* gcc.dg/tls/alias-1.c: Remove dg-warning on the SPARC.
[official-gcc.git] / gcc / expmed.c
blobb2e62350b1dc051bc3dbb76aa1083ba92df0bc02
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Nonzero means divides or modulus operations are relatively cheap for
58 powers of two, so don't use branches; emit the operation instead.
59 Usually, this will mean that the MD file will emit non-branch
60 sequences. */
62 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
63 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
65 #ifndef SLOW_UNALIGNED_ACCESS
66 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
67 #endif
69 /* For compilers that support multiple targets with different word sizes,
70 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
71 is the H8/300(H) compiler. */
73 #ifndef MAX_BITS_PER_WORD
74 #define MAX_BITS_PER_WORD BITS_PER_WORD
75 #endif
77 /* Reduce conditional compilation elsewhere. */
78 #ifndef HAVE_insv
79 #define HAVE_insv 0
80 #define CODE_FOR_insv CODE_FOR_nothing
81 #define gen_insv(a,b,c,d) NULL_RTX
82 #endif
83 #ifndef HAVE_extv
84 #define HAVE_extv 0
85 #define CODE_FOR_extv CODE_FOR_nothing
86 #define gen_extv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extzv
89 #define HAVE_extzv 0
90 #define CODE_FOR_extzv CODE_FOR_nothing
91 #define gen_extzv(a,b,c,d) NULL_RTX
92 #endif
94 /* Cost of various pieces of RTL. Note that some of these are indexed by
95 shift count and some by mode. */
96 static int zero_cost;
97 static int add_cost[NUM_MACHINE_MODES];
98 static int neg_cost[NUM_MACHINE_MODES];
99 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
100 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
101 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
102 static int mul_cost[NUM_MACHINE_MODES];
103 static int div_cost[NUM_MACHINE_MODES];
104 static int mul_widen_cost[NUM_MACHINE_MODES];
105 static int mul_highpart_cost[NUM_MACHINE_MODES];
107 void
108 init_expmed (void)
110 struct
112 struct rtx_def reg; rtunion reg_fld[2];
113 struct rtx_def plus; rtunion plus_fld1;
114 struct rtx_def neg;
115 struct rtx_def udiv; rtunion udiv_fld1;
116 struct rtx_def mult; rtunion mult_fld1;
117 struct rtx_def div; rtunion div_fld1;
118 struct rtx_def mod; rtunion mod_fld1;
119 struct rtx_def zext;
120 struct rtx_def wide_mult; rtunion wide_mult_fld1;
121 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
122 struct rtx_def wide_trunc;
123 struct rtx_def shift; rtunion shift_fld1;
124 struct rtx_def shift_mult; rtunion shift_mult_fld1;
125 struct rtx_def shift_add; rtunion shift_add_fld1;
126 struct rtx_def shift_sub; rtunion shift_sub_fld1;
127 } all;
129 rtx pow2[MAX_BITS_PER_WORD];
130 rtx cint[MAX_BITS_PER_WORD];
131 int m, n;
132 enum machine_mode mode, wider_mode;
134 zero_cost = rtx_cost (const0_rtx, 0);
136 for (m = 1; m < MAX_BITS_PER_WORD; m++)
138 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
139 cint[m] = GEN_INT (m);
142 memset (&all, 0, sizeof all);
144 PUT_CODE (&all.reg, REG);
145 REGNO (&all.reg) = 10000;
147 PUT_CODE (&all.plus, PLUS);
148 XEXP (&all.plus, 0) = &all.reg;
149 XEXP (&all.plus, 1) = &all.reg;
151 PUT_CODE (&all.neg, NEG);
152 XEXP (&all.neg, 0) = &all.reg;
154 PUT_CODE (&all.udiv, UDIV);
155 XEXP (&all.udiv, 0) = &all.reg;
156 XEXP (&all.udiv, 1) = &all.reg;
158 PUT_CODE (&all.mult, MULT);
159 XEXP (&all.mult, 0) = &all.reg;
160 XEXP (&all.mult, 1) = &all.reg;
162 PUT_CODE (&all.div, DIV);
163 XEXP (&all.div, 0) = &all.reg;
164 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
166 PUT_CODE (&all.mod, MOD);
167 XEXP (&all.mod, 0) = &all.reg;
168 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
170 PUT_CODE (&all.zext, ZERO_EXTEND);
171 XEXP (&all.zext, 0) = &all.reg;
173 PUT_CODE (&all.wide_mult, MULT);
174 XEXP (&all.wide_mult, 0) = &all.zext;
175 XEXP (&all.wide_mult, 1) = &all.zext;
177 PUT_CODE (&all.wide_lshr, LSHIFTRT);
178 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
180 PUT_CODE (&all.wide_trunc, TRUNCATE);
181 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
183 PUT_CODE (&all.shift, ASHIFT);
184 XEXP (&all.shift, 0) = &all.reg;
186 PUT_CODE (&all.shift_mult, MULT);
187 XEXP (&all.shift_mult, 0) = &all.reg;
189 PUT_CODE (&all.shift_add, PLUS);
190 XEXP (&all.shift_add, 0) = &all.shift_mult;
191 XEXP (&all.shift_add, 1) = &all.reg;
193 PUT_CODE (&all.shift_sub, MINUS);
194 XEXP (&all.shift_sub, 0) = &all.shift_mult;
195 XEXP (&all.shift_sub, 1) = &all.reg;
197 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
198 mode != VOIDmode;
199 mode = GET_MODE_WIDER_MODE (mode))
201 PUT_MODE (&all.reg, mode);
202 PUT_MODE (&all.plus, mode);
203 PUT_MODE (&all.neg, mode);
204 PUT_MODE (&all.udiv, mode);
205 PUT_MODE (&all.mult, mode);
206 PUT_MODE (&all.div, mode);
207 PUT_MODE (&all.mod, mode);
208 PUT_MODE (&all.wide_trunc, mode);
209 PUT_MODE (&all.shift, mode);
210 PUT_MODE (&all.shift_mult, mode);
211 PUT_MODE (&all.shift_add, mode);
212 PUT_MODE (&all.shift_sub, mode);
214 add_cost[mode] = rtx_cost (&all.plus, SET);
215 neg_cost[mode] = rtx_cost (&all.neg, SET);
216 div_cost[mode] = rtx_cost (&all.udiv, SET);
217 mul_cost[mode] = rtx_cost (&all.mult, SET);
219 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
220 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
222 wider_mode = GET_MODE_WIDER_MODE (mode);
223 if (wider_mode != VOIDmode)
225 PUT_MODE (&all.zext, wider_mode);
226 PUT_MODE (&all.wide_mult, wider_mode);
227 PUT_MODE (&all.wide_lshr, wider_mode);
228 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
230 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
231 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
234 shift_cost[mode][0] = 0;
235 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
237 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
238 for (m = 1; m < n; m++)
240 XEXP (&all.shift, 1) = cint[m];
241 XEXP (&all.shift_mult, 1) = pow2[m];
243 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
244 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
245 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
250 /* Return an rtx representing minus the value of X.
251 MODE is the intended mode of the result,
252 useful if X is a CONST_INT. */
255 negate_rtx (enum machine_mode mode, rtx x)
257 rtx result = simplify_unary_operation (NEG, mode, x, mode);
259 if (result == 0)
260 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
262 return result;
265 /* Report on the availability of insv/extv/extzv and the desired mode
266 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
267 is false; else the mode of the specified operand. If OPNO is -1,
268 all the caller cares about is whether the insn is available. */
269 enum machine_mode
270 mode_for_extraction (enum extraction_pattern pattern, int opno)
272 const struct insn_data *data;
274 switch (pattern)
276 case EP_insv:
277 if (HAVE_insv)
279 data = &insn_data[CODE_FOR_insv];
280 break;
282 return MAX_MACHINE_MODE;
284 case EP_extv:
285 if (HAVE_extv)
287 data = &insn_data[CODE_FOR_extv];
288 break;
290 return MAX_MACHINE_MODE;
292 case EP_extzv:
293 if (HAVE_extzv)
295 data = &insn_data[CODE_FOR_extzv];
296 break;
298 return MAX_MACHINE_MODE;
300 default:
301 gcc_unreachable ();
304 if (opno == -1)
305 return VOIDmode;
307 /* Everyone who uses this function used to follow it with
308 if (result == VOIDmode) result = word_mode; */
309 if (data->operand[opno].mode == VOIDmode)
310 return word_mode;
311 return data->operand[opno].mode;
315 /* Generate code to store value from rtx VALUE
316 into a bit-field within structure STR_RTX
317 containing BITSIZE bits starting at bit BITNUM.
318 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
319 ALIGN is the alignment that STR_RTX is known to have.
320 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
322 /* ??? Note that there are two different ideas here for how
323 to determine the size to count bits within, for a register.
324 One is BITS_PER_WORD, and the other is the size of operand 3
325 of the insv pattern.
327 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
328 else, we use the mode of operand 3. */
331 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
332 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
333 rtx value)
335 unsigned int unit
336 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
337 unsigned HOST_WIDE_INT offset = bitnum / unit;
338 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
339 rtx op0 = str_rtx;
340 int byte_offset;
341 rtx orig_value;
343 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
345 while (GET_CODE (op0) == SUBREG)
347 /* The following line once was done only if WORDS_BIG_ENDIAN,
348 but I think that is a mistake. WORDS_BIG_ENDIAN is
349 meaningful at a much higher level; when structures are copied
350 between memory and regs, the higher-numbered regs
351 always get higher addresses. */
352 offset += (SUBREG_BYTE (op0) / UNITS_PER_WORD);
353 /* We used to adjust BITPOS here, but now we do the whole adjustment
354 right after the loop. */
355 op0 = SUBREG_REG (op0);
358 /* Use vec_set patterns for inserting parts of vectors whenever
359 available. */
360 if (VECTOR_MODE_P (GET_MODE (op0))
361 && !MEM_P (op0)
362 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
363 != CODE_FOR_nothing)
364 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
365 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
366 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
368 enum machine_mode outermode = GET_MODE (op0);
369 enum machine_mode innermode = GET_MODE_INNER (outermode);
370 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
371 int pos = bitnum / GET_MODE_BITSIZE (innermode);
372 rtx rtxpos = GEN_INT (pos);
373 rtx src = value;
374 rtx dest = op0;
375 rtx pat, seq;
376 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
377 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
378 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
380 start_sequence ();
382 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
383 src = copy_to_mode_reg (mode1, src);
385 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
386 rtxpos = copy_to_mode_reg (mode1, rtxpos);
388 /* We could handle this, but we should always be called with a pseudo
389 for our targets and all insns should take them as outputs. */
390 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
391 && (*insn_data[icode].operand[1].predicate) (src, mode1)
392 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
393 pat = GEN_FCN (icode) (dest, src, rtxpos);
394 seq = get_insns ();
395 end_sequence ();
396 if (pat)
398 emit_insn (seq);
399 emit_insn (pat);
400 return dest;
404 if (flag_force_mem)
406 int old_generating_concat_p = generating_concat_p;
407 generating_concat_p = 0;
408 value = force_not_mem (value);
409 generating_concat_p = old_generating_concat_p;
412 /* If the target is a register, overwriting the entire object, or storing
413 a full-word or multi-word field can be done with just a SUBREG.
415 If the target is memory, storing any naturally aligned field can be
416 done with a simple store. For targets that support fast unaligned
417 memory, any naturally sized, unit aligned field can be done directly. */
419 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
420 + (offset * UNITS_PER_WORD);
422 if (bitpos == 0
423 && bitsize == GET_MODE_BITSIZE (fieldmode)
424 && (!MEM_P (op0)
425 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
426 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
427 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
428 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
429 || (offset * BITS_PER_UNIT % bitsize == 0
430 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
432 if (GET_MODE (op0) != fieldmode)
434 if (GET_CODE (op0) == SUBREG)
436 /* Else we've got some float mode source being extracted
437 into a different float mode destination -- this
438 combination of subregs results in Severe Tire
439 Damage. */
440 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
441 || GET_MODE_CLASS (fieldmode) == MODE_INT
442 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
443 op0 = SUBREG_REG (op0);
445 if (REG_P (op0))
446 op0 = gen_rtx_SUBREG (fieldmode, op0, byte_offset);
447 else
448 op0 = adjust_address (op0, fieldmode, offset);
450 emit_move_insn (op0, value);
451 return value;
454 /* Make sure we are playing with integral modes. Pun with subregs
455 if we aren't. This must come after the entire register case above,
456 since that case is valid for any mode. The following cases are only
457 valid for integral modes. */
459 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
460 if (imode != GET_MODE (op0))
462 if (MEM_P (op0))
463 op0 = adjust_address (op0, imode, 0);
464 else
466 gcc_assert (imode != BLKmode);
467 op0 = gen_lowpart (imode, op0);
472 /* We may be accessing data outside the field, which means
473 we can alias adjacent data. */
474 if (MEM_P (op0))
476 op0 = shallow_copy_rtx (op0);
477 set_mem_alias_set (op0, 0);
478 set_mem_expr (op0, 0);
481 /* If OP0 is a register, BITPOS must count within a word.
482 But as we have it, it counts within whatever size OP0 now has.
483 On a bigendian machine, these are not the same, so convert. */
484 if (BYTES_BIG_ENDIAN
485 && !MEM_P (op0)
486 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
487 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
489 /* Storing an lsb-aligned field in a register
490 can be done with a movestrict instruction. */
492 if (!MEM_P (op0)
493 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
494 && bitsize == GET_MODE_BITSIZE (fieldmode)
495 && (movstrict_optab->handlers[fieldmode].insn_code
496 != CODE_FOR_nothing))
498 int icode = movstrict_optab->handlers[fieldmode].insn_code;
500 /* Get appropriate low part of the value being stored. */
501 if (GET_CODE (value) == CONST_INT || REG_P (value))
502 value = gen_lowpart (fieldmode, value);
503 else if (!(GET_CODE (value) == SYMBOL_REF
504 || GET_CODE (value) == LABEL_REF
505 || GET_CODE (value) == CONST))
506 value = convert_to_mode (fieldmode, value, 0);
508 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
509 value = copy_to_mode_reg (fieldmode, value);
511 if (GET_CODE (op0) == SUBREG)
513 /* Else we've got some float mode source being extracted into
514 a different float mode destination -- this combination of
515 subregs results in Severe Tire Damage. */
516 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
517 || GET_MODE_CLASS (fieldmode) == MODE_INT
518 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
519 op0 = SUBREG_REG (op0);
522 emit_insn (GEN_FCN (icode)
523 (gen_rtx_SUBREG (fieldmode, op0,
524 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
525 + (offset * UNITS_PER_WORD)),
526 value));
528 return value;
531 /* Handle fields bigger than a word. */
533 if (bitsize > BITS_PER_WORD)
535 /* Here we transfer the words of the field
536 in the order least significant first.
537 This is because the most significant word is the one which may
538 be less than full.
539 However, only do that if the value is not BLKmode. */
541 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
542 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
543 unsigned int i;
545 /* This is the mode we must force value to, so that there will be enough
546 subwords to extract. Note that fieldmode will often (always?) be
547 VOIDmode, because that is what store_field uses to indicate that this
548 is a bit field, but passing VOIDmode to operand_subword_force will
549 result in an abort. */
550 fieldmode = GET_MODE (value);
551 if (fieldmode == VOIDmode)
552 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
554 for (i = 0; i < nwords; i++)
556 /* If I is 0, use the low-order word in both field and target;
557 if I is 1, use the next to lowest word; and so on. */
558 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
559 unsigned int bit_offset = (backwards
560 ? MAX ((int) bitsize - ((int) i + 1)
561 * BITS_PER_WORD,
563 : (int) i * BITS_PER_WORD);
565 store_bit_field (op0, MIN (BITS_PER_WORD,
566 bitsize - i * BITS_PER_WORD),
567 bitnum + bit_offset, word_mode,
568 operand_subword_force (value, wordnum, fieldmode));
570 return value;
573 /* From here on we can assume that the field to be stored in is
574 a full-word (whatever type that is), since it is shorter than a word. */
576 /* OFFSET is the number of words or bytes (UNIT says which)
577 from STR_RTX to the first word or byte containing part of the field. */
579 if (!MEM_P (op0))
581 if (offset != 0
582 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
584 if (!REG_P (op0))
586 /* Since this is a destination (lvalue), we can't copy it to a
587 pseudo. We can trivially remove a SUBREG that does not
588 change the size of the operand. Such a SUBREG may have been
589 added above. Otherwise, abort. */
590 gcc_assert (GET_CODE (op0) == SUBREG
591 && (GET_MODE_SIZE (GET_MODE (op0))
592 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
593 op0 = SUBREG_REG (op0);
595 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
596 op0, (offset * UNITS_PER_WORD));
598 offset = 0;
601 /* If VALUE is a floating-point mode, access it as an integer of the
602 corresponding size. This can occur on a machine with 64 bit registers
603 that uses SFmode for float. This can also occur for unaligned float
604 structure fields. */
605 orig_value = value;
606 if (GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
607 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
608 value = gen_lowpart ((GET_MODE (value) == VOIDmode
609 ? word_mode : int_mode_for_mode (GET_MODE (value))),
610 value);
612 /* Now OFFSET is nonzero only if OP0 is memory
613 and is therefore always measured in bytes. */
615 if (HAVE_insv
616 && GET_MODE (value) != BLKmode
617 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
618 /* Ensure insv's size is wide enough for this field. */
619 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
620 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
621 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
623 int xbitpos = bitpos;
624 rtx value1;
625 rtx xop0 = op0;
626 rtx last = get_last_insn ();
627 rtx pat;
628 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
629 int save_volatile_ok = volatile_ok;
631 volatile_ok = 1;
633 /* If this machine's insv can only insert into a register, copy OP0
634 into a register and save it back later. */
635 /* This used to check flag_force_mem, but that was a serious
636 de-optimization now that flag_force_mem is enabled by -O2. */
637 if (MEM_P (op0)
638 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
639 (op0, VOIDmode)))
641 rtx tempreg;
642 enum machine_mode bestmode;
644 /* Get the mode to use for inserting into this field. If OP0 is
645 BLKmode, get the smallest mode consistent with the alignment. If
646 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
647 mode. Otherwise, use the smallest mode containing the field. */
649 if (GET_MODE (op0) == BLKmode
650 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
651 bestmode
652 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
653 MEM_VOLATILE_P (op0));
654 else
655 bestmode = GET_MODE (op0);
657 if (bestmode == VOIDmode
658 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
659 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
660 goto insv_loses;
662 /* Adjust address to point to the containing unit of that mode.
663 Compute offset as multiple of this unit, counting in bytes. */
664 unit = GET_MODE_BITSIZE (bestmode);
665 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
666 bitpos = bitnum % unit;
667 op0 = adjust_address (op0, bestmode, offset);
669 /* Fetch that unit, store the bitfield in it, then store
670 the unit. */
671 tempreg = copy_to_reg (op0);
672 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
673 emit_move_insn (op0, tempreg);
674 return value;
676 volatile_ok = save_volatile_ok;
678 /* Add OFFSET into OP0's address. */
679 if (MEM_P (xop0))
680 xop0 = adjust_address (xop0, byte_mode, offset);
682 /* If xop0 is a register, we need it in MAXMODE
683 to make it acceptable to the format of insv. */
684 if (GET_CODE (xop0) == SUBREG)
685 /* We can't just change the mode, because this might clobber op0,
686 and we will need the original value of op0 if insv fails. */
687 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
688 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
689 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
691 /* On big-endian machines, we count bits from the most significant.
692 If the bit field insn does not, we must invert. */
694 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
695 xbitpos = unit - bitsize - xbitpos;
697 /* We have been counting XBITPOS within UNIT.
