1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
100 #include "insn-config.h"
102 #include "emit-rtl.h"
104 #include "diagnostic.h"
106 #include "stor-layout.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
119 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
120 typedef fibonacci_node
<long, basic_block_def
> bb_heap_node_t
;
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE
, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE
, /* Use location which is associated with a value. */
136 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
137 MO_VAL_SET
, /* Set location associated with a value. */
138 MO_SET
, /* Set location. */
139 MO_COPY
, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER
, /* Clobber location. */
142 MO_CALL
, /* Call insn. */
143 MO_ADJUST
/* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name
[] = {
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
166 EMIT_NOTE_BEFORE_INSN
,
167 EMIT_NOTE_AFTER_INSN
,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 struct micro_operation
174 /* Type of micro operation. */
175 enum micro_operation_type type
;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust
;
199 /* A declaration of a variable, or an RTL value being handled like a
201 typedef void *decl_or_value
;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
205 dv_is_decl_p (decl_or_value dv
)
207 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
210 /* Return true if a decl_or_value is a VALUE rtl. */
212 dv_is_value_p (decl_or_value dv
)
214 return dv
&& !dv_is_decl_p (dv
);
217 /* Return the decl in the decl_or_value. */
219 dv_as_decl (decl_or_value dv
)
221 gcc_checking_assert (dv_is_decl_p (dv
));
225 /* Return the value in the decl_or_value. */
227 dv_as_value (decl_or_value dv
)
229 gcc_checking_assert (dv_is_value_p (dv
));
233 /* Return the opaque pointer in the decl_or_value. */
235 dv_as_opaque (decl_or_value dv
)
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
247 /* Pointer to next member of the list. */
250 /* The rtx of register. */
253 /* The declaration corresponding to LOC. */
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset
;
260 /* Structure for chaining the locations. */
261 struct location_chain
263 /* Next element in the chain. */
264 location_chain
*next
;
266 /* The location (REG, MEM or VALUE). */
269 /* The "value" stored in this location. */
273 enum var_init_status init
;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
282 /* The dependent DV. */
284 /* The dependency VALUE or DECL_DEBUG. */
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep
*next
;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep
**pprev
;
294 /* This data structure holds information about the depth of a variable
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep
*backlinks
;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
324 /* The depth of the cur_loc expression. */
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
330 /* Structure describing one part of variable. */
333 /* Chain of locations of the part. */
334 location_chain
*loc_chain
;
336 /* Location which was last emitted to location list. */
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset
;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux
*onepaux
;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
356 /* Not a one-part variable. */
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
360 /* A DEBUG_EXPR_DECL. */
366 /* Structure describing where the variable is located. */
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
373 /* Reference count. */
376 /* Number of variable parts. */
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables
;
386 /* The variable parts. */
387 variable_part var_part
[1];
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
395 static inline HOST_WIDE_INT
396 int_mem_offset (const_rtx mem
)
398 HOST_WIDE_INT offset
;
399 if (MEM_OFFSET_KNOWN_P (mem
) && MEM_OFFSET (mem
).is_constant (&offset
))
404 #if CHECKING_P && (GCC_VERSION >= 2007)
406 /* Access VAR's Ith part's offset, checking that it's not a one-part
408 #define VAR_PART_OFFSET(var, i) __extension__ \
409 (*({ variable *const __v = (var); \
410 gcc_checking_assert (!__v->onepart); \
411 &__v->var_part[(i)].aux.offset; }))
413 /* Access VAR's one-part auxiliary data, checking that it is a
414 one-part variable. */
415 #define VAR_LOC_1PAUX(var) __extension__ \
416 (*({ variable *const __v = (var); \
417 gcc_checking_assert (__v->onepart); \
418 &__v->var_part[0].aux.onepaux; }))
421 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
422 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
425 /* These are accessor macros for the one-part auxiliary data. When
426 convenient for users, they're guarded by tests that the data was
428 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
429 ? VAR_LOC_1PAUX (var)->backlinks \
431 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
432 ? &VAR_LOC_1PAUX (var)->backlinks \
434 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
435 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
436 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
437 ? &VAR_LOC_1PAUX (var)->deps \
442 typedef unsigned int dvuid
;
444 /* Return the uid of DV. */
447 dv_uid (decl_or_value dv
)
449 if (dv_is_value_p (dv
))
450 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
452 return DECL_UID (dv_as_decl (dv
));
455 /* Compute the hash from the uid. */
457 static inline hashval_t
458 dv_uid2hash (dvuid uid
)
463 /* The hash function for a mask table in a shared_htab chain. */
465 static inline hashval_t
466 dv_htab_hash (decl_or_value dv
)
468 return dv_uid2hash (dv_uid (dv
));
471 static void variable_htab_free (void *);
473 /* Variable hashtable helpers. */
475 struct variable_hasher
: pointer_hash
<variable
>
477 typedef void *compare_type
;
478 static inline hashval_t
hash (const variable
*);
479 static inline bool equal (const variable
*, const void *);
480 static inline void remove (variable
*);
483 /* The hash function for variable_htab, computes the hash value
484 from the declaration of variable X. */
487 variable_hasher::hash (const variable
*v
)
489 return dv_htab_hash (v
->dv
);
492 /* Compare the declaration of variable X with declaration Y. */
495 variable_hasher::equal (const variable
*v
, const void *y
)
497 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
499 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
502 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
505 variable_hasher::remove (variable
*var
)
507 variable_htab_free (var
);
510 typedef hash_table
<variable_hasher
> variable_table_type
;
511 typedef variable_table_type::iterator variable_iterator_type
