from != 0;
3159 /* Make it appear to depend upon itself, so that the
3160 giv will be properly split in the main loop above. */
3161 if (! v->same)
3163 v->same = v;
3164 addr_combined_regs[REGNO (v->new_reg)] = v;
3168 if (loop_dump_stream)
3169 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3172 else
3174 #if 0
3175 /* Currently, unreduced giv's can't be split. This is not too much
3176 of a problem since unreduced giv's are not live across loop
3177 iterations anyways. When unrolling a loop completely though,
3178 it makes sense to reduce&split givs when possible, as this will
3179 result in simpler instructions, and will not require that a reg
3180 be live across loop iterations. */
3182 splittable_regs[REGNO (v->dest_reg)] = value;
3183 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3184 REGNO (v->dest_reg), INSN_UID (v->insn));
3185 #else
3186 continue;
3187 #endif
3190 /* Unreduced givs are only updated once by definition. Reduced givs
3191 are updated as many times as their biv is. Mark it so if this is
3192 a splittable register. Don't need to do anything for address givs
3193 where this may not be a register. */
3195 if (GET_CODE (v->new_reg) == REG)
3197 int count = 1;
3198 if (! v->ignore)
3199 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3201 if (count > 1 && v->derived_from)
3202 /* In this case, there is one set where the giv insn was and one
3203 set each after each biv increment. (Most are likely dead.) */
3204 count++;
3206 splittable_regs_updates[REGNO (v->new_reg)] = count;
3209 result++;
3211 if (loop_dump_stream)
3213 int regnum;
3215 if (GET_CODE (v->dest_reg) == CONST_INT)
3216 regnum = -1;
3217 else if (GET_CODE (v->dest_reg) != REG)
3218 regnum = REGNO (XEXP (v->dest_reg, 0));
3219 else
3220 regnum = REGNO (v->dest_reg);
3221 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3222 regnum, INSN_UID (v->insn));
3226 return result;
3229 /* Try to prove that the register is dead after the loop exits. Trace every
3230 loop exit looking for an insn that will always be executed, which sets
3231 the register to some value, and appears before the first use of the register
3232 is found. If successful, then return 1, otherwise return 0. */
3234 /* ?? Could be made more intelligent in the handling of jumps, so that
3235 it can search past if statements and other similar structures. */
3237 static int
3238 reg_dead_after_loop (loop, reg)
3239 const struct loop *loop;
3240 rtx reg;
3242 rtx insn, label;
3243 enum rtx_code code;
3244 int jump_count = 0;
3245 int label_count = 0;
3247 /* In addition to checking all exits of this loop, we must also check
3248 all exits of inner nested loops that would exit this loop. We don't
3249 have any way to identify those, so we just give up if there are any
3250 such inner loop exits. */
3252 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3253 label_count++;
3255 if (label_count != loop->exit_count)
3256 return 0;
3258 /* HACK: Must also search the loop fall through exit, create a label_ref
3259 here which points to the loop->end, and append the loop_number_exit_labels
3260 list to it. */
3261 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3262 LABEL_NEXTREF (label) = loop->exit_labels;
3264 for ( ; label; label = LABEL_NEXTREF (label))
3266 /* Succeed if find an insn which sets the biv or if reach end of
3267 function. Fail if find an insn that uses the biv, or if come to
3268 a conditional jump. */
3270 insn = NEXT_INSN (XEXP (label, 0));
3271 while (insn)
3273 code = GET_CODE (insn);
3274 if (GET_RTX_CLASS (code) == 'i')
3276 rtx set;
3278 if (reg_referenced_p (reg, PATTERN (insn)))
3279 return 0;
3281 set = single_set (insn);
3282 if (set && rtx_equal_p (SET_DEST (set), reg))
3283 break;
3286 if (code == JUMP_INSN)
3288 if (GET_CODE (PATTERN (insn)) == RETURN)
3289 break;
3290 else if (! simplejump_p (insn)
3291 /* Prevent infinite loop following infinite loops. */
3292 || jump_count++ > 20)
3293 return 0;
3294 else
3295 insn = JUMP_LABEL (insn);
3298 insn = NEXT_INSN (insn);
3302 /* Success, the register is dead on all loop exits. */
3303 return 1;
3306 /* Try to calculate the final value of the biv, the value it will have at
3307 the end of the loop. If we can do it, return that value. */
3310 final_biv_value (loop, bl)
3311 const struct loop *loop;
3312 struct iv_class *bl;
3314 rtx loop_end = loop->end;
3315 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3316 rtx increment, tem;
