2014-08-15 Andrew Sutton <andrew.n.sutton@gmail.com>
[official-gcc.git] / gcc / asan.c
blobe073b01336febd06ce8a5328f0673bb6fc75ab9d
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
92 [Protection of stack variables]
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
98 int
99 foo ()
101 char a[23] = {0};
102 int b[2] = {0};
104 a[5] = 1;
105 b[1] = 2;
107 return a[5] + b[1];
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
119 Slot 3/ [24 bytes for variable 'a']
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
125 Slot 6/ [8 bytes for variable 'b']
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
150 4/ The following 8 bytes are reserved for internal use by the run-time.
152 The shadow memory for that stack layout is going to look like this:
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
199 [Protection of global variables]
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
213 struct __asan_global
215 // Address of the beginning of the global variable.
216 const void *__beg;
218 // Initial size of the global variable.
219 uptr __size;
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
225 // Name of the global variable.
226 const void *__name;
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
235 A destructor function that calls the runtime asan library function
236 _asan_unregister_globals is also installed. */
238 alias_set_type asan_shadow_set = -1;
240 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
241 alias set is used for all shadow memory accesses. */
242 static GTY(()) tree shadow_ptr_types[2];
244 /* Decl for __asan_option_detect_stack_use_after_return. */
245 static GTY(()) tree asan_detect_stack_use_after_return;
247 /* Various flags for Asan builtins. */
248 enum asan_check_flags
250 ASAN_CHECK_STORE = 1 << 0,
251 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
252 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
253 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
254 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
255 ASAN_CHECK_LAST
258 /* Hashtable support for memory references used by gimple
259 statements. */
261 /* This type represents a reference to a memory region. */
262 struct asan_mem_ref
264 /* The expression of the beginning of the memory region. */
265 tree start;
267 /* The size of the access. */
268 HOST_WIDE_INT access_size;
271 static alloc_pool asan_mem_ref_alloc_pool;
273 /* This creates the alloc pool used to store the instances of
274 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
276 static alloc_pool
277 asan_mem_ref_get_alloc_pool ()
279 if (asan_mem_ref_alloc_pool == NULL)
280 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
281 sizeof (asan_mem_ref),
282 10);
283 return asan_mem_ref_alloc_pool;
287 /* Initializes an instance of asan_mem_ref. */
289 static void
290 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
292 ref->start = start;
293 ref->access_size = access_size;
296 /* Allocates memory for an instance of asan_mem_ref into the memory
297 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
298 START is the address of (or the expression pointing to) the
299 beginning of memory reference. ACCESS_SIZE is the size of the
300 access to the referenced memory. */
302 static asan_mem_ref*
303 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
305 asan_mem_ref *ref =
306 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
308 asan_mem_ref_init (ref, start, access_size);
309 return ref;
312 /* This builds and returns a pointer to the end of the memory region
313 that starts at START and of length LEN. */
315 tree
316 asan_mem_ref_get_end (tree start, tree len)
318 if (len == NULL_TREE || integer_zerop (len))
319 return start;
321 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
324 /* Return a tree expression that represents the end of the referenced
325 memory region. Beware that this function can actually build a new
326 tree expression. */
328 tree
329 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
331 return asan_mem_ref_get_end (ref->start, len);
334 struct asan_mem_ref_hasher
335 : typed_noop_remove <asan_mem_ref>
337 typedef asan_mem_ref value_type;
338 typedef asan_mem_ref compare_type;
340 static inline hashval_t hash (const value_type *);
341 static inline bool equal (const value_type *, const compare_type *);
344 /* Hash a memory reference. */
346 inline hashval_t
347 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
349 inchash::hash hstate;
350 inchash::add_expr (mem_ref->start, hstate);
351 hstate.add_wide_int (mem_ref->access_size);
352 return hstate.end ();
355 /* Compare two memory references. We accept the length of either
356 memory references to be NULL_TREE. */
358 inline bool
359 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
360 const asan_mem_ref *m2)
362 return (m1->access_size == m2->access_size
363 && operand_equal_p (m1->start, m2->start, 0));
366 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
368 /* Returns a reference to the hash table containing memory references.
369 This function ensures that the hash table is created. Note that
370 this hash table is updated by the function
371 update_mem_ref_hash_table. */
373 static hash_table<asan_mem_ref_hasher> *
374 get_mem_ref_hash_table ()
376 if (!asan_mem_ref_ht)
377 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
379 return asan_mem_ref_ht;
382 /* Clear all entries from the memory references hash table. */
384 static void
385 empty_mem_ref_hash_table ()
387 if (asan_mem_ref_ht)
388 asan_mem_ref_ht->empty ();
391 /* Free the memory references hash table. */
393 static void
394 free_mem_ref_resources ()
396 delete asan_mem_ref_ht;
397 asan_mem_ref_ht = NULL;
399 if (asan_mem_ref_alloc_pool)
401 free_alloc_pool (asan_mem_ref_alloc_pool);
402 asan_mem_ref_alloc_pool = NULL;
406 /* Return true iff the memory reference REF has been instrumented. */
408 static bool
409 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
411 asan_mem_ref r;
412 asan_mem_ref_init (&r, ref, access_size);
414 return (get_mem_ref_hash_table ()->find (&r) != NULL);
417 /* Return true iff the memory reference REF has been instrumented. */
419 static bool
420 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
422 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
425 /* Return true iff access to memory region starting at REF and of
426 length LEN has been instrumented. */
428 static bool
429 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
431 /* First let's see if the address of the beginning of REF has been
432 instrumented. */
433 if (!has_mem_ref_been_instrumented (ref))
434 return false;
436 if (len != 0)
438 /* Let's see if the end of the region has been instrumented. */
439 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
440 ref->access_size))
441 return false;
443 return true;
446 /* Set REF to the memory reference present in a gimple assignment
447 ASSIGNMENT. Return true upon successful completion, false
448 otherwise. */
450 static bool
451 get_mem_ref_of_assignment (const gimple assignment,
452 asan_mem_ref *ref,
453 bool *ref_is_store)
455 gcc_assert (gimple_assign_single_p (assignment));
457 if (gimple_store_p (assignment)
458 && !gimple_clobber_p (assignment))
460 ref->start = gimple_assign_lhs (assignment);
461 *ref_is_store = true;
463 else if (gimple_assign_load_p (assignment))
465 ref->start = gimple_assign_rhs1 (assignment);
466 *ref_is_store = false;
468 else
469 return false;
471 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
472 return true;
475 /* Return the memory references contained in a gimple statement
476 representing a builtin call that has to do with memory access. */
478 static bool
479 get_mem_refs_of_builtin_call (const gimple call,
480 asan_mem_ref *src0,
481 tree *src0_len,
482 bool *src0_is_store,
483 asan_mem_ref *src1,
484 tree *src1_len,
485 bool *src1_is_store,
486 asan_mem_ref *dst,
487 tree *dst_len,
488 bool *dst_is_store,
489 bool *dest_is_deref)
491 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
493 tree callee = gimple_call_fndecl (call);
494 tree source0 = NULL_TREE, source1 = NULL_TREE,
495 dest = NULL_TREE, len = NULL_TREE;
496 bool is_store = true, got_reference_p = false;
497 HOST_WIDE_INT access_size = 1;
499 switch (DECL_FUNCTION_CODE (callee))
501 /* (s, s, n) style memops. */
502 case BUILT_IN_BCMP:
503 case BUILT_IN_MEMCMP:
504 source0 = gimple_call_arg (call, 0);
505 source1 = gimple_call_arg (call, 1);
506 len = gimple_call_arg (call, 2);
507 break;
509 /* (src, dest, n) style memops. */
510 case BUILT_IN_BCOPY:
511 source0 = gimple_call_arg (call, 0);
512 dest = gimple_call_arg (call, 1);
513 len = gimple_call_arg (call, 2);
514 break;
516 /* (dest, src, n) style memops. */
517 case BUILT_IN_MEMCPY:
518 case BUILT_IN_MEMCPY_CHK:
519 case BUILT_IN_MEMMOVE:
520 case BUILT_IN_MEMMOVE_CHK:
521 case BUILT_IN_MEMPCPY:
522 case BUILT_IN_MEMPCPY_CHK:
523 dest = gimple_call_arg (call, 0);
524 source0 = gimple_call_arg (call, 1);
525 len = gimple_call_arg (call, 2);
526 break;
528 /* (dest, n) style memops. */
529 case BUILT_IN_BZERO:
530 dest = gimple_call_arg (call, 0);
531 len = gimple_call_arg (call, 1);
532 break;
534 /* (dest, x, n) style memops*/
535 case BUILT_IN_MEMSET:
536 case BUILT_IN_MEMSET_CHK:
537 dest = gimple_call_arg (call, 0);
538 len = gimple_call_arg (call, 2);
539 break;
541 case BUILT_IN_STRLEN:
542 source0 = gimple_call_arg (call, 0);
543 len = gimple_call_lhs (call);
544 break ;
546 /* And now the __atomic* and __sync builtins.