;
513 /* Structure for passing some other parameters to function
514 emit_note_insn_var_location. */
515 struct emit_note_data
517 /* The instruction which the note will be emitted before/after. */
520 /* Where the note will be emitted (before/after insn)? */
521 enum emit_note_where where
;
523 /* The variables and values active at this point. */
524 variable_table_type
*vars
;
527 /* Structure holding a refcounted hash table. If refcount > 1,
528 it must be first unshared before modified. */
531 /* Reference count. */
534 /* Actual hash table. */
535 variable_table_type
*htab
;
538 /* Structure holding the IN or OUT set for a basic block. */
541 /* Adjustment of stack offset. */
542 HOST_WIDE_INT stack_adjust
;
544 /* Attributes for registers (lists of attrs). */
545 attrs
*regs
[FIRST_PSEUDO_REGISTER
];
547 /* Variable locations. */
550 /* Vars that is being traversed. */
551 shared_hash
*traversed_vars
;
554 /* The structure (one for each basic block) containing the information
555 needed for variable tracking. */
556 struct variable_tracking_info
558 /* The vector of micro operations. */
559 vec
<micro_operation
> mos
;
561 /* The IN and OUT set for dataflow analysis. */
565 /* The permanent-in dataflow set for this block. This is used to
566 hold values for which we had to compute entry values. ??? This
567 should probably be dynamically allocated, to avoid using more
568 memory in non-debug builds. */
571 /* Has the block been visited in DFS? */
574 /* Has the block been flooded in VTA? */
579 /* Alloc pool for struct attrs_def. */
580 object_allocator
<attrs
> attrs_pool ("attrs pool");
582 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
584 static pool_allocator var_pool
585 ("variable_def pool", sizeof (variable
) +
586 (MAX_VAR_PARTS
- 1) * sizeof (((variable
*)NULL
)->var_part
[0]));
588 /* Alloc pool for struct variable_def with a single var_part entry. */
589 static pool_allocator valvar_pool
590 ("small variable_def pool", sizeof (variable
));
592 /* Alloc pool for struct location_chain. */
593 static object_allocator
<location_chain
> location_chain_pool
594 ("location_chain pool");
596 /* Alloc pool for struct shared_hash. */
597 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type
*changed_variables
;
605 /* Shall notes be emitted? */
606 static bool emit_notes
;
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type
*dropped_values
;
613 /* Empty shared hashtable. */
614 static shared_hash
*empty_shared_hash
;
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs
= NULL
;
619 #ifdef HAVE_window_save
620 struct GTY(()) parm_reg
{
626 /* Vector of windowed parameter registers, if any. */
627 static vec
<parm_reg
, va_gc
> *windowed_parm_regs
= NULL
;
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called
;
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
636 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
638 static bool vt_stack_adjustments (void);
640 static void init_attrs_list_set (attrs
**);
641 static void attrs_list_clear (attrs
**);
642 static attrs
*attrs_list_member (attrs
*, decl_or_value
, HOST_WIDE_INT
);
643 static void attrs_list_insert (attrs
**, decl_or_value
, HOST_WIDE_INT
, rtx
);
644 static void attrs_list_copy (attrs
**, attrs
*);
645 static void attrs_list_union (attrs
**, attrs
*);
647 static variable
**unshare_variable (dataflow_set
*set
, variable
**slot
,
648 variable
*var
, enum var_init_status
);
649 static void vars_copy (variable_table_type
*, variable_table_type
*);
650 static tree
var_debug_decl (tree
);
651 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
652 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
653 enum var_init_status
, rtx
);
654 static void var_reg_delete (dataflow_set
*, rtx
, bool);
655 static void var_regno_delete (dataflow_set
*, int);
656 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
657 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
658 enum var_init_status
, rtx
);
659 static void var_mem_delete (dataflow_set
*, rtx
, bool);
661 static void dataflow_set_init (dataflow_set
*);
662 static void dataflow_set_clear (dataflow_set
*);
663 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
666 static location_chain
*find_loc_in_1pdv (rtx
, variable
*,
667 variable_table_type
*);
668 static bool canon_value_cmp (rtx
, rtx
);
669 static int loc_cmp (rtx
, rtx
);
670 static bool variable_part_different_p (variable_part
*, variable_part
*);
671 static bool onepart_variable_different_p (variable
*, variable
*);
672 static bool variable_different_p (variable
*, variable
*);
673 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
674 static void dataflow_set_destroy (dataflow_set
*);
676 static bool track_expr_p (tree
, bool);
677 static void add_uses_1 (rtx
*, void *);
678 static void add_stores (rtx
, const_rtx
, void *);
679 static bool compute_bb_dataflow (basic_block
);
680 static bool vt_find_locations (void);
682 static void dump_attrs_list (attrs
*);
683 static void dump_var (variable
*);
684 static void dump_vars (variable_table_type
*);
685 static void dump_dataflow_set (dataflow_set
*);
686 static void dump_dataflow_sets (void);
688 static void set_dv_changed (decl_or_value
, bool);
689 static void variable_was_changed (variable
*, dataflow_set
*);
690 static variable
**set_slot_part (dataflow_set
*, rtx
, variable
**,
691 decl_or_value
, HOST_WIDE_INT
,
692 enum var_init_status
, rtx
);
693 static void set_variable_part (dataflow_set
*, rtx
,
694 decl_or_value
, HOST_WIDE_INT
,
695 enum var_init_status
, rtx
, enum insert_option
);
696 static variable
**clobber_slot_part (dataflow_set
*, rtx
,
697 variable
**, HOST_WIDE_INT
, rtx
);
698 static void clobber_variable_part (dataflow_set
*, rtx
,
699 decl_or_value
, HOST_WIDE_INT
, rtx
);
700 static variable
**delete_slot_part (dataflow_set
*, rtx
, variable
**,
702 static void delete_variable_part (dataflow_set
*, rtx
,
703 decl_or_value
, HOST_WIDE_INT
);
704 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
705 static void vt_emit_notes (void);
707 static void vt_add_function_parameters (void);
708 static bool vt_initialize (void);
709 static void vt_finalize (void);
711 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
714 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
717 if (dest
!= stack_pointer_rtx
)
720 switch (GET_CODE (op
))
724 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
728 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
732 /* We handle only adjustments by constant amount. */
733 gcc_assert (GET_CODE (src
) == PLUS
734 && CONST_INT_P (XEXP (src
, 1))
735 && XEXP (src
, 0) == stack_pointer_rtx
);
736 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
737 -= INTVAL (XEXP (src
, 1));
