2014-08-15 Andrew Sutton <andrew.n.sutton@gmail.com>
[official-gcc.git] / gcc / emit-rtl.c
blob0ca59adc4aeb47e13787686443bd8422cc4a6a3a
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "varasm.h"
42 #include "basic-block.h"
43 #include "tree-eh.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "stringpool.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "debug.h"
56 #include "langhooks.h"
57 #include "df.h"
58 #include "params.h"
59 #include "target.h"
60 #include "builtins.h"
62 struct target_rtl default_target_rtl;
63 #if SWITCHABLE_TARGET
64 struct target_rtl *this_target_rtl = &default_target_rtl;
65 #endif
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69 /* Commonly used modes. */
71 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
73 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76 /* Datastructures maintained for currently processed function in RTL form. */
78 struct rtl_data x_rtl;
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
85 rtx * regno_reg_rtx;
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
90 static GTY(()) int label_num = 1;
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99 rtx const_true_rtx;
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconsthalf;
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
116 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx pc_rtx;
120 rtx ret_rtx;
121 rtx simple_return_rtx;
122 rtx cc0_rtx;
124 /* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 #if TARGET_SUPPORTS_WIDE_INT
154 static hashval_t const_wide_int_htab_hash (const void *);
155 static int const_wide_int_htab_eq (const void *, const void *);
156 static rtx lookup_const_wide_int (rtx);
157 #endif
158 static hashval_t const_double_htab_hash (const void *);
159 static int const_double_htab_eq (const void *, const void *);
160 static rtx lookup_const_double (rtx);
161 static hashval_t const_fixed_htab_hash (const void *);
162 static int const_fixed_htab_eq (const void *, const void *);
163 static rtx lookup_const_fixed (rtx);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
174 /* Returns a hash code for X (which is a really a CONST_INT). */
176 static hashval_t
177 const_int_htab_hash (const void *x)
179 return (hashval_t) INTVAL ((const_rtx) x);
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
186 static int
187 const_int_htab_eq (const void *x, const void *y)
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
192 #if TARGET_SUPPORTS_WIDE_INT
193 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
195 static hashval_t
196 const_wide_int_htab_hash (const void *x)
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
205 return (hashval_t) hash;
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
212 static int
213 const_wide_int_htab_eq (const void *x, const void *y)
215 int i;
216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
225 return 1;
227 #endif
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
230 static hashval_t
231 const_double_htab_hash (const void *x)
233 const_rtx const value = (const_rtx) x;
234 hashval_t h;
236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
244 return h;
247 /* Returns nonzero if the value represented by X (really a ...)
248 is the same as that represented by Y (really a ...) */
249 static int
250 const_double_htab_eq (const void *x, const void *y)
252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
264 /* Returns a hash code for X (which is really a CONST_FIXED). */
266 static hashval_t
267 const_fixed_htab_hash (const void *x)
269 const_rtx const value = (const_rtx) x;
270 hashval_t h;
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
278 /* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
281 static int
282 const_fixed_htab_eq (const void *x, const void *y)
284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
291 /* Return true if the given memory attributes are equal. */
293 bool
294 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
306 && p->addrspace == q->addrspace
307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
312 /* Set MEM's memory attributes so that they are the same as ATTRS. */
314 static void
315 set_mem_attrs (rtx mem, mem_attrs *attrs)
317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
320 MEM_ATTRS (mem) = 0;
321 return;
324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
332 /* Returns a hash code for X (which is a really a reg_attrs *). */
334 static hashval_t
335 reg_attrs_htab_hash (const void *x)
337 const reg_attrs *const p = (const reg_attrs *) x;
339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
342 /* Returns nonzero if the value represented by X (which is really a
343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
346 static int
347 reg_attrs_htab_eq (const void *x, const void *y)
349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
352 return (p->decl == q->decl && p->offset == q->offset);
354 /* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
358 static reg_attrs *
359 get_reg_attrs (tree decl, int offset)
361 reg_attrs attrs;
362 void **slot;
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
368 attrs.decl = decl;
369 attrs.offset = offset;
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
374 *slot = ggc_alloc<reg_attrs> ();
375 memcpy (*slot, &attrs, sizeof (reg_attrs));
378 return (reg_attrs *) *slot;
382 #if !HAVE_blockage
383 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
387 gen_blockage (void)
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
393 #endif
396 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
401 gen_raw_REG (enum machine_mode mode, int regno)
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
408 /* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
413 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
415 void **slot;
417 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
418 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
420 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
421 if (const_true_rtx && arg == STORE_FLAG_VALUE)
422 return const_true_rtx;
423 #endif
425 /* Look up the CONST_INT in the hash table. */
426 slot = htab_find_slot_with_hash (const_int_htab, &arg,
427 (hashval_t) arg, INSERT);
428 if (*slot == 0)
429 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
431 return (rtx) *slot;
435 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
437 return GEN_INT (trunc_int_for_mode (c, mode));
440 /* CONST_DOUBLEs might be created from pairs of integers, or from
441 REAL_VALUE_TYPEs. Also, their length is known only at run time,
442 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
444 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
445 hash table. If so, return its counterpart; otherwise add it
446 to the hash table and return it. */
447 static rtx
448 lookup_const_double (rtx real)
450 void **slot = htab_find_slot (const_double_htab, real, INSERT);
451 if (*slot == 0)
452 *slot = real;
454 return (rtx) *slot;
457 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
458 VALUE in mode MODE. */
460 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
462 rtx real = rtx_alloc (CONST_DOUBLE);
463 PUT_MODE (real, mode);
465 real->u.rv = value;
467 return lookup_const_double (real);
470 /* Determine whether FIXED, a CONST_FIXED, already exists in the
471 hash table. If so, return its counterpart; otherwise add it
472 to the hash table and return it. */
474 static rtx
475 lookup_const_fixed (rtx fixed)
477 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
478 if (*slot == 0)
479 *slot = fixed;
481 return (rtx) *slot;
484 /* Return a CONST_FIXED rtx for a fixed-point value specified by
485 VALUE in mode MODE. */
488 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
490 rtx fixed = rtx_alloc (CONST_FIXED);
491 PUT_MODE (fixed, mode);
493 fixed->u.fv = value;
495 return lookup_const_fixed (fixed);
498 #if TARGET_SUPPORTS_WIDE_INT == 0
499 /* Constructs double_int from rtx CST. */
501 double_int
502 rtx_to_double_int (const_rtx cst)
504 double_int r;
506 if (CONST_INT_P (cst))
507 r = double_int::from_shwi (INTVAL (cst));
508 else if (CONST_DOUBLE_AS_INT_P (cst))
510 r.low = CONST_DOUBLE_LOW (cst);
511 r.high = CONST_DOUBLE_HIGH (cst);
513 else
514 gcc_unreachable ();
516 return r;
518 #endif
520 #if TARGET_SUPPORTS_WIDE_INT
521 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
522 If so, return its counterpart; otherwise add it to the hash table and
523 return it. */
525 static rtx
526 lookup_const_wide_int (rtx wint)
528 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
529 if (*slot == 0)
530 *slot = wint;
532 return (rtx) *slot;
534 #endif
536 /* Return an rtx constant for V, given that the constant has mode MODE.
537 The returned rtx will be a CONST_INT if V fits, otherwise it will be
538 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
539 (if TARGET_SUPPORTS_WIDE_INT). */
542 immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
544 unsigned int len = v.get_len ();
545 unsigned int prec = GET_MODE_PRECISION (mode);
547 /* Allow truncation but not extension since we do not know if the
548 number is signed or unsigned. */
549 gcc_assert (prec <= v.get_precision ());
551 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
552 return gen_int_mode (v.elt (0), mode);
554 #if TARGET_SUPPORTS_WIDE_INT
556 unsigned int i;
557 rtx value;
558 unsigned int blocks_needed
559 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
561 if (len > blocks_needed)
562 len = blocks_needed;
564 value = const_wide_int_alloc (len);
566 /* It is so tempting to just put the mode in here. Must control
567 myself ... */
568 PUT_MODE (value, VOIDmode);
569 CWI_PUT_NUM_ELEM (value, len);
571 for (i = 0; i < len; i++)
572 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
574 return lookup_const_wide_int (value);
576 #else
577 return immed_double_const (v.elt (0), v.elt (1), mode);
578 #endif
581 #if TARGET_SUPPORTS_WIDE_INT == 0
582 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
583 of ints: I0 is the low-order word and I1 is the high-order word.
584 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
585 implied upper bits are copies of the high bit of i1. The value
586 itself is neither signed nor unsigned. Do not use this routine for
587 non-integer modes; convert to REAL_VALUE_TYPE and use
588 CONST_DOUBLE_FROM_REAL_VALUE. */
591 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
593 rtx value;
594 unsigned int i;
596 /* There are the following cases (note that there are no modes with
597 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
599 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
600 gen_int_mode.
601 2) If the value of the integer fits into HOST_WIDE_INT anyway
602 (i.e., i1 consists only from copies of the sign bit, and sign
603 of i0 and i1 are the same), then we return a CONST_INT for i0.
604 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
605 if (mode != VOIDmode)
607 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
608 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
609 /* We can get a 0 for an error mark. */
610 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
611 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
613 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (i0, mode);
617 /* If this integer fits in one word, return a CONST_INT. */
618 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
619 return GEN_INT (i0);
621 /* We use VOIDmode for integers. */
622 value = rtx_alloc (CONST_DOUBLE);
623 PUT_MODE (value, VOIDmode);
625 CONST_DOUBLE_LOW (value) = i0;
626 CONST_DOUBLE_HIGH (value) = i1;
628 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
629 XWINT (value, i) = 0;
631 return lookup_const_double (value);
633 #endif
636 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
638 /* In case the MD file explicitly references the frame pointer, have
639 all such references point to the same frame pointer. This is
640 used during frame pointer elimination to distinguish the explicit
641 references to these registers from pseudos that happened to be
642 assigned to them.
644 If we have eliminated the frame pointer or arg pointer, we will
645 be using it as a normal register, for example as a spill
646 register. In such cases, we might be accessing it in a mode that
647 is not Pmode and therefore cannot use the pre-allocated rtx.
649 Also don't do this when we are making new REGs in reload, since
650 we don't want to get confused with the real pointers. */
652 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
654 if (regno == FRAME_POINTER_REGNUM
655 && (!reload_completed || frame_pointer_needed))
656 return frame_pointer_rtx;
657 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
658 if (regno == HARD_FRAME_POINTER_REGNUM
659 && (!reload_completed || frame_pointer_needed))
660 return hard_frame_pointer_rtx;
661 #endif
662 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
663 if (regno == ARG_POINTER_REGNUM)
664 return arg_pointer_rtx;
665 #endif
666 #ifdef RETURN_ADDRESS_POINTER_REGNUM
667 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
668 return return_address_pointer_rtx;
669 #endif
670 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
671 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
672 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
673 return pic_offset_table_rtx;
674 if (regno == STACK_POINTER_REGNUM)
675 return stack_pointer_rtx;
678 #if 0
679 /* If the per-function register table has been set up, try to re-use
680 an existing entry in that table to avoid useless generation of RTL.
682 This code is disabled for now until we can fix the various backends
683 which depend on having non-shared hard registers in some cases. Long
684 term we want to re-enable this code as it can significantly cut down
685 on the amount of useless RTL that gets generated.
687 We'll also need to fix some code that runs after reload that wants to
688 set ORIGINAL_REGNO. */
690 if (cfun
691 && cfun->emit
692 && regno_reg_rtx
693 && regno < FIRST_PSEUDO_REGISTER
694 && reg_raw_mode[regno] == mode)
695 return regno_reg_rtx[regno];
696 #endif
698 return gen_raw_REG (mode, regno);
702 gen_rtx_MEM (enum machine_mode mode, rtx addr)
704 rtx rt = gen_rtx_raw_MEM (mode, addr);
706 /* This field is not cleared by the mere allocation of the rtx, so
707 we clear it here. */
708 MEM_ATTRS (rt) = 0;
710 return rt;
713 /* Generate a memory referring to non-trapping constant memory. */
716 gen_const_mem (enum machine_mode mode, rtx addr)
718 rtx mem = gen_rtx_MEM (mode, addr);
719 MEM_READONLY_P (mem) = 1;
720 MEM_NOTRAP_P (mem) = 1;
721 return mem;
724 /* Generate a MEM referring to fixed portions of the frame, e.g., register
725 save areas. */
728 gen_frame_mem (enum machine_mode mode, rtx addr)
730 rtx mem = gen_rtx_MEM (mode, addr);
731 MEM_NOTRAP_P (mem) = 1;
732 set_mem_alias_set (mem, get_frame_alias_set ());
733 return mem;
736 /* Generate a MEM referring to a temporary use of the stack, not part
737 of the fixed stack frame. For example, something which is pushed
738 by a target splitter. */
740 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
742 rtx mem = gen_rtx_MEM (mode, addr);
743 MEM_NOTRAP_P (mem) = 1;
744 if (!cfun->calls_alloca)
745 set_mem_alias_set (mem, get_frame_alias_set ());
746 return mem;
749 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
750 this construct would be valid, and false otherwise. */
752 bool
753 validate_subreg (enum machine_mode omode, enum machine_mode imode,
754 const_rtx reg, unsigned int offset)
756 unsigned int isize = GET_MODE_SIZE (imode);
757 unsigned int osize = GET_MODE_SIZE (omode);
759 /* All subregs must be aligned. */
760 if (offset % osize != 0)
761 return false;
763 /* The subreg offset cannot be outside the inner object. */
764 if (offset >= isize)
765 return false;
767 /* ??? This should not be here. Temporarily continue to allow word_mode
768 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
769 Generally, backends are doing something sketchy but it'll take time to
770 fix them all. */
771 if (omode == word_mode)
773 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
774 is the culprit here, and not the backends. */
775 else if (osize >= UNITS_PER_WORD && isize >= osize)
777 /* Allow component subregs of complex and vector. Though given the below
778 extraction rules, it's not always clear what that means. */
779 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
780 && GET_MODE_INNER (imode) == omode)
782 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
783 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
784 represent this. It's questionable if this ought to be represented at
785 all -- why can't this all be hidden in post-reload splitters that make
786 arbitrarily mode changes to the registers themselves. */
787 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
789 /* Subregs involving floating point modes are not allowed to
790 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
791 (subreg:SI (reg:DF) 0) isn't. */
792 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
794 if (! (isize == osize
795 /* LRA can use subreg to store a floating point value in
796 an integer mode. Although the floating point and the
797 integer modes need the same number of hard registers,
798 the size of floating point mode can be less than the
799 integer mode. LRA also uses subregs for a register
800 should be used in different mode in on insn. */
801 || lra_in_progress))
802 return false;
805 /* Paradoxical subregs must have offset zero. */
806 if (osize > isize)
807 return offset == 0;
809 /* This is a normal subreg. Verify that the offset is representable. */
811 /* For hard registers, we already have most of these rules collected in
812 subreg_offset_representable_p. */
813 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
815 unsigned int regno = REGNO (reg);
817 #ifdef CANNOT_CHANGE_MODE_CLASS
818 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
819 && GET_MODE_INNER (imode) == omode)
821 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
822 return false;
823 #endif
825 return subreg_offset_representable_p (regno, imode, offset, omode);
828 /* For pseudo registers, we want most of the same checks. Namely:
829 If the register no larger than a word, the subreg must be lowpart.
830 If the register is larger than a word, the subreg must be the lowpart
831 of a subword. A subreg does *not* perform arbitrary bit extraction.
832 Given that we've already checked mode/offset alignment, we only have
833 to check subword subregs here. */
834 if (osize < UNITS_PER_WORD
835 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
837 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
838 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
839 if (offset % UNITS_PER_WORD != low_off)
840 return false;
842 return true;
846 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
848 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
849 return gen_rtx_raw_SUBREG (mode, reg, offset);
852 /* Generate a SUBREG representing the least-significant part of REG if MODE
853 is smaller than mode of REG, otherwise paradoxical SUBREG. */
856 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
858 enum machine_mode inmode;
860 inmode = GET_MODE (reg);
861 if (inmode == VOIDmode)
862 inmode = mode;
863 return gen_rtx_SUBREG (mode, reg,
864 subreg_lowpart_offset (mode, inmode));
868 gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
869 enum var_init_status status)
871 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
872 PAT_VAR_LOCATION_STATUS (x) = status;
873 return x;
877 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
879 rtvec
880 gen_rtvec (int n, ...)
882 int i;
883 rtvec rt_val;
884 va_list p;
886 va_start (p, n);
888 /* Don't allocate an empty rtvec... */
889 if (n == 0)
891 va_end (p);
892 return NULL_RTVEC;
895 rt_val = rtvec_alloc (n);
897 for (i = 0; i < n; i++)
898 rt_val->elem[i] = va_arg (p, rtx);
900 va_end (p);
901 return rt_val;
904 rtvec
905 gen_rtvec_v (int n, rtx *argp)
907 int i;
908 rtvec rt_val;
910 /* Don't allocate an empty rtvec... */
911 if (n == 0)
912 return NULL_RTVEC;
914 rt_val = rtvec_alloc (n);
916 for (i = 0; i < n; i++)
917 rt_val->elem[i] = *argp++;
919 return rt_val;
922 /* Return the number of bytes between the start of an OUTER_MODE
923 in-memory value and the start of an INNER_MODE in-memory value,
924 given that the former is a lowpart of the latter. It may be a
925 paradoxical lowpart, in which case the offset will be negative
926 on big-endian targets. */
929 byte_lowpart_offset (enum machine_mode outer_mode,
930 enum machine_mode inner_mode)
932 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
933 return subreg_lowpart_offset (outer_mode, inner_mode);
934 else
935 return -subreg_lowpart_offset (inner_mode, outer_mode);
938 /* Generate a REG rtx for a new pseudo register of mode MODE.
939 This pseudo is assigned the next sequential register number. */
942 gen_reg_rtx (enum machine_mode mode)
944 rtx val;
945 unsigned int align = GET_MODE_ALIGNMENT (mode);
947 gcc_assert (can_create_pseudo_p ());
949 /* If a virtual register with bigger mode alignment is generated,
950 increase stack alignment estimation because it might be spilled
951 to stack later. */
952 if (SUPPORTS_STACK_ALIGNMENT
953 && crtl->stack_alignment_estimated < align
954 && !crtl->stack_realign_processed)
956 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
957 if (crtl->stack_alignment_estimated < min_align)
958 crtl->stack_alignment_estimated = min_align;
961 if (generating_concat_p
962 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
963 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
965 /* For complex modes, don't make a single pseudo.