547 These are handled differently from the classical memory memory
548 access builtins above. */
550 case BUILT_IN_ATOMIC_LOAD_1:
551 case BUILT_IN_ATOMIC_LOAD_2:
552 case BUILT_IN_ATOMIC_LOAD_4:
553 case BUILT_IN_ATOMIC_LOAD_8:
554 case BUILT_IN_ATOMIC_LOAD_16:
555 is_store = false;
556 /* fall through. */
558 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
559 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
560 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
561 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
562 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
564 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
565 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
566 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
567 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
568 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
570 case BUILT_IN_SYNC_FETCH_AND_OR_1:
571 case BUILT_IN_SYNC_FETCH_AND_OR_2:
572 case BUILT_IN_SYNC_FETCH_AND_OR_4:
573 case BUILT_IN_SYNC_FETCH_AND_OR_8:
574 case BUILT_IN_SYNC_FETCH_AND_OR_16:
576 case BUILT_IN_SYNC_FETCH_AND_AND_1:
577 case BUILT_IN_SYNC_FETCH_AND_AND_2:
578 case BUILT_IN_SYNC_FETCH_AND_AND_4:
579 case BUILT_IN_SYNC_FETCH_AND_AND_8:
580 case BUILT_IN_SYNC_FETCH_AND_AND_16:
582 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
583 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
584 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
585 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
586 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
588 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
589 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
590 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
591 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
593 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
594 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
595 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
596 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
597 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
599 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
600 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
601 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
602 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
603 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
605 case BUILT_IN_SYNC_OR_AND_FETCH_1:
606 case BUILT_IN_SYNC_OR_AND_FETCH_2:
607 case BUILT_IN_SYNC_OR_AND_FETCH_4:
608 case BUILT_IN_SYNC_OR_AND_FETCH_8:
609 case BUILT_IN_SYNC_OR_AND_FETCH_16:
611 case BUILT_IN_SYNC_AND_AND_FETCH_1:
612 case BUILT_IN_SYNC_AND_AND_FETCH_2:
613 case BUILT_IN_SYNC_AND_AND_FETCH_4:
614 case BUILT_IN_SYNC_AND_AND_FETCH_8:
615 case BUILT_IN_SYNC_AND_AND_FETCH_16:
617 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
618 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
619 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
620 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
621 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
623 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
625 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
626 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
628 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
629 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
630 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
631 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
632 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
634 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
640 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
641 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
642 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
643 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
644 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
646 case BUILT_IN_SYNC_LOCK_RELEASE_1:
647 case BUILT_IN_SYNC_LOCK_RELEASE_2:
648 case BUILT_IN_SYNC_LOCK_RELEASE_4:
649 case BUILT_IN_SYNC_LOCK_RELEASE_8:
650 case BUILT_IN_SYNC_LOCK_RELEASE_16:
652 case BUILT_IN_ATOMIC_EXCHANGE_1:
653 case BUILT_IN_ATOMIC_EXCHANGE_2:
654 case BUILT_IN_ATOMIC_EXCHANGE_4:
655 case BUILT_IN_ATOMIC_EXCHANGE_8:
656 case BUILT_IN_ATOMIC_EXCHANGE_16:
658 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
664 case BUILT_IN_ATOMIC_STORE_1:
665 case BUILT_IN_ATOMIC_STORE_2:
666 case BUILT_IN_ATOMIC_STORE_4:
667 case BUILT_IN_ATOMIC_STORE_8:
668 case BUILT_IN_ATOMIC_STORE_16:
670 case BUILT_IN_ATOMIC_ADD_FETCH_1:
671 case BUILT_IN_ATOMIC_ADD_FETCH_2:
672 case BUILT_IN_ATOMIC_ADD_FETCH_4:
673 case BUILT_IN_ATOMIC_ADD_FETCH_8:
674 case BUILT_IN_ATOMIC_ADD_FETCH_16:
676 case BUILT_IN_ATOMIC_SUB_FETCH_1:
677 case BUILT_IN_ATOMIC_SUB_FETCH_2:
678 case BUILT_IN_ATOMIC_SUB_FETCH_4:
679 case BUILT_IN_ATOMIC_SUB_FETCH_8:
680 case BUILT_IN_ATOMIC_SUB_FETCH_16:
682 case BUILT_IN_ATOMIC_AND_FETCH_1:
683 case BUILT_IN_ATOMIC_AND_FETCH_2:
684 case BUILT_IN_ATOMIC_AND_FETCH_4:
685 case BUILT_IN_ATOMIC_AND_FETCH_8:
686 case BUILT_IN_ATOMIC_AND_FETCH_16:
688 case BUILT_IN_ATOMIC_NAND_FETCH_1:
689 case BUILT_IN_ATOMIC_NAND_FETCH_2:
690 case BUILT_IN_ATOMIC_NAND_FETCH_4:
691 case BUILT_IN_ATOMIC_NAND_FETCH_8:
692 case BUILT_IN_ATOMIC_NAND_FETCH_16:
694 case BUILT_IN_ATOMIC_XOR_FETCH_1:
695 case BUILT_IN_ATOMIC_XOR_FETCH_2:
696 case BUILT_IN_ATOMIC_XOR_FETCH_4:
697 case BUILT_IN_ATOMIC_XOR_FETCH_8:
698 case BUILT_IN_ATOMIC_XOR_FETCH_16:
700 case BUILT_IN_ATOMIC_OR_FETCH_1:
701 case BUILT_IN_ATOMIC_OR_FETCH_2:
702 case BUILT_IN_ATOMIC_OR_FETCH_4:
703 case BUILT_IN_ATOMIC_OR_FETCH_8:
704 case BUILT_IN_ATOMIC_OR_FETCH_16:
706 case BUILT_IN_ATOMIC_FETCH_ADD_1:
707 case BUILT_IN_ATOMIC_FETCH_ADD_2:
708 case BUILT_IN_ATOMIC_FETCH_ADD_4:
709 case BUILT_IN_ATOMIC_FETCH_ADD_8:
710 case BUILT_IN_ATOMIC_FETCH_ADD_16:
712 case BUILT_IN_ATOMIC_FETCH_SUB_1:
713 case BUILT_IN_ATOMIC_FETCH_SUB_2:
714 case BUILT_IN_ATOMIC_FETCH_SUB_4:
715 case BUILT_IN_ATOMIC_FETCH_SUB_8:
716 case BUILT_IN_ATOMIC_FETCH_SUB_16:
718 case BUILT_IN_ATOMIC_FETCH_AND_1:
719 case BUILT_IN_ATOMIC_FETCH_AND_2:
720 case BUILT_IN_ATOMIC_FETCH_AND_4:
721 case BUILT_IN_ATOMIC_FETCH_AND_8:
722 case BUILT_IN_ATOMIC_FETCH_AND_16:
724 case BUILT_IN_ATOMIC_FETCH_NAND_1:
725 case BUILT_IN_ATOMIC_FETCH_NAND_2:
726 case BUILT_IN_ATOMIC_FETCH_NAND_4:
727 case BUILT_IN_ATOMIC_FETCH_NAND_8:
728 case BUILT_IN_ATOMIC_FETCH_NAND_16:
730 case BUILT_IN_ATOMIC_FETCH_XOR_1:
731 case BUILT_IN_ATOMIC_FETCH_XOR_2:
732 case BUILT_IN_ATOMIC_FETCH_XOR_4:
733 case BUILT_IN_ATOMIC_FETCH_XOR_8:
734 case BUILT_IN_ATOMIC_FETCH_XOR_16:
736 case BUILT_IN_ATOMIC_FETCH_OR_1:
737 case BUILT_IN_ATOMIC_FETCH_OR_2:
738 case BUILT_IN_ATOMIC_FETCH_OR_4:
739 case BUILT_IN_ATOMIC_FETCH_OR_8:
740 case BUILT_IN_ATOMIC_FETCH_OR_16:
742 dest = gimple_call_arg (call, 0);
743 /* DEST represents the address of a memory location.
744 instrument_derefs wants the memory location, so lets
745 dereference the address DEST before handing it to
746 instrument_derefs. */
747 if (TREE_CODE (dest) == ADDR_EXPR)
748 dest = TREE_OPERAND (dest, 0);
749 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
750 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
751 dest, build_int_cst (TREE_TYPE (dest), 0));
752 else
753 gcc_unreachable ();
755 access_size = int_size_in_bytes (TREE_TYPE (dest));
758 default:
759 /* The other builtins memory access are not instrumented in this
760 function because they either don't have any length parameter,
761 or their length parameter is just a limit. */
762 break;
765 if (len != NULL_TREE)
767 if (source0 != NULL_TREE)
769 src0->start = source0;
770 src0->access_size = access_size;
771 *src0_len = len;
772 *src0_is_store = false;
775 if (source1 != NULL_TREE)
777 src1->start = source1;
778 src1->access_size = access_size;
779 *src1_len = len;
780 *src1_is_store = false;
783 if (dest != NULL_TREE)
785 dst->start = dest;
786 dst->access_size = access_size;
787 *dst_len = len;
788 *dst_is_store = true;
791 got_reference_p = true;
793 else if (dest)
795 dst->start = dest;
796 dst->access_size = access_size;
797 *dst_len = NULL_TREE;
798 *dst_is_store = is_store;
799 *dest_is_deref = true;
800 got_reference_p = true;
803 return got_reference_p;
806 /* Return true iff a given gimple statement has been instrumented.