698 Count instead within the size of the register. */
699 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
700 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
702 unit = GET_MODE_BITSIZE (maxmode);
704 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
705 value1 = value;
706 if (GET_MODE (value) != maxmode)
708 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
710 /* Optimization: Don't bother really extending VALUE
711 if it has all the bits we will actually use. However,
712 if we must narrow it, be sure we do it correctly. */
714 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
716 rtx tmp;
718 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
719 if (! tmp)
720 tmp = simplify_gen_subreg (maxmode,
721 force_reg (GET_MODE (value),
722 value1),
723 GET_MODE (value), 0);
724 value1 = tmp;
726 else
727 value1 = gen_lowpart (maxmode, value1);
729 else if (GET_CODE (value) == CONST_INT)
730 value1 = gen_int_mode (INTVAL (value), maxmode);
731 else
732 /* Parse phase is supposed to make VALUE's data type
733 match that of the component reference, which is a type
734 at least as wide as the field; so VALUE should have
735 a mode that corresponds to that type. */
736 gcc_assert (CONSTANT_P (value));
739 /* If this machine's insv insists on a register,
740 get VALUE1 into a register. */
741 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
742 (value1, maxmode)))
743 value1 = force_reg (maxmode, value1);
745 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
746 if (pat)
747 emit_insn (pat);
748 else
750 delete_insns_since (last);
751 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
754 else
755 insv_loses:
756 /* Insv is not available; store using shifts and boolean ops. */
757 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
758 return value;
761 /* Use shifts and boolean operations to store VALUE
762 into a bit field of width BITSIZE
763 in a memory location specified by OP0 except offset by OFFSET bytes.
764 (OFFSET must be 0 if OP0 is a register.)
765 The field starts at position BITPOS within the byte.
766 (If OP0 is a register, it may be a full word or a narrower mode,
767 but BITPOS still counts within a full word,
768 which is significant on bigendian machines.) */
770 static void
771 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
772 unsigned HOST_WIDE_INT bitsize,
773 unsigned HOST_WIDE_INT bitpos, rtx value)
775 enum machine_mode mode;
776 unsigned int total_bits = BITS_PER_WORD;
777 rtx subtarget, temp;
778 int all_zero = 0;
779 int all_one = 0;
781 /* There is a case not handled here:
782 a structure with a known alignment of just a halfword
783 and a field split across two aligned halfwords within the structure.
784 Or likewise a structure with a known alignment of just a byte
785 and a field split across two bytes.
786 Such cases are not supposed to be able to occur. */
788 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
790 gcc_assert (!offset);
791 /* Special treatment for a bit field split across two registers. */
792 if (bitsize + bitpos > BITS_PER_WORD)
794 store_split_bit_field (op0, bitsize, bitpos, value);
795 return;
798 else
800 /* Get the proper mode to use for this field. We want a mode that
801 includes the entire field. If such a mode would be larger than
802 a word, we won't be doing the extraction the normal way.
803 We don't want a mode bigger than the destination. */
805 mode = GET_MODE (op0);
806 if (GET_MODE_BITSIZE (mode) == 0
807 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
808 mode = word_mode;
809 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
810 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
812 if (mode == VOIDmode)
814 /* The only way this should occur is if the field spans word
815 boundaries. */
816 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
817 value);
818 return;
821 total_bits = GET_MODE_BITSIZE (mode);
823 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
824 be in the range 0 to total_bits-1, and put any excess bytes in
825 OFFSET. */
826 if (bitpos >= total_bits)
828 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
829 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
830 * BITS_PER_UNIT);
833 /* Get ref to an aligned byte, halfword, or word containing the field.
834 Adjust BITPOS to be position within a word,
835 and OFFSET to be the offset of that word.
836 Then alter OP0 to refer to that word. */
837 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
838 offset -= (offset % (total_bits / BITS_PER_UNIT));
839 op0 = adjust_address (op0, mode, offset);
842 mode = GET_MODE (op0);
844 /* Now MODE is either some integral mode for a MEM as OP0,
845 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
846 The bit field is contained entirely within OP0.
847 BITPOS is the starting bit number within OP0.
848 (OP0's mode may actually be narrower than MODE.) */
850 if (BYTES_BIG_ENDIAN)
851 /* BITPOS is the distance between our msb
852 and that of the containing datum.
853 Convert it to the distance from the lsb. */
854 bitpos = total_bits - bitsize - bitpos;
856 /* Now BITPOS is always the distance between our lsb
857 and that of OP0. */
859 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
860 we must first convert its mode to MODE. */
862 if (GET_CODE (value) == CONST_INT)
864 HOST_WIDE_INT v = INTVAL (value);
866 if (bitsize < HOST_BITS_PER_WIDE_INT)
867 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
869 if (v == 0)
870 all_zero = 1;
871 else if ((bitsize < HOST_BITS_PER_WIDE_INT
872 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
873 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
874 all_one = 1;
876 value = lshift_value (mode, value, bitpos, bitsize);
878 else
880 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
881 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
883 if (GET_MODE (value) != mode)
885 if ((REG_P (value) || GET_CODE (value) == SUBREG)
886 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
887 value = gen_lowpart (mode, value);
888 else
889 value = convert_to_mode (mode, value, 1);
892 if (must_and)
893 value = expand_binop (mode, and_optab, value,
894 mask_rtx (mode, 0, bitsize, 0),
895 NULL_RTX, 1, OPTAB_LIB_WIDEN);
896 if (bitpos > 0)
897 value = expand_shift (LSHIFT_EXPR, mode, value,
898 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
901 /* Now clear the chosen bits in OP0,
902 except that if VALUE is -1 we need not bother. */
904 subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
906 if (! all_one)
908 temp = expand_binop (mode, and_optab, op0,
909 mask_rtx (mode, bitpos, bitsize, 1),
910 subtarget, 1, OPTAB_LIB_WIDEN);
911 subtarget = temp;
913 else
914 temp = op0;
916 /* Now logical-or VALUE into OP0, unless it is zero. */
918 if (! all_zero)
919 temp = expand_binop (mode, ior_optab, temp, value,
920 subtarget, 1, OPTAB_LIB_WIDEN);
921 if (op0 != temp)
922 emit_move_insn (op0, temp);
925 /* Store a bit field that is split across multiple accessible memory objects.
927 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
928 BITSIZE is the field width; BITPOS the position of its first bit
929 (within the word).
930 VALUE is the value to store.
932 This does not yet handle fields wider than BITS_PER_WORD. */
934 static void
935 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
936 unsigned HOST_WIDE_INT bitpos, rtx value)
938 unsigned int unit;
939 unsigned int bitsdone = 0;
941 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
942 much at a time. */
943 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
944 unit = BITS_PER_WORD;
945 else
946 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
948 /* If VALUE is a constant other than a CONST_INT, get it into a register in
949 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
950 that VALUE might be a floating-point constant. */
951 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
953 rtx word = gen_lowpart_common (word_mode, value);
955 if (word && (value != word))
956 value = word;
957 else
958 value = gen_lowpart_common (word_mode,
959 force_reg (GET_MODE (value) != VOIDmode
960 ? GET_MODE (value)
961 : word_mode, value));
964 while (bitsdone < bitsize)
966 unsigned HOST_WIDE_INT thissize;
967 rtx part, word;
968 unsigned HOST_WIDE_INT thispos;
969 unsigned HOST_WIDE_INT offset;
971 offset = (bitpos + bitsdone) / unit;
972 thispos = (bitpos + bitsdone) % unit;
974 /* THISSIZE must not overrun a word boundary. Otherwise,
975 store_fixed_bit_field will call us again, and we will mutually
976 recurse forever. */
977 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
978 thissize = MIN (thissize, unit - thispos);
980 if (BYTES_BIG_ENDIAN)
982 int total_bits;
984 /* We must do an endian conversion exactly the same way as it is
985 done in extract_bit_field, so that the two calls to
986 extract_fixed_bit_field will have comparable arguments. */
987 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
988 total_bits = BITS_PER_WORD;
989 else
990 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
992 /* Fetch successively less significant portions. */
993 if (GET_CODE (value) == CONST_INT)
994 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
995 >> (bitsize - bitsdone - thissize))
996 & (((HOST_WIDE_INT) 1 << thissize) - 1));
997 else
998 /* The args are chosen so that the last part includes the
999 lsb. Give extract_bit_field the value it needs (with
1000 endianness compensation) to fetch the piece we want. */
1001 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1002 total_bits - bitsize + bitsdone,
1003 NULL_RTX, 1);
1005 else
1007 /* Fetch successively more significant portions. */
1008 if (GET_CODE (value) == CONST_INT)
1009 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1010 >> bitsdone)
1011 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1012 else
1013 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1014 bitsdone, NULL_RTX, 1);
1017 /* If OP0 is a register, then handle OFFSET here.
1019 When handling multiword bitfields, extract_bit_field may pass
1020 down a word_mode SUBREG of a larger REG for a bitfield that actually
1021 crosses a word boundary. Thus, for a SUBREG, we must find
1022 the current word starting from the base register. */
1023 if (GET_CODE (op0) == SUBREG)
1025 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1026 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1027 GET_MODE (SUBREG_REG (op0)));
1028 offset = 0;
1030 else if (REG_P (op0))
1032 word = operand_subword_force (op0, offset, GET_MODE (op0));
1033 offset = 0;
1035 else
1036 word = op0;
1038 /* OFFSET is in UNITs, and UNIT is in bits.
1039 store_fixed_bit_field wants offset in bytes. */
1040 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1041 thispos, part);
1042 bitsdone += thissize;
1046 /* Generate code to extract a byte-field from STR_RTX
1047 containing BITSIZE bits, starting at BITNUM,
1048 and put it in TARGET if possible (if TARGET is nonzero).
1049 Regardless of TARGET, we return the rtx for where the value is placed.
1051 STR_RTX is the structure containing the byte (a REG or MEM).
1052 UNSIGNEDP is nonzero if this is an unsigned bit field.
1053 MODE is the natural mode of the field value once extracted.
1054 TMODE is the mode the caller would like the value to have;
1055 but the value may be returned with type MODE instead.
1057 TOTAL_SIZE is the size in bytes of the containing structure,
1058 or -1 if varying.
1060 If a TARGET is specified and we can store in it at no extra cost,
1061 we do so, and return TARGET.
1062 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1063 if they are equally easy. */
1066 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1067 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1068 enum machine_mode mode, enum machine_mode tmode)
1070 unsigned int unit
1071 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1072 unsigned HOST_WIDE_INT offset = bitnum / unit;
1073 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
1074 rtx op0 = str_rtx;
1075 rtx spec_target = target;
1076 rtx spec_target_subreg = 0;
1077 enum machine_mode int_mode;
1078 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1079 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1080 enum machine_mode mode1;
1081 int byte_offset;
1083 if (tmode == VOIDmode)
1084 tmode = mode;
1086 while (GET_CODE (op0) == SUBREG)
1088 bitpos += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1089 if (bitpos > unit)
1091 offset += (bitpos / unit);
1092 bitpos %= unit;
1094 op0 = SUBREG_REG (op0);
1097 if (REG_P (op0)
1098 && mode == GET_MODE (op0)
1099 && bitnum == 0
1100 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1102 /* We're trying to extract a full register from itself. */
1103 return op0;
1106 /* Use vec_extract patterns for extracting parts of vectors whenever
1107 available. */
1108 if (VECTOR_MODE_P (GET_MODE (op0))
1109 && !MEM_P (op0)
1110 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1111 != CODE_FOR_nothing)
1112 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1113 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1115 enum machine_mode outermode = GET_MODE (op0);
1116 enum machine_mode innermode = GET_MODE_INNER (outermode);
1117 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1118 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1119 rtx rtxpos = GEN_INT (pos);
1120 rtx src = op0;
1121 rtx dest = NULL, pat, seq;
1122 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1123 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1124 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1126 if (innermode == tmode || innermode == mode)
1127 dest = target;
1129 if (!dest)
1130 dest = gen_reg_rtx (innermode);
1132 start_sequence ();
1134 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1135 dest = copy_to_mode_reg (mode0, dest);
1137 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1138 src = copy_to_mode_reg (mode1, src);
1140 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1141 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1143 /* We could handle this, but we should always be called with a pseudo
1144 for our targets and all insns should take them as outputs. */
1145 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1146 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1147 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1149 pat = GEN_FCN (icode) (dest, src, rtxpos);
1150 seq = get_insns ();
1151 end_sequence ();
1152 if (pat)
1154 emit_insn (seq);
1155 emit_insn (pat);
1156 return dest;
1160 /* Make sure we are playing with integral modes. Pun with subregs
1161 if we aren't. */
1163 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1164 if (imode != GET_MODE (op0))
1166 if (MEM_P (op0))
1167 op0 = adjust_address (op0, imode, 0);
1168 else
1170 gcc_assert (imode != BLKmode);
1171 op0 = gen_lowpart (imode, op0);
1176 /* We may be accessing data outside the field, which means
1177 we can alias adjacent data. */
1178 if (MEM_P (op0))
1180 op0 = shallow_copy_rtx (op0);
1181 set_mem_alias_set (op0, 0);
1182 set_mem_expr (op0, 0);
1185 /* Extraction of a full-word or multi-word value from a structure
1186 in a register or aligned memory can be done with just a SUBREG.
1187 A subword value in the least significant part of a register
1188 can also be extracted with a SUBREG. For this, we need the
1189 byte offset of the value in op0. */
1191 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1193 /* If OP0 is a register, BITPOS must count within a word.
1194 But as we have it, it counts within whatever size OP0 now has.
1195 On a bigendian machine, these are not the same, so convert. */
1196 if (BYTES_BIG_ENDIAN
1197 && !MEM_P (op0)
1198 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1199 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1201 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1202 If that's wrong, the solution is to test for it and set TARGET to 0
1203 if needed. */
1205 /* Only scalar integer modes can be converted via subregs. There is an
1206 additional problem for FP modes here in that they can have a precision
1207 which is different from the size. mode_for_size uses precision, but
1208 we want a mode based on the size, so we must avoid calling it for FP
1209 modes. */
1210 mode1 = (SCALAR_INT_MODE_P (tmode)
1211 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1212 : mode);
1214 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1215 && bitpos % BITS_PER_WORD == 0)
1216 || (mode1 != BLKmode
1217 /* ??? The big endian test here is wrong. This is correct
1218 if the value is in a register, and if mode_for_size is not
1219 the same mode as op0. This causes us to get unnecessarily
1220 inefficient code from the Thumb port when -mbig-endian. */
1221 && (BYTES_BIG_ENDIAN
1222 ? bitpos + bitsize == BITS_PER_WORD
1223 : bitpos == 0)))
1224 && ((!MEM_P (op0)
1225 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1226 GET_MODE_BITSIZE (GET_MODE (op0)))
1227 && GET_MODE_SIZE (mode1) != 0
1228 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1229 || (MEM_P (op0)
1230 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1231 || (offset * BITS_PER_UNIT % bitsize == 0
1232 && MEM_ALIGN (op0) % bitsize == 0)))))
1234 if (mode1 != GET_MODE (op0))
1236 if (GET_CODE (op0) == SUBREG)
1238 if (GET_MODE (SUBREG_REG (op0)) == mode1
1239 || GET_MODE_CLASS (mode1) == MODE_INT
1240 || GET_MODE_CLASS (mode1) == MODE_PARTIAL_INT)
1241 op0 = SUBREG_REG (op0);
1242 else
1243 /* Else we've got some float mode source being extracted into
1244 a different float mode destination -- this combination of
1245 subregs results in Severe Tire Damage. */
1246 goto no_subreg_mode_swap;
1248 if (REG_P (op0))
1249 op0 = gen_rtx_SUBREG (mode1, op0, byte_offset);
1250 else
1251 op0 = adjust_address (op0, mode1, offset);
1253 if (mode1 != mode)
1254 return convert_to_mode (tmode, op0, unsignedp);
1255 return op0;
1257 no_subreg_mode_swap:
1259 /* Handle fields bigger than a word. */
1261 if (bitsize > BITS_PER_WORD)
1263 /* Here we transfer the words of the field
1264 in the order least significant first.
1265 This is because the most significant word is the one which may
1266 be less than full. */
1268 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1269 unsigned int i;
1271 if (target == 0 || !REG_P (target))
1272 target = gen_reg_rtx (mode);
1274 /* Indicate for flow that the entire target reg is being set. */
1275 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1277 for (i = 0; i < nwords; i++)
1279 /* If I is 0, use the low-order word in both field and target;
1280 if I is 1, use the next to lowest word; and so on. */
1281 /* Word number in TARGET to use. */
1282 unsigned int wordnum
1283 = (WORDS_BIG_ENDIAN
1284 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1285 : i);
1286 /* Offset from start of field in OP0. */
1287 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1288 ? MAX (0, ((int) bitsize - ((int) i + 1)
1289 * (int) BITS_PER_WORD))
1290 : (int) i * BITS_PER_WORD);
1291 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1292 rtx result_part
1293 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1294 bitsize - i * BITS_PER_WORD),
1295 bitnum + bit_offset, 1, target_part, mode,
1296 word_mode);
1298 gcc_assert (target_part);
1300 if (result_part != target_part)
1301 emit_move_insn (target_part, result_part);
1304 if (unsignedp)
1306 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1307 need to be zero'd out. */
1308 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1310 unsigned int i, total_words;
1312 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1313 for (i = nwords; i < total_words; i++)
1314 emit_move_insn
1315 (operand_subword (target,
1316 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1317 1, VOIDmode),
1318 const0_rtx);
1320 return target;
1323 /* Signed bit field: sign-extend with two arithmetic shifts. */
1324 target = expand_shift (LSHIFT_EXPR, mode, target,
1325 build_int_cst (NULL_TREE,
1326 GET_MODE_BITSIZE (mode) - bitsize),
1327 NULL_RTX, 0);
1328 return expand_shift (RSHIFT_EXPR, mode, target,
1329 build_int_cst (NULL_TREE,
1330 GET_MODE_BITSIZE (mode) - bitsize),
1331 NULL_RTX, 0);
1334 /* From here on we know the desired field is smaller than a word. */
1336 /* Check if there is a correspondingly-sized integer field, so we can
1337 safely extract it as one size of integer, if necessary; then
1338 truncate or extend to the size that is wanted; then use SUBREGs or
1339 convert_to_mode to get one of the modes we really wanted. */
1341 int_mode = int_mode_for_mode (tmode);
1342 if (int_mode == BLKmode)
1343 int_mode = int_mode_for_mode (mode);
1344 /* Should probably push op0 out to memory and then do a load. */
1345 gcc_assert (int_mode != BLKmode);
1347 /* OFFSET is the number of words or bytes (UNIT says which)
1348 from STR_RTX to the first word or byte containing part of the field. */
1349 if (!MEM_P (op0))
1351 if (offset != 0
1352 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1354 if (!REG_P (op0))
1355 op0 = copy_to_reg (op0);
1356 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1357 op0, (offset * UNITS_PER_WORD));
1359 offset = 0;
1362 /* Now OFFSET is nonzero only for memory operands. */
1364 if (unsignedp)
1366 if (HAVE_extzv
1367 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1368 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1369 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1371 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1372 rtx bitsize_rtx, bitpos_rtx;
1373 rtx last = get_last_insn ();
1374 rtx xop0 = op0;
1375 rtx xtarget = target;
1376 rtx xspec_target = spec_target;
1377 rtx xspec_target_subreg = spec_target_subreg;
1378 rtx pat;
1379 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1381 if (MEM_P (xop0))
1383 int save_volatile_ok = volatile_ok;
1384 volatile_ok = 1;
1386 /* Is the memory operand acceptable? */
1387 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1388 (xop0, GET_MODE (xop0))))
1390 /* No, load into a reg and extract from there. */
1391 enum machine_mode bestmode;
1393 /* Get the mode to use for inserting into this field. If
1394 OP0 is BLKmode, get the smallest mode consistent with the
1395 alignment. If OP0 is a non-BLKmode object that is no
1396 wider than MAXMODE, use its mode. Otherwise, use the
1397 smallest mode containing the field. */
1399 if (GET_MODE (xop0) == BLKmode
1400 || (GET_MODE_SIZE (GET_MODE (op0))
1401 > GET_MODE_SIZE (maxmode)))
1402 bestmode = get_best_mode (bitsize, bitnum,
1403 MEM_ALIGN (xop0), maxmode,
1404 MEM_VOLATILE_P (xop0));
1405 else
1406 bestmode = GET_MODE (xop0);
1408 if (bestmode == VOIDmode
1409 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1410 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1411 goto extzv_loses;
1413 /* Compute offset as multiple of this unit,
1414 counting in bytes. */
1415 unit = GET_MODE_BITSIZE (bestmode);
1416 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1417 xbitpos = bitnum % unit;
1418 xop0 = adjust_address (xop0, bestmode, xoffset);
1420 /* Fetch it to a register in that size. */
1421 xop0 = force_reg (bestmode, xop0);
1423 /* XBITPOS counts within UNIT, which is what is expected. */
1425 else
1426 /* Get ref to first byte containing part of the field. */
1427 xop0 = adjust_address (xop0, byte_mode, xoffset);
1429 volatile_ok = save_volatile_ok;
1432 /* If op0 is a register, we need it in MAXMODE (which is usually
1433 SImode). to make it acceptable to the format of extzv. */
1434 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1435 goto extzv_loses;
1436 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1437 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1439 /* On big-endian machines, we count bits from the most significant.