744 /* Given a SET, calculate the amount of stack adjustment it contains
745 PRE- and POST-modifying stack pointer.
746 This function is similar to stack_adjust_offset. */
749 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
752 rtx src
= SET_SRC (pattern
);
753 rtx dest
= SET_DEST (pattern
);
756 if (dest
== stack_pointer_rtx
)
758 /* (set (reg sp) (plus (reg sp) (const_int))) */
759 code
= GET_CODE (src
);
760 if (! (code
== PLUS
|| code
== MINUS
)
761 || XEXP (src
, 0) != stack_pointer_rtx
762 || !CONST_INT_P (XEXP (src
, 1)))
766 *post
+= INTVAL (XEXP (src
, 1));
768 *post
-= INTVAL (XEXP (src
, 1));
771 HOST_WIDE_INT res
[2] = { 0, 0 };
772 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
777 /* Given an INSN, calculate the amount of stack adjustment it contains
778 PRE- and POST-modifying stack pointer. */
781 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
789 pattern
= PATTERN (insn
);
790 if (RTX_FRAME_RELATED_P (insn
))
792 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
794 pattern
= XEXP (expr
, 0);
797 if (GET_CODE (pattern
) == SET
)
798 stack_adjust_offset_pre_post (pattern
, pre
, post
);
799 else if (GET_CODE (pattern
) == PARALLEL
800 || GET_CODE (pattern
) == SEQUENCE
)
804 /* There may be stack adjustments inside compound insns. Search
806 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
807 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
808 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
812 /* Compute stack adjustments for all blocks by traversing DFS tree.
813 Return true when the adjustments on all incoming edges are consistent.
814 Heavily borrowed from pre_and_rev_post_order_compute. */
817 vt_stack_adjustments (void)
819 edge_iterator
*stack
;
822 /* Initialize entry block. */
823 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
825 = INCOMING_FRAME_SP_OFFSET
;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET
;
829 /* Allocate stack for back-tracking up CFG. */
830 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
833 /* Push the first edge on to the stack. */
834 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
842 /* Look at the edge on the top of the stack. */
844 src
= ei_edge (ei
)->src
;
845 dest
= ei_edge (ei
)->dest
;
847 /* Check if the edge destination has been visited yet. */
848 if (!VTI (dest
)->visited
)
851 HOST_WIDE_INT pre
, post
, offset
;
852 VTI (dest
)->visited
= true;
853 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
855 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
856 for (insn
= BB_HEAD (dest
);
857 insn
!= NEXT_INSN (BB_END (dest
));
858 insn
= NEXT_INSN (insn
))
861 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
862 offset
+= pre
+ post
;
865 VTI (dest
)->out
.stack_adjust
= offset
;
867 if (EDGE_COUNT (dest
->succs
) > 0)
868 /* Since the DEST node has been visited for the first
869 time, check its successors. */
870 stack
[sp
++] = ei_start (dest
->succs
);
874 /* We can end up with different stack adjustments for the exit block
875 of a shrink-wrapped function if stack_adjust_offset_pre_post
876 doesn't understand the rtx pattern used to restore the stack
877 pointer in the epilogue. For example, on s390(x), the stack
878 pointer is often restored via a load-multiple instruction
879 and so no stack_adjust offset is recorded for it. This means
880 that the stack offset at the end of the epilogue block is the
881 same as the offset before the epilogue, whereas other paths
882 to the exit block will have the correct stack_adjust.
884 It is safe to ignore these differences because (a) we never
885 use the stack_adjust for the exit block in this pass and
886 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
887 function are correct.