3318 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3320 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3321 return 0;
3323 /* The final value for reversed bivs must be calculated differently than
3324 for ordinary bivs. In this case, there is already an insn after the
3325 loop which sets this biv's final value (if necessary), and there are
3326 no other loop exits, so we can return any value. */
3327 if (bl->reversed)
3329 if (loop_dump_stream)
3330 fprintf (loop_dump_stream,
3331 "Final biv value for %d, reversed biv.\n", bl->regno);
3333 return const0_rtx;
3336 /* Try to calculate the final value as initial value + (number of iterations
3337 * increment). For this to work, increment must be invariant, the only
3338 exit from the loop must be the fall through at the bottom (otherwise
3339 it may not have its final value when the loop exits), and the initial
3340 value of the biv must be invariant. */
3342 if (n_iterations != 0
3343 && ! loop->exit_count
3344 && loop_invariant_p (loop, bl->initial_value))
3346 increment = biv_total_increment (bl);
3348 if (increment && loop_invariant_p (loop, increment))
3350 /* Can calculate the loop exit value, emit insns after loop
3351 end to calculate this value into a temporary register in
3352 case it is needed later. */
3354 tem = gen_reg_rtx (bl->biv->mode);
3355 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3356 /* Make sure loop_end is not the last insn. */
3357 if (NEXT_INSN (loop_end) == 0)
3358 emit_note_after (NOTE_INSN_DELETED, loop_end);
3359 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3360 bl->initial_value, tem, NEXT_INSN (loop_end));
3362 if (loop_dump_stream)
3363 fprintf (loop_dump_stream,
3364 "Final biv value for %d, calculated.\n", bl->regno);
3366 return tem;
3370 /* Check to see if the biv is dead at all loop exits. */
3371 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3373 if (loop_dump_stream)
3374 fprintf (loop_dump_stream,
3375 "Final biv value for %d, biv dead after loop exit.\n",
3376 bl->regno);
3378 return const0_rtx;
3381 return 0;
3384 /* Try to calculate the final value of the giv, the value it will have at
3385 the end of the loop. If we can do it, return that value. */
3388 final_giv_value (loop, v)
3389 const struct loop *loop;
3390 struct induction *v;
3392 struct iv_class *bl;
3393 rtx insn;
3394 rtx increment, tem;
3395 rtx insert_before, seq;
3396 rtx loop_end = loop->end;
3397 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3399 bl = reg_biv_class[REGNO (v->src_reg)];
3401 /* The final value for givs which depend on reversed bivs must be calculated
3402 differently than for ordinary givs. In this case, there is already an
3403 insn after the loop which sets this giv's final value (if necessary),
3404 and there are no other loop exits, so we can return any value. */
3405 if (bl->reversed)
3407 if (loop_dump_stream)
3408 fprintf (loop_dump_stream,
3409 "Final giv value for %d, depends on reversed biv\n",
3410 REGNO (v->dest_reg));
3411 return const0_rtx;
3414 /* Try to calculate the final value as a function of the biv it depends
3415 upon. The only exit from the loop must be the fall through at the bottom
3416 (otherwise it may not have its final value when the loop exits). */
3418 /* ??? Can calculate the final giv value by subtracting off the
3419 extra biv increments times the giv's mult_val. The loop must have
3420 only one exit for this to work, but the loop iterations does not need
3421 to be known. */
3423 if (n_iterations != 0
3424 && ! loop->exit_count)
3426 /* ?? It is tempting to use the biv's value here since these insns will
3427 be put after the loop, and hence the biv will have its final value
3428 then. However, this fails if the biv is subsequently eliminated.
3429 Perhaps determine whether biv's are eliminable before trying to
3430 determine whether giv's are replaceable so that we can use the
3431 biv value here if it is not eliminable. */
3433 /* We are emitting code after the end of the loop, so we must make
3434 sure that bl->initial_value is still valid then. It will still
3435 be valid if it is invariant. */
3437 increment = biv_total_increment (bl);
3439 if (increment && loop_invariant_p (loop, increment)
3440 && loop_invariant_p (loop, bl->initial_value))
3442 /* Can calculate the loop exit value of its biv as
3443 (n_iterations * increment) + initial_value */
3445 /* The loop exit value of the giv is then
3446 (final_biv_value - extra increments) * mult_val + add_val.
