HandshakeCompletedEvent.java, [...]: Import cleanup.
[official-gcc.git] / gcc / regrename.c
blobdc2bb01780ed9bc4400791b11c74989ef5efd299
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "obstack.h"
39 static const char *const reg_class_names[] = REG_CLASS_NAMES;
41 struct du_chain
43 struct du_chain *next_chain;
44 struct du_chain *next_use;
46 rtx insn;
47 rtx *loc;
48 ENUM_BITFIELD(reg_class) cl : 16;
49 unsigned int need_caller_save_reg:1;
50 unsigned int earlyclobber:1;
53 enum scan_actions
55 terminate_all_read,
56 terminate_overlapping_read,
57 terminate_write,
58 terminate_dead,
59 mark_read,
60 mark_write
63 static const char * const scan_actions_name[] =
65 "terminate_all_read",
66 "terminate_overlapping_read",
67 "terminate_write",
68 "terminate_dead",
69 "mark_read",
70 "mark_write"
73 static struct obstack rename_obstack;
75 static void do_replace (struct du_chain *, int);
76 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
77 enum scan_actions, enum op_type, int);
78 static void scan_rtx_address (rtx, rtx *, enum reg_class,
79 enum scan_actions, enum machine_mode);
80 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
81 enum op_type, int);
82 static struct du_chain *build_def_use (basic_block);
83 static void dump_def_use_chain (struct du_chain *);
84 static void note_sets (rtx, rtx, void *);
85 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
86 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
87 struct du_chain *);
89 /* Called through note_stores from update_life. Find sets of registers, and
90 record them in *DATA (which is actually a HARD_REG_SET *). */
92 static void
93 note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
95 HARD_REG_SET *pset = (HARD_REG_SET *) data;
96 unsigned int regno;
97 int nregs;
98 if (!REG_P (x))
99 return;
100 regno = REGNO (x);
101 nregs = hard_regno_nregs[regno][GET_MODE (x)];
103 /* There must not be pseudos at this point. */
104 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
106 while (nregs-- > 0)
107 SET_HARD_REG_BIT (*pset, regno + nregs);
110 /* Clear all registers from *PSET for which a note of kind KIND can be found
111 in the list NOTES. */
113 static void
114 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
116 rtx note;
117 for (note = notes; note; note = XEXP (note, 1))
118 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
120 rtx reg = XEXP (note, 0);
121 unsigned int regno = REGNO (reg);
122 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
124 /* There must not be pseudos at this point. */
125 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
127 while (nregs-- > 0)
128 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
132 /* For a def-use chain CHAIN in basic block B, find which registers overlap
133 its lifetime and set the corresponding bits in *PSET. */
135 static void
136 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
137 struct du_chain *chain)
139 struct du_chain *t = chain;
140 rtx insn;
141 HARD_REG_SET live;
143 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
144 insn = BB_HEAD (b);
145 while (t)
147 /* Search forward until the next reference to the register to be
148 renamed. */
149 while (insn != t->insn)
151 if (INSN_P (insn))
153 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
154 note_stores (PATTERN (insn), note_sets, (void *) &live);
155 /* Only record currently live regs if we are inside the
156 reg's live range. */
157 if (t != chain)
158 IOR_HARD_REG_SET (*pset, live);
159 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
161 insn = NEXT_INSN (insn);
164 IOR_HARD_REG_SET (*pset, live);
166 /* For the last reference, also merge in all registers set in the
167 same insn.
168 @@@ We only have take earlyclobbered sets into account. */
169 if (! t->next_use)
170 note_stores (PATTERN (insn), note_sets, (void *) pset);
172 t = t->next_use;
176 /* Perform register renaming on the current function. */
178 void
179 regrename_optimize (void)
181 int tick[FIRST_PSEUDO_REGISTER];
182 int this_tick = 0;
183 basic_block bb;
184 char *first_obj;
186 memset (tick, 0, sizeof tick);
188 gcc_obstack_init (&rename_obstack);
189 first_obj = obstack_alloc (&rename_obstack, 0);
191 FOR_EACH_BB (bb)
193 struct du_chain *all_chains = 0;
194 HARD_REG_SET unavailable;
195 HARD_REG_SET regs_seen;
197 CLEAR_HARD_REG_SET (unavailable);
199 if (dump_file)
200 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
202 all_chains = build_def_use (bb);
204 if (dump_file)
205 dump_def_use_chain (all_chains);
207 CLEAR_HARD_REG_SET (unavailable);
208 /* Don't clobber traceback for noreturn functions. */
209 if (frame_pointer_needed)
211 int i;
213 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
214 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
216 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
217 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
218 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
219 #endif
222 CLEAR_HARD_REG_SET (regs_seen);
223 while (all_chains)
225 int new_reg, best_new_reg;
226 int n_uses;
227 struct du_chain *this = all_chains;
228 struct du_chain *tmp, *last;
229 HARD_REG_SET this_unavailable;
230 int reg = REGNO (*this->loc);
231 int i;
233 all_chains = this->next_chain;
235 best_new_reg = reg;
237 #if 0 /* This just disables optimization opportunities. */
238 /* Only rename once we've seen the reg more than once. */
239 if (! TEST_HARD_REG_BIT (regs_seen, reg))
241 SET_HARD_REG_BIT (regs_seen, reg);
242 continue;
244 #endif
246 if (fixed_regs[reg] || global_regs[reg]
247 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
248 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