889 We must check whether the adjustments on other edges are
891 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
892 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
898 if (! ei_one_before_end_p (ei
))
899 /* Go to the next edge. */
900 ei_next (&stack
[sp
- 1]);
902 /* Return to previous level if there are no more edges. */
911 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
912 hard_frame_pointer_rtx is being mapped to it and offset for it. */
913 static rtx cfa_base_rtx
;
914 static HOST_WIDE_INT cfa_base_offset
;
916 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
917 or hard_frame_pointer_rtx. */
920 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
922 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
925 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
926 or -1 if the replacement shouldn't be done. */
927 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
929 /* Data for adjust_mems callback. */
931 struct adjust_mem_data
934 machine_mode mem_mode
;
935 HOST_WIDE_INT stack_adjust
;
936 auto_vec
<rtx
> side_effects
;
939 /* Helper for adjust_mems. Return true if X is suitable for
940 transformation of wider mode arithmetics to narrower mode. */
943 use_narrower_mode_test (rtx x
, const_rtx subreg
)
945 subrtx_var_iterator::array_type array
;
946 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
950 iter
.skip_subrtxes ();
952 switch (GET_CODE (x
))
955 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
957 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
958 subreg_lowpart_offset (GET_MODE (subreg
),
967 iter
.substitute (XEXP (x
, 0));
976 /* Transform X into narrower mode MODE from wider mode WMODE. */
979 use_narrower_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode wmode
)
983 return lowpart_subreg (mode
, x
, wmode
);
984 switch (GET_CODE (x
))
987 return lowpart_subreg (mode
, x
, wmode
);
991 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
992 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
993 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
995 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
997 /* Ensure shift amount is not wider than mode. */
998 if (GET_MODE (op1
) == VOIDmode
)
999 op1
= lowpart_subreg (mode
, op1
, wmode
);
1000 else if (GET_MODE_PRECISION (mode
)
1001 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (GET_MODE (op1
))))
1002 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1003 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1009 /* Helper function for adjusting used MEMs. */
1012 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1014 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1015 rtx mem
, addr
= loc
, tem
;
1016 machine_mode mem_mode_save
;
1018 scalar_int_mode tem_mode
, tem_subreg_mode
;
1020 switch (GET_CODE (loc
))
1023 /* Don't do any sp or fp replacements outside of MEM addresses
1025 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1027 if (loc
== stack_pointer_rtx
1028 && !frame_pointer_needed
1030 return compute_cfa_pointer (amd
->stack_adjust
);
1031 else if (loc
== hard_frame_pointer_rtx
1032 && frame_pointer_needed
1033 && hard_frame_pointer_adjustment
!= -1
1035 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1036 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1042 mem
= targetm
.delegitimize_address (mem
);
1043 if (mem
!= loc
&& !MEM_P (mem
))
1044 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1047 addr
= XEXP (mem
, 0);
1048 mem_mode_save
= amd
->mem_mode
;
1049 amd
->mem_mode
= GET_MODE (mem
);
1050 store_save
= amd
->store
;
1052 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1053 amd
->store
= store_save
;
1054 amd
->mem_mode
= mem_mode_save
;
1056 addr
= targetm
.delegitimize_address (addr
);
1057 if (addr
!= XEXP (mem
, 0))
1058 mem
= replace_equiv_address_nv (mem
, addr
);
1060 mem
= avoid_constant_pool_reference (mem
);
1064 size
= GET_MODE_SIZE (amd
->mem_mode
);
1065 addr
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1066 GET_CODE (loc
) == PRE_INC
? size
: -size
);
1071 addr
= XEXP (loc
, 0);
1072 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1073 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1074 size
= GET_MODE_SIZE (amd
->mem_mode
);
1075 tem
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1076 (GET_CODE (loc
) == PRE_INC
1077 || GET_CODE (loc
) == POST_INC
) ? size
: -size
);
1078 store_save
= amd
->store
;
1080 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1081 amd
->store
= store_save
;
1082 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1085 addr
= XEXP (loc
, 1);
1089 addr
= XEXP (loc
, 0);
1090 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1091 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1092 store_save
= amd
->store
;
1094 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1096 amd
->store
= store_save
;
1097 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1100 /* First try without delegitimization of whole MEMs and
1101 avoid_constant_pool_reference, which is more likely to succeed. */
1102 store_save
= amd
->store
;
1104 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1106 amd
->store
= store_save
;
1107 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1108 if (mem
== SUBREG_REG (loc
))
1113 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1114 GET_MODE (SUBREG_REG (loc
)),
1118 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1119 GET_MODE (SUBREG_REG (loc
)),
1121 if (tem
== NULL_RTX
)
1122 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1124 if (MAY_HAVE_DEBUG_BIND_INSNS
1125 && GET_CODE (tem
) == SUBREG
1126 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1127 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1128 || GET_CODE (SUBREG_REG (tem
)) == MULT
1129 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1130 && is_a
<scalar_int_mode
> (GET_MODE (tem
), &tem_mode
)
1131 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (tem
)),
1133 && (GET_MODE_PRECISION (tem_mode
)
1134 < GET_MODE_PRECISION (tem_subreg_mode
))
1135 && subreg_lowpart_p (tem
)
1136 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1137 return use_narrower_mode (SUBREG_REG (tem
), tem_mode
, tem_subreg_mode
);