3447 The extra increments are any increments to the biv which
3448 occur in the loop after the giv's value is calculated.
3449 We must search from the insn that sets the giv to the end
3450 of the loop to calculate this value. */
3452 insert_before = NEXT_INSN (loop_end);
3454 /* Put the final biv value in tem. */
3455 tem = gen_reg_rtx (bl->biv->mode);
3456 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3457 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3458 bl->initial_value, tem, insert_before);
3460 /* Subtract off extra increments as we find them. */
3461 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3462 insn = NEXT_INSN (insn))
3464 struct induction *biv;
3466 for (biv = bl->biv; biv; biv = biv->next_iv)
3467 if (biv->insn == insn)
3469 start_sequence ();
3470 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3471 biv->add_val, NULL_RTX, 0,
3472 OPTAB_LIB_WIDEN);
3473 seq = gen_sequence ();
3474 end_sequence ();
3475 emit_insn_before (seq, insert_before);
3479 /* Now calculate the giv's final value. */
3480 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3481 insert_before);
3483 if (loop_dump_stream)
3484 fprintf (loop_dump_stream,
3485 "Final giv value for %d, calc from biv's value.\n",
3486 REGNO (v->dest_reg));
3488 return tem;
3492 /* Replaceable giv's should never reach here. */
3493 if (v->replaceable)
3494 abort ();
3496 /* Check to see if the biv is dead at all loop exits. */
3497 if (reg_dead_after_loop (loop, v->dest_reg))
3499 if (loop_dump_stream)
3500 fprintf (loop_dump_stream,
3501 "Final giv value for %d, giv dead after loop exit.\n",
3502 REGNO (v->dest_reg));
3504 return const0_rtx;
3507 return 0;
3511 /* Look back before LOOP->START for then insn that sets REG and return
3512 the equivalent constant if there is a REG_EQUAL note otherwise just
3513 the SET_SRC of REG. */
3515 static rtx
3516 loop_find_equiv_value (loop, reg)
3517 const struct loop *loop;
3518 rtx reg;
3520 rtx loop_start = loop->start;
3521 rtx insn, set;
3522 rtx ret;
3524 ret = reg;
3525 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3527 if (GET_CODE (insn) == CODE_LABEL)
3528 break;
3530 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3531 && reg_set_p (reg, insn))
3533 /* We found the last insn before the loop that sets the register.
3534 If it sets the entire register, and has a REG_EQUAL note,
3535 then use the value of the REG_EQUAL note. */
3536 if ((set = single_set (insn))
3537 && (SET_DEST (set) == reg))
3539 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3541 /* Only use the REG_EQUAL note if it is a constant.
3542 Other things, divide in particular, will cause
3543 problems later if we use them. */
3544 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3545 && CONSTANT_P (XEXP (note, 0)))
3546 ret = XEXP (note, 0);
3547 else
3548 ret = SET_SRC (set);
3550 break;
3553 return ret;
3556 /* Return a simplified rtx for the expression OP - REG.
3558 REG must appear in OP, and OP must be a register or the sum of a register
3559 and a second term.