807 Note that the statement is "defined" by the memory references it
808 contains. */
810 static bool
811 has_stmt_been_instrumented_p (gimple stmt)
813 if (gimple_assign_single_p (stmt))
815 bool r_is_store;
816 asan_mem_ref r;
817 asan_mem_ref_init (&r, NULL, 1);
819 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
820 return has_mem_ref_been_instrumented (&r);
822 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
824 asan_mem_ref src0, src1, dest;
825 asan_mem_ref_init (&src0, NULL, 1);
826 asan_mem_ref_init (&src1, NULL, 1);
827 asan_mem_ref_init (&dest, NULL, 1);
829 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
830 bool src0_is_store = false, src1_is_store = false,
831 dest_is_store = false, dest_is_deref = false;
832 if (get_mem_refs_of_builtin_call (stmt,
833 &src0, &src0_len, &src0_is_store,
834 &src1, &src1_len, &src1_is_store,
835 &dest, &dest_len, &dest_is_store,
836 &dest_is_deref))
838 if (src0.start != NULL_TREE
839 && !has_mem_ref_been_instrumented (&src0, src0_len))
840 return false;
842 if (src1.start != NULL_TREE
843 && !has_mem_ref_been_instrumented (&src1, src1_len))
844 return false;
846 if (dest.start != NULL_TREE
847 && !has_mem_ref_been_instrumented (&dest, dest_len))
848 return false;
850 return true;
853 return false;
856 /* Insert a memory reference into the hash table. */
858 static void
859 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
861 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
863 asan_mem_ref r;
864 asan_mem_ref_init (&r, ref, access_size);
866 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
867 if (*slot == NULL)
868 *slot = asan_mem_ref_new (ref, access_size);
871 /* Initialize shadow_ptr_types array. */
873 static void
874 asan_init_shadow_ptr_types (void)
876 asan_shadow_set = new_alias_set ();
877 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
878 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
879 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
880 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
881 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
882 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
883 initialize_sanitizer_builtins ();
886 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
888 static tree
889 asan_pp_string (pretty_printer *pp)
891 const char *buf = pp_formatted_text (pp);
892 size_t len = strlen (buf);
893 tree ret = build_string (len + 1, buf);
894 TREE_TYPE (ret)
895 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
896 build_index_type (size_int (len)));
897 TREE_READONLY (ret) = 1;
898 TREE_STATIC (ret) = 1;
899 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
902 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
904 static rtx
905 asan_shadow_cst (unsigned char shadow_bytes[4])
907 int i;
908 unsigned HOST_WIDE_INT val = 0;
909 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
910 for (i = 0; i < 4; i++)
911 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
912 << (BITS_PER_UNIT * i);
913 return gen_int_mode (val, SImode);
916 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
917 though. */
919 static void
920 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
922 rtx insn, insns, top_label, end, addr, tmp, jump;
924 start_sequence ();
925 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
926 insns = get_insns ();
927 end_sequence ();
928 for (insn = insns; insn; insn = NEXT_INSN (insn))
929 if (CALL_P (insn))
930 break;
931 if (insn == NULL_RTX)
933 emit_insn (insns);
934 return;
937 gcc_assert ((len & 3) == 0);
938 top_label = gen_label_rtx ();
939 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
940 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
941 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
942 emit_label (top_label);
944 emit_move_insn (shadow_mem, const0_rtx);
945 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
946 true, OPTAB_LIB_WIDEN);
947 if (tmp != addr)
948 emit_move_insn (addr, tmp);
949 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
950 jump = get_last_insn ();
951 gcc_assert (JUMP_P (jump));
952 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
955 void
956 asan_function_start (void)
958 section *fnsec = function_section (current_function_decl);
959 switch_to_section (fnsec);
960 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
961 current_function_funcdef_no);
964 /* Insert code to protect stack vars. The prologue sequence should be emitted
965 directly, epilogue sequence returned. BASE is the register holding the
966 stack base, against which OFFSETS array offsets are relative to, OFFSETS
967 array contains pairs of offsets in reverse order, always the end offset
968 of some gap that needs protection followed by starting offset,
969 and DECLS is an array of representative decls for each var partition.
970 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
971 elements long (OFFSETS include gap before the first variable as well
972 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
973 register which stack vars DECL_RTLs are based on. Either BASE should be
974 assigned to PBASE, when not doing use after return protection, or
975 corresponding address based on __asan_stack_malloc* return value. */
977 rtx_insn *
978 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
979 HOST_WIDE_INT *offsets, tree *decls, int length)
981 rtx shadow_base, shadow_mem, ret, mem, orig_base, lab;
982 rtx_insn *insns;
983 char buf[30];
984 unsigned char shadow_bytes[4];
985 HOST_WIDE_INT base_offset = offsets[length - 1];
986 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
987 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
988 HOST_WIDE_INT last_offset, last_size;
989 int l;
990 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
991 tree str_cst, decl, id;
992 int use_after_return_class = -1;
994 if (shadow_ptr_types[0] == NULL_TREE)
995 asan_init_shadow_ptr_types ();
997 /* First of all, prepare the description string. */
998 pretty_printer asan_pp;
1000 pp_decimal_int (&asan_pp, length / 2 - 1);
1001 pp_space (&asan_pp);
1002 for (l = length - 2; l; l -= 2)
1004 tree decl = decls[l / 2 - 1];
1005 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1006 pp_space (&asan_pp);
1007 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1008 pp_space (&asan_pp);
1009 if (DECL_P (decl) && DECL_NAME (decl))
1011 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1012 pp_space (&asan_pp);
1013 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1015 else
1016 pp_string (&asan_pp, "9 <unknown>");
1017 pp_space (&asan_pp);
1019 str_cst = asan_pp_string (&asan_pp);
1021 /* Emit the prologue sequence. */
1022 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1023 && ASAN_USE_AFTER_RETURN)
1025 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1026 /* __asan_stack_malloc_N guarantees alignment
1027 N < 6 ? (64 << N) : 4096 bytes. */
1028 if (alignb > (use_after_return_class < 6
1029 ? (64U << use_after_return_class) : 4096U))
1030 use_after_return_class = -1;
1031 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1032 base_align_bias = ((asan_frame_size + alignb - 1)
1033 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1035 /* Align base if target is STRICT_ALIGNMENT. */
1036 if (STRICT_ALIGNMENT)
1037 base = expand_binop (Pmode, and_optab, base,
1038 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1039 << ASAN_SHADOW_SHIFT)
1040 / BITS_PER_UNIT), Pmode), NULL_RTX,
1041 1, OPTAB_DIRECT);
1043 if (use_after_return_class == -1 && pbase)
1044 emit_move_insn (pbase, base);
1046 base = expand_binop (Pmode, add_optab, base,
1047 gen_int_mode (base_offset - base_align_bias, Pmode),
1048 NULL_RTX, 1, OPTAB_DIRECT);
1049 orig_base = NULL_RTX;
1050 if (use_after_return_class != -1)
1052 if (asan_detect_stack_use_after_return == NULL_TREE)
1054 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1055 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1056 integer_type_node);
1057 SET_DECL_ASSEMBLER_NAME (decl, id);
1058 TREE_ADDRESSABLE (decl) = 1;
1059 DECL_ARTIFICIAL (decl) = 1;
1060 DECL_IGNORED_P (decl) = 1;
1061 DECL_EXTERNAL (decl) = 1;
1062 TREE_STATIC (decl) = 1;
1063 TREE_PUBLIC (decl) = 1;
1064 TREE_USED (decl) = 1;
1065 asan_detect_stack_use_after_return = decl;
1067 orig_base = gen_reg_rtx (Pmode);
1068 emit_move_insn (orig_base, base);
1069 ret = expand_normal (asan_detect_stack_use_after_return);
1070 lab = gen_label_rtx ();
1071 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1072 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1073 VOIDmode, 0, lab, very_likely);
1074 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1075 use_after_return_class);
1076 ret = init_one_libfunc (buf);
1077 rtx addr = convert_memory_address (ptr_mode, base);
1078 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1079 GEN_INT (asan_frame_size
1080 + base_align_bias),
1081 TYPE_MODE (pointer_sized_int_node),
1082 addr, ptr_mode);
1083 ret = convert_memory_address (Pmode, ret);
1084 emit_move_insn (base, ret);
1085 emit_label (lab);
1086 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1087 gen_int_mode (base_align_bias
1088 - base_offset, Pmode),
1089 NULL_RTX, 1, OPTAB_DIRECT));
1091 mem = gen_rtx_MEM (ptr_mode, base);
1092 mem = adjust_address (mem, VOIDmode, base_align_bias);
1093 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1094 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1095 emit_move_insn (mem, expand_normal (str_cst));
1096 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1097 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1098 id = get_identifier (buf);
1099 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1100 VAR_DECL, id, char_type_node);
1101 SET_DECL_ASSEMBLER_NAME (decl, id);
1102 TREE_ADDRESSABLE (decl) = 1;
1103 TREE_READONLY (decl) = 1;
1104 DECL_ARTIFICIAL (decl) = 1;
1105 DECL_IGNORED_P (decl) = 1;
1106 TREE_STATIC (decl) = 1;
1107 TREE_PUBLIC (decl) = 0;
1108 TREE_USED (decl) = 1;
1109 DECL_INITIAL (decl) = decl;
1110 TREE_ASM_WRITTEN (decl) = 1;
1111 TREE_ASM_WRITTEN (id) = 1;
1112 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1113 shadow_base = expand_binop (Pmode, lshr_optab, base,
1114 GEN_INT (ASAN_SHADOW_SHIFT),
1115 NULL_RTX, 1, OPTAB_DIRECT);
1116 shadow_base
1117 = plus_constant (Pmode, shadow_base,
1118 targetm.asan_shadow_offset ()
1119 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1120 gcc_assert (asan_shadow_set != -1
1121 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1122 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1123 set_mem_alias_set (shadow_mem, asan_shadow_set);
1124 if (STRICT_ALIGNMENT)
1125 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1126 prev_offset = base_offset;
1127 for (l = length; l; l -= 2)
1129 if (l == 2)
1130 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1131 offset = offsets[l - 1];
1132 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1134 int i;
1135 HOST_WIDE_INT aoff
1136 = base_offset + ((offset - base_offset)
1137 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1138 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1139 (aoff - prev_offset)