1140 /* Don't do any replacements in second and following
1141 ASM_OPERANDS of inline-asm with multiple sets.
1142 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1143 and ASM_OPERANDS_LABEL_VEC need to be equal between
1144 all the ASM_OPERANDs in the insn and adjust_insn will
1146 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1155 /* Helper function for replacement of uses. */
1158 adjust_mem_uses (rtx
*x
, void *data
)
1160 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1162 validate_change (NULL_RTX
, x
, new_x
, true);
1165 /* Helper function for replacement of stores. */
1168 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1172 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1174 if (new_dest
!= SET_DEST (expr
))
1176 rtx xexpr
= CONST_CAST_RTX (expr
);
1177 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1182 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1183 replace them with their value in the insn and add the side-effects
1184 as other sets to the insn. */
1187 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1191 #ifdef HAVE_window_save
1192 /* If the target machine has an explicit window save instruction, the
1193 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1194 if (RTX_FRAME_RELATED_P (insn
)
1195 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1197 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1198 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1201 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1203 XVECEXP (rtl
, 0, i
* 2)
1204 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1205 /* Do not clobber the attached DECL, but only the REG. */
1206 XVECEXP (rtl
, 0, i
* 2 + 1)
1207 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1208 gen_raw_REG (GET_MODE (p
->outgoing
),
1209 REGNO (p
->outgoing
)));
1212 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1217 adjust_mem_data amd
;
1218 amd
.mem_mode
= VOIDmode
;
1219 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1222 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1225 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1226 && asm_noperands (PATTERN (insn
)) > 0
1227 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1232 /* inline-asm with multiple sets is tiny bit more complicated,
1233 because the 3 vectors in ASM_OPERANDS need to be shared between
1234 all ASM_OPERANDS in the instruction. adjust_mems will
1235 not touch ASM_OPERANDS other than the first one, asm_noperands
1236 test above needs to be called before that (otherwise it would fail)
1237 and afterwards this code fixes it up. */
1238 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1239 body
= PATTERN (insn
);
1240 set0
= XVECEXP (body
, 0, 0);
1241 gcc_checking_assert (GET_CODE (set0
) == SET
1242 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1243 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1244 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1245 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1249 set
= XVECEXP (body
, 0, i
);
1250 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1251 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1253 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1254 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1255 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1256 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1257 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1258 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1260 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1261 ASM_OPERANDS_INPUT_VEC (newsrc
)
1262 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1263 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1264 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1265 ASM_OPERANDS_LABEL_VEC (newsrc
)
1266 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1267 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1272 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1274 /* For read-only MEMs containing some constant, prefer those
1276 set
= single_set (insn
);
1277 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1279 rtx note
= find_reg_equal_equiv_note (insn
);
1281 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1282 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1285 if (!amd
.side_effects
.is_empty ())
1290 pat
= &PATTERN (insn
);
1291 if (GET_CODE (*pat
) == COND_EXEC
)
1292 pat
= &COND_EXEC_CODE (*pat
);
1293 if (GET_CODE (*pat
) == PARALLEL
)
1294 oldn
= XVECLEN (*pat
, 0);
1297 unsigned int newn
= amd
.side_effects
.length ();
1298 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1299 if (GET_CODE (*pat
) == PARALLEL
)
1300 for (i
= 0; i
< oldn
; i
++)
1301 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1303 XVECEXP (new_pat
, 0, 0) = *pat
;
1307 FOR_EACH_VEC_ELT_REVERSE (amd
.side_effects
, j
, effect
)
1308 XVECEXP (new_pat
, 0, j
+ oldn
) = effect
;
1309 validate_change (NULL_RTX
, pat
, new_pat
, true);
1313 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1315 dv_as_rtx (decl_or_value dv
)
1319 if (dv_is_value_p (dv
))
1320 return dv_as_value (dv
);
1322 decl
= dv_as_decl (dv
);
1324 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1325 return DECL_RTL_KNOWN_SET (decl
);
1328 /* Return nonzero if a decl_or_value must not have more than one
1329 variable part. The returned value discriminates among various
1330 kinds of one-part DVs ccording to enum onepart_enum. */
1331 static inline onepart_enum
1332 dv_onepart_p (decl_or_value dv
)
1336 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
1339 if (dv_is_value_p (dv
))
1340 return ONEPART_VALUE
;
1342 decl
= dv_as_decl (dv
);
1344 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1345 return ONEPART_DEXPR
;
1347 if (target_for_debug_bind (decl
) != NULL_TREE
)
1348 return ONEPART_VDECL
;
1353 /* Return the variable pool to be used for a dv of type ONEPART. */
1354 static inline pool_allocator
&
1355 onepart_pool (onepart_enum onepart
)
1357 return onepart
? valvar_pool
: var_pool
;
1360 /* Allocate a variable_def from the corresponding variable pool. */
1361 static inline variable
*
1362 onepart_pool_allocate (onepart_enum onepart
)
1364 return (variable
*) onepart_pool (onepart
).allocate ();
1367 /* Build a decl_or_value out of a decl. */
1368 static inline decl_or_value
1369 dv_from_decl (tree decl
)
1373 gcc_checking_assert (dv_is_decl_p (dv
));
1377 /* Build a decl_or_value out of a value. */
1378 static inline decl_or_value
1379 dv_from_value (rtx value
)
1383 gcc_checking_assert (dv_is_value_p (dv
));
