2013-04-03 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / gcc / recog.c
blobed359f672394e9cbda800de593e16d96ebd97532
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
30 #include "recog.h"
31 #include "regs.h"
32 #include "addresses.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "target.h"
39 #include "tree-pass.h"
40 #include "df.h"
41 #include "insn-codes.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
46 #else
47 #define STACK_PUSH_CODE PRE_INC
48 #endif
49 #endif
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
54 #else
55 #define STACK_POP_CODE POST_DEC
56 #endif
57 #endif
59 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
60 static void validate_replace_src_1 (rtx *, void *);
61 static rtx split_insn (rtx);
63 /* Nonzero means allow operands to be volatile.
64 This should be 0 if you are generating rtl, such as if you are calling
65 the functions in optabs.c and expmed.c (most of the time).
66 This should be 1 if all valid insns need to be recognized,
67 such as in reginfo.c and final.c and reload.c.
69 init_recog and init_recog_no_volatile are responsible for setting this. */
71 int volatile_ok;
73 struct recog_data recog_data;
75 /* Contains a vector of operand_alternative structures for every operand.
76 Set up by preprocess_constraints. */
77 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
79 /* On return from `constrain_operands', indicate which alternative
80 was satisfied. */
82 int which_alternative;
84 /* Nonzero after end of reload pass.
85 Set to 1 or 0 by toplev.c.
86 Controls the significance of (SUBREG (MEM)). */
88 int reload_completed;
90 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
91 int epilogue_completed;
93 /* Initialize data used by the function `recog'.
94 This must be called once in the compilation of a function
95 before any insn recognition may be done in the function. */
97 void
98 init_recog_no_volatile (void)
100 volatile_ok = 0;
103 void
104 init_recog (void)
106 volatile_ok = 1;
110 /* Return true if labels in asm operands BODY are LABEL_REFs. */
112 static bool
113 asm_labels_ok (rtx body)
115 rtx asmop;
116 int i;
118 asmop = extract_asm_operands (body);
119 if (asmop == NULL_RTX)
120 return true;
122 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
123 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
124 return false;
126 return true;
129 /* Check that X is an insn-body for an `asm' with operands
130 and that the operands mentioned in it are legitimate. */
133 check_asm_operands (rtx x)
135 int noperands;
136 rtx *operands;
137 const char **constraints;
138 int i;
140 if (!asm_labels_ok (x))
141 return 0;
143 /* Post-reload, be more strict with things. */
144 if (reload_completed)
146 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
147 extract_insn (make_insn_raw (x));
148 constrain_operands (1);
149 return which_alternative >= 0;
152 noperands = asm_noperands (x);
153 if (noperands < 0)
154 return 0;
155 if (noperands == 0)
156 return 1;
158 operands = XALLOCAVEC (rtx, noperands);
159 constraints = XALLOCAVEC (const char *, noperands);
161 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
163 for (i = 0; i < noperands; i++)
165 const char *c = constraints[i];
166 if (c[0] == '%')
167 c++;
168 if (! asm_operand_ok (operands[i], c, constraints))
169 return 0;
172 return 1;
175 /* Static data for the next two routines. */
177 typedef struct change_t
179 rtx object;
180 int old_code;
181 rtx *loc;
182 rtx old;
183 bool unshare;
184 } change_t;
186 static change_t *changes;
187 static int changes_allocated;
189 static int num_changes = 0;
191 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
192 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
193 the change is simply made.
195 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
196 will be called with the address and mode as parameters. If OBJECT is
197 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
198 the change in place.
200 IN_GROUP is nonzero if this is part of a group of changes that must be
201 performed as a group. In that case, the changes will be stored. The
202 function `apply_change_group' will validate and apply the changes.
204 If IN_GROUP is zero, this is a single change. Try to recognize the insn
205 or validate the memory reference with the change applied. If the result
206 is not valid for the machine, suppress the change and return zero.
207 Otherwise, perform the change and return 1. */
209 static bool
210 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
212 rtx old = *loc;
214 if (old == new_rtx || rtx_equal_p (old, new_rtx))
215 return 1;
217 gcc_assert (in_group != 0 || num_changes == 0);
219 *loc = new_rtx;
221 /* Save the information describing this change. */
222 if (num_changes >= changes_allocated)
224 if (changes_allocated == 0)
225 /* This value allows for repeated substitutions inside complex
226 indexed addresses, or changes in up to 5 insns. */
227 changes_allocated = MAX_RECOG_OPERANDS * 5;
228 else
229 changes_allocated *= 2;
231 changes = XRESIZEVEC (change_t, changes, changes_allocated);
234 changes[num_changes].object = object;
235 changes[num_changes].loc = loc;
236 changes[num_changes].old = old;
237 changes[num_changes].unshare = unshare;
239 if (object && !MEM_P (object))
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
242 case invalid. */
243 changes[num_changes].old_code = INSN_CODE (object);
244 INSN_CODE (object) = -1;
247 num_changes++;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
252 if (in_group)
253 return 1;
254 else
255 return apply_change_group ();
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to false. */
261 bool
262 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
264 return validate_change_1 (object, loc, new_rtx, in_group, false);
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
268 UNSHARE to true. */
270 bool
271 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
273 return validate_change_1 (object, loc, new_rtx, in_group, true);
277 /* Keep X canonicalized if some changes have made it non-canonical; only
278 modifies the operands of X, not (for example) its code. Simplifications
279 are not the job of this routine.
281 Return true if anything was changed. */
282 bool
283 canonicalize_change_group (rtx insn, rtx x)
285 if (COMMUTATIVE_P (x)
286 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
288 /* Oops, the caller has made X no longer canonical.
289 Let's redo the changes in the correct order. */
290 rtx tem = XEXP (x, 0);
291 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
292 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
293 return true;
295 else
296 return false;
300 /* This subroutine of apply_change_group verifies whether the changes to INSN
301 were valid; i.e. whether INSN can still be recognized.
303 If IN_GROUP is true clobbers which have to be added in order to
304 match the instructions will be added to the current change group.
305 Otherwise the changes will take effect immediately. */
308 insn_invalid_p (rtx insn, bool in_group)
310 rtx pat = PATTERN (insn);
311 int num_clobbers = 0;
312 /* If we are before reload and the pattern is a SET, see if we can add
313 clobbers. */
314 int icode = recog (pat, insn,
315 (GET_CODE (pat) == SET
316 && ! reload_completed && ! reload_in_progress)
317 ? &num_clobbers : 0);
318 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
321 /* If this is an asm and the operand aren't legal, then fail. Likewise if
322 this is not an asm and the insn wasn't recognized. */
323 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
324 || (!is_asm && icode < 0))
325 return 1;
327 /* If we have to add CLOBBERs, fail if we have to add ones that reference
328 hard registers since our callers can't know if they are live or not.
329 Otherwise, add them. */
330 if (num_clobbers > 0)
332 rtx newpat;
334 if (added_clobbers_hard_reg_p (icode))
335 return 1;
337 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
338 XVECEXP (newpat, 0, 0) = pat;
339 add_clobbers (newpat, icode);
340 if (in_group)
341 validate_change (insn, &PATTERN (insn), newpat, 1);
342 else
343 PATTERN (insn) = pat = newpat;
346 /* After reload, verify that all constraints are satisfied. */
347 if (reload_completed)
349 extract_insn (insn);
351 if (! constrain_operands (1))
352 return 1;
355 INSN_CODE (insn) = icode;
356 return 0;
359 /* Return number of changes made and not validated yet. */
361 num_changes_pending (void)
363 return num_changes;
366 /* Tentatively apply the changes numbered NUM and up.
367 Return 1 if all changes are valid, zero otherwise. */
370 verify_changes (int num)
372 int i;
373 rtx last_validated = NULL_RTX;
375 /* The changes have been applied and all INSN_CODEs have been reset to force
376 rerecognition.
378 The changes are valid if we aren't given an object, or if we are
379 given a MEM and it still is a valid address, or if this is in insn
380 and it is recognized. In the latter case, if reload has completed,
381 we also require that the operands meet the constraints for
382 the insn. */
384 for (i = num; i < num_changes; i++)
386 rtx object = changes[i].object;
388 /* If there is no object to test or if it is the same as the one we
389 already tested, ignore it. */
390 if (object == 0 || object == last_validated)
391 continue;
393 if (MEM_P (object))
395 if (! memory_address_addr_space_p (GET_MODE (object),
396 XEXP (object, 0),
397 MEM_ADDR_SPACE (object)))
398 break;
400 else if (REG_P (changes[i].old)
401 && asm_noperands (PATTERN (object)) > 0
402 && REG_EXPR (changes[i].old) != NULL_TREE
403 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
404 && DECL_REGISTER (REG_EXPR (changes[i].old)))
406 /* Don't allow changes of hard register operands to inline
407 assemblies if they have been defined as register asm ("x"). */
408 break;
410 else if (DEBUG_INSN_P (object))
411 continue;
412 else if (insn_invalid_p (object, true))
414 rtx pat = PATTERN (object);
416 /* Perhaps we couldn't recognize the insn because there were
417 extra CLOBBERs at the end. If so, try to re-recognize
418 without the last CLOBBER (later iterations will cause each of
419 them to be eliminated, in turn). But don't do this if we
420 have an ASM_OPERAND. */
421 if (GET_CODE (pat) == PARALLEL
422 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
423 && asm_noperands (PATTERN (object)) < 0)
425 rtx newpat;
427 if (XVECLEN (pat, 0) == 2)
428 newpat = XVECEXP (pat, 0, 0);
429 else
431 int j;
433 newpat
434 = gen_rtx_PARALLEL (VOIDmode,
435 rtvec_alloc (XVECLEN (pat, 0) - 1));
436 for (j = 0; j < XVECLEN (newpat, 0); j++)
437 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
440 /* Add a new change to this group to replace the pattern
441 with this new pattern. Then consider this change
442 as having succeeded. The change we added will
443 cause the entire call to fail if things remain invalid.
445 Note that this can lose if a later change than the one
446 we are processing specified &XVECEXP (PATTERN (object), 0, X)
447 but this shouldn't occur. */
449 validate_change (object, &PATTERN (object), newpat, 1);
450 continue;
452 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
453 || GET_CODE (pat) == VAR_LOCATION)
454 /* If this insn is a CLOBBER or USE, it is always valid, but is
455 never recognized. */
456 continue;
457 else
458 break;
460 last_validated = object;
463 return (i == num_changes);
466 /* A group of changes has previously been issued with validate_change
467 and verified with verify_changes. Call df_insn_rescan for each of
468 the insn changed and clear num_changes. */
470 void
471 confirm_change_group (void)
473 int i;
474 rtx last_object = NULL;
476 for (i = 0; i < num_changes; i++)
478 rtx object = changes[i].object;
480 if (changes[i].unshare)
481 *changes[i].loc = copy_rtx (*changes[i].loc);
483 /* Avoid unnecessary rescanning when multiple changes to same instruction
484 are made. */
485 if (object)
487 if (object != last_object && last_object && INSN_P (last_object))
488 df_insn_rescan (last_object);
489 last_object = object;
493 if (last_object && INSN_P (last_object))
494 df_insn_rescan (last_object);
495 num_changes = 0;
498 /* Apply a group of changes previously issued with `validate_change'.
499 If all changes are valid, call confirm_change_group and return 1,
500 otherwise, call cancel_changes and return 0. */
503 apply_change_group (void)
505 if (verify_changes (0))
507 confirm_change_group ();
508 return 1;
510 else
512 cancel_changes (0);
513 return 0;
518 /* Return the number of changes so far in the current group. */
521 num_validated_changes (void)
523 return num_changes;
526 /* Retract the changes numbered NUM and up. */
528 void
529 cancel_changes (int num)
531 int i;
533 /* Back out all the changes. Do this in the opposite order in which
534 they were made. */
535 for (i = num_changes - 1; i >= num; i--)
537 *changes[i].loc = changes[i].old;
538 if (changes[i].object && !MEM_P (changes[i].object))
539 INSN_CODE (changes[i].object) = changes[i].old_code;
541 num_changes = num;
544 /* Reduce conditional compilation elsewhere. */
545 #ifndef HAVE_extv
546 #define HAVE_extv 0
547 #define CODE_FOR_extv CODE_FOR_nothing
548 #endif
549 #ifndef HAVE_extzv
550 #define HAVE_extzv 0
551 #define CODE_FOR_extzv CODE_FOR_nothing
552 #endif
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx object,
559 enum machine_mode op0_mode)
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx;
565 if (SWAPPABLE_OPERANDS_P (x)
566 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568 validate_unshare_change (object, loc,
569 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
570 : swap_condition (code),
571 GET_MODE (x), XEXP (x, 1),
572 XEXP (x, 0)), 1);
573 x = *loc;
574 code = GET_CODE (x);
577 switch (code)
579 case PLUS:
580 /* If we have a PLUS whose second operand is now a CONST_INT, use
581 simplify_gen_binary to try to simplify it.