1140 >> ASAN_SHADOW_SHIFT);
1141 prev_offset = aoff;
1142 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1143 if (aoff < offset)
1145 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1146 shadow_bytes[i] = 0;
1147 else
1148 shadow_bytes[i] = offset - aoff;
1150 else
1151 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1152 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1153 offset = aoff;
1155 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1157 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1158 (offset - prev_offset)
1159 >> ASAN_SHADOW_SHIFT);
1160 prev_offset = offset;
1161 memset (shadow_bytes, cur_shadow_byte, 4);
1162 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1163 offset += ASAN_RED_ZONE_SIZE;
1165 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1167 do_pending_stack_adjust ();
1169 /* Construct epilogue sequence. */
1170 start_sequence ();
1172 lab = NULL_RTX;
1173 if (use_after_return_class != -1)
1175 rtx lab2 = gen_label_rtx ();
1176 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1177 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1178 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1179 VOIDmode, 0, lab2, very_likely);
1180 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1181 set_mem_alias_set (shadow_mem, asan_shadow_set);
1182 mem = gen_rtx_MEM (ptr_mode, base);
1183 mem = adjust_address (mem, VOIDmode, base_align_bias);
1184 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1185 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1186 if (use_after_return_class < 5
1187 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1188 BITS_PER_UNIT, true))
1189 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1190 BITS_PER_UNIT, true, 0);
1191 else if (use_after_return_class >= 5
1192 || !set_storage_via_setmem (shadow_mem,
1193 GEN_INT (sz),
1194 gen_int_mode (c, QImode),
1195 BITS_PER_UNIT, BITS_PER_UNIT,
1196 -1, sz, sz, sz))
1198 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1199 use_after_return_class);
1200 ret = init_one_libfunc (buf);
1201 rtx addr = convert_memory_address (ptr_mode, base);
1202 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1203 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1204 GEN_INT (asan_frame_size + base_align_bias),
1205 TYPE_MODE (pointer_sized_int_node),
1206 orig_addr, ptr_mode);
1208 lab = gen_label_rtx ();
1209 emit_jump (lab);
1210 emit_label (lab2);
1213 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1214 set_mem_alias_set (shadow_mem, asan_shadow_set);
1216 if (STRICT_ALIGNMENT)
1217 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1219 prev_offset = base_offset;
1220 last_offset = base_offset;
1221 last_size = 0;
1222 for (l = length; l; l -= 2)
1224 offset = base_offset + ((offsets[l - 1] - base_offset)
1225 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1226 if (last_offset + last_size != offset)
1228 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1229 (last_offset - prev_offset)
1230 >> ASAN_SHADOW_SHIFT);
1231 prev_offset = last_offset;
1232 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1233 last_offset = offset;
1234 last_size = 0;
1236 last_size += base_offset + ((offsets[l - 2] - base_offset)
1237 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1238 - offset;
1240 if (last_size)
1242 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1243 (last_offset - prev_offset)
1244 >> ASAN_SHADOW_SHIFT);
1245 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1248 do_pending_stack_adjust ();
1249 if (lab)
1250 emit_label (lab);
1252 insns = get_insns ();
1253 end_sequence ();
1254 return insns;
1257 /* Return true if DECL, a global var, might be overridden and needs
1258 therefore a local alias. */
1260 static bool
1261 asan_needs_local_alias (tree decl)
1263 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1266 /* Return true if DECL is a VAR_DECL that should be protected
1267 by Address Sanitizer, by appending a red zone with protected
1268 shadow memory after it and aligning it to at least
1269 ASAN_RED_ZONE_SIZE bytes. */
1271 bool
1272 asan_protect_global (tree decl)
1274 if (!ASAN_GLOBALS)
1275 return false;
1277 rtx rtl, symbol;
1279 if (TREE_CODE (decl) == STRING_CST)
1281 /* Instrument all STRING_CSTs except those created
1282 by asan_pp_string here. */
1283 if (shadow_ptr_types[0] != NULL_TREE
1284 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1285 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1286 return false;
1287 return true;
1289 if (TREE_CODE (decl) != VAR_DECL
1290 /* TLS vars aren't statically protectable. */
1291 || DECL_THREAD_LOCAL_P (decl)
1292 /* Externs will be protected elsewhere. */
1293 || DECL_EXTERNAL (decl)
1294 || !DECL_RTL_SET_P (decl)
1295 /* Comdat vars pose an ABI problem, we can't know if
1296 the var that is selected by the linker will have
1297 padding or not. */
1298 || DECL_ONE_ONLY (decl)
1299 /* Similarly for common vars. People can use -fno-common. */
1300 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1301 /* Don't protect if using user section, often vars placed
1302 into user section from multiple TUs are then assumed
1303 to be an array of such vars, putting padding in there
1304 breaks this assumption. */
1305 || (DECL_SECTION_NAME (decl) != NULL
1306 && !symtab_node::get (decl)->implicit_section)
1307 || DECL_SIZE (decl) == 0
1308 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1309 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1310 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1311 return false;
1313 rtl = DECL_RTL (decl);
1314 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1315 return false;
1316 symbol = XEXP (rtl, 0);
1318 if (CONSTANT_POOL_ADDRESS_P (symbol)
1319 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1320 return false;
1322 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1323 return false;
1325 #ifndef ASM_OUTPUT_DEF
1326 if (asan_needs_local_alias (decl))
1327 return false;
1328 #endif
1330 return true;
1333 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1334 IS_STORE is either 1 (for a store) or 0 (for a load). */
1336 static tree
1337 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1339 static enum built_in_function report[2][6]
1340 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1341 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1342 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1343 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1344 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1345 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1346 if (size_in_bytes == -1)
1348 *nargs = 2;
1349 return builtin_decl_implicit (report[is_store][5]);
1351 *nargs = 1;
1352 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1355 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1356 IS_STORE is either 1 (for a store) or 0 (for a load). */
1358 static tree
1359 check_func (bool is_store, int size_in_bytes, int *nargs)
1361 static enum built_in_function check[2][6]
1362 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1363 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1364 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1365 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1366 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1367 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1368 if (size_in_bytes == -1)
1370 *nargs = 2;
1371 return builtin_decl_implicit (check[is_store][5]);
1373 *nargs = 1;
1374 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1377 /* Split the current basic block and create a condition statement
1378 insertion point right before or after the statement pointed to by
1379 ITER. Return an iterator to the point at which the caller might
1380 safely insert the condition statement.
1382 THEN_BLOCK must be set to the address of an uninitialized instance
1383 of basic_block. The function will then set *THEN_BLOCK to the
1384 'then block' of the condition statement to be inserted by the
1385 caller.
1387 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1388 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1390 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1391 block' of the condition statement to be inserted by the caller.
1393 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1394 statements starting from *ITER, and *THEN_BLOCK is a new empty
1395 block.
1397 *ITER is adjusted to point to always point to the first statement
1398 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1399 same as what ITER was pointing to prior to calling this function,
1400 if BEFORE_P is true; otherwise, it is its following statement. */
1402 gimple_stmt_iterator
1403 create_cond_insert_point (gimple_stmt_iterator *iter,
1404 bool before_p,
1405 bool then_more_likely_p,
1406 bool create_then_fallthru_edge,
1407 basic_block *then_block,
1408 basic_block *fallthrough_block)
1410 gimple_stmt_iterator gsi = *iter;
1412 if (!gsi_end_p (gsi) && before_p)
1413 gsi_prev (&gsi);
1415 basic_block cur_bb = gsi_bb (*iter);
1417 edge e = split_block (cur_bb, gsi_stmt (gsi));
1419 /* Get a hold on the 'condition block', the 'then block' and the
1420 'else block'. */
1421 basic_block cond_bb = e->src;
1422 basic_block fallthru_bb = e->dest;
1423 basic_block then_bb = create_empty_bb (cond_bb);
1424 if (current_loops)
1426 add_bb_to_loop (then_bb, cond_bb->loop_father);
1427 loops_state_set (LOOPS_NEED_FIXUP);
1430 /* Set up the newly created 'then block'. */
1431 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1432 int fallthrough_probability
1433 = then_more_likely_p
1434 ? PROB_VERY_UNLIKELY
1435 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1436 e->probability = PROB_ALWAYS - fallthrough_probability;
1437 if (create_then_fallthru_edge)
1438 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1440 /* Set up the fallthrough basic block. */
1441 e = find_edge (cond_bb, fallthru_bb);
1442 e->flags = EDGE_FALSE_VALUE;
1443 e->count = cond_bb->count;
1444 e->probability = fallthrough_probability;
1446 /* Update dominance info for the newly created then_bb; note that
1447 fallthru_bb's dominance info has already been updated by
1448 split_bock. */
1449 if (dom_info_available_p (CDI_DOMINATORS))
1450 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1452 *then_block = then_bb;
1453 *fallthrough_block = fallthru_bb;
1454 *iter = gsi_start_bb (fallthru_bb);
1456 return gsi_last_bb (cond_bb);
1459 /* Insert an if condition followed by a 'then block' right before the
1460 statement pointed to by ITER. The fallthrough block -- which is the
1461 else block of the condition as well as the destination of the
1462 outcoming edge of the 'then block' -- starts with the statement
1463 pointed to by ITER.
1465 COND is the condition of the if.
1467 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1468 'then block' is higher than the probability of the edge to the
1469 fallthrough block.
1471 Upon completion of the function, *THEN_BB is set to the newly
1472 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1473 fallthrough block.
