1 /* RTL dead store elimination.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
27 #include "coretypes.h"
36 #include "gimple-ssa.h"
42 #include "stor-layout.h"
45 #include "tree-pass.h"
51 #include "cfgcleanup.h"
53 /* This file contains three techniques for performing Dead Store
56 * The first technique performs dse locally on any base address. It
57 is based on the cselib which is a local value numbering technique.
58 This technique is local to a basic block but deals with a fairly
61 * The second technique performs dse globally but is restricted to
62 base addresses that are either constant or are relative to the
65 * The third technique, (which is only done after register allocation)
66 processes the spill slots. This differs from the second
67 technique because it takes advantage of the fact that spilling is
68 completely free from the effects of aliasing.
70 Logically, dse is a backwards dataflow problem. A store can be
71 deleted if it if cannot be reached in the backward direction by any
72 use of the value being stored. However, the local technique uses a
73 forwards scan of the basic block because cselib requires that the
74 block be processed in that order.
76 The pass is logically broken into 7 steps:
80 1) The local algorithm, as well as scanning the insns for the two
83 2) Analysis to see if the global algs are necessary. In the case
84 of stores base on a constant address, there must be at least two
85 stores to that address, to make it possible to delete some of the
86 stores. In the case of stores off of the frame or spill related
87 stores, only one store to an address is necessary because those
88 stores die at the end of the function.
90 3) Set up the global dataflow equations based on processing the
91 info parsed in the first step.
93 4) Solve the dataflow equations.
95 5) Delete the insns that the global analysis has indicated are
98 6) Delete insns that store the same value as preceding store
99 where the earlier store couldn't be eliminated.
103 This step uses cselib and canon_rtx to build the largest expression
104 possible for each address. This pass is a forwards pass through
105 each basic block. From the point of view of the global technique,
106 the first pass could examine a block in either direction. The
107 forwards ordering is to accommodate cselib.
109 We make a simplifying assumption: addresses fall into four broad
112 1) base has rtx_varies_p == false, offset is constant.
113 2) base has rtx_varies_p == false, offset variable.
114 3) base has rtx_varies_p == true, offset constant.
115 4) base has rtx_varies_p == true, offset variable.
117 The local passes are able to process all 4 kinds of addresses. The
118 global pass only handles 1).
120 The global problem is formulated as follows:
122 A store, S1, to address A, where A is not relative to the stack
123 frame, can be eliminated if all paths from S1 to the end of the
124 function contain another store to A before a read to A.
126 If the address A is relative to the stack frame, a store S2 to A
127 can be eliminated if there are no paths from S2 that reach the
128 end of the function that read A before another store to A. In
129 this case S2 can be deleted if there are paths from S2 to the
130 end of the function that have no reads or writes to A. This
131 second case allows stores to the stack frame to be deleted that
132 would otherwise die when the function returns. This cannot be
133 done if stores_off_frame_dead_at_return is not true. See the doc
134 for that variable for when this variable is false.
136 The global problem is formulated as a backwards set union
137 dataflow problem where the stores are the gens and reads are the
138 kills. Set union problems are rare and require some special
139 handling given our representation of bitmaps. A straightforward
140 implementation requires a lot of bitmaps filled with 1s.
141 These are expensive and cumbersome in our bitmap formulation so
142 care has been taken to avoid large vectors filled with 1s. See
143 the comments in bb_info and in the dataflow confluence functions
146 There are two places for further enhancements to this algorithm:
148 1) The original dse which was embedded in a pass called flow also
149 did local address forwarding. For example in
154 flow would replace the right hand side of the second insn with a
155 reference to r100. Most of the information is available to add this
156 to this pass. It has not done it because it is a lot of work in
157 the case that either r100 is assigned to between the first and
158 second insn and/or the second insn is a load of part of the value
159 stored by the first insn.
161 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
162 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
163 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
164 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166 2) The cleaning up of spill code is quite profitable. It currently
167 depends on reading tea leaves and chicken entrails left by reload.
168 This pass depends on reload creating a singleton alias set for each
169 spill slot and telling the next dse pass which of these alias sets
170 are the singletons. Rather than analyze the addresses of the
171 spills, dse's spill processing just does analysis of the loads and
172 stores that use those alias sets. There are three cases where this
175 a) Reload sometimes creates the slot for one mode of access, and
176 then inserts loads and/or stores for a smaller mode. In this
177 case, the current code just punts on the slot. The proper thing
178 to do is to back out and use one bit vector position for each
179 byte of the entity associated with the slot. This depends on
180 KNOWING that reload always generates the accesses for each of the
181 bytes in some canonical (read that easy to understand several
182 passes after reload happens) way.
184 b) Reload sometimes decides that spill slot it allocated was not
185 large enough for the mode and goes back and allocates more slots
186 with the same mode and alias set. The backout in this case is a
187 little more graceful than (a). In this case the slot is unmarked
188 as being a spill slot and if final address comes out to be based
189 off the frame pointer, the global algorithm handles this slot.
191 c) For any pass that may prespill, there is currently no
192 mechanism to tell the dse pass that the slot being used has the
193 special properties that reload uses. It may be that all that is
194 required is to have those passes make the same calls that reload
195 does, assuming that the alias sets can be manipulated in the same
198 /* There are limits to the size of constant offsets we model for the
199 global problem. There are certainly test cases, that exceed this
200 limit, however, it is unlikely that there are important programs
201 that really have constant offsets this size. */
202 #define MAX_OFFSET (64 * 1024)
204 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
205 on the default obstack because these bitmaps can grow quite large
206 (~2GB for the small (!) test case of PR54146) and we'll hold on to
207 all that memory until the end of the compiler run.
208 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
209 releasing the whole obstack. */
210 static bitmap_obstack dse_bitmap_obstack
;
212 /* Obstack for other data. As for above: Kinda nice to be able to
213 throw it all away at the end in one big sweep. */
214 static struct obstack dse_obstack
;
216 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
217 static bitmap scratch
= NULL
;
219 struct insn_info_type
;
221 /* This structure holds information about a candidate store. */
225 /* False means this is a clobber. */
228 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 /* The id of the mem group of the base address. If rtx_varies_p is
232 true, this is -1. Otherwise, it is the index into the group
236 /* This is the cselib value. */
237 cselib_val
*cse_base
;
239 /* This canonized mem. */
242 /* Canonized MEM address for use by canon_true_dependence. */
245 /* The offset of the first and byte before the last byte associated
246 with the operation. */
247 HOST_WIDE_INT begin
, end
;
251 /* A bitmask as wide as the number of bytes in the word that
252 contains a 1 if the byte may be needed. The store is unused if
253 all of the bits are 0. This is used if IS_LARGE is false. */
254 unsigned HOST_WIDE_INT small_bitmask
;
258 /* A bitmap with one bit per byte. Cleared bit means the position
259 is needed. Used if IS_LARGE is false. */
262 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
263 equal to END - BEGIN, the whole store is unused. */
268 /* The next store info for this insn. */
269 struct store_info
*next
;
271 /* The right hand side of the store. This is used if there is a
272 subsequent reload of the mems address somewhere later in the
276 /* If rhs is or holds a constant, this contains that constant,
280 /* Set if this store stores the same constant value as REDUNDANT_REASON
281 insn stored. These aren't eliminated early, because doing that
282 might prevent the earlier larger store to be eliminated. */
283 struct insn_info_type
*redundant_reason
;
286 /* Return a bitmask with the first N low bits set. */
288 static unsigned HOST_WIDE_INT
289 lowpart_bitmask (int n
)
291 unsigned HOST_WIDE_INT mask
= ~(unsigned HOST_WIDE_INT
) 0;
292 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
295 static object_allocator
<store_info
> cse_store_info_pool ("cse_store_info_pool");
297 static object_allocator
<store_info
> rtx_store_info_pool ("rtx_store_info_pool");
299 /* This structure holds information about a load. These are only
300 built for rtx bases. */
301 struct read_info_type
303 /* The id of the mem group of the base address. */
306 /* The offset of the first and byte after the last byte associated
307 with the operation. If begin == end == 0, the read did not have
308 a constant offset. */
311 /* The mem being read. */
314 /* The next read_info for this insn. */
315 struct read_info_type
*next
;
317 typedef struct read_info_type
*read_info_t
;
319 static object_allocator
<read_info_type
> read_info_type_pool ("read_info_pool");
321 /* One of these records is created for each insn. */
323 struct insn_info_type
325 /* Set true if the insn contains a store but the insn itself cannot
326 be deleted. This is set if the insn is a parallel and there is
327 more than one non dead output or if the insn is in some way
331 /* This field is only used by the global algorithm. It is set true
332 if the insn contains any read of mem except for a (1). This is
333 also set if the insn is a call or has a clobber mem. If the insn
334 contains a wild read, the use_rec will be null. */
337 /* This is true only for CALL instructions which could potentially read
338 any non-frame memory location. This field is used by the global
340 bool non_frame_wild_read
;
342 /* This field is only used for the processing of const functions.
343 These functions cannot read memory, but they can read the stack
344 because that is where they may get their parms. We need to be
345 this conservative because, like the store motion pass, we don't
346 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
347 Moreover, we need to distinguish two cases:
348 1. Before reload (register elimination), the stores related to
349 outgoing arguments are stack pointer based and thus deemed
350 of non-constant base in this pass. This requires special
351 handling but also means that the frame pointer based stores
352 need not be killed upon encountering a const function call.
353 2. After reload, the stores related to outgoing arguments can be
354 either stack pointer or hard frame pointer based. This means
355 that we have no other choice than also killing all the frame
356 pointer based stores upon encountering a const function call.
357 This field is set after reload for const function calls and before
358 reload for const tail function calls on targets where arg pointer
359 is the frame pointer. Having this set is less severe than a wild
360 read, it just means that all the frame related stores are killed
361 rather than all the stores. */
364 /* This field is only used for the processing of const functions.
365 It is set if the insn may contain a stack pointer based store. */
366 bool stack_pointer_based
;
368 /* This is true if any of the sets within the store contains a
369 cselib base. Such stores can only be deleted by the local
371 bool contains_cselib_groups
;
376 /* The list of mem sets or mem clobbers that are contained in this
377 insn. If the insn is deletable, it contains only one mem set.