966 Instead, make a CONCAT of two pseudos.
967 This allows noncontiguous allocation of the real and imaginary parts,
968 which makes much better code. Besides, allocating DCmode
969 pseudos overstrains reload on some machines like the 386. */
970 rtx realpart, imagpart;
971 enum machine_mode partmode = GET_MODE_INNER (mode);
973 realpart = gen_reg_rtx (partmode);
974 imagpart = gen_reg_rtx (partmode);
975 return gen_rtx_CONCAT (mode, realpart, imagpart);
978 /* Do not call gen_reg_rtx with uninitialized crtl. */
979 gcc_assert (crtl->emit.regno_pointer_align_length);
981 /* Make sure regno_pointer_align, and regno_reg_rtx are large
982 enough to have an element for this pseudo reg number. */
984 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
986 int old_size = crtl->emit.regno_pointer_align_length;
987 char *tmp;
988 rtx *new1;
990 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
991 memset (tmp + old_size, 0, old_size);
992 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
994 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
995 memset (new1 + old_size, 0, old_size * sizeof (rtx));
996 regno_reg_rtx = new1;
998 crtl->emit.regno_pointer_align_length = old_size * 2;
1001 val = gen_raw_REG (mode, reg_rtx_no);
1002 regno_reg_rtx[reg_rtx_no++] = val;
1003 return val;
1006 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1008 bool
1009 reg_is_parm_p (rtx reg)
1011 tree decl;
1013 gcc_assert (REG_P (reg));
1014 decl = REG_EXPR (reg);
1015 return (decl && TREE_CODE (decl) == PARM_DECL);
1018 /* Update NEW with the same attributes as REG, but with OFFSET added
1019 to the REG_OFFSET. */
1021 static void
1022 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1024 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1025 REG_OFFSET (reg) + offset);
1028 /* Generate a register with same attributes as REG, but with OFFSET
1029 added to the REG_OFFSET. */
1032 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1033 int offset)
1035 rtx new_rtx = gen_rtx_REG (mode, regno);
1037 update_reg_offset (new_rtx, reg, offset);
1038 return new_rtx;
1041 /* Generate a new pseudo-register with the same attributes as REG, but
1042 with OFFSET added to the REG_OFFSET. */
1045 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1047 rtx new_rtx = gen_reg_rtx (mode);
1049 update_reg_offset (new_rtx, reg, offset);
1050 return new_rtx;
1053 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1054 new register is a (possibly paradoxical) lowpart of the old one. */
1056 void
1057 adjust_reg_mode (rtx reg, enum machine_mode mode)
1059 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1060 PUT_MODE (reg, mode);
1063 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1064 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1066 void
1067 set_reg_attrs_from_value (rtx reg, rtx x)
1069 int offset;
1070 bool can_be_reg_pointer = true;
1072 /* Don't call mark_reg_pointer for incompatible pointer sign
1073 extension. */
1074 while (GET_CODE (x) == SIGN_EXTEND
1075 || GET_CODE (x) == ZERO_EXTEND
1076 || GET_CODE (x) == TRUNCATE
1077 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1079 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1080 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1081 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1082 can_be_reg_pointer = false;
1083 #endif
1084 x = XEXP (x, 0);
1087 /* Hard registers can be reused for multiple purposes within the same
1088 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1089 on them is wrong. */
1090 if (HARD_REGISTER_P (reg))
1091 return;
1093 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1094 if (MEM_P (x))
1096 if (MEM_OFFSET_KNOWN_P (x))
1097 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1098 MEM_OFFSET (x) + offset);
1099 if (can_be_reg_pointer && MEM_POINTER (x))
1100 mark_reg_pointer (reg, 0);
1102 else if (REG_P (x))
1104 if (REG_ATTRS (x))
1105 update_reg_offset (reg, x, offset);
1106 if (can_be_reg_pointer && REG_POINTER (x))
1107 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1111 /* Generate a REG rtx for a new pseudo register, copying the mode
1112 and attributes from X. */
1115 gen_reg_rtx_and_attrs (rtx x)
1117 rtx reg = gen_reg_rtx (GET_MODE (x));
1118 set_reg_attrs_from_value (reg, x);
1119 return reg;
1122 /* Set the register attributes for registers contained in PARM_RTX.
1123 Use needed values from memory attributes of MEM. */
1125 void
1126 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1128 if (REG_P (parm_rtx))
1129 set_reg_attrs_from_value (parm_rtx, mem);
1130 else if (GET_CODE (parm_rtx) == PARALLEL)
1132 /* Check for a NULL entry in the first slot, used to indicate that the
1133 parameter goes both on the stack and in registers. */
1134 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1135 for (; i < XVECLEN (parm_rtx, 0); i++)
1137 rtx x = XVECEXP (parm_rtx, 0, i);
1138 if (REG_P (XEXP (x, 0)))
1139 REG_ATTRS (XEXP (x, 0))
1140 = get_reg_attrs (MEM_EXPR (mem),
1141 INTVAL (XEXP (x, 1)));
1146 /* Set the REG_ATTRS for registers in value X, given that X represents
1147 decl T. */
1149 void
1150 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1152 if (GET_CODE (x) == SUBREG)
1154 gcc_assert (subreg_lowpart_p (x));
1155 x = SUBREG_REG (x);
1157 if (REG_P (x))
1158 REG_ATTRS (x)
1159 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1160 DECL_MODE (t)));
1161 if (GET_CODE (x) == CONCAT)
1163 if (REG_P (XEXP (x, 0)))
1164 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1165 if (REG_P (XEXP (x, 1)))
1166 REG_ATTRS (XEXP (x, 1))
1167 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1169 if (GET_CODE (x) == PARALLEL)
1171 int i, start;
1173 /* Check for a NULL entry, used to indicate that the parameter goes
1174 both on the stack and in registers. */
1175 if (XEXP (XVECEXP (x, 0, 0), 0))
1176 start = 0;
1177 else
1178 start = 1;
1180 for (i = start; i < XVECLEN (x, 0); i++)
1182 rtx y = XVECEXP (x, 0, i);
1183 if (REG_P (XEXP (y, 0)))
1184 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1189 /* Assign the RTX X to declaration T. */
1191 void
1192 set_decl_rtl (tree t, rtx x)
1194 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1195 if (x)
1196 set_reg_attrs_for_decl_rtl (t, x);
1199 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1200 if the ABI requires the parameter to be passed by reference. */
1202 void
1203 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1205 DECL_INCOMING_RTL (t) = x;
1206 if (x && !by_reference_p)
1207 set_reg_attrs_for_decl_rtl (t, x);
1210 /* Identify REG (which may be a CONCAT) as a user register. */
1212 void
1213 mark_user_reg (rtx reg)
1215 if (GET_CODE (reg) == CONCAT)
1217 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1218 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1220 else
1222 gcc_assert (REG_P (reg));
1223 REG_USERVAR_P (reg) = 1;
1227 /* Identify REG as a probable pointer register and show its alignment
1228 as ALIGN, if nonzero. */
1230 void
1231 mark_reg_pointer (rtx reg, int align)
1233 if (! REG_POINTER (reg))
1235 REG_POINTER (reg) = 1;
1237 if (align)
1238 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1240 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1241 /* We can no-longer be sure just how aligned this pointer is. */
1242 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1245 /* Return 1 plus largest pseudo reg number used in the current function. */
1248 max_reg_num (void)
1250 return reg_rtx_no;
1253 /* Return 1 + the largest label number used so far in the current function. */
1256 max_label_num (void)
1258 return label_num;
1261 /* Return first label number used in this function (if any were used). */
1264 get_first_label_num (void)
1266 return first_label_num;
1269 /* If the rtx for label was created during the expansion of a nested
1270 function, then first_label_num won't include this label number.
1271 Fix this now so that array indices work later. */
1273 void
1274 maybe_set_first_label_num (rtx x)
1276 if (CODE_LABEL_NUMBER (x) < first_label_num)
1277 first_label_num = CODE_LABEL_NUMBER (x);
1280 /* Return a value representing some low-order bits of X, where the number
1281 of low-order bits is given by MODE. Note that no conversion is done
1282 between floating-point and fixed-point values, rather, the bit
1283 representation is returned.
1285 This function handles the cases in common between gen_lowpart, below,
1286 and two variants in cse.c and combine.c. These are the cases that can
1287 be safely handled at all points in the compilation.
1289 If this is not a case we can handle, return 0. */
1292 gen_lowpart_common (enum machine_mode mode, rtx x)
1294 int msize = GET_MODE_SIZE (mode);
1295 int xsize;
1296 int offset = 0;
1297 enum machine_mode innermode;
1299 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1300 so we have to make one up. Yuk. */
1301 innermode = GET_MODE (x);
1302 if (CONST_INT_P (x)
1303 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1304 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1305 else if (innermode == VOIDmode)
1306 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1308 xsize = GET_MODE_SIZE (innermode);
1310 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1312 if (innermode == mode)
1313 return x;
1315 /* MODE must occupy no more words than the mode of X. */
1316 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1317 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1318 return 0;
1320 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1321 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1322 return 0;
1324 offset = subreg_lowpart_offset (mode, innermode);
1326 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1327 && (GET_MODE_CLASS (mode) == MODE_INT
1328 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1330 /* If we are getting the low-order part of something that has been
1331 sign- or zero-extended, we can either just use the object being
1332 extended or make a narrower extension. If we want an even smaller
1333 piece than the size of the object being extended, call ourselves
1334 recursively.
1336 This case is used mostly by combine and cse. */
1338 if (GET_MODE (XEXP (x, 0)) == mode)
1339 return XEXP (x, 0);
1340 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1341 return gen_lowpart_common (mode, XEXP (x, 0));
1342 else if (msize < xsize)
1343 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1345 else if (GET_CODE (x) == SUBREG || REG_P (x)
1346 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1347 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1348 return simplify_gen_subreg (mode, x, innermode, offset);
1350 /* Otherwise, we can't do this. */
1351 return 0;
1355 gen_highpart (enum machine_mode mode, rtx x)
1357 unsigned int msize = GET_MODE_SIZE (mode);
1358 rtx result;
1360 /* This case loses if X is a subreg. To catch bugs early,
1361 complain if an invalid MODE is used even in other cases. */
1362 gcc_assert (msize <= UNITS_PER_WORD
1363 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1365 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1366 subreg_highpart_offset (mode, GET_MODE (x)));
1367 gcc_assert (result);
1369 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1370 the target if we have a MEM. gen_highpart must return a valid operand,
1371 emitting code if necessary to do so. */
1372 if (MEM_P (result))
1374 result = validize_mem (result);
1375 gcc_assert (result);
1378 return result;
1381 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1382 be VOIDmode constant. */
1384 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1386 if (GET_MODE (exp) != VOIDmode)
1388 gcc_assert (GET_MODE (exp) == innermode);
1389 return gen_highpart (outermode, exp);
1391 return simplify_gen_subreg (outermode, exp, innermode,
1392 subreg_highpart_offset (outermode, innermode));
1395 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1397 unsigned int
1398 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1400 unsigned int offset = 0;
1401 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1403 if (difference > 0)
1405 if (WORDS_BIG_ENDIAN)
1406 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1407 if (BYTES_BIG_ENDIAN)
1408 offset += difference % UNITS_PER_WORD;
1411 return offset;
1414 /* Return offset in bytes to get OUTERMODE high part
1415 of the value in mode INNERMODE stored in memory in target format. */
1416 unsigned int
1417 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1419 unsigned int offset = 0;
1420 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1422 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1424 if (difference > 0)
1426 if (! WORDS_BIG_ENDIAN)
1427 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1428 if (! BYTES_BIG_ENDIAN)
1429 offset += difference % UNITS_PER_WORD;
1432 return offset;
1435 /* Return 1 iff X, assumed to be a SUBREG,
1436 refers to the least significant part of its containing reg.
1437 If X is not a SUBREG, always return 1 (it is its own low part!). */
1440 subreg_lowpart_p (const_rtx x)
1442 if (GET_CODE (x) != SUBREG)
1443 return 1;
1444 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1445 return 0;
1447 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1448 == SUBREG_BYTE (x));
1451 /* Return true if X is a paradoxical subreg, false otherwise. */
1452 bool
1453 paradoxical_subreg_p (const_rtx x)
1455 if (GET_CODE (x) != SUBREG)
1456 return false;
1457 return (GET_MODE_PRECISION (GET_MODE (x))
1458 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1461 /* Return subword OFFSET of operand OP.
1462 The word number, OFFSET, is interpreted as the word number starting
1463 at the low-order address. OFFSET 0 is the low-order word if not
1464 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1466 If we cannot extract the required word, we return zero. Otherwise,
1467 an rtx corresponding to the requested word will be returned.
1469 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1470 reload has completed, a valid address will always be returned. After
1471 reload, if a valid address cannot be returned, we return zero.
1473 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1474 it is the responsibility of the caller.
1476 MODE is the mode of OP in case it is a CONST_INT.
1478 ??? This is still rather broken for some cases. The problem for the
1479 moment is that all callers of this thing provide no 'goal mode' to
1480 tell us to work with. This exists because all callers were written
1481 in a word based SUBREG world.
1482 Now use of this function can be deprecated by simplify_subreg in most
1483 cases.
1487 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1489 if (mode == VOIDmode)
1490 mode = GET_MODE (op);
1492 gcc_assert (mode != VOIDmode);
1494 /* If OP is narrower than a word, fail. */
1495 if (mode != BLKmode
1496 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1497 return 0;
1499 /* If we want a word outside OP, return zero. */
1500 if (mode != BLKmode
1501 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1502 return const0_rtx;
1504 /* Form a new MEM at the requested address. */
1505 if (MEM_P (op))
1507 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1509 if (! validate_address)
1510 return new_rtx;
1512 else if (reload_completed)
1514 if (! strict_memory_address_addr_space_p (word_mode,
1515 XEXP (new_rtx, 0),
1516 MEM_ADDR_SPACE (op)))
1517 return 0;
1519 else
1520 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1523 /* Rest can be handled by simplify_subreg. */
1524 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1527 /* Similar to `operand_subword', but never return 0. If we can't
1528 extract the required subword, put OP into a register and try again.
1529 The second attempt must succeed. We always validate the address in
1530 this case.
1532 MODE is the mode of OP, in case it is CONST_INT. */
1535 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1537 rtx result = operand_subword (op, offset, 1, mode);
1539 if (result)
1540 return result;
1542 if (mode != BLKmode && mode != VOIDmode)
1544 /* If this is a register which can not be accessed by words, copy it
1545 to a pseudo register. */
1546 if (REG_P (op))
1547 op = copy_to_reg (op);
1548 else
1549 op = force_reg (mode, op);
1552 result = operand_subword (op, offset, 1, mode);
1553 gcc_assert (result);
1555 return result;
1558 /* Returns 1 if both MEM_EXPR can be considered equal
1559 and 0 otherwise. */
1562 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1564 if (expr1 == expr2)
1565 return 1;
1567 if (! expr1 || ! expr2)
1568 return 0;
1570 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1571 return 0;
1573 return operand_equal_p (expr1, expr2, 0);
1576 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1577 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1578 -1 if not known. */
1581 get_mem_align_offset (rtx mem, unsigned int align)
1583 tree expr;
1584 unsigned HOST_WIDE_INT offset;
1586 /* This function can't use
1587 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1588 || (MAX (MEM_ALIGN (mem),
1589 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1590 < align))
1591 return -1;
1592 else
1593 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1594 for two reasons:
1595 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1596 for <variable>. get_inner_reference doesn't handle it and
1597 even if it did, the alignment in that case needs to be determined
1598 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1599 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1600 isn't sufficiently aligned, the object it is in might be. */
1601 gcc_assert (MEM_P (mem));
1602 expr = MEM_EXPR (mem);
1603 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1604 return -1;
1606 offset = MEM_OFFSET (mem);
1607 if (DECL_P (expr))
1609 if (DECL_ALIGN (expr) < align)
1610 return -1;
1612 else if (INDIRECT_REF_P (expr))
1614 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1615 return -1;
1617 else if (TREE_CODE (expr) == COMPONENT_REF)
1619 while (1)
1621 tree inner = TREE_OPERAND (expr, 0);
1622 tree field = TREE_OPERAND (expr, 1);
1623 tree byte_offset = component_ref_field_offset (expr);
1624 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1626 if (!byte_offset
1627 || !tree_fits_uhwi_p (byte_offset)
1628 || !tree_fits_uhwi_p (bit_offset))
1629 return -1;
1631 offset += tree_to_uhwi (byte_offset);
1632 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1634 if (inner == NULL_TREE)
1636 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1637 < (unsigned int) align)
1638 return -1;
1639 break;
1641 else if (DECL_P (inner))
1643 if (DECL_ALIGN (inner) < align)
1644 return -1;
1645 break;
1647 else if (TREE_CODE (inner) != COMPONENT_REF)
1648 return -1;
1649 expr = inner;
1652 else
1653 return -1;
1655 return offset & ((align / BITS_PER_UNIT) - 1);
1658 /* Given REF (a MEM) and T, either the type of X or the expression
1659 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1660 if we are making a new object of this type. BITPOS is nonzero if
1661 there is an offset outstanding on T that will be applied later. */
1663 void
1664 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1665 HOST_WIDE_INT bitpos)
1667 HOST_WIDE_INT apply_bitpos = 0;
1668 tree type;
1669 struct mem_attrs attrs, *defattrs, *refattrs;
1670 addr_space_t as;
1672 /* It can happen that type_for_mode was given a mode for which there
1673 is no language-level type. In which case it returns NULL, which
1674 we can see here. */
1675 if (t == NULL_TREE)
1676 return;
1678 type = TYPE_P (t) ? t : TREE_TYPE (t);
1679 if (type == error_mark_node)
1680 return;
1682 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1683 wrong answer, as it assumes that DECL_RTL already has the right alias
1684 info. Callers should not set DECL_RTL until after the call to
1685 set_mem_attributes. */
1686 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1688 memset (&attrs, 0, sizeof (attrs));
1690 /* Get the alias set from the expression or type (perhaps using a
1691 front-end routine) and use it. */
1692 attrs.alias = get_alias_set (t);
1694 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1695 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1697 /* Default values from pre-existing memory attributes if present. */
1698 refattrs = MEM_ATTRS (ref);
1699 if (refattrs)
1701 /* ??? Can this ever happen? Calling this routine on a MEM that
1702 already carries memory attributes should probably be invalid. */
1703 attrs.expr = refattrs->expr;
1704 attrs.offset_known_p = refattrs->offset_known_p;
1705 attrs.offset = refattrs->offset;
1706 attrs.size_known_p = refattrs->size_known_p;
1707 attrs.size = refattrs->size;
1708 attrs.align = refattrs->align;
1711 /* Otherwise, default values from the mode of the MEM reference. */
1712 else
1714 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1715 gcc_assert (!defattrs->expr);
1716 gcc_assert (!defattrs->offset_known_p);
1718 /* Respect mode size. */
1719 attrs.size_known_p = defattrs->size_known_p;
1720 attrs.size = defattrs->size;
1721 /* ??? Is this really necessary? We probably should always get
1722 the size from the type below. */
1724 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1725 if T is an object, always compute the object alignment below. */
1726 if (TYPE_P (t))
1727 attrs.align = defattrs->align;
1728 else
1729 attrs.align = BITS_PER_UNIT;
1730 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1731 e.g. if the type carries an alignment attribute. Should we be
1732 able to simply always use TYPE_ALIGN? */
1735 /* We can set the alignment from the type if we are making an object,
1736 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1737 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1738 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1740 /* If the size is known, we can set that. */
1741 tree new_size = TYPE_SIZE_UNIT (type);
1743 /* The address-space is that of the type. */
1744 as = TYPE_ADDR_SPACE (type);
1746 /* If T is not a type, we may be able to deduce some more information about
1747 the expression. */
1748 if (! TYPE_P (t))
1750 tree base;
1752 if (TREE_THIS_VOLATILE (t))
1753 MEM_VOLATILE_P (ref) = 1;
1755 /* Now remove any conversions: they don't change what the underlying
1756 object is. Likewise for SAVE_EXPR. */
1757 while (CONVERT_EXPR_P (t)
1758 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1759 || TREE_CODE (t) == SAVE_EXPR)
1760 t = TREE_OPERAND (t, 0);
1762 /* Note whether this expression can trap. */
1763 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1765 base = get_base_address (t);
1766 if (base)
1768 if (DECL_P (base)
1769 && TREE_READONLY (base)
1770 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1771 && !TREE_THIS_VOLATILE (base))
1772 MEM_READONLY_P (ref) = 1;
1774 /* Mark static const strings readonly as well. */
1775 if (TREE_CODE (base) == STRING_CST
1776 && TREE_READONLY (base)
1777 && TREE_STATIC (base))
1778 MEM_READONLY_P (ref) = 1;
1780 /* Address-space information is on the base object. */
1781 if (TREE_CODE (base) == MEM_REF
1782 || TREE_CODE (base) == TARGET_MEM_REF)
1783 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1784 0))));
1785 else
1786 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1789 /* If this expression uses it's parent's alias set, mark it such
1790 that we won't change it. */
1791 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1792 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1794 /* If this is a decl, set the attributes of the MEM from it. */
1795 if (DECL_P (t))
1797 attrs.expr = t;
1798 attrs.offset_known_p = true;
1799 attrs.offset = 0;
1800 apply_bitpos = bitpos;
1801 new_size = DECL_SIZE_UNIT (t);
1804 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1805 else if (CONSTANT_CLASS_P (t))
1808 /* If this is a field reference, record it. */
1809 else if (TREE_CODE (t) == COMPONENT_REF)
1811 attrs.expr = t;
1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
1814 apply_bitpos = bitpos;
1815 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1816 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1819 /* If this is an array reference, look for an outer field reference. */
1820 else if (TREE_CODE (t) == ARRAY_REF)
1822 tree off_tree = size_zero_node;
1823 /* We can't modify t, because we use it at the end of the
1824 function. */
1825 tree t2 = t;
1829 tree index = TREE_OPERAND (t2, 1);
1830 tree low_bound = array_ref_low_bound (t2);
1831 tree unit_size = array_ref_element_size (t2);
1833 /* We assume all arrays have sizes that are a multiple of a byte.