1475 *ITER is adjusted to still point to the same statement it was
1476 pointing to initially. */
1478 static void
1479 insert_if_then_before_iter (gimple cond,
1480 gimple_stmt_iterator *iter,
1481 bool then_more_likely_p,
1482 basic_block *then_bb,
1483 basic_block *fallthrough_bb)
1485 gimple_stmt_iterator cond_insert_point =
1486 create_cond_insert_point (iter,
1487 /*before_p=*/true,
1488 then_more_likely_p,
1489 /*create_then_fallthru_edge=*/true,
1490 then_bb,
1491 fallthrough_bb);
1492 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1495 /* Build
1496 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1498 static tree
1499 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1500 tree base_addr, tree shadow_ptr_type)
1502 tree t, uintptr_type = TREE_TYPE (base_addr);
1503 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1504 gimple g;
1506 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1507 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1508 make_ssa_name (uintptr_type, NULL),
1509 base_addr, t);
1510 gimple_set_location (g, location);
1511 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1513 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1514 g = gimple_build_assign_with_ops (PLUS_EXPR,
1515 make_ssa_name (uintptr_type, NULL),
1516 gimple_assign_lhs (g), t);
1517 gimple_set_location (g, location);
1518 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1520 g = gimple_build_assign_with_ops (NOP_EXPR,
1521 make_ssa_name (shadow_ptr_type, NULL),
1522 gimple_assign_lhs (g), NULL_TREE);
1523 gimple_set_location (g, location);
1524 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1526 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1527 build_int_cst (shadow_ptr_type, 0));
1528 g = gimple_build_assign_with_ops (MEM_REF,
1529 make_ssa_name (shadow_type, NULL),
1530 t, NULL_TREE);
1531 gimple_set_location (g, location);
1532 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1533 return gimple_assign_lhs (g);
1536 /* BASE can already be an SSA_NAME; in that case, do not create a
1537 new SSA_NAME for it. */
1539 static tree
1540 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1541 bool before_p)
1543 if (TREE_CODE (base) == SSA_NAME)
1544 return base;
1545 gimple g
1546 = gimple_build_assign_with_ops (TREE_CODE (base),
1547 make_ssa_name (TREE_TYPE (base), NULL),
1548 base, NULL_TREE);
1549 gimple_set_location (g, loc);
1550 if (before_p)
1551 gsi_insert_before (iter, g, GSI_SAME_STMT);
1552 else
1553 gsi_insert_after (iter, g, GSI_NEW_STMT);
1554 return gimple_assign_lhs (g);
1557 /* Instrument the memory access instruction BASE. Insert new
1558 statements before or after ITER.
1560 Note that the memory access represented by BASE can be either an
1561 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1562 location. IS_STORE is TRUE for a store, FALSE for a load.
1563 BEFORE_P is TRUE for inserting the instrumentation code before
1564 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1565 for a scalar memory access and FALSE for memory region access.
1566 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1567 length. ALIGN tells alignment of accessed memory object.
1569 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1570 memory region have already been instrumented.
1572 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1573 statement it was pointing to prior to calling this function,
1574 otherwise, it points to the statement logically following it. */
1576 static void
1577 build_check_stmt (location_t loc, tree base, tree len,
1578 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1579 bool is_non_zero_len, bool before_p, bool is_store,
1580 bool is_scalar_access, unsigned int align = 0,
1581 bool start_instrumented = false,
1582 bool end_instrumented = false)
1584 gimple_stmt_iterator gsi = *iter;
1585 gimple g;
1587 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1589 if (start_instrumented && end_instrumented)
1591 if (!before_p)
1592 gsi_next (iter);
1593 return;
1596 gsi = *iter;
1598 base = unshare_expr (base);
1599 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1601 if (len)
1602 len = unshare_expr (len);
1603 else
1605 gcc_assert (size_in_bytes != -1);
1606 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1609 if (size_in_bytes > 1)
1611 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1612 || size_in_bytes > 16)
1613 is_scalar_access = false;
1614 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1616 /* On non-strict alignment targets, if
1617 16-byte access is just 8-byte aligned,
1618 this will result in misaligned shadow
1619 memory 2 byte load, but otherwise can
1620 be handled using one read. */
1621 if (size_in_bytes != 16
1622 || STRICT_ALIGNMENT
1623 || align < 8 * BITS_PER_UNIT)
1624 is_scalar_access = false;
1628 HOST_WIDE_INT flags = 0;
1629 if (is_store)
1630 flags |= ASAN_CHECK_STORE;
1631 if (is_non_zero_len)
1632 flags |= ASAN_CHECK_NON_ZERO_LEN;
1633 if (is_scalar_access)
1634 flags |= ASAN_CHECK_SCALAR_ACCESS;
1635 if (start_instrumented)
1636 flags |= ASAN_CHECK_START_INSTRUMENTED;
1637 if (end_instrumented)
1638 flags |= ASAN_CHECK_END_INSTRUMENTED;
1640 g = gimple_build_call_internal (IFN_ASAN_CHECK, 3,
1641 build_int_cst (integer_type_node, flags),
1642 base, len);
1643 gimple_set_location (g, loc);
1644 if (before_p)
1645 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1646 else
1648 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1649 gsi_next (&gsi);
1650 *iter = gsi;
1654 /* If T represents a memory access, add instrumentation code before ITER.
1655 LOCATION is source code location.
1656 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1658 static void
1659 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1660 location_t location, bool is_store)
1662 if (is_store && !ASAN_INSTRUMENT_WRITES)
1663 return;
1664 if (!is_store && !ASAN_INSTRUMENT_READS)
1665 return;
1667 tree type, base;
1668 HOST_WIDE_INT size_in_bytes;
1670 type = TREE_TYPE (t);
1671 switch (TREE_CODE (t))
1673 case ARRAY_REF:
1674 case COMPONENT_REF:
1675 case INDIRECT_REF:
1676 case MEM_REF:
1677 case VAR_DECL:
1678 break;
1679 /* FALLTHRU */
1680 default:
1681 return;
1684 size_in_bytes = int_size_in_bytes (type);
1685 if (size_in_bytes <= 0)
1686 return;
1688 HOST_WIDE_INT bitsize, bitpos;
1689 tree offset;
1690 enum machine_mode mode;
1691 int volatilep = 0, unsignedp = 0;
1692 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1693 &mode, &unsignedp, &volatilep, false);
1695 if (TREE_CODE (t) == COMPONENT_REF
1696 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1698 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1699 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1700 TREE_OPERAND (t, 0), repr,
1701 NULL_TREE), location, is_store);
1702 return;
1705 if (bitpos % BITS_PER_UNIT
1706 || bitsize != size_in_bytes * BITS_PER_UNIT)
1707 return;
1709 if (TREE_CODE (inner) == VAR_DECL
1710 && offset == NULL_TREE
1711 && bitpos >= 0
1712 && DECL_SIZE (inner)
1713 && tree_fits_shwi_p (DECL_SIZE (inner))
1714 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1716 if (DECL_THREAD_LOCAL_P (inner))
1717 return;
1718 if (!TREE_STATIC (inner))
1720 /* Automatic vars in the current function will be always
1721 accessible. */
1722 if (decl_function_context (inner) == current_function_decl)
1723 return;
1725 /* Always instrument external vars, they might be dynamically
1726 initialized. */
1727 else if (!DECL_EXTERNAL (inner))
1729 /* For static vars if they are known not to be dynamically
1730 initialized, they will be always accessible. */
1731 varpool_node *vnode = varpool_node::get (inner);
1732 if (vnode && !vnode->dynamically_initialized)
1733 return;
1737 base = build_fold_addr_expr (t);
1738 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1740 unsigned int align = get_object_alignment (t);
1741 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1742 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1743 is_store, /*is_scalar_access*/true, align);
1744 update_mem_ref_hash_table (base, size_in_bytes);
1745 update_mem_ref_hash_table (t, size_in_bytes);
1750 /* Instrument an access to a contiguous memory region that starts at
1751 the address pointed to by BASE, over a length of LEN (expressed in
1752 the sizeof (*BASE) bytes). ITER points to the instruction before
1753 which the instrumentation instructions must be inserted. LOCATION
1754 is the source location that the instrumentation instructions must
1755 have. If IS_STORE is true, then the memory access is a store;
1756 otherwise, it's a load. */
1758 static void
1759 instrument_mem_region_access (tree base, tree len,
1760 gimple_stmt_iterator *iter,
1761 location_t location, bool is_store)
1763 if (!POINTER_TYPE_P (TREE_TYPE (base))
1764 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1765 || integer_zerop (len))
1766 return;
1768 /* If the beginning of the memory region has already been
1769 instrumented, do not instrument it. */
1770 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1772 /* If the end of the memory region has already been instrumented, do
1773 not instrument it. */
1774 tree end = asan_mem_ref_get_end (base, len);
1775 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1777 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1779 build_check_stmt (location, base, len, size_in_bytes, iter,
1780 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1781 is_store, /*is_scalar_access*/false, /*align*/0,
1782 start_instrumented, end_instrumented);
1784 update_mem_ref_hash_table (base, 1);
1785 if (size_in_bytes != -1)
1786 update_mem_ref_hash_table (end, 1);
1788 *iter = gsi_for_stmt (gsi_stmt (*iter));
1791 /* Instrument the call (to the builtin strlen function) pointed to by
1792 ITER.
1794 This function instruments the access to the first byte of the
1795 argument, right before the call. After the call it instruments the
1796 access to the last byte of the argument; it uses the result of the
1797 call to deduce the offset of that last byte.