3561 Thus, the return value must be const0_rtx or the second term.
3563 The caller is responsible for verifying that REG appears in OP and OP has
3564 the proper form. */
3566 static rtx
3567 subtract_reg_term (op, reg)
3568 rtx op, reg;
3570 if (op == reg)
3571 return const0_rtx;
3572 if (GET_CODE (op) == PLUS)
3574 if (XEXP (op, 0) == reg)
3575 return XEXP (op, 1);
3576 else if (XEXP (op, 1) == reg)
3577 return XEXP (op, 0);
3579 /* OP does not contain REG as a term. */
3580 abort ();
3584 /* Find and return register term common to both expressions OP0 and
3585 OP1 or NULL_RTX if no such term exists. Each expression must be a
3586 REG or a PLUS of a REG. */
3588 static rtx
3589 find_common_reg_term (op0, op1)
3590 rtx op0, op1;
3592 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3593 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3595 rtx op00;
3596 rtx op01;
3597 rtx op10;
3598 rtx op11;
3600 if (GET_CODE (op0) == PLUS)
3601 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3602 else
3603 op01 = const0_rtx, op00 = op0;
3605 if (GET_CODE (op1) == PLUS)
3606 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3607 else
3608 op11 = const0_rtx, op10 = op1;
3610 /* Find and return common register term if present. */
3611 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3612 return op00;
3613 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3614 return op01;
3617 /* No common register term found. */
3618 return NULL_RTX;
3621 /* Calculate the number of loop iterations. Returns the exact number of loop
3622 iterations if it can be calculated, otherwise returns zero. */
3624 unsigned HOST_WIDE_INT
3625 loop_iterations (loop)
3626 struct loop *loop;
3628 rtx comparison, comparison_value;
3629 rtx iteration_var, initial_value, increment, final_value;
3630 enum rtx_code comparison_code;
3631 HOST_WIDE_INT abs_inc;
3632 unsigned HOST_WIDE_INT abs_diff;
3633 int off_by_one;
3634 int increment_dir;
3635 int unsigned_p, compare_dir, final_larger;
3636 rtx last_loop_insn;
3637 rtx reg_term;
3638 struct loop_info *loop_info = LOOP_INFO (loop);
3640 loop_info->n_iterations = 0;
3641 loop_info->initial_value = 0;
3642 loop_info->initial_equiv_value = 0;
3643 loop_info->comparison_value = 0;
3644 loop_info->final_value = 0;
3645 loop_info->final_equiv_value = 0;
3646 loop_info->increment = 0;
3647 loop_info->iteration_var = 0;
3648 loop_info->unroll_number = 1;
3650 /* We used to use prev_nonnote_insn here, but that fails because it might
3651 accidentally get the branch for a contained loop if the branch for this
3652 loop was deleted. We can only trust branches immediately before the
3653 loop_end. */
3654 last_loop_insn = PREV_INSN (loop->end);
3656 /* ??? We should probably try harder to find the jump insn
3657 at the end of the loop. The following code assumes that
3658 the last loop insn is a jump to the top of the loop. */
3659 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3661 if (loop_dump_stream)
3662 fprintf (loop_dump_stream,
3663 "Loop iterations: No final conditional branch found.\n");
3664 return 0;
3667 /* If there is a more than a single jump to the top of the loop
3668 we cannot (easily) determine the iteration count. */
3669 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3671 if (loop_dump_stream)
3672 fprintf (loop_dump_stream,
3673 "Loop iterations: Loop has multiple back edges.\n");
3674 return 0;
3677 /* Find the iteration variable. If the last insn is a conditional
3678 branch, and the insn before tests a register value, make that the
3679 iteration variable. */
3681 comparison = get_condition_for_loop (loop, last_loop_insn);
3682 if (comparison == 0)
3684 if (loop_dump_stream)
3685 fprintf (loop_dump_stream,
3686 "Loop iterations: No final comparison found.\n");
3687 return 0;
3690 /* ??? Get_condition may switch position of induction variable and
3691 invariant register when it canonicalizes the comparison. */
3693 comparison_code = GET_CODE (comparison);
3694 iteration_var = XEXP (comparison, 0);
3695 comparison_value = XEXP (comparison, 1);
3697 if (GET_CODE (iteration_var) != REG)
3699 if (loop_dump_stream)
3700 fprintf (loop_dump_stream,
3701 "Loop iterations: Comparison not against register.\n");
3702 return 0;
3705 /* The only new registers that are created before loop iterations
3706 are givs made from biv increments or registers created by
3707 load_mems. In the latter case, it is possible that try_copy_prop
3708 will propagate a new pseudo into the old iteration register but
3709 this will be marked by having the REG_USERVAR_P bit set. */
3711 if ((unsigned) REGNO (iteration_var) >= reg_iv_type->num_elements
3712 && ! REG_USERVAR_P (iteration_var))
3713 abort ();
3715 iteration_info (loop, iteration_var, &initial_value, &increment);
3717 if (initial_value == 0)
3718 /* iteration_info already printed a message. */
3719 return 0;
3721 unsigned_p = 0;