249 #else
250 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
251 #endif
253 continue;
255 COPY_HARD_REG_SET (this_unavailable, unavailable);
257 /* Find last entry on chain (which has the need_caller_save bit),
258 count number of uses, and narrow the set of registers we can
259 use for renaming. */
260 n_uses = 0;
261 for (last = this; last->next_use; last = last->next_use)
263 n_uses++;
264 IOR_COMPL_HARD_REG_SET (this_unavailable,
265 reg_class_contents[last->cl]);
267 if (n_uses < 1)
268 continue;
270 IOR_COMPL_HARD_REG_SET (this_unavailable,
271 reg_class_contents[last->cl]);
273 if (this->need_caller_save_reg)
274 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
276 merge_overlapping_regs (bb, &this_unavailable, this);
278 /* Now potential_regs is a reasonable approximation, let's
279 have a closer look at each register still in there. */
280 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
282 int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
284 for (i = nregs - 1; i >= 0; --i)
285 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
286 || fixed_regs[new_reg + i]
287 || global_regs[new_reg + i]
288 /* Can't use regs which aren't saved by the prologue. */
289 || (! regs_ever_live[new_reg + i]
290 && ! call_used_regs[new_reg + i])
291 #ifdef LEAF_REGISTERS
292 /* We can't use a non-leaf register if we're in a
293 leaf function. */
294 || (current_function_is_leaf
295 && !LEAF_REGISTERS[new_reg + i])
296 #endif
297 #ifdef HARD_REGNO_RENAME_OK
298 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
299 #endif
301 break;
302 if (i >= 0)
303 continue;
305 /* See whether it accepts all modes that occur in
306 definition and uses. */
307 for (tmp = this; tmp; tmp = tmp->next_use)
308 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
309 || (tmp->need_caller_save_reg
310 && ! (HARD_REGNO_CALL_PART_CLOBBERED
311 (reg, GET_MODE (*tmp->loc)))
312 && (HARD_REGNO_CALL_PART_CLOBBERED
313 (new_reg, GET_MODE (*tmp->loc)))))
314 break;
315 if (! tmp)
317 if (tick[best_new_reg] > tick[new_reg])
318 best_new_reg = new_reg;
322 if (dump_file)
324 fprintf (dump_file, "Register %s in insn %d",
325 reg_names[reg], INSN_UID (last->insn));
326 if (last->need_caller_save_reg)
327 fprintf (dump_file, " crosses a call");
330 if (best_new_reg == reg)
332 tick[reg] = ++this_tick;
333 if (dump_file)
334 fprintf (dump_file, "; no available better choice\n");
335 continue;
338 do_replace (this, best_new_reg);
339 tick[best_new_reg] = ++this_tick;
340 regs_ever_live[best_new_reg] = 1;
342 if (dump_file)
343 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
346 obstack_free (&rename_obstack, first_obj);
349 obstack_free (&rename_obstack, NULL);
351 if (dump_file)
352 fputc ('\n', dump_file);
354 count_or_remove_death_notes (NULL, 1);
355 update_life_info (NULL, UPDATE_LIFE_LOCAL,
356 PROP_DEATH_NOTES);
359 static void
360 do_replace (struct du_chain *chain, int reg)
362 while (chain)
364 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
365 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
367 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
368 if (regno >= FIRST_PSEUDO_REGISTER)
369 ORIGINAL_REGNO (*chain->loc) = regno;
370 REG_ATTRS (*chain->loc) = attr;
371 chain = chain->next_use;
376 static struct du_chain *open_chains;
377 static struct du_chain *closed_chains;
379 static void
380 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
381 enum scan_actions action, enum op_type type, int earlyclobber)
383 struct du_chain **p;
384 rtx x = *loc;
385 enum machine_mode mode = GET_MODE (x);
386 int this_regno = REGNO (x);
387 int this_nregs = hard_regno_nregs[this_regno][mode];
389 if (action == mark_write)
391 if (type == OP_OUT)
393 struct du_chain *this
394 = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
395 this->next_use = 0;
396 this->next_chain = open_chains;
397 this->loc = loc;
398 this->insn = insn;
399 this->cl = cl;
400 this->need_caller_save_reg = 0;
401 this->earlyclobber = earlyclobber;
402 open_chains = this;
404 return;
407 if ((type == OP_OUT && action != terminate_write)
408 || (type != OP_OUT && action == terminate_write))
409 return;
411 for (p = &open_chains; *p;)
413 struct du_chain *this = *p;
415 /* Check if the chain has been terminated if it has then skip to
416 the next chain.
418 This can happen when we've already appended the location to
419 the chain in Step 3, but are trying to hide in-out operands
420 from terminate_write in Step 5. */
422 if (*this->loc == cc0_rtx)
423 p = &this->next_chain;
424 else
426 int regno = REGNO (*this->loc);
427 int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
428 int exact_match = (regno == this_regno && nregs == this_nregs);
430 if (regno + nregs <= this_regno
431 || this_regno + this_nregs <= regno)
433 p = &this->next_chain;
434 continue;
437 if (action == mark_read)
439 gcc_assert (exact_match);
441 /* ??? Class NO_REGS can happen if the md file makes use of
442 EXTRA_CONSTRAINTS to match registers. Which is arguably
443 wrong, but there we are. Since we know not what this may
444 be replaced with, terminate the chain. */
445 if (cl != NO_REGS)
447 this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
448 this->next_use = 0;
449 this->next_chain = (*p)->next_chain;
450 this->loc = loc;
451 this->insn = insn;
452 this->cl = cl;
453 this->need_caller_save_reg = 0;
454 while (*p)
455 p = &(*p)->next_use;
456 *p = this;
457 return;
461 if (action != terminate_overlapping_read || ! exact_match)
463 struct du_chain *next = this->next_chain;
465 /* Whether the terminated chain can be used for renaming
466 depends on the action and this being an exact match.