582 ??? We may want later to remove this, once simplification is
583 separated from this function. */
584 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
585 validate_change (object, loc,
586 simplify_gen_binary
587 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
588 break;
589 case MINUS:
590 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0),
594 simplify_gen_unary (NEG,
595 GET_MODE (x), XEXP (x, 1),
596 GET_MODE (x))), 1);
597 break;
598 case ZERO_EXTEND:
599 case SIGN_EXTEND:
600 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
602 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
603 op0_mode);
604 /* If any of the above failed, substitute in something that
605 we know won't be recognized. */
606 if (!new_rtx)
607 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
608 validate_change (object, loc, new_rtx, 1);
610 break;
611 case SUBREG:
612 /* All subregs possible to simplify should be simplified. */
613 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
614 SUBREG_BYTE (x));
616 /* Subregs of VOIDmode operands are incorrect. */
617 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
618 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
619 if (new_rtx)
620 validate_change (object, loc, new_rtx, 1);
621 break;
622 case ZERO_EXTRACT:
623 case SIGN_EXTRACT:
624 /* If we are replacing a register with memory, try to change the memory
625 to be the mode required for memory in extract operations (this isn't
626 likely to be an insertion operation; if it was, nothing bad will
627 happen, we might just fail in some cases). */
629 if (MEM_P (XEXP (x, 0))
630 && CONST_INT_P (XEXP (x, 1))
631 && CONST_INT_P (XEXP (x, 2))
632 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
633 MEM_ADDR_SPACE (XEXP (x, 0)))
634 && !MEM_VOLATILE_P (XEXP (x, 0)))
636 enum machine_mode wanted_mode = VOIDmode;
637 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
638 int pos = INTVAL (XEXP (x, 2));
640 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
642 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
643 if (wanted_mode == VOIDmode)
644 wanted_mode = word_mode;
646 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
648 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
649 if (wanted_mode == VOIDmode)
650 wanted_mode = word_mode;
653 /* If we have a narrower mode, we can do something. */
654 if (wanted_mode != VOIDmode
655 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
657 int offset = pos / BITS_PER_UNIT;
658 rtx newmem;
660 /* If the bytes and bits are counted differently, we
661 must adjust the offset. */
662 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
663 offset =
664 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
665 offset);
667 gcc_assert (GET_MODE_PRECISION (wanted_mode)
668 == GET_MODE_BITSIZE (wanted_mode));
669 pos %= GET_MODE_BITSIZE (wanted_mode);
671 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
673 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
674 validate_change (object, &XEXP (x, 0), newmem, 1);
678 break;
680 default:
681 break;
685 /* Replace every occurrence of FROM in X with TO. Mark each change with
686 validate_change passing OBJECT. */
688 static void
689 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
690 bool simplify)
692 int i, j;
693 const char *fmt;
694 rtx x = *loc;
695 enum rtx_code code;
696 enum machine_mode op0_mode = VOIDmode;
697 int prev_changes = num_changes;
699 if (!x)
700 return;
702 code = GET_CODE (x);
703 fmt = GET_RTX_FORMAT (code);
704 if (fmt[0] == 'e')
705 op0_mode = GET_MODE (XEXP (x, 0));
707 /* X matches FROM if it is the same rtx or they are both referring to the
708 same register in the same mode. Avoid calling rtx_equal_p unless the
709 operands look similar. */
711 if (x == from
712 || (REG_P (x) && REG_P (from)
713 && GET_MODE (x) == GET_MODE (from)
714 && REGNO (x) == REGNO (from))
715 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
716 && rtx_equal_p (x, from)))
718 validate_unshare_change (object, loc, to, 1);
719 return;
722 /* Call ourself recursively to perform the replacements.
723 We must not replace inside already replaced expression, otherwise we
724 get infinite recursion for replacements like (reg X)->(subreg (reg X))
725 done by regmove, so we must special case shared ASM_OPERANDS. */
727 if (GET_CODE (x) == PARALLEL)
729 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
731 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
732 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
734 /* Verify that operands are really shared. */
735 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
736 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
737 (x, 0, j))));
738 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
739 from, to, object, simplify);
741 else
742 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
743 simplify);
746 else
747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
749 if (fmt[i] == 'e')
750 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
751 else if (fmt[i] == 'E')
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
754 simplify);
757 /* If we didn't substitute, there is nothing more to do. */
758 if (num_changes == prev_changes)
759 return;
761 /* Allow substituted expression to have different mode. This is used by
762 regmove to change mode of pseudo register. */
763 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
764 op0_mode = GET_MODE (XEXP (x, 0));
766 /* Do changes needed to keep rtx consistent. Don't do any other
767 simplifications, as it is not our job. */
768 if (simplify)
769 simplify_while_replacing (loc, to, object, op0_mode);
772 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
773 with TO. After all changes have been made, validate by seeing
774 if INSN is still valid. */
777 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
779 validate_replace_rtx_1 (loc, from, to, insn, true);
780 return apply_change_group ();
783 /* Try replacing every occurrence of FROM in INSN with TO. After all
784 changes have been made, validate by seeing if INSN is still valid. */
787 validate_replace_rtx (rtx from, rtx to, rtx insn)
789 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
790 return apply_change_group ();
793 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
794 is a part of INSN. After all changes have been made, validate by seeing if
795 INSN is still valid.
796 validate_replace_rtx (from, to, insn) is equivalent to
797 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
800 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
802 validate_replace_rtx_1 (where, from, to, insn, true);
803 return apply_change_group ();
806 /* Same as above, but do not simplify rtx afterwards. */
808 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
809 rtx insn)
811 validate_replace_rtx_1 (where, from, to, insn, false);
812 return apply_change_group ();
816 /* Try replacing every occurrence of FROM in INSN with TO. This also
817 will replace in REG_EQUAL and REG_EQUIV notes. */
819 void
820 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
822 rtx note;
823 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
824 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
825 if (REG_NOTE_KIND (note) == REG_EQUAL
826 || REG_NOTE_KIND (note) == REG_EQUIV)
827 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
830 /* Function called by note_uses to replace used subexpressions. */
831 struct validate_replace_src_data
833 rtx from; /* Old RTX */
834 rtx to; /* New RTX */
835 rtx insn; /* Insn in which substitution is occurring. */
838 static void
839 validate_replace_src_1 (rtx *x, void *data)
841 struct validate_replace_src_data *d
842 = (struct validate_replace_src_data *) data;
844 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
847 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
848 SET_DESTs. */
850 void
851 validate_replace_src_group (rtx from, rtx to, rtx insn)
853 struct validate_replace_src_data d;
855 d.from = from;
856 d.to = to;
857 d.insn = insn;
858 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
861 /* Try simplify INSN.
862 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
863 pattern and return true if something was simplified. */
865 bool
866 validate_simplify_insn (rtx insn)
868 int i;
869 rtx pat = NULL;
870 rtx newpat = NULL;
872 pat = PATTERN (insn);
874 if (GET_CODE (pat) == SET)
876 newpat = simplify_rtx (SET_SRC (pat));
877 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
878 validate_change (insn, &SET_SRC (pat), newpat, 1);
879 newpat = simplify_rtx (SET_DEST (pat));
880 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
881 validate_change (insn, &SET_DEST (pat), newpat, 1);
883 else if (GET_CODE (pat) == PARALLEL)
884 for (i = 0; i < XVECLEN (pat, 0); i++)
886 rtx s = XVECEXP (pat, 0, i);
888 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
890 newpat = simplify_rtx (SET_SRC (s));
891 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
892 validate_change (insn, &SET_SRC (s), newpat, 1);
893 newpat = simplify_rtx (SET_DEST (s));
894 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
895 validate_change (insn, &SET_DEST (s), newpat, 1);
898 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
901 #ifdef HAVE_cc0
902 /* Return 1 if the insn using CC0 set by INSN does not contain
903 any ordered tests applied to the condition codes.
904 EQ and NE tests do not count. */
907 next_insn_tests_no_inequality (rtx insn)
909 rtx next = next_cc0_user (insn);
911 /* If there is no next insn, we have to take the conservative choice. */
912 if (next == 0)
913 return 0;
915 return (INSN_P (next)
916 && ! inequality_comparisons_p (PATTERN (next)));
918 #endif
920 /* Return 1 if OP is a valid general operand for machine mode MODE.
921 This is either a register reference, a memory reference,
922 or a constant. In the case of a memory reference, the address
923 is checked for general validity for the target machine.
925 Register and memory references must have mode MODE in order to be valid,
926 but some constants have no machine mode and are valid for any mode.
928 If MODE is VOIDmode, OP is checked for validity for whatever mode
929 it has.
931 The main use of this function is as a predicate in match_operand
932 expressions in the machine description. */
935 general_operand (rtx op, enum machine_mode mode)
937 enum rtx_code code = GET_CODE (op);
939 if (mode == VOIDmode)
940 mode = GET_MODE (op);
942 /* Don't accept CONST_INT or anything similar
943 if the caller wants something floating. */
944 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
945 && GET_MODE_CLASS (mode) != MODE_INT
946 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
947 return 0;
949 if (CONST_INT_P (op)
950 && mode != VOIDmode
951 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
952 return 0;
954 if (CONSTANT_P (op))
955 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
956 || mode == VOIDmode)
957 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
958 && targetm.legitimate_constant_p (mode == VOIDmode
959 ? GET_MODE (op)
960 : mode, op));
962 /* Except for certain constants with VOIDmode, already checked for,
963 OP's mode must match MODE if MODE specifies a mode. */
965 if (GET_MODE (op) != mode)
966 return 0;
968 if (code == SUBREG)
970 rtx sub = SUBREG_REG (op);
972 #ifdef INSN_SCHEDULING
973 /* On machines that have insn scheduling, we want all memory
974 reference to be explicit, so outlaw paradoxical SUBREGs.
975 However, we must allow them after reload so that they can
976 get cleaned up by cleanup_subreg_operands. */
977 if (!reload_completed && MEM_P (sub)
978 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
979 return 0;
980 #endif
981 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
982 may result in incorrect reference. We should simplify all valid
983 subregs of MEM anyway. But allow this after reload because we
984 might be called from cleanup_subreg_operands.
986 ??? This is a kludge. */
987 if (!reload_completed && SUBREG_BYTE (op) != 0
988 && MEM_P (sub))
989 return 0;
991 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
992 create such rtl, and we must reject it. */
993 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
994 /* LRA can use subreg to store a floating point value in an
995 integer mode. Although the floating point and the
996 integer modes need the same number of hard registers, the
997 size of floating point mode can be less than the integer
998 mode. */
999 && ! lra_in_progress
1000 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1001 return 0;
1003 op = sub;
1004 code = GET_CODE (op);
1007 if (code == REG)
1008 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1009 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1011 if (code == MEM)
1013 rtx y = XEXP (op, 0);
1015 if (! volatile_ok && MEM_VOLATILE_P (op))
1016 return 0;
1018 /* Use the mem's mode, since it will be reloaded thus. */
1019 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1020 return 1;
1023 return 0;
1026 /* Return 1 if OP is a valid memory address for a memory reference
1027 of mode MODE.
1029 The main use of this function is as a predicate in match_operand
1030 expressions in the machine description. */
1033 address_operand (rtx op, enum machine_mode mode)
1035 return memory_address_p (mode, op);
1038 /* Return 1 if OP is a register reference of mode MODE.
1039 If MODE is VOIDmode, accept a register in any mode.
1041 The main use of this function is as a predicate in match_operand
1042 expressions in the machine description. */
1045 register_operand (rtx op, enum machine_mode mode)
1047 if (GET_MODE (op) != mode && mode != VOIDmode)
1048 return 0;
1050 if (GET_CODE (op) == SUBREG)
1052 rtx sub = SUBREG_REG (op);
1054 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1055 because it is guaranteed to be reloaded into one.