1799 Upon completion, iff the call has actually been instrumented, this
1800 function returns TRUE and *ITER points to the statement logically
1801 following the built-in strlen function call *ITER was initially
1802 pointing to. Otherwise, the function returns FALSE and *ITER
1803 remains unchanged. */
1805 static bool
1806 instrument_strlen_call (gimple_stmt_iterator *iter)
1808 gimple call = gsi_stmt (*iter);
1809 gcc_assert (is_gimple_call (call));
1811 tree callee = gimple_call_fndecl (call);
1812 gcc_assert (is_builtin_fn (callee)
1813 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1814 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1816 tree len = gimple_call_lhs (call);
1817 if (len == NULL)
1818 /* Some passes might clear the return value of the strlen call;
1819 bail out in that case. Return FALSE as we are not advancing
1820 *ITER. */
1821 return false;
1822 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1824 location_t loc = gimple_location (call);
1825 tree str_arg = gimple_call_arg (call, 0);
1826 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1828 tree cptr_type = build_pointer_type (char_type_node);
1829 gimple str_arg_ssa =
1830 gimple_build_assign_with_ops (NOP_EXPR,
1831 make_ssa_name (cptr_type, NULL),
1832 str_arg, NULL);
1833 gimple_set_location (str_arg_ssa, loc);
1834 gsi_insert_before (iter, str_arg_ssa, GSI_SAME_STMT);
1836 build_check_stmt (loc, gimple_assign_lhs (str_arg_ssa), NULL_TREE, 1, iter,
1837 /*is_non_zero_len*/true, /*before_p=*/true,
1838 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1839 start_instrumented, start_instrumented);
1841 gimple g =
1842 gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1843 make_ssa_name (cptr_type, NULL),
1844 gimple_assign_lhs (str_arg_ssa),
1845 len);
1846 gimple_set_location (g, loc);
1847 gsi_insert_after (iter, g, GSI_NEW_STMT);
1849 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1850 /*is_non_zero_len*/true, /*before_p=*/false,
1851 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1853 return true;
1856 /* Instrument the call to a built-in memory access function that is
1857 pointed to by the iterator ITER.
1859 Upon completion, return TRUE iff *ITER has been advanced to the
1860 statement following the one it was originally pointing to. */
1862 static bool
1863 instrument_builtin_call (gimple_stmt_iterator *iter)
1865 if (!ASAN_MEMINTRIN)
1866 return false;
1868 bool iter_advanced_p = false;
1869 gimple call = gsi_stmt (*iter);
1871 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1873 tree callee = gimple_call_fndecl (call);
1874 location_t loc = gimple_location (call);
1876 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1877 iter_advanced_p = instrument_strlen_call (iter);
1878 else
1880 asan_mem_ref src0, src1, dest;
1881 asan_mem_ref_init (&src0, NULL, 1);
1882 asan_mem_ref_init (&src1, NULL, 1);
1883 asan_mem_ref_init (&dest, NULL, 1);
1885 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1886 bool src0_is_store = false, src1_is_store = false,
1887 dest_is_store = false, dest_is_deref = false;
1889 if (get_mem_refs_of_builtin_call (call,
1890 &src0, &src0_len, &src0_is_store,
1891 &src1, &src1_len, &src1_is_store,
1892 &dest, &dest_len, &dest_is_store,
1893 &dest_is_deref))
1895 if (dest_is_deref)
1897 instrument_derefs (iter, dest.start, loc, dest_is_store);
1898 gsi_next (iter);
1899 iter_advanced_p = true;
1901 else if (src0_len || src1_len || dest_len)
1903 if (src0.start != NULL_TREE)
1904 instrument_mem_region_access (src0.start, src0_len,
1905 iter, loc, /*is_store=*/false);
1906 if (src1.start != NULL_TREE)
1907 instrument_mem_region_access (src1.start, src1_len,
1908 iter, loc, /*is_store=*/false);
1909 if (dest.start != NULL_TREE)
1910 instrument_mem_region_access (dest.start, dest_len,
1911 iter, loc, /*is_store=*/true);
1912 *iter = gsi_for_stmt (call);
1913 gsi_next (iter);
1914 iter_advanced_p = true;
1918 return iter_advanced_p;
1921 /* Instrument the assignment statement ITER if it is subject to
1922 instrumentation. Return TRUE iff instrumentation actually
1923 happened. In that case, the iterator ITER is advanced to the next
1924 logical expression following the one initially pointed to by ITER,
1925 and the relevant memory reference that which access has been
1926 instrumented is added to the memory references hash table. */
1928 static bool
1929 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1931 gimple s = gsi_stmt (*iter);
1933 gcc_assert (gimple_assign_single_p (s));
1935 tree ref_expr = NULL_TREE;
1936 bool is_store, is_instrumented = false;
1938 if (gimple_store_p (s))
1940 ref_expr = gimple_assign_lhs (s);
1941 is_store = true;
1942 instrument_derefs (iter, ref_expr,
1943 gimple_location (s),
1944 is_store);
1945 is_instrumented = true;
1948 if (gimple_assign_load_p (s))
1950 ref_expr = gimple_assign_rhs1 (s);
1951 is_store = false;
1952 instrument_derefs (iter, ref_expr,
1953 gimple_location (s),
1954 is_store);
1955 is_instrumented = true;
1958 if (is_instrumented)
1959 gsi_next (iter);
1961 return is_instrumented;
1964 /* Instrument the function call pointed to by the iterator ITER, if it
1965 is subject to instrumentation. At the moment, the only function
1966 calls that are instrumented are some built-in functions that access
1967 memory. Look at instrument_builtin_call to learn more.
1969 Upon completion return TRUE iff *ITER was advanced to the statement
1970 following the one it was originally pointing to. */
1972 static bool
1973 maybe_instrument_call (gimple_stmt_iterator *iter)
1975 gimple stmt = gsi_stmt (*iter);
1976 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
1978 if (is_builtin && instrument_builtin_call (iter))
1979 return true;
1981 if (gimple_call_noreturn_p (stmt))
1983 if (is_builtin)
1985 tree callee = gimple_call_fndecl (stmt);
1986 switch (DECL_FUNCTION_CODE (callee))
1988 case BUILT_IN_UNREACHABLE:
1989 case BUILT_IN_TRAP:
1990 /* Don't instrument these. */
1991 return false;
1994 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
1995 gimple g = gimple_build_call (decl, 0);
1996 gimple_set_location (g, gimple_location (stmt));
1997 gsi_insert_before (iter, g, GSI_SAME_STMT);
1999 return false;
2002 /* Walk each instruction of all basic block and instrument those that
2003 represent memory references: loads, stores, or function calls.
2004 In a given basic block, this function avoids instrumenting memory
2005 references that have already been instrumented. */
2007 static void
2008 transform_statements (void)
2010 basic_block bb, last_bb = NULL;
2011 gimple_stmt_iterator i;
2012 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2014 FOR_EACH_BB_FN (bb, cfun)
2016 basic_block prev_bb = bb;
2018 if (bb->index >= saved_last_basic_block) continue;
2020 /* Flush the mem ref hash table, if current bb doesn't have
2021 exactly one predecessor, or if that predecessor (skipping
2022 over asan created basic blocks) isn't the last processed
2023 basic block. Thus we effectively flush on extended basic
2024 block boundaries. */
2025 while (single_pred_p (prev_bb))
2027 prev_bb = single_pred (prev_bb);
2028 if (prev_bb->index < saved_last_basic_block)
2029 break;
2031 if (prev_bb != last_bb)
2032 empty_mem_ref_hash_table ();
2033 last_bb = bb;
2035 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2037 gimple s = gsi_stmt (i);
2039 if (has_stmt_been_instrumented_p (s))
2040 gsi_next (&i);
2041 else if (gimple_assign_single_p (s)
2042 && maybe_instrument_assignment (&i))
2043 /* Nothing to do as maybe_instrument_assignment advanced
2044 the iterator I. */;
2045 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2046 /* Nothing to do as maybe_instrument_call
2047 advanced the iterator I. */;
2048 else
2050 /* No instrumentation happened.
2052 If the current instruction is a function call that
2053 might free something, let's forget about the memory
2054 references that got instrumented. Otherwise we might
2055 miss some instrumentation opportunities. */
2056 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2057 empty_mem_ref_hash_table ();
2059 gsi_next (&i);
2063 free_mem_ref_resources ();
2066 /* Build
2067 __asan_before_dynamic_init (module_name)
2069 __asan_after_dynamic_init ()
2070 call. */
2072 tree
2073 asan_dynamic_init_call (bool after_p)
2075 tree fn = builtin_decl_implicit (after_p
2076 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2077 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2078 tree module_name_cst = NULL_TREE;
2079 if (!after_p)
2081 pretty_printer module_name_pp;
2082 pp_string (&module_name_pp, main_input_filename);
2084 if (shadow_ptr_types[0] == NULL_TREE)
2085 asan_init_shadow_ptr_types ();
2086 module_name_cst = asan_pp_string (&module_name_pp);
2087 module_name_cst = fold_convert (const_ptr_type_node,
2088 module_name_cst);
2091 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2094 /* Build
2095 struct __asan_global
2097 const void *__beg;
2098 uptr __size;
2099 uptr __size_with_redzone;
2100 const void *__name;
2101 const void *__module_name;
2102 uptr __has_dynamic_init;
2103 } type. */
2105 static tree
2106 asan_global_struct (void)
2108 static const char *field_names[6]
2109 = { "__beg", "__size", "__size_with_redzone",
2110 "__name", "__module_name", "__has_dynamic_init" };
2111 tree fields[6], ret;
2112 int i;
2114 ret = make_node (RECORD_TYPE);
2115 for (i = 0; i < 6; i++)
2117 fields[i]
2118 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2119 get_identifier (field_names[i]),
2120 (i == 0 || i == 3) ? const_ptr_type_node
2121 : pointer_sized_int_node);
2122 DECL_CONTEXT (fields[i]) = ret;
2123 if (i)
2124 DECL_CHAIN (fields[i - 1]) = fields[i];
2126 TYPE_FIELDS (ret) = fields[0];
2127 TYPE_NAME (ret) = get_identifier ("__asan_global");
2128 layout_type (ret);
2129 return ret;
2132 /* Append description of a single global DECL into vector V.