1387 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1388 static inline decl_or_value
1393 switch (GET_CODE (x
))
1396 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1397 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1401 dv
= dv_from_value (x
);
1411 extern void debug_dv (decl_or_value dv
);
1414 debug_dv (decl_or_value dv
)
1416 if (dv_is_value_p (dv
))
1417 debug_rtx (dv_as_value (dv
));
1419 debug_generic_stmt (dv_as_decl (dv
));
1422 static void loc_exp_dep_clear (variable
*var
);
1424 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1427 variable_htab_free (void *elem
)
1430 variable
*var
= (variable
*) elem
;
1431 location_chain
*node
, *next
;
1433 gcc_checking_assert (var
->refcount
> 0);
1436 if (var
->refcount
> 0)
1439 for (i
= 0; i
< var
->n_var_parts
; i
++)
1441 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1446 var
->var_part
[i
].loc_chain
= NULL
;
1448 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1450 loc_exp_dep_clear (var
);
1451 if (VAR_LOC_DEP_LST (var
))
1452 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1453 XDELETE (VAR_LOC_1PAUX (var
));
1454 /* These may be reused across functions, so reset
1456 if (var
->onepart
== ONEPART_DEXPR
)
1457 set_dv_changed (var
->dv
, true);
1459 onepart_pool (var
->onepart
).remove (var
);
1462 /* Initialize the set (array) SET of attrs to empty lists. */
1465 init_attrs_list_set (attrs
**set
)
1469 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1473 /* Make the list *LISTP empty. */
1476 attrs_list_clear (attrs
**listp
)
1480 for (list
= *listp
; list
; list
= next
)
1488 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1491 attrs_list_member (attrs
*list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1493 for (; list
; list
= list
->next
)
1494 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1499 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1502 attrs_list_insert (attrs
**listp
, decl_or_value dv
,
1503 HOST_WIDE_INT offset
, rtx loc
)
1505 attrs
*list
= new attrs
;
1508 list
->offset
= offset
;
1509 list
->next
= *listp
;
1513 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1516 attrs_list_copy (attrs
**dstp
, attrs
*src
)
1518 attrs_list_clear (dstp
);
1519 for (; src
; src
= src
->next
)
1521 attrs
*n
= new attrs
;
1524 n
->offset
= src
->offset
;
1530 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1533 attrs_list_union (attrs
**dstp
, attrs
*src
)
1535 for (; src
; src
= src
->next
)
1537 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1538 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1542 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1546 attrs_list_mpdv_union (attrs
**dstp
, attrs
*src
, attrs
*src2
)
1548 gcc_assert (!*dstp
);
1549 for (; src
; src
= src
->next
)
1551 if (!dv_onepart_p (src
->dv
))
1552 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1554 for (src
= src2
; src
; src
= src
->next
)
1556 if (!dv_onepart_p (src
->dv
)
1557 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1558 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1562 /* Shared hashtable support. */
1564 /* Return true if VARS is shared. */
1567 shared_hash_shared (shared_hash
*vars
)
1569 return vars
->refcount
> 1;
1572 /* Return the hash table for VARS. */
1574 static inline variable_table_type
*
1575 shared_hash_htab (shared_hash
*vars
)
1580 /* Return true if VAR is shared, or maybe because VARS is shared. */
1583 shared_var_p (variable
*var
, shared_hash
*vars
)
1585 /* Don't count an entry in the changed_variables table as a duplicate. */
1586 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1587 || shared_hash_shared (vars
));
1590 /* Copy variables into a new hash table. */
1592 static shared_hash
*
1593 shared_hash_unshare (shared_hash
*vars
)
1595 shared_hash
*new_vars
= new shared_hash
;
1596 gcc_assert (vars
->refcount
> 1);
1597 new_vars
->refcount
= 1;
1598 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1599 vars_copy (new_vars
->htab
, vars
->htab
);
1604 /* Increment reference counter on VARS and return it. */
1606 static inline shared_hash
*
1607 shared_hash_copy (shared_hash
*vars
)
1613 /* Decrement reference counter and destroy hash table if not shared
1617 shared_hash_destroy (shared_hash
*vars
)
1619 gcc_checking_assert (vars
->refcount
> 0);
1620 if (--vars
->refcount
== 0)
1627 /* Unshare *PVARS if shared and return slot for DV. If INS is
1628 INSERT, insert it if not already present. */
1630 static inline variable
**
1631 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1632 hashval_t dvhash
, enum insert_option ins
)
1634 if (shared_hash_shared (*pvars
))
1635 *pvars
= shared_hash_unshare (*pvars
);
1636 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1639 static inline variable
**
1640 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1641 enum insert_option ins
)
1643 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1646 /* Return slot for DV, if it is already present in the hash table.
1647 If it is not present, insert it only VARS is not shared, otherwise
1650 static inline variable
**
1651 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1653 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1654 shared_hash_shared (vars
)
1655 ? NO_INSERT
: INSERT
);
1658 static inline variable
**
1659 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1661 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1664 /* Return slot for DV only if it is already present in the hash table. */
1666 static inline variable
**
1667 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1670 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1673 static inline variable
**
1674 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1676 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1679 /* Return variable for DV or NULL if not already present in the hash
1682 static inline variable
*
1683 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1685 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1688 static inline variable
*
1689 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1691 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1694 /* Return true if TVAL is better than CVAL as a canonival value. We
1695 choose lowest-numbered VALUEs, using the RTX address as a
1696 tie-breaker. The idea is to arrange them into a star topology,
1697 such that all of them are at most one step away from the canonical
1698 value, and the canonical value has backlinks to all of them, in
1699 addition to all the actual locations. We don't enforce this
1700 topology throughout the entire dataflow analysis, though.