1834 First subtract the lower bound, if any, in the type of the
1835 index, then convert to sizetype and multiply by the size of
1836 the array element. */
1837 if (! integer_zerop (low_bound))
1838 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1839 index, low_bound);
1841 off_tree = size_binop (PLUS_EXPR,
1842 size_binop (MULT_EXPR,
1843 fold_convert (sizetype,
1844 index),
1845 unit_size),
1846 off_tree);
1847 t2 = TREE_OPERAND (t2, 0);
1849 while (TREE_CODE (t2) == ARRAY_REF);
1851 if (DECL_P (t2)
1852 || TREE_CODE (t2) == COMPONENT_REF)
1854 attrs.expr = t2;
1855 attrs.offset_known_p = false;
1856 if (tree_fits_uhwi_p (off_tree))
1858 attrs.offset_known_p = true;
1859 attrs.offset = tree_to_uhwi (off_tree);
1860 apply_bitpos = bitpos;
1863 /* Else do not record a MEM_EXPR. */
1866 /* If this is an indirect reference, record it. */
1867 else if (TREE_CODE (t) == MEM_REF
1868 || TREE_CODE (t) == TARGET_MEM_REF)
1870 attrs.expr = t;
1871 attrs.offset_known_p = true;
1872 attrs.offset = 0;
1873 apply_bitpos = bitpos;
1876 /* Compute the alignment. */
1877 unsigned int obj_align;
1878 unsigned HOST_WIDE_INT obj_bitpos;
1879 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1880 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1881 if (obj_bitpos != 0)
1882 obj_align = (obj_bitpos & -obj_bitpos);
1883 attrs.align = MAX (attrs.align, obj_align);
1886 if (tree_fits_uhwi_p (new_size))
1888 attrs.size_known_p = true;
1889 attrs.size = tree_to_uhwi (new_size);
1892 /* If we modified OFFSET based on T, then subtract the outstanding
1893 bit position offset. Similarly, increase the size of the accessed
1894 object to contain the negative offset. */
1895 if (apply_bitpos)
1897 gcc_assert (attrs.offset_known_p);
1898 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1899 if (attrs.size_known_p)
1900 attrs.size += apply_bitpos / BITS_PER_UNIT;
1903 /* Now set the attributes we computed above. */
1904 attrs.addrspace = as;
1905 set_mem_attrs (ref, &attrs);
1908 void
1909 set_mem_attributes (rtx ref, tree t, int objectp)
1911 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1914 /* Set the alias set of MEM to SET. */
1916 void
1917 set_mem_alias_set (rtx mem, alias_set_type set)
1919 struct mem_attrs attrs;
1921 /* If the new and old alias sets don't conflict, something is wrong. */
1922 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1923 attrs = *get_mem_attrs (mem);
1924 attrs.alias = set;
1925 set_mem_attrs (mem, &attrs);
1928 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1930 void
1931 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1933 struct mem_attrs attrs;
1935 attrs = *get_mem_attrs (mem);
1936 attrs.addrspace = addrspace;
1937 set_mem_attrs (mem, &attrs);
1940 /* Set the alignment of MEM to ALIGN bits. */
1942 void
1943 set_mem_align (rtx mem, unsigned int align)
1945 struct mem_attrs attrs;
1947 attrs = *get_mem_attrs (mem);
1948 attrs.align = align;
1949 set_mem_attrs (mem, &attrs);
1952 /* Set the expr for MEM to EXPR. */
1954 void
1955 set_mem_expr (rtx mem, tree expr)
1957 struct mem_attrs attrs;
1959 attrs = *get_mem_attrs (mem);
1960 attrs.expr = expr;
1961 set_mem_attrs (mem, &attrs);
1964 /* Set the offset of MEM to OFFSET. */
1966 void
1967 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1969 struct mem_attrs attrs;
1971 attrs = *get_mem_attrs (mem);
1972 attrs.offset_known_p = true;
1973 attrs.offset = offset;
1974 set_mem_attrs (mem, &attrs);
1977 /* Clear the offset of MEM. */
1979 void
1980 clear_mem_offset (rtx mem)
1982 struct mem_attrs attrs;
1984 attrs = *get_mem_attrs (mem);
1985 attrs.offset_known_p = false;
1986 set_mem_attrs (mem, &attrs);
1989 /* Set the size of MEM to SIZE. */
1991 void
1992 set_mem_size (rtx mem, HOST_WIDE_INT size)
1994 struct mem_attrs attrs;
1996 attrs = *get_mem_attrs (mem);
1997 attrs.size_known_p = true;
1998 attrs.size = size;
1999 set_mem_attrs (mem, &attrs);
2002 /* Clear the size of MEM. */
2004 void
2005 clear_mem_size (rtx mem)
2007 struct mem_attrs attrs;
2009 attrs = *get_mem_attrs (mem);
2010 attrs.size_known_p = false;
2011 set_mem_attrs (mem, &attrs);
2014 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2015 and its address changed to ADDR. (VOIDmode means don't change the mode.
2016 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2017 returned memory location is required to be valid. INPLACE is true if any
2018 changes can be made directly to MEMREF or false if MEMREF must be treated
2019 as immutable.
2021 The memory attributes are not changed. */
2023 static rtx
2024 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2025 bool inplace)
2027 addr_space_t as;
2028 rtx new_rtx;
2030 gcc_assert (MEM_P (memref));
2031 as = MEM_ADDR_SPACE (memref);
2032 if (mode == VOIDmode)
2033 mode = GET_MODE (memref);
2034 if (addr == 0)
2035 addr = XEXP (memref, 0);
2036 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2037 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2038 return memref;
2040 /* Don't validate address for LRA. LRA can make the address valid
2041 by itself in most efficient way. */
2042 if (validate && !lra_in_progress)
2044 if (reload_in_progress || reload_completed)
2045 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2046 else
2047 addr = memory_address_addr_space (mode, addr, as);
2050 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2051 return memref;
2053 if (inplace)
2055 XEXP (memref, 0) = addr;
2056 return memref;
2059 new_rtx = gen_rtx_MEM (mode, addr);
2060 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2061 return new_rtx;
2064 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2065 way we are changing MEMREF, so we only preserve the alias set. */
2068 change_address (rtx memref, enum machine_mode mode, rtx addr)
2070 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2071 enum machine_mode mmode = GET_MODE (new_rtx);
2072 struct mem_attrs attrs, *defattrs;
2074 attrs = *get_mem_attrs (memref);
2075 defattrs = mode_mem_attrs[(int) mmode];
2076 attrs.expr = NULL_TREE;
2077 attrs.offset_known_p = false;
2078 attrs.size_known_p = defattrs->size_known_p;
2079 attrs.size = defattrs->size;
2080 attrs.align = defattrs->align;
2082 /* If there are no changes, just return the original memory reference. */
2083 if (new_rtx == memref)
2085 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2086 return new_rtx;
2088 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2089 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2092 set_mem_attrs (new_rtx, &attrs);
2093 return new_rtx;
2096 /* Return a memory reference like MEMREF, but with its mode changed
2097 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2098 nonzero, the memory address is forced to be valid.
2099 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2100 and the caller is responsible for adjusting MEMREF base register.
2101 If ADJUST_OBJECT is zero, the underlying object associated with the
2102 memory reference is left unchanged and the caller is responsible for
2103 dealing with it. Otherwise, if the new memory reference is outside
2104 the underlying object, even partially, then the object is dropped.
2105 SIZE, if nonzero, is the size of an access in cases where MODE
2106 has no inherent size. */
2109 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2110 int validate, int adjust_address, int adjust_object,
2111 HOST_WIDE_INT size)
2113 rtx addr = XEXP (memref, 0);
2114 rtx new_rtx;
2115 enum machine_mode address_mode;
2116 int pbits;
2117 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2118 unsigned HOST_WIDE_INT max_align;
2119 #ifdef POINTERS_EXTEND_UNSIGNED
2120 enum machine_mode pointer_mode
2121 = targetm.addr_space.pointer_mode (attrs.addrspace);
2122 #endif
2124 /* VOIDmode means no mode change for change_address_1. */
2125 if (mode == VOIDmode)
2126 mode = GET_MODE (memref);
2128 /* Take the size of non-BLKmode accesses from the mode. */
2129 defattrs = mode_mem_attrs[(int) mode];
2130 if (defattrs->size_known_p)
2131 size = defattrs->size;
2133 /* If there are no changes, just return the original memory reference. */
2134 if (mode == GET_MODE (memref) && !offset
2135 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2136 && (!validate || memory_address_addr_space_p (mode, addr,
2137 attrs.addrspace)))
2138 return memref;
2140 /* ??? Prefer to create garbage instead of creating shared rtl.
2141 This may happen even if offset is nonzero -- consider
2142 (plus (plus reg reg) const_int) -- so do this always. */
2143 addr = copy_rtx (addr);
2145 /* Convert a possibly large offset to a signed value within the
2146 range of the target address space. */
2147 address_mode = get_address_mode (memref);
2148 pbits = GET_MODE_BITSIZE (address_mode);
2149 if (HOST_BITS_PER_WIDE_INT > pbits)
2151 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2152 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2153 >> shift);
2156 if (adjust_address)
2158 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2159 object, we can merge it into the LO_SUM. */
2160 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2161 && offset >= 0
2162 && (unsigned HOST_WIDE_INT) offset
2163 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2164 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2165 plus_constant (address_mode,
2166 XEXP (addr, 1), offset));
2167 #ifdef POINTERS_EXTEND_UNSIGNED
2168 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2169 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2170 the fact that pointers are not allowed to overflow. */
2171 else if (POINTERS_EXTEND_UNSIGNED > 0
2172 && GET_CODE (addr) == ZERO_EXTEND
2173 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2174 && trunc_int_for_mode (offset, pointer_mode) == offset)
2175 addr = gen_rtx_ZERO_EXTEND (address_mode,
2176 plus_constant (pointer_mode,
2177 XEXP (addr, 0), offset));
2178 #endif
2179 else
2180 addr = plus_constant (address_mode, addr, offset);
2183 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2185 /* If the address is a REG, change_address_1 rightfully returns memref,
2186 but this would destroy memref's MEM_ATTRS. */
2187 if (new_rtx == memref && offset != 0)
2188 new_rtx = copy_rtx (new_rtx);
2190 /* Conservatively drop the object if we don't know where we start from. */
2191 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2193 attrs.expr = NULL_TREE;
2194 attrs.alias = 0;
2197 /* Compute the new values of the memory attributes due to this adjustment.
2198 We add the offsets and update the alignment. */
2199 if (attrs.offset_known_p)
2201 attrs.offset += offset;
2203 /* Drop the object if the new left end is not within its bounds. */
2204 if (adjust_object && attrs.offset < 0)
2206 attrs.expr = NULL_TREE;
2207 attrs.alias = 0;
2211 /* Compute the new alignment by taking the MIN of the alignment and the
2212 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2213 if zero. */
2214 if (offset != 0)
2216 max_align = (offset & -offset) * BITS_PER_UNIT;
2217 attrs.align = MIN (attrs.align, max_align);
2220 if (size)
2222 /* Drop the object if the new right end is not within its bounds. */
2223 if (adjust_object && (offset + size) > attrs.size)
2225 attrs.expr = NULL_TREE;
2226 attrs.alias = 0;
2228 attrs.size_known_p = true;
2229 attrs.size = size;
2231 else if (attrs.size_known_p)
2233 gcc_assert (!adjust_object);
2234 attrs.size -= offset;
2235 /* ??? The store_by_pieces machinery generates negative sizes,
2236 so don't assert for that here. */
2239 set_mem_attrs (new_rtx, &attrs);
2241 return new_rtx;
2244 /* Return a memory reference like MEMREF, but with its mode changed
2245 to MODE and its address changed to ADDR, which is assumed to be
2246 MEMREF offset by OFFSET bytes. If VALIDATE is
2247 nonzero, the memory address is forced to be valid. */
2250 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2251 HOST_WIDE_INT offset, int validate)
2253 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2254 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2257 /* Return a memory reference like MEMREF, but whose address is changed by
2258 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2259 known to be in OFFSET (possibly 1). */
2262 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2264 rtx new_rtx, addr = XEXP (memref, 0);
2265 enum machine_mode address_mode;
2266 struct mem_attrs attrs, *defattrs;
2268 attrs = *get_mem_attrs (memref);
2269 address_mode = get_address_mode (memref);
2270 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2272 /* At this point we don't know _why_ the address is invalid. It
2273 could have secondary memory references, multiplies or anything.
2275 However, if we did go and rearrange things, we can wind up not
2276 being able to recognize the magic around pic_offset_table_rtx.
2277 This stuff is fragile, and is yet another example of why it is
2278 bad to expose PIC machinery too early. */
2279 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2280 attrs.addrspace)
2281 && GET_CODE (addr) == PLUS
2282 && XEXP (addr, 0) == pic_offset_table_rtx)
2284 addr = force_reg (GET_MODE (addr), addr);
2285 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2288 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2289 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2291 /* If there are no changes, just return the original memory reference. */
2292 if (new_rtx == memref)
2293 return new_rtx;
2295 /* Update the alignment to reflect the offset. Reset the offset, which
2296 we don't know. */
2297 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2298 attrs.offset_known_p = false;
2299 attrs.size_known_p = defattrs->size_known_p;
2300 attrs.size = defattrs->size;
2301 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2302 set_mem_attrs (new_rtx, &attrs);
2303 return new_rtx;
2306 /* Return a memory reference like MEMREF, but with its address changed to
2307 ADDR. The caller is asserting that the actual piece of memory pointed
2308 to is the same, just the form of the address is being changed, such as
2309 by putting something into a register. INPLACE is true if any changes
2310 can be made directly to MEMREF or false if MEMREF must be treated as
2311 immutable. */
2314 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2316 /* change_address_1 copies the memory attribute structure without change
2317 and that's exactly what we want here. */
2318 update_temp_slot_address (XEXP (memref, 0), addr);
2319 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2322 /* Likewise, but the reference is not required to be valid. */
2325 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2327 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2330 /* Return a memory reference like MEMREF, but with its mode widened to
2331 MODE and offset by OFFSET. This would be used by targets that e.g.
2332 cannot issue QImode memory operations and have to use SImode memory
2333 operations plus masking logic. */
2336 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2338 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2339 struct mem_attrs attrs;
2340 unsigned int size = GET_MODE_SIZE (mode);
2342 /* If there are no changes, just return the original memory reference. */
2343 if (new_rtx == memref)
2344 return new_rtx;
2346 attrs = *get_mem_attrs (new_rtx);
2348 /* If we don't know what offset we were at within the expression, then
2349 we can't know if we've overstepped the bounds. */
2350 if (! attrs.offset_known_p)
2351 attrs.expr = NULL_TREE;
2353 while (attrs.expr)
2355 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2357 tree field = TREE_OPERAND (attrs.expr, 1);
2358 tree offset = component_ref_field_offset (attrs.expr);
2360 if (! DECL_SIZE_UNIT (field))
2362 attrs.expr = NULL_TREE;
2363 break;
2366 /* Is the field at least as large as the access? If so, ok,
2367 otherwise strip back to the containing structure. */
2368 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2369 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2370 && attrs.offset >= 0)
2371 break;
2373 if (! tree_fits_uhwi_p (offset))
2375 attrs.expr = NULL_TREE;
2376 break;
2379 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2380 attrs.offset += tree_to_uhwi (offset);
2381 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2382 / BITS_PER_UNIT);
2384 /* Similarly for the decl. */
2385 else if (DECL_P (attrs.expr)
2386 && DECL_SIZE_UNIT (attrs.expr)
2387 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2388 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2389 && (! attrs.offset_known_p || attrs.offset >= 0))
2390 break;
2391 else
2393 /* The widened memory access overflows the expression, which means
2394 that it could alias another expression. Zap it. */
2395 attrs.expr = NULL_TREE;
2396 break;
2400 if (! attrs.expr)
2401 attrs.offset_known_p = false;
2403 /* The widened memory may alias other stuff, so zap the alias set. */
2404 /* ??? Maybe use get_alias_set on any remaining expression. */
2405 attrs.alias = 0;
2406 attrs.size_known_p = true;
2407 attrs.size = size;
2408 set_mem_attrs (new_rtx, &attrs);
2409 return new_rtx;
2412 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2413 static GTY(()) tree spill_slot_decl;
2415 tree
2416 get_spill_slot_decl (bool force_build_p)
2418 tree d = spill_slot_decl;
2419 rtx rd;
2420 struct mem_attrs attrs;
2422 if (d || !force_build_p)
2423 return d;
2425 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2426 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2427 DECL_ARTIFICIAL (d) = 1;
2428 DECL_IGNORED_P (d) = 1;
2429 TREE_USED (d) = 1;
2430 spill_slot_decl = d;
2432 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2433 MEM_NOTRAP_P (rd) = 1;
2434 attrs = *mode_mem_attrs[(int) BLKmode];
2435 attrs.alias = new_alias_set ();
2436 attrs.expr = d;
2437 set_mem_attrs (rd, &attrs);
2438 SET_DECL_RTL (d, rd);
2440 return d;
2443 /* Given MEM, a result from assign_stack_local, fill in the memory
2444 attributes as appropriate for a register allocator spill slot.