467 In either case, we remove this element from open_chains. */
469 if ((action == terminate_dead || action == terminate_write)
470 && exact_match)
472 this->next_chain = closed_chains;
473 closed_chains = this;
474 if (dump_file)
475 fprintf (dump_file,
476 "Closing chain %s at insn %d (%s)\n",
477 reg_names[REGNO (*this->loc)], INSN_UID (insn),
478 scan_actions_name[(int) action]);
480 else
482 if (dump_file)
483 fprintf (dump_file,
484 "Discarding chain %s at insn %d (%s)\n",
485 reg_names[REGNO (*this->loc)], INSN_UID (insn),
486 scan_actions_name[(int) action]);
488 *p = next;
490 else
491 p = &this->next_chain;
496 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
497 BASE_REG_CLASS depending on how the register is being considered. */
499 static void
500 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
501 enum scan_actions action, enum machine_mode mode)
503 rtx x = *loc;
504 RTX_CODE code = GET_CODE (x);
505 const char *fmt;
506 int i, j;
508 if (action == mark_write)
509 return;
511 switch (code)
513 case PLUS:
515 rtx orig_op0 = XEXP (x, 0);
516 rtx orig_op1 = XEXP (x, 1);
517 RTX_CODE code0 = GET_CODE (orig_op0);
518 RTX_CODE code1 = GET_CODE (orig_op1);
519 rtx op0 = orig_op0;
520 rtx op1 = orig_op1;
521 rtx *locI = NULL;
522 rtx *locB = NULL;
523 rtx *locB_reg = NULL;
525 if (GET_CODE (op0) == SUBREG)
527 op0 = SUBREG_REG (op0);
528 code0 = GET_CODE (op0);
531 if (GET_CODE (op1) == SUBREG)
533 op1 = SUBREG_REG (op1);
534 code1 = GET_CODE (op1);
537 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
538 || code0 == ZERO_EXTEND || code1 == MEM)
540 locI = &XEXP (x, 0);
541 locB = &XEXP (x, 1);
543 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
544 || code1 == ZERO_EXTEND || code0 == MEM)
546 locI = &XEXP (x, 1);
547 locB = &XEXP (x, 0);
549 else if (code0 == CONST_INT || code0 == CONST
550 || code0 == SYMBOL_REF || code0 == LABEL_REF)
551 locB = &XEXP (x, 1);
552 else if (code1 == CONST_INT || code1 == CONST
553 || code1 == SYMBOL_REF || code1 == LABEL_REF)
554 locB = &XEXP (x, 0);
555 else if (code0 == REG && code1 == REG)
557 int index_op;
559 if (REG_OK_FOR_INDEX_P (op0)
560 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
561 index_op = 0;
562 else if (REG_OK_FOR_INDEX_P (op1)
563 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
564 index_op = 1;
565 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
566 index_op = 0;
567 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
568 index_op = 1;
569 else if (REG_OK_FOR_INDEX_P (op1))
570 index_op = 1;
571 else
572 index_op = 0;
574 locI = &XEXP (x, index_op);
575 locB_reg = &XEXP (x, !index_op);
577 else if (code0 == REG)
579 locI = &XEXP (x, 0);
580 locB = &XEXP (x, 1);
582 else if (code1 == REG)
584 locI = &XEXP (x, 1);
585 locB = &XEXP (x, 0);
588 if (locI)
589 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
590 if (locB)
591 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
592 if (locB_reg)
593 scan_rtx_address (insn, locB_reg, MODE_BASE_REG_REG_CLASS (mode),
594 action, mode);
595 return;
598 case POST_INC:
599 case POST_DEC:
600 case POST_MODIFY:
601 case PRE_INC:
602 case PRE_DEC:
603 case PRE_MODIFY:
604 #ifndef AUTO_INC_DEC
605 /* If the target doesn't claim to handle autoinc, this must be
606 something special, like a stack push. Kill this chain. */
607 action = terminate_all_read;
608 #endif
609 break;
611 case MEM:
612 scan_rtx_address (insn, &XEXP (x, 0),
613 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
614 GET_MODE (x));
615 return;
617 case REG:
618 scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
619 return;
621 default:
622 break;
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
628 if (fmt[i] == 'e')
629 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
630 else if (fmt[i] == 'E')
631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
636 static void
637 scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
638 enum scan_actions action, enum op_type type, int earlyclobber)
640 const char *fmt;
641 rtx x = *loc;
642 enum rtx_code code = GET_CODE (x);
643 int i, j;
645 code = GET_CODE (x);
646 switch (code)
648 case CONST:
649 case CONST_INT:
650 case CONST_DOUBLE:
651 case CONST_VECTOR:
652 case SYMBOL_REF:
653 case LABEL_REF:
654 case CC0:
655 case PC:
656 return;
658 case REG:
659 scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
660 return;
662 case MEM:
663 scan_rtx_address (insn, &XEXP (x, 0),
664 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
665 GET_MODE (x));
666 return;
668 case SET:
669 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
670 scan_rtx (insn, &SET_DEST (x), cl, action, OP_OUT, 0);
671 return;
673 case STRICT_LOW_PART:
674 scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
675 return;
677 case ZERO_EXTRACT:
678 case SIGN_EXTRACT:
679 scan_rtx (insn, &XEXP (x, 0), cl, action,
680 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
681 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
682 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
683 return;
685 case POST_INC:
686 case PRE_INC:
687 case POST_DEC:
688 case PRE_DEC:
689 case POST_MODIFY:
690 case PRE_MODIFY:
691 /* Should only happen inside MEM. */
692 gcc_unreachable ();
694 case CLOBBER:
695 scan_rtx (insn, &SET_DEST (x), cl, action, OP_OUT, 1);
696 return;
698 case EXPR_LIST:
699 scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
700 if (XEXP (x, 1))
701 scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
702 return;
704 default:
705 break;
708 fmt = GET_RTX_FORMAT (code);
709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
711 if (fmt[i] == 'e')
712 scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
713 else if (fmt[i] == 'E')
714 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
715 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
719 /* Build def/use chain. */
721 static struct du_chain *
722 build_def_use (basic_block bb)
724 rtx insn;
726 open_chains = closed_chains = NULL;
728 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
730 if (INSN_P (insn))
732 int n_ops;
733 rtx note;
734 rtx old_operands[MAX_RECOG_OPERANDS];
735 rtx old_dups[MAX_DUP_OPERANDS];
736 int i, icode;
737 int alt;
738 int predicated;
740 /* Process the insn, determining its effect on the def-use
741 chains. We perform the following steps with the register
742 references in the insn:
743 (1) Any read that overlaps an open chain, but doesn't exactly
744 match, causes that chain to be closed. We can't deal
745 with overlaps yet.
746 (2) Any read outside an operand causes any chain it overlaps
747 with to be closed, since we can't replace it.
748 (3) Any read inside an operand is added if there's already
749 an open chain for it.
750 (4) For any REG_DEAD note we find, close open chains that
751 overlap it.
752 (5) For any write we find, close open chains that overlap it.
753 (6) For any write we find in an operand, make a new chain.
754 (7) For any REG_UNUSED, close any chains we just opened. */
756 icode = recog_memoized (insn);
757 extract_insn (insn);
758 if (! constrain_operands (1))
759 fatal_insn_not_found (insn);
760 preprocess_constraints ();
761 alt = which_alternative;
762 n_ops = recog_data.n_operands;
764 /* Simplify the code below by rewriting things to reflect
765 matching constraints. Also promote OP_OUT to OP_INOUT
766 in predicated instructions. */
768 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
769 for (i = 0; i < n_ops; ++i)
771 int matches = recog_op_alt[i][alt].matches;
772 if (matches >= 0)
773 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
774 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
775 || (predicated && recog_data.operand_type[i] == OP_OUT))
776 recog_data.operand_type[i] = OP_INOUT;
779 /* Step 1: Close chains for which we have overlapping reads. */
780 for (i = 0; i < n_ops; i++)
781 scan_rtx (insn, recog_data.operand_loc[i],
782 NO_REGS, terminate_overlapping_read,
783 recog_data.operand_type[i], 0);
785 /* Step 2: Close chains for which we have reads outside operands.