378 But it could also contain clobbers. Insns that contain more than
379 one mem set are not deletable, but each of those mems are here in
380 order to provide info to delete other insns. */
381 store_info
*store_rec
;
383 /* The linked list of mem uses in this insn. Only the reads from
384 rtx bases are listed here. The reads to cselib bases are
385 completely processed during the first scan and so are never
387 read_info_t read_rec
;
389 /* The live fixed registers. We assume only fixed registers can
390 cause trouble by being clobbered from an expanded pattern;
391 storing only the live fixed registers (rather than all registers)
392 means less memory needs to be allocated / copied for the individual
394 regset fixed_regs_live
;
396 /* The prev insn in the basic block. */
397 struct insn_info_type
* prev_insn
;
399 /* The linked list of insns that are in consideration for removal in
400 the forwards pass through the basic block. This pointer may be
401 trash as it is not cleared when a wild read occurs. The only
402 time it is guaranteed to be correct is when the traversal starts
403 at active_local_stores. */
404 struct insn_info_type
* next_local_store
;
406 typedef struct insn_info_type
*insn_info_t
;
408 static object_allocator
<insn_info_type
> insn_info_type_pool ("insn_info_pool");
410 /* The linked list of stores that are under consideration in this
412 static insn_info_t active_local_stores
;
413 static int active_local_stores_len
;
415 struct dse_bb_info_type
417 /* Pointer to the insn info for the last insn in the block. These
418 are linked so this is how all of the insns are reached. During
419 scanning this is the current insn being scanned. */
420 insn_info_t last_insn
;
422 /* The info for the global dataflow problem. */
425 /* This is set if the transfer function should and in the wild_read
426 bitmap before applying the kill and gen sets. That vector knocks
427 out most of the bits in the bitmap and thus speeds up the
429 bool apply_wild_read
;
431 /* The following 4 bitvectors hold information about which positions
432 of which stores are live or dead. They are indexed by
435 /* The set of store positions that exist in this block before a wild read. */
438 /* The set of load positions that exist in this block above the
439 same position of a store. */
442 /* The set of stores that reach the top of the block without being
445 Do not represent the in if it is all ones. Note that this is
446 what the bitvector should logically be initialized to for a set
447 intersection problem. However, like the kill set, this is too
448 expensive. So initially, the in set will only be created for the
449 exit block and any block that contains a wild read. */
452 /* The set of stores that reach the bottom of the block from it's
455 Do not represent the in if it is all ones. Note that this is
456 what the bitvector should logically be initialized to for a set
457 intersection problem. However, like the kill and in set, this is
458 too expensive. So what is done is that the confluence operator
459 just initializes the vector from one of the out sets of the
460 successors of the block. */
463 /* The following bitvector is indexed by the reg number. It
464 contains the set of regs that are live at the current instruction
465 being processed. While it contains info for all of the
466 registers, only the hard registers are actually examined. It is used
467 to assure that shift and/or add sequences that are inserted do not
468 accidentally clobber live hard regs. */
472 typedef struct dse_bb_info_type
*bb_info_t
;
474 static object_allocator
<dse_bb_info_type
> dse_bb_info_type_pool
477 /* Table to hold all bb_infos. */
478 static bb_info_t
*bb_table
;
480 /* There is a group_info for each rtx base that is used to reference
481 memory. There are also not many of the rtx bases because they are
482 very limited in scope. */
486 /* The actual base of the address. */
489 /* The sequential id of the base. This allows us to have a
490 canonical ordering of these that is not based on addresses. */
493 /* True if there are any positions that are to be processed
495 bool process_globally
;
497 /* True if the base of this group is either the frame_pointer or
498 hard_frame_pointer. */
501 /* A mem wrapped around the base pointer for the group in order to do
502 read dependency. It must be given BLKmode in order to encompass all
503 the possible offsets from the base. */
506 /* Canonized version of base_mem's address. */
509 /* These two sets of two bitmaps are used to keep track of how many
510 stores are actually referencing that position from this base. We
511 only do this for rtx bases as this will be used to assign
512 positions in the bitmaps for the global problem. Bit N is set in
513 store1 on the first store for offset N. Bit N is set in store2
514 for the second store to offset N. This is all we need since we
515 only care about offsets that have two or more stores for them.
517 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
518 for 0 and greater offsets.
520 There is one special case here, for stores into the stack frame,
521 we will or store1 into store2 before deciding which stores look
522 at globally. This is because stores to the stack frame that have
523 no other reads before the end of the function can also be
525 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
527 /* These bitmaps keep track of offsets in this group escape this function.
528 An offset escapes if it corresponds to a named variable whose
529 addressable flag is set. */
530 bitmap escaped_n
, escaped_p
;
532 /* The positions in this bitmap have the same assignments as the in,
533 out, gen and kill bitmaps. This bitmap is all zeros except for
534 the positions that are occupied by stores for this group. */
537 /* The offset_map is used to map the offsets from this base into
538 positions in the global bitmaps. It is only created after all of
539 the all of stores have been scanned and we know which ones we
541 int *offset_map_n
, *offset_map_p
;
542 int offset_map_size_n
, offset_map_size_p
;
545 static object_allocator
<group_info
> group_info_pool ("rtx_group_info_pool");
547 /* Index into the rtx_group_vec. */
548 static int rtx_group_next_id
;
551 static vec
<group_info
*> rtx_group_vec
;
554 /* This structure holds the set of changes that are being deferred
555 when removing read operation. See replace_read. */
556 struct deferred_change
559 /* The mem that is being replaced. */
562 /* The reg it is being replaced with. */
565 struct deferred_change
*next
;
568 static object_allocator
<deferred_change
> deferred_change_pool
569 ("deferred_change_pool");
571 static deferred_change
*deferred_change_list
= NULL
;
573 /* This is true except if cfun->stdarg -- i.e. we cannot do
574 this for vararg functions because they play games with the frame. */
575 static bool stores_off_frame_dead_at_return
;
577 /* Counter for stats. */
578 static int globally_deleted
;
579 static int locally_deleted
;
581 static bitmap all_blocks
;
583 /* Locations that are killed by calls in the global phase. */
584 static bitmap kill_on_calls
;
586 /* The number of bits used in the global bitmaps. */
587 static unsigned int current_position
;
589 /*----------------------------------------------------------------------------
593 ----------------------------------------------------------------------------*/
596 /* Hashtable callbacks for maintaining the "bases" field of
597 store_group_info, given that the addresses are function invariants. */
599 struct invariant_group_base_hasher
: nofree_ptr_hash
<group_info
>
601 static inline hashval_t
hash (const group_info
*);
602 static inline bool equal (const group_info
*, const group_info
*);
606 invariant_group_base_hasher::equal (const group_info
*gi1
,
607 const group_info
*gi2
)
609 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
613 invariant_group_base_hasher::hash (const group_info
*gi
)
616 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
619 /* Tables of group_info structures, hashed by base value. */
620 static hash_table
<invariant_group_base_hasher
> *rtx_group_table
;
623 /* Get the GROUP for BASE. Add a new group if it is not there. */
626 get_group_info (rtx base
)
628 struct group_info tmp_gi
;
632 gcc_assert (base
!= NULL_RTX
);
634 /* Find the store_base_info structure for BASE, creating a new one
636 tmp_gi
.rtx_base
= base
;
637 slot
= rtx_group_table
->find_slot (&tmp_gi
, INSERT
);
642 *slot
= gi
= group_info_pool
.allocate ();
644 gi
->id
= rtx_group_next_id
++;
645 gi
->base_mem
= gen_rtx_MEM (BLKmode
, base
);
646 gi
->canon_base_addr
= canon_rtx (base
);
647 gi
->store1_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
648 gi
->store1_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
649 gi
->store2_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
650 gi
->store2_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
651 gi
->escaped_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
652 gi
->escaped_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
653 gi
->group_kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
654 gi
->process_globally
= false;
656 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
);
657 gi
->offset_map_size_n
= 0;
658 gi
->offset_map_size_p
= 0;
659 gi
->offset_map_n
= NULL
;
660 gi
->offset_map_p
= NULL
;
661 rtx_group_vec
.safe_push (gi
);
668 /* Initialization of data structures. */
674 globally_deleted
= 0;
676 bitmap_obstack_initialize (&dse_bitmap_obstack
);
677 gcc_obstack_init (&dse_obstack
);
679 scratch
= BITMAP_ALLOC (®_obstack
);
680 kill_on_calls
= BITMAP_ALLOC (&dse_bitmap_obstack
);
683 rtx_group_table
= new hash_table
<invariant_group_base_hasher
> (11);
685 bb_table
= XNEWVEC (bb_info_t
, last_basic_block_for_fn (cfun
));
686 rtx_group_next_id
= 0;
688 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
690 init_alias_analysis ();
695 /*----------------------------------------------------------------------------
698 Scan all of the insns. Any random ordering of the blocks is fine.
699 Each block is scanned in forward order to accommodate cselib which
700 is used to remove stores with non-constant bases.
701 ----------------------------------------------------------------------------*/
703 /* Delete all of the store_info recs from INSN_INFO. */
706 free_store_info (insn_info_t insn_info
)
708 store_info
*cur
= insn_info
->store_rec
;
711 store_info
*next
= cur
->next
;
713 BITMAP_FREE (cur
->positions_needed
.large
.bmap
);
715 cse_store_info_pool
.remove (cur
);
717 rtx_store_info_pool
.remove (cur
);
721 insn_info
->cannot_delete
= true;
722 insn_info
->contains_cselib_groups
= false;
723 insn_info
->store_rec
= NULL
;
726 struct note_add_store_info
728 rtx_insn
*first
, *current
;
729 regset fixed_regs_live
;
733 /* Callback for emit_inc_dec_insn_before via note_stores.
734 Check if a register is clobbered which is live afterwards. */
737 note_add_store (rtx loc
, const_rtx expr ATTRIBUTE_UNUSED
, void *data
)
740 note_add_store_info
*info
= (note_add_store_info
*) data
;
745 /* If this register is referenced by the current or an earlier insn,
746 that's OK. E.g. this applies to the register that is being incremented
747 with this addition. */
748 for (insn
= info
->first
;
749 insn
!= NEXT_INSN (info
->current
);
750 insn
= NEXT_INSN (insn
))
751 if (reg_referenced_p (loc
, PATTERN (insn
)))
754 /* If we come here, we have a clobber of a register that's only OK
755 if that register is not live. If we don't have liveness information
756 available, fail now. */
757 if (!info
->fixed_regs_live
)
759 info
->failure
= true;
762 /* Now check if this is a live fixed register. */
763 unsigned int end_regno
= END_REGNO (loc
);
764 for (unsigned int regno
= REGNO (loc
); regno
< end_regno
; ++regno
)
765 if (REGNO_REG_SET_P (info
->fixed_regs_live
, regno
))
766 info
->failure
= true;
769 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
770 SRC + SRCOFF before insn ARG. */
773 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED
,
774 rtx op ATTRIBUTE_UNUSED
,
775 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
777 insn_info_t insn_info
= (insn_info_t
) arg
;
778 rtx_insn
*insn
= insn_info
->insn
, *new_insn
, *cur
;
779 note_add_store_info info
;
781 /* We can reuse all operands without copying, because we are about
782 to delete the insn that contained it. */
786 emit_insn (gen_add3_insn (dest
, src
, srcoff
));
787 new_insn
= get_insns ();
791 new_insn
= gen_move_insn (dest
, src
);
792 info
.first
= new_insn
;
793 info
.fixed_regs_live
= insn_info
->fixed_regs_live
;
794 info
.failure
= false;
795 for (cur
= new_insn
; cur
; cur
= NEXT_INSN (cur
))
798 note_stores (PATTERN (cur
), note_add_store
, &info
);
801 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
802 return it immediately, communicating the failure to its caller. */
806 emit_insn_before (new_insn
, insn
);
811 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
812 is there, is split into a separate insn.