1704 canon_value_cmp (rtx tval
, rtx cval
)
1707 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1710 static bool dst_can_be_shared
;
1712 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1715 unshare_variable (dataflow_set
*set
, variable
**slot
, variable
*var
,
1716 enum var_init_status initialized
)
1721 new_var
= onepart_pool_allocate (var
->onepart
);
1722 new_var
->dv
= var
->dv
;
1723 new_var
->refcount
= 1;
1725 new_var
->n_var_parts
= var
->n_var_parts
;
1726 new_var
->onepart
= var
->onepart
;
1727 new_var
->in_changed_variables
= false;
1729 if (! flag_var_tracking_uninit
)
1730 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1732 for (i
= 0; i
< var
->n_var_parts
; i
++)
1734 location_chain
*node
;
1735 location_chain
**nextp
;
1737 if (i
== 0 && var
->onepart
)
1739 /* One-part auxiliary data is only used while emitting
1740 notes, so propagate it to the new variable in the active
1741 dataflow set. If we're not emitting notes, this will be
1743 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1744 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1745 VAR_LOC_1PAUX (var
) = NULL
;
1748 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1749 nextp
= &new_var
->var_part
[i
].loc_chain
;
1750 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1752 location_chain
*new_lc
;
1754 new_lc
= new location_chain
;
1755 new_lc
->next
= NULL
;
1756 if (node
->init
> initialized
)
1757 new_lc
->init
= node
->init
;
1759 new_lc
->init
= initialized
;
1760 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1761 new_lc
->set_src
= node
->set_src
;
1763 new_lc
->set_src
= NULL
;
1764 new_lc
->loc
= node
->loc
;
1767 nextp
= &new_lc
->next
;
1770 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1773 dst_can_be_shared
= false;
1774 if (shared_hash_shared (set
->vars
))
1775 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1776 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1777 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1779 if (var
->in_changed_variables
)
1782 = changed_variables
->find_slot_with_hash (var
->dv
,
1783 dv_htab_hash (var
->dv
),
1785 gcc_assert (*cslot
== (void *) var
);
1786 var
->in_changed_variables
= false;
1787 variable_htab_free (var
);
1789 new_var
->in_changed_variables
= true;
1794 /* Copy all variables from hash table SRC to hash table DST. */
1797 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1799 variable_iterator_type hi
;
1802 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1806 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1812 /* Map a decl to its main debug decl. */
1815 var_debug_decl (tree decl
)
1817 if (decl
&& VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
1819 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1820 if (DECL_P (debugdecl
))
1827 /* Set the register LOC to contain DV, OFFSET. */
1830 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1831 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1832 enum insert_option iopt
)
1835 bool decl_p
= dv_is_decl_p (dv
);
1838 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1840 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1841 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1842 && node
->offset
== offset
)
1845 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1846 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1849 /* Return true if we should track a location that is OFFSET bytes from
1850 a variable. Store the constant offset in *OFFSET_OUT if so. */
1853 track_offset_p (poly_int64 offset
, HOST_WIDE_INT
*offset_out
)
1855 HOST_WIDE_INT const_offset
;
1856 if (!offset
.is_constant (&const_offset
)
1857 || !IN_RANGE (const_offset
, 0, MAX_VAR_PARTS
- 1))
1859 *offset_out
= const_offset
;
1863 /* Return the offset of a register that track_offset_p says we
1866 static HOST_WIDE_INT
1867 get_tracked_reg_offset (rtx loc
)
1869 HOST_WIDE_INT offset
;
1870 if (!track_offset_p (REG_OFFSET (loc
), &offset
))
1875 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1878 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1881 tree decl
= REG_EXPR (loc
);
1882 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1884 var_reg_decl_set (set
, loc
, initialized
,
1885 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1888 static enum var_init_status
1889 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1893 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1895 if (! flag_var_tracking_uninit
)
1896 return VAR_INIT_STATUS_INITIALIZED
;
1898 var
= shared_hash_find (set
->vars
, dv
);
1901 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1903 location_chain
*nextp
;
1904 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1905 if (rtx_equal_p (nextp
->loc
, loc
))
1907 ret_val
= nextp
->init
;
1916 /* Delete current content of register LOC in dataflow set SET and set
1917 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1918 MODIFY is true, any other live copies of the same variable part are
1919 also deleted from the dataflow set, otherwise the variable part is
1920 assumed to be copied from another location holding the same
1924 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1925 enum var_init_status initialized
, rtx set_src
)
1927 tree decl
= REG_EXPR (loc
);
1928 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1932 decl
= var_debug_decl (decl
);
1934 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1935 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1937 nextp
= &set
->regs
[REGNO (loc
)];
1938 for (node
= *nextp
; node
; node
= next
)
1941 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1943 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1950 nextp
= &node
->next
;
1954 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1955 var_reg_set (set
, loc
, initialized
, set_src
);
1958 /* Delete the association of register LOC in dataflow set SET with any
1959 variables that aren't onepart. If CLOBBER is true, also delete any
1960 other live copies of the same variable part, and delete the
1961 association with onepart dvs too. */
1964 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1966 attrs
**nextp
= &set
->regs
[REGNO (loc
)];
1969 HOST_WIDE_INT offset
;
1970 if (clobber
&& track_offset_p (REG_OFFSET (loc
), &offset
))
1972 tree decl
= REG_EXPR (loc
);
1974 decl
= var_debug_decl (decl
);
1976 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1979 for (node
= *nextp
; node