2445 These slots are not aliasable by other memory. We arrange for
2446 them all to use a single MEM_EXPR, so that the aliasing code can
2447 work properly in the case of shared spill slots. */
2449 void
2450 set_mem_attrs_for_spill (rtx mem)
2452 struct mem_attrs attrs;
2453 rtx addr;
2455 attrs = *get_mem_attrs (mem);
2456 attrs.expr = get_spill_slot_decl (true);
2457 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2458 attrs.addrspace = ADDR_SPACE_GENERIC;
2460 /* We expect the incoming memory to be of the form:
2461 (mem:MODE (plus (reg sfp) (const_int offset)))
2462 with perhaps the plus missing for offset = 0. */
2463 addr = XEXP (mem, 0);
2464 attrs.offset_known_p = true;
2465 attrs.offset = 0;
2466 if (GET_CODE (addr) == PLUS
2467 && CONST_INT_P (XEXP (addr, 1)))
2468 attrs.offset = INTVAL (XEXP (addr, 1));
2470 set_mem_attrs (mem, &attrs);
2471 MEM_NOTRAP_P (mem) = 1;
2474 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2476 rtx_code_label *
2477 gen_label_rtx (void)
2479 return as_a <rtx_code_label *> (
2480 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2481 NULL, label_num++, NULL));
2484 /* For procedure integration. */
2486 /* Install new pointers to the first and last insns in the chain.
2487 Also, set cur_insn_uid to one higher than the last in use.
2488 Used for an inline-procedure after copying the insn chain. */
2490 void
2491 set_new_first_and_last_insn (rtx first, rtx last)
2493 rtx insn;
2495 set_first_insn (first);
2496 set_last_insn (last);
2497 cur_insn_uid = 0;
2499 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2501 int debug_count = 0;
2503 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2504 cur_debug_insn_uid = 0;
2506 for (insn = first; insn; insn = NEXT_INSN (insn))
2507 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2508 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2509 else
2511 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2512 if (DEBUG_INSN_P (insn))
2513 debug_count++;
2516 if (debug_count)
2517 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2518 else
2519 cur_debug_insn_uid++;
2521 else
2522 for (insn = first; insn; insn = NEXT_INSN (insn))
2523 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2525 cur_insn_uid++;
2528 /* Go through all the RTL insn bodies and copy any invalid shared
2529 structure. This routine should only be called once. */
2531 static void
2532 unshare_all_rtl_1 (rtx insn)
2534 /* Unshare just about everything else. */
2535 unshare_all_rtl_in_chain (insn);
2537 /* Make sure the addresses of stack slots found outside the insn chain
2538 (such as, in DECL_RTL of a variable) are not shared
2539 with the insn chain.
2541 This special care is necessary when the stack slot MEM does not
2542 actually appear in the insn chain. If it does appear, its address
2543 is unshared from all else at that point. */
2544 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2547 /* Go through all the RTL insn bodies and copy any invalid shared
2548 structure, again. This is a fairly expensive thing to do so it
2549 should be done sparingly. */
2551 void
2552 unshare_all_rtl_again (rtx insn)
2554 rtx p;
2555 tree decl;
2557 for (p = insn; p; p = NEXT_INSN (p))
2558 if (INSN_P (p))
2560 reset_used_flags (PATTERN (p));
2561 reset_used_flags (REG_NOTES (p));
2562 if (CALL_P (p))
2563 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2566 /* Make sure that virtual stack slots are not shared. */
2567 set_used_decls (DECL_INITIAL (cfun->decl));
2569 /* Make sure that virtual parameters are not shared. */
2570 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2571 set_used_flags (DECL_RTL (decl));
2573 reset_used_flags (stack_slot_list);
2575 unshare_all_rtl_1 (insn);
2578 unsigned int
2579 unshare_all_rtl (void)
2581 unshare_all_rtl_1 (get_insns ());
2582 return 0;
2586 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2587 Recursively does the same for subexpressions. */
2589 static void
2590 verify_rtx_sharing (rtx orig, rtx insn)
2592 rtx x = orig;
2593 int i;
2594 enum rtx_code code;
2595 const char *format_ptr;
2597 if (x == 0)
2598 return;
2600 code = GET_CODE (x);
2602 /* These types may be freely shared. */
2604 switch (code)
2606 case REG:
2607 case DEBUG_EXPR:
2608 case VALUE:
2609 CASE_CONST_ANY:
2610 case SYMBOL_REF:
2611 case LABEL_REF:
2612 case CODE_LABEL:
2613 case PC:
2614 case CC0:
2615 case RETURN:
2616 case SIMPLE_RETURN:
2617 case SCRATCH:
2618 /* SCRATCH must be shared because they represent distinct values. */
2619 return;
2620 case CLOBBER:
2621 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2622 clobbers or clobbers of hard registers that originated as pseudos.
2623 This is needed to allow safe register renaming. */
2624 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2625 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2626 return;
2627 break;
2629 case CONST:
2630 if (shared_const_p (orig))
2631 return;
2632 break;
2634 case MEM:
2635 /* A MEM is allowed to be shared if its address is constant. */
2636 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2637 || reload_completed || reload_in_progress)
2638 return;
2640 break;
2642 default:
2643 break;
2646 /* This rtx may not be shared. If it has already been seen,
2647 replace it with a copy of itself. */
2648 #ifdef ENABLE_CHECKING
2649 if (RTX_FLAG (x, used))
2651 error ("invalid rtl sharing found in the insn");
2652 debug_rtx (insn);
2653 error ("shared rtx");
2654 debug_rtx (x);
2655 internal_error ("internal consistency failure");
2657 #endif
2658 gcc_assert (!RTX_FLAG (x, used));
2660 RTX_FLAG (x, used) = 1;
2662 /* Now scan the subexpressions recursively. */
2664 format_ptr = GET_RTX_FORMAT (code);
2666 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2668 switch (*format_ptr++)
2670 case 'e':
2671 verify_rtx_sharing (XEXP (x, i), insn);
2672 break;
2674 case 'E':
2675 if (XVEC (x, i) != NULL)
2677 int j;
2678 int len = XVECLEN (x, i);
2680 for (j = 0; j < len; j++)
2682 /* We allow sharing of ASM_OPERANDS inside single
2683 instruction. */
2684 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2685 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2686 == ASM_OPERANDS))
2687 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2688 else
2689 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2692 break;
2695 return;
2698 /* Reset used-flags for INSN. */
2700 static void
2701 reset_insn_used_flags (rtx insn)
2703 gcc_assert (INSN_P (insn));
2704 reset_used_flags (PATTERN (insn));
2705 reset_used_flags (REG_NOTES (insn));
2706 if (CALL_P (insn))
2707 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2710 /* Go through all the RTL insn bodies and clear all the USED bits. */
2712 static void
2713 reset_all_used_flags (void)
2715 rtx p;
2717 for (p = get_insns (); p; p = NEXT_INSN (p))
2718 if (INSN_P (p))
2720 rtx pat = PATTERN (p);
2721 if (GET_CODE (pat) != SEQUENCE)
2722 reset_insn_used_flags (p);
2723 else
2725 gcc_assert (REG_NOTES (p) == NULL);
2726 for (int i = 0; i < XVECLEN (pat, 0); i++)
2728 rtx insn = XVECEXP (pat, 0, i);
2729 if (INSN_P (insn))
2730 reset_insn_used_flags (insn);
2736 /* Verify sharing in INSN. */
2738 static void
2739 verify_insn_sharing (rtx insn)
2741 gcc_assert (INSN_P (insn));
2742 reset_used_flags (PATTERN (insn));
2743 reset_used_flags (REG_NOTES (insn));
2744 if (CALL_P (insn))
2745 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2748 /* Go through all the RTL insn bodies and check that there is no unexpected
2749 sharing in between the subexpressions. */
2751 DEBUG_FUNCTION void
2752 verify_rtl_sharing (void)
2754 rtx p;
2756 timevar_push (TV_VERIFY_RTL_SHARING);
2758 reset_all_used_flags ();
2760 for (p = get_insns (); p; p = NEXT_INSN (p))
2761 if (INSN_P (p))
2763 rtx pat = PATTERN (p);
2764 if (GET_CODE (pat) != SEQUENCE)
2765 verify_insn_sharing (p);
2766 else
2767 for (int i = 0; i < XVECLEN (pat, 0); i++)
2769 rtx insn = XVECEXP (pat, 0, i);
2770 if (INSN_P (insn))
2771 verify_insn_sharing (insn);
2775 reset_all_used_flags ();
2777 timevar_pop (TV_VERIFY_RTL_SHARING);
2780 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2781 Assumes the mark bits are cleared at entry. */
2783 void
2784 unshare_all_rtl_in_chain (rtx insn)
2786 for (; insn; insn = NEXT_INSN (insn))
2787 if (INSN_P (insn))
2789 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2790 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2791 if (CALL_P (insn))
2792 CALL_INSN_FUNCTION_USAGE (insn)
2793 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2797 /* Go through all virtual stack slots of a function and mark them as
2798 shared. We never replace the DECL_RTLs themselves with a copy,
2799 but expressions mentioned into a DECL_RTL cannot be shared with
2800 expressions in the instruction stream.
2802 Note that reload may convert pseudo registers into memories in-place.
2803 Pseudo registers are always shared, but MEMs never are. Thus if we
2804 reset the used flags on MEMs in the instruction stream, we must set
2805 them again on MEMs that appear in DECL_RTLs. */
2807 static void
2808 set_used_decls (tree blk)
2810 tree t;
2812 /* Mark decls. */
2813 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2814 if (DECL_RTL_SET_P (t))
2815 set_used_flags (DECL_RTL (t));
2817 /* Now process sub-blocks. */
2818 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2819 set_used_decls (t);
2822 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2823 Recursively does the same for subexpressions. Uses
2824 copy_rtx_if_shared_1 to reduce stack space. */
2827 copy_rtx_if_shared (rtx orig)
2829 copy_rtx_if_shared_1 (&orig);
2830 return orig;
2833 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2834 use. Recursively does the same for subexpressions. */
2836 static void
2837 copy_rtx_if_shared_1 (rtx *orig1)
2839 rtx x;
2840 int i;
2841 enum rtx_code code;
2842 rtx *last_ptr;
2843 const char *format_ptr;
2844 int copied = 0;
2845 int length;
2847 /* Repeat is used to turn tail-recursion into iteration. */
2848 repeat:
2849 x = *orig1;
2851 if (x == 0)
2852 return;
2854 code = GET_CODE (x);
2856 /* These types may be freely shared. */
2858 switch (code)
2860 case REG:
2861 case DEBUG_EXPR:
2862 case VALUE:
2863 CASE_CONST_ANY:
2864 case SYMBOL_REF:
2865 case LABEL_REF:
2866 case CODE_LABEL:
2867 case PC:
2868 case CC0:
2869 case RETURN:
2870 case SIMPLE_RETURN:
2871 case SCRATCH:
2872 /* SCRATCH must be shared because they represent distinct values. */
2873 return;
2874 case CLOBBER:
2875 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2876 clobbers or clobbers of hard registers that originated as pseudos.
2877 This is needed to allow safe register renaming. */
2878 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2879 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2880 return;
2881 break;
2883 case CONST:
2884 if (shared_const_p (x))
2885 return;
2886 break;
2888 case DEBUG_INSN:
2889 case INSN:
2890 case JUMP_INSN:
2891 case CALL_INSN:
2892 case NOTE:
2893 case BARRIER:
2894 /* The chain of insns is not being copied. */
2895 return;
2897 default:
2898 break;
2901 /* This rtx may not be shared. If it has already been seen,
2902 replace it with a copy of itself. */
2904 if (RTX_FLAG (x, used))
2906 x = shallow_copy_rtx (x);
2907 copied = 1;
2909 RTX_FLAG (x, used) = 1;
2911 /* Now scan the subexpressions recursively.
2912 We can store any replaced subexpressions directly into X
2913 since we know X is not shared! Any vectors in X
2914 must be copied if X was copied. */
2916 format_ptr = GET_RTX_FORMAT (code);
2917 length = GET_RTX_LENGTH (code);
2918 last_ptr = NULL;
2920 for (i = 0; i < length; i++)
2922 switch (*format_ptr++)
2924 case 'e':
2925 if (last_ptr)
2926 copy_rtx_if_shared_1 (last_ptr);
2927 last_ptr = &XEXP (x, i);
2928 break;
2930 case 'E':
2931 if (XVEC (x, i) != NULL)
2933 int j;
2934 int len = XVECLEN (x, i);
2936 /* Copy the vector iff I copied the rtx and the length
2937 is nonzero. */
2938 if (copied && len > 0)
2939 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2941 /* Call recursively on all inside the vector. */
2942 for (j = 0; j < len; j++)
2944 if (last_ptr)
2945 copy_rtx_if_shared_1 (last_ptr);
2946 last_ptr = &XVECEXP (x, i, j);
2949 break;
2952 *orig1 = x;
2953 if (last_ptr)
2955 orig1 = last_ptr;
2956 goto repeat;
2958 return;
2961 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2963 static void
2964 mark_used_flags (rtx x, int flag)
2966 int i, j;
2967 enum rtx_code code;
2968 const char *format_ptr;
2969 int length;
2971 /* Repeat is used to turn tail-recursion into iteration. */
2972 repeat:
2973 if (x == 0)
2974 return;
2976 code = GET_CODE (x);
2978 /* These types may be freely shared so we needn't do any resetting
2979 for them. */
2981 switch (code)
2983 case REG:
2984 case DEBUG_EXPR:
2985 case VALUE:
2986 CASE_CONST_ANY:
2987 case SYMBOL_REF:
2988 case CODE_LABEL:
2989 case PC:
2990 case CC0:
2991 case RETURN:
2992 case SIMPLE_RETURN:
2993 return;
2995 case DEBUG_INSN:
2996 case INSN:
2997 case JUMP_INSN:
2998 case CALL_INSN:
2999 case NOTE:
3000 case LABEL_REF:
3001 case BARRIER:
3002 /* The chain of insns is not being copied. */
3003 return;
3005 default:
3006 break;
3009 RTX_FLAG (x, used) = flag;
3011 format_ptr = GET_RTX_FORMAT (code);
3012 length = GET_RTX_LENGTH (code);
3014 for (i = 0; i < length; i++)
3016 switch (*format_ptr++)
3018 case 'e':
3019 if (i == length-1)
3021 x = XEXP (x, i);
3022 goto repeat;
3024 mark_used_flags (XEXP (x, i), flag);
3025 break;
3027 case 'E':
3028 for (j = 0; j < XVECLEN (x, i); j++)
3029 mark_used_flags (XVECEXP (x, i, j), flag);
3030 break;
3035 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3036 to look for shared sub-parts. */
3038 void
3039 reset_used_flags (rtx x)
3041 mark_used_flags (x, 0);
3044 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3045 to look for shared sub-parts. */
3047 void
3048 set_used_flags (rtx x)
3050 mark_used_flags (x, 1);
3053 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3054 Return X or the rtx for the pseudo reg the value of X was copied into.