1440 If the bit field insn does not, we must invert. */
1441 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1442 xbitpos = unit - bitsize - xbitpos;
1444 /* Now convert from counting within UNIT to counting in MAXMODE. */
1445 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1446 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1448 unit = GET_MODE_BITSIZE (maxmode);
1450 if (xtarget == 0
1451 || (flag_force_mem && MEM_P (xtarget)))
1452 xtarget = xspec_target = gen_reg_rtx (tmode);
1454 if (GET_MODE (xtarget) != maxmode)
1456 if (REG_P (xtarget))
1458 int wider = (GET_MODE_SIZE (maxmode)
1459 > GET_MODE_SIZE (GET_MODE (xtarget)));
1460 xtarget = gen_lowpart (maxmode, xtarget);
1461 if (wider)
1462 xspec_target_subreg = xtarget;
1464 else
1465 xtarget = gen_reg_rtx (maxmode);
1468 /* If this machine's extzv insists on a register target,
1469 make sure we have one. */
1470 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1471 (xtarget, maxmode)))
1472 xtarget = gen_reg_rtx (maxmode);
1474 bitsize_rtx = GEN_INT (bitsize);
1475 bitpos_rtx = GEN_INT (xbitpos);
1477 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1478 if (pat)
1480 emit_insn (pat);
1481 target = xtarget;
1482 spec_target = xspec_target;
1483 spec_target_subreg = xspec_target_subreg;
1485 else
1487 delete_insns_since (last);
1488 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1489 bitpos, target, 1);
1492 else
1493 extzv_loses:
1494 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1495 bitpos, target, 1);
1497 else
1499 if (HAVE_extv
1500 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1501 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1502 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1504 int xbitpos = bitpos, xoffset = offset;
1505 rtx bitsize_rtx, bitpos_rtx;
1506 rtx last = get_last_insn ();
1507 rtx xop0 = op0, xtarget = target;
1508 rtx xspec_target = spec_target;
1509 rtx xspec_target_subreg = spec_target_subreg;
1510 rtx pat;
1511 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1513 if (MEM_P (xop0))
1515 /* Is the memory operand acceptable? */
1516 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1517 (xop0, GET_MODE (xop0))))
1519 /* No, load into a reg and extract from there. */
1520 enum machine_mode bestmode;
1522 /* Get the mode to use for inserting into this field. If
1523 OP0 is BLKmode, get the smallest mode consistent with the
1524 alignment. If OP0 is a non-BLKmode object that is no
1525 wider than MAXMODE, use its mode. Otherwise, use the
1526 smallest mode containing the field. */
1528 if (GET_MODE (xop0) == BLKmode
1529 || (GET_MODE_SIZE (GET_MODE (op0))
1530 > GET_MODE_SIZE (maxmode)))
1531 bestmode = get_best_mode (bitsize, bitnum,
1532 MEM_ALIGN (xop0), maxmode,
1533 MEM_VOLATILE_P (xop0));
1534 else
1535 bestmode = GET_MODE (xop0);
1537 if (bestmode == VOIDmode
1538 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1539 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1540 goto extv_loses;
1542 /* Compute offset as multiple of this unit,
1543 counting in bytes. */
1544 unit = GET_MODE_BITSIZE (bestmode);
1545 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1546 xbitpos = bitnum % unit;
1547 xop0 = adjust_address (xop0, bestmode, xoffset);
1549 /* Fetch it to a register in that size. */
1550 xop0 = force_reg (bestmode, xop0);
1552 /* XBITPOS counts within UNIT, which is what is expected. */
1554 else
1555 /* Get ref to first byte containing part of the field. */
1556 xop0 = adjust_address (xop0, byte_mode, xoffset);
1559 /* If op0 is a register, we need it in MAXMODE (which is usually
1560 SImode) to make it acceptable to the format of extv. */
1561 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1562 goto extv_loses;
1563 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1564 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1566 /* On big-endian machines, we count bits from the most significant.
1567 If the bit field insn does not, we must invert. */
1568 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1569 xbitpos = unit - bitsize - xbitpos;
1571 /* XBITPOS counts within a size of UNIT.
1572 Adjust to count within a size of MAXMODE. */
1573 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1574 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1576 unit = GET_MODE_BITSIZE (maxmode);
1578 if (xtarget == 0
1579 || (flag_force_mem && MEM_P (xtarget)))
1580 xtarget = xspec_target = gen_reg_rtx (tmode);
1582 if (GET_MODE (xtarget) != maxmode)
1584 if (REG_P (xtarget))
1586 int wider = (GET_MODE_SIZE (maxmode)
1587 > GET_MODE_SIZE (GET_MODE (xtarget)));
1588 xtarget = gen_lowpart (maxmode, xtarget);
1589 if (wider)
1590 xspec_target_subreg = xtarget;
1592 else
1593 xtarget = gen_reg_rtx (maxmode);
1596 /* If this machine's extv insists on a register target,
1597 make sure we have one. */
1598 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1599 (xtarget, maxmode)))
1600 xtarget = gen_reg_rtx (maxmode);
1602 bitsize_rtx = GEN_INT (bitsize);
1603 bitpos_rtx = GEN_INT (xbitpos);
1605 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1606 if (pat)
1608 emit_insn (pat);
1609 target = xtarget;
1610 spec_target = xspec_target;
1611 spec_target_subreg = xspec_target_subreg;
1613 else
1615 delete_insns_since (last);
1616 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1617 bitpos, target, 0);
1620 else
1621 extv_loses:
1622 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1623 bitpos, target, 0);
1625 if (target == spec_target)
1626 return target;
1627 if (target == spec_target_subreg)
1628 return spec_target;
1629 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1631 /* If the target mode is floating-point, first convert to the
1632 integer mode of that size and then access it as a floating-point
1633 value via a SUBREG. */
1634 if (GET_MODE_CLASS (tmode) != MODE_INT
1635 && GET_MODE_CLASS (tmode) != MODE_PARTIAL_INT)
1637 target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
1638 MODE_INT, 0),
1639 target, unsignedp);
1640 return gen_lowpart (tmode, target);
1642 else
1643 return convert_to_mode (tmode, target, unsignedp);
1645 return target;
1648 /* Extract a bit field using shifts and boolean operations
1649 Returns an rtx to represent the value.
1650 OP0 addresses a register (word) or memory (byte).
1651 BITPOS says which bit within the word or byte the bit field starts in.
1652 OFFSET says how many bytes farther the bit field starts;
1653 it is 0 if OP0 is a register.
1654 BITSIZE says how many bits long the bit field is.
1655 (If OP0 is a register, it may be narrower than a full word,
1656 but BITPOS still counts within a full word,
1657 which is significant on bigendian machines.)
1659 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1660 If TARGET is nonzero, attempts to store the value there
1661 and return TARGET, but this is not guaranteed.
1662 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1664 static rtx
1665 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1666 unsigned HOST_WIDE_INT offset,
1667 unsigned HOST_WIDE_INT bitsize,
1668 unsigned HOST_WIDE_INT bitpos, rtx target,
1669 int unsignedp)
1671 unsigned int total_bits = BITS_PER_WORD;
1672 enum machine_mode mode;
1674 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1676 /* Special treatment for a bit field split across two registers. */
1677 if (bitsize + bitpos > BITS_PER_WORD)
1678 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1680 else
1682 /* Get the proper mode to use for this field. We want a mode that
1683 includes the entire field. If such a mode would be larger than
1684 a word, we won't be doing the extraction the normal way. */
1686 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1687 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1689 if (mode == VOIDmode)
1690 /* The only way this should occur is if the field spans word
1691 boundaries. */
1692 return extract_split_bit_field (op0, bitsize,
1693 bitpos + offset * BITS_PER_UNIT,
1694 unsignedp);
1696 total_bits = GET_MODE_BITSIZE (mode);
1698 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1699 be in the range 0 to total_bits-1, and put any excess bytes in
1700 OFFSET. */
1701 if (bitpos >= total_bits)
1703 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1704 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1705 * BITS_PER_UNIT);
1708 /* Get ref to an aligned byte, halfword, or word containing the field.
1709 Adjust BITPOS to be position within a word,
1710 and OFFSET to be the offset of that word.
1711 Then alter OP0 to refer to that word. */
1712 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1713 offset -= (offset % (total_bits / BITS_PER_UNIT));
1714 op0 = adjust_address (op0, mode, offset);
1717 mode = GET_MODE (op0);
1719 if (BYTES_BIG_ENDIAN)
1720 /* BITPOS is the distance between our msb and that of OP0.
1721 Convert it to the distance from the lsb. */
1722 bitpos = total_bits - bitsize - bitpos;
1724 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1725 We have reduced the big-endian case to the little-endian case. */
1727 if (unsignedp)
1729 if (bitpos)
1731 /* If the field does not already start at the lsb,
1732 shift it so it does. */
1733 tree amount = build_int_cst (NULL_TREE, bitpos);
1734 /* Maybe propagate the target for the shift. */
1735 /* But not if we will return it--could confuse integrate.c. */
1736 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1737 if (tmode != mode) subtarget = 0;
1738 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1740 /* Convert the value to the desired mode. */
1741 if (mode != tmode)
1742 op0 = convert_to_mode (tmode, op0, 1);
1744 /* Unless the msb of the field used to be the msb when we shifted,
1745 mask out the upper bits. */
1747 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1748 return expand_binop (GET_MODE (op0), and_optab, op0,
1749 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1750 target, 1, OPTAB_LIB_WIDEN);
1751 return op0;
1754 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1755 then arithmetic-shift its lsb to the lsb of the word. */
1756 op0 = force_reg (mode, op0);
1757 if (mode != tmode)
1758 target = 0;
1760 /* Find the narrowest integer mode that contains the field. */
1762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1763 mode = GET_MODE_WIDER_MODE (mode))
1764 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1766 op0 = convert_to_mode (mode, op0, 0);
1767 break;
1770 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1772 tree amount
1773 = build_int_cst (NULL_TREE,
1774 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1775 /* Maybe propagate the target for the shift. */
1776 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1777 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1780 return expand_shift (RSHIFT_EXPR, mode, op0,
1781 build_int_cst (NULL_TREE,
1782 GET_MODE_BITSIZE (mode) - bitsize),
1783 target, 0);
1786 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1787 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1788 complement of that if COMPLEMENT. The mask is truncated if
1789 necessary to the width of mode MODE. The mask is zero-extended if
1790 BITSIZE+BITPOS is too small for MODE. */
1792 static rtx
1793 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1795 HOST_WIDE_INT masklow, maskhigh;
1797 if (bitsize == 0)
1798 masklow = 0;
1799 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1800 masklow = (HOST_WIDE_INT) -1 << bitpos;
1801 else
1802 masklow = 0;
1804 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1805 masklow &= ((unsigned HOST_WIDE_INT) -1
1806 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1808 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1809 maskhigh = -1;
1810 else
1811 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1813 if (bitsize == 0)
1814 maskhigh = 0;
1815 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1816 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1817 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1818 else
1819 maskhigh = 0;
1821 if (complement)
1823 maskhigh = ~maskhigh;
1824 masklow = ~masklow;
1827 return immed_double_const (masklow, maskhigh, mode);
1830 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1831 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1833 static rtx
1834 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1836 unsigned HOST_WIDE_INT v = INTVAL (value);
1837 HOST_WIDE_INT low, high;
1839 if (bitsize < HOST_BITS_PER_WIDE_INT)
1840 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1842 if (bitpos < HOST_BITS_PER_WIDE_INT)
1844 low = v << bitpos;
1845 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1847 else
1849 low = 0;
1850 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1853 return immed_double_const (low, high, mode);
1856 /* Extract a bit field from a memory by forcing the alignment of the
1857 memory. This efficient only if the field spans at least 4 boundaries.
1859 OP0 is the MEM.
1860 BITSIZE is the field width; BITPOS is the position of the first bit.
1861 UNSIGNEDP is true if the result should be zero-extended. */
1863 static rtx
1864 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1865 unsigned HOST_WIDE_INT bitpos,
1866 int unsignedp)
1868 enum machine_mode mode, dmode;
1869 unsigned int m_bitsize, m_size;
1870 unsigned int sign_shift_up, sign_shift_dn;
1871 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1873 /* Choose a mode that will fit BITSIZE. */
1874 mode = smallest_mode_for_size (bitsize, MODE_INT);
1875 m_size = GET_MODE_SIZE (mode);
1876 m_bitsize = GET_MODE_BITSIZE (mode);
1878 /* Choose a mode twice as wide. Fail if no such mode exists. */
1879 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1880 if (dmode == BLKmode)
1881 return NULL;
1883 do_pending_stack_adjust ();
1884 start = get_last_insn ();
1886 /* At the end, we'll need an additional shift to deal with sign/zero
1887 extension. By default this will be a left+right shift of the
1888 appropriate size. But we may be able to eliminate one of them. */
1889 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1891 if (STRICT_ALIGNMENT)
1893 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1894 bitpos %= BITS_PER_UNIT;
1896 /* We load two values to be concatenate. There's an edge condition
1897 that bears notice -- an aligned value at the end of a page can
1898 only load one value lest we segfault. So the two values we load
1899 are at "base & -size" and "(base + size - 1) & -size". If base
1900 is unaligned, the addresses will be aligned and sequential; if
1901 base is aligned, the addresses will both be equal to base. */
1903 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1904 GEN_INT (-(HOST_WIDE_INT)m_size),
1905 NULL, true, OPTAB_LIB_WIDEN);
1906 mark_reg_pointer (a1, m_bitsize);
1907 v1 = gen_rtx_MEM (mode, a1);
1908 set_mem_align (v1, m_bitsize);
1909 v1 = force_reg (mode, validize_mem (v1));
1911 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1912 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1913 GEN_INT (-(HOST_WIDE_INT)m_size),
1914 NULL, true, OPTAB_LIB_WIDEN);
1915 v2 = gen_rtx_MEM (mode, a2);
1916 set_mem_align (v2, m_bitsize);
1917 v2 = force_reg (mode, validize_mem (v2));
1919 /* Combine these two values into a double-word value. */
1920 if (m_bitsize == BITS_PER_WORD)
1922 comb = gen_reg_rtx (dmode);
1923 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1924 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1925 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1927 else
1929 if (BYTES_BIG_ENDIAN)
1930 comb = v1, v1 = v2, v2 = comb;
1931 v1 = convert_modes (dmode, mode, v1, true);
1932 if (v1 == NULL)
1933 goto fail;
1934 v2 = convert_modes (dmode, mode, v2, true);
1935 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1936 NULL, true, OPTAB_LIB_WIDEN);
1937 if (v2 == NULL)
1938 goto fail;
1939 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1940 true, OPTAB_LIB_WIDEN);
1941 if (comb == NULL)
1942 goto fail;
1945 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1946 NULL, true, OPTAB_LIB_WIDEN);
1947 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1949 if (bitpos != 0)
1951 if (sign_shift_up <= bitpos)
1952 bitpos -= sign_shift_up, sign_shift_up = 0;
1953 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1954 NULL, true, OPTAB_LIB_WIDEN);
1957 else
1959 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1960 bitpos %= BITS_PER_UNIT;
1962 /* When strict alignment is not required, we can just load directly
1963 from memory without masking. If the remaining BITPOS offset is
1964 small enough, we may be able to do all operations in MODE as
1965 opposed to DMODE. */
1966 if (bitpos + bitsize <= m_bitsize)
1967 dmode = mode;
1968 comb = adjust_address (op0, dmode, offset);
1970 if (sign_shift_up <= bitpos)
1971 bitpos -= sign_shift_up, sign_shift_up = 0;
1972 shift = GEN_INT (bitpos);
1975 /* Shift down the double-word such that the requested value is at bit 0. */
1976 if (shift != const0_rtx)
1977 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1978 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1979 if (comb == NULL)
1980 goto fail;
1982 /* If the field exactly matches MODE, then all we need to do is return the
1983 lowpart. Otherwise, shift to get the sign bits set properly. */
1984 result = force_reg (mode, gen_lowpart (mode, comb));
1986 if (sign_shift_up)
1987 result = expand_simple_binop (mode, ASHIFT, result,
1988 GEN_INT (sign_shift_up),
1989 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1990 if (sign_shift_dn)
1991 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1992 result, GEN_INT (sign_shift_dn),
1993 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1995 return result;
1997 fail:
1998 delete_insns_since (start);
1999 return NULL;
2002 /* Extract a bit field that is split across two words
2003 and return an RTX for the result.
2005 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2006 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2007 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2009 static rtx
2010 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2011 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2013 unsigned int unit;
2014 unsigned int bitsdone = 0;
2015 rtx result = NULL_RTX;
2016 int first = 1;
2018 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2019 much at a time. */
2020 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2021 unit = BITS_PER_WORD;
2022 else
2024 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2025 if (0 && bitsize / unit > 2)
2027 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2028 unsignedp);
2029 if (tmp)
2030 return tmp;
2034 while (bitsdone < bitsize)
2036 unsigned HOST_WIDE_INT thissize;
2037 rtx part, word;
2038 unsigned HOST_WIDE_INT thispos;
2039 unsigned HOST_WIDE_INT offset;
2041 offset = (bitpos + bitsdone) / unit;
2042 thispos = (bitpos + bitsdone) % unit;
2044 /* THISSIZE must not overrun a word boundary. Otherwise,
2045 extract_fixed_bit_field will call us again, and we will mutually
2046 recurse forever. */
2047 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2048 thissize = MIN (thissize, unit - thispos);
2050 /* If OP0 is a register, then handle OFFSET here.
2052 When handling multiword bitfields, extract_bit_field may pass
2053 down a word_mode SUBREG of a larger REG for a bitfield that actually
2054 crosses a word boundary. Thus, for a SUBREG, we must find
2055 the current word starting from the base register. */
2056 if (GET_CODE (op0) == SUBREG)
2058 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2059 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2060 GET_MODE (SUBREG_REG (op0)));
2061 offset = 0;
2063 else if (REG_P (op0))
2065 word = operand_subword_force (op0, offset, GET_MODE (op0));
2066 offset = 0;
2068 else
2069 word = op0;
2071 /* Extract the parts in bit-counting order,
2072 whose meaning is determined by BYTES_PER_UNIT.