1056 Just make sure the MEM is valid in itself.
1057 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1058 but currently it does result from (SUBREG (REG)...) where the
1059 reg went on the stack.) */
1060 if (! reload_completed && MEM_P (sub))
1061 return general_operand (op, mode);
1063 #ifdef CANNOT_CHANGE_MODE_CLASS
1064 if (REG_P (sub)
1065 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1066 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1067 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1068 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1069 return 0;
1070 #endif
1072 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1073 create such rtl, and we must reject it. */
1074 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1075 /* LRA can use subreg to store a floating point value in an
1076 integer mode. Although the floating point and the
1077 integer modes need the same number of hard registers, the
1078 size of floating point mode can be less than the integer
1079 mode. */
1080 && ! lra_in_progress
1081 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1082 return 0;
1084 op = sub;
1087 return (REG_P (op)
1088 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1089 || in_hard_reg_set_p (operand_reg_set,
1090 GET_MODE (op), REGNO (op))));
1093 /* Return 1 for a register in Pmode; ignore the tested mode. */
1096 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1098 return register_operand (op, Pmode);
1101 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1102 or a hard register. */
1105 scratch_operand (rtx op, enum machine_mode mode)
1107 if (GET_MODE (op) != mode && mode != VOIDmode)
1108 return 0;
1110 return (GET_CODE (op) == SCRATCH
1111 || (REG_P (op)
1112 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1115 /* Return 1 if OP is a valid immediate operand for mode MODE.
1117 The main use of this function is as a predicate in match_operand
1118 expressions in the machine description. */
1121 immediate_operand (rtx op, enum machine_mode mode)
1123 /* Don't accept CONST_INT or anything similar
1124 if the caller wants something floating. */
1125 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1126 && GET_MODE_CLASS (mode) != MODE_INT
1127 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1128 return 0;
1130 if (CONST_INT_P (op)
1131 && mode != VOIDmode
1132 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1133 return 0;
1135 return (CONSTANT_P (op)
1136 && (GET_MODE (op) == mode || mode == VOIDmode
1137 || GET_MODE (op) == VOIDmode)
1138 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1139 && targetm.legitimate_constant_p (mode == VOIDmode
1140 ? GET_MODE (op)
1141 : mode, op));
1144 /* Returns 1 if OP is an operand that is a CONST_INT. */
1147 const_int_operand (rtx op, enum machine_mode mode)
1149 if (!CONST_INT_P (op))
1150 return 0;
1152 if (mode != VOIDmode
1153 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1154 return 0;
1156 return 1;
1159 /* Returns 1 if OP is an operand that is a constant integer or constant
1160 floating-point number. */
1163 const_double_operand (rtx op, enum machine_mode mode)
1165 /* Don't accept CONST_INT or anything similar
1166 if the caller wants something floating. */
1167 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1168 && GET_MODE_CLASS (mode) != MODE_INT
1169 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1170 return 0;
1172 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1173 && (mode == VOIDmode || GET_MODE (op) == mode
1174 || GET_MODE (op) == VOIDmode));
1177 /* Return 1 if OP is a general operand that is not an immediate operand. */
1180 nonimmediate_operand (rtx op, enum machine_mode mode)
1182 return (general_operand (op, mode) && ! CONSTANT_P (op));
1185 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1188 nonmemory_operand (rtx op, enum machine_mode mode)
1190 if (CONSTANT_P (op))
1191 return immediate_operand (op, mode);
1193 if (GET_MODE (op) != mode && mode != VOIDmode)
1194 return 0;
1196 if (GET_CODE (op) == SUBREG)
1198 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1199 because it is guaranteed to be reloaded into one.
1200 Just make sure the MEM is valid in itself.
1201 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1202 but currently it does result from (SUBREG (REG)...) where the
1203 reg went on the stack.) */
1204 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1205 return general_operand (op, mode);
1206 op = SUBREG_REG (op);
1209 return (REG_P (op)
1210 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1211 || in_hard_reg_set_p (operand_reg_set,
1212 GET_MODE (op), REGNO (op))));
1215 /* Return 1 if OP is a valid operand that stands for pushing a
1216 value of mode MODE onto the stack.
1218 The main use of this function is as a predicate in match_operand
1219 expressions in the machine description. */
1222 push_operand (rtx op, enum machine_mode mode)
1224 unsigned int rounded_size = GET_MODE_SIZE (mode);
1226 #ifdef PUSH_ROUNDING
1227 rounded_size = PUSH_ROUNDING (rounded_size);
1228 #endif
1230 if (!MEM_P (op))
1231 return 0;
1233 if (mode != VOIDmode && GET_MODE (op) != mode)
1234 return 0;
1236 op = XEXP (op, 0);
1238 if (rounded_size == GET_MODE_SIZE (mode))
1240 if (GET_CODE (op) != STACK_PUSH_CODE)
1241 return 0;
1243 else
1245 if (GET_CODE (op) != PRE_MODIFY
1246 || GET_CODE (XEXP (op, 1)) != PLUS
1247 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1248 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1249 #ifdef STACK_GROWS_DOWNWARD
1250 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1251 #else
1252 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1253 #endif
1255 return 0;
1258 return XEXP (op, 0) == stack_pointer_rtx;
1261 /* Return 1 if OP is a valid operand that stands for popping a
1262 value of mode MODE off the stack.
1264 The main use of this function is as a predicate in match_operand
1265 expressions in the machine description. */
1268 pop_operand (rtx op, enum machine_mode mode)
1270 if (!MEM_P (op))
1271 return 0;
1273 if (mode != VOIDmode && GET_MODE (op) != mode)
1274 return 0;
1276 op = XEXP (op, 0);
1278 if (GET_CODE (op) != STACK_POP_CODE)
1279 return 0;
1281 return XEXP (op, 0) == stack_pointer_rtx;
1284 /* Return 1 if ADDR is a valid memory address
1285 for mode MODE in address space AS. */
1288 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1289 rtx addr, addr_space_t as)
1291 #ifdef GO_IF_LEGITIMATE_ADDRESS
1292 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1293 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1294 return 0;
1296 win:
1297 return 1;
1298 #else
1299 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1300 #endif
1303 /* Return 1 if OP is a valid memory reference with mode MODE,
1304 including a valid address.
1306 The main use of this function is as a predicate in match_operand
1307 expressions in the machine description. */
1310 memory_operand (rtx op, enum machine_mode mode)
1312 rtx inner;
1314 if (! reload_completed)
1315 /* Note that no SUBREG is a memory operand before end of reload pass,
1316 because (SUBREG (MEM...)) forces reloading into a register. */
1317 return MEM_P (op) && general_operand (op, mode);
1319 if (mode != VOIDmode && GET_MODE (op) != mode)
1320 return 0;
1322 inner = op;
1323 if (GET_CODE (inner) == SUBREG)
1324 inner = SUBREG_REG (inner);
1326 return (MEM_P (inner) && general_operand (op, mode));
1329 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1330 that is, a memory reference whose address is a general_operand. */
1333 indirect_operand (rtx op, enum machine_mode mode)
1335 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1336 if (! reload_completed
1337 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1339 int offset = SUBREG_BYTE (op);
1340 rtx inner = SUBREG_REG (op);
1342 if (mode != VOIDmode && GET_MODE (op) != mode)
1343 return 0;
1345 /* The only way that we can have a general_operand as the resulting
1346 address is if OFFSET is zero and the address already is an operand
1347 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1348 operand. */
1350 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1351 || (GET_CODE (XEXP (inner, 0)) == PLUS
1352 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1353 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1354 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1357 return (MEM_P (op)
1358 && memory_operand (op, mode)
1359 && general_operand (XEXP (op, 0), Pmode));
1362 /* Return 1 if this is an ordered comparison operator (not including
1363 ORDERED and UNORDERED). */
1366 ordered_comparison_operator (rtx op, enum machine_mode mode)
1368 if (mode != VOIDmode && GET_MODE (op) != mode)
1369 return false;
1370 switch (GET_CODE (op))
1372 case EQ:
1373 case NE:
1374 case LT:
1375 case LTU:
1376 case LE:
1377 case LEU:
1378 case GT:
1379 case GTU:
1380 case GE:
1381 case GEU:
1382 return true;
1383 default:
1384 return false;
1388 /* Return 1 if this is a comparison operator. This allows the use of
1389 MATCH_OPERATOR to recognize all the branch insns. */
1392 comparison_operator (rtx op, enum machine_mode mode)
1394 return ((mode == VOIDmode || GET_MODE (op) == mode)
1395 && COMPARISON_P (op));
1398 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1401 extract_asm_operands (rtx body)
1403 rtx tmp;
1404 switch (GET_CODE (body))
1406 case ASM_OPERANDS:
1407 return body;
1409 case SET:
1410 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1411 tmp = SET_SRC (body);
1412 if (GET_CODE (tmp) == ASM_OPERANDS)
1413 return tmp;
1414 break;
1416 case PARALLEL:
1417 tmp = XVECEXP (body, 0, 0);
1418 if (GET_CODE (tmp) == ASM_OPERANDS)
1419 return tmp;
1420 if (GET_CODE (tmp) == SET)
1422 tmp = SET_SRC (tmp);
1423 if (GET_CODE (tmp) == ASM_OPERANDS)
1424 return tmp;
1426 break;
1428 default:
1429 break;
1431 return NULL;
1434 /* If BODY is an insn body that uses ASM_OPERANDS,
1435 return the number of operands (both input and output) in the insn.
1436 Otherwise return -1. */
1439 asm_noperands (const_rtx body)
1441 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1442 int n_sets = 0;
1444 if (asm_op == NULL)
1445 return -1;
1447 if (GET_CODE (body) == SET)
1448 n_sets = 1;
1449 else if (GET_CODE (body) == PARALLEL)
1451 int i;
1452 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1454 /* Multiple output operands, or 1 output plus some clobbers:
1455 body is
1456 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1457 /* Count backwards through CLOBBERs to determine number of SETs. */
1458 for (i = XVECLEN (body, 0); i > 0; i--)
1460 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1461 break;
1462 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1463 return -1;
1466 /* N_SETS is now number of output operands. */
1467 n_sets = i;
1469 /* Verify that all the SETs we have
1470 came from a single original asm_operands insn
1471 (so that invalid combinations are blocked). */
1472 for (i = 0; i < n_sets; i++)
1474 rtx elt = XVECEXP (body, 0, i);
1475 if (GET_CODE (elt) != SET)
1476 return -1;
1477 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1478 return -1;
1479 /* If these ASM_OPERANDS rtx's came from different original insns
1480 then they aren't allowed together. */
1481 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1482 != ASM_OPERANDS_INPUT_VEC (asm_op))
1483 return -1;
1486 else
1488 /* 0 outputs, but some clobbers:
1489 body is [(asm_operands ...) (clobber (reg ...))...]. */
1490 /* Make sure all the other parallel things really are clobbers. */
1491 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1492 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1493 return -1;
1497 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1498 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1501 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1502 copy its operands (both input and output) into the vector OPERANDS,
1503 the locations of the operands within the insn into the vector OPERAND_LOCS,
1504 and the constraints for the operands into CONSTRAINTS.
1505 Write the modes of the operands into MODES.
1506 Return the assembler-template.
1508 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1509 we don't store that info. */
1511 const char *
1512 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1513 const char **constraints, enum machine_mode *modes,
1514 location_t *loc)
1516 int nbase = 0, n, i;
1517 rtx asmop;
1519 switch (GET_CODE (body))
1521 case ASM_OPERANDS:
1522 /* Zero output asm: BODY is (asm_operands ...). */
1523 asmop = body;
1524 break;
1526 case SET:
1527 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1528 asmop = SET_SRC (body);
1530 /* The output is in the SET.
1531 Its constraint is in the ASM_OPERANDS itself. */
1532 if (operands)
1533 operands[0] = SET_DEST (body);
1534 if (operand_locs)
1535 operand_locs[0] = &SET_DEST (body);
1536 if (constraints)
1537 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1538 if (modes)
1539 modes[0] = GET_MODE (SET_DEST (body));
1540 nbase = 1;
1541 break;
1543 case PARALLEL:
1545 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1547 asmop = XVECEXP (body, 0, 0);
1548 if (GET_CODE (asmop) == SET)
1550 asmop = SET_SRC (asmop);
1552 /* At least one output, plus some CLOBBERs. The outputs are in
1553 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1554 for (i = 0; i < nparallel; i++)
1556 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1557 break; /* Past last SET */
1558 if (operands)
1559 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1560 if (operand_locs)
1561 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1562 if (constraints)
1563 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1564 if (modes)
1565 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1567 nbase = i;
1569 break;
1572 default:
1573 gcc_unreachable ();
1576 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1577 for (i = 0; i < n; i++)
1579 if (operand_locs)
1580 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1581 if (operands)
1582 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1583 if (constraints)
1584 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1585 if (modes)
1586 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1588 nbase += n;
1590 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1591 for (i = 0; i < n; i++)
1593 if (operand_locs)
1594 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1595 if (operands)
1596 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1597 if (constraints)
1598 constraints[nbase + i] = "";
1599 if (modes)
1600 modes[nbase + i] = Pmode;
1603 if (loc)
1604 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1606 return ASM_OPERANDS_TEMPLATE (asmop);
1609 /* Check if an asm_operand matches its constraints.