3055 OTHER must be valid as a SET_DEST. */
3058 make_safe_from (rtx x, rtx other)
3060 while (1)
3061 switch (GET_CODE (other))
3063 case SUBREG:
3064 other = SUBREG_REG (other);
3065 break;
3066 case STRICT_LOW_PART:
3067 case SIGN_EXTEND:
3068 case ZERO_EXTEND:
3069 other = XEXP (other, 0);
3070 break;
3071 default:
3072 goto done;
3074 done:
3075 if ((MEM_P (other)
3076 && ! CONSTANT_P (x)
3077 && !REG_P (x)
3078 && GET_CODE (x) != SUBREG)
3079 || (REG_P (other)
3080 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3081 || reg_mentioned_p (other, x))))
3083 rtx temp = gen_reg_rtx (GET_MODE (x));
3084 emit_move_insn (temp, x);
3085 return temp;
3087 return x;
3090 /* Emission of insns (adding them to the doubly-linked list). */
3092 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3095 get_last_insn_anywhere (void)
3097 struct sequence_stack *stack;
3098 if (get_last_insn ())
3099 return get_last_insn ();
3100 for (stack = seq_stack; stack; stack = stack->next)
3101 if (stack->last != 0)
3102 return stack->last;
3103 return 0;
3106 /* Return the first nonnote insn emitted in current sequence or current
3107 function. This routine looks inside SEQUENCEs. */
3110 get_first_nonnote_insn (void)
3112 rtx insn = get_insns ();
3114 if (insn)
3116 if (NOTE_P (insn))
3117 for (insn = next_insn (insn);
3118 insn && NOTE_P (insn);
3119 insn = next_insn (insn))
3120 continue;
3121 else
3123 if (NONJUMP_INSN_P (insn)
3124 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3125 insn = XVECEXP (PATTERN (insn), 0, 0);
3129 return insn;
3132 /* Return the last nonnote insn emitted in current sequence or current
3133 function. This routine looks inside SEQUENCEs. */
3136 get_last_nonnote_insn (void)
3138 rtx insn = get_last_insn ();
3140 if (insn)
3142 if (NOTE_P (insn))
3143 for (insn = previous_insn (insn);
3144 insn && NOTE_P (insn);
3145 insn = previous_insn (insn))
3146 continue;
3147 else
3149 if (NONJUMP_INSN_P (insn)
3150 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3151 insn = XVECEXP (PATTERN (insn), 0,
3152 XVECLEN (PATTERN (insn), 0) - 1);
3156 return insn;
3159 /* Return the number of actual (non-debug) insns emitted in this
3160 function. */
3163 get_max_insn_count (void)
3165 int n = cur_insn_uid;
3167 /* The table size must be stable across -g, to avoid codegen
3168 differences due to debug insns, and not be affected by
3169 -fmin-insn-uid, to avoid excessive table size and to simplify
3170 debugging of -fcompare-debug failures. */
3171 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3172 n -= cur_debug_insn_uid;
3173 else
3174 n -= MIN_NONDEBUG_INSN_UID;
3176 return n;
3180 /* Return the next insn. If it is a SEQUENCE, return the first insn
3181 of the sequence. */
3183 rtx_insn *
3184 next_insn (rtx insn)
3186 if (insn)
3188 insn = NEXT_INSN (insn);
3189 if (insn && NONJUMP_INSN_P (insn)
3190 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3191 insn = XVECEXP (PATTERN (insn), 0, 0);
3194 return safe_as_a <rtx_insn *> (insn);
3197 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3198 of the sequence. */
3200 rtx_insn *
3201 previous_insn (rtx insn)
3203 if (insn)
3205 insn = PREV_INSN (insn);
3206 if (insn && NONJUMP_INSN_P (insn)
3207 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3208 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3211 return safe_as_a <rtx_insn *> (insn);
3214 /* Return the next insn after INSN that is not a NOTE. This routine does not
3215 look inside SEQUENCEs. */
3217 rtx_insn *
3218 next_nonnote_insn (rtx insn)
3220 while (insn)
3222 insn = NEXT_INSN (insn);
3223 if (insn == 0 || !NOTE_P (insn))
3224 break;
3227 return safe_as_a <rtx_insn *> (insn);
3230 /* Return the next insn after INSN that is not a NOTE, but stop the
3231 search before we enter another basic block. This routine does not
3232 look inside SEQUENCEs. */
3234 rtx_insn *
3235 next_nonnote_insn_bb (rtx insn)
3237 while (insn)
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || !NOTE_P (insn))
3241 break;
3242 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3243 return NULL;
3246 return safe_as_a <rtx_insn *> (insn);
3249 /* Return the previous insn before INSN that is not a NOTE. This routine does
3250 not look inside SEQUENCEs. */
3252 rtx_insn *
3253 prev_nonnote_insn (rtx insn)
3255 while (insn)
3257 insn = PREV_INSN (insn);
3258 if (insn == 0 || !NOTE_P (insn))
3259 break;
3262 return safe_as_a <rtx_insn *> (insn);
3265 /* Return the previous insn before INSN that is not a NOTE, but stop
3266 the search before we enter another basic block. This routine does
3267 not look inside SEQUENCEs. */
3269 rtx_insn *
3270 prev_nonnote_insn_bb (rtx insn)
3272 while (insn)
3274 insn = PREV_INSN (insn);
3275 if (insn == 0 || !NOTE_P (insn))
3276 break;
3277 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3278 return NULL;
3281 return safe_as_a <rtx_insn *> (insn);
3284 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3285 routine does not look inside SEQUENCEs. */
3287 rtx_insn *
3288 next_nondebug_insn (rtx insn)
3290 while (insn)
3292 insn = NEXT_INSN (insn);
3293 if (insn == 0 || !DEBUG_INSN_P (insn))
3294 break;
3297 return safe_as_a <rtx_insn *> (insn);
3300 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3301 This routine does not look inside SEQUENCEs. */
3303 rtx_insn *
3304 prev_nondebug_insn (rtx insn)
3306 while (insn)
3308 insn = PREV_INSN (insn);
3309 if (insn == 0 || !DEBUG_INSN_P (insn))
3310 break;
3313 return safe_as_a <rtx_insn *> (insn);
3316 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3317 This routine does not look inside SEQUENCEs. */
3319 rtx_insn *
3320 next_nonnote_nondebug_insn (rtx insn)
3322 while (insn)
3324 insn = NEXT_INSN (insn);
3325 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3326 break;
3329 return safe_as_a <rtx_insn *> (insn);
3332 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3333 This routine does not look inside SEQUENCEs. */
3335 rtx_insn *
3336 prev_nonnote_nondebug_insn (rtx insn)
3338 while (insn)
3340 insn = PREV_INSN (insn);
3341 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3342 break;
3345 return safe_as_a <rtx_insn *> (insn);
3348 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3349 or 0, if there is none. This routine does not look inside
3350 SEQUENCEs. */
3352 rtx_insn *
3353 next_real_insn (rtx insn)
3355 while (insn)
3357 insn = NEXT_INSN (insn);
3358 if (insn == 0 || INSN_P (insn))
3359 break;
3362 return safe_as_a <rtx_insn *> (insn);
3365 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3366 or 0, if there is none. This routine does not look inside
3367 SEQUENCEs. */
3369 rtx_insn *
3370 prev_real_insn (rtx insn)
3372 while (insn)
3374 insn = PREV_INSN (insn);
3375 if (insn == 0 || INSN_P (insn))
3376 break;
3379 return safe_as_a <rtx_insn *> (insn);
3382 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3383 This routine does not look inside SEQUENCEs. */
3385 rtx_call_insn *
3386 last_call_insn (void)
3388 rtx_insn *insn;
3390 for (insn = get_last_insn ();
3391 insn && !CALL_P (insn);
3392 insn = PREV_INSN (insn))
3395 return safe_as_a <rtx_call_insn *> (insn);
3398 /* Find the next insn after INSN that really does something. This routine
3399 does not look inside SEQUENCEs. After reload this also skips over
3400 standalone USE and CLOBBER insn. */
3403 active_insn_p (const_rtx insn)
3405 return (CALL_P (insn) || JUMP_P (insn)
3406 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3407 || (NONJUMP_INSN_P (insn)
3408 && (! reload_completed
3409 || (GET_CODE (PATTERN (insn)) != USE
3410 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3413 rtx_insn *
3414 next_active_insn (rtx insn)
3416 while (insn)
3418 insn = NEXT_INSN (insn);
3419 if (insn == 0 || active_insn_p (insn))
3420 break;
3423 return safe_as_a <rtx_insn *> (insn);
3426 /* Find the last insn before INSN that really does something. This routine
3427 does not look inside SEQUENCEs. After reload this also skips over
3428 standalone USE and CLOBBER insn. */
3430 rtx_insn *
3431 prev_active_insn (rtx insn)
3433 while (insn)
3435 insn = PREV_INSN (insn);
3436 if (insn == 0 || active_insn_p (insn))
3437 break;
3440 return safe_as_a <rtx_insn *> (insn);
3443 #ifdef HAVE_cc0
3444 /* Return the next insn that uses CC0 after INSN, which is assumed to
3445 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3446 applied to the result of this function should yield INSN).
3448 Normally, this is simply the next insn. However, if a REG_CC_USER note
3449 is present, it contains the insn that uses CC0.
3451 Return 0 if we can't find the insn. */
3453 rtx_insn *
3454 next_cc0_user (rtx insn)
3456 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3458 if (note)
3459 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3461 insn = next_nonnote_insn (insn);
3462 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3463 insn = XVECEXP (PATTERN (insn), 0, 0);
3465 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3466 return safe_as_a <rtx_insn *> (insn);
3468 return 0;
3471 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3472 note, it is the previous insn. */
3474 rtx_insn *
3475 prev_cc0_setter (rtx insn)
3477 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3479 if (note)
3480 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3482 insn = prev_nonnote_insn (insn);
3483 gcc_assert (sets_cc0_p (PATTERN (insn)));
3485 return safe_as_a <rtx_insn *> (insn);
3487 #endif
3489 #ifdef AUTO_INC_DEC
3490 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3492 static int
3493 find_auto_inc (rtx *xp, void *data)
3495 rtx x = *xp;
3496 rtx reg = (rtx) data;
3498 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3499 return 0;
3501 switch (GET_CODE (x))
3503 case PRE_DEC:
3504 case PRE_INC:
3505 case POST_DEC:
3506 case POST_INC:
3507 case PRE_MODIFY:
3508 case POST_MODIFY:
3509 if (rtx_equal_p (reg, XEXP (x, 0)))
3510 return 1;
3511 break;
3513 default:
3514 gcc_unreachable ();
3516 return -1;
3518 #endif
3520 /* Increment the label uses for all labels present in rtx. */
3522 static void
3523 mark_label_nuses (rtx x)
3525 enum rtx_code code;
3526 int i, j;
3527 const char *fmt;
3529 code = GET_CODE (x);
3530 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3531 LABEL_NUSES (XEXP (x, 0))++;
3533 fmt = GET_RTX_FORMAT (code);
3534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3536 if (fmt[i] == 'e')
3537 mark_label_nuses (XEXP (x, i));
3538 else if (fmt[i] == 'E')
3539 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3540 mark_label_nuses (XVECEXP (x, i, j));
3545 /* Try splitting insns that can be split for better scheduling.
3546 PAT is the pattern which might split.
3547 TRIAL is the insn providing PAT.
3548 LAST is nonzero if we should return the last insn of the sequence produced.
3550 If this routine succeeds in splitting, it returns the first or last
3551 replacement insn depending on the value of LAST. Otherwise, it
3552 returns TRIAL. If the insn to be returned can be split, it will be. */
3555 try_split (rtx pat, rtx trial, int last)
3557 rtx before = PREV_INSN (trial);
3558 rtx after = NEXT_INSN (trial);
3559 int has_barrier = 0;
3560 rtx note, seq, tem;
3561 int probability;
3562 rtx insn_last, insn;
3563 int njumps = 0;
3564 rtx call_insn = NULL_RTX;
3566 /* We're not good at redistributing frame information. */
3567 if (RTX_FRAME_RELATED_P (trial))
3568 return trial;
3570 if (any_condjump_p (trial)
3571 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3572 split_branch_probability = XINT (note, 0);
3573 probability = split_branch_probability;
3575 seq = split_insns (pat, trial);
3577 split_branch_probability = -1;
3579 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3580 We may need to handle this specially. */
3581 if (after && BARRIER_P (after))
3583 has_barrier = 1;
3584 after = NEXT_INSN (after);
3587 if (!seq)
3588 return trial;
3590 /* Avoid infinite loop if any insn of the result matches
3591 the original pattern. */
3592 insn_last = seq;
3593 while (1)
3595 if (INSN_P (insn_last)
3596 && rtx_equal_p (PATTERN (insn_last), pat))
3597 return trial;
3598 if (!NEXT_INSN (insn_last))
3599 break;
3600 insn_last = NEXT_INSN (insn_last);
3603 /* We will be adding the new sequence to the function. The splitters
3604 may have introduced invalid RTL sharing, so unshare the sequence now. */
3605 unshare_all_rtl_in_chain (seq);
3607 /* Mark labels and copy flags. */
3608 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3610 if (JUMP_P (insn))
3612 if (JUMP_P (trial))
3613 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3614 mark_jump_label (PATTERN (insn), insn, 0);
3615 njumps++;
3616 if (probability != -1
3617 && any_condjump_p (insn)
3618 && !find_reg_note (insn, REG_BR_PROB, 0))
3620 /* We can preserve the REG_BR_PROB notes only if exactly
3621 one jump is created, otherwise the machine description
3622 is responsible for this step using
3623 split_branch_probability variable. */
3624 gcc_assert (njumps == 1);
3625 add_int_reg_note (insn, REG_BR_PROB, probability);
3630 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3631 in SEQ and copy any additional information across. */
3632 if (CALL_P (trial))
3634 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3635 if (CALL_P (insn))
3637 rtx next, *p;
3639 gcc_assert (call_insn == NULL_RTX);
3640 call_insn = insn;
3642 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3643 target may have explicitly specified. */
3644 p = &CALL_INSN_FUNCTION_USAGE (insn);
3645 while (*p)
3646 p = &XEXP (*p, 1);
3647 *p = CALL_INSN_FUNCTION_USAGE (trial);
3649 /* If the old call was a sibling call, the new one must
3650 be too. */
3651 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3653 /* If the new call is the last instruction in the sequence,
3654 it will effectively replace the old call in-situ. Otherwise
3655 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3656 so that it comes immediately after the new call. */
3657 if (NEXT_INSN (insn))
3658 for (next = NEXT_INSN (trial);
3659 next && NOTE_P (next);
3660 next = NEXT_INSN (next))
3661 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3663 remove_insn (next);
3664 add_insn_after (next, insn, NULL);
3665 break;
3670 /* Copy notes, particularly those related to the CFG. */
3671 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3673 switch (REG_NOTE_KIND (note))
3675 case REG_EH_REGION:
3676 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3677 break;
3679 case REG_NORETURN:
3680 case REG_SETJMP:
3681 case REG_TM:
3682 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3684 if (CALL_P (insn))
3685 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3687 break;
3689 case REG_NON_LOCAL_GOTO:
3690 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3692 if (JUMP_P (insn))
3693 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3695 break;
3697 #ifdef AUTO_INC_DEC
3698 case REG_INC:
3699 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3701 rtx reg = XEXP (note, 0);
3702 if (!FIND_REG_INC_NOTE (insn, reg)
3703 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3704 add_reg_note (insn, REG_INC, reg);
3706 break;
3707 #endif
3709 case REG_ARGS_SIZE:
3710 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3711 break;
3713 case REG_CALL_DECL:
3714 gcc_assert (call_insn != NULL_RTX);
3715 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3716 break;
3718 default:
3719 break;
3723 /* If there are LABELS inside the split insns increment the
3724 usage count so we don't delete the label. */
3725 if (INSN_P (trial))
3727 insn = insn_last;
3728 while (insn != NULL_RTX)
3730 /* JUMP_P insns have already been "marked" above. */
3731 if (NONJUMP_INSN_P (insn))
3732 mark_label_nuses (PATTERN (insn));
3734 insn = PREV_INSN (insn);
3738 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3740 delete_insn (trial);
3741 if (has_barrier)
3742 emit_barrier_after (tem);
3744 /* Recursively call try_split for each new insn created; by the
3745 time control returns here that insn will be fully split, so
3746 set LAST and continue from the insn after the one returned.
3747 We can't use next_active_insn here since AFTER may be a note.
3748 Ignore deleted insns, which can be occur if not optimizing. */
3749 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3750 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3751 tem = try_split (PATTERN (tem), tem, 1);
3753 /* Return either the first or the last insn, depending on which was
3754 requested. */
3755 return last
3756 ? (after ? PREV_INSN (after) : get_last_insn ())
3757 : NEXT_INSN (before);
3760 /* Make and return an INSN rtx, initializing all its slots.
3761 Store PATTERN in the pattern slots. */
3763 rtx_insn *
3764 make_insn_raw (rtx pattern)
3766 rtx_insn *insn;
3768 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3770 INSN_UID (insn) = cur_insn_uid++;
3771 PATTERN (insn) = pattern;
3772 INSN_CODE (insn) = -1;
3773 REG_NOTES (insn) = NULL;
3774 INSN_LOCATION (insn) = curr_insn_location ();
3775 BLOCK_FOR_INSN (insn) = NULL;
3777 #ifdef ENABLE_RTL_CHECKING
3778 if (insn
3779 && INSN_P (insn)
3780 && (returnjump_p (insn)
3781 || (GET_CODE (insn) == SET
3782 && SET_DEST (insn) == pc_rtx)))
3784 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3785 debug_rtx (insn);
3787 #endif
3789 return insn;
3792 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3794 static rtx_insn *
3795 make_debug_insn_raw (rtx pattern)
3797 rtx_debug_insn *insn;
3799 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3800 INSN_UID (insn) = cur_debug_insn_uid++;
3801 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3802 INSN_UID (insn) = cur_insn_uid++;
3804 PATTERN (insn) = pattern;
3805 INSN_CODE (insn) = -1;
3806 REG_NOTES (insn) = NULL;
3807 INSN_LOCATION (insn) = curr_insn_location ();
3808 BLOCK_FOR_INSN (insn) = NULL;
3810 return insn;
3813 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3815 static rtx_insn *
3816 make_jump_insn_raw (rtx pattern)
3818 rtx_jump_insn *insn;
3820 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3821 INSN_UID (insn) = cur_insn_uid++;
3823 PATTERN (insn) = pattern;
3824 INSN_CODE (insn) = -1;
3825 REG_NOTES (insn) = NULL;
3826 JUMP_LABEL (insn) = NULL;
3827 INSN_LOCATION (insn) = curr_insn_location ();
3828 BLOCK_FOR_INSN (insn) = NULL;
3830 return insn;
3833 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3835 static rtx_insn *
3836 make_call_insn_raw (rtx pattern)
3838 rtx_call_insn *insn;
3840 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3841 INSN_UID (insn) = cur_insn_uid++;
3843 PATTERN (insn) = pattern;
3844 INSN_CODE (insn) = -1;
3845 REG_NOTES (insn) = NULL;
3846 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3847 INSN_LOCATION (insn) = curr_insn_location ();
3848 BLOCK_FOR_INSN (insn) = NULL;
3850 return insn;
3853 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3855 static rtx_note *
3856 make_note_raw (enum insn_note subtype)
3858 /* Some notes are never created this way at all. These notes are
3859 only created by patching out insns. */
3860 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3861 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3863 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3864 INSN_UID (note) = cur_insn_uid++;
3865 NOTE_KIND (note) = subtype;
3866 BLOCK_FOR_INSN (note) = NULL;
3867 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3868 return note;
3871 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3872 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3873 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3875 static inline void
3876 link_insn_into_chain (rtx insn, rtx prev, rtx next)
3878 SET_PREV_INSN (insn) = prev;
3879 SET_NEXT_INSN (insn) = next;
3880 if (prev != NULL)
3882 SET_NEXT_INSN (prev) = insn;
3883 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3885 rtx sequence = PATTERN (prev);
3886 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3889 if (next != NULL)
3891 SET_PREV_INSN (next) = insn;
3892 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3893 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3896 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3898 rtx sequence = PATTERN (insn);
3899 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3900 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3904 /* Add INSN to the end of the doubly-linked list.