2073 OFFSET is in UNITs, and UNIT is in bits.
2074 extract_fixed_bit_field wants offset in bytes. */
2075 part = extract_fixed_bit_field (word_mode, word,
2076 offset * unit / BITS_PER_UNIT,
2077 thissize, thispos, 0, 1);
2078 bitsdone += thissize;
2080 /* Shift this part into place for the result. */
2081 if (BYTES_BIG_ENDIAN)
2083 if (bitsize != bitsdone)
2084 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2085 build_int_cst (NULL_TREE, bitsize - bitsdone),
2086 0, 1);
2088 else
2090 if (bitsdone != thissize)
2091 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2092 build_int_cst (NULL_TREE,
2093 bitsdone - thissize), 0, 1);
2096 if (first)
2097 result = part;
2098 else
2099 /* Combine the parts with bitwise or. This works
2100 because we extracted each part as an unsigned bit field. */
2101 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2102 OPTAB_LIB_WIDEN);
2104 first = 0;
2107 /* Unsigned bit field: we are done. */
2108 if (unsignedp)
2109 return result;
2110 /* Signed bit field: sign-extend with two arithmetic shifts. */
2111 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2112 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2113 NULL_RTX, 0);
2114 return expand_shift (RSHIFT_EXPR, word_mode, result,
2115 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2116 NULL_RTX, 0);
2119 /* Add INC into TARGET. */
2121 void
2122 expand_inc (rtx target, rtx inc)
2124 rtx value = expand_binop (GET_MODE (target), add_optab,
2125 target, inc,
2126 target, 0, OPTAB_LIB_WIDEN);
2127 if (value != target)
2128 emit_move_insn (target, value);
2131 /* Subtract DEC from TARGET. */
2133 void
2134 expand_dec (rtx target, rtx dec)
2136 rtx value = expand_binop (GET_MODE (target), sub_optab,
2137 target, dec,
2138 target, 0, OPTAB_LIB_WIDEN);
2139 if (value != target)
2140 emit_move_insn (target, value);
2143 /* Output a shift instruction for expression code CODE,
2144 with SHIFTED being the rtx for the value to shift,
2145 and AMOUNT the tree for the amount to shift by.
2146 Store the result in the rtx TARGET, if that is convenient.
2147 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2148 Return the rtx for where the value is. */
2151 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2152 tree amount, rtx target, int unsignedp)
2154 rtx op1, temp = 0;
2155 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2156 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2157 int try;
2159 /* Previously detected shift-counts computed by NEGATE_EXPR
2160 and shifted in the other direction; but that does not work
2161 on all machines. */
2163 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2165 if (SHIFT_COUNT_TRUNCATED)
2167 if (GET_CODE (op1) == CONST_INT
2168 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2169 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2170 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2171 % GET_MODE_BITSIZE (mode));
2172 else if (GET_CODE (op1) == SUBREG
2173 && subreg_lowpart_p (op1))
2174 op1 = SUBREG_REG (op1);
2177 if (op1 == const0_rtx)
2178 return shifted;
2180 /* Check whether its cheaper to implement a left shift by a constant
2181 bit count by a sequence of additions. */
2182 if (code == LSHIFT_EXPR
2183 && GET_CODE (op1) == CONST_INT
2184 && INTVAL (op1) > 0
2185 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2186 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2188 int i;
2189 for (i = 0; i < INTVAL (op1); i++)
2191 temp = force_reg (mode, shifted);
2192 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2193 unsignedp, OPTAB_LIB_WIDEN);
2195 return shifted;
2198 for (try = 0; temp == 0 && try < 3; try++)
2200 enum optab_methods methods;
2202 if (try == 0)
2203 methods = OPTAB_DIRECT;
2204 else if (try == 1)
2205 methods = OPTAB_WIDEN;
2206 else
2207 methods = OPTAB_LIB_WIDEN;
2209 if (rotate)
2211 /* Widening does not work for rotation. */
2212 if (methods == OPTAB_WIDEN)
2213 continue;
2214 else if (methods == OPTAB_LIB_WIDEN)
2216 /* If we have been unable to open-code this by a rotation,
2217 do it as the IOR of two shifts. I.e., to rotate A
2218 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2219 where C is the bitsize of A.
2221 It is theoretically possible that the target machine might
2222 not be able to perform either shift and hence we would
2223 be making two libcalls rather than just the one for the
2224 shift (similarly if IOR could not be done). We will allow
2225 this extremely unlikely lossage to avoid complicating the
2226 code below. */
2228 rtx subtarget = target == shifted ? 0 : target;
2229 rtx temp1;
2230 tree type = TREE_TYPE (amount);
2231 tree new_amount = make_tree (type, op1);
2232 tree other_amount
2233 = fold (build2 (MINUS_EXPR, type, convert
2234 (type, build_int_cst
2235 (NULL_TREE, GET_MODE_BITSIZE (mode))),
2236 amount));
2238 shifted = force_reg (mode, shifted);
2240 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2241 mode, shifted, new_amount, subtarget, 1);
2242 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2243 mode, shifted, other_amount, 0, 1);
2244 return expand_binop (mode, ior_optab, temp, temp1, target,
2245 unsignedp, methods);
2248 temp = expand_binop (mode,
2249 left ? rotl_optab : rotr_optab,
2250 shifted, op1, target, unsignedp, methods);
2252 /* If we don't have the rotate, but we are rotating by a constant
2253 that is in range, try a rotate in the opposite direction. */
2255 if (temp == 0 && GET_CODE (op1) == CONST_INT
2256 && INTVAL (op1) > 0
2257 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2258 temp = expand_binop (mode,
2259 left ? rotr_optab : rotl_optab,
2260 shifted,
2261 GEN_INT (GET_MODE_BITSIZE (mode)
2262 - INTVAL (op1)),
2263 target, unsignedp, methods);
2265 else if (unsignedp)
2266 temp = expand_binop (mode,
2267 left ? ashl_optab : lshr_optab,
2268 shifted, op1, target, unsignedp, methods);
2270 /* Do arithmetic shifts.
2271 Also, if we are going to widen the operand, we can just as well
2272 use an arithmetic right-shift instead of a logical one. */
2273 if (temp == 0 && ! rotate
2274 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2276 enum optab_methods methods1 = methods;
2278 /* If trying to widen a log shift to an arithmetic shift,
2279 don't accept an arithmetic shift of the same size. */
2280 if (unsignedp)
2281 methods1 = OPTAB_MUST_WIDEN;
2283 /* Arithmetic shift */
2285 temp = expand_binop (mode,
2286 left ? ashl_optab : ashr_optab,
2287 shifted, op1, target, unsignedp, methods1);
2290 /* We used to try extzv here for logical right shifts, but that was
2291 only useful for one machine, the VAX, and caused poor code
2292 generation there for lshrdi3, so the code was deleted and a
2293 define_expand for lshrsi3 was added to vax.md. */
2296 gcc_assert (temp);
2297 return temp;
2300 enum alg_code { alg_zero, alg_m, alg_shift,
2301 alg_add_t_m2, alg_sub_t_m2,
2302 alg_add_factor, alg_sub_factor,
2303 alg_add_t2_m, alg_sub_t2_m };
2305 /* This structure holds the "cost" of a multiply sequence. The
2306 "cost" field holds the total rtx_cost of every operator in the
2307 synthetic multiplication sequence, hence cost(a op b) is defined
2308 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2309 The "latency" field holds the minimum possible latency of the
2310 synthetic multiply, on a hypothetical infinitely parallel CPU.
2311 This is the critical path, or the maximum height, of the expression
2312 tree which is the sum of rtx_costs on the most expensive path from
2313 any leaf to the root. Hence latency(a op b) is defined as zero for
2314 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2316 struct mult_cost {
2317 short cost; /* Total rtx_cost of the multiplication sequence. */
2318 short latency; /* The latency of the multiplication sequence. */
2321 /* This macro is used to compare a pointer to a mult_cost against an
2322 single integer "rtx_cost" value. This is equivalent to the macro
2323 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2324 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2325 || ((X)->cost == (Y) && (X)->latency < (Y)))
2327 /* This macro is used to compare two pointers to mult_costs against
2328 each other. The macro returns true if X is cheaper than Y.
2329 Currently, the cheaper of two mult_costs is the one with the
2330 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2331 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2332 || ((X)->cost == (Y)->cost \
2333 && (X)->latency < (Y)->latency))
2335 /* This structure records a sequence of operations.
2336 `ops' is the number of operations recorded.
2337 `cost' is their total cost.
2338 The operations are stored in `op' and the corresponding
2339 logarithms of the integer coefficients in `log'.
2341 These are the operations:
2342 alg_zero total := 0;
2343 alg_m total := multiplicand;
2344 alg_shift total := total * coeff
2345 alg_add_t_m2 total := total + multiplicand * coeff;
2346 alg_sub_t_m2 total := total - multiplicand * coeff;
2347 alg_add_factor total := total * coeff + total;
2348 alg_sub_factor total := total * coeff - total;
2349 alg_add_t2_m total := total * coeff + multiplicand;
2350 alg_sub_t2_m total := total * coeff - multiplicand;
2352 The first operand must be either alg_zero or alg_m. */
2354 struct algorithm
2356 struct mult_cost cost;
2357 short ops;
2358 /* The size of the OP and LOG fields are not directly related to the
2359 word size, but the worst-case algorithms will be if we have few
2360 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2361 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2362 in total wordsize operations. */
2363 enum alg_code op[MAX_BITS_PER_WORD];
2364 char log[MAX_BITS_PER_WORD];
2367 /* Indicates the type of fixup needed after a constant multiplication.
2368 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2369 the result should be negated, and ADD_VARIANT means that the
2370 multiplicand should be added to the result. */
2371 enum mult_variant {basic_variant, negate_variant, add_variant};
2373 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2374 const struct mult_cost *, enum machine_mode mode);
2375 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2376 struct algorithm *, enum mult_variant *, int);
2377 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2378 const struct algorithm *, enum mult_variant);
2379 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2380 int, unsigned HOST_WIDE_INT *,
2381 int *, int *);
2382 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2383 static rtx extract_high_half (enum machine_mode, rtx);
2384 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2385 int, int);
2386 /* Compute and return the best algorithm for multiplying by T.
2387 The algorithm must cost less than cost_limit
2388 If retval.cost >= COST_LIMIT, no algorithm was found and all
2389 other field of the returned struct are undefined.
2390 MODE is the machine mode of the multiplication. */
2392 static void
2393 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2394 const struct mult_cost *cost_limit, enum machine_mode mode)
2396 int m;
2397 struct algorithm *alg_in, *best_alg;
2398 struct mult_cost best_cost;
2399 struct mult_cost new_limit;
2400 int op_cost, op_latency;
2401 unsigned HOST_WIDE_INT q;
2402 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2404 /* Indicate that no algorithm is yet found. If no algorithm
2405 is found, this value will be returned and indicate failure. */
2406 alg_out->cost.cost = cost_limit->cost + 1;
2407 alg_out->cost.latency = cost_limit->latency + 1;
2409 if (cost_limit->cost < 0
2410 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2411 return;
2413 /* Restrict the bits of "t" to the multiplication's mode. */
2414 t &= GET_MODE_MASK (mode);
2416 /* t == 1 can be done in zero cost. */
2417 if (t == 1)
2419 alg_out->ops = 1;
2420 alg_out->cost.cost = 0;
2421 alg_out->cost.latency = 0;
2422 alg_out->op[0] = alg_m;
2423 return;
2426 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2427 fail now. */
2428 if (t == 0)
2430 if (MULT_COST_LESS (cost_limit, zero_cost))
2431 return;
2432 else
2434 alg_out->ops = 1;
2435 alg_out->cost.cost = zero_cost;
2436 alg_out->cost.latency = zero_cost;
2437 alg_out->op[0] = alg_zero;
2438 return;
2442 /* We'll be needing a couple extra algorithm structures now. */
2444 alg_in = alloca (sizeof (struct algorithm));
2445 best_alg = alloca (sizeof (struct algorithm));
2446 best_cost = *cost_limit;
2448 /* If we have a group of zero bits at the low-order part of T, try
2449 multiplying by the remaining bits and then doing a shift. */
2451 if ((t & 1) == 0)
2453 m = floor_log2 (t & -t); /* m = number of low zero bits */
2454 if (m < maxm)
2456 q = t >> m;
2457 /* The function expand_shift will choose between a shift and
2458 a sequence of additions, so the observed cost is given as
2459 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2460 op_cost = m * add_cost[mode];
2461 if (shift_cost[mode][m] < op_cost)
2462 op_cost = shift_cost[mode][m];
2463 new_limit.cost = best_cost.cost - op_cost;
2464 new_limit.latency = best_cost.latency - op_cost;
2465 synth_mult (alg_in, q, &new_limit, mode);
2467 alg_in->cost.cost += op_cost;
2468 alg_in->cost.latency += op_cost;
2469 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2471 struct algorithm *x;
2472 best_cost = alg_in->cost;
2473 x = alg_in, alg_in = best_alg, best_alg = x;
2474 best_alg->log[best_alg->ops] = m;
2475 best_alg->op[best_alg->ops] = alg_shift;
2480 /* If we have an odd number, add or subtract one. */
2481 if ((t & 1) != 0)
2483 unsigned HOST_WIDE_INT w;
2485 for (w = 1; (w & t) != 0; w <<= 1)
2487 /* If T was -1, then W will be zero after the loop. This is another
2488 case where T ends with ...111. Handling this with (T + 1) and
2489 subtract 1 produces slightly better code and results in algorithm
2490 selection much faster than treating it like the ...0111 case
2491 below. */
2492 if (w == 0
2493 || (w > 2
2494 /* Reject the case where t is 3.
2495 Thus we prefer addition in that case. */
2496 && t != 3))
2498 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2500 op_cost = add_cost[mode];
2501 new_limit.cost = best_cost.cost - op_cost;
2502 new_limit.latency = best_cost.latency - op_cost;
2503 synth_mult (alg_in, t + 1, &new_limit, mode);
2505 alg_in->cost.cost += op_cost;
2506 alg_in->cost.latency += op_cost;
2507 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2509 struct algorithm *x;
2510 best_cost = alg_in->cost;
2511 x = alg_in, alg_in = best_alg, best_alg = x;
2512 best_alg->log[best_alg->ops] = 0;
2513 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2516 else
2518 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2520 op_cost = add_cost[mode];
2521 new_limit.cost = best_cost.cost - op_cost;
2522 new_limit.latency = best_cost.latency - op_cost;
2523 synth_mult (alg_in, t - 1, &new_limit, mode);
2525 alg_in->cost.cost += op_cost;
2526 alg_in->cost.latency += op_cost;
2527 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2529 struct algorithm *x;
2530 best_cost = alg_in->cost;
2531 x = alg_in, alg_in = best_alg, best_alg = x;
2532 best_alg->log[best_alg->ops] = 0;
2533 best_alg->op[best_alg->ops] = alg_add_t_m2;
2538 /* Look for factors of t of the form
2539 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2540 If we find such a factor, we can multiply by t using an algorithm that
2541 multiplies by q, shift the result by m and add/subtract it to itself.
2543 We search for large factors first and loop down, even if large factors
2544 are less probable than small; if we find a large factor we will find a
2545 good sequence quickly, and therefore be able to prune (by decreasing
2546 COST_LIMIT) the search. */
2548 for (m = floor_log2 (t - 1); m >= 2; m--)
2550 unsigned HOST_WIDE_INT d;
2552 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2553 if (t % d == 0 && t > d && m < maxm)
2555 /* If the target has a cheap shift-and-add instruction use
2556 that in preference to a shift insn followed by an add insn.
2557 Assume that the shift-and-add is "atomic" with a latency
2558 equal to it's cost, otherwise assume that on superscalar
2559 hardware the shift may be executed concurrently with the
2560 earlier steps in the algorithm. */
2561 op_cost = add_cost[mode] + shift_cost[mode][m];
2562 if (shiftadd_cost[mode][m] < op_cost)
2564 op_cost = shiftadd_cost[mode][m];
2565 op_latency = op_cost;
2567 else
2568 op_latency = add_cost[mode];
2570 new_limit.cost = best_cost.cost - op_cost;
2571 new_limit.latency = best_cost.latency - op_latency;
2572 synth_mult (alg_in, t / d, &new_limit, mode);
2574 alg_in->cost.cost += op_cost;
2575 alg_in->cost.latency += op_latency;
2576 if (alg_in->cost.latency < op_cost)
2577 alg_in->cost.latency = op_cost;
2578 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2580 struct algorithm *x;
2581 best_cost = alg_in->cost;
2582 x = alg_in, alg_in = best_alg, best_alg = x;
2583 best_alg->log[best_alg->ops] = m;
2584 best_alg->op[best_alg->ops] = alg_add_factor;
2586 /* Other factors will have been taken care of in the recursion. */
2587 break;
2590 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2591 if (t % d == 0 && t > d && m < maxm)
2593 /* If the target has a cheap shift-and-subtract insn use
2594 that in preference to a shift insn followed by a sub insn.
2595 Assume that the shift-and-sub is "atomic" with a latency
2596 equal to it's cost, otherwise assume that on superscalar
2597 hardware the shift may be executed concurrently with the
2598 earlier steps in the algorithm. */
2599 op_cost = add_cost[mode] + shift_cost[mode][m];
2600 if (shiftsub_cost[mode][m] < op_cost)
2602 op_cost = shiftsub_cost[mode][m];
2603 op_latency = op_cost;
2605 else
2606 op_latency = add_cost[mode];
2608 new_limit.cost = best_cost.cost - op_cost;
2609 new_limit.cost = best_cost.cost - op_latency;
2610 synth_mult (alg_in, t / d, &new_limit, mode);
2612 alg_in->cost.cost += op_cost;
2613 alg_in->cost.latency += op_latency;
2614 if (alg_in->cost.latency < op_cost)
2615 alg_in->cost.latency = op_cost;
2616 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2618 struct algorithm *x;
2619 best_cost = alg_in->cost;
2620 x = alg_in, alg_in = best_alg, best_alg = x;
2621 best_alg->log[best_alg->ops] = m;
2622 best_alg->op[best_alg->ops] = alg_sub_factor;
2624 break;
2628 /* Try shift-and-add (load effective address) instructions,
2629 i.e. do a*3, a*5, a*9. */
2630 if ((t & 1) != 0)
2632 q = t - 1;
2633 q = q & -q;
2634 m = exact_log2 (q);
2635 if (m >= 0 && m < maxm)
2637 op_cost = shiftadd_cost[mode][m];
2638 new_limit.cost = best_cost.cost - op_cost;
2639 new_limit.latency = best_cost.latency - op_cost;
2640 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2642 alg_in->cost.cost += op_cost;
2643 alg_in->cost.latency += op_cost;
2644 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2646 struct algorithm *x;
2647 best_cost = alg_in->cost;
2648 x = alg_in, alg_in = best_alg, best_alg = x;
2649 best_alg->log[best_alg->ops] = m;
2650 best_alg->op[best_alg->ops] = alg_add_t2_m;
2654 q = t + 1;
2655 q = q & -q;
2656 m = exact_log2 (q);
2657 if (m >= 0 && m < maxm)
2659 op_cost = shiftsub_cost[mode][m];
2660 new_limit.cost = best_cost.cost - op_cost;
2661 new_limit.latency = best_cost.latency - op_cost;
2662 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2664 alg_in->cost.cost += op_cost;
2665 alg_in->cost.latency += op_cost;
2666 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2668 struct algorithm *x;
2669 best_cost = alg_in->cost;
2670 x = alg_in, alg_in = best_alg, best_alg = x;
2671 best_alg->log[best_alg->ops] = m;
2672 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2677 /* If best_cost has not decreased, we have not found any algorithm. */
2678 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2679 return;
2681 /* If we are getting a too long sequence for `struct algorithm'
2682 to record, make this search fail. */
2683 if (best_alg->ops == MAX_BITS_PER_WORD)
2684 return;
2686 /* Copy the algorithm from temporary space to the space at alg_out.