786 We do this by munging all operands into CC0, and closing
787 everything remaining. */
789 for (i = 0; i < n_ops; i++)
791 old_operands[i] = recog_data.operand[i];
792 /* Don't squash match_operator or match_parallel here, since
793 we don't know that all of the contained registers are
794 reachable by proper operands. */
795 if (recog_data.constraints[i][0] == '\0')
796 continue;
797 *recog_data.operand_loc[i] = cc0_rtx;
799 for (i = 0; i < recog_data.n_dups; i++)
801 int dup_num = recog_data.dup_num[i];
803 old_dups[i] = *recog_data.dup_loc[i];
804 *recog_data.dup_loc[i] = cc0_rtx;
806 /* For match_dup of match_operator or match_parallel, share
807 them, so that we don't miss changes in the dup. */
808 if (icode >= 0
809 && insn_data[icode].operand[dup_num].eliminable == 0)
810 old_dups[i] = recog_data.operand[dup_num];
813 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
814 OP_IN, 0);
816 for (i = 0; i < recog_data.n_dups; i++)
817 *recog_data.dup_loc[i] = old_dups[i];
818 for (i = 0; i < n_ops; i++)
819 *recog_data.operand_loc[i] = old_operands[i];
821 /* Step 2B: Can't rename function call argument registers. */
822 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
823 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
824 NO_REGS, terminate_all_read, OP_IN, 0);
826 /* Step 2C: Can't rename asm operands that were originally
827 hard registers. */
828 if (asm_noperands (PATTERN (insn)) > 0)
829 for (i = 0; i < n_ops; i++)
831 rtx *loc = recog_data.operand_loc[i];
832 rtx op = *loc;
834 if (REG_P (op)
835 && REGNO (op) == ORIGINAL_REGNO (op)
836 && (recog_data.operand_type[i] == OP_IN
837 || recog_data.operand_type[i] == OP_INOUT))
838 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
841 /* Step 3: Append to chains for reads inside operands. */
842 for (i = 0; i < n_ops + recog_data.n_dups; i++)
844 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
845 rtx *loc = (i < n_ops
846 ? recog_data.operand_loc[opn]
847 : recog_data.dup_loc[i - n_ops]);
848 enum reg_class cl = recog_op_alt[opn][alt].cl;
849 enum op_type type = recog_data.operand_type[opn];
851 /* Don't scan match_operand here, since we've no reg class
852 information to pass down. Any operands that we could
853 substitute in will be represented elsewhere. */
854 if (recog_data.constraints[opn][0] == '\0')
855 continue;
857 if (recog_op_alt[opn][alt].is_address)
858 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
859 else
860 scan_rtx (insn, loc, cl, mark_read, type, 0);
863 /* Step 4: Close chains for registers that die here.
864 Also record updates for REG_INC notes. */
865 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
867 if (REG_NOTE_KIND (note) == REG_DEAD)
868 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
869 OP_IN, 0);
870 else if (REG_NOTE_KIND (note) == REG_INC)
871 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
872 OP_INOUT, 0);
875 /* Step 4B: If this is a call, any chain live at this point
876 requires a caller-saved reg. */
877 if (CALL_P (insn))
879 struct du_chain *p;
880 for (p = open_chains; p; p = p->next_chain)
881 p->need_caller_save_reg = 1;
884 /* Step 5: Close open chains that overlap writes. Similar to
885 step 2, we hide in-out operands, since we do not want to
886 close these chains. */
888 for (i = 0; i < n_ops; i++)
890 old_operands[i] = recog_data.operand[i];
891 if (recog_data.operand_type[i] == OP_INOUT)
892 *recog_data.operand_loc[i] = cc0_rtx;
894 for (i = 0; i < recog_data.n_dups; i++)
896 int opn = recog_data.dup_num[i];
897 old_dups[i] = *recog_data.dup_loc[i];
898 if (recog_data.operand_type[opn] == OP_INOUT)
899 *recog_data.dup_loc[i] = cc0_rtx;
902 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
904 for (i = 0; i < recog_data.n_dups; i++)
905 *recog_data.dup_loc[i] = old_dups[i];
906 for (i = 0; i < n_ops; i++)
907 *recog_data.operand_loc[i] = old_operands[i];
909 /* Step 6: Begin new chains for writes inside operands. */
910 /* ??? Many targets have output constraints on the SET_DEST
911 of a call insn, which is stupid, since these are certainly
912 ABI defined hard registers. Don't change calls at all.
913 Similarly take special care for asm statement that originally
914 referenced hard registers. */
915 if (asm_noperands (PATTERN (insn)) > 0)
917 for (i = 0; i < n_ops; i++)
918 if (recog_data.operand_type[i] == OP_OUT)
920 rtx *loc = recog_data.operand_loc[i];
921 rtx op = *loc;
922 enum reg_class cl = recog_op_alt[i][alt].cl;
924 if (REG_P (op)
925 && REGNO (op) == ORIGINAL_REGNO (op))
926 continue;
928 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
929 recog_op_alt[i][alt].earlyclobber);
932 else if (!CALL_P (insn))
933 for (i = 0; i < n_ops + recog_data.n_dups; i++)
935 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
936 rtx *loc = (i < n_ops
937 ? recog_data.operand_loc[opn]
938 : recog_data.dup_loc[i - n_ops]);
939 enum reg_class cl = recog_op_alt[opn][alt].cl;
941 if (recog_data.operand_type[opn] == OP_OUT)
942 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
943 recog_op_alt[opn][alt].earlyclobber);
946 /* Step 7: Close chains for registers that were never
947 really used here. */
948 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
949 if (REG_NOTE_KIND (note) == REG_UNUSED)
950 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
951 OP_IN, 0);
953 if (insn == BB_END (bb))
954 break;
957 /* Since we close every chain when we find a REG_DEAD note, anything that
958 is still open lives past the basic block, so it can't be renamed. */
959 return closed_chains;
962 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
963 printed in reverse order as that's how we build them. */
965 static void
966 dump_def_use_chain (struct du_chain *chains)
968 while (chains)
970 struct du_chain *this = chains;
971 int r = REGNO (*this->loc);
972 int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
973 fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
974 while (this)
976 fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
977 reg_class_names[this->cl]);
978 this = this->next_use;
980 fprintf (dump_file, "\n");
981 chains = chains->next_chain;
985 /* The following code does forward propagation of hard register copies.