1610 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1613 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1615 int result = 0;
1616 #ifdef AUTO_INC_DEC
1617 bool incdec_ok = false;
1618 #endif
1620 /* Use constrain_operands after reload. */
1621 gcc_assert (!reload_completed);
1623 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1624 many alternatives as required to match the other operands. */
1625 if (*constraint == '\0')
1626 result = 1;
1628 while (*constraint)
1630 char c = *constraint;
1631 int len;
1632 switch (c)
1634 case ',':
1635 constraint++;
1636 continue;
1637 case '=':
1638 case '+':
1639 case '*':
1640 case '%':
1641 case '!':
1642 case '#':
1643 case '&':
1644 case '?':
1645 break;
1647 case '0': case '1': case '2': case '3': case '4':
1648 case '5': case '6': case '7': case '8': case '9':
1649 /* If caller provided constraints pointer, look up
1650 the maching constraint. Otherwise, our caller should have
1651 given us the proper matching constraint, but we can't
1652 actually fail the check if they didn't. Indicate that
1653 results are inconclusive. */
1654 if (constraints)
1656 char *end;
1657 unsigned long match;
1659 match = strtoul (constraint, &end, 10);
1660 if (!result)
1661 result = asm_operand_ok (op, constraints[match], NULL);
1662 constraint = (const char *) end;
1664 else
1667 constraint++;
1668 while (ISDIGIT (*constraint));
1669 if (! result)
1670 result = -1;
1672 continue;
1674 case 'p':
1675 if (address_operand (op, VOIDmode))
1676 result = 1;
1677 break;
1679 case TARGET_MEM_CONSTRAINT:
1680 case 'V': /* non-offsettable */
1681 if (memory_operand (op, VOIDmode))
1682 result = 1;
1683 break;
1685 case 'o': /* offsettable */
1686 if (offsettable_nonstrict_memref_p (op))
1687 result = 1;
1688 break;
1690 case '<':
1691 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1692 excepting those that expand_call created. Further, on some
1693 machines which do not have generalized auto inc/dec, an inc/dec
1694 is not a memory_operand.
1696 Match any memory and hope things are resolved after reload. */
1698 if (MEM_P (op)
1699 && (1
1700 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1701 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1702 result = 1;
1703 #ifdef AUTO_INC_DEC
1704 incdec_ok = true;
1705 #endif
1706 break;
1708 case '>':
1709 if (MEM_P (op)
1710 && (1
1711 || GET_CODE (XEXP (op, 0)) == PRE_INC
1712 || GET_CODE (XEXP (op, 0)) == POST_INC))
1713 result = 1;
1714 #ifdef AUTO_INC_DEC
1715 incdec_ok = true;
1716 #endif
1717 break;
1719 case 'E':
1720 case 'F':
1721 if (CONST_DOUBLE_AS_FLOAT_P (op)
1722 || (GET_CODE (op) == CONST_VECTOR
1723 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1724 result = 1;
1725 break;
1727 case 'G':
1728 if (CONST_DOUBLE_AS_FLOAT_P (op)
1729 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1730 result = 1;
1731 break;
1732 case 'H':
1733 if (CONST_DOUBLE_AS_FLOAT_P (op)
1734 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1735 result = 1;
1736 break;
1738 case 's':
1739 if (CONST_SCALAR_INT_P (op))
1740 break;
1741 /* Fall through. */
1743 case 'i':
1744 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1745 result = 1;
1746 break;
1748 case 'n':
1749 if (CONST_SCALAR_INT_P (op))
1750 result = 1;
1751 break;
1753 case 'I':
1754 if (CONST_INT_P (op)
1755 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1756 result = 1;
1757 break;
1758 case 'J':
1759 if (CONST_INT_P (op)
1760 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1761 result = 1;
1762 break;
1763 case 'K':
1764 if (CONST_INT_P (op)
1765 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1766 result = 1;
1767 break;
1768 case 'L':
1769 if (CONST_INT_P (op)
1770 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1771 result = 1;
1772 break;
1773 case 'M':
1774 if (CONST_INT_P (op)
1775 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1776 result = 1;
1777 break;
1778 case 'N':
1779 if (CONST_INT_P (op)
1780 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1781 result = 1;
1782 break;
1783 case 'O':
1784 if (CONST_INT_P (op)
1785 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1786 result = 1;
1787 break;
1788 case 'P':
1789 if (CONST_INT_P (op)
1790 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1791 result = 1;
1792 break;
1794 case 'X':
1795 result = 1;
1796 break;
1798 case 'g':
1799 if (general_operand (op, VOIDmode))
1800 result = 1;
1801 break;
1803 default:
1804 /* For all other letters, we first check for a register class,
1805 otherwise it is an EXTRA_CONSTRAINT. */
1806 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1808 case 'r':
1809 if (GET_MODE (op) == BLKmode)
1810 break;
1811 if (register_operand (op, VOIDmode))
1812 result = 1;
1814 #ifdef EXTRA_CONSTRAINT_STR
1815 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1816 /* Every memory operand can be reloaded to fit. */
1817 result = result || memory_operand (op, VOIDmode);
1818 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1819 /* Every address operand can be reloaded to fit. */
1820 result = result || address_operand (op, VOIDmode);
1821 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1822 result = 1;
1823 #endif
1824 break;
1826 len = CONSTRAINT_LEN (c, constraint);
1828 constraint++;
1829 while (--len && *constraint);
1830 if (len)
1831 return 0;
1834 #ifdef AUTO_INC_DEC
1835 /* For operands without < or > constraints reject side-effects. */
1836 if (!incdec_ok && result && MEM_P (op))
1837 switch (GET_CODE (XEXP (op, 0)))
1839 case PRE_INC:
1840 case POST_INC:
1841 case PRE_DEC:
1842 case POST_DEC:
1843 case PRE_MODIFY:
1844 case POST_MODIFY:
1845 return 0;
1846 default:
1847 break;
1849 #endif
1851 return result;
1854 /* Given an rtx *P, if it is a sum containing an integer constant term,
1855 return the location (type rtx *) of the pointer to that constant term.
1856 Otherwise, return a null pointer. */
1858 rtx *
1859 find_constant_term_loc (rtx *p)
1861 rtx *tem;
1862 enum rtx_code code = GET_CODE (*p);
1864 /* If *P IS such a constant term, P is its location. */
1866 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1867 || code == CONST)
1868 return p;
1870 /* Otherwise, if not a sum, it has no constant term. */
1872 if (GET_CODE (*p) != PLUS)
1873 return 0;
1875 /* If one of the summands is constant, return its location. */
1877 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1878 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1879 return p;
1881 /* Otherwise, check each summand for containing a constant term. */
1883 if (XEXP (*p, 0) != 0)
1885 tem = find_constant_term_loc (&XEXP (*p, 0));
1886 if (tem != 0)
1887 return tem;
1890 if (XEXP (*p, 1) != 0)
1892 tem = find_constant_term_loc (&XEXP (*p, 1));
1893 if (tem != 0)
1894 return tem;
1897 return 0;
1900 /* Return 1 if OP is a memory reference
1901 whose address contains no side effects
1902 and remains valid after the addition
1903 of a positive integer less than the
1904 size of the object being referenced.
1906 We assume that the original address is valid and do not check it.
1908 This uses strict_memory_address_p as a subroutine, so
1909 don't use it before reload. */
1912 offsettable_memref_p (rtx op)
1914 return ((MEM_P (op))
1915 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1916 MEM_ADDR_SPACE (op)));
1919 /* Similar, but don't require a strictly valid mem ref:
1920 consider pseudo-regs valid as index or base regs. */
1923 offsettable_nonstrict_memref_p (rtx op)
1925 return ((MEM_P (op))
1926 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1927 MEM_ADDR_SPACE (op)));
1930 /* Return 1 if Y is a memory address which contains no side effects
1931 and would remain valid for address space AS after the addition of
1932 a positive integer less than the size of that mode.
1934 We assume that the original address is valid and do not check it.
1935 We do check that it is valid for narrower modes.
1937 If STRICTP is nonzero, we require a strictly valid address,
1938 for the sake of use in reload.c. */
1941 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1942 addr_space_t as)
1944 enum rtx_code ycode = GET_CODE (y);
1945 rtx z;
1946 rtx y1 = y;
1947 rtx *y2;
1948 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1949 (strictp ? strict_memory_address_addr_space_p
1950 : memory_address_addr_space_p);
1951 unsigned int mode_sz = GET_MODE_SIZE (mode);
1952 #ifdef POINTERS_EXTEND_UNSIGNED
1953 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1954 #endif
1956 if (CONSTANT_ADDRESS_P (y))
1957 return 1;
1959 /* Adjusting an offsettable address involves changing to a narrower mode.
1960 Make sure that's OK. */
1962 if (mode_dependent_address_p (y, as))
1963 return 0;
1965 /* ??? How much offset does an offsettable BLKmode reference need?
1966 Clearly that depends on the situation in which it's being used.
1967 However, the current situation in which we test 0xffffffff is
1968 less than ideal. Caveat user. */
1969 if (mode_sz == 0)
1970 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1972 /* If the expression contains a constant term,
1973 see if it remains valid when max possible offset is added. */
1975 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1977 int good;
1979 y1 = *y2;
1980 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1981 /* Use QImode because an odd displacement may be automatically invalid
1982 for any wider mode. But it should be valid for a single byte. */
1983 good = (*addressp) (QImode, y, as);
1985 /* In any case, restore old contents of memory. */
1986 *y2 = y1;
1987 return good;
1990 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1991 return 0;
1993 /* The offset added here is chosen as the maximum offset that
1994 any instruction could need to add when operating on something
1995 of the specified mode. We assume that if Y and Y+c are
1996 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1997 go inside a LO_SUM here, so we do so as well. */
1998 if (GET_CODE (y) == LO_SUM
1999 && mode != BLKmode
2000 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2001 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
2002 plus_constant (GET_MODE (y), XEXP (y, 1),
2003 mode_sz - 1));
2004 #ifdef POINTERS_EXTEND_UNSIGNED
2005 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2006 else if (POINTERS_EXTEND_UNSIGNED > 0
2007 && GET_CODE (y) == ZERO_EXTEND
2008 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2009 z = gen_rtx_ZERO_EXTEND (GET_MODE (y),
2010 plus_constant (pointer_mode, XEXP (y, 0),
2011 mode_sz - 1));
2012 #endif
2013 else
2014 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
2016 /* Use QImode because an odd displacement may be automatically invalid
2017 for any wider mode. But it should be valid for a single byte. */
2018 return (*addressp) (QImode, z, as);
2021 /* Return 1 if ADDR is an address-expression whose effect depends
2022 on the mode of the memory reference it is used in.
2024 ADDRSPACE is the address space associated with the address.
2026 Autoincrement addressing is a typical example of mode-dependence
2027 because the amount of the increment depends on the mode. */
2029 bool
2030 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2032 /* Auto-increment addressing with anything other than post_modify
2033 or pre_modify always introduces a mode dependency. Catch such
2034 cases now instead of deferring to the target. */
2035 if (GET_CODE (addr) == PRE_INC
2036 || GET_CODE (addr) == POST_INC
2037 || GET_CODE (addr) == PRE_DEC
2038 || GET_CODE (addr) == POST_DEC)
2039 return true;
2041 return targetm.mode_dependent_address_p (addr, addrspace);
2044 /* Like extract_insn, but save insn extracted and don't extract again, when
2045 called again for the same insn expecting that recog_data still contain the
2046 valid information. This is used primary by gen_attr infrastructure that
2047 often does extract insn again and again. */
2048 void
2049 extract_insn_cached (rtx insn)
2051 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2052 return;
2053 extract_insn (insn);
2054 recog_data.insn = insn;
2057 /* Do cached extract_insn, constrain_operands and complain about failures.