813 Return true on success (or if there was nothing to do), false on failure. */
816 check_for_inc_dec_1 (insn_info_t insn_info
)
818 rtx_insn
*insn
= insn_info
->insn
;
819 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
821 return for_each_inc_dec (PATTERN (insn
), emit_inc_dec_insn_before
,
827 /* Entry point for postreload. If you work on reload_cse, or you need this
828 anywhere else, consider if you can provide register liveness information
829 and add a parameter to this function so that it can be passed down in
830 insn_info.fixed_regs_live. */
832 check_for_inc_dec (rtx_insn
*insn
)
834 insn_info_type insn_info
;
837 insn_info
.insn
= insn
;
838 insn_info
.fixed_regs_live
= NULL
;
839 note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
841 return for_each_inc_dec (PATTERN (insn
), emit_inc_dec_insn_before
,
846 /* Delete the insn and free all of the fields inside INSN_INFO. */
849 delete_dead_store_insn (insn_info_t insn_info
)
851 read_info_t read_info
;
856 if (!check_for_inc_dec_1 (insn_info
))
858 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
859 fprintf (dump_file
, "Locally deleting insn %d\n",
860 INSN_UID (insn_info
->insn
));
862 free_store_info (insn_info
);
863 read_info
= insn_info
->read_rec
;
867 read_info_t next
= read_info
->next
;
868 read_info_type_pool
.remove (read_info
);
871 insn_info
->read_rec
= NULL
;
873 delete_insn (insn_info
->insn
);
875 insn_info
->insn
= NULL
;
877 insn_info
->wild_read
= false;
880 /* Return whether DECL, a local variable, can possibly escape the current
884 local_variable_can_escape (tree decl
)
886 if (TREE_ADDRESSABLE (decl
))
889 /* If this is a partitioned variable, we need to consider all the variables
890 in the partition. This is necessary because a store into one of them can
891 be replaced with a store into another and this may not change the outcome
892 of the escape analysis. */
893 if (cfun
->gimple_df
->decls_to_pointers
!= NULL
)
895 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (decl
);
897 return TREE_ADDRESSABLE (*namep
);
903 /* Return whether EXPR can possibly escape the current function scope. */
906 can_escape (tree expr
)
911 base
= get_base_address (expr
);
913 && !may_be_aliased (base
)
914 && !(TREE_CODE (base
) == VAR_DECL
915 && !DECL_EXTERNAL (base
)
916 && !TREE_STATIC (base
)
917 && local_variable_can_escape (base
)))
922 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
926 set_usage_bits (group_info
*group
, HOST_WIDE_INT offset
, HOST_WIDE_INT width
,
930 bool expr_escapes
= can_escape (expr
);
931 if (offset
> -MAX_OFFSET
&& offset
+ width
< MAX_OFFSET
)
932 for (i
=offset
; i
<offset
+width
; i
++)
940 store1
= group
->store1_n
;
941 store2
= group
->store2_n
;
942 escaped
= group
->escaped_n
;
947 store1
= group
->store1_p
;
948 store2
= group
->store2_p
;
949 escaped
= group
->escaped_p
;
953 if (!bitmap_set_bit (store1
, ai
))
954 bitmap_set_bit (store2
, ai
);
959 if (group
->offset_map_size_n
< ai
)
960 group
->offset_map_size_n
= ai
;
964 if (group
->offset_map_size_p
< ai
)
965 group
->offset_map_size_p
= ai
;
969 bitmap_set_bit (escaped
, ai
);
974 reset_active_stores (void)
976 active_local_stores
= NULL
;
977 active_local_stores_len
= 0;
980 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
983 free_read_records (bb_info_t bb_info
)
985 insn_info_t insn_info
= bb_info
->last_insn
;
986 read_info_t
*ptr
= &insn_info
->read_rec
;
989 read_info_t next
= (*ptr
)->next
;
990 read_info_type_pool
.remove (*ptr
);
995 /* Set the BB_INFO so that the last insn is marked as a wild read. */
998 add_wild_read (bb_info_t bb_info
)
1000 insn_info_t insn_info
= bb_info
->last_insn
;
1001 insn_info
->wild_read
= true;
1002 free_read_records (bb_info
);
1003 reset_active_stores ();
1006 /* Set the BB_INFO so that the last insn is marked as a wild read of
1007 non-frame locations. */
1010 add_non_frame_wild_read (bb_info_t bb_info
)
1012 insn_info_t insn_info
= bb_info
->last_insn
;
1013 insn_info
->non_frame_wild_read
= true;
1014 free_read_records (bb_info
);
1015 reset_active_stores ();
1018 /* Return true if X is a constant or one of the registers that behave
1019 as a constant over the life of a function. This is equivalent to
1020 !rtx_varies_p for memory addresses. */
1023 const_or_frame_p (rtx x
)
1028 if (GET_CODE (x
) == REG
)
1030 /* Note that we have to test for the actual rtx used for the frame
1031 and arg pointers and not just the register number in case we have
1032 eliminated the frame and/or arg pointer and are using it
1034 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1035 /* The arg pointer varies if it is not a fixed register. */
1036 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1037 || x
== pic_offset_table_rtx
)
1045 /* Take all reasonable action to put the address of MEM into the form
1046 that we can do analysis on.
1048 The gold standard is to get the address into the form: address +
1049 OFFSET where address is something that rtx_varies_p considers a
1050 constant. When we can get the address in this form, we can do
1051 global analysis on it. Note that for constant bases, address is
1052 not actually returned, only the group_id. The address can be
1055 If that fails, we try cselib to get a value we can at least use
1056 locally. If that fails we return false.
1058 The GROUP_ID is set to -1 for cselib bases and the index of the
1059 group for non_varying bases.
1061 FOR_READ is true if this is a mem read and false if not. */
1064 canon_address (rtx mem
,
1066 HOST_WIDE_INT
*offset
,
1069 machine_mode address_mode
= get_address_mode (mem
);
1070 rtx mem_address
= XEXP (mem
, 0);
1071 rtx expanded_address
, address
;
1074 cselib_lookup (mem_address
, address_mode
, 1, GET_MODE (mem
));
1076 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1078 fprintf (dump_file
, " mem: ");
1079 print_inline_rtx (dump_file
, mem_address
, 0);
1080 fprintf (dump_file
, "\n");
1083 /* First see if just canon_rtx (mem_address) is const or frame,
1084 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1086 for (expanded
= 0; expanded
< 2; expanded
++)
1090 /* Use cselib to replace all of the reg references with the full
1091 expression. This will take care of the case where we have
1093 r_x = base + offset;
1098 val = *(base + offset); */
1100 expanded_address
= cselib_expand_value_rtx (mem_address
,
1103 /* If this fails, just go with the address from first
1105 if (!expanded_address
)
1109 expanded_address
= mem_address
;
1111 /* Split the address into canonical BASE + OFFSET terms. */
1112 address
= canon_rtx (expanded_address
);
1116 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1120 fprintf (dump_file
, "\n after cselib_expand address: ");
1121 print_inline_rtx (dump_file
, expanded_address
, 0);
1122 fprintf (dump_file
, "\n");
1125 fprintf (dump_file
, "\n after canon_rtx address: ");
1126 print_inline_rtx (dump_file
, address
, 0);
1127 fprintf (dump_file
, "\n");
1130 if (GET_CODE (address
) == CONST
)
1131 address
= XEXP (address
, 0);
1133 if (GET_CODE (address
) == PLUS
1134 && CONST_INT_P (XEXP (address
, 1)))
1136 *offset
= INTVAL (XEXP (address
, 1));
1137 address
= XEXP (address
, 0);
1140 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1141 && const_or_frame_p (address
))
1143 group_info
*group
= get_group_info (address
);
1145 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1146 fprintf (dump_file
, " gid=%d offset=%d \n",
1147 group
->id
, (int)*offset
);
1149 *group_id
= group
->id
;
1154 *base
= cselib_lookup (address
, address_mode
, true, GET_MODE (mem
));
1159 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1160 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1163 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1164 fprintf (dump_file
, " varying cselib base=%u:%u offset = %d\n",
1165 (*base
)->uid
, (*base
)->hash
, (int)*offset
);
1170 /* Clear the rhs field from the active_local_stores array. */
1173 clear_rhs_from_active_local_stores (void)
1175 insn_info_t ptr
= active_local_stores
;
1179 store_info
*store_info
= ptr
->store_rec
;
1180 /* Skip the clobbers. */
1181 while (!store_info
->is_set
)
1182 store_info
= store_info
->next
;
1184 store_info
->rhs
= NULL
;
1185 store_info
->const_rhs
= NULL
;
1187 ptr
= ptr
->next_local_store
;
1192 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1195 set_position_unneeded (store_info
*s_info
, int pos
)
1197 if (__builtin_expect (s_info
->is_large
, false))
1199 if (bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
))
1200 s_info
->positions_needed
.large
.count
++;
1203 s_info
->positions_needed
.small_bitmask
1204 &= ~(((unsigned HOST_WIDE_INT
) 1) << pos
);
1207 /* Mark the whole store S_INFO as unneeded. */
1210 set_all_positions_unneeded (store_info
*s_info
)
1212 if (__builtin_expect (s_info
->is_large
, false))
1214 int pos
, end
= s_info
->end
- s_info
->begin
;
1215 for (pos
= 0; pos
< end
; pos
++)
1216 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1217 s_info
->positions_needed
.large
.count
= end
;
1220 s_info
->positions_needed
.small_bitmask
= (unsigned HOST_WIDE_INT
) 0;
1223 /* Return TRUE if any bytes from S_INFO store are needed. */
1226 any_positions_needed_p (store_info
*s_info
)
1228 if (__builtin_expect (s_info
->is_large
, false))
1229 return (s_info
->positions_needed
.large
.count
1230 < s_info
->end
- s_info
->begin
);
1232 return (s_info
->positions_needed
.small_bitmask
1233 != (unsigned HOST_WIDE_INT
) 0);
1236 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1237 store are needed. */
1240 all_positions_needed_p (store_info
*s_info
, int start
, int width
)
1242 if (__builtin_expect (s_info
->is_large
, false))
1244 int end
= start
+ width
;
1246 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, start
++))
1252 unsigned HOST_WIDE_INT mask
= lowpart_bitmask (width
) << start
;
1253 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1258 static rtx
get_stored_val (store_info
*, machine_mode
, HOST_WIDE_INT
,
1259 HOST_WIDE_INT
, basic_block
, bool);
1262 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1263 there is a candidate store, after adding it to the appropriate
1264 local store group if so. */
1267 record_store (rtx body
, bb_info_t bb_info
)
1269 rtx mem
, rhs
, const_rhs
, mem_addr
;
1270 HOST_WIDE_INT offset
= 0;
1271 HOST_WIDE_INT width
= 0;
1272 insn_info_t insn_info
= bb_info
->last_insn
;
1273 store_info
*store_info
= NULL
;
1275 cselib_val
*base
= NULL
;
1276 insn_info_t ptr
, last
, redundant_reason
;
1277 bool store_is_unused
;
1279 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1282 mem
= SET_DEST (body
);
1284 /* If this is not used, then this cannot be used to keep the insn
1285 from being deleted. On the other hand, it does provide something
1286 that can be used to prove that another store is dead. */
1288 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1290 /* Check whether that value is a suitable memory location. */
1293 /* If the set or clobber is unused, then it does not effect our
1294 ability to get rid of the entire insn. */
1295 if (!store_is_unused
)
1296 insn_info