3905 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3907 void
3908 add_insn (rtx insn)
3910 rtx prev = get_last_insn ();
3911 link_insn_into_chain (insn, prev, NULL);
3912 if (NULL == get_insns ())
3913 set_first_insn (insn);
3914 set_last_insn (insn);
3917 /* Add INSN into the doubly-linked list after insn AFTER. */
3919 static void
3920 add_insn_after_nobb (rtx insn, rtx after)
3922 rtx next = NEXT_INSN (after);
3924 gcc_assert (!optimize || !INSN_DELETED_P (after));
3926 link_insn_into_chain (insn, after, next);
3928 if (next == NULL)
3930 if (get_last_insn () == after)
3931 set_last_insn (insn);
3932 else
3934 struct sequence_stack *stack = seq_stack;
3935 /* Scan all pending sequences too. */
3936 for (; stack; stack = stack->next)
3937 if (after == stack->last)
3939 stack->last = insn;
3940 break;
3946 /* Add INSN into the doubly-linked list before insn BEFORE. */
3948 static void
3949 add_insn_before_nobb (rtx insn, rtx before)
3951 rtx prev = PREV_INSN (before);
3953 gcc_assert (!optimize || !INSN_DELETED_P (before));
3955 link_insn_into_chain (insn, prev, before);
3957 if (prev == NULL)
3959 if (get_insns () == before)
3960 set_first_insn (insn);
3961 else
3963 struct sequence_stack *stack = seq_stack;
3964 /* Scan all pending sequences too. */
3965 for (; stack; stack = stack->next)
3966 if (before == stack->first)
3968 stack->first = insn;
3969 break;
3972 gcc_assert (stack);
3977 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3978 If BB is NULL, an attempt is made to infer the bb from before.
3980 This and the next function should be the only functions called
3981 to insert an insn once delay slots have been filled since only
3982 they know how to update a SEQUENCE. */
3984 void
3985 add_insn_after (rtx insn, rtx after, basic_block bb)
3987 add_insn_after_nobb (insn, after);
3988 if (!BARRIER_P (after)
3989 && !BARRIER_P (insn)
3990 && (bb = BLOCK_FOR_INSN (after)))
3992 set_block_for_insn (insn, bb);
3993 if (INSN_P (insn))
3994 df_insn_rescan (insn);
3995 /* Should not happen as first in the BB is always
3996 either NOTE or LABEL. */
3997 if (BB_END (bb) == after
3998 /* Avoid clobbering of structure when creating new BB. */
3999 && !BARRIER_P (insn)
4000 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4001 SET_BB_END (bb) = insn;
4005 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4006 If BB is NULL, an attempt is made to infer the bb from before.
4008 This and the previous function should be the only functions called
4009 to insert an insn once delay slots have been filled since only
4010 they know how to update a SEQUENCE. */
4012 void
4013 add_insn_before (rtx insn, rtx before, basic_block bb)
4015 add_insn_before_nobb (insn, before);
4017 if (!bb
4018 && !BARRIER_P (before)
4019 && !BARRIER_P (insn))
4020 bb = BLOCK_FOR_INSN (before);
4022 if (bb)
4024 set_block_for_insn (insn, bb);
4025 if (INSN_P (insn))
4026 df_insn_rescan (insn);
4027 /* Should not happen as first in the BB is always either NOTE or
4028 LABEL. */
4029 gcc_assert (BB_HEAD (bb) != insn
4030 /* Avoid clobbering of structure when creating new BB. */
4031 || BARRIER_P (insn)
4032 || NOTE_INSN_BASIC_BLOCK_P (insn));
4036 /* Replace insn with an deleted instruction note. */
4038 void
4039 set_insn_deleted (rtx insn)
4041 if (INSN_P (insn))
4042 df_insn_delete (insn);
4043 PUT_CODE (insn, NOTE);
4044 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4048 /* Unlink INSN from the insn chain.
4050 This function knows how to handle sequences.
4052 This function does not invalidate data flow information associated with
4053 INSN (i.e. does not call df_insn_delete). That makes this function
4054 usable for only disconnecting an insn from the chain, and re-emit it
4055 elsewhere later.
4057 To later insert INSN elsewhere in the insn chain via add_insn and
4058 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4059 the caller. Nullifying them here breaks many insn chain walks.
4061 To really delete an insn and related DF information, use delete_insn. */
4063 void
4064 remove_insn (rtx insn)
4066 rtx next = NEXT_INSN (insn);
4067 rtx prev = PREV_INSN (insn);
4068 basic_block bb;
4070 if (prev)
4072 SET_NEXT_INSN (prev) = next;
4073 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4075 rtx sequence = PATTERN (prev);
4076 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
4079 else if (get_insns () == insn)
4081 if (next)
4082 SET_PREV_INSN (next) = NULL;
4083 set_first_insn (next);
4085 else
4087 struct sequence_stack *stack = seq_stack;
4088 /* Scan all pending sequences too. */
4089 for (; stack; stack = stack->next)
4090 if (insn == stack->first)
4092 stack->first = next;
4093 break;
4096 gcc_assert (stack);
4099 if (next)
4101 SET_PREV_INSN (next) = prev;
4102 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4103 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4105 else if (get_last_insn () == insn)
4106 set_last_insn (prev);
4107 else
4109 struct sequence_stack *stack = seq_stack;
4110 /* Scan all pending sequences too. */
4111 for (; stack; stack = stack->next)
4112 if (insn == stack->last)
4114 stack->last = prev;
4115 break;
4118 gcc_assert (stack);
4121 /* Fix up basic block boundaries, if necessary. */
4122 if (!BARRIER_P (insn)
4123 && (bb = BLOCK_FOR_INSN (insn)))
4125 if (BB_HEAD (bb) == insn)
4127 /* Never ever delete the basic block note without deleting whole
4128 basic block. */
4129 gcc_assert (!NOTE_P (insn));
4130 SET_BB_HEAD (bb) = next;
4132 if (BB_END (bb) == insn)
4133 SET_BB_END (bb) = prev;
4137 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4139 void
4140 add_function_usage_to (rtx call_insn, rtx call_fusage)
4142 gcc_assert (call_insn && CALL_P (call_insn));
4144 /* Put the register usage information on the CALL. If there is already
4145 some usage information, put ours at the end. */
4146 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4148 rtx link;
4150 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4151 link = XEXP (link, 1))
4154 XEXP (link, 1) = call_fusage;
4156 else
4157 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4160 /* Delete all insns made since FROM.
4161 FROM becomes the new last instruction. */
4163 void
4164 delete_insns_since (rtx from)
4166 if (from == 0)
4167 set_first_insn (0);
4168 else
4169 SET_NEXT_INSN (from) = 0;
4170 set_last_insn (from);
4173 /* This function is deprecated, please use sequences instead.
4175 Move a consecutive bunch of insns to a different place in the chain.
4176 The insns to be moved are those between FROM and TO.
4177 They are moved to a new position after the insn AFTER.
4178 AFTER must not be FROM or TO or any insn in between.
4180 This function does not know about SEQUENCEs and hence should not be
4181 called after delay-slot filling has been done. */
4183 void
4184 reorder_insns_nobb (rtx from, rtx to, rtx after)
4186 #ifdef ENABLE_CHECKING
4187 rtx x;
4188 for (x = from; x != to; x = NEXT_INSN (x))
4189 gcc_assert (after != x);
4190 gcc_assert (after != to);
4191 #endif
4193 /* Splice this bunch out of where it is now. */
4194 if (PREV_INSN (from))
4195 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4196 if (NEXT_INSN (to))
4197 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4198 if (get_last_insn () == to)
4199 set_last_insn (PREV_INSN (from));
4200 if (get_insns () == from)
4201 set_first_insn (NEXT_INSN (to));
4203 /* Make the new neighbors point to it and it to them. */
4204 if (NEXT_INSN (after))
4205 SET_PREV_INSN (NEXT_INSN (after)) = to;
4207 SET_NEXT_INSN (to) = NEXT_INSN (after);
4208 SET_PREV_INSN (from) = after;
4209 SET_NEXT_INSN (after) = from;
4210 if (after == get_last_insn ())
4211 set_last_insn (to);
4214 /* Same as function above, but take care to update BB boundaries. */
4215 void
4216 reorder_insns (rtx from, rtx to, rtx after)
4218 rtx prev = PREV_INSN (from);
4219 basic_block bb, bb2;
4221 reorder_insns_nobb (from, to, after);
4223 if (!BARRIER_P (after)
4224 && (bb = BLOCK_FOR_INSN (after)))
4226 rtx x;
4227 df_set_bb_dirty (bb);
4229 if (!BARRIER_P (from)
4230 && (bb2 = BLOCK_FOR_INSN (from)))
4232 if (BB_END (bb2) == to)
4233 SET_BB_END (bb2) = prev;
4234 df_set_bb_dirty (bb2);
4237 if (BB_END (bb) == after)
4238 SET_BB_END (bb) = to;
4240 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4241 if (!BARRIER_P (x))
4242 df_insn_change_bb (x, bb);
4247 /* Emit insn(s) of given code and pattern
4248 at a specified place within the doubly-linked list.
4250 All of the emit_foo global entry points accept an object
4251 X which is either an insn list or a PATTERN of a single
4252 instruction.
4254 There are thus a few canonical ways to generate code and
4255 emit it at a specific place in the instruction stream. For
4256 example, consider the instruction named SPOT and the fact that
4257 we would like to emit some instructions before SPOT. We might
4258 do it like this:
4260 start_sequence ();
4261 ... emit the new instructions ...
4262 insns_head = get_insns ();
4263 end_sequence ();
4265 emit_insn_before (insns_head, SPOT);
4267 It used to be common to generate SEQUENCE rtl instead, but that
4268 is a relic of the past which no longer occurs. The reason is that
4269 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4270 generated would almost certainly die right after it was created. */
4272 static rtx_insn *
4273 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4274 rtx_insn *(*make_raw) (rtx))
4276 rtx_insn *insn;
4278 gcc_assert (before);
4280 if (x == NULL_RTX)
4281 return safe_as_a <rtx_insn *> (last);
4283 switch (GET_CODE (x))
4285 case DEBUG_INSN:
4286 case INSN:
4287 case JUMP_INSN:
4288 case CALL_INSN:
4289 case CODE_LABEL:
4290 case BARRIER:
4291 case NOTE:
4292 insn = as_a <rtx_insn *> (x);
4293 while (insn)
4295 rtx_insn *next = NEXT_INSN (insn);
4296 add_insn_before (insn, before, bb);
4297 last = insn;
4298 insn = next;
4300 break;
4302 #ifdef ENABLE_RTL_CHECKING
4303 case SEQUENCE:
4304 gcc_unreachable ();
4305 break;
4306 #endif
4308 default:
4309 last = (*make_raw) (x);
4310 add_insn_before (last, before, bb);
4311 break;
4314 return safe_as_a <rtx_insn *> (last);
4317 /* Make X be output before the instruction BEFORE. */
4319 rtx_insn *
4320 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4322 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4325 /* Make an instruction with body X and code JUMP_INSN
4326 and output it before the instruction BEFORE. */
4328 rtx_insn *
4329 emit_jump_insn_before_noloc (rtx x, rtx before)
4331 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4332 make_jump_insn_raw);
4335 /* Make an instruction with body X and code CALL_INSN
4336 and output it before the instruction BEFORE. */
4338 rtx_insn *
4339 emit_call_insn_before_noloc (rtx x, rtx before)
4341 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4342 make_call_insn_raw);
4345 /* Make an instruction with body X and code DEBUG_INSN
4346 and output it before the instruction BEFORE. */
4348 rtx_insn *
4349 emit_debug_insn_before_noloc (rtx x, rtx before)
4351 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4352 make_debug_insn_raw);
4355 /* Make an insn of code BARRIER
4356 and output it before the insn BEFORE. */
4358 rtx_barrier *
4359 emit_barrier_before (rtx before)
4361 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4363 INSN_UID (insn) = cur_insn_uid++;
4365 add_insn_before (insn, before, NULL);
4366 return insn;
4369 /* Emit the label LABEL before the insn BEFORE. */
4371 rtx_insn *
4372 emit_label_before (rtx label, rtx before)
4374 gcc_checking_assert (INSN_UID (label) == 0);
4375 INSN_UID (label) = cur_insn_uid++;
4376 add_insn_before (label, before, NULL);
4377 return as_a <rtx_insn *> (label);
4380 /* Helper for emit_insn_after, handles lists of instructions
4381 efficiently. */
4383 static rtx
4384 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4386 rtx last;
4387 rtx after_after;
4388 if (!bb && !BARRIER_P (after))
4389 bb = BLOCK_FOR_INSN (after);
4391 if (bb)
4393 df_set_bb_dirty (bb);
4394 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4395 if (!BARRIER_P (last))
4397 set_block_for_insn (last, bb);
4398 df_insn_rescan (last);
4400 if (!BARRIER_P (last))
4402 set_block_for_insn (last, bb);
4403 df_insn_rescan (last);
4405 if (BB_END (bb) == after)
4406 SET_BB_END (bb) = last;
4408 else
4409 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4410 continue;
4412 after_after = NEXT_INSN (after);
4414 SET_NEXT_INSN (after) = first;
4415 SET_PREV_INSN (first) = after;
4416 SET_NEXT_INSN (last) = after_after;
4417 if (after_after)
4418 SET_PREV_INSN (after_after) = last;
4420 if (after == get_last_insn ())
4421 set_last_insn (last);
4423 return last;
4426 static rtx_insn *
4427 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4428 rtx_insn *(*make_raw)(rtx))
4430 rtx last = after;
4432 gcc_assert (after);
4434 if (x == NULL_RTX)
4435 return safe_as_a <rtx_insn *> (last);
4437 switch (GET_CODE (x))
4439 case DEBUG_INSN:
4440 case INSN:
4441 case JUMP_INSN:
4442 case CALL_INSN:
4443 case CODE_LABEL:
4444 case BARRIER:
4445 case NOTE:
4446 last = emit_insn_after_1 (x, after, bb);
4447 break;
4449 #ifdef ENABLE_RTL_CHECKING
4450 case SEQUENCE:
4451 gcc_unreachable ();
4452 break;
4453 #endif
4455 default:
4456 last = (*make_raw) (x);
4457 add_insn_after (last, after, bb);
4458 break;
4461 return safe_as_a <rtx_insn *> (last);
4464 /* Make X be output after the insn AFTER and set the BB of insn. If
4465 BB is NULL, an attempt is made to infer the BB from AFTER. */
4467 rtx_insn *
4468 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4470 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4474 /* Make an insn of code JUMP_INSN with body X
4475 and output it after the insn AFTER. */
4477 rtx_insn *
4478 emit_jump_insn_after_noloc (rtx x, rtx after)
4480 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4483 /* Make an instruction with body X and code CALL_INSN
4484 and output it after the instruction AFTER. */
4486 rtx_insn *
4487 emit_call_insn_after_noloc (rtx x, rtx after)
4489 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4492 /* Make an instruction with body X and code CALL_INSN
4493 and output it after the instruction AFTER. */
4495 rtx_insn *
4496 emit_debug_insn_after_noloc (rtx x, rtx after)
4498 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4501 /* Make an insn of code BARRIER
4502 and output it after the insn AFTER. */
4504 rtx_barrier *
4505 emit_barrier_after (rtx after)
4507 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4509 INSN_UID (insn) = cur_insn_uid++;
4511 add_insn_after (insn, after, NULL);
4512 return insn;
4515 /* Emit the label LABEL after the insn AFTER. */
4517 rtx_insn *
4518 emit_label_after (rtx label, rtx after)
4520 gcc_checking_assert (INSN_UID (label) == 0);
4521 INSN_UID (label) = cur_insn_uid++;
4522 add_insn_after (label, after, NULL);
4523 return as_a <rtx_insn *> (label);
4526 /* Notes require a bit of special handling: Some notes need to have their
4527 BLOCK_FOR_INSN set, others should never have it set, and some should
4528 have it set or clear depending on the context. */
4530 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4531 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4532 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4534 static bool
4535 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4537 switch (subtype)
4539 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4540 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4541 return true;
4543 /* Notes for var tracking and EH region markers can appear between or
4544 inside basic blocks. If the caller is emitting on the basic block
4545 boundary, do not set BLOCK_FOR_INSN on the new note. */
4546 case NOTE_INSN_VAR_LOCATION:
4547 case NOTE_INSN_CALL_ARG_LOCATION:
4548 case NOTE_INSN_EH_REGION_BEG:
4549 case NOTE_INSN_EH_REGION_END:
4550 return on_bb_boundary_p;
4552 /* Otherwise, BLOCK_FOR_INSN must be set. */
4553 default:
4554 return false;
4558 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4560 rtx_note *
4561 emit_note_after (enum insn_note subtype, rtx after)
4563 rtx_note *note = make_note_raw (subtype);
4564 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4565 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4567 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4568 add_insn_after_nobb (note, after);
4569 else
4570 add_insn_after (note, after, bb);
4571 return note;
4574 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4576 rtx_note *
4577 emit_note_before (enum insn_note subtype, rtx before)
4579 rtx_note *note = make_note_raw (subtype);
4580 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4581 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4583 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4584 add_insn_before_nobb (note, before);
4585 else
4586 add_insn_before (note, before, bb);
4587 return note;
4590 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4591 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4593 static rtx_insn *
4594 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4595 rtx_insn *(*make_raw) (rtx))
4597 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4599 if (pattern == NULL_RTX || !loc)
4600 return safe_as_a <rtx_insn *> (last);
4602 after = NEXT_INSN (after);
4603 while (1)
4605 if (active_insn_p (after) && !INSN_LOCATION (after))
4606 INSN_LOCATION (after) = loc;
4607 if (after == last)
4608 break;
4609 after = NEXT_INSN (after);
4611 return safe_as_a <rtx_insn *> (last);
4614 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4615 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4616 any DEBUG_INSNs. */
4618 static rtx_insn *
4619 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4620 rtx_insn *(*make_raw) (rtx))
4622 rtx prev = after;
4624 if (skip_debug_insns)
4625 while (DEBUG_INSN_P (prev))
4626 prev = PREV_INSN (prev);
4628 if (INSN_P (prev))
4629 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4630 make_raw);
4631 else
4632 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4635 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4636 rtx_insn *
4637 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4639 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4642 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4643 rtx_insn *
4644 emit_insn_after (rtx pattern, rtx after)
4646 return emit_pattern_after (pattern, after, true, make_insn_raw);
4649 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4650 rtx_insn *
4651 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4653 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4656 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4657 rtx_insn *
4658 emit_jump_insn_after (rtx pattern, rtx after)
4660 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4663 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4664 rtx_insn *
4665 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4667 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4670 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4671 rtx_insn *
4672 emit_call_insn_after (rtx pattern, rtx after)
4674 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4677 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4678 rtx_insn *
4679 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4681 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4684 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4685 rtx_insn *
4686 emit_debug_insn_after (rtx pattern, rtx after)
4688 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4691 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4692 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4693 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4694 CALL_INSN, etc. */
4696 static rtx_insn *
4697 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4698 rtx_insn *(*make_raw) (rtx))
4700 rtx first = PREV_INSN (before);
4701 rtx last = emit_pattern_before_noloc (pattern, before,
4702 insnp ? before : NULL_RTX,
4703 NULL, make_raw);
4705 if (pattern == NULL_RTX || !loc)
4706 return safe_as_a <rtx_insn *> (last);
4708 if (!first)
4709 first = get_insns ();
4710 else
4711 first = NEXT_INSN (first);
4712 while (1)
4714 if (active_insn_p (first) && !INSN_LOCATION (first))
4715 INSN_LOCATION (first) = loc;
4716 if (first == last)
4717 break;
4718 first = NEXT_INSN (first);
4720 return safe_as_a <rtx_insn *> (last);
4723 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4724 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4725 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4726 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4728 static rtx_insn *
4729 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4730 bool insnp, rtx_insn *(*make_raw) (rtx))
4732 rtx next = before;
4734 if (skip_debug_insns)
4735 while (DEBUG_INSN_P (next))
4736 next = PREV_INSN (next);
4738 if (INSN_P (next))
4739 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4740 insnp, make_raw);
4741 else
4742 return emit_pattern_before_noloc (pattern, before,
4743 insnp ? before : NULL_RTX,
4744 NULL, make_raw);
4747 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4748 rtx_insn *
4749 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4751 return emit_pattern_before_setloc (pattern, before, loc, true,
4752 make_insn_raw);
4755 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4756 rtx_insn *
4757 emit_insn_before (rtx pattern, rtx before)
4759 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4762 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4763 rtx_insn *
4764 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4766 return emit_pattern_before_setloc (pattern, before, loc, false,
4767 make_jump_insn_raw);
4770 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4771 rtx_insn *
4772 emit_jump_insn_before (rtx pattern, rtx before)
4774 return emit_pattern_before (pattern, before, true, false,
4775 make_jump_insn_raw);
4778 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4779 rtx_insn *
4780 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4782 return emit_pattern_before_setloc (pattern, before, loc, false,
4783 make_call_insn_raw);
4786 /* Like emit_call_insn_before_noloc,
4787 but set insn_location according to BEFORE. */
4788 rtx_insn *
4789 emit_call_insn_before (rtx pattern, rtx before)
4791 return emit_pattern_before (pattern, before, true, false,
4792 make_call_insn_raw);
4795 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4796 rtx_insn *
4797 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4799 return emit_pattern_before_setloc (pattern, before, loc, false,
4800 make_debug_insn_raw);
4803 /* Like emit_debug_insn_before_noloc,
4804 but set insn_location according to BEFORE. */
4805 rtx_insn *
4806 emit_debug_insn_before (rtx pattern, rtx before)
4808 return emit_pattern_before (pattern, before, false, false,
4809 make_debug_insn_raw);