2687 We avoid using structure assignment because the majority of
2688 best_alg is normally undefined, and this is a critical function. */
2689 alg_out->ops = best_alg->ops + 1;
2690 alg_out->cost = best_cost;
2691 memcpy (alg_out->op, best_alg->op,
2692 alg_out->ops * sizeof *alg_out->op);
2693 memcpy (alg_out->log, best_alg->log,
2694 alg_out->ops * sizeof *alg_out->log);
2697 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2698 Try three variations:
2700 - a shift/add sequence based on VAL itself
2701 - a shift/add sequence based on -VAL, followed by a negation
2702 - a shift/add sequence based on VAL - 1, followed by an addition.
2704 Return true if the cheapest of these cost less than MULT_COST,
2705 describing the algorithm in *ALG and final fixup in *VARIANT. */
2707 static bool
2708 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2709 struct algorithm *alg, enum mult_variant *variant,
2710 int mult_cost)
2712 struct algorithm alg2;
2713 struct mult_cost limit;
2714 int op_cost;
2716 *variant = basic_variant;
2717 limit.cost = mult_cost;
2718 limit.latency = mult_cost;
2719 synth_mult (alg, val, &limit, mode);
2721 /* This works only if the inverted value actually fits in an
2722 `unsigned int' */
2723 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2725 op_cost = neg_cost[mode];
2726 if (MULT_COST_LESS (&alg->cost, mult_cost))
2728 limit.cost = alg->cost.cost - op_cost;
2729 limit.latency = alg->cost.latency - op_cost;
2731 else
2733 limit.cost = mult_cost - op_cost;
2734 limit.latency = mult_cost - op_cost;
2737 synth_mult (&alg2, -val, &limit, mode);
2738 alg2.cost.cost += op_cost;
2739 alg2.cost.latency += op_cost;
2740 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2741 *alg = alg2, *variant = negate_variant;
2744 /* This proves very useful for division-by-constant. */
2745 op_cost = add_cost[mode];
2746 if (MULT_COST_LESS (&alg->cost, mult_cost))
2748 limit.cost = alg->cost.cost - op_cost;
2749 limit.latency = alg->cost.latency - op_cost;
2751 else
2753 limit.cost = mult_cost - op_cost;
2754 limit.latency = mult_cost - op_cost;
2757 synth_mult (&alg2, val - 1, &limit, mode);
2758 alg2.cost.cost += op_cost;
2759 alg2.cost.latency += op_cost;
2760 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2761 *alg = alg2, *variant = add_variant;
2763 return MULT_COST_LESS (&alg->cost, mult_cost);
2766 /* A subroutine of expand_mult, used for constant multiplications.
2767 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2768 convenient. Use the shift/add sequence described by ALG and apply
2769 the final fixup specified by VARIANT. */
2771 static rtx
2772 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2773 rtx target, const struct algorithm *alg,
2774 enum mult_variant variant)
2776 HOST_WIDE_INT val_so_far;
2777 rtx insn, accum, tem;
2778 int opno;
2779 enum machine_mode nmode;
2781 /* Avoid referencing memory over and over.
2782 For speed, but also for correctness when mem is volatile. */
2783 if (MEM_P (op0))
2784 op0 = force_reg (mode, op0);
2786 /* ACCUM starts out either as OP0 or as a zero, depending on
2787 the first operation. */
2789 if (alg->op[0] == alg_zero)
2791 accum = copy_to_mode_reg (mode, const0_rtx);
2792 val_so_far = 0;
2794 else if (alg->op[0] == alg_m)
2796 accum = copy_to_mode_reg (mode, op0);
2797 val_so_far = 1;
2799 else
2800 gcc_unreachable ();
2802 for (opno = 1; opno < alg->ops; opno++)
2804 int log = alg->log[opno];
2805 rtx shift_subtarget = optimize ? 0 : accum;
2806 rtx add_target
2807 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2808 && !optimize)
2809 ? target : 0;
2810 rtx accum_target = optimize ? 0 : accum;
2812 switch (alg->op[opno])
2814 case alg_shift:
2815 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2816 build_int_cst (NULL_TREE, log),
2817 NULL_RTX, 0);
2818 val_so_far <<= log;
2819 break;
2821 case alg_add_t_m2:
2822 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2823 build_int_cst (NULL_TREE, log),
2824 NULL_RTX, 0);
2825 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2826 add_target ? add_target : accum_target);
2827 val_so_far += (HOST_WIDE_INT) 1 << log;
2828 break;
2830 case alg_sub_t_m2:
2831 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2832 build_int_cst (NULL_TREE, log),
2833 NULL_RTX, 0);
2834 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2835 add_target ? add_target : accum_target);
2836 val_so_far -= (HOST_WIDE_INT) 1 << log;
2837 break;
2839 case alg_add_t2_m:
2840 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2841 build_int_cst (NULL_TREE, log),
2842 shift_subtarget,
2844 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2845 add_target ? add_target : accum_target);
2846 val_so_far = (val_so_far << log) + 1;
2847 break;
2849 case alg_sub_t2_m:
2850 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2851 build_int_cst (NULL_TREE, log),
2852 shift_subtarget, 0);
2853 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2854 add_target ? add_target : accum_target);
2855 val_so_far = (val_so_far << log) - 1;
2856 break;
2858 case alg_add_factor:
2859 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2860 build_int_cst (NULL_TREE, log),
2861 NULL_RTX, 0);
2862 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2863 add_target ? add_target : accum_target);
2864 val_so_far += val_so_far << log;
2865 break;
2867 case alg_sub_factor:
2868 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2869 build_int_cst (NULL_TREE, log),
2870 NULL_RTX, 0);
2871 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2872 (add_target
2873 ? add_target : (optimize ? 0 : tem)));
2874 val_so_far = (val_so_far << log) - val_so_far;
2875 break;
2877 default:
2878 gcc_unreachable ();
2881 /* Write a REG_EQUAL note on the last insn so that we can cse
2882 multiplication sequences. Note that if ACCUM is a SUBREG,
2883 we've set the inner register and must properly indicate
2884 that. */
2886 tem = op0, nmode = mode;
2887 if (GET_CODE (accum) == SUBREG)
2889 nmode = GET_MODE (SUBREG_REG (accum));
2890 tem = gen_lowpart (nmode, op0);
2893 insn = get_last_insn ();
2894 set_unique_reg_note (insn, REG_EQUAL,
2895 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2898 if (variant == negate_variant)
2900 val_so_far = -val_so_far;
2901 accum = expand_unop (mode, neg_optab, accum, target, 0);
2903 else if (variant == add_variant)
2905 val_so_far = val_so_far + 1;
2906 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2909 /* Compare only the bits of val and val_so_far that are significant
2910 in the result mode, to avoid sign-/zero-extension confusion. */
2911 val &= GET_MODE_MASK (mode);
2912 val_so_far &= GET_MODE_MASK (mode);
2913 gcc_assert (val == val_so_far);
2915 return accum;
2918 /* Perform a multiplication and return an rtx for the result.
2919 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2920 TARGET is a suggestion for where to store the result (an rtx).
2922 We check specially for a constant integer as OP1.
2923 If you want this check for OP0 as well, then before calling
2924 you should swap the two operands if OP0 would be constant. */
2927 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
2928 int unsignedp)
2930 rtx const_op1 = op1;
2931 enum mult_variant variant;
2932 struct algorithm algorithm;
2934 /* synth_mult does an `unsigned int' multiply. As long as the mode is
2935 less than or equal in size to `unsigned int' this doesn't matter.
2936 If the mode is larger than `unsigned int', then synth_mult works only
2937 if the constant value exactly fits in an `unsigned int' without any
2938 truncation. This means that multiplying by negative values does
2939 not work; results are off by 2^32 on a 32 bit machine. */
2941 /* If we are multiplying in DImode, it may still be a win
2942 to try to work with shifts and adds. */
2943 if (GET_CODE (op1) == CONST_DOUBLE
2944 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
2945 && HOST_BITS_PER_INT >= BITS_PER_WORD
2946 && CONST_DOUBLE_HIGH (op1) == 0)
2947 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
2948 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
2949 && GET_CODE (op1) == CONST_INT
2950 && INTVAL (op1) < 0)
2951 const_op1 = 0;
2953 /* We used to test optimize here, on the grounds that it's better to
2954 produce a smaller program when -O is not used.
2955 But this causes such a terrible slowdown sometimes
2956 that it seems better to use synth_mult always. */
2958 if (const_op1 && GET_CODE (const_op1) == CONST_INT
2959 && (unsignedp || !flag_trapv))
2961 int mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
2963 if (choose_mult_variant (mode, INTVAL (const_op1), &algorithm, &variant,
2964 mult_cost))
2965 return expand_mult_const (mode, op0, INTVAL (const_op1), target,
2966 &algorithm, variant);
2969 if (GET_CODE (op0) == CONST_DOUBLE)
2971 rtx temp = op0;
2972 op0 = op1;
2973 op1 = temp;
2976 /* Expand x*2.0 as x+x. */
2977 if (GET_CODE (op1) == CONST_DOUBLE
2978 && GET_MODE_CLASS (mode) == MODE_FLOAT)
2980 REAL_VALUE_TYPE d;
2981 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
2983 if (REAL_VALUES_EQUAL (d, dconst2))
2985 op0 = force_reg (GET_MODE (op0), op0);
2986 return expand_binop (mode, add_optab, op0, op0,
2987 target, unsignedp, OPTAB_LIB_WIDEN);
2991 /* This used to use umul_optab if unsigned, but for non-widening multiply
2992 there is no difference between signed and unsigned. */
2993 op0 = expand_binop (mode,
2994 ! unsignedp
2995 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
2996 ? smulv_optab : smul_optab,
2997 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
2998 gcc_assert (op0);
2999 return op0;
3002 /* Return the smallest n such that 2**n >= X. */
3005 ceil_log2 (unsigned HOST_WIDE_INT x)
3007 return floor_log2 (x - 1) + 1;
3010 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3011 replace division by D, and put the least significant N bits of the result
3012 in *MULTIPLIER_PTR and return the most significant bit.
3014 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3015 needed precision is in PRECISION (should be <= N).
3017 PRECISION should be as small as possible so this function can choose
3018 multiplier more freely.
3020 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3021 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3023 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3024 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3026 static
3027 unsigned HOST_WIDE_INT
3028 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3029 unsigned HOST_WIDE_INT *multiplier_ptr,
3030 int *post_shift_ptr, int *lgup_ptr)
3032 HOST_WIDE_INT mhigh_hi, mlow_hi;
3033 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3034 int lgup, post_shift;
3035 int pow, pow2;
3036 unsigned HOST_WIDE_INT nl, dummy1;
3037 HOST_WIDE_INT nh, dummy2;
3039 /* lgup = ceil(log2(divisor)); */
3040 lgup = ceil_log2 (d);
3042 gcc_assert (lgup <= n);
3044 pow = n + lgup;
3045 pow2 = n + lgup - precision;
3047 /* We could handle this with some effort, but this case is much
3048 better handled directly with a scc insn, so rely on caller using
3049 that. */
3050 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3052 /* mlow = 2^(N + lgup)/d */
3053 if (pow >= HOST_BITS_PER_WIDE_INT)
3055 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3056 nl = 0;
3058 else
3060 nh = 0;
3061 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3063 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3064 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3066 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3067 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3068 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3069 else
3070 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3071 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3072 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3074 gcc_assert (!mhigh_hi || nh - d < d);
3075 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3076 /* Assert that mlow < mhigh. */
3077 gcc_assert (mlow_hi < mhigh_hi
3078 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3080 /* If precision == N, then mlow, mhigh exceed 2^N
3081 (but they do not exceed 2^(N+1)). */
3083 /* Reduce to lowest terms. */
3084 for (post_shift = lgup; post_shift > 0; post_shift--)
3086 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3087 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3088 if (ml_lo >= mh_lo)
3089 break;
3091 mlow_hi = 0;
3092 mlow_lo = ml_lo;
3093 mhigh_hi = 0;
3094 mhigh_lo = mh_lo;
3097 *post_shift_ptr = post_shift;
3098 *lgup_ptr = lgup;
3099 if (n < HOST_BITS_PER_WIDE_INT)
3101 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3102 *multiplier_ptr = mhigh_lo & mask;
3103 return mhigh_lo >= mask;
3105 else
3107 *multiplier_ptr = mhigh_lo;
3108 return mhigh_hi;
3112 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3113 congruent to 1 (mod 2**N). */
3115 static unsigned HOST_WIDE_INT
3116 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3118 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3120 /* The algorithm notes that the choice y = x satisfies
3121 x*y == 1 mod 2^3, since x is assumed odd.
3122 Each iteration doubles the number of bits of significance in y. */
3124 unsigned HOST_WIDE_INT mask;
3125 unsigned HOST_WIDE_INT y = x;
3126 int nbit = 3;
3128 mask = (n == HOST_BITS_PER_WIDE_INT
3129 ? ~(unsigned HOST_WIDE_INT) 0
3130 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3132 while (nbit < n)
3134 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3135 nbit *= 2;
3137 return y;
3140 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3141 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3142 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3143 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3144 become signed.
3146 The result is put in TARGET if that is convenient.
3148 MODE is the mode of operation. */
3151 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3152 rtx op1, rtx target, int unsignedp)
3154 rtx tem;
3155 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3157 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3158 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3159 NULL_RTX, 0);
3160 tem = expand_and (mode, tem, op1, NULL_RTX);
3161 adj_operand
3162 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3163 adj_operand);
3165 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3166 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3167 NULL_RTX, 0);
3168 tem = expand_and (mode, tem, op0, NULL_RTX);
3169 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3170 target);
3172 return target;
3175 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3177 static rtx
3178 extract_high_half (enum machine_mode mode, rtx op)
3180 enum machine_mode wider_mode;
3182 if (mode == word_mode)
3183 return gen_highpart (mode, op);
3185 wider_mode = GET_MODE_WIDER_MODE (mode);
3186 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3187 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3188 return convert_modes (mode, wider_mode, op, 0);
3191 /* Like expand_mult_highpart, but only consider using a multiplication
3192 optab. OP1 is an rtx for the constant operand. */
3194 static rtx
3195 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3196 rtx target, int unsignedp, int max_cost)
3198 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3199 enum machine_mode wider_mode;
3200 optab moptab;
3201 rtx tem;
3202 int size;
3204 wider_mode = GET_MODE_WIDER_MODE (mode);
3205 size = GET_MODE_BITSIZE (mode);
3207 /* Firstly, try using a multiplication insn that only generates the needed
3208 high part of the product, and in the sign flavor of unsignedp. */
3209 if (mul_highpart_cost[mode] < max_cost)
3211 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3212 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3213 unsignedp, OPTAB_DIRECT);
3214 if (tem)
3215 return tem;
3218 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3219 Need to adjust the result after the multiplication. */
3220 if (size - 1 < BITS_PER_WORD
3221 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3222 + 4 * add_cost[mode] < max_cost))
3224 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3225 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3226 unsignedp, OPTAB_DIRECT);
3227 if (tem)
3228 /* We used the wrong signedness. Adjust the result. */
3229 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3230 tem, unsignedp);
3233 /* Try widening multiplication. */
3234 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3235 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3236 && mul_widen_cost[wider_mode] < max_cost)
3238 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3239 unsignedp, OPTAB_WIDEN);
3240 if (tem)
3241 return extract_high_half (mode, tem);
3244 /* Try widening the mode and perform a non-widening multiplication. */
3245 moptab = smul_optab;
3246 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3247 && size - 1 < BITS_PER_WORD
3248 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3250 tem = expand_binop (wider_mode, moptab, op0, op1, 0,
3251 unsignedp, OPTAB_WIDEN);
3252 if (tem)
3253 return extract_high_half (mode, tem);
3256 /* Try widening multiplication of opposite signedness, and adjust. */
3257 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3258 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3259 && size - 1 < BITS_PER_WORD
3260 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3261 + 4 * add_cost[mode] < max_cost))
3263 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3264 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3265 if (tem != 0)
3267 tem = extract_high_half (mode, tem);
3268 /* We used the wrong signedness. Adjust the result. */
3269 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3270 target, unsignedp);
3274 return 0;
3277 /* Emit code to multiply OP0 and CNST1, putting the high half of the result
3278 in TARGET if that is convenient, and return where the result is. If the
3279 operation can not be performed, 0 is returned.
3281 MODE is the mode of operation and result.
3283 UNSIGNEDP nonzero means unsigned multiply.
3285 MAX_COST is the total allowed cost for the expanded RTL. */
3288 expand_mult_highpart (enum machine_mode mode, rtx op0,
3289 unsigned HOST_WIDE_INT cnst1, rtx target,
3290 int unsignedp, int max_cost)
3292 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3293 int extra_cost;
3294 bool sign_adjust = false;
3295 enum mult_variant variant;
3296 struct algorithm alg;
3297 rtx op1, tem;
3299 /* We can't support modes wider than HOST_BITS_PER_INT. */
3300 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3302 op1 = gen_int_mode (cnst1, wider_mode);
3303 cnst1 &= GET_MODE_MASK (mode);
3305 /* We can't optimize modes wider than BITS_PER_WORD.
3306 ??? We might be able to perform double-word arithmetic if
3307 mode == word_mode, however all the cost calculations in
3308 synth_mult etc. assume single-word operations. */
3309 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3310 return expand_mult_highpart_optab (mode, op0, op1, target,
3311 unsignedp, max_cost);
3313 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3315 /* Check whether we try to multiply by a negative constant. */
3316 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3318 sign_adjust = true;
3319 extra_cost += add_cost[mode];
3322 /* See whether shift/add multiplication is cheap enough. */
3323 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3324 max_cost - extra_cost))
3326 /* See whether the specialized multiplication optabs are
3327 cheaper than the shift/add version. */
3328 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3329 alg.cost.cost + extra_cost);
3330 if (tem)
3331 return tem;
3333 tem = convert_to_mode (wider_mode, op0, unsignedp);
3334 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3335 tem = extract_high_half (mode, tem);
3337 /* Adjust result for signedness. */
3338 if (sign_adjust)
3339 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3341 return tem;
3343 return expand_mult_highpart_optab (mode, op0, op1, target,
3344 unsignedp, max_cost);
3348 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3350 static rtx
3351 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3353 unsigned HOST_WIDE_INT masklow, maskhigh;
3354 rtx result, temp, shift, label;
3355 int logd;
3357 logd = floor_log2 (d);
3358 result = gen_reg_rtx (mode);
3360 /* Avoid conditional branches when they're expensive. */
3361 if (BRANCH_COST >= 2
3362 && !optimize_size)
3364 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3365 mode, 0, -1);
3366 if (signmask)
3368 signmask = force_reg (mode, signmask);
3369 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3370 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3372 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3373 which instruction sequence to use. If logical right shifts
3374 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3375 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3377 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3378 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3379 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3381 temp = expand_binop (mode, xor_optab, op0, signmask,
3382 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3383 temp = expand_binop (mode, sub_optab, temp, signmask,
3384 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3385 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3386 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3387 temp = expand_binop (mode, xor_optab, temp, signmask,
3388 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3389 temp = expand_binop (mode, sub_optab, temp, signmask,
3390 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3392 else
3394 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3395 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3396 signmask = force_reg (mode, signmask);
3398 temp = expand_binop (mode, add_optab, op0, signmask,
3399 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3400 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3401 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3402 temp = expand_binop (mode, sub_optab, temp, signmask,
3403 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3405 return temp;
3409 /* Mask contains the mode's signbit and the significant bits of the
3410 modulus. By including the signbit in the operation, many targets
3411 can avoid an explicit compare operation in the following comparison
3412 against zero. */
3414 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3415 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3417 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3418 maskhigh = -1;
3420 else
3421 maskhigh = (HOST_WIDE_INT) -1
3422 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3424 temp = expand_binop (mode, and_optab, op0,
3425 immed_double_const (masklow, maskhigh, mode),
3426 result, 1, OPTAB_LIB_WIDEN);
3427 if (temp != result)
3428 emit_move_insn (result, temp);
3430 label = gen_label_rtx ();
3431 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3433 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3434 0, OPTAB_LIB_WIDEN);
3435 masklow = (HOST_WIDE_INT) -1 << logd;
3436 maskhigh = -1;
3437 temp = expand_binop (mode, ior_optab, temp,
3438 immed_double_const (masklow, maskhigh, mode),
3439 result, 1, OPTAB_LIB_WIDEN);
3440 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3441 0, OPTAB_LIB_WIDEN);
3442 if (temp != result)
3443 emit_move_insn (result, temp);
3444 emit_label (label);
3445 return result;
3448 /* Expand signed division of OP0 by a power of two D in mode MODE.