->cannot_delete
= true;
1300 /* At this point we know mem is a mem. */
1301 if (GET_MODE (mem
) == BLKmode
)
1303 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1305 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1306 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1307 add_wild_read (bb_info
);
1308 insn_info
->cannot_delete
= true;
1311 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1312 as memset (addr, 0, 36); */
1313 else if (!MEM_SIZE_KNOWN_P (mem
)
1314 || MEM_SIZE (mem
) <= 0
1315 || MEM_SIZE (mem
) > MAX_OFFSET
1316 || GET_CODE (body
) != SET
1317 || !CONST_INT_P (SET_SRC (body
)))
1319 if (!store_is_unused
)
1321 /* If the set or clobber is unused, then it does not effect our
1322 ability to get rid of the entire insn. */
1323 insn_info
->cannot_delete
= true;
1324 clear_rhs_from_active_local_stores ();
1330 /* We can still process a volatile mem, we just cannot delete it. */
1331 if (MEM_VOLATILE_P (mem
))
1332 insn_info
->cannot_delete
= true;
1334 if (!canon_address (mem
, &group_id
, &offset
, &base
))
1336 clear_rhs_from_active_local_stores ();
1340 if (GET_MODE (mem
) == BLKmode
)
1341 width
= MEM_SIZE (mem
);
1343 width
= GET_MODE_SIZE (GET_MODE (mem
));
1347 /* In the restrictive case where the base is a constant or the
1348 frame pointer we can do global analysis. */
1351 = rtx_group_vec
[group_id
];
1352 tree expr
= MEM_EXPR (mem
);
1354 store_info
= rtx_store_info_pool
.allocate ();
1355 set_usage_bits (group
, offset
, width
, expr
);
1357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1358 fprintf (dump_file
, " processing const base store gid=%d[%d..%d)\n",
1359 group_id
, (int)offset
, (int)(offset
+width
));
1363 if (may_be_sp_based_p (XEXP (mem
, 0)))
1364 insn_info
->stack_pointer_based
= true;
1365 insn_info
->contains_cselib_groups
= true;
1367 store_info
= cse_store_info_pool
.allocate ();
1370 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1371 fprintf (dump_file
, " processing cselib store [%d..%d)\n",
1372 (int)offset
, (int)(offset
+width
));
1375 const_rhs
= rhs
= NULL_RTX
;
1376 if (GET_CODE (body
) == SET
1377 /* No place to keep the value after ra. */
1378 && !reload_completed
1379 && (REG_P (SET_SRC (body
))
1380 || GET_CODE (SET_SRC (body
)) == SUBREG
1381 || CONSTANT_P (SET_SRC (body
)))
1382 && !MEM_VOLATILE_P (mem
)
1383 /* Sometimes the store and reload is used for truncation and
1385 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1387 rhs
= SET_SRC (body
);
1388 if (CONSTANT_P (rhs
))
1390 else if (body
== PATTERN (insn_info
->insn
))
1392 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1393 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1394 const_rhs
= XEXP (tem
, 0);
1396 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1398 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1400 if (tem
&& CONSTANT_P (tem
))
1405 /* Check to see if this stores causes some other stores to be
1407 ptr
= active_local_stores
;
1409 redundant_reason
= NULL
;
1410 mem
= canon_rtx (mem
);
1413 mem_addr
= base
->val_rtx
;
1416 group_info
*group
= rtx_group_vec
[group_id
];
1417 mem_addr
= group
->canon_base_addr
;
1420 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
1424 insn_info_t next
= ptr
->next_local_store
;
1425 struct store_info
*s_info
= ptr
->store_rec
;
1428 /* Skip the clobbers. We delete the active insn if this insn
1429 shadows the set. To have been put on the active list, it
1430 has exactly on set. */
1431 while (!s_info
->is_set
)
1432 s_info
= s_info
->next
;
1434 if (s_info
->group_id
== group_id
&& s_info
->cse_base
== base
)
1437 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1438 fprintf (dump_file
, " trying store in insn=%d gid=%d[%d..%d)\n",
1439 INSN_UID (ptr
->insn
), s_info
->group_id
,
1440 (int)s_info
->begin
, (int)s_info
->end
);
1442 /* Even if PTR won't be eliminated as unneeded, if both
1443 PTR and this insn store the same constant value, we might
1444 eliminate this insn instead. */
1445 if (s_info
->const_rhs
1447 && offset
>= s_info
->begin
1448 && offset
+ width
<= s_info
->end
1449 && all_positions_needed_p (s_info
, offset
- s_info
->begin
,
1452 if (GET_MODE (mem
) == BLKmode
)
1454 if (GET_MODE (s_info
->mem
) == BLKmode
1455 && s_info
->const_rhs
== const_rhs
)
1456 redundant_reason
= ptr
;
1458 else if (s_info
->const_rhs
== const0_rtx
1459 && const_rhs
== const0_rtx
)
1460 redundant_reason
= ptr
;
1465 val
= get_stored_val (s_info
, GET_MODE (mem
),
1466 offset
, offset
+ width
,
1467 BLOCK_FOR_INSN (insn_info
->insn
),
1469 if (get_insns () != NULL
)
1472 if (val
&& rtx_equal_p (val
, const_rhs
))
1473 redundant_reason
= ptr
;
1477 for (i
= MAX (offset
, s_info
->begin
);
1478 i
< offset
+ width
&& i
< s_info
->end
;
1480 set_position_unneeded (s_info
, i
- s_info
->begin
);
1482 else if (s_info
->rhs
)
1483 /* Need to see if it is possible for this store to overwrite
1484 the value of store_info. If it is, set the rhs to NULL to
1485 keep it from being used to remove a load. */
1487 if (canon_output_dependence (s_info
->mem
, true,
1488 mem
, GET_MODE (mem
),
1492 s_info
->const_rhs
= NULL
;
1496 /* An insn can be deleted if every position of every one of
1497 its s_infos is zero. */
1498 if (any_positions_needed_p (s_info
))
1503 insn_info_t insn_to_delete
= ptr
;
1505 active_local_stores_len
--;
1507 last
->next_local_store
= ptr
->next_local_store
;
1509 active_local_stores
= ptr
->next_local_store
;
1511 if (!insn_to_delete
->cannot_delete
)
1512 delete_dead_store_insn (insn_to_delete
);
1520 /* Finish filling in the store_info. */
1521 store_info
->next
= insn_info
->store_rec
;
1522 insn_info
->store_rec
= store_info
;
1523 store_info
->mem
= mem
;
1524 store_info
->mem_addr
= mem_addr
;
1525 store_info
->cse_base
= base
;
1526 if (width
> HOST_BITS_PER_WIDE_INT
)
1528 store_info
->is_large
= true;
1529 store_info
->positions_needed
.large
.count
= 0;
1530 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (&dse_bitmap_obstack
);
1534 store_info
->is_large
= false;
1535 store_info
->positions_needed
.small_bitmask
= lowpart_bitmask (width
);
1537 store_info
->group_id
= group_id
;
1538 store_info
->begin
= offset
;
1539 store_info
->end
= offset
+ width
;
1540 store_info
->is_set
= GET_CODE (body
) == SET
;
1541 store_info
->rhs
= rhs
;
1542 store_info
->const_rhs
= const_rhs
;
1543 store_info
->redundant_reason
= redundant_reason
;
1545 /* If this is a clobber, we return 0. We will only be able to
1546 delete this insn if there is only one store USED store, but we
1547 can use the clobber to delete other stores earlier. */
1548 return store_info
->is_set
? 1 : 0;
1553 dump_insn_info (const char * start
, insn_info_t insn_info
)
1555 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1556 INSN_UID (insn_info
->insn
),
1557 insn_info
->store_rec
? "has store" : "naked");
1561 /* If the modes are different and the value's source and target do not
1562 line up, we need to extract the value from lower part of the rhs of
1563 the store, shift it, and then put it into a form that can be shoved
1564 into the read_insn. This function generates a right SHIFT of a
1565 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1566 shift sequence is returned or NULL if we failed to find a
1570 find_shift_sequence (int access_size
,
1571 store_info
*store_info
,
1572 machine_mode read_mode
,
1573 int shift
, bool speed
, bool require_cst
)
1575 machine_mode store_mode
= GET_MODE (store_info
->mem
);
1576 machine_mode new_mode
;
1577 rtx read_reg
= NULL
;
1579 /* Some machines like the x86 have shift insns for each size of
1580 operand. Other machines like the ppc or the ia-64 may only have
1581 shift insns that shift values within 32 or 64 bit registers.
1582 This loop tries to find the smallest shift insn that will right
1583 justify the value we want to read but is available in one insn on
1586 for (new_mode
= smallest_mode_for_size (access_size
* BITS_PER_UNIT
,
1588 GET_MODE_BITSIZE (new_mode
) <= BITS_PER_WORD
;
1589 new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1591 rtx target
, new_reg
, new_lhs
;
1592 rtx_insn
*shift_seq
, *insn
;
1595 /* If a constant was stored into memory, try to simplify it here,
1596 otherwise the cost of the shift might preclude this optimization
1597 e.g. at -Os, even when no actual shift will be needed. */
1598 if (store_info
->const_rhs
)
1600 unsigned int byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1601 rtx ret
= simplify_subreg (new_mode
, store_info
->const_rhs
,
1603 if (ret
&& CONSTANT_P (ret
))
1605 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
,
1606 ret
, GEN_INT (shift
));
1607 if (ret
&& CONSTANT_P (ret
))
1609 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1610 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1611 if (ret
&& CONSTANT_P (ret
)
1612 && (set_src_cost (ret
, read_mode
, speed
)
1613 <= COSTS_N_INSNS (1)))
1622 /* Try a wider mode if truncating the store mode to NEW_MODE
1623 requires a real instruction. */
1624 if (GET_MODE_BITSIZE (new_mode
) < GET_MODE_BITSIZE (store_mode
)
1625 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode
, store_mode
))
1628 /* Also try a wider mode if the necessary punning is either not
1629 desirable or not possible. */
1630 if (!CONSTANT_P (store_info
->rhs
)
1631 && !MODES_TIEABLE_P (new_mode
, store_mode
))
1634 new_reg
= gen_reg_rtx (new_mode
);
1638 /* In theory we could also check for an ashr. Ian Taylor knows
1639 of one dsp where the cost of these two was not the same. But
1640 this really is a rare case anyway. */
1641 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1642 GEN_INT (shift
), new_reg
, 1, OPTAB_DIRECT
);
1644 shift_seq
= get_insns ();
1647 if (target
!= new_reg
|| shift_seq
== NULL
)
1651 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1653 cost
+= insn_rtx_cost (PATTERN (insn
), speed
);
1655 /* The computation up to here is essentially independent
1656 of the arguments and could be precomputed. It may
1657 not be worth doing so. We could precompute if
1658 worthwhile or at least cache the results. The result
1659 technically depends on both SHIFT and ACCESS_SIZE,
1660 but in practice the answer will depend only on ACCESS_SIZE. */
1662 if (cost
> COSTS_N_INSNS (1))
1665 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1666 copy_rtx (store_info
->rhs
));
1667 if (new_lhs
== NULL_RTX
)
1670 /* We found an acceptable shift. Generate a move to
1671 take the value from the store and put it into the
1672 shift pseudo, then shift it, then generate another
1673 move to put in into the target of the read. */
1674 emit_move_insn (new_reg
, new_lhs
);
1675 emit_insn (shift_seq
);
1676 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1684 /* Call back for note_stores to find the hard regs set or clobbered by
1685 insn. Data is a bitmap of the hardregs set so far. */
1688 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1690 bitmap regs_set
= (bitmap
) data
;
1693 && HARD_REGISTER_P (x
))
1694 bitmap_set_range (regs_set
, REGNO (x
), REG_NREGS (x
));
1697 /* Helper function for replace_read and record_store.