2133 TYPE is __asan_global struct type as returned by asan_global_struct. */
2135 static void
2136 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2138 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2139 unsigned HOST_WIDE_INT size;
2140 tree str_cst, module_name_cst, refdecl = decl;
2141 vec<constructor_elt, va_gc> *vinner = NULL;
2143 pretty_printer asan_pp, module_name_pp;
2145 if (DECL_NAME (decl))
2146 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2147 else
2148 pp_string (&asan_pp, "<unknown>");
2149 str_cst = asan_pp_string (&asan_pp);
2151 pp_string (&module_name_pp, main_input_filename);
2152 module_name_cst = asan_pp_string (&module_name_pp);
2154 if (asan_needs_local_alias (decl))
2156 char buf[20];
2157 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2158 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2159 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2160 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2161 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2162 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2163 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2164 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2165 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2166 TREE_STATIC (refdecl) = 1;
2167 TREE_PUBLIC (refdecl) = 0;
2168 TREE_USED (refdecl) = 1;
2169 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2172 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2173 fold_convert (const_ptr_type_node,
2174 build_fold_addr_expr (refdecl)));
2175 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2176 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2177 size += asan_red_zone_size (size);
2178 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2179 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2180 fold_convert (const_ptr_type_node, str_cst));
2181 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2182 fold_convert (const_ptr_type_node, module_name_cst));
2183 varpool_node *vnode = varpool_node::get (decl);
2184 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2185 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2186 build_int_cst (uptr, has_dynamic_init));
2187 init = build_constructor (type, vinner);
2188 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2191 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2192 void
2193 initialize_sanitizer_builtins (void)
2195 tree decl;
2197 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2198 return;
2200 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2201 tree BT_FN_VOID_PTR
2202 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2203 tree BT_FN_VOID_CONST_PTR
2204 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2205 tree BT_FN_VOID_PTR_PTR
2206 = build_function_type_list (void_type_node, ptr_type_node,
2207 ptr_type_node, NULL_TREE);
2208 tree BT_FN_VOID_PTR_PTR_PTR
2209 = build_function_type_list (void_type_node, ptr_type_node,
2210 ptr_type_node, ptr_type_node, NULL_TREE);
2211 tree BT_FN_VOID_PTR_PTRMODE
2212 = build_function_type_list (void_type_node, ptr_type_node,
2213 pointer_sized_int_node, NULL_TREE);
2214 tree BT_FN_VOID_INT
2215 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2216 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2217 tree BT_FN_IX_CONST_VPTR_INT[5];
2218 tree BT_FN_IX_VPTR_IX_INT[5];
2219 tree BT_FN_VOID_VPTR_IX_INT[5];
2220 tree vptr
2221 = build_pointer_type (build_qualified_type (void_type_node,
2222 TYPE_QUAL_VOLATILE));
2223 tree cvptr
2224 = build_pointer_type (build_qualified_type (void_type_node,
2225 TYPE_QUAL_VOLATILE
2226 |TYPE_QUAL_CONST));
2227 tree boolt
2228 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2229 int i;
2230 for (i = 0; i < 5; i++)
2232 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2233 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2234 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2235 integer_type_node, integer_type_node,
2236 NULL_TREE);
2237 BT_FN_IX_CONST_VPTR_INT[i]
2238 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2239 BT_FN_IX_VPTR_IX_INT[i]
2240 = build_function_type_list (ix, vptr, ix, integer_type_node,
2241 NULL_TREE);
2242 BT_FN_VOID_VPTR_IX_INT[i]
2243 = build_function_type_list (void_type_node, vptr, ix,
2244 integer_type_node, NULL_TREE);
2246 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2247 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2248 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2249 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2250 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2251 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2252 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2253 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2254 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2255 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2256 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2257 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2258 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2259 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2260 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2261 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2262 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2263 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2264 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2265 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2266 #undef ATTR_NOTHROW_LEAF_LIST
2267 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2268 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2269 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2270 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2271 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2272 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2273 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2274 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2275 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2276 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2277 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2278 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2279 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2280 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2281 #undef DEF_SANITIZER_BUILTIN
2282 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2283 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2284 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2285 set_call_expr_flags (decl, ATTRS); \
2286 set_builtin_decl (ENUM, decl, true);
2288 #include "sanitizer.def"
2290 #undef DEF_SANITIZER_BUILTIN
2293 /* Called via htab_traverse. Count number of emitted
2294 STRING_CSTs in the constant hash table. */
2296 static int
2297 count_string_csts (void **slot, void *data)
2299 struct constant_descriptor_tree *desc
2300 = (struct constant_descriptor_tree *) *slot;
2301 if (TREE_CODE (desc->value) == STRING_CST
2302 && TREE_ASM_WRITTEN (desc->value)
2303 && asan_protect_global (desc->value))
2304 ++*((unsigned HOST_WIDE_INT *) data);
2305 return 1;
2308 /* Helper structure to pass two parameters to
2309 add_string_csts. */
2311 struct asan_add_string_csts_data
2313 tree type;
2314 vec<constructor_elt, va_gc> *v;
2317 /* Called via htab_traverse. Call asan_add_global
2318 on emitted STRING_CSTs from the constant hash table. */
2320 static int
2321 add_string_csts (void **slot, void *data)
2323 struct constant_descriptor_tree *desc
2324 = (struct constant_descriptor_tree *) *slot;
2325 if (TREE_CODE (desc->value) == STRING_CST
2326 && TREE_ASM_WRITTEN (desc->value)
2327 && asan_protect_global (desc->value))
2329 struct asan_add_string_csts_data *aascd
2330 = (struct asan_add_string_csts_data *) data;
2331 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2332 aascd->type, aascd->v);
2334 return 1;
2337 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2338 invoke ggc_collect. */
2339 static GTY(()) tree asan_ctor_statements;
2341 /* Module-level instrumentation.
2342 - Insert __asan_init_vN() into the list of CTORs.
2343 - TODO: insert redzones around globals.
2346 void
2347 asan_finish_file (void)
2349 varpool_node *vnode;
2350 unsigned HOST_WIDE_INT gcount = 0;
2352 if (shadow_ptr_types[0] == NULL_TREE)
2353 asan_init_shadow_ptr_types ();
2354 /* Avoid instrumenting code in the asan ctors/dtors.
2355 We don't need to insert padding after the description strings,
2356 nor after .LASAN* array. */
2357 flag_sanitize &= ~SANITIZE_ADDRESS;
2359 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2360 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2361 FOR_EACH_DEFINED_VARIABLE (vnode)
2362 if (TREE_ASM_WRITTEN (vnode->decl)
2363 && asan_protect_global (vnode->decl))
2364 ++gcount;
2365 htab_t const_desc_htab = constant_pool_htab ();
2366 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2367 if (gcount)
2369 tree type = asan_global_struct (), var, ctor;
2370 tree dtor_statements = NULL_TREE;
2371 vec<constructor_elt, va_gc> *v;
2372 char buf[20];
2374 type = build_array_type_nelts (type, gcount);
2375 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2376 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2377 type);
2378 TREE_STATIC (var) = 1;
2379 TREE_PUBLIC (var) = 0;
2380 DECL_ARTIFICIAL (var) = 1;
2381 DECL_IGNORED_P (var) = 1;
2382 vec_alloc (v, gcount);
2383 FOR_EACH_DEFINED_VARIABLE (vnode)
2384 if (TREE_ASM_WRITTEN (vnode->decl)
2385 && asan_protect_global (vnode->decl))
2386 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2387 struct asan_add_string_csts_data aascd;
2388 aascd.type = TREE_TYPE (type);
2389 aascd.v = v;
2390 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2391 ctor = build_constructor (type, v);
2392 TREE_CONSTANT (ctor) = 1;
2393 TREE_STATIC (ctor) = 1;
2394 DECL_INITIAL (var) = ctor;
2395 varpool_node::finalize_decl (var);
2397 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2398 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2399 append_to_statement_list (build_call_expr (fn, 2,
2400 build_fold_addr_expr (var),
2401 gcount_tree),
2402 &asan_ctor_statements);
2404 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2405 append_to_statement_list (build_call_expr (fn, 2,
2406 build_fold_addr_expr (var),
2407 gcount_tree),
2408 &dtor_statements);
2409 cgraph_build_static_cdtor ('D', dtor_statements,
2410 MAX_RESERVED_INIT_PRIORITY - 1);
2412 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2413 MAX_RESERVED_INIT_PRIORITY - 1);
2414 flag_sanitize |= SANITIZE_ADDRESS;
2417 /* Expand the ASAN_{LOAD,STORE} builtins. */
2419 static bool
2420 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2422 gimple g = gsi_stmt (*iter);
2423 location_t loc = gimple_location (g);
2425 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2426 gcc_assert (flags < ASAN_CHECK_LAST);
2427 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2428 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2429 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2430 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2431 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2433 tree base = gimple_call_arg (g, 1);
2434 tree len = gimple_call_arg (g, 2);
2436 HOST_WIDE_INT size_in_bytes
2437 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2439 if (use_calls)
2441 /* Instrument using callbacks. */
2442 gimple g
2443 = gimple_build_assign_with_ops (NOP_EXPR,
2444 make_ssa_name (pointer_sized_int_node,
2445 NULL),
2446 base, NULL_TREE);
2447 gimple_set_location (g, loc);
2448 gsi_insert_before (iter, g, GSI_SAME_STMT);
2449 tree base_addr = gimple_assign_lhs (g);
2451 int nargs;
2452 tree fun = check_func (is_store, size_in_bytes, &nargs);
2453 if (nargs == 1)
2454 g = gimple_build_call (fun, 1, base_addr);
2455 else
2457 gcc_assert (nargs == 2);
2458 g = gimple_build_assign_with_ops (NOP_EXPR,
2459 make_ssa_name (pointer_sized_int_node,
2460 NULL),
2461 len, NULL_TREE);
2462 gimple_set_location (g, loc);
2463 gsi_insert_before (iter, g, GSI_SAME_STMT);
2464 tree sz_arg = gimple_assign_lhs (g);
2465 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2467 gimple_set_location (g, loc);
2468 gsi_replace (iter, g, false);
2469 return false;
2472 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2474 tree uintptr_type
2475 = build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (base)), 1);
2477 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2478 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2480 gimple_stmt_iterator gsi = *iter;
2482 if (!is_non_zero_len)
2484 /* So, the length of the memory area to asan-protect is
2485 non-constant. Let's guard the generated instrumentation code
2486 like:
2488 if (len != 0)
2490 //asan instrumentation code goes here.