986 The object is to eliminate as many dependencies as possible, so that
987 we have the most scheduling freedom. As a side effect, we also clean
988 up some silly register allocation decisions made by reload. This
989 code may be obsoleted by a new register allocator. */
991 /* For each register, we have a list of registers that contain the same
992 value. The OLDEST_REGNO field points to the head of the list, and
993 the NEXT_REGNO field runs through the list. The MODE field indicates
994 what mode the data is known to be in; this field is VOIDmode when the
995 register is not known to contain valid data. */
997 struct value_data_entry
999 enum machine_mode mode;
1000 unsigned int oldest_regno;
1001 unsigned int next_regno;
1004 struct value_data
1006 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1007 unsigned int max_value_regs;
1010 static void kill_value_one_regno (unsigned, struct value_data *);
1011 static void kill_value_regno (unsigned, unsigned, struct value_data *);
1012 static void kill_value (rtx, struct value_data *);
1013 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1014 static void init_value_data (struct value_data *);
1015 static void kill_clobbered_value (rtx, rtx, void *);
1016 static void kill_set_value (rtx, rtx, void *);
1017 static int kill_autoinc_value (rtx *, void *);
1018 static void copy_value (rtx, rtx, struct value_data *);
1019 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1020 unsigned int);
1021 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1022 enum machine_mode, unsigned int, unsigned int);
1023 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1024 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1025 struct value_data *);
1026 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1027 enum machine_mode, rtx,
1028 struct value_data *);
1029 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1030 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1031 extern void debug_value_data (struct value_data *);
1032 #ifdef ENABLE_CHECKING
1033 static void validate_value_data (struct value_data *);
1034 #endif
1036 /* Kill register REGNO. This involves removing it from any value
1037 lists, and resetting the value mode to VOIDmode. This is only a
1038 helper function; it does not handle any hard registers overlapping
1039 with REGNO. */
1041 static void
1042 kill_value_one_regno (unsigned int regno, struct value_data *vd)
1044 unsigned int i, next;
1046 if (vd->e[regno].oldest_regno != regno)
1048 for (i = vd->e[regno].oldest_regno;
1049 vd->e[i].next_regno != regno;
1050 i = vd->e[i].next_regno)
1051 continue;
1052 vd->e[i].next_regno = vd->e[regno].next_regno;
1054 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1056 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1057 vd->e[i].oldest_regno = next;
1060 vd->e[regno].mode = VOIDmode;
1061 vd->e[regno].oldest_regno = regno;
1062 vd->e[regno].next_regno = INVALID_REGNUM;
1064 #ifdef ENABLE_CHECKING
1065 validate_value_data (vd);
1066 #endif
1069 /* Kill the value in register REGNO for NREGS, and any other registers
1070 whose values overlap. */
1072 static void
1073 kill_value_regno (unsigned int regno, unsigned int nregs,
1074 struct value_data *vd)
1076 unsigned int j;
1078 /* Kill the value we're told to kill. */
1079 for (j = 0; j < nregs; ++j)
1080 kill_value_one_regno (regno + j, vd);
1082 /* Kill everything that overlapped what we're told to kill. */
1083 if (regno < vd->max_value_regs)
1084 j = 0;
1085 else
1086 j = regno - vd->max_value_regs;
1087 for (; j < regno; ++j)
1089 unsigned int i, n;
1090 if (vd->e[j].mode == VOIDmode)
1091 continue;
1092 n = hard_regno_nregs[j][vd->e[j].mode];
1093 if (j + n > regno)
1094 for (i = 0; i < n; ++i)
1095 kill_value_one_regno (j + i, vd);
1099 /* Kill X. This is a convenience function wrapping kill_value_regno
1100 so that we mind the mode the register is in. */
1102 static void
1103 kill_value (rtx x, struct value_data *vd)
1105 /* SUBREGS are supposed to have been eliminated by now. But some
1106 ports, e.g. i386 sse, use them to smuggle vector type information
1107 through to instruction selection. Each such SUBREG should simplify,
1108 so if we get a NULL we've done something wrong elsewhere. */
1110 if (GET_CODE (x) == SUBREG)
1111 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1112 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1113 if (REG_P (x))
1115 unsigned int regno = REGNO (x);
1116 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
1118 kill_value_regno (regno, n, vd);
1122 /* Remember that REGNO is valid in MODE. */
1124 static void
1125 set_value_regno (unsigned int regno, enum machine_mode mode,
1126 struct value_data *vd)
1128 unsigned int nregs;
1130 vd->e[regno].mode = mode;
1132 nregs = hard_regno_nregs[regno][mode];
1133 if (nregs > vd->max_value_regs)
1134 vd->max_value_regs = nregs;
1137 /* Initialize VD such that there are no known relationships between regs. */
1139 static void
1140 init_value_data (struct value_data *vd)
1142 int i;
1143 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1145 vd->e[i].mode = VOIDmode;
1146 vd->e[i].oldest_regno = i;
1147 vd->e[i].next_regno = INVALID_REGNUM;
1149 vd->max_value_regs = 0;
1152 /* Called through note_stores. If X is clobbered, kill its value. */
1154 static void
1155 kill_clobbered_value (rtx x, rtx set, void *data)
1157 struct value_data *vd = data;
1158 if (GET_CODE (set) == CLOBBER)
1159 kill_value (x, vd);
1162 /* Called through note_stores. If X is set, not clobbered, kill its
1163 current value and install it as the root of its own value list. */
1165 static void
1166 kill_set_value (rtx x, rtx set, void *data)
1168 struct value_data *vd = data;
1169 if (GET_CODE (set) != CLOBBER)
1171 kill_value (x, vd);
1172 if (REG_P (x))
1173 set_value_regno (REGNO (x), GET_MODE (x), vd);
1177 /* Called through for_each_rtx. Kill any register used as the base of an
1178 auto-increment expression, and install that register as the root of its
1179 own value list. */
1181 static int
1182 kill_autoinc_value (rtx *px, void *data)
1184 rtx x = *px;
1185 struct value_data *vd = data;
1187 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
1189 x = XEXP (x, 0);
1190 kill_value (x, vd);
1191 set_value_regno (REGNO (x), Pmode, vd);
1192 return -1;
1195 return 0;
1198 /* Assert that SRC has been copied to DEST. Adjust the data structures
1199 to reflect that SRC contains an older copy of the shared value. */
1201 static void
1202 copy_value (rtx dest, rtx src, struct value_data *vd)
1204 unsigned int dr = REGNO (dest);
1205 unsigned int sr = REGNO (src);
1206 unsigned int dn, sn;
1207 unsigned int i;
1209 /* ??? At present, it's possible to see noop sets. It'd be nice if
1210 this were cleaned up beforehand... */
1211 if (sr == dr)
1212 return;
1214 /* Do not propagate copies to the stack pointer, as that can leave
1215 memory accesses with no scheduling dependency on the stack update. */
1216 if (dr == STACK_POINTER_REGNUM)
1217 return;
1219 /* Likewise with the frame pointer, if we're using one. */
1220 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1221 return;
1223 /* If SRC and DEST overlap, don't record anything. */
1224 dn = hard_regno_nregs[dr][GET_MODE (dest)];
1225 sn = hard_regno_nregs[sr][GET_MODE (dest)];
1226 if ((dr > sr && dr < sr + sn)
1227 || (sr > dr && sr < dr + dn))
1228 return;
1230 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1231 assign it now and assume the value came from an input argument
1232 or somesuch. */
1233 if (vd->e[sr].mode == VOIDmode)
1234 set_value_regno (sr, vd->e[dr].mode, vd);
1236 /* If we are narrowing the input to a smaller number of hard regs,
1237 and it is in big endian, we are really extracting a high part.