3722 off_by_one = 0;
3723 switch (comparison_code)
3725 case LEU:
3726 unsigned_p = 1;
3727 case LE:
3728 compare_dir = 1;
3729 off_by_one = 1;
3730 break;
3731 case GEU:
3732 unsigned_p = 1;
3733 case GE:
3734 compare_dir = -1;
3735 off_by_one = -1;
3736 break;
3737 case EQ:
3738 /* Cannot determine loop iterations with this case. */
3739 compare_dir = 0;
3740 break;
3741 case LTU:
3742 unsigned_p = 1;
3743 case LT:
3744 compare_dir = 1;
3745 break;
3746 case GTU:
3747 unsigned_p = 1;
3748 case GT:
3749 compare_dir = -1;
3750 case NE:
3751 compare_dir = 0;
3752 break;
3753 default:
3754 abort ();
3757 /* If the comparison value is an invariant register, then try to find
3758 its value from the insns before the start of the loop. */
3760 final_value = comparison_value;
3761 if (GET_CODE (comparison_value) == REG
3762 && loop_invariant_p (loop, comparison_value))
3764 final_value = loop_find_equiv_value (loop, comparison_value);
3766 /* If we don't get an invariant final value, we are better
3767 off with the original register. */
3768 if (! loop_invariant_p (loop, final_value))
3769 final_value = comparison_value;
3772 /* Calculate the approximate final value of the induction variable
3773 (on the last successful iteration). The exact final value
3774 depends on the branch operator, and increment sign. It will be
3775 wrong if the iteration variable is not incremented by one each
3776 time through the loop and (comparison_value + off_by_one -
3777 initial_value) % increment != 0.
3778 ??? Note that the final_value may overflow and thus final_larger
3779 will be bogus. A potentially infinite loop will be classified
3780 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3781 if (off_by_one)
3782 final_value = plus_constant (final_value, off_by_one);
3784 /* Save the calculated values describing this loop's bounds, in case
3785 precondition_loop_p will need them later. These values can not be
3786 recalculated inside precondition_loop_p because strength reduction
3787 optimizations may obscure the loop's structure.
3789 These values are only required by precondition_loop_p and insert_bct
3790 whenever the number of iterations cannot be computed at compile time.
3791 Only the difference between final_value and initial_value is
3792 important. Note that final_value is only approximate. */
3793 loop_info->initial_value = initial_value;
3794 loop_info->comparison_value = comparison_value;
3795 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3796 loop_info->increment = increment;
3797 loop_info->iteration_var = iteration_var;
3798 loop_info->comparison_code = comparison_code;
3800 /* Try to determine the iteration count for loops such
3801 as (for i = init; i < init + const; i++). When running the
3802 loop optimization twice, the first pass often converts simple
3803 loops into this form. */
3805 if (REG_P (initial_value))
3807 rtx reg1;
3808 rtx reg2;
3809 rtx const2;
3811 reg1 = initial_value;
3812 if (GET_CODE (final_value) == PLUS)
3813 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3814 else
3815 reg2 = final_value, const2 = const0_rtx;
3817 /* Check for initial_value = reg1, final_value = reg2 + const2,
3818 where reg1 != reg2. */
3819 if (REG_P (reg2) && reg2 != reg1)
3821 rtx temp;
3823 /* Find what reg1 is equivalent to. Hopefully it will
3824 either be reg2 or reg2 plus a constant. */
3825 temp = loop_find_equiv_value (loop, reg1);
3827 if (find_common_reg_term (temp, reg2))
3828 initial_value = temp;
3829 else
3831 /* Find what reg2 is equivalent to. Hopefully it will
3832 either be reg1 or reg1 plus a constant. Let's ignore
3833 the latter case for now since it is not so common. */
3834 temp = loop_find_equiv_value (loop, reg2);
3836 if (temp == loop_info->iteration_var)
3837 temp = initial_value;
3838 if (temp == reg1)
3839 final_value = (const2 == const0_rtx)
3840 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3843 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3845 rtx temp;
3847 /* When running the loop optimizer twice, check_dbra_loop
3848 further obfuscates reversible loops of the form:
3849 for (i = init; i < init + const; i++). We often end up with
3850 final_value = 0, initial_value = temp, temp = temp2 - init,
3851 where temp2 = init + const. If the loop has a vtop we
3852 can replace initial_value with const. */
3854 temp = loop_find_equiv_value (loop, reg1);
3856 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3858 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3860 if (GET_CODE (temp2) == PLUS
3861 && XEXP (temp2, 0) == XEXP (temp, 1))
3862 initial_value = XEXP (temp2, 1);
3867 /* If have initial_value = reg + const1 and final_value = reg +
3868 const2, then replace initial_value with const1 and final_value
3869 with const2. This should be safe since we are protected by the
3870 initial comparison before entering the loop if we have a vtop.