1698 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1699 to one before READ_END bytes read in READ_MODE. Return NULL
1700 if not successful. If REQUIRE_CST is true, return always constant. */
1703 get_stored_val (store_info
*store_info
, machine_mode read_mode
,
1704 HOST_WIDE_INT read_begin
, HOST_WIDE_INT read_end
,
1705 basic_block bb
, bool require_cst
)
1707 machine_mode store_mode
= GET_MODE (store_info
->mem
);
1709 int access_size
; /* In bytes. */
1712 /* To get here the read is within the boundaries of the write so
1713 shift will never be negative. Start out with the shift being in
1715 if (store_mode
== BLKmode
)
1717 else if (BYTES_BIG_ENDIAN
)
1718 shift
= store_info
->end
- read_end
;
1720 shift
= read_begin
- store_info
->begin
;
1722 access_size
= shift
+ GET_MODE_SIZE (read_mode
);
1724 /* From now on it is bits. */
1725 shift
*= BITS_PER_UNIT
;
1728 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
, shift
,
1729 optimize_bb_for_speed_p (bb
),
1731 else if (store_mode
== BLKmode
)
1733 /* The store is a memset (addr, const_val, const_size). */
1734 gcc_assert (CONST_INT_P (store_info
->rhs
));
1735 store_mode
= int_mode_for_mode (read_mode
);
1736 if (store_mode
== BLKmode
)
1737 read_reg
= NULL_RTX
;
1738 else if (store_info
->rhs
== const0_rtx
)
1739 read_reg
= extract_low_bits (read_mode
, store_mode
, const0_rtx
);
1740 else if (GET_MODE_BITSIZE (store_mode
) > HOST_BITS_PER_WIDE_INT
1741 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1742 read_reg
= NULL_RTX
;
1745 unsigned HOST_WIDE_INT c
1746 = INTVAL (store_info
->rhs
)
1747 & (((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
) - 1);
1748 int shift
= BITS_PER_UNIT
;
1749 while (shift
< HOST_BITS_PER_WIDE_INT
)
1754 read_reg
= gen_int_mode (c
, store_mode
);
1755 read_reg
= extract_low_bits (read_mode
, store_mode
, read_reg
);
1758 else if (store_info
->const_rhs
1760 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1761 read_reg
= extract_low_bits (read_mode
, store_mode
,
1762 copy_rtx (store_info
->const_rhs
));
1764 read_reg
= extract_low_bits (read_mode
, store_mode
,
1765 copy_rtx (store_info
->rhs
));
1766 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1767 read_reg
= NULL_RTX
;
1771 /* Take a sequence of:
1794 Depending on the alignment and the mode of the store and
1798 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1799 and READ_INSN are for the read. Return true if the replacement
1803 replace_read (store_info
*store_info
, insn_info_t store_insn
,
1804 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
,
1807 machine_mode store_mode
= GET_MODE (store_info
->mem
);
1808 machine_mode read_mode
= GET_MODE (read_info
->mem
);
1809 rtx_insn
*insns
, *this_insn
;
1816 /* Create a sequence of instructions to set up the read register.
1817 This sequence goes immediately before the store and its result
1818 is read by the load.
1820 We need to keep this in perspective. We are replacing a read
1821 with a sequence of insns, but the read will almost certainly be
1822 in cache, so it is not going to be an expensive one. Thus, we
1823 are not willing to do a multi insn shift or worse a subroutine
1824 call to get rid of the read. */
1825 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1826 fprintf (dump_file
, "trying to replace %smode load in insn %d"
1827 " from %smode store in insn %d\n",
1828 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
1829 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
1831 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
1832 read_reg
= get_stored_val (store_info
,
1833 read_mode
, read_info
->begin
, read_info
->end
,
1835 if (read_reg
== NULL_RTX
)
1838 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1839 fprintf (dump_file
, " -- could not extract bits of stored value\n");
1842 /* Force the value into a new register so that it won't be clobbered
1843 between the store and the load. */
1844 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
1845 insns
= get_insns ();
1848 if (insns
!= NULL_RTX
)
1850 /* Now we have to scan the set of new instructions to see if the
1851 sequence contains and sets of hardregs that happened to be
1852 live at this point. For instance, this can happen if one of
1853 the insns sets the CC and the CC happened to be live at that
1854 point. This does occasionally happen, see PR 37922. */
1855 bitmap regs_set
= BITMAP_ALLOC (®_obstack
);
1857 for (this_insn
= insns
; this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
1858 note_stores (PATTERN (this_insn
), look_for_hardregs
, regs_set
);
1860 bitmap_and_into (regs_set
, regs_live
);
1861 if (!bitmap_empty_p (regs_set
))
1863 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1866 "abandoning replacement because sequence clobbers live hardregs:");
1867 df_print_regset (dump_file
, regs_set
);
1870 BITMAP_FREE (regs_set
);
1873 BITMAP_FREE (regs_set
);
1876 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
1878 deferred_change
*change
= deferred_change_pool
.allocate ();
1880 /* Insert this right before the store insn where it will be safe
1881 from later insns that might change it before the read. */
1882 emit_insn_before (insns
, store_insn
->insn
);
1884 /* And now for the kludge part: cselib croaks if you just
1885 return at this point. There are two reasons for this:
1887 1) Cselib has an idea of how many pseudos there are and
1888 that does not include the new ones we just added.
1890 2) Cselib does not know about the move insn we added
1891 above the store_info, and there is no way to tell it
1892 about it, because it has "moved on".
1894 Problem (1) is fixable with a certain amount of engineering.
1895 Problem (2) is requires starting the bb from scratch. This
1898 So we are just going to have to lie. The move/extraction
1899 insns are not really an issue, cselib did not see them. But
1900 the use of the new pseudo read_insn is a real problem because
1901 cselib has not scanned this insn. The way that we solve this
1902 problem is that we are just going to put the mem back for now
1903 and when we are finished with the block, we undo this. We
1904 keep a table of mems to get rid of. At the end of the basic
1905 block we can put them back. */
1907 *loc
= read_info
->mem
;
1908 change
->next
= deferred_change_list
;
1909 deferred_change_list
= change
;
1911 change
->reg
= read_reg
;
1913 /* Get rid of the read_info, from the point of view of the
1914 rest of dse, play like this read never happened. */
1915 read_insn
->read_rec
= read_info
->next
;
1916 read_info_type_pool
.remove (read_info
);
1917 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1919 fprintf (dump_file
, " -- replaced the loaded MEM with ");
1920 print_simple_rtl (dump_file
, read_reg
);
1921 fprintf (dump_file
, "\n");
1927 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1929 fprintf (dump_file
, " -- replacing the loaded MEM with ");
1930 print_simple_rtl (dump_file
, read_reg
);
1931 fprintf (dump_file
, " led to an invalid instruction\n");
1937 /* Check the address of MEM *LOC and kill any appropriate stores that may
1941 check_mem_read_rtx (rtx
*loc
, bb_info_t bb_info
)
1943 rtx mem
= *loc
, mem_addr
;
1944 insn_info_t insn_info
;
1945 HOST_WIDE_INT offset
= 0;
1946 HOST_WIDE_INT width
= 0;
1947 cselib_val
*base
= NULL
;
1949 read_info_t read_info
;
1951 insn_info
= bb_info
->last_insn
;
1953 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
1954 || (MEM_VOLATILE_P (mem
)))
1956 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1957 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
1958 add_wild_read (bb_info
);
1959 insn_info
->cannot_delete
= true;
1963 /* If it is reading readonly mem, then there can be no conflict with
1965 if (MEM_READONLY_P (mem
))
1968 if (!canon_address (mem
, &group_id
, &offset
, &base
))
1970 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1971 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
1972 add_wild_read (bb_info
);
1976 if (GET_MODE (mem
) == BLKmode
)
1979 width
= GET_MODE_SIZE (GET_MODE (mem
));
1981 read_info
= read_info_type_pool
.allocate ();
1982 read_info
->group_id
= group_id
;
1983 read_info
->mem
= mem
;
1984 read_info
->begin
= offset
;
1985 read_info
->end
= offset
+ width
;
1986 read_info
->next
= insn_info
->read_rec
;
1987 insn_info
->read_rec
= read_info
;
1989 mem_addr
= base
->val_rtx
;
1992 group_info
*group
= rtx_group_vec
[group_id
];
1993 mem_addr
= group
->canon_base_addr
;
1996 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
2000 /* This is the restricted case where the base is a constant or
2001 the frame pointer and offset is a constant. */
2002 insn_info_t i_ptr
= active_local_stores
;
2003 insn_info_t last
= NULL
;
2005 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2008 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2011 fprintf (dump_file
, " processing const load gid=%d[%d..%d)\n",
2012 group_id
, (int)offset
, (int)(offset
+width
));
2017 bool remove
= false;
2018 store_info
*store_info
= i_ptr
->store_rec
;
2020 /* Skip the clobbers. */
2021 while (!store_info
->is_set
)
2022 store_info
= store_info
->next
;
2024 /* There are three cases here. */
2025 if (store_info
->group_id
< 0)
2026 /* We have a cselib store followed by a read from a
2029 = canon_true_dependence (store_info
->mem
,
2030 GET_MODE (store_info
->mem
),
2031 store_info
->mem_addr
,
2034 else if (group_id
== store_info
->group_id
)
2036 /* This is a block mode load. We may get lucky and
2037 canon_true_dependence may save the day. */
2040 = canon_true_dependence (store_info
->mem
,
2041 GET_MODE (store_info
->mem
),
2042 store_info
->mem_addr
,
2045 /* If this read is just reading back something that we just
2046 stored, rewrite the read. */
2050 && offset
>= store_info
->begin
2051 && offset
+ width
<= store_info
->end
2052 && all_positions_needed_p (store_info
,
2053 offset
- store_info
->begin
,
2055 && replace_read (store_info
, i_ptr
, read_info
,
2056 insn_info
, loc
, bb_info
->regs_live
))
2059 /* The bases are the same, just see if the offsets
2061 if ((offset
< store_info
->end
)
2062 && (offset
+ width
> store_info
->begin
))
2068 The else case that is missing here is that the
2069 bases are constant but different. There is nothing
2070 to do here because there is no overlap. */
2074 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2075 dump_insn_info ("removing from active", i_ptr
);
2077 active_local_stores_len
--;
2079 last
->next_local_store
= i_ptr
->next_local_store
;
2081 active_local_stores
= i_ptr
->next_local_store
;
2085 i_ptr
= i_ptr
->next_local_store
;
2090 insn_info_t i_ptr
= active_local_stores
;
2091 insn_info_t last
= NULL
;
2092 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2094 fprintf (dump_file
, " processing cselib load mem:");
2095 print_inline_rtx (dump_file
, mem
, 0);
2096 fprintf (dump_file
, "\n");
2101 bool remove
= false;
2102 store_info
*store_info
= i_ptr
->store_rec
;
2104 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2105 fprintf (dump_file
, " processing cselib load against insn %d\n",
2106 INSN_UID (i_ptr
->insn
));
2108 /* Skip the clobbers. */
2109 while (!store_info
->is_set
)
2110 store_info
= store_info
->next
;
2112 /* If this read is just reading back something that we just
2113 stored, rewrite the read. */
2115 && store_info
->group_id
== -1
2116 && store_info
->cse_base
== base
2118 && offset
>= store_info
->begin
2119 && offset
+ width
<= store_info
->end
2120 && all_positions_needed_p (store_info
,
2121 offset
- store_info
->begin
, width
)
2122 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
,
2123 bb_info
->regs_live
))
2126 remove
= canon_true_dependence (store_info
->mem
,
2127 GET_MODE (store_info
->mem
),
2128 store_info
->mem_addr
,
2133 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2134 dump_insn_info ("removing from active", i_ptr
);
2136 active_local_stores_len
--;
2138 last
->next_local_store
= i_ptr
->next_local_store
;
2140 active_local_stores
= i_ptr
->next_local_store
;
2144 i_ptr
= i_ptr
->next_local_store
;
2149 /* A note_uses callback in which DATA points the INSN_INFO for
2150 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2151 true for any part of *LOC. */
2154 check_mem_read_use (rtx
*loc
, void *data
)
2156 subrtx_ptr_iterator::array_type array
;
2157 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
2161 check_mem_read_rtx (loc
, (bb_info_t
) data
);
2166 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2167 So far it only handles arguments passed in registers. */