1238 Since we generally associate a low part of a value with the value itself,
1239 we must not do the same for the high part.
1240 Note we can still get low parts for the same mode combination through
1241 a two-step copy involving differently sized hard regs.
1242 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1243 (set (reg:DI r0) (reg:DI fr0))
1244 (set (reg:SI fr2) (reg:SI r0))
1245 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1246 (set (reg:SI fr2) (reg:SI fr0))
1247 loads the high part of (reg:DI fr0) into fr2.
1249 We can't properly represent the latter case in our tables, so don't
1250 record anything then. */
1251 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
1252 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1253 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1254 return;
1256 /* If SRC had been assigned a mode narrower than the copy, we can't
1257 link DEST into the chain, because not all of the pieces of the
1258 copy came from oldest_regno. */
1259 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
1260 return;
1262 /* Link DR at the end of the value chain used by SR. */
1264 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1266 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1267 continue;
1268 vd->e[i].next_regno = dr;
1270 #ifdef ENABLE_CHECKING
1271 validate_value_data (vd);
1272 #endif
1275 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1277 static bool
1278 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1279 unsigned int regno ATTRIBUTE_UNUSED)
1281 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1282 return false;
1284 #ifdef CANNOT_CHANGE_MODE_CLASS
1285 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1286 #endif
1288 return true;
1291 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1292 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1293 in NEW_MODE.
1294 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1296 static rtx
1297 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1298 enum machine_mode new_mode, unsigned int regno,
1299 unsigned int copy_regno ATTRIBUTE_UNUSED)
1301 if (orig_mode == new_mode)
1302 return gen_rtx_raw_REG (new_mode, regno);
1303 else if (mode_change_ok (orig_mode, new_mode, regno))
1305 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
1306 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
1307 int copy_offset
1308 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1309 int offset
1310 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1311 int byteoffset = offset % UNITS_PER_WORD;
1312 int wordoffset = offset - byteoffset;
1314 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1315 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1316 return gen_rtx_raw_REG (new_mode,
1317 regno + subreg_regno_offset (regno, orig_mode,
1318 offset,
1319 new_mode));
1321 return NULL_RTX;
1324 /* Find the oldest copy of the value contained in REGNO that is in
1325 register class CL and has mode MODE. If found, return an rtx
1326 of that oldest register, otherwise return NULL. */
1328 static rtx
1329 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
1331 unsigned int regno = REGNO (reg);
1332 enum machine_mode mode = GET_MODE (reg);
1333 unsigned int i;
1335 /* If we are accessing REG in some mode other that what we set it in,
1336 make sure that the replacement is valid. In particular, consider
1337 (set (reg:DI r11) (...))
1338 (set (reg:SI r9) (reg:SI r11))
1339 (set (reg:SI r10) (...))
1340 (set (...) (reg:DI r9))
1341 Replacing r9 with r11 is invalid. */
1342 if (mode != vd->e[regno].mode)
1344 if (hard_regno_nregs[regno][mode]
1345 > hard_regno_nregs[regno][vd->e[regno].mode])
1346 return NULL_RTX;
1349 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1351 enum machine_mode oldmode = vd->e[i].mode;
1352 rtx new;
1353 unsigned int last;
1355 for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
1356 if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
1357 return NULL_RTX;
1359 new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1360 if (new)
1362 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1363 REG_ATTRS (new) = REG_ATTRS (reg);
1364 return new;
1368 return NULL_RTX;
1371 /* If possible, replace the register at *LOC with the oldest register
1372 in register class CL. Return true if successfully replaced. */
1374 static bool
1375 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
1376 struct value_data *vd)
1378 rtx new = find_oldest_value_reg (cl, *loc, vd);
1379 if (new)
1381 if (dump_file)
1382 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
1383 INSN_UID (insn), REGNO (*loc), REGNO (new));
1385 *loc = new;
1386 return true;
1388 return false;
1391 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1392 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1393 BASE_REG_CLASS depending on how the register is being considered. */
1395 static bool
1396 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
1397 enum machine_mode mode, rtx insn,
1398 struct value_data *vd)
1400 rtx x = *loc;
1401 RTX_CODE code = GET_CODE (x);
1402 const char *fmt;
1403 int i, j;
1404 bool changed = false;
1406 switch (code)
1408 case PLUS:
1410 rtx orig_op0 = XEXP (x, 0);
1411 rtx orig_op1 = XEXP (x, 1);
1412 RTX_CODE code0 = GET_CODE (orig_op0);
1413 RTX_CODE code1 = GET_CODE (orig_op1);
1414 rtx op0 = orig_op0;
1415 rtx op1 = orig_op1;
1416 rtx *locI = NULL;
1417 rtx *locB = NULL;
1418 rtx *locB_reg = NULL;
1420 if (GET_CODE (op0) == SUBREG)
1422 op0 = SUBREG_REG (op0);
1423 code0 = GET_CODE (op0);
1426 if (GET_CODE (op1) == SUBREG)
1428 op1 = SUBREG_REG (op1);
1429 code1 = GET_CODE (op1);
1432 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1433 || code0 == ZERO_EXTEND || code1 == MEM)
1435 locI = &XEXP (x, 0);
1436 locB = &XEXP (x, 1);
1438 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1439 || code1 == ZERO_EXTEND || code0 == MEM)
1441 locI = &XEXP (x, 1);
1442 locB = &XEXP (x, 0);
1444 else if (code0 == CONST_INT || code0 == CONST