2058 Used by insn_attrtab. */
2059 void
2060 extract_constrain_insn_cached (rtx insn)
2062 extract_insn_cached (insn);
2063 if (which_alternative == -1
2064 && !constrain_operands (reload_completed))
2065 fatal_insn_not_found (insn);
2068 /* Do cached constrain_operands and complain about failures. */
2070 constrain_operands_cached (int strict)
2072 if (which_alternative == -1)
2073 return constrain_operands (strict);
2074 else
2075 return 1;
2078 /* Analyze INSN and fill in recog_data. */
2080 void
2081 extract_insn (rtx insn)
2083 int i;
2084 int icode;
2085 int noperands;
2086 rtx body = PATTERN (insn);
2088 recog_data.n_operands = 0;
2089 recog_data.n_alternatives = 0;
2090 recog_data.n_dups = 0;
2091 recog_data.is_asm = false;
2093 switch (GET_CODE (body))
2095 case USE:
2096 case CLOBBER:
2097 case ASM_INPUT:
2098 case ADDR_VEC:
2099 case ADDR_DIFF_VEC:
2100 case VAR_LOCATION:
2101 return;
2103 case SET:
2104 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2105 goto asm_insn;
2106 else
2107 goto normal_insn;
2108 case PARALLEL:
2109 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2110 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2111 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2112 goto asm_insn;
2113 else
2114 goto normal_insn;
2115 case ASM_OPERANDS:
2116 asm_insn:
2117 recog_data.n_operands = noperands = asm_noperands (body);
2118 if (noperands >= 0)
2120 /* This insn is an `asm' with operands. */
2122 /* expand_asm_operands makes sure there aren't too many operands. */
2123 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2125 /* Now get the operand values and constraints out of the insn. */
2126 decode_asm_operands (body, recog_data.operand,
2127 recog_data.operand_loc,
2128 recog_data.constraints,
2129 recog_data.operand_mode, NULL);
2130 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2131 if (noperands > 0)
2133 const char *p = recog_data.constraints[0];
2134 recog_data.n_alternatives = 1;
2135 while (*p)
2136 recog_data.n_alternatives += (*p++ == ',');
2138 recog_data.is_asm = true;
2139 break;
2141 fatal_insn_not_found (insn);
2143 default:
2144 normal_insn:
2145 /* Ordinary insn: recognize it, get the operands via insn_extract
2146 and get the constraints. */
2148 icode = recog_memoized (insn);
2149 if (icode < 0)
2150 fatal_insn_not_found (insn);
2152 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2153 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2154 recog_data.n_dups = insn_data[icode].n_dups;
2156 insn_extract (insn);
2158 for (i = 0; i < noperands; i++)
2160 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2161 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2162 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2163 /* VOIDmode match_operands gets mode from their real operand. */
2164 if (recog_data.operand_mode[i] == VOIDmode)
2165 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2168 for (i = 0; i < noperands; i++)
2169 recog_data.operand_type[i]
2170 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2171 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2172 : OP_IN);
2174 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2176 if (INSN_CODE (insn) < 0)
2177 for (i = 0; i < recog_data.n_alternatives; i++)
2178 recog_data.alternative_enabled_p[i] = true;
2179 else
2181 recog_data.insn = insn;
2182 for (i = 0; i < recog_data.n_alternatives; i++)
2184 which_alternative = i;
2185 recog_data.alternative_enabled_p[i]
2186 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2190 recog_data.insn = NULL;
2191 which_alternative = -1;
2194 /* After calling extract_insn, you can use this function to extract some
2195 information from the constraint strings into a more usable form.
2196 The collected data is stored in recog_op_alt. */
2197 void
2198 preprocess_constraints (void)
2200 int i;
2202 for (i = 0; i < recog_data.n_operands; i++)
2203 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2204 * sizeof (struct operand_alternative)));
2206 for (i = 0; i < recog_data.n_operands; i++)
2208 int j;
2209 struct operand_alternative *op_alt;
2210 const char *p = recog_data.constraints[i];
2212 op_alt = recog_op_alt[i];
2214 for (j = 0; j < recog_data.n_alternatives; j++)
2216 op_alt[j].cl = NO_REGS;
2217 op_alt[j].constraint = p;
2218 op_alt[j].matches = -1;
2219 op_alt[j].matched = -1;
2221 if (!recog_data.alternative_enabled_p[j])
2223 p = skip_alternative (p);
2224 continue;
2227 if (*p == '\0' || *p == ',')
2229 op_alt[j].anything_ok = 1;
2230 continue;
2233 for (;;)
2235 char c = *p;
2236 if (c == '#')
2238 c = *++p;
2239 while (c != ',' && c != '\0');
2240 if (c == ',' || c == '\0')
2242 p++;
2243 break;
2246 switch (c)
2248 case '=': case '+': case '*': case '%':
2249 case 'E': case 'F': case 'G': case 'H':
2250 case 's': case 'i': case 'n':
2251 case 'I': case 'J': case 'K': case 'L':
2252 case 'M': case 'N': case 'O': case 'P':
2253 /* These don't say anything we care about. */
2254 break;
2256 case '?':
2257 op_alt[j].reject += 6;
2258 break;
2259 case '!':
2260 op_alt[j].reject += 600;
2261 break;
2262 case '&':
2263 op_alt[j].earlyclobber = 1;
2264 break;
2266 case '0': case '1': case '2': case '3': case '4':
2267 case '5': case '6': case '7': case '8': case '9':
2269 char *end;
2270 op_alt[j].matches = strtoul (p, &end, 10);
2271 recog_op_alt[op_alt[j].matches][j].matched = i;
2272 p = end;
2274 continue;
2276 case TARGET_MEM_CONSTRAINT:
2277 op_alt[j].memory_ok = 1;
2278 break;
2279 case '<':
2280 op_alt[j].decmem_ok = 1;
2281 break;
2282 case '>':
2283 op_alt[j].incmem_ok = 1;
2284 break;
2285 case 'V':
2286 op_alt[j].nonoffmem_ok = 1;
2287 break;
2288 case 'o':
2289 op_alt[j].offmem_ok = 1;
2290 break;
2291 case 'X':
2292 op_alt[j].anything_ok = 1;
2293 break;
2295 case 'p':
2296 op_alt[j].is_address = 1;
2297 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2298 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2299 ADDRESS, SCRATCH)];
2300 break;
2302 case 'g':
2303 case 'r':
2304 op_alt[j].cl =
2305 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2306 break;
2308 default:
2309 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2311 op_alt[j].memory_ok = 1;
2312 break;
2314 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2316 op_alt[j].is_address = 1;
2317 op_alt[j].cl
2318 = (reg_class_subunion
2319 [(int) op_alt[j].cl]
2320 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2321 ADDRESS, SCRATCH)]);
2322 break;
2325 op_alt[j].cl
2326 = (reg_class_subunion
2327 [(int) op_alt[j].cl]
2328 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2329 break;
2331 p += CONSTRAINT_LEN (c, p);
2337 /* Check the operands of an insn against the insn's operand constraints
2338 and return 1 if they are valid.
2339 The information about the insn's operands, constraints, operand modes
2340 etc. is obtained from the global variables set up by extract_insn.
2342 WHICH_ALTERNATIVE is set to a number which indicates which
2343 alternative of constraints was matched: 0 for the first alternative,
2344 1 for the next, etc.
2346 In addition, when two operands are required to match
2347 and it happens that the output operand is (reg) while the
2348 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2349 make the output operand look like the input.
2350 This is because the output operand is the one the template will print.
2352 This is used in final, just before printing the assembler code and by
2353 the routines that determine an insn's attribute.
2355 If STRICT is a positive nonzero value, it means that we have been
2356 called after reload has been completed. In that case, we must
2357 do all checks strictly. If it is zero, it means that we have been called
2358 before reload has completed. In that case, we first try to see if we can
2359 find an alternative that matches strictly. If not, we try again, this
2360 time assuming that reload will fix up the insn. This provides a "best
2361 guess" for the alternative and is used to compute attributes of insns prior
2362 to reload. A negative value of STRICT is used for this internal call. */
2364 struct funny_match
2366 int this_op, other;
2370 constrain_operands (int strict)
2372 const char *constraints[MAX_RECOG_OPERANDS];
2373 int matching_operands[MAX_RECOG_OPERANDS];
2374 int earlyclobber[MAX_RECOG_OPERANDS];
2375 int c;
2377 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2378 int funny_match_index;
2380 which_alternative = 0;
2381 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2382 return 1;
2384 for (c = 0; c < recog_data.n_operands; c++)
2386 constraints[c] = recog_data.constraints[c];
2387 matching_operands[c] = -1;
2392 int seen_earlyclobber_at = -1;
2393 int opno;
2394 int lose = 0;
2395 funny_match_index = 0;
2397 if (!recog_data.alternative_enabled_p[which_alternative])
2399 int i;
2401 for (i = 0; i < recog_data.n_operands; i++)
2402 constraints[i] = skip_alternative (constraints[i]);
2404 which_alternative++;
2405 continue;
2408 for (opno = 0; opno < recog_data.n_operands; opno++)
2410 rtx op = recog_data.operand[opno];
2411 enum machine_mode mode = GET_MODE (op);
2412 const char *p = constraints[opno];
2413 int offset = 0;
2414 int win = 0;
2415 int val;
2416 int len;
2418 earlyclobber[opno] = 0;
2420 /* A unary operator may be accepted by the predicate, but it
2421 is irrelevant for matching constraints. */
2422 if (UNARY_P (op))
2423 op = XEXP (op, 0);
2425 if (GET_CODE (op) == SUBREG)
2427 if (REG_P (SUBREG_REG (op))
2428 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2429 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2430 GET_MODE (SUBREG_REG (op)),
2431 SUBREG_BYTE (op),
2432 GET_MODE (op));
2433 op = SUBREG_REG (op);
2436 /* An empty constraint or empty alternative
2437 allows anything which matched the pattern. */
2438 if (*p == 0 || *p == ',')
2439 win = 1;
2442 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2444 case '\0':
2445 len = 0;
2446 break;
2447 case ',':
2448 c = '\0';
2449 break;
2451 case '?': case '!': case '*': case '%':
2452 case '=': case '+':
2453 break;
2455 case '#':
2456 /* Ignore rest of this alternative as far as
2457 constraint checking is concerned. */
2459 p++;
2460 while (*p && *p != ',');
2461 len = 0;
2462 break;
2464 case '&':
2465 earlyclobber[opno] = 1;
2466 if (seen_earlyclobber_at < 0)
2467 seen_earlyclobber_at = opno;
2468 break;
2470 case '0': case '1': case '2': case '3': case '4':
2471 case '5': case '6': case '7': case '8': case '9':
2473 /* This operand must be the same as a previous one.
2474 This kind of constraint is used for instructions such
2475 as add when they take only two operands.