4812 /* Take X and emit it at the end of the doubly-linked
4813 INSN list.
4815 Returns the last insn emitted. */
4817 rtx_insn *
4818 emit_insn (rtx x)
4820 rtx_insn *last = get_last_insn ();
4821 rtx_insn *insn;
4823 if (x == NULL_RTX)
4824 return last;
4826 switch (GET_CODE (x))
4828 case DEBUG_INSN:
4829 case INSN:
4830 case JUMP_INSN:
4831 case CALL_INSN:
4832 case CODE_LABEL:
4833 case BARRIER:
4834 case NOTE:
4835 insn = as_a <rtx_insn *> (x);
4836 while (insn)
4838 rtx_insn *next = NEXT_INSN (insn);
4839 add_insn (insn);
4840 last = insn;
4841 insn = next;
4843 break;
4845 #ifdef ENABLE_RTL_CHECKING
4846 case JUMP_TABLE_DATA:
4847 case SEQUENCE:
4848 gcc_unreachable ();
4849 break;
4850 #endif
4852 default:
4853 last = make_insn_raw (x);
4854 add_insn (last);
4855 break;
4858 return last;
4861 /* Make an insn of code DEBUG_INSN with pattern X
4862 and add it to the end of the doubly-linked list. */
4864 rtx_insn *
4865 emit_debug_insn (rtx x)
4867 rtx_insn *last = get_last_insn ();
4868 rtx_insn *insn;
4870 if (x == NULL_RTX)
4871 return last;
4873 switch (GET_CODE (x))
4875 case DEBUG_INSN:
4876 case INSN:
4877 case JUMP_INSN:
4878 case CALL_INSN:
4879 case CODE_LABEL:
4880 case BARRIER:
4881 case NOTE:
4882 insn = as_a <rtx_insn *> (x);
4883 while (insn)
4885 rtx_insn *next = NEXT_INSN (insn);
4886 add_insn (insn);
4887 last = insn;
4888 insn = next;
4890 break;
4892 #ifdef ENABLE_RTL_CHECKING
4893 case JUMP_TABLE_DATA:
4894 case SEQUENCE:
4895 gcc_unreachable ();
4896 break;
4897 #endif
4899 default:
4900 last = make_debug_insn_raw (x);
4901 add_insn (last);
4902 break;
4905 return last;
4908 /* Make an insn of code JUMP_INSN with pattern X
4909 and add it to the end of the doubly-linked list. */
4911 rtx_insn *
4912 emit_jump_insn (rtx x)
4914 rtx_insn *last = NULL;
4915 rtx_insn *insn;
4917 switch (GET_CODE (x))
4919 case DEBUG_INSN:
4920 case INSN:
4921 case JUMP_INSN:
4922 case CALL_INSN:
4923 case CODE_LABEL:
4924 case BARRIER:
4925 case NOTE:
4926 insn = as_a <rtx_insn *> (x);
4927 while (insn)
4929 rtx_insn *next = NEXT_INSN (insn);
4930 add_insn (insn);
4931 last = insn;
4932 insn = next;
4934 break;
4936 #ifdef ENABLE_RTL_CHECKING
4937 case JUMP_TABLE_DATA:
4938 case SEQUENCE:
4939 gcc_unreachable ();
4940 break;
4941 #endif
4943 default:
4944 last = make_jump_insn_raw (x);
4945 add_insn (last);
4946 break;
4949 return last;
4952 /* Make an insn of code CALL_INSN with pattern X
4953 and add it to the end of the doubly-linked list. */
4955 rtx_insn *
4956 emit_call_insn (rtx x)
4958 rtx_insn *insn;
4960 switch (GET_CODE (x))
4962 case DEBUG_INSN:
4963 case INSN:
4964 case JUMP_INSN:
4965 case CALL_INSN:
4966 case CODE_LABEL:
4967 case BARRIER:
4968 case NOTE:
4969 insn = emit_insn (x);
4970 break;
4972 #ifdef ENABLE_RTL_CHECKING
4973 case SEQUENCE:
4974 case JUMP_TABLE_DATA:
4975 gcc_unreachable ();
4976 break;
4977 #endif
4979 default:
4980 insn = make_call_insn_raw (x);
4981 add_insn (insn);
4982 break;
4985 return insn;
4988 /* Add the label LABEL to the end of the doubly-linked list. */
4990 rtx_insn *
4991 emit_label (rtx label)
4993 gcc_checking_assert (INSN_UID (label) == 0);
4994 INSN_UID (label) = cur_insn_uid++;
4995 add_insn (label);
4996 return as_a <rtx_insn *> (label);
4999 /* Make an insn of code JUMP_TABLE_DATA
5000 and add it to the end of the doubly-linked list. */
5002 rtx_jump_table_data *
5003 emit_jump_table_data (rtx table)
5005 rtx_jump_table_data *jump_table_data =
5006 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5007 INSN_UID (jump_table_data) = cur_insn_uid++;
5008 PATTERN (jump_table_data) = table;
5009 BLOCK_FOR_INSN (jump_table_data) = NULL;
5010 add_insn (jump_table_data);
5011 return jump_table_data;
5014 /* Make an insn of code BARRIER
5015 and add it to the end of the doubly-linked list. */
5017 rtx_barrier *
5018 emit_barrier (void)
5020 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5021 INSN_UID (barrier) = cur_insn_uid++;
5022 add_insn (barrier);
5023 return barrier;
5026 /* Emit a copy of note ORIG. */
5028 rtx_note *
5029 emit_note_copy (rtx_note *orig)
5031 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5032 rtx_note *note = make_note_raw (kind);
5033 NOTE_DATA (note) = NOTE_DATA (orig);
5034 add_insn (note);
5035 return note;
5038 /* Make an insn of code NOTE or type NOTE_NO
5039 and add it to the end of the doubly-linked list. */
5041 rtx_note *
5042 emit_note (enum insn_note kind)
5044 rtx_note *note = make_note_raw (kind);
5045 add_insn (note);
5046 return note;
5049 /* Emit a clobber of lvalue X. */
5051 rtx_insn *
5052 emit_clobber (rtx x)
5054 /* CONCATs should not appear in the insn stream. */
5055 if (GET_CODE (x) == CONCAT)
5057 emit_clobber (XEXP (x, 0));
5058 return emit_clobber (XEXP (x, 1));
5060 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5063 /* Return a sequence of insns to clobber lvalue X. */
5065 rtx_insn *
5066 gen_clobber (rtx x)
5068 rtx_insn *seq;
5070 start_sequence ();
5071 emit_clobber (x);
5072 seq = get_insns ();
5073 end_sequence ();
5074 return seq;
5077 /* Emit a use of rvalue X. */
5079 rtx_insn *
5080 emit_use (rtx x)
5082 /* CONCATs should not appear in the insn stream. */
5083 if (GET_CODE (x) == CONCAT)
5085 emit_use (XEXP (x, 0));
5086 return emit_use (XEXP (x, 1));
5088 return emit_insn (gen_rtx_USE (VOIDmode, x));
5091 /* Return a sequence of insns to use rvalue X. */
5093 rtx_insn *
5094 gen_use (rtx x)
5096 rtx_insn *seq;
5098 start_sequence ();
5099 emit_use (x);
5100 seq = get_insns ();
5101 end_sequence ();
5102 return seq;
5105 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5106 Return the set in INSN that such notes describe, or NULL if the notes
5107 have no meaning for INSN. */
5110 set_for_reg_notes (rtx insn)
5112 rtx pat, reg;
5114 if (!INSN_P (insn))
5115 return NULL_RTX;
5117 pat = PATTERN (insn);
5118 if (GET_CODE (pat) == PARALLEL)
5120 /* We do not use single_set because that ignores SETs of unused
5121 registers. REG_EQUAL and REG_EQUIV notes really do require the
5122 PARALLEL to have a single SET. */
5123 if (multiple_sets (insn))
5124 return NULL_RTX;
5125 pat = XVECEXP (pat, 0, 0);
5128 if (GET_CODE (pat) != SET)
5129 return NULL_RTX;
5131 reg = SET_DEST (pat);
5133 /* Notes apply to the contents of a STRICT_LOW_PART. */
5134 if (GET_CODE (reg) == STRICT_LOW_PART)
5135 reg = XEXP (reg, 0);
5137 /* Check that we have a register. */
5138 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5139 return NULL_RTX;
5141 return pat;
5144 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5145 note of this type already exists, remove it first. */
5148 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5150 rtx note = find_reg_note (insn, kind, NULL_RTX);
5152 switch (kind)
5154 case REG_EQUAL:
5155 case REG_EQUIV:
5156 if (!set_for_reg_notes (insn))
5157 return NULL_RTX;
5159 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5160 It serves no useful purpose and breaks eliminate_regs. */
5161 if (GET_CODE (datum) == ASM_OPERANDS)
5162 return NULL_RTX;
5163 break;
5165 default:
5166 break;
5169 if (note)
5170 XEXP (note, 0) = datum;
5171 else
5173 add_reg_note (insn, kind, datum);
5174 note = REG_NOTES (insn);
5177 switch (kind)
5179 case REG_EQUAL:
5180 case REG_EQUIV:
5181 df_notes_rescan (insn);
5182 break;
5183 default:
5184 break;
5187 return note;
5190 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5192 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5194 rtx set = set_for_reg_notes (insn);
5196 if (set && SET_DEST (set) == dst)
5197 return set_unique_reg_note (insn, kind, datum);
5198 return NULL_RTX;
5201 /* Return an indication of which type of insn should have X as a body.
5202 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5204 static enum rtx_code
5205 classify_insn (rtx x)
5207 if (LABEL_P (x))
5208 return CODE_LABEL;
5209 if (GET_CODE (x) == CALL)
5210 return CALL_INSN;
5211 if (ANY_RETURN_P (x))
5212 return JUMP_INSN;
5213 if (GET_CODE (x) == SET)
5215 if (SET_DEST (x) == pc_rtx)
5216 return JUMP_INSN;
5217 else if (GET_CODE (SET_SRC (x)) == CALL)
5218 return CALL_INSN;
5219 else
5220 return INSN;
5222 if (GET_CODE (x) == PARALLEL)
5224 int j;
5225 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5226 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5227 return CALL_INSN;
5228 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5229 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5230 return JUMP_INSN;
5231 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5232 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5233 return CALL_INSN;
5235 return INSN;
5238 /* Emit the rtl pattern X as an appropriate kind of insn.
5239 If X is a label, it is simply added into the insn chain. */
5241 rtx_insn *
5242 emit (rtx x)
5244 enum rtx_code code = classify_insn (x);
5246 switch (code)
5248 case CODE_LABEL:
5249 return emit_label (x);
5250 case INSN:
5251 return emit_insn (x);
5252 case JUMP_INSN:
5254 rtx_insn *insn = emit_jump_insn (x);
5255 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5256 return emit_barrier ();
5257 return insn;
5259 case CALL_INSN:
5260 return emit_call_insn (x);
5261 case DEBUG_INSN:
5262 return emit_debug_insn (x);
5263 default:
5264 gcc_unreachable ();
5268 /* Space for free sequence stack entries. */
5269 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5271 /* Begin emitting insns to a sequence. If this sequence will contain
5272 something that might cause the compiler to pop arguments to function
5273 calls (because those pops have previously been deferred; see
5274 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5275 before calling this function. That will ensure that the deferred
5276 pops are not accidentally emitted in the middle of this sequence. */
5278 void
5279 start_sequence (void)
5281 struct sequence_stack *tem;
5283 if (free_sequence_stack != NULL)
5285 tem = free_sequence_stack;
5286 free_sequence_stack = tem->next;
5288 else
5289 tem = ggc_alloc<sequence_stack> ();
5291 tem->next = seq_stack;
5292 tem->first = get_insns ();
5293 tem->last = get_last_insn ();
5295 seq_stack = tem;
5297 set_first_insn (0);
5298 set_last_insn (0);
5301 /* Set up the insn chain starting with FIRST as the current sequence,
5302 saving the previously current one. See the documentation for
5303 start_sequence for more information about how to use this function. */
5305 void
5306 push_to_sequence (rtx first)
5308 rtx last;
5310 start_sequence ();
5312 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5315 set_first_insn (first);
5316 set_last_insn (last);
5319 /* Like push_to_sequence, but take the last insn as an argument to avoid
5320 looping through the list. */
5322 void
5323 push_to_sequence2 (rtx first, rtx last)
5325 start_sequence ();
5327 set_first_insn (first);
5328 set_last_insn (last);
5331 /* Set up the outer-level insn chain
5332 as the current sequence, saving the previously current one. */
5334 void
5335 push_topmost_sequence (void)
5337 struct sequence_stack *stack, *top = NULL;
5339 start_sequence ();
5341 for (stack = seq_stack; stack; stack = stack->next)
5342 top = stack;
5344 set_first_insn (top->first);
5345 set_last_insn (top->last);
5348 /* After emitting to the outer-level insn chain, update the outer-level
5349 insn chain, and restore the previous saved state. */
5351 void
5352 pop_topmost_sequence (void)
5354 struct sequence_stack *stack, *top = NULL;
5356 for (stack = seq_stack; stack; stack = stack->next)
5357 top = stack;
5359 top->first = get_insns ();
5360 top->last = get_last_insn ();
5362 end_sequence ();
5365 /* After emitting to a sequence, restore previous saved state.
5367 To get the contents of the sequence just made, you must call
5368 `get_insns' *before* calling here.
5370 If the compiler might have deferred popping arguments while
5371 generating this sequence, and this sequence will not be immediately
5372 inserted into the instruction stream, use do_pending_stack_adjust
5373 before calling get_insns. That will ensure that the deferred
5374 pops are inserted into this sequence, and not into some random
5375 location in the instruction stream. See INHIBIT_DEFER_POP for more
5376 information about deferred popping of arguments. */
5378 void
5379 end_sequence (void)
5381 struct sequence_stack *tem = seq_stack;
5383 set_first_insn (tem->first);
5384 set_last_insn (tem->last);
5385 seq_stack = tem->next;
5387 memset (tem, 0, sizeof (*tem));
5388 tem->next = free_sequence_stack;
5389 free_sequence_stack = tem;
5392 /* Return 1 if currently emitting into a sequence. */
5395 in_sequence_p (void)
5397 return seq_stack != 0;
5400 /* Put the various virtual registers into REGNO_REG_RTX. */
5402 static void
5403 init_virtual_regs (void)
5405 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5406 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5407 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5408 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5409 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5410 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5411 = virtual_preferred_stack_boundary_rtx;
5415 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5416 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5417 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5418 static int copy_insn_n_scratches;
5420 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5421 copied an ASM_OPERANDS.
5422 In that case, it is the original input-operand vector. */
5423 static rtvec orig_asm_operands_vector;
5425 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5426 copied an ASM_OPERANDS.
5427 In that case, it is the copied input-operand vector. */
5428 static rtvec copy_asm_operands_vector;
5430 /* Likewise for the constraints vector. */
5431 static rtvec orig_asm_constraints_vector;
5432 static rtvec copy_asm_constraints_vector;
5434 /* Recursively create a new copy of an rtx for copy_insn.
5435 This function differs from copy_rtx in that it handles SCRATCHes and
5436 ASM_OPERANDs properly.
5437 Normally, this function is not used directly; use copy_insn as front end.
5438 However, you could first copy an insn pattern with copy_insn and then use
5439 this function afterwards to properly copy any REG_NOTEs containing
5440 SCRATCHes. */
5443 copy_insn_1 (rtx orig)
5445 rtx copy;
5446 int i, j;
5447 RTX_CODE code;
5448 const char *format_ptr;
5450 if (orig == NULL)
5451 return NULL;
5453 code = GET_CODE (orig);
5455 switch (code)
5457 case REG:
5458 case DEBUG_EXPR:
5459 CASE_CONST_ANY:
5460 case SYMBOL_REF:
5461 case CODE_LABEL:
5462 case PC:
5463 case CC0:
5464 case RETURN:
5465 case SIMPLE_RETURN:
5466 return orig;
5467 case CLOBBER:
5468 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5469 clobbers or clobbers of hard registers that originated as pseudos.