1445 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1446 locB = &XEXP (x, 1);
1447 else if (code1 == CONST_INT || code1 == CONST
1448 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1449 locB = &XEXP (x, 0);
1450 else if (code0 == REG && code1 == REG)
1452 int index_op;
1454 if (REG_OK_FOR_INDEX_P (op0)
1455 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
1456 index_op = 0;
1457 else if (REG_OK_FOR_INDEX_P (op1)
1458 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
1459 index_op = 1;
1460 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
1461 index_op = 0;
1462 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
1463 index_op = 1;
1464 else if (REG_OK_FOR_INDEX_P (op1))
1465 index_op = 1;
1466 else
1467 index_op = 0;
1469 locI = &XEXP (x, index_op);
1470 locB_reg = &XEXP (x, !index_op);
1472 else if (code0 == REG)
1474 locI = &XEXP (x, 0);
1475 locB = &XEXP (x, 1);
1477 else if (code1 == REG)
1479 locI = &XEXP (x, 1);
1480 locB = &XEXP (x, 0);
1483 if (locI)
1484 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1485 insn, vd);
1486 if (locB)
1487 changed |= replace_oldest_value_addr (locB,
1488 MODE_BASE_REG_CLASS (mode),
1489 mode, insn, vd);
1490 if (locB_reg)
1491 changed |= replace_oldest_value_addr (locB_reg,
1492 MODE_BASE_REG_REG_CLASS (mode),
1493 mode, insn, vd);
1494 return changed;
1497 case POST_INC:
1498 case POST_DEC:
1499 case POST_MODIFY:
1500 case PRE_INC:
1501 case PRE_DEC:
1502 case PRE_MODIFY:
1503 return false;
1505 case MEM:
1506 return replace_oldest_value_mem (x, insn, vd);
1508 case REG:
1509 return replace_oldest_value_reg (loc, cl, insn, vd);
1511 default:
1512 break;
1515 fmt = GET_RTX_FORMAT (code);
1516 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1518 if (fmt[i] == 'e')
1519 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
1520 insn, vd);
1521 else if (fmt[i] == 'E')
1522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1523 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
1524 mode, insn, vd);
1527 return changed;
1530 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1532 static bool
1533 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1535 return replace_oldest_value_addr (&XEXP (x, 0),
1536 MODE_BASE_REG_CLASS (GET_MODE (x)),
1537 GET_MODE (x), insn, vd);
1540 /* Perform the forward copy propagation on basic block BB. */
1542 static bool
1543 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1545 bool changed = false;
1546 rtx insn;
1548 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1550 int n_ops, i, alt, predicated;
1551 bool is_asm;
1552 rtx set;
1554 if (! INSN_P (insn))
1556 if (insn == BB_END (bb))
1557 break;
1558 else
1559 continue;
1562 set = single_set (insn);
1563 extract_insn (insn);
1564 if (! constrain_operands (1))
1565 fatal_insn_not_found (insn);
1566 preprocess_constraints ();
1567 alt = which_alternative;
1568 n_ops = recog_data.n_operands;
1569 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1571 /* Simplify the code below by rewriting things to reflect
1572 matching constraints. Also promote OP_OUT to OP_INOUT
1573 in predicated instructions. */
1575 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1576 for (i = 0; i < n_ops; ++i)
1578 int matches = recog_op_alt[i][alt].matches;
1579 if (matches >= 0)
1580 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1581 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1582 || (predicated && recog_data.operand_type[i] == OP_OUT))
1583 recog_data.operand_type[i] = OP_INOUT;
1586 /* For each earlyclobber operand, zap the value data. */
1587 for (i = 0; i < n_ops; i++)
1588 if (recog_op_alt[i][alt].earlyclobber)
1589 kill_value (recog_data.operand[i], vd);
1591 /* Within asms, a clobber cannot overlap inputs or outputs.
1592 I wouldn't think this were true for regular insns, but
1593 scan_rtx treats them like that... */
1594 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1596 /* Kill all auto-incremented values. */
1597 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1598 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1600 /* Kill all early-clobbered operands. */
1601 for (i = 0; i < n_ops; i++)
1602 if (recog_op_alt[i][alt].earlyclobber)
1603 kill_value (recog_data.operand[i], vd);
1605 /* Special-case plain move instructions, since we may well
1606 be able to do the move from a different register class. */
1607 if (set && REG_P (SET_SRC (set)))
1609 rtx src = SET_SRC (set);
1610 unsigned int regno = REGNO (src);
1611 enum machine_mode mode = GET_MODE (src);
1612 unsigned int i;
1613 rtx new;
1615 /* If we are accessing SRC in some mode other that what we
1616 set it in, make sure that the replacement is valid. */
1617 if (mode != vd->e[regno].mode)
1619 if (hard_regno_nregs[regno][mode]
1620 > hard_regno_nregs[regno][vd->e[regno].mode])
1621 goto no_move_special_case;
1624 /* If the destination is also a register, try to find a source
1625 register in the same class. */
1626 if (REG_P (SET_DEST (set)))
1628 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1629 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1631 if (dump_file)
1632 fprintf (dump_file,
1633 "insn %u: replaced reg %u with %u\n",
1634 INSN_UID (insn), regno, REGNO (new));
1635 changed = true;
1636 goto did_replacement;
1640 /* Otherwise, try all valid registers and see if its valid. */
1641 for (i = vd->e[regno].oldest_regno; i != regno;
1642 i = vd->e[i].next_regno)
1644 new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1645 mode, i, regno);
1646 if (new != NULL_RTX)
1648 if (validate_change (insn, &SET_SRC (set), new, 0))
1650 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1651 REG_ATTRS (new) = REG_ATTRS (src);
1652 if (dump_file)
1653 fprintf (dump_file,
1654 "insn %u: replaced reg %u with %u\n",
1655 INSN_UID (insn), regno, REGNO (new));
1656 changed = true;
1657 goto did_replacement;
1662 no_move_special_case:
1664 /* For each input operand, replace a hard register with the
1665 eldest live copy that's in an appropriate register class. */