2170 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2172 CUMULATIVE_ARGS args_so_far_v
;
2173 cumulative_args_t args_so_far
;
2177 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2178 args_so_far
= pack_cumulative_args (&args_so_far_v
);
2180 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2182 arg
!= void_list_node
&& idx
< nargs
;
2183 arg
= TREE_CHAIN (arg
), idx
++)
2185 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2187 reg
= targetm
.calls
.function_arg (args_so_far
, mode
, NULL_TREE
, true);
2188 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
2189 || GET_MODE_CLASS (mode
) != MODE_INT
)
2192 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2194 link
= XEXP (link
, 1))
2195 if (GET_CODE (XEXP (link
, 0)) == USE
)
2197 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2198 if (REG_P (args
[idx
])
2199 && REGNO (args
[idx
]) == REGNO (reg
)
2200 && (GET_MODE (args
[idx
]) == mode
2201 || (GET_MODE_CLASS (GET_MODE (args
[idx
])) == MODE_INT
2202 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2204 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2205 > GET_MODE_SIZE (mode
)))))
2211 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2212 if (GET_MODE (args
[idx
]) != mode
)
2214 if (!tmp
|| !CONST_INT_P (tmp
))
2216 tmp
= gen_int_mode (INTVAL (tmp
), mode
);
2221 targetm
.calls
.function_arg_advance (args_so_far
, mode
, NULL_TREE
, true);
2223 if (arg
!= void_list_node
|| idx
!= nargs
)
2228 /* Return a bitmap of the fixed registers contained in IN. */
2231 copy_fixed_regs (const_bitmap in
)
2235 ret
= ALLOC_REG_SET (NULL
);
2236 bitmap_and (ret
, in
, fixed_reg_set_regset
);
2240 /* Apply record_store to all candidate stores in INSN. Mark INSN
2241 if some part of it is not a candidate store and assigns to a
2242 non-register target. */
2245 scan_insn (bb_info_t bb_info
, rtx_insn
*insn
)
2248 insn_info_type
*insn_info
= insn_info_type_pool
.allocate ();
2250 memset (insn_info
, 0, sizeof (struct insn_info_type
));
2252 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2253 fprintf (dump_file
, "\n**scanning insn=%d\n",
2256 insn_info
->prev_insn
= bb_info
->last_insn
;
2257 insn_info
->insn
= insn
;
2258 bb_info
->last_insn
= insn_info
;
2260 if (DEBUG_INSN_P (insn
))
2262 insn_info
->cannot_delete
= true;
2266 /* Look at all of the uses in the insn. */
2267 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2272 tree memset_call
= NULL_TREE
;
2274 insn_info
->cannot_delete
= true;
2276 /* Const functions cannot do anything bad i.e. read memory,
2277 however, they can read their parameters which may have
2278 been pushed onto the stack.
2279 memset and bzero don't read memory either. */
2280 const_call
= RTL_CONST_CALL_P (insn
);
2283 rtx call
= get_call_rtx_from (insn
);
2284 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
2286 rtx symbol
= XEXP (XEXP (call
, 0), 0);
2287 if (SYMBOL_REF_DECL (symbol
)
2288 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
2290 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
2292 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
2293 == BUILT_IN_MEMSET
))
2294 || SYMBOL_REF_DECL (symbol
) == block_clear_fn
)
2295 memset_call
= SYMBOL_REF_DECL (symbol
);
2299 if (const_call
|| memset_call
)
2301 insn_info_t i_ptr
= active_local_stores
;
2302 insn_info_t last
= NULL
;
2304 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2305 fprintf (dump_file
, "%s call %d\n",
2306 const_call
? "const" : "memset", INSN_UID (insn
));
2308 /* See the head comment of the frame_read field. */
2309 if (reload_completed
2310 /* Tail calls are storing their arguments using
2311 arg pointer. If it is a frame pointer on the target,
2312 even before reload we need to kill frame pointer based
2314 || (SIBLING_CALL_P (insn
)
2315 && HARD_FRAME_POINTER_IS_ARG_POINTER
))
2316 insn_info
->frame_read
= true;
2318 /* Loop over the active stores and remove those which are
2319 killed by the const function call. */
2322 bool remove_store
= false;
2324 /* The stack pointer based stores are always killed. */
2325 if (i_ptr
->stack_pointer_based
)
2326 remove_store
= true;
2328 /* If the frame is read, the frame related stores are killed. */
2329 else if (insn_info
->frame_read
)
2331 store_info
*store_info
= i_ptr
->store_rec
;
2333 /* Skip the clobbers. */
2334 while (!store_info
->is_set
)
2335 store_info
= store_info
->next
;
2337 if (store_info
->group_id
>= 0
2338 && rtx_group_vec
[store_info
->group_id
]->frame_related
)
2339 remove_store
= true;
2344 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2345 dump_insn_info ("removing from active", i_ptr
);
2347 active_local_stores_len
--;
2349 last
->next_local_store
= i_ptr
->next_local_store
;
2351 active_local_stores
= i_ptr
->next_local_store
;
2356 i_ptr
= i_ptr
->next_local_store
;
2362 if (get_call_args (insn
, memset_call
, args
, 3)
2363 && CONST_INT_P (args
[1])
2364 && CONST_INT_P (args
[2])
2365 && INTVAL (args
[2]) > 0)
2367 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2368 set_mem_size (mem
, INTVAL (args
[2]));
2369 body
= gen_rtx_SET (mem
, args
[1]);
2370 mems_found
+= record_store (body
, bb_info
);
2371 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2372 fprintf (dump_file
, "handling memset as BLKmode store\n");
2373 if (mems_found
== 1)
2375 if (active_local_stores_len
++
2376 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES
))
2378 active_local_stores_len
= 1;
2379 active_local_stores
= NULL
;
2381 insn_info
->fixed_regs_live
2382 = copy_fixed_regs (bb_info
->regs_live
);
2383 insn_info
->next_local_store
= active_local_stores
;
2384 active_local_stores
= insn_info
;
2388 clear_rhs_from_active_local_stores ();
2391 else if (SIBLING_CALL_P (insn
) && reload_completed
)
2392 /* Arguments for a sibling call that are pushed to memory are passed
2393 using the incoming argument pointer of the current function. After
2394 reload that might be (and likely is) frame pointer based. */
2395 add_wild_read (bb_info
);
2397 /* Every other call, including pure functions, may read any memory
2398 that is not relative to the frame. */
2399 add_non_frame_wild_read (bb_info
);
2404 /* Assuming that there are sets in these insns, we cannot delete
2406 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2407 || volatile_refs_p (PATTERN (insn
))
2408 || (!cfun
->can_delete_dead_exceptions
&& !insn_nothrow_p (insn
))
2409 || (RTX_FRAME_RELATED_P (insn
))
2410 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2411 insn_info
->cannot_delete
= true;
2413 body
= PATTERN (insn
);
2414 if (GET_CODE (body
) == PARALLEL
)
2417 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2418 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2421 mems_found
+= record_store (body
, bb_info
);
2423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2424 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2425 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2427 /* If we found some sets of mems, add it into the active_local_stores so
2428 that it can be locally deleted if found dead or used for
2429 replace_read and redundant constant store elimination. Otherwise mark
2430 it as cannot delete. This simplifies the processing later. */
2431 if (mems_found
== 1)
2433 if (active_local_stores_len
++
2434 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES
))
2436 active_local_stores_len
= 1;
2437 active_local_stores
= NULL
;
2439 insn_info
->fixed_regs_live
= copy_fixed_regs (bb_info
->regs_live
);
2440 insn_info
->next_local_store
= active_local_stores
;
2441 active_local_stores
= insn_info
;
2444 insn_info
->cannot_delete
= true;
2448 /* Remove BASE from the set of active_local_stores. This is a
2449 callback from cselib that is used to get rid of the stores in
2450 active_local_stores. */
2453 remove_useless_values (cselib_val
*base
)
2455 insn_info_t insn_info
= active_local_stores
;
2456 insn_info_t last
= NULL
;
2460 store_info
*store_info
= insn_info
->store_rec
;
2463 /* If ANY of the store_infos match the cselib group that is
2464 being deleted, then the insn can not be deleted. */
2467 if ((store_info
->group_id
== -1)
2468 && (store_info
->cse_base
== base
))
2473 store_info
= store_info
->next
;
2478 active_local_stores_len
--;
2480 last
->next_local_store
= insn_info
->next_local_store
;
2482 active_local_stores
= insn_info
->next_local_store
;
2483 free_store_info (insn_info
);
2488 insn_info
= insn_info
->next_local_store
;
2493 /* Do all of step 1. */
2499 bitmap regs_live
= BITMAP_ALLOC (®_obstack
);
2502 all_blocks
= BITMAP_ALLOC (NULL
);
2503 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2504 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2506 FOR_ALL_BB_FN (bb
, cfun
)
2509 bb_info_t bb_info
= dse_bb_info_type_pool
.allocate ();
2511 memset (bb_info
, 0, sizeof (dse_bb_info_type
));
2512 bitmap_set_bit (all_blocks
, bb
->index
);
2513 bb_info
->regs_live
= regs_live
;
2515 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2516 df_simulate_initialize_forwards (bb
, regs_live
);
2518 bb_table
[bb
->index
] = bb_info
;
2519 cselib_discard_hook
= remove_useless_values
;
2521 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2525 active_local_stores
= NULL
;
2526 active_local_stores_len
= 0;
2527 cselib_clear_table ();
2529 /* Scan the insns. */
2530 FOR_BB_INSNS (bb
, insn
)
2533 scan_insn (bb_info
, insn
);
2534 cselib_process_insn (insn
);
2536 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2539 /* This is something of a hack, because the global algorithm
2540 is supposed to take care of the case where stores go dead
2541 at the end of the function. However, the global
2542 algorithm must take a more conservative view of block
2543 mode reads than the local alg does. So to get the case
2544 where you have a store to the frame followed by a non
2545 overlapping block more read, we look at the active local
2546 stores at the end of the function and delete all of the
2547 frame and spill based ones. */
2548 if (stores_off_frame_dead_at_return
2549 && (EDGE_COUNT (bb
->succs
) == 0
2550 || (single_succ_p (bb
)
2551 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
2552 && ! crtl
->calls_eh_return
)))
2554 insn_info_t i_ptr
= active_local_stores
;
2557 store_info
*store_info
= i_ptr
->store_rec
;
2559 /* Skip the clobbers. */
2560 while (!store_info
->is_set
)
2561 store_info
= store_info
->next
;
2562 if (store_info
->group_id
>= 0)
2564 group_info
*group
= rtx_group_vec
[store_info
->group_id
];
2565 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2566 delete_dead_store_insn (i_ptr
);
2569 i_ptr
= i_ptr
->next_local_store
;
2573 /* Get rid of the loads that were discovered in
2574 replace_read. Cselib is finished with this block. */
2575 while (deferred_change_list
)
2577 deferred_change
*next
= deferred_change_list
->next
;
2579 /* There is no reason to validate this change. That was
2581 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2582 deferred_change_pool
.remove (deferred_change_list
);
2583 deferred_change_list
= next
;
2586 /* Get rid of all of the cselib based store_infos in this
2587 block and mark the containing insns as not being
2589 ptr
= bb_info
->last_insn
;
2592 if (ptr
->contains_cselib_groups
)
2594 store_info
*s_info
= ptr
->store_rec
;
2595 while (s_info
&& !s_info
->is_set
)
2596 s_info
= s_info
->next
;
2598 && s_info
->redundant_reason
2599 && s_info
->redundant_reason
->insn
2600 && !ptr
->cannot_delete
)
2602 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2603 fprintf (dump_file
, "Locally deleting insn %d "
2604 "because insn %d stores the "
2605 "same value and couldn't be "
2607 INSN_UID (ptr
->insn
),
2608 INSN_UID (s_info
->redundant_reason
->insn
));
2609 delete_dead_store_insn (ptr
);
2611 free_store_info (ptr
);
2617 /* Free at least positions_needed bitmaps. */
2618 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2619 if (s_info
->is_large
)
2621 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2622 s_info
->is_large
= false;
2625 ptr
= ptr
->prev_insn
;
2628 cse_store_info_pool
.release ();
2630 bb_info
->regs_live
= NULL
;
2633 BITMAP_FREE (regs_live
);
2635 rtx_group_table
->empty ();
2639 /*----------------------------------------------------------------------------
2642 Assign each byte position in the stores that we are going to
2643 analyze globally to a position in the bitmaps. Returns true if
2644 there are any bit positions assigned.