5470 This is needed to allow safe register renaming. */
5471 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5472 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5473 return orig;
5474 break;
5476 case SCRATCH:
5477 for (i = 0; i < copy_insn_n_scratches; i++)
5478 if (copy_insn_scratch_in[i] == orig)
5479 return copy_insn_scratch_out[i];
5480 break;
5482 case CONST:
5483 if (shared_const_p (orig))
5484 return orig;
5485 break;
5487 /* A MEM with a constant address is not sharable. The problem is that
5488 the constant address may need to be reloaded. If the mem is shared,
5489 then reloading one copy of this mem will cause all copies to appear
5490 to have been reloaded. */
5492 default:
5493 break;
5496 /* Copy the various flags, fields, and other information. We assume
5497 that all fields need copying, and then clear the fields that should
5498 not be copied. That is the sensible default behavior, and forces
5499 us to explicitly document why we are *not* copying a flag. */
5500 copy = shallow_copy_rtx (orig);
5502 /* We do not copy the USED flag, which is used as a mark bit during
5503 walks over the RTL. */
5504 RTX_FLAG (copy, used) = 0;
5506 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5507 if (INSN_P (orig))
5509 RTX_FLAG (copy, jump) = 0;
5510 RTX_FLAG (copy, call) = 0;
5511 RTX_FLAG (copy, frame_related) = 0;
5514 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5516 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5517 switch (*format_ptr++)
5519 case 'e':
5520 if (XEXP (orig, i) != NULL)
5521 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5522 break;
5524 case 'E':
5525 case 'V':
5526 if (XVEC (orig, i) == orig_asm_constraints_vector)
5527 XVEC (copy, i) = copy_asm_constraints_vector;
5528 else if (XVEC (orig, i) == orig_asm_operands_vector)
5529 XVEC (copy, i) = copy_asm_operands_vector;
5530 else if (XVEC (orig, i) != NULL)
5532 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5533 for (j = 0; j < XVECLEN (copy, i); j++)
5534 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5536 break;
5538 case 't':
5539 case 'w':
5540 case 'i':
5541 case 's':
5542 case 'S':
5543 case 'u':
5544 case '0':
5545 /* These are left unchanged. */
5546 break;
5548 default:
5549 gcc_unreachable ();
5552 if (code == SCRATCH)
5554 i = copy_insn_n_scratches++;
5555 gcc_assert (i < MAX_RECOG_OPERANDS);
5556 copy_insn_scratch_in[i] = orig;
5557 copy_insn_scratch_out[i] = copy;
5559 else if (code == ASM_OPERANDS)
5561 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5562 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5563 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5564 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5567 return copy;
5570 /* Create a new copy of an rtx.
5571 This function differs from copy_rtx in that it handles SCRATCHes and
5572 ASM_OPERANDs properly.
5573 INSN doesn't really have to be a full INSN; it could be just the
5574 pattern. */
5576 copy_insn (rtx insn)
5578 copy_insn_n_scratches = 0;
5579 orig_asm_operands_vector = 0;
5580 orig_asm_constraints_vector = 0;
5581 copy_asm_operands_vector = 0;
5582 copy_asm_constraints_vector = 0;
5583 return copy_insn_1 (insn);
5586 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5587 on that assumption that INSN itself remains in its original place. */
5590 copy_delay_slot_insn (rtx insn)
5592 /* Copy INSN with its rtx_code, all its notes, location etc. */
5593 insn = copy_rtx (insn);
5594 INSN_UID (insn) = cur_insn_uid++;
5595 return insn;
5598 /* Initialize data structures and variables in this file
5599 before generating rtl for each function. */
5601 void
5602 init_emit (void)
5604 set_first_insn (NULL);
5605 set_last_insn (NULL);
5606 if (MIN_NONDEBUG_INSN_UID)
5607 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5608 else
5609 cur_insn_uid = 1;
5610 cur_debug_insn_uid = 1;
5611 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5612 first_label_num = label_num;
5613 seq_stack = NULL;
5615 /* Init the tables that describe all the pseudo regs. */
5617 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5619 crtl->emit.regno_pointer_align
5620 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5622 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5624 /* Put copies of all the hard registers into regno_reg_rtx. */
5625 memcpy (regno_reg_rtx,
5626 initial_regno_reg_rtx,
5627 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5629 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5630 init_virtual_regs ();
5632 /* Indicate that the virtual registers and stack locations are
5633 all pointers. */
5634 REG_POINTER (stack_pointer_rtx) = 1;
5635 REG_POINTER (frame_pointer_rtx) = 1;
5636 REG_POINTER (hard_frame_pointer_rtx) = 1;
5637 REG_POINTER (arg_pointer_rtx) = 1;
5639 REG_POINTER (virtual_incoming_args_rtx) = 1;
5640 REG_POINTER (virtual_stack_vars_rtx) = 1;
5641 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5642 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5643 REG_POINTER (virtual_cfa_rtx) = 1;
5645 #ifdef STACK_BOUNDARY
5646 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5647 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5648 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5649 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5651 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5652 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5653 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5654 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5655 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5656 #endif
5658 #ifdef INIT_EXPANDERS
5659 INIT_EXPANDERS;
5660 #endif
5663 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5665 static rtx
5666 gen_const_vector (enum machine_mode mode, int constant)
5668 rtx tem;
5669 rtvec v;
5670 int units, i;
5671 enum machine_mode inner;
5673 units = GET_MODE_NUNITS (mode);
5674 inner = GET_MODE_INNER (mode);
5676 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5678 v = rtvec_alloc (units);
5680 /* We need to call this function after we set the scalar const_tiny_rtx
5681 entries. */
5682 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5684 for (i = 0; i < units; ++i)
5685 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5687 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5688 return tem;
5691 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5692 all elements are zero, and the one vector when all elements are one. */
5694 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5696 enum machine_mode inner = GET_MODE_INNER (mode);
5697 int nunits = GET_MODE_NUNITS (mode);
5698 rtx x;
5699 int i;
5701 /* Check to see if all of the elements have the same value. */
5702 x = RTVEC_ELT (v, nunits - 1);
5703 for (i = nunits - 2; i >= 0; i--)
5704 if (RTVEC_ELT (v, i) != x)
5705 break;
5707 /* If the values are all the same, check to see if we can use one of the
5708 standard constant vectors. */
5709 if (i == -1)
5711 if (x == CONST0_RTX (inner))
5712 return CONST0_RTX (mode);
5713 else if (x == CONST1_RTX (inner))
5714 return CONST1_RTX (mode);
5715 else if (x == CONSTM1_RTX (inner))
5716 return CONSTM1_RTX (mode);
5719 return gen_rtx_raw_CONST_VECTOR (mode, v);
5722 /* Initialise global register information required by all functions. */
5724 void
5725 init_emit_regs (void)
5727 int i;
5728 enum machine_mode mode;
5729 mem_attrs *attrs;
5731 /* Reset register attributes */
5732 htab_empty (reg_attrs_htab);
5734 /* We need reg_raw_mode, so initialize the modes now. */
5735 init_reg_modes_target ();
5737 /* Assign register numbers to the globally defined register rtx. */
5738 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5739 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5740 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5741 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5742 virtual_incoming_args_rtx =
5743 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5744 virtual_stack_vars_rtx =
5745 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5746 virtual_stack_dynamic_rtx =
5747 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5748 virtual_outgoing_args_rtx =
5749 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5750 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5751 virtual_preferred_stack_boundary_rtx =
5752 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5754 /* Initialize RTL for commonly used hard registers. These are
5755 copied into regno_reg_rtx as we begin to compile each function. */
5756 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5757 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5759 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5760 return_address_pointer_rtx
5761 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5762 #endif
5764 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5765 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5766 else
5767 pic_offset_table_rtx = NULL_RTX;
5769 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5771 mode = (enum machine_mode) i;
5772 attrs = ggc_cleared_alloc<mem_attrs> ();
5773 attrs->align = BITS_PER_UNIT;
5774 attrs->addrspace = ADDR_SPACE_GENERIC;
5775 if (mode != BLKmode)
5777 attrs->size_known_p = true;
5778 attrs->size = GET_MODE_SIZE (mode);
5779 if (STRICT_ALIGNMENT)
5780 attrs->align = GET_MODE_ALIGNMENT (mode);
5782 mode_mem_attrs[i] = attrs;
5786 /* Initialize global machine_mode variables. */
5788 void
5789 init_derived_machine_modes (void)
5791 byte_mode = VOIDmode;
5792 word_mode = VOIDmode;
5794 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5795 mode != VOIDmode;
5796 mode = GET_MODE_WIDER_MODE (mode))
5798 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5799 && byte_mode == VOIDmode)
5800 byte_mode = mode;
5802 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5803 && word_mode == VOIDmode)
5804 word_mode = mode;
5807 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5810 /* Create some permanent unique rtl objects shared between all functions. */
5812 void
5813 init_emit_once (void)
5815 int i;
5816 enum machine_mode mode;
5817 enum machine_mode double_mode;
5819 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5820 CONST_FIXED, and memory attribute hash tables. */
5821 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5822 const_int_htab_eq, NULL);
5824 #if TARGET_SUPPORTS_WIDE_INT
5825 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5826 const_wide_int_htab_eq, NULL);
5827 #endif
5828 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5829 const_double_htab_eq, NULL);
5831 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5832 const_fixed_htab_eq, NULL);
5834 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5835 reg_attrs_htab_eq, NULL);
5837 #ifdef INIT_EXPANDERS
5838 /* This is to initialize {init|mark|free}_machine_status before the first
5839 call to push_function_context_to. This is needed by the Chill front
5840 end which calls push_function_context_to before the first call to
5841 init_function_start. */
5842 INIT_EXPANDERS;
5843 #endif
5845 /* Create the unique rtx's for certain rtx codes and operand values. */
5847 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5848 tries to use these variables. */
5849 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5850 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5851 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5853 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5854 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5855 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5856 else
5857 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5859 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5861 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5862 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5863 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5865 dconstm1 = dconst1;
5866 dconstm1.sign = 1;
5868 dconsthalf = dconst1;
5869 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5871 for (i = 0; i < 3; i++)
5873 const REAL_VALUE_TYPE *const r =
5874 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5876 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5877 mode != VOIDmode;
5878 mode = GET_MODE_WIDER_MODE (mode))
5879 const_tiny_rtx[i][(int) mode] =
5880 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5882 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5883 mode != VOIDmode;
5884 mode = GET_MODE_WIDER_MODE (mode))
5885 const_tiny_rtx[i][(int) mode] =
5886 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5888 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5890 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5891 mode != VOIDmode;
5892 mode = GET_MODE_WIDER_MODE (mode))
5893 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5895 for (mode = MIN_MODE_PARTIAL_INT;
5896 mode <= MAX_MODE_PARTIAL_INT;
5897 mode = (enum machine_mode)((int)(mode) + 1))
5898 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5901 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5903 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5904 mode != VOIDmode;
5905 mode = GET_MODE_WIDER_MODE (mode))
5906 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5908 for (mode = MIN_MODE_PARTIAL_INT;
5909 mode <= MAX_MODE_PARTIAL_INT;
5910 mode = (enum machine_mode)((int)(mode) + 1))
5911 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5913 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5914 mode != VOIDmode;
5915 mode = GET_MODE_WIDER_MODE (mode))
5917 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5918 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5921 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5922 mode != VOIDmode;
5923 mode = GET_MODE_WIDER_MODE (mode))
5925 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5926 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5929 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5930 mode != VOIDmode;
5931 mode = GET_MODE_WIDER_MODE (mode))
5933 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5934 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5935 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5938 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5939 mode != VOIDmode;
5940 mode = GET_MODE_WIDER_MODE (mode))
5942 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5943 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5946 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5947 mode != VOIDmode;
5948 mode = GET_MODE_WIDER_MODE (mode))
5950 FCONST0 (mode).data.high = 0;
5951 FCONST0 (mode).data.low = 0;
5952 FCONST0 (mode).mode = mode;
5953 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5954 FCONST0 (mode), mode);
5957 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5958 mode != VOIDmode;
5959 mode = GET_MODE_WIDER_MODE (mode))
5961 FCONST0 (mode).data.high = 0;
5962 FCONST0 (mode).data.low = 0;
5963 FCONST0 (mode).mode = mode;
5964 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5965 FCONST0 (mode), mode);
5968 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5969 mode != VOIDmode;
5970 mode = GET_MODE_WIDER_MODE (mode))
5972 FCONST0 (mode).data.high = 0;
5973 FCONST0 (mode).data.low = 0;
5974 FCONST0 (mode).mode = mode;
5975 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5976 FCONST0 (mode), mode);
5978 /* We store the value 1. */
5979 FCONST1 (mode).data.high = 0;
5980 FCONST1 (mode).data.low = 0;
5981 FCONST1 (mode).mode = mode;
5982 FCONST1 (mode).data
5983 = double_int_one.lshift (GET_MODE_FBIT (mode),
5984 HOST_BITS_PER_DOUBLE_INT,
5985 SIGNED_FIXED_POINT_MODE_P (mode));
5986 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5987 FCONST1 (mode), mode);
5990 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5991 mode != VOIDmode;
5992 mode = GET_MODE_WIDER_MODE (mode))
5994 FCONST0 (mode).data.high = 0;
5995 FCONST0 (mode).data.low = 0;
5996 FCONST0 (mode).mode = mode;
5997 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5998 FCONST0 (mode), mode);
6000 /* We store the value 1. */
6001 FCONST1 (mode).data.high = 0;
6002 FCONST1 (mode).data.low = 0;
6003 FCONST1 (mode).mode = mode;
6004 FCONST1 (mode).data
6005 = double_int_one.lshift (GET_MODE_FBIT (mode),
6006 HOST_BITS_PER_DOUBLE_INT,
6007 SIGNED_FIXED_POINT_MODE_P (mode));
6008 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6009 FCONST1 (mode), mode);
6012 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6013 mode != VOIDmode;
6014 mode = GET_MODE_WIDER_MODE (mode))
6016 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6019 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6020 mode != VOIDmode;
6021 mode = GET_MODE_WIDER_MODE (mode))
6023 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6026 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6027 mode != VOIDmode;
6028 mode = GET_MODE_WIDER_MODE (mode))
6030 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6031 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6034 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6035 mode != VOIDmode;
6036 mode = GET_MODE_WIDER_MODE (mode))
6038 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6039 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6042 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6043 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6044 const_tiny_rtx[0][i] = const0_rtx;
6046 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6047 if (STORE_FLAG_VALUE == 1)
6048 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6050 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6051 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6052 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6053 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6056 /* Produce exact duplicate of insn INSN after AFTER.
6057 Care updating of libcall regions if present. */
6059 rtx_insn *
6060 emit_copy_of_insn_after (rtx insn, rtx after)
6062 rtx_insn *new_rtx;
6063 rtx link;
6065 switch (GET_CODE (insn))
6067 case INSN:
6068 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6069 break;
6071 case JUMP_INSN:
6072 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6073 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6074 break;
6076 case DEBUG_INSN:
6077 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6078 break;
6080 case CALL_INSN:
6081 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6082 if (CALL_INSN_FUNCTION_USAGE (insn))
6083 CALL_INSN_FUNCTION_USAGE (new_rtx)
6084 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6085 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6086 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6087 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6088 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6089 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6090 break;
6092 default:
6093 gcc_unreachable ();
6096 /* Update LABEL_NUSES. */
6097 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6099 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6101 /* If the old insn is frame related, then so is the new one. This is
6102 primarily needed for IA-64 unwind info which marks epilogue insns,
6103 which may be duplicated by the basic block reordering code. */
6104 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6106 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6107 will make them. REG_LABEL_TARGETs are created there too, but are
6108 supposed to be sticky, so we copy them. */
6109 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6110 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6112 if (GET_CODE (link) == EXPR_LIST)
6113 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6114 copy_insn_1 (XEXP (link, 0)));
6115 else
6116 add_shallow_copy_of_reg_note (new_rtx, link);
6119 INSN_CODE (new_rtx) = INSN_CODE (insn);
6120 return new_rtx;
6123 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6125 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6127 if (hard_reg_clobbers[mode][regno])
6128 return hard_reg_clobbers[mode][regno];
6129 else
6130 return (hard_reg_clobbers[mode][regno] =
6131 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6134 location_t prologue_location;
6135 location_t epilogue_location;
6137 /* Hold current location information and last location information, so the
6138 datastructures are built lazily only when some instructions in given
6139 place are needed. */
6140 static location_t curr_location;
6142 /* Allocate insn location datastructure. */
6143 void
6144 insn_locations_init (void)
6146 prologue_location = epilogue_location = 0;
6147 curr_location = UNKNOWN_LOCATION;
6150 /* At the end of emit stage, clear current location. */
6151 void
6152 insn_locations_finalize (void)
6154 epilogue_location = curr_location;
6155 curr_location = UNKNOWN_LOCATION;
6158 /* Set current location. */
6159 void
6160 set_curr_insn_location (location_t location)
6162 curr_location = location;
6165 /* Get current location. */
6166 location_t
6167 curr_insn_location (void)
6169 return curr_location;
6172 /* Return lexical scope block insn belongs to. */
6173 tree
6174 insn_scope (const_rtx insn)
6176 return LOCATION_BLOCK (INSN_LOCATION (insn));
6179 /* Return line number of the statement that produced this insn. */
6181 insn_line (const_rtx insn)
6183 return LOCATION_LINE (INSN_LOCATION (insn));
6186 /* Return source file of the statement that produced this insn. */
6187 const char *
6188 insn_file (const_rtx insn)
6190 return LOCATION_FILE (INSN_LOCATION (insn));
6193 /* Return expanded location of the statement that produced this insn. */
6194 expanded_location
6195 insn_location (const_rtx insn)
6197 return expand_location (INSN_LOCATION (insn));
6200 /* Return true if memory model MODEL requires a pre-operation (release-style)
6201 barrier or a post-operation (acquire-style) barrier. While not universal,
6202 this function matches behavior of several targets. */
6204 bool
6205 need_atomic_barrier_p (enum memmodel model, bool pre)
6207 switch (model & MEMMODEL_MASK)
6209 case MEMMODEL_RELAXED:
6210 case MEMMODEL_CONSUME:
6211 return false;
6212 case MEMMODEL_RELEASE:
6213 return pre;
6214 case MEMMODEL_ACQUIRE:
6215 return !pre;
6216 case MEMMODEL_ACQ_REL:
6217 case MEMMODEL_SEQ_CST:
6218 return true;
6219 default:
6220 gcc_unreachable ();
6224 #include "gt-emit-rtl.h"