3449 This routine is only called for positive values of D. */
3451 static rtx
3452 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3454 rtx temp, label;
3455 tree shift;
3456 int logd;
3458 logd = floor_log2 (d);
3459 shift = build_int_cst (NULL_TREE, logd);
3461 if (d == 2 && BRANCH_COST >= 1)
3463 temp = gen_reg_rtx (mode);
3464 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3465 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3466 0, OPTAB_LIB_WIDEN);
3467 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3470 #ifdef HAVE_conditional_move
3471 if (BRANCH_COST >= 2)
3473 rtx temp2;
3475 /* ??? emit_conditional_move forces a stack adjustment via
3476 compare_from_rtx so, if the sequence is discarded, it will
3477 be lost. Do it now instead. */
3478 do_pending_stack_adjust ();
3480 start_sequence ();
3481 temp2 = copy_to_mode_reg (mode, op0);
3482 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3483 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3484 temp = force_reg (mode, temp);
3486 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3487 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3488 mode, temp, temp2, mode, 0);
3489 if (temp2)
3491 rtx seq = get_insns ();
3492 end_sequence ();
3493 emit_insn (seq);
3494 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3496 end_sequence ();
3498 #endif
3500 if (BRANCH_COST >= 2)
3502 int ushift = GET_MODE_BITSIZE (mode) - logd;
3504 temp = gen_reg_rtx (mode);
3505 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3506 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3507 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3508 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3509 else
3510 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3511 build_int_cst (NULL_TREE, ushift),
3512 NULL_RTX, 1);
3513 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3514 0, OPTAB_LIB_WIDEN);
3515 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3518 label = gen_label_rtx ();
3519 temp = copy_to_mode_reg (mode, op0);
3520 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3521 expand_inc (temp, GEN_INT (d - 1));
3522 emit_label (label);
3523 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3526 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3527 if that is convenient, and returning where the result is.
3528 You may request either the quotient or the remainder as the result;
3529 specify REM_FLAG nonzero to get the remainder.
3531 CODE is the expression code for which kind of division this is;
3532 it controls how rounding is done. MODE is the machine mode to use.
3533 UNSIGNEDP nonzero means do unsigned division. */
3535 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3536 and then correct it by or'ing in missing high bits
3537 if result of ANDI is nonzero.
3538 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3539 This could optimize to a bfexts instruction.
3540 But C doesn't use these operations, so their optimizations are
3541 left for later. */
3542 /* ??? For modulo, we don't actually need the highpart of the first product,
3543 the low part will do nicely. And for small divisors, the second multiply
3544 can also be a low-part only multiply or even be completely left out.
3545 E.g. to calculate the remainder of a division by 3 with a 32 bit
3546 multiply, multiply with 0x55555556 and extract the upper two bits;
3547 the result is exact for inputs up to 0x1fffffff.
3548 The input range can be reduced by using cross-sum rules.
3549 For odd divisors >= 3, the following table gives right shift counts
3550 so that if a number is shifted by an integer multiple of the given
3551 amount, the remainder stays the same:
3552 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3553 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3554 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3555 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3556 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3558 Cross-sum rules for even numbers can be derived by leaving as many bits
3559 to the right alone as the divisor has zeros to the right.
3560 E.g. if x is an unsigned 32 bit number:
3561 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3564 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
3567 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3568 rtx op0, rtx op1, rtx target, int unsignedp)
3570 enum machine_mode compute_mode;
3571 rtx tquotient;
3572 rtx quotient = 0, remainder = 0;
3573 rtx last;
3574 int size;
3575 rtx insn, set;
3576 optab optab1, optab2;
3577 int op1_is_constant, op1_is_pow2 = 0;
3578 int max_cost, extra_cost;
3579 static HOST_WIDE_INT last_div_const = 0;
3580 static HOST_WIDE_INT ext_op1;
3582 op1_is_constant = GET_CODE (op1) == CONST_INT;
3583 if (op1_is_constant)
3585 ext_op1 = INTVAL (op1);
3586 if (unsignedp)
3587 ext_op1 &= GET_MODE_MASK (mode);
3588 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3589 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3593 This is the structure of expand_divmod:
3595 First comes code to fix up the operands so we can perform the operations
3596 correctly and efficiently.
3598 Second comes a switch statement with code specific for each rounding mode.
3599 For some special operands this code emits all RTL for the desired
3600 operation, for other cases, it generates only a quotient and stores it in
3601 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3602 to indicate that it has not done anything.
3604 Last comes code that finishes the operation. If QUOTIENT is set and
3605 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3606 QUOTIENT is not set, it is computed using trunc rounding.
3608 We try to generate special code for division and remainder when OP1 is a
3609 constant. If |OP1| = 2**n we can use shifts and some other fast
3610 operations. For other values of OP1, we compute a carefully selected
3611 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3612 by m.
3614 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3615 half of the product. Different strategies for generating the product are
3616 implemented in expand_mult_highpart.
3618 If what we actually want is the remainder, we generate that by another
3619 by-constant multiplication and a subtraction. */
3621 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3622 code below will malfunction if we are, so check here and handle
3623 the special case if so. */
3624 if (op1 == const1_rtx)
3625 return rem_flag ? const0_rtx : op0;
3627 /* When dividing by -1, we could get an overflow.
3628 negv_optab can handle overflows. */
3629 if (! unsignedp && op1 == constm1_rtx)
3631 if (rem_flag)
3632 return const0_rtx;
3633 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3634 ? negv_optab : neg_optab, op0, target, 0);
3637 if (target
3638 /* Don't use the function value register as a target
3639 since we have to read it as well as write it,
3640 and function-inlining gets confused by this. */
3641 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3642 /* Don't clobber an operand while doing a multi-step calculation. */
3643 || ((rem_flag || op1_is_constant)
3644 && (reg_mentioned_p (target, op0)
3645 || (MEM_P (op0) && MEM_P (target))))
3646 || reg_mentioned_p (target, op1)
3647 || (MEM_P (op1) && MEM_P (target))))
3648 target = 0;
3650 /* Get the mode in which to perform this computation. Normally it will
3651 be MODE, but sometimes we can't do the desired operation in MODE.
3652 If so, pick a wider mode in which we can do the operation. Convert
3653 to that mode at the start to avoid repeated conversions.
3655 First see what operations we need. These depend on the expression
3656 we are evaluating. (We assume that divxx3 insns exist under the
3657 same conditions that modxx3 insns and that these insns don't normally
3658 fail. If these assumptions are not correct, we may generate less
3659 efficient code in some cases.)
3661 Then see if we find a mode in which we can open-code that operation
3662 (either a division, modulus, or shift). Finally, check for the smallest
3663 mode for which we can do the operation with a library call. */
3665 /* We might want to refine this now that we have division-by-constant
3666 optimization. Since expand_mult_highpart tries so many variants, it is
3667 not straightforward to generalize this. Maybe we should make an array
3668 of possible modes in init_expmed? Save this for GCC 2.7. */
3670 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3671 ? (unsignedp ? lshr_optab : ashr_optab)
3672 : (unsignedp ? udiv_optab : sdiv_optab));
3673 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3674 ? optab1
3675 : (unsignedp ? udivmod_optab : sdivmod_optab));
3677 for (compute_mode = mode; compute_mode != VOIDmode;
3678 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3679 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3680 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3681 break;
3683 if (compute_mode == VOIDmode)
3684 for (compute_mode = mode; compute_mode != VOIDmode;
3685 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3686 if (optab1->handlers[compute_mode].libfunc
3687 || optab2->handlers[compute_mode].libfunc)
3688 break;
3690 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3691 in expand_binop. */
3692 if (compute_mode == VOIDmode)
3693 compute_mode = mode;
3695 if (target && GET_MODE (target) == compute_mode)
3696 tquotient = target;
3697 else
3698 tquotient = gen_reg_rtx (compute_mode);
3700 size = GET_MODE_BITSIZE (compute_mode);
3701 #if 0
3702 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3703 (mode), and thereby get better code when OP1 is a constant. Do that
3704 later. It will require going over all usages of SIZE below. */
3705 size = GET_MODE_BITSIZE (mode);
3706 #endif
3708 /* Only deduct something for a REM if the last divide done was
3709 for a different constant. Then set the constant of the last
3710 divide. */
3711 max_cost = div_cost[compute_mode]
3712 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3713 && INTVAL (op1) == last_div_const)
3714 ? mul_cost[compute_mode] + add_cost[compute_mode]
3715 : 0);
3717 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3719 /* Now convert to the best mode to use. */
3720 if (compute_mode != mode)
3722 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3723 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3725 /* convert_modes may have placed op1 into a register, so we
3726 must recompute the following. */
3727 op1_is_constant = GET_CODE (op1) == CONST_INT;
3728 op1_is_pow2 = (op1_is_constant
3729 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3730 || (! unsignedp
3731 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3734 /* If one of the operands is a volatile MEM, copy it into a register. */
3736 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3737 op0 = force_reg (compute_mode, op0);
3738 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3739 op1 = force_reg (compute_mode, op1);
3741 /* If we need the remainder or if OP1 is constant, we need to
3742 put OP0 in a register in case it has any queued subexpressions. */
3743 if (rem_flag || op1_is_constant)
3744 op0 = force_reg (compute_mode, op0);
3746 last = get_last_insn ();
3748 /* Promote floor rounding to trunc rounding for unsigned operations. */
3749 if (unsignedp)
3751 if (code == FLOOR_DIV_EXPR)
3752 code = TRUNC_DIV_EXPR;
3753 if (code == FLOOR_MOD_EXPR)
3754 code = TRUNC_MOD_EXPR;
3755 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3756 code = TRUNC_DIV_EXPR;
3759 if (op1 != const0_rtx)
3760 switch (code)
3762 case TRUNC_MOD_EXPR:
3763 case TRUNC_DIV_EXPR:
3764 if (op1_is_constant)
3766 if (unsignedp)
3768 unsigned HOST_WIDE_INT mh, ml;
3769 int pre_shift, post_shift;
3770 int dummy;
3771 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3772 & GET_MODE_MASK (compute_mode));
3774 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3776 pre_shift = floor_log2 (d);
3777 if (rem_flag)
3779 remainder
3780 = expand_binop (compute_mode, and_optab, op0,
3781 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3782 remainder, 1,
3783 OPTAB_LIB_WIDEN);
3784 if (remainder)
3785 return gen_lowpart (mode, remainder);
3787 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3788 build_int_cst (NULL_TREE,
3789 pre_shift),
3790 tquotient, 1);
3792 else if (size <= HOST_BITS_PER_WIDE_INT)
3794 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3796 /* Most significant bit of divisor is set; emit an scc
3797 insn. */
3798 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3799 compute_mode, 1, 1);
3800 if (quotient == 0)
3801 goto fail1;
3803 else
3805 /* Find a suitable multiplier and right shift count
3806 instead of multiplying with D. */
3808 mh = choose_multiplier (d, size, size,
3809 &ml, &post_shift, &dummy);
3811 /* If the suggested multiplier is more than SIZE bits,
3812 we can do better for even divisors, using an
3813 initial right shift. */
3814 if (mh != 0 && (d & 1) == 0)
3816 pre_shift = floor_log2 (d & -d);
3817 mh = choose_multiplier (d >> pre_shift, size,
3818 size - pre_shift,
3819 &ml, &post_shift, &dummy);
3820 gcc_assert (!mh);
3822 else
3823 pre_shift = 0;
3825 if (mh != 0)
3827 rtx t1, t2, t3, t4;
3829 if (post_shift - 1 >= BITS_PER_WORD)
3830 goto fail1;
3832 extra_cost
3833 = (shift_cost[compute_mode][post_shift - 1]
3834 + shift_cost[compute_mode][1]
3835 + 2 * add_cost[compute_mode]);
3836 t1 = expand_mult_highpart (compute_mode, op0, ml,
3837 NULL_RTX, 1,
3838 max_cost - extra_cost);
3839 if (t1 == 0)
3840 goto fail1;
3841 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3842 op0, t1),
3843 NULL_RTX);
3844 t3 = expand_shift
3845 (RSHIFT_EXPR, compute_mode, t2,
3846 build_int_cst (NULL_TREE, 1),
3847 NULL_RTX,1);
3848 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3849 t1, t3),
3850 NULL_RTX);
3851 quotient = expand_shift
3852 (RSHIFT_EXPR, compute_mode, t4,
3853 build_int_cst (NULL_TREE, post_shift - 1),
3854 tquotient, 1);
3856 else
3858 rtx t1, t2;
3860 if (pre_shift >= BITS_PER_WORD
3861 || post_shift >= BITS_PER_WORD)
3862 goto fail1;
3864 t1 = expand_shift
3865 (RSHIFT_EXPR, compute_mode, op0,
3866 build_int_cst (NULL_TREE, pre_shift),
3867 NULL_RTX, 1);
3868 extra_cost
3869 = (shift_cost[compute_mode][pre_shift]
3870 + shift_cost[compute_mode][post_shift]);
3871 t2 = expand_mult_highpart (compute_mode, t1, ml,
3872 NULL_RTX, 1,
3873 max_cost - extra_cost);
3874 if (t2 == 0)
3875 goto fail1;
3876 quotient = expand_shift
3877 (RSHIFT_EXPR, compute_mode, t2,
3878 build_int_cst (NULL_TREE, post_shift),
3879 tquotient, 1);
3883 else /* Too wide mode to use tricky code */
3884 break;
3886 insn = get_last_insn ();
3887 if (insn != last
3888 && (set = single_set (insn)) != 0
3889 && SET_DEST (set) == quotient)
3890 set_unique_reg_note (insn,
3891 REG_EQUAL,
3892 gen_rtx_UDIV (compute_mode, op0, op1));
3894 else /* TRUNC_DIV, signed */
3896 unsigned HOST_WIDE_INT ml;
3897 int lgup, post_shift;
3898 HOST_WIDE_INT d = INTVAL (op1);
3899 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
3901 /* n rem d = n rem -d */
3902 if (rem_flag && d < 0)
3904 d = abs_d;
3905 op1 = gen_int_mode (abs_d, compute_mode);
3908 if (d == 1)
3909 quotient = op0;
3910 else if (d == -1)
3911 quotient = expand_unop (compute_mode, neg_optab, op0,
3912 tquotient, 0);
3913 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
3915 /* This case is not handled correctly below. */
3916 quotient = emit_store_flag (tquotient, EQ, op0, op1,
3917 compute_mode, 1, 1);
3918 if (quotient == 0)
3919 goto fail1;
3921 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
3922 && (rem_flag ? smod_pow2_cheap[compute_mode]
3923 : sdiv_pow2_cheap[compute_mode])
3924 /* We assume that cheap metric is true if the
3925 optab has an expander for this mode. */
3926 && (((rem_flag ? smod_optab : sdiv_optab)
3927 ->handlers[compute_mode].insn_code
3928 != CODE_FOR_nothing)
3929 || (sdivmod_optab->handlers[compute_mode]
3930 .insn_code != CODE_FOR_nothing)))
3932 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
3934 if (rem_flag)
3936 remainder = expand_smod_pow2 (compute_mode, op0, d);
3937 if (remainder)
3938 return gen_lowpart (mode, remainder);
3941 if (sdiv_pow2_cheap[compute_mode]
3942 && ((sdiv_optab->handlers[compute_mode].insn_code
3943 != CODE_FOR_nothing)
3944 || (sdivmod_optab->handlers[compute_mode].insn_code
3945 != CODE_FOR_nothing)))
3946 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
3947 compute_mode, op0,
3948 gen_int_mode (abs_d,
3949 compute_mode),
3950 NULL_RTX, 0);
3951 else
3952 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
3954 /* We have computed OP0 / abs(OP1). If OP1 is negative,
3955 negate the quotient. */
3956 if (d < 0)
3958 insn = get_last_insn ();
3959 if (insn != last
3960 && (set = single_set (insn)) != 0
3961 && SET_DEST (set) == quotient
3962 && abs_d < ((unsigned HOST_WIDE_INT) 1
3963 << (HOST_BITS_PER_WIDE_INT - 1)))
3964 set_unique_reg_note (insn,
3965 REG_EQUAL,
3966 gen_rtx_DIV (compute_mode,
3967 op0,
3968 GEN_INT
3969 (trunc_int_for_mode
3970 (abs_d,
3971 compute_mode))));
3973 quotient = expand_unop (compute_mode, neg_optab,
3974 quotient, quotient, 0);
3977 else if (size <= HOST_BITS_PER_WIDE_INT)
3979 choose_multiplier (abs_d, size, size - 1,
3980 &ml, &post_shift, &lgup);
3981 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
3983 rtx t1, t2, t3;
3985 if (post_shift >= BITS_PER_WORD
3986 || size - 1 >= BITS_PER_WORD)
3987 goto fail1;
3989 extra_cost = (shift_cost[compute_mode][post_shift]
3990 + shift_cost[compute_mode][size - 1]
3991 + add_cost[compute_mode]);
3992 t1 = expand_mult_highpart (compute_mode, op0, ml,
3993 NULL_RTX, 0,
3994 max_cost - extra_cost);
3995 if (t1 == 0)
3996 goto fail1;
3997 t2 = expand_shift
3998 (RSHIFT_EXPR, compute_mode, t1,
3999 build_int_cst (NULL_TREE, post_shift),
4000 NULL_RTX, 0);
4001 t3 = expand_shift
4002 (RSHIFT_EXPR, compute_mode, op0,
4003 build_int_cst (NULL_TREE, size - 1),
4004 NULL_RTX, 0);
4005 if (d < 0)
4006 quotient
4007 = force_operand (gen_rtx_MINUS (compute_mode,
4008 t3, t2),
4009 tquotient);
4010 else
4011 quotient
4012 = force_operand (gen_rtx_MINUS (compute_mode,
4013 t2, t3),
4014 tquotient);
4016 else
4018 rtx t1, t2, t3, t4;
4020 if (post_shift >= BITS_PER_WORD
4021 || size - 1 >= BITS_PER_WORD)
4022 goto fail1;
4024 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4025 extra_cost = (shift_cost[compute_mode][post_shift]
4026 + shift_cost[compute_mode][size - 1]
4027 + 2 * add_cost[compute_mode]);
4028 t1 = expand_mult_highpart (compute_mode, op0, ml,
4029 NULL_RTX, 0,
4030 max_cost - extra_cost);
4031 if (t1 == 0)
4032 goto fail1;
4033 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4034 t1, op0),
4035 NULL_RTX);
4036 t3 = expand_shift
4037 (RSHIFT_EXPR, compute_mode, t2,
4038 build_int_cst (NULL_TREE, post_shift),
4039 NULL_RTX, 0);
4040 t4 = expand_shift
4041 (RSHIFT_EXPR, compute_mode, op0,
4042 build_int_cst (NULL_TREE, size - 1),
4043 NULL_RTX, 0);
4044 if (d < 0)
4045 quotient
4046 = force_operand (gen_rtx_MINUS (compute_mode,
4047 t4, t3),
4048 tquotient);
4049 else
4050 quotient
4051 = force_operand (gen_rtx_MINUS (compute_mode,
4052 t3, t4),
4053 tquotient);
4056 else /* Too wide mode to use tricky code */
4057 break;
4059 insn = get_last_insn ();
4060 if (insn != last
4061 && (set = single_set (insn)) != 0
4062 && SET_DEST (set) == quotient)
4063 set_unique_reg_note (insn,
4064 REG_EQUAL,
4065 gen_rtx_DIV (compute_mode, op0, op1));
4067 break;
4069 fail1:
4070 delete_insns_since (last);
4071 break;
4073 case FLOOR_DIV_EXPR:
4074 case FLOOR_MOD_EXPR:
4075 /* We will come here only for signed operations. */
4076 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4078 unsigned HOST_WIDE_INT mh, ml;
4079 int pre_shift, lgup, post_shift;
4080 HOST_WIDE_INT d = INTVAL (op1);
4082 if (d > 0)
4084 /* We could just as easily deal with negative constants here,
4085 but it does not seem worth the trouble for GCC 2.6. */
4086 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4088 pre_shift = floor_log2 (d);
4089 if (rem_flag)
4091 remainder = expand_binop (compute_mode, and_optab, op0,
4092 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4093 remainder, 0, OPTAB_LIB_WIDEN);
4094 if (remainder)
4095 return gen_lowpart (mode, remainder);
4097 quotient = expand_shift
4098 (RSHIFT_EXPR, compute_mode, op0,
4099 build_int_cst (NULL_TREE, pre_shift),
4100 tquotient, 0);
4102 else
4104 rtx t1, t2, t3, t4;
4106 mh = choose_multiplier (d, size, size - 1,
4107 &ml, &post_shift, &lgup);
4108 gcc_assert (!mh);
4110 if (post_shift < BITS_PER_WORD
4111 && size - 1 < BITS_PER_WORD)
4113 t1 = expand_shift
4114 (RSHIFT_EXPR, compute_mode, op0,
4115 build_int_cst (NULL_TREE, size - 1),
4116 NULL_RTX, 0);
4117 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4118 NULL_RTX, 0, OPTAB_WIDEN);
4119 extra_cost = (shift_cost[compute_mode][post_shift]
4120 + shift_cost[compute_mode][size - 1]
4121 + 2 * add_cost[compute_mode]);
4122 t3 = expand_mult_highpart (compute_mode, t2, ml,
4123 NULL_RTX, 1,
4124 max_cost - extra_cost);
4125 if (t3 != 0)
4127 t4 = expand_shift
4128 (RSHIFT_EXPR, compute_mode, t3,
4129 build_int_cst (NULL_TREE, post_shift),
4130 NULL_RTX, 1);
4131 quotient = expand_binop (compute_mode, xor_optab,
4132 t4, t1, tquotient, 0,
4133 OPTAB_WIDEN);
4138 else
4140 rtx nsign, t1, t2, t3, t4;
4141 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4142 op0, constm1_rtx), NULL_RTX);
4143 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4144 0, OPTAB_WIDEN);
4145 nsign = expand_shift
4146 (RSHIFT_EXPR, compute_mode, t2,
4147 build_int_cst (NULL_TREE, size - 1),
4148 NULL_RTX, 0);
4149 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4150 NULL_RTX);
4151 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4152 NULL_RTX, 0);
4153 if (t4)
4155 rtx t5;
4156 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4157 NULL_RTX, 0);
4158 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4159 t4, t5),
4160 tquotient);
4165 if (quotient != 0)
4166 break;
4167 delete_insns_since (last);
4169 /* Try using an instruction that produces both the quotient and
4170 remainder, using truncation. We can easily compensate the quotient
4171 or remainder to get floor rounding, once we have the remainder.