2477 Note that the lower-numbered operand is passed first.
2479 If we are not testing strictly, assume that this
2480 constraint will be satisfied. */
2482 char *end;
2483 int match;
2485 match = strtoul (p, &end, 10);
2486 p = end;
2488 if (strict < 0)
2489 val = 1;
2490 else
2492 rtx op1 = recog_data.operand[match];
2493 rtx op2 = recog_data.operand[opno];
2495 /* A unary operator may be accepted by the predicate,
2496 but it is irrelevant for matching constraints. */
2497 if (UNARY_P (op1))
2498 op1 = XEXP (op1, 0);
2499 if (UNARY_P (op2))
2500 op2 = XEXP (op2, 0);
2502 val = operands_match_p (op1, op2);
2505 matching_operands[opno] = match;
2506 matching_operands[match] = opno;
2508 if (val != 0)
2509 win = 1;
2511 /* If output is *x and input is *--x, arrange later
2512 to change the output to *--x as well, since the
2513 output op is the one that will be printed. */
2514 if (val == 2 && strict > 0)
2516 funny_match[funny_match_index].this_op = opno;
2517 funny_match[funny_match_index++].other = match;
2520 len = 0;
2521 break;
2523 case 'p':
2524 /* p is used for address_operands. When we are called by
2525 gen_reload, no one will have checked that the address is
2526 strictly valid, i.e., that all pseudos requiring hard regs
2527 have gotten them. */
2528 if (strict <= 0
2529 || (strict_memory_address_p (recog_data.operand_mode[opno],
2530 op)))
2531 win = 1;
2532 break;
2534 /* No need to check general_operand again;
2535 it was done in insn-recog.c. Well, except that reload
2536 doesn't check the validity of its replacements, but
2537 that should only matter when there's a bug. */
2538 case 'g':
2539 /* Anything goes unless it is a REG and really has a hard reg
2540 but the hard reg is not in the class GENERAL_REGS. */
2541 if (REG_P (op))
2543 if (strict < 0
2544 || GENERAL_REGS == ALL_REGS
2545 || (reload_in_progress
2546 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2547 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2548 win = 1;
2550 else if (strict < 0 || general_operand (op, mode))
2551 win = 1;
2552 break;
2554 case 'X':
2555 /* This is used for a MATCH_SCRATCH in the cases when
2556 we don't actually need anything. So anything goes
2557 any time. */
2558 win = 1;
2559 break;
2561 case TARGET_MEM_CONSTRAINT:
2562 /* Memory operands must be valid, to the extent
2563 required by STRICT. */
2564 if (MEM_P (op))
2566 if (strict > 0
2567 && !strict_memory_address_addr_space_p
2568 (GET_MODE (op), XEXP (op, 0),
2569 MEM_ADDR_SPACE (op)))
2570 break;
2571 if (strict == 0
2572 && !memory_address_addr_space_p
2573 (GET_MODE (op), XEXP (op, 0),
2574 MEM_ADDR_SPACE (op)))
2575 break;
2576 win = 1;
2578 /* Before reload, accept what reload can turn into mem. */
2579 else if (strict < 0 && CONSTANT_P (op))
2580 win = 1;
2581 /* During reload, accept a pseudo */
2582 else if (reload_in_progress && REG_P (op)
2583 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2584 win = 1;
2585 break;
2587 case '<':
2588 if (MEM_P (op)
2589 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2590 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2591 win = 1;
2592 break;
2594 case '>':
2595 if (MEM_P (op)
2596 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2597 || GET_CODE (XEXP (op, 0)) == POST_INC))
2598 win = 1;
2599 break;
2601 case 'E':
2602 case 'F':
2603 if (CONST_DOUBLE_AS_FLOAT_P (op)
2604 || (GET_CODE (op) == CONST_VECTOR
2605 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2606 win = 1;
2607 break;
2609 case 'G':
2610 case 'H':
2611 if (CONST_DOUBLE_AS_FLOAT_P (op)
2612 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2613 win = 1;
2614 break;
2616 case 's':
2617 if (CONST_SCALAR_INT_P (op))
2618 break;
2619 case 'i':
2620 if (CONSTANT_P (op))
2621 win = 1;
2622 break;
2624 case 'n':
2625 if (CONST_SCALAR_INT_P (op))
2626 win = 1;
2627 break;
2629 case 'I':
2630 case 'J':
2631 case 'K':
2632 case 'L':
2633 case 'M':
2634 case 'N':
2635 case 'O':
2636 case 'P':
2637 if (CONST_INT_P (op)
2638 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2639 win = 1;
2640 break;
2642 case 'V':
2643 if (MEM_P (op)
2644 && ((strict > 0 && ! offsettable_memref_p (op))
2645 || (strict < 0
2646 && !(CONSTANT_P (op) || MEM_P (op)))
2647 || (reload_in_progress
2648 && !(REG_P (op)
2649 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2650 win = 1;
2651 break;
2653 case 'o':
2654 if ((strict > 0 && offsettable_memref_p (op))
2655 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2656 /* Before reload, accept what reload can handle. */
2657 || (strict < 0
2658 && (CONSTANT_P (op) || MEM_P (op)))
2659 /* During reload, accept a pseudo */
2660 || (reload_in_progress && REG_P (op)
2661 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2662 win = 1;
2663 break;
2665 default:
2667 enum reg_class cl;
2669 cl = (c == 'r'
2670 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2671 if (cl != NO_REGS)
2673 if (strict < 0
2674 || (strict == 0
2675 && REG_P (op)
2676 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2677 || (strict == 0 && GET_CODE (op) == SCRATCH)
2678 || (REG_P (op)
2679 && reg_fits_class_p (op, cl, offset, mode)))
2680 win = 1;
2682 #ifdef EXTRA_CONSTRAINT_STR
2683 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2684 win = 1;
2686 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2687 /* Every memory operand can be reloaded to fit. */
2688 && ((strict < 0 && MEM_P (op))
2689 /* Before reload, accept what reload can turn
2690 into mem. */
2691 || (strict < 0 && CONSTANT_P (op))
2692 /* During reload, accept a pseudo */
2693 || (reload_in_progress && REG_P (op)
2694 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2695 win = 1;
2696 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2697 /* Every address operand can be reloaded to fit. */
2698 && strict < 0)
2699 win = 1;
2700 /* Cater to architectures like IA-64 that define extra memory
2701 constraints without using define_memory_constraint. */
2702 else if (reload_in_progress
2703 && REG_P (op)
2704 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2705 && reg_renumber[REGNO (op)] < 0
2706 && reg_equiv_mem (REGNO (op)) != 0
2707 && EXTRA_CONSTRAINT_STR
2708 (reg_equiv_mem (REGNO (op)), c, p))
2709 win = 1;
2710 #endif
2711 break;
2714 while (p += len, c);
2716 constraints[opno] = p;
2717 /* If this operand did not win somehow,
2718 this alternative loses. */
2719 if (! win)
2720 lose = 1;
2722 /* This alternative won; the operands are ok.
2723 Change whichever operands this alternative says to change. */
2724 if (! lose)
2726 int opno, eopno;
2728 /* See if any earlyclobber operand conflicts with some other
2729 operand. */
2731 if (strict > 0 && seen_earlyclobber_at >= 0)
2732 for (eopno = seen_earlyclobber_at;
2733 eopno < recog_data.n_operands;
2734 eopno++)
2735 /* Ignore earlyclobber operands now in memory,
2736 because we would often report failure when we have
2737 two memory operands, one of which was formerly a REG. */
2738 if (earlyclobber[eopno]
2739 && REG_P (recog_data.operand[eopno]))
2740 for (opno = 0; opno < recog_data.n_operands; opno++)
2741 if ((MEM_P (recog_data.operand[opno])
2742 || recog_data.operand_type[opno] != OP_OUT)
2743 && opno != eopno
2744 /* Ignore things like match_operator operands. */
2745 && *recog_data.constraints[opno] != 0
2746 && ! (matching_operands[opno] == eopno
2747 && operands_match_p (recog_data.operand[opno],
2748 recog_data.operand[eopno]))
2749 && ! safe_from_earlyclobber (recog_data.operand[opno],
2750 recog_data.operand[eopno]))
2751 lose = 1;
2753 if (! lose)
2755 while (--funny_match_index >= 0)
2757 recog_data.operand[funny_match[funny_match_index].other]
2758 = recog_data.operand[funny_match[funny_match_index].this_op];
2761 #ifdef AUTO_INC_DEC
2762 /* For operands without < or > constraints reject side-effects. */
2763 if (recog_data.is_asm)
2765 for (opno = 0; opno < recog_data.n_operands; opno++)
2766 if (MEM_P (recog_data.operand[opno]))
2767 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2769 case PRE_INC:
2770 case POST_INC:
2771 case PRE_DEC:
2772 case POST_DEC:
2773 case PRE_MODIFY:
2774 case POST_MODIFY:
2775 if (strchr (recog_data.constraints[opno], '<') == NULL
2776 && strchr (recog_data.constraints[opno], '>')
2777 == NULL)
2778 return 0;
2779 break;
2780 default:
2781 break;
2784 #endif
2785 return 1;
2789 which_alternative++;
2791 while (which_alternative < recog_data.n_alternatives);
2793 which_alternative = -1;
2794 /* If we are about to reject this, but we are not to test strictly,
2795 try a very loose test. Only return failure if it fails also. */
2796 if (strict == 0)
2797 return constrain_operands (-1);
2798 else
2799 return 0;
2802 /* Return true iff OPERAND (assumed to be a REG rtx)
2803 is a hard reg in class CLASS when its regno is offset by OFFSET
2804 and changed to mode MODE.
2805 If REG occupies multiple hard regs, all of them must be in CLASS. */
2807 bool
2808 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2809 enum machine_mode mode)
2811 unsigned int regno = REGNO (operand);
2813 if (cl == NO_REGS)
2814 return false;
2816 /* Regno must not be a pseudo register. Offset may be negative. */
2817 return (HARD_REGISTER_NUM_P (regno)
2818 && HARD_REGISTER_NUM_P (regno + offset)
2819 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2820 regno + offset));
2823 /* Split single instruction. Helper function for split_all_insns and
2824 split_all_insns_noflow. Return last insn in the sequence if successful,
2825 or NULL if unsuccessful. */
2827 static rtx
2828 split_insn (rtx insn)
2830 /* Split insns here to get max fine-grain parallelism. */
2831 rtx first = PREV_INSN (insn);
2832 rtx last = try_split (PATTERN (insn), insn, 1);
2833 rtx insn_set, last_set, note;
2835 if (last == insn)
2836 return NULL_RTX;
2838 /* If the original instruction was a single set that was known to be
2839 equivalent to a constant, see if we can say the same about the last
2840 instruction in the split sequence. The two instructions must set
2841 the same destination. */
2842 insn_set = single_set (insn);
2843 if (insn_set)
2845 last_set = single_set (last);
2846 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2848 note = find_reg_equal_equiv_note (insn);
2849 if (note && CONSTANT_P (XEXP (note, 0)))
2850 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2851 else if (CONSTANT_P (SET_SRC (insn_set)))
2852 set_unique_reg_note (last, REG_EQUAL,
2853 copy_rtx (SET_SRC (insn_set)));
2857 /* try_split returns the NOTE that INSN became. */
2858 SET_INSN_DELETED (insn);
2860 /* ??? Coddle to md files that generate subregs in post-reload
2861 splitters instead of computing the proper hard register. */
2862 if (reload_completed && first != last)
2864 first = NEXT_INSN (first);
2865 for (;;)
2867 if (INSN_P (first))
2868 cleanup_subreg_operands (first);
2869 if (first == last)
2870 break;
2871 first = NEXT_INSN (first);
2875 return last;
2878 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2880 void
2881 split_all_insns (void)
2883 sbitmap blocks;
2884 bool changed;
2885 basic_block bb;
2887 blocks = sbitmap_alloc (last_basic_block);
2888 bitmap_clear (blocks);
2889 changed = false;
2891 FOR_EACH_BB_REVERSE (bb)
2893 rtx insn, next;
2894 bool finish = false;
2896 rtl_profile_for_bb (bb);
2897 for (insn = BB_HEAD (bb); !finish ; insn = next)
2899 /* Can't use `next_real_insn' because that might go across
2900 CODE_LABELS and short-out basic blocks. */
2901 next = NEXT_INSN (insn);
2902 finish = (insn == BB_END (bb));
2903 if (INSN_P (insn))
2905 rtx set = single_set (insn);
2907 /* Don't split no-op move insns. These should silently
2908 disappear later in final. Splitting such insns would
2909 break the code that handles LIBCALL blocks. */
2910 if (set && set_noop_p (set))
2912 /* Nops get in the way while scheduling, so delete them
2913 now if register allocation has already been done. It
2914 is too risky to try to do this before register
2915 allocation, and there are unlikely to be very many
2916 nops then anyways. */
2917 if (reload_completed)
2918 delete_insn_and_edges (insn);
2920 else
2922 if (split_insn (insn))
2924 bitmap_set_bit (blocks, bb->index);
2925 changed = true;
2932 default_rtl_profile ();
2933 if (changed)
2934 find_many_sub_basic_blocks (blocks);
2936 #ifdef ENABLE_CHECKING
2937 verify_flow_info ();
2938 #endif
2940 sbitmap_free (blocks);
2943 /* Same as split_all_insns, but do not expect CFG to be available.
2944 Used by machine dependent reorg passes. */
2946 unsigned int
2947 split_all_insns_noflow (void)
2949 rtx next, insn;
2951 for (insn = get_insns (); insn; insn = next)
2953 next = NEXT_INSN (insn);
2954 if (INSN_P (insn))
2956 /* Don't split no-op move insns. These should silently
2957 disappear later in final. Splitting such insns would
2958 break the code that handles LIBCALL blocks. */
2959 rtx set = single_set (insn);
2960 if (set && set_noop_p (set))
2962 /* Nops get in the way while scheduling, so delete them
2963 now if register allocation has already been done. It
2964 is too risky to try to do this before register
2965 allocation, and there are unlikely to be very many
2966 nops then anyways.