2492 // falltrough instructions, starting with *ITER. */
2494 g = gimple_build_cond (NE_EXPR,
2495 len,
2496 build_int_cst (TREE_TYPE (len), 0),
2497 NULL_TREE, NULL_TREE);
2498 gimple_set_location (g, loc);
2500 basic_block then_bb, fallthrough_bb;
2501 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2502 &then_bb, &fallthrough_bb);
2503 /* Note that fallthrough_bb starts with the statement that was
2504 pointed to by ITER. */
2506 /* The 'then block' of the 'if (len != 0) condition is where
2507 we'll generate the asan instrumentation code now. */
2508 gsi = gsi_last_bb (then_bb);
2511 /* Get an iterator on the point where we can add the condition
2512 statement for the instrumentation. */
2513 basic_block then_bb, else_bb;
2514 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2515 /*then_more_likely_p=*/false,
2516 /*create_then_fallthru_edge=*/false,
2517 &then_bb,
2518 &else_bb);
2520 g = gimple_build_assign_with_ops (NOP_EXPR,
2521 make_ssa_name (pointer_sized_int_node,
2522 NULL),
2523 base, NULL_TREE);
2524 gimple_set_location (g, loc);
2525 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2526 tree base_addr = gimple_assign_lhs (g);
2528 tree t = NULL_TREE;
2529 if (real_size_in_bytes >= 8)
2531 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2532 shadow_ptr_type);
2533 t = shadow;
2535 else
2537 /* Slow path for 1, 2 and 4 byte accesses. */
2539 if (!start_instrumented)
2541 /* Test (shadow != 0)
2542 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2543 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2544 shadow_ptr_type);
2545 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2546 gimple_seq seq = NULL;
2547 gimple_seq_add_stmt (&seq, shadow_test);
2548 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, base_addr, 7));
2549 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2550 gimple_seq_last (seq)));
2551 if (real_size_in_bytes > 1)
2552 gimple_seq_add_stmt (&seq,
2553 build_assign (PLUS_EXPR, gimple_seq_last (seq),
2554 real_size_in_bytes - 1));
2555 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2556 gimple_seq_last (seq),
2557 shadow));
2558 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2559 gimple_seq_last (seq)));
2560 t = gimple_assign_lhs (gimple_seq_last (seq));
2561 gimple_seq_set_location (seq, loc);
2562 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2565 /* For non-constant, misaligned or otherwise weird access sizes,
2566 check first and last byte. */
2567 if (size_in_bytes == -1 && !end_instrumented)
2569 g = gimple_build_assign_with_ops (MINUS_EXPR,
2570 make_ssa_name (uintptr_type, NULL),
2571 len,
2572 build_int_cst (uintptr_type, 1));
2573 gimple_set_location (g, loc);
2574 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2575 tree last = gimple_assign_lhs (g);
2576 g = gimple_build_assign_with_ops (PLUS_EXPR,
2577 make_ssa_name (uintptr_type, NULL),
2578 base_addr,
2579 last);
2580 gimple_set_location (g, loc);
2581 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2582 tree base_end_addr = gimple_assign_lhs (g);
2584 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2585 shadow_ptr_type);
2586 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2587 gimple_seq seq = NULL;
2588 gimple_seq_add_stmt (&seq, shadow_test);
2589 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2590 base_end_addr, 7));
2591 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2592 gimple_seq_last (seq)));
2593 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2594 gimple_seq_last (seq),
2595 shadow));
2596 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2597 gimple_seq_last (seq)));
2598 if (!start_instrumented)
2599 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2600 gimple_seq_last (seq)));
2601 t = gimple_assign_lhs (gimple_seq_last (seq));
2602 gimple_seq_set_location (seq, loc);
2603 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2607 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2608 NULL_TREE, NULL_TREE);
2609 gimple_set_location (g, loc);
2610 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2612 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2613 gsi = gsi_start_bb (then_bb);
2614 int nargs;
2615 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2616 g = gimple_build_call (fun, nargs, base_addr, len);
2617 gimple_set_location (g, loc);
2618 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2620 gsi_remove (iter, true);
2621 *iter = gsi_start_bb (else_bb);
2623 return true;
2626 /* Instrument the current function. */
2628 static unsigned int
2629 asan_instrument (void)
2631 if (shadow_ptr_types[0] == NULL_TREE)
2632 asan_init_shadow_ptr_types ();
2633 transform_statements ();
2634 return 0;
2637 static bool
2638 gate_asan (void)
2640 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2641 && !lookup_attribute ("no_sanitize_address",
2642 DECL_ATTRIBUTES (current_function_decl));
2645 namespace {
2647 const pass_data pass_data_asan =
2649 GIMPLE_PASS, /* type */
2650 "asan", /* name */
2651 OPTGROUP_NONE, /* optinfo_flags */
2652 TV_NONE, /* tv_id */
2653 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2654 0, /* properties_provided */
2655 0, /* properties_destroyed */
2656 0, /* todo_flags_start */
2657 TODO_update_ssa, /* todo_flags_finish */
2660 class pass_asan : public gimple_opt_pass
2662 public:
2663 pass_asan (gcc::context *ctxt)
2664 : gimple_opt_pass (pass_data_asan, ctxt)
2667 /* opt_pass methods: */
2668 opt_pass * clone () { return new pass_asan (m_ctxt); }
2669 virtual bool gate (function *) { return gate_asan (); }
2670 virtual unsigned int execute (function *) { return asan_instrument (); }
2672 }; // class pass_asan
2674 } // anon namespace
2676 gimple_opt_pass *
2677 make_pass_asan (gcc::context *ctxt)
2679 return new pass_asan (ctxt);
2682 namespace {
2684 const pass_data pass_data_asan_O0 =
2686 GIMPLE_PASS, /* type */
2687 "asan0", /* name */
2688 OPTGROUP_NONE, /* optinfo_flags */
2689 TV_NONE, /* tv_id */
2690 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2691 0, /* properties_provided */
2692 0, /* properties_destroyed */
2693 0, /* todo_flags_start */
2694 TODO_update_ssa, /* todo_flags_finish */
2697 class pass_asan_O0 : public gimple_opt_pass
2699 public:
2700 pass_asan_O0 (gcc::context *ctxt)
2701 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2704 /* opt_pass methods: */
2705 virtual bool gate (function *) { return !optimize && gate_asan (); }
2706 virtual unsigned int execute (function *) { return asan_instrument (); }
2708 }; // class pass_asan_O0
2710 } // anon namespace
2712 gimple_opt_pass *
2713 make_pass_asan_O0 (gcc::context *ctxt)
2715 return new pass_asan_O0 (ctxt);
2718 /* Perform optimization of sanitize functions. */
2720 namespace {
2722 const pass_data pass_data_sanopt =
2724 GIMPLE_PASS, /* type */
2725 "sanopt", /* name */
2726 OPTGROUP_NONE, /* optinfo_flags */
2727 TV_NONE, /* tv_id */
2728 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2729 0, /* properties_provided */
2730 0, /* properties_destroyed */
2731 0, /* todo_flags_start */
2732 TODO_update_ssa, /* todo_flags_finish */
2735 class pass_sanopt : public gimple_opt_pass
2737 public:
2738 pass_sanopt (gcc::context *ctxt)
2739 : gimple_opt_pass (pass_data_sanopt, ctxt)
2742 /* opt_pass methods: */
2743 virtual bool gate (function *) { return flag_sanitize; }
2744 virtual unsigned int execute (function *);
2746 }; // class pass_sanopt
2748 unsigned int
2749 pass_sanopt::execute (function *fun)
2751 basic_block bb;
2753 int asan_num_accesses = 0;
2754 if (flag_sanitize & SANITIZE_ADDRESS)
2756 gimple_stmt_iterator gsi;
2757 FOR_EACH_BB_FN (bb, fun)
2758 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2760 gimple stmt = gsi_stmt (gsi);
2761 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2762 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2763 ++asan_num_accesses;
2767 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2768 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2770 FOR_EACH_BB_FN (bb, fun)
2772 gimple_stmt_iterator gsi;
2773 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2775 gimple stmt = gsi_stmt (gsi);
2776 bool no_next = false;
2778 if (!is_gimple_call (stmt))
2780 gsi_next (&gsi);
2781 continue;
2784 if (gimple_call_internal_p (stmt))
2786 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2787 switch (ifn)
2789 case IFN_UBSAN_NULL:
2790 no_next = ubsan_expand_null_ifn (&gsi);
2791 break;
2792 case IFN_UBSAN_BOUNDS:
2793 no_next = ubsan_expand_bounds_ifn (&gsi);
2794 break;
2795 case IFN_ASAN_CHECK:
2797 no_next = asan_expand_check_ifn (&gsi, use_calls);
2798 break;
2800 default:
2801 break;
2805 if (dump_file && (dump_flags & TDF_DETAILS))
2807 fprintf (dump_file, "Optimized\n ");
2808 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2809 fprintf (dump_file, "\n");
2812 if (!no_next)
2813 gsi_next (&gsi);
2816 return 0;
2819 } // anon namespace
2821 gimple_opt_pass *
2822 make_pass_sanopt (gcc::context *ctxt)
2824 return new pass_sanopt (ctxt);
2827 #include "gt-asan.h"