3871 For example, a + b < a + c is not equivalent to b < c for all a
3872 when using modulo arithmetic.
3874 ??? Without a vtop we could still perform the optimization if we check
3875 the initial and final values carefully. */
3876 if (loop->vtop
3877 && (reg_term = find_common_reg_term (initial_value, final_value)))
3879 initial_value = subtract_reg_term (initial_value, reg_term);
3880 final_value = subtract_reg_term (final_value, reg_term);
3883 loop_info->initial_equiv_value = initial_value;
3884 loop_info->final_equiv_value = final_value;
3886 /* For EQ comparison loops, we don't have a valid final value.
3887 Check this now so that we won't leave an invalid value if we
3888 return early for any other reason. */
3889 if (comparison_code == EQ)
3890 loop_info->final_equiv_value = loop_info->final_value = 0;
3892 if (increment == 0)
3894 if (loop_dump_stream)
3895 fprintf (loop_dump_stream,
3896 "Loop iterations: Increment value can't be calculated.\n");
3897 return 0;
3900 if (GET_CODE (increment) != CONST_INT)
3902 /* If we have a REG, check to see if REG holds a constant value. */
3903 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3904 clear if it is worthwhile to try to handle such RTL. */
3905 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3906 increment = loop_find_equiv_value (loop, increment);
3908 if (GET_CODE (increment) != CONST_INT)
3910 if (loop_dump_stream)
3912 fprintf (loop_dump_stream,
3913 "Loop iterations: Increment value not constant ");
3914 print_rtl (loop_dump_stream, increment);
3915 fprintf (loop_dump_stream, ".\n");
3917 return 0;
3919 loop_info->increment = increment;
3922 if (GET_CODE (initial_value) != CONST_INT)
3924 if (loop_dump_stream)
3926 fprintf (loop_dump_stream,
3927 "Loop iterations: Initial value not constant ");
3928 print_rtl (loop_dump_stream, initial_value);
3929 fprintf (loop_dump_stream, ".\n");
3931 return 0;
3933 else if (comparison_code == EQ)
3935 if (loop_dump_stream)
3936 fprintf (loop_dump_stream,
3937 "Loop iterations: EQ comparison loop.\n");
3938 return 0;
3940 else if (GET_CODE (final_value) != CONST_INT)
3942 if (loop_dump_stream)
3944 fprintf (loop_dump_stream,
3945 "Loop iterations: Final value not constant ");
3946 print_rtl (loop_dump_stream, final_value);
3947 fprintf (loop_dump_stream, ".\n");
3949 return 0;
3952 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3953 if (unsigned_p)
3954 final_larger
3955 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3956 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3957 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3958 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3959 else
3960 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3961 - (INTVAL (final_value) < INTVAL (initial_value));
3963 if (INTVAL (increment) > 0)
3964 increment_dir = 1;
3965 else if (INTVAL (increment) == 0)
3966 increment_dir = 0;
3967 else
3968 increment_dir = -1;
3970 /* There are 27 different cases: compare_dir = -1, 0, 1;
3971 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3972 There are 4 normal cases, 4 reverse cases (where the iteration variable
3973 will overflow before the loop exits), 4 infinite loop cases, and 15
3974 immediate exit (0 or 1 iteration depending on loop type) cases.
3975 Only try to optimize the normal cases. */
3977 /* (compare_dir/final_larger/increment_dir)
3978 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3979 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3980 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3981 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3983 /* ?? If the meaning of reverse loops (where the iteration variable
3984 will overflow before the loop exits) is undefined, then could
3985 eliminate all of these special checks, and just always assume
3986 the loops are normal/immediate/infinite. Note that this means
3987 the sign of increment_dir does not have to be known. Also,
3988 since it does not really hurt if immediate exit loops or infinite loops
3989 are optimized, then that case could be ignored also, and hence all
3990 loops can be optimized.