4172 Notice that we compute also the final remainder value here,
4173 and return the result right away. */
4174 if (target == 0 || GET_MODE (target) != compute_mode)
4175 target = gen_reg_rtx (compute_mode);
4177 if (rem_flag)
4179 remainder
4180 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4181 quotient = gen_reg_rtx (compute_mode);
4183 else
4185 quotient
4186 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4187 remainder = gen_reg_rtx (compute_mode);
4190 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4191 quotient, remainder, 0))
4193 /* This could be computed with a branch-less sequence.
4194 Save that for later. */
4195 rtx tem;
4196 rtx label = gen_label_rtx ();
4197 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4198 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4199 NULL_RTX, 0, OPTAB_WIDEN);
4200 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4201 expand_dec (quotient, const1_rtx);
4202 expand_inc (remainder, op1);
4203 emit_label (label);
4204 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4207 /* No luck with division elimination or divmod. Have to do it
4208 by conditionally adjusting op0 *and* the result. */
4210 rtx label1, label2, label3, label4, label5;
4211 rtx adjusted_op0;
4212 rtx tem;
4214 quotient = gen_reg_rtx (compute_mode);
4215 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4216 label1 = gen_label_rtx ();
4217 label2 = gen_label_rtx ();
4218 label3 = gen_label_rtx ();
4219 label4 = gen_label_rtx ();
4220 label5 = gen_label_rtx ();
4221 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4222 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4223 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4224 quotient, 0, OPTAB_LIB_WIDEN);
4225 if (tem != quotient)
4226 emit_move_insn (quotient, tem);
4227 emit_jump_insn (gen_jump (label5));
4228 emit_barrier ();
4229 emit_label (label1);
4230 expand_inc (adjusted_op0, const1_rtx);
4231 emit_jump_insn (gen_jump (label4));
4232 emit_barrier ();
4233 emit_label (label2);
4234 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4235 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4236 quotient, 0, OPTAB_LIB_WIDEN);
4237 if (tem != quotient)
4238 emit_move_insn (quotient, tem);
4239 emit_jump_insn (gen_jump (label5));
4240 emit_barrier ();
4241 emit_label (label3);
4242 expand_dec (adjusted_op0, const1_rtx);
4243 emit_label (label4);
4244 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4245 quotient, 0, OPTAB_LIB_WIDEN);
4246 if (tem != quotient)
4247 emit_move_insn (quotient, tem);
4248 expand_dec (quotient, const1_rtx);
4249 emit_label (label5);
4251 break;
4253 case CEIL_DIV_EXPR:
4254 case CEIL_MOD_EXPR:
4255 if (unsignedp)
4257 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4259 rtx t1, t2, t3;
4260 unsigned HOST_WIDE_INT d = INTVAL (op1);
4261 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4262 build_int_cst (NULL_TREE, floor_log2 (d)),
4263 tquotient, 1);
4264 t2 = expand_binop (compute_mode, and_optab, op0,
4265 GEN_INT (d - 1),
4266 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4267 t3 = gen_reg_rtx (compute_mode);
4268 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4269 compute_mode, 1, 1);
4270 if (t3 == 0)
4272 rtx lab;
4273 lab = gen_label_rtx ();
4274 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4275 expand_inc (t1, const1_rtx);
4276 emit_label (lab);
4277 quotient = t1;
4279 else
4280 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4281 t1, t3),
4282 tquotient);
4283 break;
4286 /* Try using an instruction that produces both the quotient and
4287 remainder, using truncation. We can easily compensate the
4288 quotient or remainder to get ceiling rounding, once we have the
4289 remainder. Notice that we compute also the final remainder
4290 value here, and return the result right away. */
4291 if (target == 0 || GET_MODE (target) != compute_mode)
4292 target = gen_reg_rtx (compute_mode);
4294 if (rem_flag)
4296 remainder = (REG_P (target)
4297 ? target : gen_reg_rtx (compute_mode));
4298 quotient = gen_reg_rtx (compute_mode);
4300 else
4302 quotient = (REG_P (target)
4303 ? target : gen_reg_rtx (compute_mode));
4304 remainder = gen_reg_rtx (compute_mode);
4307 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4308 remainder, 1))
4310 /* This could be computed with a branch-less sequence.
4311 Save that for later. */
4312 rtx label = gen_label_rtx ();
4313 do_cmp_and_jump (remainder, const0_rtx, EQ,
4314 compute_mode, label);
4315 expand_inc (quotient, const1_rtx);
4316 expand_dec (remainder, op1);
4317 emit_label (label);
4318 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4321 /* No luck with division elimination or divmod. Have to do it
4322 by conditionally adjusting op0 *and* the result. */
4324 rtx label1, label2;
4325 rtx adjusted_op0, tem;
4327 quotient = gen_reg_rtx (compute_mode);
4328 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4329 label1 = gen_label_rtx ();
4330 label2 = gen_label_rtx ();
4331 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4332 compute_mode, label1);
4333 emit_move_insn (quotient, const0_rtx);
4334 emit_jump_insn (gen_jump (label2));
4335 emit_barrier ();
4336 emit_label (label1);
4337 expand_dec (adjusted_op0, const1_rtx);
4338 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4339 quotient, 1, OPTAB_LIB_WIDEN);
4340 if (tem != quotient)
4341 emit_move_insn (quotient, tem);
4342 expand_inc (quotient, const1_rtx);
4343 emit_label (label2);
4346 else /* signed */
4348 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4349 && INTVAL (op1) >= 0)
4351 /* This is extremely similar to the code for the unsigned case
4352 above. For 2.7 we should merge these variants, but for
4353 2.6.1 I don't want to touch the code for unsigned since that
4354 get used in C. The signed case will only be used by other
4355 languages (Ada). */
4357 rtx t1, t2, t3;
4358 unsigned HOST_WIDE_INT d = INTVAL (op1);
4359 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4360 build_int_cst (NULL_TREE, floor_log2 (d)),
4361 tquotient, 0);
4362 t2 = expand_binop (compute_mode, and_optab, op0,
4363 GEN_INT (d - 1),
4364 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4365 t3 = gen_reg_rtx (compute_mode);
4366 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4367 compute_mode, 1, 1);
4368 if (t3 == 0)
4370 rtx lab;
4371 lab = gen_label_rtx ();
4372 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4373 expand_inc (t1, const1_rtx);
4374 emit_label (lab);
4375 quotient = t1;
4377 else
4378 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4379 t1, t3),
4380 tquotient);
4381 break;
4384 /* Try using an instruction that produces both the quotient and
4385 remainder, using truncation. We can easily compensate the
4386 quotient or remainder to get ceiling rounding, once we have the
4387 remainder. Notice that we compute also the final remainder
4388 value here, and return the result right away. */
4389 if (target == 0 || GET_MODE (target) != compute_mode)
4390 target = gen_reg_rtx (compute_mode);
4391 if (rem_flag)
4393 remainder= (REG_P (target)
4394 ? target : gen_reg_rtx (compute_mode));
4395 quotient = gen_reg_rtx (compute_mode);
4397 else
4399 quotient = (REG_P (target)
4400 ? target : gen_reg_rtx (compute_mode));
4401 remainder = gen_reg_rtx (compute_mode);
4404 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4405 remainder, 0))
4407 /* This could be computed with a branch-less sequence.
4408 Save that for later. */
4409 rtx tem;
4410 rtx label = gen_label_rtx ();
4411 do_cmp_and_jump (remainder, const0_rtx, EQ,
4412 compute_mode, label);
4413 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4414 NULL_RTX, 0, OPTAB_WIDEN);
4415 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4416 expand_inc (quotient, const1_rtx);
4417 expand_dec (remainder, op1);
4418 emit_label (label);
4419 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4422 /* No luck with division elimination or divmod. Have to do it
4423 by conditionally adjusting op0 *and* the result. */
4425 rtx label1, label2, label3, label4, label5;
4426 rtx adjusted_op0;
4427 rtx tem;
4429 quotient = gen_reg_rtx (compute_mode);
4430 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4431 label1 = gen_label_rtx ();
4432 label2 = gen_label_rtx ();
4433 label3 = gen_label_rtx ();
4434 label4 = gen_label_rtx ();
4435 label5 = gen_label_rtx ();
4436 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4437 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4438 compute_mode, label1);
4439 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4440 quotient, 0, OPTAB_LIB_WIDEN);
4441 if (tem != quotient)
4442 emit_move_insn (quotient, tem);
4443 emit_jump_insn (gen_jump (label5));
4444 emit_barrier ();
4445 emit_label (label1);
4446 expand_dec (adjusted_op0, const1_rtx);
4447 emit_jump_insn (gen_jump (label4));
4448 emit_barrier ();
4449 emit_label (label2);
4450 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4451 compute_mode, label3);
4452 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4453 quotient, 0, OPTAB_LIB_WIDEN);
4454 if (tem != quotient)
4455 emit_move_insn (quotient, tem);
4456 emit_jump_insn (gen_jump (label5));
4457 emit_barrier ();
4458 emit_label (label3);
4459 expand_inc (adjusted_op0, const1_rtx);
4460 emit_label (label4);
4461 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4462 quotient, 0, OPTAB_LIB_WIDEN);
4463 if (tem != quotient)
4464 emit_move_insn (quotient, tem);
4465 expand_inc (quotient, const1_rtx);
4466 emit_label (label5);
4469 break;
4471 case EXACT_DIV_EXPR:
4472 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4474 HOST_WIDE_INT d = INTVAL (op1);
4475 unsigned HOST_WIDE_INT ml;
4476 int pre_shift;
4477 rtx t1;
4479 pre_shift = floor_log2 (d & -d);
4480 ml = invert_mod2n (d >> pre_shift, size);
4481 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4482 build_int_cst (NULL_TREE, pre_shift),
4483 NULL_RTX, unsignedp);
4484 quotient = expand_mult (compute_mode, t1,
4485 gen_int_mode (ml, compute_mode),
4486 NULL_RTX, 1);
4488 insn = get_last_insn ();
4489 set_unique_reg_note (insn,
4490 REG_EQUAL,
4491 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4492 compute_mode,
4493 op0, op1));
4495 break;
4497 case ROUND_DIV_EXPR:
4498 case ROUND_MOD_EXPR:
4499 if (unsignedp)
4501 rtx tem;
4502 rtx label;
4503 label = gen_label_rtx ();
4504 quotient = gen_reg_rtx (compute_mode);
4505 remainder = gen_reg_rtx (compute_mode);
4506 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4508 rtx tem;
4509 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4510 quotient, 1, OPTAB_LIB_WIDEN);
4511 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4512 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4513 remainder, 1, OPTAB_LIB_WIDEN);
4515 tem = plus_constant (op1, -1);
4516 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4517 build_int_cst (NULL_TREE, 1),
4518 NULL_RTX, 1);
4519 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4520 expand_inc (quotient, const1_rtx);
4521 expand_dec (remainder, op1);
4522 emit_label (label);
4524 else
4526 rtx abs_rem, abs_op1, tem, mask;
4527 rtx label;
4528 label = gen_label_rtx ();
4529 quotient = gen_reg_rtx (compute_mode);
4530 remainder = gen_reg_rtx (compute_mode);
4531 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4533 rtx tem;
4534 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4535 quotient, 0, OPTAB_LIB_WIDEN);
4536 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4537 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4538 remainder, 0, OPTAB_LIB_WIDEN);
4540 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4541 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4542 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4543 build_int_cst (NULL_TREE, 1),
4544 NULL_RTX, 1);
4545 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4546 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4547 NULL_RTX, 0, OPTAB_WIDEN);
4548 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4549 build_int_cst (NULL_TREE, size - 1),
4550 NULL_RTX, 0);
4551 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4552 NULL_RTX, 0, OPTAB_WIDEN);
4553 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4554 NULL_RTX, 0, OPTAB_WIDEN);
4555 expand_inc (quotient, tem);
4556 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4557 NULL_RTX, 0, OPTAB_WIDEN);
4558 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4559 NULL_RTX, 0, OPTAB_WIDEN);
4560 expand_dec (remainder, tem);
4561 emit_label (label);
4563 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4565 default:
4566 gcc_unreachable ();
4569 if (quotient == 0)
4571 if (target && GET_MODE (target) != compute_mode)
4572 target = 0;
4574 if (rem_flag)
4576 /* Try to produce the remainder without producing the quotient.
4577 If we seem to have a divmod pattern that does not require widening,
4578 don't try widening here. We should really have a WIDEN argument
4579 to expand_twoval_binop, since what we'd really like to do here is
4580 1) try a mod insn in compute_mode
4581 2) try a divmod insn in compute_mode
4582 3) try a div insn in compute_mode and multiply-subtract to get
4583 remainder
4584 4) try the same things with widening allowed. */
4585 remainder
4586 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4587 op0, op1, target,
4588 unsignedp,
4589 ((optab2->handlers[compute_mode].insn_code
4590 != CODE_FOR_nothing)
4591 ? OPTAB_DIRECT : OPTAB_WIDEN));
4592 if (remainder == 0)
4594 /* No luck there. Can we do remainder and divide at once
4595 without a library call? */
4596 remainder = gen_reg_rtx (compute_mode);
4597 if (! expand_twoval_binop ((unsignedp
4598 ? udivmod_optab
4599 : sdivmod_optab),
4600 op0, op1,
4601 NULL_RTX, remainder, unsignedp))
4602 remainder = 0;
4605 if (remainder)
4606 return gen_lowpart (mode, remainder);
4609 /* Produce the quotient. Try a quotient insn, but not a library call.
4610 If we have a divmod in this mode, use it in preference to widening
4611 the div (for this test we assume it will not fail). Note that optab2
4612 is set to the one of the two optabs that the call below will use. */
4613 quotient
4614 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4615 op0, op1, rem_flag ? NULL_RTX : target,
4616 unsignedp,
4617 ((optab2->handlers[compute_mode].insn_code
4618 != CODE_FOR_nothing)
4619 ? OPTAB_DIRECT : OPTAB_WIDEN));
4621 if (quotient == 0)
4623 /* No luck there. Try a quotient-and-remainder insn,
4624 keeping the quotient alone. */
4625 quotient = gen_reg_rtx (compute_mode);
4626 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4627 op0, op1,
4628 quotient, NULL_RTX, unsignedp))
4630 quotient = 0;
4631 if (! rem_flag)
4632 /* Still no luck. If we are not computing the remainder,
4633 use a library call for the quotient. */
4634 quotient = sign_expand_binop (compute_mode,
4635 udiv_optab, sdiv_optab,
4636 op0, op1, target,
4637 unsignedp, OPTAB_LIB_WIDEN);
4642 if (rem_flag)
4644 if (target && GET_MODE (target) != compute_mode)
4645 target = 0;
4647 if (quotient == 0)
4649 /* No divide instruction either. Use library for remainder. */
4650 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4651 op0, op1, target,
4652 unsignedp, OPTAB_LIB_WIDEN);
4653 /* No remainder function. Try a quotient-and-remainder
4654 function, keeping the remainder. */
4655 if (!remainder)
4657 remainder = gen_reg_rtx (compute_mode);
4658 if (!expand_twoval_binop_libfunc
4659 (unsignedp ? udivmod_optab : sdivmod_optab,
4660 op0, op1,
4661 NULL_RTX, remainder,
4662 unsignedp ? UMOD : MOD))
4663 remainder = NULL_RTX;
4666 else
4668 /* We divided. Now finish doing X - Y * (X / Y). */
4669 remainder = expand_mult (compute_mode, quotient, op1,
4670 NULL_RTX, unsignedp);
4671 remainder = expand_binop (compute_mode, sub_optab, op0,
4672 remainder, target, unsignedp,
4673 OPTAB_LIB_WIDEN);
4677 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4680 /* Return a tree node with data type TYPE, describing the value of X.