1666 for (i = 0; i < n_ops; i++)
1668 bool replaced = false;
1670 /* Don't scan match_operand here, since we've no reg class
1671 information to pass down. Any operands that we could
1672 substitute in will be represented elsewhere. */
1673 if (recog_data.constraints[i][0] == '\0')
1674 continue;
1676 /* Don't replace in asms intentionally referencing hard regs. */
1677 if (is_asm && REG_P (recog_data.operand[i])
1678 && (REGNO (recog_data.operand[i])
1679 == ORIGINAL_REGNO (recog_data.operand[i])))
1680 continue;
1682 if (recog_data.operand_type[i] == OP_IN)
1684 if (recog_op_alt[i][alt].is_address)
1685 replaced
1686 = replace_oldest_value_addr (recog_data.operand_loc[i],
1687 recog_op_alt[i][alt].cl,
1688 VOIDmode, insn, vd);
1689 else if (REG_P (recog_data.operand[i]))
1690 replaced
1691 = replace_oldest_value_reg (recog_data.operand_loc[i],
1692 recog_op_alt[i][alt].cl,
1693 insn, vd);
1694 else if (MEM_P (recog_data.operand[i]))
1695 replaced = replace_oldest_value_mem (recog_data.operand[i],
1696 insn, vd);
1698 else if (MEM_P (recog_data.operand[i]))
1699 replaced = replace_oldest_value_mem (recog_data.operand[i],
1700 insn, vd);
1702 /* If we performed any replacement, update match_dups. */
1703 if (replaced)
1705 int j;
1706 rtx new;
1708 changed = true;
1710 new = *recog_data.operand_loc[i];
1711 recog_data.operand[i] = new;
1712 for (j = 0; j < recog_data.n_dups; j++)
1713 if (recog_data.dup_num[j] == i)
1714 *recog_data.dup_loc[j] = new;
1718 did_replacement:
1719 /* Clobber call-clobbered registers. */
1720 if (CALL_P (insn))
1721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1722 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1723 kill_value_regno (i, 1, vd);
1725 /* Notice stores. */
1726 note_stores (PATTERN (insn), kill_set_value, vd);
1728 /* Notice copies. */
1729 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1730 copy_value (SET_DEST (set), SET_SRC (set), vd);
1732 if (insn == BB_END (bb))
1733 break;
1736 return changed;
1739 /* Main entry point for the forward copy propagation optimization. */
1741 void
1742 copyprop_hardreg_forward (void)
1744 struct value_data *all_vd;
1745 bool need_refresh;
1746 basic_block bb, bbp = 0;
1748 need_refresh = false;
1750 all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1752 FOR_EACH_BB (bb)
1754 /* If a block has a single predecessor, that we've already
1755 processed, begin with the value data that was live at
1756 the end of the predecessor block. */
1757 /* ??? Ought to use more intelligent queuing of blocks. */
1758 if (EDGE_COUNT (bb->preds) > 0)
1759 for (bbp = bb; bbp && bbp != EDGE_PRED (bb, 0)->src; bbp = bbp->prev_bb);
1760 if (EDGE_COUNT (bb->preds) == 1
1761 && ! (EDGE_PRED (bb, 0)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1762 && EDGE_PRED (bb, 0)->src != ENTRY_BLOCK_PTR
1763 && bbp)
1764 all_vd[bb->index] = all_vd[EDGE_PRED (bb, 0)->src->index];
1765 else
1766 init_value_data (all_vd + bb->index);
1768 if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1769 need_refresh = true;
1772 if (need_refresh)
1774 if (dump_file)
1775 fputs ("\n\n", dump_file);
1777 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1778 to scan, so we have to do a life update with no initial set of
1779 blocks Just In Case. */
1780 delete_noop_moves ();
1781 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1782 PROP_DEATH_NOTES
1783 | PROP_SCAN_DEAD_CODE
1784 | PROP_KILL_DEAD_CODE);
1787 free (all_vd);
1790 /* Dump the value chain data to stderr. */
1792 void
1793 debug_value_data (struct value_data *vd)
1795 HARD_REG_SET set;
1796 unsigned int i, j;
1798 CLEAR_HARD_REG_SET (set);
1800 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1801 if (vd->e[i].oldest_regno == i)
1803 if (vd->e[i].mode == VOIDmode)
1805 if (vd->e[i].next_regno != INVALID_REGNUM)
1806 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1807 i, vd->e[i].next_regno);
1808 continue;
1811 SET_HARD_REG_BIT (set, i);
1812 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1814 for (j = vd->e[i].next_regno;
1815 j != INVALID_REGNUM;
1816 j = vd->e[j].next_regno)
1818 if (TEST_HARD_REG_BIT (set, j))
1820 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1821 return;
1824 if (vd->e[j].oldest_regno != i)
1826 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1827 j, vd->e[j].oldest_regno);
1828 return;
1830 SET_HARD_REG_BIT (set, j);
1831 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1833 fputc ('\n', stderr);
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1837 if (! TEST_HARD_REG_BIT (set, i)
1838 && (vd->e[i].mode != VOIDmode
1839 || vd->e[i].oldest_regno != i
1840 || vd->e[i].next_regno != INVALID_REGNUM))
1841 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1842 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1843 vd->e[i].next_regno);
1846 #ifdef ENABLE_CHECKING
1847 static void
1848 validate_value_data (struct value_data *vd)
1850 HARD_REG_SET set;
1851 unsigned int i, j;
1853 CLEAR_HARD_REG_SET (set);
1855 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1856 if (vd->e[i].oldest_regno == i)
1858 if (vd->e[i].mode == VOIDmode)
1860 if (vd->e[i].next_regno != INVALID_REGNUM)
1861 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1862 i, vd->e[i].next_regno);
1863 continue;
1866 SET_HARD_REG_BIT (set, i);
1868 for (j = vd->e[i].next_regno;
1869 j != INVALID_REGNUM;
1870 j = vd->e[j].next_regno)
1872 if (TEST_HARD_REG_BIT (set, j))
1873 internal_error ("validate_value_data: Loop in regno chain (%u)",
1875 if (vd->e[j].oldest_regno != i)
1876 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1877 j, vd->e[j].oldest_regno);
1879 SET_HARD_REG_BIT (set, j);
1883 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1884 if (! TEST_HARD_REG_BIT (set, i)
1885 && (vd->e[i].mode != VOIDmode
1886 || vd->e[i].oldest_regno != i
1887 || vd->e[i].next_regno != INVALID_REGNUM))
1888 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1889 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1890 vd->e[i].next_regno);
1892 #endif