2968 ??? Should we use delete_insn when the CFG isn't valid? */
2969 if (reload_completed)
2970 delete_insn_and_edges (insn);
2972 else
2973 split_insn (insn);
2976 return 0;
2979 #ifdef HAVE_peephole2
2980 struct peep2_insn_data
2982 rtx insn;
2983 regset live_before;
2986 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2987 static int peep2_current;
2989 static bool peep2_do_rebuild_jump_labels;
2990 static bool peep2_do_cleanup_cfg;
2992 /* The number of instructions available to match a peep2. */
2993 int peep2_current_count;
2995 /* A non-insn marker indicating the last insn of the block.
2996 The live_before regset for this element is correct, indicating
2997 DF_LIVE_OUT for the block. */
2998 #define PEEP2_EOB pc_rtx
3000 /* Wrap N to fit into the peep2_insn_data buffer. */
3002 static int
3003 peep2_buf_position (int n)
3005 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3006 n -= MAX_INSNS_PER_PEEP2 + 1;
3007 return n;
3010 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3011 does not exist. Used by the recognizer to find the next insn to match
3012 in a multi-insn pattern. */
3015 peep2_next_insn (int n)
3017 gcc_assert (n <= peep2_current_count);
3019 n = peep2_buf_position (peep2_current + n);
3021 return peep2_insn_data[n].insn;
3024 /* Return true if REGNO is dead before the Nth non-note insn
3025 after `current'. */
3028 peep2_regno_dead_p (int ofs, int regno)
3030 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3032 ofs = peep2_buf_position (peep2_current + ofs);
3034 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3036 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3039 /* Similarly for a REG. */
3042 peep2_reg_dead_p (int ofs, rtx reg)
3044 int regno, n;
3046 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3048 ofs = peep2_buf_position (peep2_current + ofs);
3050 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3052 regno = REGNO (reg);
3053 n = hard_regno_nregs[regno][GET_MODE (reg)];
3054 while (--n >= 0)
3055 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3056 return 0;
3057 return 1;
3060 /* Try to find a hard register of mode MODE, matching the register class in
3061 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3062 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3063 in which case the only condition is that the register must be available
3064 before CURRENT_INSN.
3065 Registers that already have bits set in REG_SET will not be considered.
3067 If an appropriate register is available, it will be returned and the
3068 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3069 returned. */
3072 peep2_find_free_register (int from, int to, const char *class_str,
3073 enum machine_mode mode, HARD_REG_SET *reg_set)
3075 static int search_ofs;
3076 enum reg_class cl;
3077 HARD_REG_SET live;
3078 df_ref *def_rec;
3079 int i;
3081 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3082 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3084 from = peep2_buf_position (peep2_current + from);
3085 to = peep2_buf_position (peep2_current + to);
3087 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3088 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3090 while (from != to)
3092 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3094 /* Don't use registers set or clobbered by the insn. */
3095 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3096 *def_rec; def_rec++)
3097 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3099 from = peep2_buf_position (from + 1);
3102 cl = (class_str[0] == 'r' ? GENERAL_REGS
3103 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3105 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3107 int raw_regno, regno, success, j;
3109 /* Distribute the free registers as much as possible. */
3110 raw_regno = search_ofs + i;
3111 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3112 raw_regno -= FIRST_PSEUDO_REGISTER;
3113 #ifdef REG_ALLOC_ORDER
3114 regno = reg_alloc_order[raw_regno];
3115 #else
3116 regno = raw_regno;
3117 #endif
3119 /* Don't allocate fixed registers. */
3120 if (fixed_regs[regno])
3121 continue;
3122 /* Don't allocate global registers. */
3123 if (global_regs[regno])
3124 continue;
3125 /* Make sure the register is of the right class. */
3126 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3127 continue;
3128 /* And can support the mode we need. */
3129 if (! HARD_REGNO_MODE_OK (regno, mode))
3130 continue;
3131 /* And that we don't create an extra save/restore. */
3132 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3133 continue;
3134 if (! targetm.hard_regno_scratch_ok (regno))
3135 continue;
3137 /* And we don't clobber traceback for noreturn functions. */
3138 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3139 && (! reload_completed || frame_pointer_needed))
3140 continue;
3142 success = 1;
3143 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3145 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3146 || TEST_HARD_REG_BIT (live, regno + j))
3148 success = 0;
3149 break;
3152 if (success)
3154 add_to_hard_reg_set (reg_set, mode, regno);
3156 /* Start the next search with the next register. */
3157 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3158 raw_regno = 0;
3159 search_ofs = raw_regno;
3161 return gen_rtx_REG (mode, regno);
3165 search_ofs = 0;
3166 return NULL_RTX;
3169 /* Forget all currently tracked instructions, only remember current
3170 LIVE regset. */
3172 static void
3173 peep2_reinit_state (regset live)
3175 int i;
3177 /* Indicate that all slots except the last holds invalid data. */
3178 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3179 peep2_insn_data[i].insn = NULL_RTX;
3180 peep2_current_count = 0;
3182 /* Indicate that the last slot contains live_after data. */
3183 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3184 peep2_current = MAX_INSNS_PER_PEEP2;
3186 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3189 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3190 starting at INSN. Perform the replacement, removing the old insns and
3191 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3192 if the replacement is rejected. */
3194 static rtx
3195 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3197 int i;
3198 rtx last, eh_note, as_note, before_try, x;
3199 rtx old_insn, new_insn;
3200 bool was_call = false;
3202 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3203 match more than one insn, or to be split into more than one insn. */
3204 old_insn = peep2_insn_data[peep2_current].insn;
3205 if (RTX_FRAME_RELATED_P (old_insn))
3207 bool any_note = false;
3208 rtx note;
3210 if (match_len != 0)
3211 return NULL;
3213 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3214 may be in the stream for the purpose of register allocation. */
3215 if (active_insn_p (attempt))
3216 new_insn = attempt;
3217 else
3218 new_insn = next_active_insn (attempt);
3219 if (next_active_insn (new_insn))
3220 return NULL;
3222 /* We have a 1-1 replacement. Copy over any frame-related info. */
3223 RTX_FRAME_RELATED_P (new_insn) = 1;
3225 /* Allow the backend to fill in a note during the split. */
3226 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3227 switch (REG_NOTE_KIND (note))
3229 case REG_FRAME_RELATED_EXPR:
3230 case REG_CFA_DEF_CFA:
3231 case REG_CFA_ADJUST_CFA:
3232 case REG_CFA_OFFSET:
3233 case REG_CFA_REGISTER:
3234 case REG_CFA_EXPRESSION:
3235 case REG_CFA_RESTORE:
3236 case REG_CFA_SET_VDRAP:
3237 any_note = true;
3238 break;
3239 default:
3240 break;
3243 /* If the backend didn't supply a note, copy one over. */
3244 if (!any_note)
3245 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3246 switch (REG_NOTE_KIND (note))
3248 case REG_FRAME_RELATED_EXPR:
3249 case REG_CFA_DEF_CFA:
3250 case REG_CFA_ADJUST_CFA:
3251 case REG_CFA_OFFSET:
3252 case REG_CFA_REGISTER:
3253 case REG_CFA_EXPRESSION:
3254 case REG_CFA_RESTORE:
3255 case REG_CFA_SET_VDRAP:
3256 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3257 any_note = true;
3258 break;
3259 default:
3260 break;
3263 /* If there still isn't a note, make sure the unwind info sees the
3264 same expression as before the split. */
3265 if (!any_note)
3267 rtx old_set, new_set;
3269 /* The old insn had better have been simple, or annotated. */
3270 old_set = single_set (old_insn);
3271 gcc_assert (old_set != NULL);
3273 new_set = single_set (new_insn);
3274 if (!new_set || !rtx_equal_p (new_set, old_set))
3275 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3278 /* Copy prologue/epilogue status. This is required in order to keep
3279 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3280 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3283 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3284 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3285 cfg-related call notes. */
3286 for (i = 0; i <= match_len; ++i)
3288 int j;
3289 rtx note;
3291 j = peep2_buf_position (peep2_current + i);
3292 old_insn = peep2_insn_data[j].insn;
3293 if (!CALL_P (old_insn))
3294 continue;
3295 was_call = true;
3297 new_insn = attempt;
3298 while (new_insn != NULL_RTX)
3300 if (CALL_P (new_insn))
3301 break;
3302 new_insn = NEXT_INSN (new_insn);
3305 gcc_assert (new_insn != NULL_RTX);
3307 CALL_INSN_FUNCTION_USAGE (new_insn)
3308 = CALL_INSN_FUNCTION_USAGE (old_insn);
3310 for (note = REG_NOTES (old_insn);
3311 note;
3312 note = XEXP (note, 1))
3313 switch (REG_NOTE_KIND (note))
3315 case REG_NORETURN:
3316 case REG_SETJMP:
3317 case REG_TM:
3318 add_reg_note (new_insn, REG_NOTE_KIND (note),
3319 XEXP (note, 0));
3320 break;
3321 default:
3322 /* Discard all other reg notes. */
3323 break;
3326 /* Croak if there is another call in the sequence. */
3327 while (++i <= match_len)
3329 j = peep2_buf_position (peep2_current + i);
3330 old_insn = peep2_insn_data[j].insn;
3331 gcc_assert (!CALL_P (old_insn));
3333 break;
3336 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3337 move those notes over to the new sequence. */
3338 as_note = NULL;
3339 for (i = match_len; i >= 0; --i)
3341 int j = peep2_buf_position (peep2_current + i);
3342 old_insn = peep2_insn_data[j].insn;
3344 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3345 if (as_note)
3346 break;
3349 i = peep2_buf_position (peep2_current + match_len);
3350 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3352 /* Replace the old sequence with the new. */
3353 last = emit_insn_after_setloc (attempt,
3354 peep2_insn_data[i].insn,
3355 INSN_LOCATION (peep2_insn_data[i].insn));
3356 before_try = PREV_INSN (insn);
3357 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3359 /* Re-insert the EH_REGION notes. */
3360 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3362 edge eh_edge;
3363 edge_iterator ei;
3365 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3366 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3367 break;
3369 if (eh_note)
3370 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3372 if (eh_edge)
3373 for (x = last; x != before_try; x = PREV_INSN (x))
3374 if (x != BB_END (bb)
3375 && (can_throw_internal (x)
3376 || can_nonlocal_goto (x)))
3378 edge nfte, nehe;
3379 int flags;
3381 nfte = split_block (bb, x);
3382 flags = (eh_edge->flags
3383 & (EDGE_EH | EDGE_ABNORMAL));
3384 if (CALL_P (x))
3385 flags |= EDGE_ABNORMAL_CALL;
3386 nehe = make_edge (nfte->src, eh_edge->dest,
3387 flags);
3389 nehe->probability = eh_edge->probability;
3390 nfte->probability
3391 = REG_BR_PROB_BASE - nehe->probability;
3393 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3394 bb = nfte->src;
3395 eh_edge = nehe;
3398 /* Converting possibly trapping insn to non-trapping is
3399 possible. Zap dummy outgoing edges. */
3400 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3403 /* Re-insert the ARGS_SIZE notes. */
3404 if (as_note)
3405 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3407 /* If we generated a jump instruction, it won't have
3408 JUMP_LABEL set. Recompute after we're done. */
3409 for (x = last; x != before_try; x = PREV_INSN (x))
3410 if (JUMP_P (x))
3412 peep2_do_rebuild_jump_labels = true;
3413 break;
3416 return last;
3419 /* After performing a replacement in basic block BB, fix up the life
3420 information in our buffer. LAST is the last of the insns that we
3421 emitted as a replacement. PREV is the insn before the start of
3422 the replacement. MATCH_LEN is the number of instructions that were