2645 ----------------------------------------------------------------------------*/
2648 dse_step2_init (void)
2653 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2655 /* For all non stack related bases, we only consider a store to
2656 be deletable if there are two or more stores for that
2657 position. This is because it takes one store to make the
2658 other store redundant. However, for the stores that are
2659 stack related, we consider them if there is only one store
2660 for the position. We do this because the stack related
2661 stores can be deleted if their is no read between them and
2662 the end of the function.
2664 To make this work in the current framework, we take the stack
2665 related bases add all of the bits from store1 into store2.
2666 This has the effect of making the eligible even if there is
2669 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2671 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2672 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2673 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2674 fprintf (dump_file
, "group %d is frame related ", i
);
2677 group
->offset_map_size_n
++;
2678 group
->offset_map_n
= XOBNEWVEC (&dse_obstack
, int,
2679 group
->offset_map_size_n
);
2680 group
->offset_map_size_p
++;
2681 group
->offset_map_p
= XOBNEWVEC (&dse_obstack
, int,
2682 group
->offset_map_size_p
);
2683 group
->process_globally
= false;
2684 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2686 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2687 (int)bitmap_count_bits (group
->store2_n
),
2688 (int)bitmap_count_bits (group
->store2_p
));
2689 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2690 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2696 /* Init the offset tables. */
2703 /* Position 0 is unused because 0 is used in the maps to mean
2705 current_position
= 1;
2706 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2711 memset (group
->offset_map_n
, 0, sizeof (int) * group
->offset_map_size_n
);
2712 memset (group
->offset_map_p
, 0, sizeof (int) * group
->offset_map_size_p
);
2713 bitmap_clear (group
->group_kill
);
2715 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2717 bitmap_set_bit (group
->group_kill
, current_position
);
2718 if (bitmap_bit_p (group
->escaped_n
, j
))
2719 bitmap_set_bit (kill_on_calls
, current_position
);
2720 group
->offset_map_n
[j
] = current_position
++;
2721 group
->process_globally
= true;
2723 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2725 bitmap_set_bit (group
->group_kill
, current_position
);
2726 if (bitmap_bit_p (group
->escaped_p
, j
))
2727 bitmap_set_bit (kill_on_calls
, current_position
);
2728 group
->offset_map_p
[j
] = current_position
++;
2729 group
->process_globally
= true;
2732 return current_position
!= 1;
2737 /*----------------------------------------------------------------------------
2740 Build the bit vectors for the transfer functions.
2741 ----------------------------------------------------------------------------*/
2744 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2748 get_bitmap_index (group_info
*group_info
, HOST_WIDE_INT offset
)
2752 HOST_WIDE_INT offset_p
= -offset
;
2753 if (offset_p
>= group_info
->offset_map_size_n
)
2755 return group_info
->offset_map_n
[offset_p
];
2759 if (offset
>= group_info
->offset_map_size_p
)
2761 return group_info
->offset_map_p
[offset
];
2766 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2770 scan_stores (store_info
*store_info
, bitmap gen
, bitmap kill
)
2775 group_info
*group_info
2776 = rtx_group_vec
[store_info
->group_id
];
2777 if (group_info
->process_globally
)
2778 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
2780 int index
= get_bitmap_index (group_info
, i
);
2783 bitmap_set_bit (gen
, index
);
2785 bitmap_clear_bit (kill
, index
);
2788 store_info
= store_info
->next
;
2793 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2797 scan_reads (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
2799 read_info_t read_info
= insn_info
->read_rec
;
2803 /* If this insn reads the frame, kill all the frame related stores. */
2804 if (insn_info
->frame_read
)
2806 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2807 if (group
->process_globally
&& group
->frame_related
)
2810 bitmap_ior_into (kill
, group
->group_kill
);
2811 bitmap_and_compl_into (gen
, group
->group_kill
);
2814 if (insn_info
->non_frame_wild_read
)
2816 /* Kill all non-frame related stores. Kill all stores of variables that
2819 bitmap_ior_into (kill
, kill_on_calls
);
2820 bitmap_and_compl_into (gen
, kill_on_calls
);
2821 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2822 if (group
->process_globally
&& !group
->frame_related
)
2825 bitmap_ior_into (kill
, group
->group_kill
);
2826 bitmap_and_compl_into (gen
, group
->group_kill
);
2831 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2833 if (group
->process_globally
)
2835 if (i
== read_info
->group_id
)
2837 if (read_info
->begin
> read_info
->end
)
2839 /* Begin > end for block mode reads. */
2841 bitmap_ior_into (kill
, group
->group_kill
);
2842 bitmap_and_compl_into (gen
, group
->group_kill
);
2846 /* The groups are the same, just process the
2849 for (j
= read_info
->begin
; j
< read_info
->end
; j
++)
2851 int index
= get_bitmap_index (group
, j
);
2855 bitmap_set_bit (kill
, index
);
2856 bitmap_clear_bit (gen
, index
);
2863 /* The groups are different, if the alias sets
2864 conflict, clear the entire group. We only need
2865 to apply this test if the read_info is a cselib
2866 read. Anything with a constant base cannot alias
2867 something else with a different constant
2869 if ((read_info
->group_id
< 0)
2870 && canon_true_dependence (group
->base_mem
,
2871 GET_MODE (group
->base_mem
),
2872 group
->canon_base_addr
,
2873 read_info
->mem
, NULL_RTX
))
2876 bitmap_ior_into (kill
, group
->group_kill
);
2877 bitmap_and_compl_into (gen
, group
->group_kill
);
2883 read_info
= read_info
->next
;
2888 /* Return the insn in BB_INFO before the first wild read or if there
2889 are no wild reads in the block, return the last insn. */
2892 find_insn_before_first_wild_read (bb_info_t bb_info
)
2894 insn_info_t insn_info
= bb_info
->last_insn
;
2895 insn_info_t last_wild_read
= NULL
;
2899 if (insn_info
->wild_read
)
2901 last_wild_read
= insn_info
->prev_insn
;
2902 /* Block starts with wild read. */
2903 if (!last_wild_read
)
2907 insn_info
= insn_info
->prev_insn
;
2911 return last_wild_read
;
2913 return bb_info
->last_insn
;
2917 /* Scan the insns in BB_INFO starting at PTR and going to the top of
2918 the block in order to build the gen and kill sets for the block.
2919 We start at ptr which may be the last insn in the block or may be
2920 the first insn with a wild read. In the latter case we are able to
2921 skip the rest of the block because it just does not matter:
2922 anything that happens is hidden by the wild read. */
2925 dse_step3_scan (basic_block bb
)
2927 bb_info_t bb_info
= bb_table
[bb
->index
];
2928 insn_info_t insn_info
;
2930 insn_info
= find_insn_before_first_wild_read (bb_info
);
2932 /* In the spill case or in the no_spill case if there is no wild
2933 read in the block, we will need a kill set. */
2934 if (insn_info
== bb_info
->last_insn
)
2937 bitmap_clear (bb_info
->kill
);
2939 bb_info
->kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
2943 BITMAP_FREE (bb_info
->kill
);
2947 /* There may have been code deleted by the dce pass run before
2949 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
2951 scan_stores (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
2952 scan_reads (insn_info
, bb_info
->gen
, bb_info
->kill
);
2955 insn_info
= insn_info
->prev_insn
;
2960 /* Set the gen set of the exit block, and also any block with no
2961 successors that does not have a wild read. */
2964 dse_step3_exit_block_scan (bb_info_t bb_info
)
2966 /* The gen set is all 0's for the exit block except for the
2967 frame_pointer_group. */
2969 if (stores_off_frame_dead_at_return
)
2974 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2976 if (group
->process_globally
&& group
->frame_related
)
2977 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
2983 /* Find all of the blocks that are not backwards reachable from the
2984 exit block or any block with no successors (BB). These are the
2985 infinite loops or infinite self loops. These blocks will still
2986 have their bits set in UNREACHABLE_BLOCKS. */
2989 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
2994 if (bitmap_bit_p (unreachable_blocks
, bb
->index
))
2996 bitmap_clear_bit (unreachable_blocks
, bb
->index
);
2997 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2999 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3004 /* Build the transfer functions for the function. */
3010 sbitmap unreachable_blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
3011 sbitmap_iterator sbi
;
3012 bitmap all_ones
= NULL
;
3015 bitmap_ones (unreachable_blocks
);
3017 FOR_ALL_BB_FN (bb
, cfun
)
3019 bb_info_t bb_info
= bb_table
[bb
->index
];
3021 bitmap_clear (bb_info
->gen
);
3023 bb_info
->gen
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3025 if (bb
->index
== ENTRY_BLOCK
)
3027 else if (bb
->index
== EXIT_BLOCK
)
3028 dse_step3_exit_block_scan (bb_info
);
3030 dse_step3_scan (bb
);
3031 if (EDGE_COUNT (bb
->succs
) == 0)
3032 mark_reachable_blocks (unreachable_blocks
, bb
);
3034 /* If this is the second time dataflow is run, delete the old
3037 BITMAP_FREE (bb_info
->in
);
3039 BITMAP_FREE (bb_info
->out
);
3042 /* For any block in an infinite loop, we must initialize the out set
3043 to all ones. This could be expensive, but almost never occurs in
3044 practice. However, it is common in regression tests. */
3045 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks
, 0, i
, sbi
)
3047 if (bitmap_bit_p (all_blocks
, i
))
3049 bb_info_t bb_info
= bb_table
[i
];
3055 all_ones
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3056 FOR_EACH_VEC_ELT (rtx_group_vec
, j
, group
)
3057 bitmap_ior_into (all_ones
, group
->group_kill
);
3061 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3062 bitmap_copy (bb_info
->out
, all_ones
);
3068 BITMAP_FREE (all_ones
);
3069 sbitmap_free (unreachable_blocks
);
3074 /*----------------------------------------------------------------------------