3992 According to ANSI Spec, the reverse loop case result is undefined,
3993 because the action on overflow is undefined.
3995 See also the special test for NE loops below. */
3997 if (final_larger == increment_dir && final_larger != 0
3998 && (final_larger == compare_dir || compare_dir == 0))
3999 /* Normal case. */
4001 else
4003 if (loop_dump_stream)
4004 fprintf (loop_dump_stream,
4005 "Loop iterations: Not normal loop.\n");
4006 return 0;
4009 /* Calculate the number of iterations, final_value is only an approximation,
4010 so correct for that. Note that abs_diff and n_iterations are
4011 unsigned, because they can be as large as 2^n - 1. */
4013 abs_inc = INTVAL (increment);
4014 if (abs_inc > 0)
4015 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4016 else if (abs_inc < 0)
4018 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4019 abs_inc = -abs_inc;
4021 else
4022 abort ();
4024 /* For NE tests, make sure that the iteration variable won't miss
4025 the final value. If abs_diff mod abs_incr is not zero, then the
4026 iteration variable will overflow before the loop exits, and we
4027 can not calculate the number of iterations. */
4028 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4029 return 0;
4031 /* Note that the number of iterations could be calculated using
4032 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4033 handle potential overflow of the summation. */
4034 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4035 return loop_info->n_iterations;
4039 /* Replace uses of split bivs with their split pseudo register. This is
4040 for original instructions which remain after loop unrolling without
4041 copying. */
4043 static rtx
4044 remap_split_bivs (x)
4045 rtx x;
4047 register enum rtx_code code;
4048 register int i;
4049 register const char *fmt;
4051 if (x == 0)
4052 return x;
4054 code = GET_CODE (x);
4055 switch (code)
4057 case SCRATCH:
4058 case PC:
4059 case CC0:
4060 case CONST_INT:
4061 case CONST_DOUBLE:
4062 case CONST:
4063 case SYMBOL_REF:
4064 case LABEL_REF:
4065 return x;
4067 case REG:
4068 #if 0
4069 /* If non-reduced/final-value givs were split, then this would also
4070 have to remap those givs also. */
4071 #endif
4072 if (REGNO (x) < max_reg_before_loop
4073 && REG_IV_TYPE (REGNO (x)) == BASIC_INDUCT)
4074 return reg_biv_class[REGNO (x)]->biv->src_reg;
4075 break;
4077 default:
4078 break;
4081 fmt = GET_RTX_FORMAT (code);
4082 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4084 if (fmt[i] == 'e')
4085 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
4086 else if (fmt[i] == 'E')
4088 register int j;
4089 for (j = 0; j < XVECLEN (x, i); j++)
4090 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
4093 return x;
4096 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4097 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4098 return 0. COPY_START is where we can start looking for the insns
4099 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4100 insns.
4102 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4103 must dominate LAST_UID.
4105 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4106 may not dominate LAST_UID.
4108 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4109 must dominate LAST_UID. */
4112 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4113 int regno;
4114 int first_uid;
4115 int last_uid;
4116 rtx copy_start;
4117 rtx copy_end;
4119 int passed_jump = 0;
4120 rtx p = NEXT_INSN (copy_start);
4122 while (INSN_UID (p) != first_uid)
4124 if (GET_CODE (p) == JUMP_INSN)
4125 passed_jump= 1;
4126 /* Could not find FIRST_UID. */
4127 if (p == copy_end)
4128 return 0;
4129 p = NEXT_INSN (p);
4132 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4133 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
4134 || ! dead_or_set_regno_p (p, regno))
4135 return 0;
4137 /* FIRST_UID is always executed. */
4138 if (passed_jump == 0)
4139 return 1;
4141 while (INSN_UID (p) != last_uid)
4143 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4144 can not be sure that FIRST_UID dominates LAST_UID. */
4145 if (GET_CODE (p) == CODE_LABEL)
4146 return 0;
4147 /* Could not find LAST_UID, but we reached the end of the loop, so
4148 it must be safe. */
4149 else if (p == copy_end)
4150 return 1;
4151 p = NEXT_INSN (p);
4154 /* FIRST_UID is always executed if LAST_UID is executed. */
4155 return 1;