3423 matched, and which now need to be replaced in the buffer. */
3425 static void
3426 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3428 int i = peep2_buf_position (peep2_current + match_len + 1);
3429 rtx x;
3430 regset_head live;
3432 INIT_REG_SET (&live);
3433 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3435 gcc_assert (peep2_current_count >= match_len + 1);
3436 peep2_current_count -= match_len + 1;
3438 x = last;
3441 if (INSN_P (x))
3443 df_insn_rescan (x);
3444 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3446 peep2_current_count++;
3447 if (--i < 0)
3448 i = MAX_INSNS_PER_PEEP2;
3449 peep2_insn_data[i].insn = x;
3450 df_simulate_one_insn_backwards (bb, x, &live);
3451 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3454 x = PREV_INSN (x);
3456 while (x != prev);
3457 CLEAR_REG_SET (&live);
3459 peep2_current = i;
3462 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3463 Return true if we added it, false otherwise. The caller will try to match
3464 peepholes against the buffer if we return false; otherwise it will try to
3465 add more instructions to the buffer. */
3467 static bool
3468 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3470 int pos;
3472 /* Once we have filled the maximum number of insns the buffer can hold,
3473 allow the caller to match the insns against peepholes. We wait until
3474 the buffer is full in case the target has similar peepholes of different
3475 length; we always want to match the longest if possible. */
3476 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3477 return false;
3479 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3480 any other pattern, lest it change the semantics of the frame info. */
3481 if (RTX_FRAME_RELATED_P (insn))
3483 /* Let the buffer drain first. */
3484 if (peep2_current_count > 0)
3485 return false;
3486 /* Now the insn will be the only thing in the buffer. */
3489 pos = peep2_buf_position (peep2_current + peep2_current_count);
3490 peep2_insn_data[pos].insn = insn;
3491 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3492 peep2_current_count++;
3494 df_simulate_one_insn_forwards (bb, insn, live);
3495 return true;
3498 /* Perform the peephole2 optimization pass. */
3500 static void
3501 peephole2_optimize (void)
3503 rtx insn;
3504 bitmap live;
3505 int i;
3506 basic_block bb;
3508 peep2_do_cleanup_cfg = false;
3509 peep2_do_rebuild_jump_labels = false;
3511 df_set_flags (DF_LR_RUN_DCE);
3512 df_note_add_problem ();
3513 df_analyze ();
3515 /* Initialize the regsets we're going to use. */
3516 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3517 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3518 live = BITMAP_ALLOC (&reg_obstack);
3520 FOR_EACH_BB_REVERSE (bb)
3522 bool past_end = false;
3523 int pos;
3525 rtl_profile_for_bb (bb);
3527 /* Start up propagation. */
3528 bitmap_copy (live, DF_LR_IN (bb));
3529 df_simulate_initialize_forwards (bb, live);
3530 peep2_reinit_state (live);
3532 insn = BB_HEAD (bb);
3533 for (;;)
3535 rtx attempt, head;
3536 int match_len;
3538 if (!past_end && !NONDEBUG_INSN_P (insn))
3540 next_insn:
3541 insn = NEXT_INSN (insn);
3542 if (insn == NEXT_INSN (BB_END (bb)))
3543 past_end = true;
3544 continue;
3546 if (!past_end && peep2_fill_buffer (bb, insn, live))
3547 goto next_insn;
3549 /* If we did not fill an empty buffer, it signals the end of the
3550 block. */
3551 if (peep2_current_count == 0)
3552 break;
3554 /* The buffer filled to the current maximum, so try to match. */
3556 pos = peep2_buf_position (peep2_current + peep2_current_count);
3557 peep2_insn_data[pos].insn = PEEP2_EOB;
3558 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3560 /* Match the peephole. */
3561 head = peep2_insn_data[peep2_current].insn;
3562 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3563 if (attempt != NULL)
3565 rtx last = peep2_attempt (bb, head, match_len, attempt);
3566 if (last)
3568 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3569 continue;
3573 /* No match: advance the buffer by one insn. */
3574 peep2_current = peep2_buf_position (peep2_current + 1);
3575 peep2_current_count--;
3579 default_rtl_profile ();
3580 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3581 BITMAP_FREE (peep2_insn_data[i].live_before);
3582 BITMAP_FREE (live);
3583 if (peep2_do_rebuild_jump_labels)
3584 rebuild_jump_labels (get_insns ());
3586 #endif /* HAVE_peephole2 */
3588 /* Common predicates for use with define_bypass. */
3590 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3591 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3592 must be either a single_set or a PARALLEL with SETs inside. */
3595 store_data_bypass_p (rtx out_insn, rtx in_insn)
3597 rtx out_set, in_set;
3598 rtx out_pat, in_pat;
3599 rtx out_exp, in_exp;
3600 int i, j;
3602 in_set = single_set (in_insn);
3603 if (in_set)
3605 if (!MEM_P (SET_DEST (in_set)))
3606 return false;
3608 out_set = single_set (out_insn);
3609 if (out_set)
3611 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3612 return false;
3614 else
3616 out_pat = PATTERN (out_insn);
3618 if (GET_CODE (out_pat) != PARALLEL)
3619 return false;
3621 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3623 out_exp = XVECEXP (out_pat, 0, i);
3625 if (GET_CODE (out_exp) == CLOBBER)
3626 continue;
3628 gcc_assert (GET_CODE (out_exp) == SET);
3630 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3631 return false;
3635 else
3637 in_pat = PATTERN (in_insn);
3638 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3640 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3642 in_exp = XVECEXP (in_pat, 0, i);
3644 if (GET_CODE (in_exp) == CLOBBER)
3645 continue;
3647 gcc_assert (GET_CODE (in_exp) == SET);
3649 if (!MEM_P (SET_DEST (in_exp)))
3650 return false;
3652 out_set = single_set (out_insn);
3653 if (out_set)
3655 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3656 return false;
3658 else
3660 out_pat = PATTERN (out_insn);
3661 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3663 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3665 out_exp = XVECEXP (out_pat, 0, j);
3667 if (GET_CODE (out_exp) == CLOBBER)
3668 continue;
3670 gcc_assert (GET_CODE (out_exp) == SET);
3672 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3673 return false;
3679 return true;
3682 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3683 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3684 or multiple set; IN_INSN should be single_set for truth, but for convenience
3685 of insn categorization may be any JUMP or CALL insn. */
3688 if_test_bypass_p (rtx out_insn, rtx in_insn)
3690 rtx out_set, in_set;
3692 in_set = single_set (in_insn);
3693 if (! in_set)
3695 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3696 return false;
3699 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3700 return false;
3701 in_set = SET_SRC (in_set);
3703 out_set = single_set (out_insn);
3704 if (out_set)
3706 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3707 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3708 return false;
3710 else
3712 rtx out_pat;
3713 int i;
3715 out_pat = PATTERN (out_insn);
3716 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3718 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3720 rtx exp = XVECEXP (out_pat, 0, i);
3722 if (GET_CODE (exp) == CLOBBER)
3723 continue;
3725 gcc_assert (GET_CODE (exp) == SET);
3727 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3728 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3729 return false;
3733 return true;
3736 static bool
3737 gate_handle_peephole2 (void)
3739 return (optimize > 0 && flag_peephole2);
3742 static unsigned int
3743 rest_of_handle_peephole2 (void)
3745 #ifdef HAVE_peephole2
3746 peephole2_optimize ();
3747 #endif
3748 return 0;
3751 struct rtl_opt_pass pass_peephole2 =
3754 RTL_PASS,
3755 "peephole2", /* name */
3756 OPTGROUP_NONE, /* optinfo_flags */
3757 gate_handle_peephole2, /* gate */
3758 rest_of_handle_peephole2, /* execute */
3759 NULL, /* sub */
3760 NULL, /* next */
3761 0, /* static_pass_number */
3762 TV_PEEPHOLE2, /* tv_id */
3763 0, /* properties_required */
3764 0, /* properties_provided */
3765 0, /* properties_destroyed */
3766 0, /* todo_flags_start */
3767 TODO_df_finish | TODO_verify_rtl_sharing |
3768 0 /* todo_flags_finish */
3772 static unsigned int
3773 rest_of_handle_split_all_insns (void)
3775 split_all_insns ();
3776 return 0;
3779 struct rtl_opt_pass pass_split_all_insns =
3782 RTL_PASS,
3783 "split1", /* name */
3784 OPTGROUP_NONE, /* optinfo_flags */
3785 NULL, /* gate */
3786 rest_of_handle_split_all_insns, /* execute */
3787 NULL, /* sub */
3788 NULL, /* next */
3789 0, /* static_pass_number */
3790 TV_NONE, /* tv_id */
3791 0, /* properties_required */
3792 0, /* properties_provided */
3793 0, /* properties_destroyed */
3794 0, /* todo_flags_start */
3795 0 /* todo_flags_finish */
3799 static unsigned int
3800 rest_of_handle_split_after_reload (void)
3802 /* If optimizing, then go ahead and split insns now. */
3803 #ifndef STACK_REGS
3804 if (optimize > 0)
3805 #endif
3806 split_all_insns ();
3807 return 0;
3810 struct rtl_opt_pass pass_split_after_reload =
3813 RTL_PASS,
3814 "split2", /* name */
3815 OPTGROUP_NONE, /* optinfo_flags */
3816 NULL, /* gate */
3817 rest_of_handle_split_after_reload, /* execute */
3818 NULL, /* sub */
3819 NULL, /* next */
3820 0, /* static_pass_number */
3821 TV_NONE, /* tv_id */
3822 0, /* properties_required */
3823 0, /* properties_provided */
3824 0, /* properties_destroyed */
3825 0, /* todo_flags_start */
3826 0 /* todo_flags_finish */
3830 static bool
3831 gate_handle_split_before_regstack (void)
3833 #if HAVE_ATTR_length && defined (STACK_REGS)
3834 /* If flow2 creates new instructions which need splitting
3835 and scheduling after reload is not done, they might not be
3836 split until final which doesn't allow splitting
3837 if HAVE_ATTR_length. */
3838 # ifdef INSN_SCHEDULING
3839 return (optimize && !flag_schedule_insns_after_reload);
3840 # else
3841 return (optimize);
3842 # endif
3843 #else
3844 return 0;
3845 #endif
3848 static unsigned int
3849 rest_of_handle_split_before_regstack (void)
3851 split_all_insns ();
3852 return 0;
3855 struct rtl_opt_pass pass_split_before_regstack =
3858 RTL_PASS,
3859 "split3", /* name */
3860 OPTGROUP_NONE, /* optinfo_flags */
3861 gate_handle_split_before_regstack, /* gate */
3862 rest_of_handle_split_before_regstack, /* execute */
3863 NULL, /* sub */
3864 NULL, /* next */
3865 0, /* static_pass_number */
3866 TV_NONE, /* tv_id */
3867 0, /* properties_required */
3868 0, /* properties_provided */
3869 0, /* properties_destroyed */
3870 0, /* todo_flags_start */
3871 0 /* todo_flags_finish */
3875 static bool
3876 gate_handle_split_before_sched2 (void)
3878 #ifdef INSN_SCHEDULING
3879 return optimize > 0 && flag_schedule_insns_after_reload;
3880 #else
3881 return 0;
3882 #endif
3885 static unsigned int
3886 rest_of_handle_split_before_sched2 (void)
3888 #ifdef INSN_SCHEDULING
3889 split_all_insns ();
3890 #endif
3891 return 0;
3894 struct rtl_opt_pass pass_split_before_sched2 =
3897 RTL_PASS,
3898 "split4", /* name */
3899 OPTGROUP_NONE, /* optinfo_flags */
3900 gate_handle_split_before_sched2, /* gate */
3901 rest_of_handle_split_before_sched2, /* execute */
3902 NULL, /* sub */
3903 NULL, /* next */
3904 0, /* static_pass_number */
3905 TV_NONE, /* tv_id */
3906 0, /* properties_required */
3907 0, /* properties_provided */
3908 0, /* properties_destroyed */
3909 0, /* todo_flags_start */
3910 TODO_verify_flow /* todo_flags_finish */
3914 /* The placement of the splitting that we do for shorten_branches
3915 depends on whether regstack is used by the target or not. */
3916 static bool
3917 gate_do_final_split (void)
3919 #if HAVE_ATTR_length && !defined (STACK_REGS)
3920 return 1;
3921 #else
3922 return 0;
3923 #endif
3926 struct rtl_opt_pass pass_split_for_shorten_branches =
3929 RTL_PASS,
3930 "split5", /* name */
3931 OPTGROUP_NONE, /* optinfo_flags */
3932 gate_do_final_split, /* gate */
3933 split_all_insns_noflow, /* execute */
3934 NULL, /* sub */
3935 NULL, /* next */
3936 0, /* static_pass_number */
3937 TV_NONE, /* tv_id */
3938 0, /* properties_required */
3939 0, /* properties_provided */
3940 0, /* properties_destroyed */
3941 0, /* todo_flags_start */
3942 TODO_verify_rtl_sharing /* todo_flags_finish */