3077 Solve the bitvector equations.
3078 ----------------------------------------------------------------------------*/
3081 /* Confluence function for blocks with no successors. Create an out
3082 set from the gen set of the exit block. This block logically has
3083 the exit block as a successor. */
3088 dse_confluence_0 (basic_block bb
)
3090 bb_info_t bb_info
= bb_table
[bb
->index
];
3092 if (bb
->index
== EXIT_BLOCK
)
3097 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3098 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3102 /* Propagate the information from the in set of the dest of E to the
3103 out set of the src of E. If the various in or out sets are not
3104 there, that means they are all ones. */
3107 dse_confluence_n (edge e
)
3109 bb_info_t src_info
= bb_table
[e
->src
->index
];
3110 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3115 bitmap_and_into (src_info
->out
, dest_info
->in
);
3118 src_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3119 bitmap_copy (src_info
->out
, dest_info
->in
);
3126 /* Propagate the info from the out to the in set of BB_INDEX's basic
3127 block. There are three cases:
3129 1) The block has no kill set. In this case the kill set is all
3130 ones. It does not matter what the out set of the block is, none of
3131 the info can reach the top. The only thing that reaches the top is
3132 the gen set and we just copy the set.
3134 2) There is a kill set but no out set and bb has successors. In
3135 this case we just return. Eventually an out set will be created and
3136 it is better to wait than to create a set of ones.
3138 3) There is both a kill and out set. We apply the obvious transfer
3143 dse_transfer_function (int bb_index
)
3145 bb_info_t bb_info
= bb_table
[bb_index
];
3153 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3154 bb_info
->out
, bb_info
->kill
);
3157 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3158 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3159 bb_info
->out
, bb_info
->kill
);
3169 /* Case 1 above. If there is already an in set, nothing
3175 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3176 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3182 /* Solve the dataflow equations. */
3187 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3188 dse_confluence_n
, dse_transfer_function
,
3189 all_blocks
, df_get_postorder (DF_BACKWARD
),
3190 df_get_n_blocks (DF_BACKWARD
));
3191 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3195 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3196 FOR_ALL_BB_FN (bb
, cfun
)
3198 bb_info_t bb_info
= bb_table
[bb
->index
];
3200 df_print_bb_index (bb
, dump_file
);
3202 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3204 fprintf (dump_file
, " in: *MISSING*\n");
3206 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3208 fprintf (dump_file
, " gen: *MISSING*\n");
3210 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3212 fprintf (dump_file
, " kill: *MISSING*\n");
3214 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3216 fprintf (dump_file
, " out: *MISSING*\n\n");
3223 /*----------------------------------------------------------------------------
3226 Delete the stores that can only be deleted using the global information.
3227 ----------------------------------------------------------------------------*/
3234 FOR_EACH_BB_FN (bb
, cfun
)
3236 bb_info_t bb_info
= bb_table
[bb
->index
];
3237 insn_info_t insn_info
= bb_info
->last_insn
;
3238 bitmap v
= bb_info
->out
;
3242 bool deleted
= false;
3243 if (dump_file
&& insn_info
->insn
)
3245 fprintf (dump_file
, "starting to process insn %d\n",
3246 INSN_UID (insn_info
->insn
));
3247 bitmap_print (dump_file
, v
, " v: ", "\n");
3250 /* There may have been code deleted by the dce pass run before
3253 && INSN_P (insn_info
->insn
)
3254 && (!insn_info
->cannot_delete
)
3255 && (!bitmap_empty_p (v
)))
3257 store_info
*store_info
= insn_info
->store_rec
;
3259 /* Try to delete the current insn. */
3262 /* Skip the clobbers. */
3263 while (!store_info
->is_set
)
3264 store_info
= store_info
->next
;
3267 group_info
*group_info
= rtx_group_vec
[store_info
->group_id
];
3269 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3271 int index
= get_bitmap_index (group_info
, i
);
3273 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3274 fprintf (dump_file
, "i = %d, index = %d\n", (int)i
, index
);
3275 if (index
== 0 || !bitmap_bit_p (v
, index
))
3277 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3278 fprintf (dump_file
, "failing at i = %d\n", (int)i
);
3286 && check_for_inc_dec_1 (insn_info
))
3288 delete_insn (insn_info
->insn
);
3289 insn_info
->insn
= NULL
;
3294 /* We do want to process the local info if the insn was
3295 deleted. For instance, if the insn did a wild read, we
3296 no longer need to trash the info. */
3298 && INSN_P (insn_info
->insn
)
3301 scan_stores (insn_info
->store_rec
, v
, NULL
);
3302 if (insn_info
->wild_read
)
3304 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3305 fprintf (dump_file
, "wild read\n");
3308 else if (insn_info
->read_rec
3309 || insn_info
->non_frame_wild_read
)
3311 if (dump_file
&& !insn_info
->non_frame_wild_read
)
3312 fprintf (dump_file
, "regular read\n");
3313 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3314 fprintf (dump_file
, "non-frame wild read\n");
3315 scan_reads (insn_info
, v
, NULL
);
3319 insn_info
= insn_info
->prev_insn
;
3326 /*----------------------------------------------------------------------------
3329 Delete stores made redundant by earlier stores (which store the same
3330 value) that couldn't be eliminated.
3331 ----------------------------------------------------------------------------*/
3338 FOR_ALL_BB_FN (bb
, cfun
)
3340 bb_info_t bb_info
= bb_table
[bb
->index
];
3341 insn_info_t insn_info
= bb_info
->last_insn
;
3345 /* There may have been code deleted by the dce pass run before
3348 && INSN_P (insn_info
->insn
)
3349 && !insn_info
->cannot_delete
)
3351 store_info
*s_info
= insn_info
->store_rec
;
3353 while (s_info
&& !s_info
->is_set
)
3354 s_info
= s_info
->next
;
3356 && s_info
->redundant_reason
3357 && s_info
->redundant_reason
->insn
3358 && INSN_P (s_info
->redundant_reason
->insn
))
3360 rtx_insn
*rinsn
= s_info
->redundant_reason
->insn
;
3361 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3362 fprintf (dump_file
, "Locally deleting insn %d "
3363 "because insn %d stores the "
3364 "same value and couldn't be "
3366 INSN_UID (insn_info
->insn
),
3368 delete_dead_store_insn (insn_info
);
3371 insn_info
= insn_info
->prev_insn
;
3376 /*----------------------------------------------------------------------------
3379 Destroy everything left standing.
3380 ----------------------------------------------------------------------------*/
3385 bitmap_obstack_release (&dse_bitmap_obstack
);
3386 obstack_free (&dse_obstack
, NULL
);
3388 end_alias_analysis ();
3390 delete rtx_group_table
;
3391 rtx_group_table
= NULL
;
3392 rtx_group_vec
.release ();
3393 BITMAP_FREE (all_blocks
);
3394 BITMAP_FREE (scratch
);
3396 rtx_store_info_pool
.release ();
3397 read_info_type_pool
.release ();
3398 insn_info_type_pool
.release ();
3399 dse_bb_info_type_pool
.release ();
3400 group_info_pool
.release ();
3401 deferred_change_pool
.release ();
3405 /* -------------------------------------------------------------------------
3407 ------------------------------------------------------------------------- */
3409 /* Callback for running pass_rtl_dse. */
3412 rest_of_handle_dse (void)
3414 df_set_flags (DF_DEFER_INSN_RESCAN
);
3416 /* Need the notes since we must track live hardregs in the forwards
3418 df_note_add_problem ();
3426 df_set_flags (DF_LR_RUN_DCE
);
3428 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3429 fprintf (dump_file
, "doing global processing\n");
3439 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d\n",
3440 locally_deleted
, globally_deleted
);
3442 /* DSE can eliminate potentially-trapping MEMs.
3443 Remove any EH edges associated with them. */
3444 if ((locally_deleted
|| globally_deleted
)
3445 && cfun
->can_throw_non_call_exceptions
3446 && purge_all_dead_edges ())
3454 const pass_data pass_data_rtl_dse1
=
3456 RTL_PASS
, /* type */
3458 OPTGROUP_NONE
, /* optinfo_flags */
3459 TV_DSE1
, /* tv_id */
3460 0, /* properties_required */
3461 0, /* properties_provided */
3462 0, /* properties_destroyed */
3463 0, /* todo_flags_start */
3464 TODO_df_finish
, /* todo_flags_finish */
3467 class pass_rtl_dse1
: public rtl_opt_pass
3470 pass_rtl_dse1 (gcc::context
*ctxt
)
3471 : rtl_opt_pass (pass_data_rtl_dse1
, ctxt
)
3474 /* opt_pass methods: */
3475 virtual bool gate (function
*)
3477 return optimize
> 0 && flag_dse
&& dbg_cnt (dse1
);
3480 virtual unsigned int execute (function
*) { return rest_of_handle_dse (); }
3482 }; // class pass_rtl_dse1
3487 make_pass_rtl_dse1 (gcc::context
*ctxt
)
3489 return new pass_rtl_dse1 (ctxt
);
3494 const pass_data pass_data_rtl_dse2
=
3496 RTL_PASS
, /* type */
3498 OPTGROUP_NONE
, /* optinfo_flags */
3499 TV_DSE2
, /* tv_id */
3500 0, /* properties_required */
3501 0, /* properties_provided */
3502 0, /* properties_destroyed */
3503 0, /* todo_flags_start */
3504 TODO_df_finish
, /* todo_flags_finish */
3507 class pass_rtl_dse2
: public rtl_opt_pass
3510 pass_rtl_dse2 (gcc::context
*ctxt
)
3511 : rtl_opt_pass (pass_data_rtl_dse2
, ctxt
)
3514 /* opt_pass methods: */
3515 virtual bool gate (function
*)
3517 return optimize
> 0 && flag_dse
&& dbg_cnt (dse2
);
3520 virtual unsigned int execute (function
*) { return rest_of_handle_dse (); }
3522 }; // class pass_rtl_dse2
3527 make_pass_rtl_dse2 (gcc::context
*ctxt
)
3529 return new pass_rtl_dse2 (ctxt
);