4681 Usually this is an VAR_DECL, if there is no obvious better choice.
4682 X may be an expression, however we only support those expressions
4683 generated by loop.c. */
4685 tree
4686 make_tree (tree type, rtx x)
4688 tree t;
4690 switch (GET_CODE (x))
4692 case CONST_INT:
4694 HOST_WIDE_INT hi = 0;
4696 if (INTVAL (x) < 0
4697 && !(TYPE_UNSIGNED (type)
4698 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4699 < HOST_BITS_PER_WIDE_INT)))
4700 hi = -1;
4702 t = build_int_cst_wide (type, INTVAL (x), hi);
4704 return t;
4707 case CONST_DOUBLE:
4708 if (GET_MODE (x) == VOIDmode)
4709 t = build_int_cst_wide (type,
4710 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4711 else
4713 REAL_VALUE_TYPE d;
4715 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4716 t = build_real (type, d);
4719 return t;
4721 case CONST_VECTOR:
4723 int i, units;
4724 rtx elt;
4725 tree t = NULL_TREE;
4727 units = CONST_VECTOR_NUNITS (x);
4729 /* Build a tree with vector elements. */
4730 for (i = units - 1; i >= 0; --i)
4732 elt = CONST_VECTOR_ELT (x, i);
4733 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4736 return build_vector (type, t);
4739 case PLUS:
4740 return fold (build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4741 make_tree (type, XEXP (x, 1))));
4743 case MINUS:
4744 return fold (build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4745 make_tree (type, XEXP (x, 1))));
4747 case NEG:
4748 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4750 case MULT:
4751 return fold (build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4752 make_tree (type, XEXP (x, 1))));
4754 case ASHIFT:
4755 return fold (build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4756 make_tree (type, XEXP (x, 1))));
4758 case LSHIFTRT:
4759 t = lang_hooks.types.unsigned_type (type);
4760 return fold (convert (type,
4761 build2 (RSHIFT_EXPR, t,
4762 make_tree (t, XEXP (x, 0)),
4763 make_tree (type, XEXP (x, 1)))));
4765 case ASHIFTRT:
4766 t = lang_hooks.types.signed_type (type);
4767 return fold (convert (type,
4768 build2 (RSHIFT_EXPR, t,
4769 make_tree (t, XEXP (x, 0)),
4770 make_tree (type, XEXP (x, 1)))));
4772 case DIV:
4773 if (TREE_CODE (type) != REAL_TYPE)
4774 t = lang_hooks.types.signed_type (type);
4775 else
4776 t = type;
4778 return fold (convert (type,
4779 build2 (TRUNC_DIV_EXPR, t,
4780 make_tree (t, XEXP (x, 0)),
4781 make_tree (t, XEXP (x, 1)))));
4782 case UDIV:
4783 t = lang_hooks.types.unsigned_type (type);
4784 return fold (convert (type,
4785 build2 (TRUNC_DIV_EXPR, t,
4786 make_tree (t, XEXP (x, 0)),
4787 make_tree (t, XEXP (x, 1)))));
4789 case SIGN_EXTEND:
4790 case ZERO_EXTEND:
4791 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4792 GET_CODE (x) == ZERO_EXTEND);
4793 return fold (convert (type, make_tree (t, XEXP (x, 0))));
4795 default:
4796 t = build_decl (VAR_DECL, NULL_TREE, type);
4798 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4799 ptr_mode. So convert. */
4800 if (POINTER_TYPE_P (type))
4801 x = convert_memory_address (TYPE_MODE (type), x);
4803 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4804 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4805 t->decl.rtl = x;
4807 return t;
4811 /* Check whether the multiplication X * MULT + ADD overflows.
4812 X, MULT and ADD must be CONST_*.
4813 MODE is the machine mode for the computation.
4814 X and MULT must have mode MODE. ADD may have a different mode.
4815 So can X (defaults to same as MODE).
4816 UNSIGNEDP is nonzero to do unsigned multiplication. */
4818 bool
4819 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4820 enum machine_mode mode, int unsignedp)
4822 tree type, mult_type, add_type, result;
4824 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4826 /* In order to get a proper overflow indication from an unsigned
4827 type, we have to pretend that it's a sizetype. */
4828 mult_type = type;
4829 if (unsignedp)
4831 /* FIXME:It would be nice if we could step directly from this
4832 type to its sizetype equivalent. */
4833 mult_type = build_distinct_type_copy (type);
4834 TYPE_IS_SIZETYPE (mult_type) = 1;
4837 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4838 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4840 result = fold (build2 (PLUS_EXPR, mult_type,
4841 fold (build2 (MULT_EXPR, mult_type,
4842 make_tree (mult_type, x),
4843 make_tree (mult_type, mult))),
4844 make_tree (add_type, add)));
4846 return TREE_CONSTANT_OVERFLOW (result);
4849 /* Return an rtx representing the value of X * MULT + ADD.
4850 TARGET is a suggestion for where to store the result (an rtx).
4851 MODE is the machine mode for the computation.
4852 X and MULT must have mode MODE. ADD may have a different mode.
4853 So can X (defaults to same as MODE).
4854 UNSIGNEDP is nonzero to do unsigned multiplication.
4855 This may emit insns. */
4858 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4859 int unsignedp)
4861 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4862 tree add_type = (GET_MODE (add) == VOIDmode
4863 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
4864 unsignedp));
4865 tree result = fold (build2 (PLUS_EXPR, type,
4866 fold (build2 (MULT_EXPR, type,
4867 make_tree (type, x),
4868 make_tree (type, mult))),
4869 make_tree (add_type, add)));
4871 return expand_expr (result, target, VOIDmode, 0);
4874 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4875 and returning TARGET.
4877 If TARGET is 0, a pseudo-register or constant is returned. */
4880 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4882 rtx tem = 0;
4884 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4885 tem = simplify_binary_operation (AND, mode, op0, op1);
4886 if (tem == 0)
4887 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4889 if (target == 0)
4890 target = tem;
4891 else if (tem != target)
4892 emit_move_insn (target, tem);
4893 return target;
4896 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
4897 and storing in TARGET. Normally return TARGET.
4898 Return 0 if that cannot be done.
4900 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
4901 it is VOIDmode, they cannot both be CONST_INT.
4903 UNSIGNEDP is for the case where we have to widen the operands
4904 to perform the operation. It says to use zero-extension.
4906 NORMALIZEP is 1 if we should convert the result to be either zero
4907 or one. Normalize is -1 if we should convert the result to be
4908 either zero or -1. If NORMALIZEP is zero, the result will be left
4909 "raw" out of the scc insn. */
4912 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
4913 enum machine_mode mode, int unsignedp, int normalizep)
4915 rtx subtarget;
4916 enum insn_code icode;
4917 enum machine_mode compare_mode;
4918 enum machine_mode target_mode = GET_MODE (target);
4919 rtx tem;
4920 rtx last = get_last_insn ();
4921 rtx pattern, comparison;
4923 if (unsignedp)
4924 code = unsigned_condition (code);
4926 /* If one operand is constant, make it the second one. Only do this
4927 if the other operand is not constant as well. */
4929 if (swap_commutative_operands_p (op0, op1))
4931 tem = op0;
4932 op0 = op1;
4933 op1 = tem;
4934 code = swap_condition (code);
4937 if (mode == VOIDmode)
4938 mode = GET_MODE (op0);
4940 /* For some comparisons with 1 and -1, we can convert this to
4941 comparisons with zero. This will often produce more opportunities for
4942 store-flag insns. */
4944 switch (code)
4946 case LT:
4947 if (op1 == const1_rtx)
4948 op1 = const0_rtx, code = LE;
4949 break;
4950 case LE:
4951 if (op1 == constm1_rtx)
4952 op1 = const0_rtx, code = LT;
4953 break;
4954 case GE:
4955 if (op1 == const1_rtx)
4956 op1 = const0_rtx, code = GT;
4957 break;
4958 case GT:
4959 if (op1 == constm1_rtx)
4960 op1 = const0_rtx, code = GE;
4961 break;
4962 case GEU:
4963 if (op1 == const1_rtx)
4964 op1 = const0_rtx, code = NE;
4965 break;
4966 case LTU:
4967 if (op1 == const1_rtx)
4968 op1 = const0_rtx, code = EQ;
4969 break;
4970 default:
4971 break;
4974 /* If we are comparing a double-word integer with zero or -1, we can
4975 convert the comparison into one involving a single word. */
4976 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
4977 && GET_MODE_CLASS (mode) == MODE_INT
4978 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
4980 if ((code == EQ || code == NE)
4981 && (op1 == const0_rtx || op1 == constm1_rtx))
4983 rtx op00, op01, op0both;
4985 /* Do a logical OR or AND of the two words and compare the result. */
4986 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
4987 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
4988 op0both = expand_binop (word_mode,
4989 op1 == const0_rtx ? ior_optab : and_optab,
4990 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
4992 if (op0both != 0)
4993 return emit_store_flag (target, code, op0both, op1, word_mode,
4994 unsignedp, normalizep);
4996 else if ((code == LT || code == GE) && op1 == const0_rtx)
4998 rtx op0h;
5000 /* If testing the sign bit, can just test on high word. */
5001 op0h = simplify_gen_subreg (word_mode, op0, mode,
5002 subreg_highpart_offset (word_mode, mode));
5003 return emit_store_flag (target, code, op0h, op1, word_mode,
5004 unsignedp, normalizep);
5008 /* From now on, we won't change CODE, so set ICODE now. */
5009 icode = setcc_gen_code[(int) code];
5011 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5012 complement of A (for GE) and shifting the sign bit to the low bit. */
5013 if (op1 == const0_rtx && (code == LT || code == GE)
5014 && GET_MODE_CLASS (mode) == MODE_INT
5015 && (normalizep || STORE_FLAG_VALUE == 1
5016 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5017 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5018 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5020 subtarget = target;
5022 /* If the result is to be wider than OP0, it is best to convert it
5023 first. If it is to be narrower, it is *incorrect* to convert it
5024 first. */
5025 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5027 op0 = convert_modes (target_mode, mode, op0, 0);
5028 mode = target_mode;
5031 if (target_mode != mode)
5032 subtarget = 0;
5034 if (code == GE)
5035 op0 = expand_unop (mode, one_cmpl_optab, op0,
5036 ((STORE_FLAG_VALUE == 1 || normalizep)
5037 ? 0 : subtarget), 0);
5039 if (STORE_FLAG_VALUE == 1 || normalizep)
5040 /* If we are supposed to produce a 0/1 value, we want to do
5041 a logical shift from the sign bit to the low-order bit; for
5042 a -1/0 value, we do an arithmetic shift. */
5043 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5044 size_int (GET_MODE_BITSIZE (mode) - 1),
5045 subtarget, normalizep != -1);
5047 if (mode != target_mode)
5048 op0 = convert_modes (target_mode, mode, op0, 0);
5050 return op0;
5053 if (icode != CODE_FOR_nothing)
5055 insn_operand_predicate_fn pred;
5057 /* We think we may be able to do this with a scc insn. Emit the
5058 comparison and then the scc insn. */
5060 do_pending_stack_adjust ();
5061 last = get_last_insn ();
5063 comparison
5064 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5065 if (CONSTANT_P (comparison))
5067 switch (GET_CODE (comparison))
5069 case CONST_INT:
5070 if (comparison == const0_rtx)
5071 return const0_rtx;
5072 break;
5074 #ifdef FLOAT_STORE_FLAG_VALUE
5075 case CONST_DOUBLE:
5076 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5077 return const0_rtx;
5078 break;
5079 #endif
5080 default:
5081 gcc_unreachable ();
5084 if (normalizep == 1)
5085 return const1_rtx;
5086 if (normalizep == -1)
5087 return constm1_rtx;
5088 return const_true_rtx;
5091 /* The code of COMPARISON may not match CODE if compare_from_rtx
5092 decided to swap its operands and reverse the original code.
5094 We know that compare_from_rtx returns either a CONST_INT or
5095 a new comparison code, so it is safe to just extract the
5096 code from COMPARISON. */
5097 code = GET_CODE (comparison);
5099 /* Get a reference to the target in the proper mode for this insn. */
5100 compare_mode = insn_data[(int) icode].operand[0].mode;
5101 subtarget = target;
5102 pred = insn_data[(int) icode].operand[0].predicate;
5103 if (optimize || ! (*pred) (subtarget, compare_mode))
5104 subtarget = gen_reg_rtx (compare_mode);
5106 pattern = GEN_FCN (icode) (subtarget);
5107 if (pattern)
5109 emit_insn (pattern);
5111 /* If we are converting to a wider mode, first convert to
5112 TARGET_MODE, then normalize. This produces better combining
5113 opportunities on machines that have a SIGN_EXTRACT when we are
5114 testing a single bit. This mostly benefits the 68k.
5116 If STORE_FLAG_VALUE does not have the sign bit set when
5117 interpreted in COMPARE_MODE, we can do this conversion as
5118 unsigned, which is usually more efficient. */
5119 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5121 convert_move (target, subtarget,
5122 (GET_MODE_BITSIZE (compare_mode)
5123 <= HOST_BITS_PER_WIDE_INT)
5124 && 0 == (STORE_FLAG_VALUE
5125 & ((HOST_WIDE_INT) 1
5126 << (GET_MODE_BITSIZE (compare_mode) -1))));
5127 op0 = target;
5128 compare_mode = target_mode;
5130 else
5131 op0 = subtarget;
5133 /* If we want to keep subexpressions around, don't reuse our
5134 last target. */
5136 if (optimize)
5137 subtarget = 0;
5139 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5140 we don't have to do anything. */
5141 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5143 /* STORE_FLAG_VALUE might be the most negative number, so write
5144 the comparison this way to avoid a compiler-time warning. */
5145 else if (- normalizep == STORE_FLAG_VALUE)
5146 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5148 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5149 makes it hard to use a value of just the sign bit due to
5150 ANSI integer constant typing rules. */
5151 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5152 && (STORE_FLAG_VALUE
5153 & ((HOST_WIDE_INT) 1
5154 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5155 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5156 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5157 subtarget, normalizep == 1);
5158 else
5160 gcc_assert (STORE_FLAG_VALUE & 1);
5162 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5163 if (normalizep == -1)
5164 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5167 /* If we were converting to a smaller mode, do the
5168 conversion now. */
5169 if (target_mode != compare_mode)
5171 convert_move (target, op0, 0);
5172 return target;
5174 else
5175 return op0;
5179 delete_insns_since (last);
5181 /* If optimizing, use different pseudo registers for each insn, instead
5182 of reusing the same pseudo. This leads to better CSE, but slows
5183 down the compiler, since there are more pseudos */
5184 subtarget = (!optimize
5185 && (target_mode == mode)) ? target : NULL_RTX;
5187 /* If we reached here, we can't do this with a scc insn. However, there
5188 are some comparisons that can be done directly. For example, if
5189 this is an equality comparison of integers, we can try to exclusive-or
5190 (or subtract) the two operands and use a recursive call to try the
5191 comparison with zero. Don't do any of these cases if branches are
5192 very cheap. */
5194 if (BRANCH_COST > 0
5195 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5196 && op1 != const0_rtx)
5198 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5199 OPTAB_WIDEN);
5201 if (tem == 0)
5202 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5203 OPTAB_WIDEN);
5204 if (tem != 0)
5205 tem = emit_store_flag (target, code, tem, const0_rtx,
5206 mode, unsignedp, normalizep);
5207 if (tem == 0)
5208 delete_insns_since (last);
5209 return tem;
5212 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5213 the constant zero. Reject all other comparisons at this point. Only
5214 do LE and GT if branches are expensive since they are expensive on
5215 2-operand machines. */
5217 if (BRANCH_COST == 0
5218 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5219 || (code != EQ && code != NE
5220 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5221 return 0;
5223 /* See what we need to return. We can only return a 1, -1, or the
5224 sign bit. */
5226 if (normalizep == 0)
5228 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5229 normalizep = STORE_FLAG_VALUE;
5231 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5232 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5233 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5235 else
5236 return 0;
5239 /* Try to put the result of the comparison in the sign bit. Assume we can't
5240 do the necessary operation below. */
5242 tem = 0;
5244 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5245 the sign bit set. */
5247 if (code == LE)
5249 /* This is destructive, so SUBTARGET can't be OP0. */
5250 if (rtx_equal_p (subtarget, op0))
5251 subtarget = 0;
5253 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5254 OPTAB_WIDEN);
5255 if (tem)
5256 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5257 OPTAB_WIDEN);
5260 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5261 number of bits in the mode of OP0, minus one. */
5263 if (code == GT)
5265 if (rtx_equal_p (subtarget, op0))
5266 subtarget = 0;
5268 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5269 size_int (GET_MODE_BITSIZE (mode) - 1),
5270 subtarget, 0);
5271 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5272 OPTAB_WIDEN);
5275 if (code == EQ || code == NE)
5277 /* For EQ or NE, one way to do the comparison is to apply an operation
5278 that converts the operand into a positive number if it is nonzero
5279 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5280 for NE we negate. This puts the result in the sign bit. Then we
5281 normalize with a shift, if needed.
5283 Two operations that can do the above actions are ABS and FFS, so try
5284 them. If that doesn't work, and MODE is smaller than a full word,
5285 we can use zero-extension to the wider mode (an unsigned conversion)
5286 as the operation. */
5288 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5289 that is compensated by the subsequent overflow when subtracting
5290 one / negating. */
5292 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5293 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5294 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5295 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5296 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5298 tem = convert_modes (word_mode, mode, op0, 1);
5299 mode = word_mode;
5302 if (tem != 0)
5304 if (code == EQ)
5305 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5306 0, OPTAB_WIDEN);
5307 else
5308 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5311 /* If we couldn't do it that way, for NE we can "or" the two's complement
5312 of the value with itself. For EQ, we take the one's complement of
5313 that "or", which is an extra insn, so we only handle EQ if branches
5314 are expensive. */
5316 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5318 if (rtx_equal_p (subtarget, op0))
5319 subtarget = 0;
5321 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5322 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5323 OPTAB_WIDEN);
5325 if (tem && code == EQ)
5326 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5330 if (tem && normalizep)
5331 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5332 size_int (GET_MODE_BITSIZE (mode) - 1),
5333 subtarget, normalizep == 1);
5335 if (tem)
5337 if (GET_MODE (tem) != target_mode)
5339 convert_move (target, tem, 0);
5340 tem = target;
5342 else if (!subtarget)
5344 emit_move_insn (target, tem);
5345 tem = target;
5348 else
5349 delete_insns_since (last);
5351 return tem;
5354 /* Like emit_store_flag, but always succeeds. */
5357 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5358 enum machine_mode mode, int unsignedp, int normalizep)
5360 rtx tem, label;
5362 /* First see if emit_store_flag can do the job. */
5363 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5364 if (tem != 0)
5365 return tem;
5367 if (normalizep == 0)
5368 normalizep = 1;
5370 /* If this failed, we have to do this with set/compare/jump/set code. */
5372 if (!REG_P (target)
5373 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5374 target = gen_reg_rtx (GET_MODE (target));
5376 emit_move_insn (target, const1_rtx);
5377 label = gen_label_rtx ();
5378 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5379 NULL_RTX, label);
5381 emit_move_insn (target, const0_rtx);
5382 emit_label (label);
5384 return target;
5387 /* Perform possibly multi-word comparison and conditional jump to LABEL
5388 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5390 The algorithm is based on the code in expr.c:do_jump.
5392 Note that this does not perform a general comparison. Only variants
5393 generated within expmed.c are correctly handled, others abort (but could
5394 be handled if needed). */
5396 static void
5397 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5398 rtx label)
5400 /* If this mode is an integer too wide to compare properly,
5401 compare word by word. Rely on cse to optimize constant cases. */
5403 if (GET_MODE_CLASS (mode) == MODE_INT
5404 && ! can_compare_p (op, mode, ccp_jump))
5406 rtx label2 = gen_label_rtx ();
5408 switch (op)
5410 case LTU:
5411 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5412 break;
5414 case LEU:
5415 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5416 break;
5418 case LT:
5419 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5420 break;
5422 case GT:
5423 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5424 break;
5426 case GE:
5427 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5428 break;
5430 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5431 that's the only equality operations we do */
5432 case EQ:
5433 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5434 do_jump_by_parts_equality_rtx (arg1, label2, label);
5435 break;
5437 case NE:
5438 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5439 do_jump_by_parts_equality_rtx (arg1, label, label2);
5440 break;
5442 default:
5443 gcc_unreachable ();
5446 emit_label (label2);
5448 else
5449 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);