; node
= next
)
1982 if (clobber
|| !dv_onepart_p (node
->dv
))
1984 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1989 nextp
= &node
->next
;
1993 /* Delete content of register with number REGNO in dataflow set SET. */
1996 var_regno_delete (dataflow_set
*set
, int regno
)
1998 attrs
**reg
= &set
->regs
[regno
];
2001 for (node
= *reg
; node
; node
= next
)
2004 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2010 /* Return true if I is the negated value of a power of two. */
2012 negative_power_of_two_p (HOST_WIDE_INT i
)
2014 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2015 return pow2_or_zerop (x
);
2018 /* Strip constant offsets and alignments off of LOC. Return the base
2022 vt_get_canonicalize_base (rtx loc
)
2024 while ((GET_CODE (loc
) == PLUS
2025 || GET_CODE (loc
) == AND
)
2026 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2027 && (GET_CODE (loc
) != AND
2028 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2029 loc
= XEXP (loc
, 0);
2034 /* This caches canonicalized addresses for VALUEs, computed using
2035 information in the global cselib table. */
2036 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2038 /* This caches canonicalized addresses for VALUEs, computed using
2039 information from the global cache and information pertaining to a
2040 basic block being analyzed. */
2041 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2043 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2045 /* Return the canonical address for LOC, that must be a VALUE, using a
2046 cached global equivalence or computing it and storing it in the
2050 get_addr_from_global_cache (rtx
const loc
)
2054 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2057 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2061 x
= canon_rtx (get_addr (loc
));
2063 /* Tentative, avoiding infinite recursion. */
2068 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2071 /* The table may have moved during recursion, recompute
2073 *global_get_addr_cache
->get (loc
) = x
= nx
;
2080 /* Return the canonical address for LOC, that must be a VALUE, using a
2081 cached local equivalence or computing it and storing it in the
2085 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2092 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2095 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2099 x
= get_addr_from_global_cache (loc
);
2101 /* Tentative, avoiding infinite recursion. */
2104 /* Recurse to cache local expansion of X, or if we need to search
2105 for a VALUE in the expansion. */
2108 rtx nx
= vt_canonicalize_addr (set
, x
);
2111 slot
= local_get_addr_cache
->get (loc
);
2117 dv
= dv_from_rtx (x
);
2118 var
= shared_hash_find (set
->vars
, dv
);
2122 /* Look for an improved equivalent expression. */
2123 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2125 rtx base
= vt_get_canonicalize_base (l
->loc
);
2126 if (GET_CODE (base
) == VALUE
2127 && canon_value_cmp (base
, loc
))
2129 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2132 slot
= local_get_addr_cache
->get (loc
);
2142 /* Canonicalize LOC using equivalences from SET in addition to those
2143 in the cselib static table. It expects a VALUE-based expression,
2144 and it will only substitute VALUEs with other VALUEs or
2145 function-global equivalences, so that, if two addresses have base
2146 VALUEs that are locally or globally related in ways that
2147 memrefs_conflict_p cares about, they will both canonicalize to
2148 expressions that have the same base VALUE.
2150 The use of VALUEs as canonical base addresses enables the canonical
2151 RTXs to remain unchanged globally, if they resolve to a constant,
2152 or throughout a basic block otherwise, so that they can be cached
2153 and the cache needs not be invalidated when REGs, MEMs or such
2157 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2159 HOST_WIDE_INT ofst
= 0;
2160 machine_mode mode
= GET_MODE (oloc
);
2167 while (GET_CODE (loc
) == PLUS
2168 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2170 ofst
+= INTVAL (XEXP (loc
, 1));
2171 loc
= XEXP (loc
, 0);
2174 /* Alignment operations can't normally be combined, so just
2175 canonicalize the base and we're done. We'll normally have
2176 only one stack alignment anyway. */
2177 if (GET_CODE (loc
) == AND
2178 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2179 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2181 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2182 if (x
!= XEXP (loc
, 0))
2183 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2187 if (GET_CODE (loc
) == VALUE
)
2190 loc
= get_addr_from_local_cache (set
, loc
);
2192 loc
= get_addr_from_global_cache (loc
);
2194 /* Consolidate plus_constants. */
2195 while (ofst
&& GET_CODE (loc
) == PLUS
2196 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2198 ofst
+= INTVAL (XEXP (loc
, 1));
2199 loc
= XEXP (loc
, 0);
2206 x
= canon_rtx (loc
);
2213 /* Add OFST back in. */
2216 /* Don't build new RTL if we can help it. */
2217 if (GET_CODE (oloc
) == PLUS
2218 && XEXP (oloc
, 0) == loc
2219 && INTVAL (XEXP (oloc
, 1)) == ofst
)
2222 loc
= plus_constant (mode
, loc
, ofst
);
2228 /* Return true iff there's a true dependence between MLOC and LOC.
2229 MADDR must be a canonicalized version of MLOC's address. */
2232 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2234 if (GET_CODE (loc
) != MEM
)
2237 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2238 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2244 /* Hold parameters for the hashtab traversal function
2245 drop_overlapping_mem_locs, see below. */
2247 struct overlapping_mems
2253 /* Remove all MEMs that overlap with COMS->LOC from the location list
2254 of a hash table entry for a onepart variable. COMS->ADDR must be a
2255 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2256 canonicalized itself. */
2259 drop_overlapping_mem_locs (variable
**slot
, overlapping_mems
*coms
)
2261 dataflow_set
*set
= coms
->set
;
2262 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2263 variable
*var
= *slot
;
2265 if (var
->onepart
!= NOT_ONEPART
)
2267 location_chain
*loc
, **locp
;
2268 bool changed
= false;
2271 gcc_assert (var
->n_var_parts
== 1);
2273 if (shared_var_p (var
, set
->vars
))
2275 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2276 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2282 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2284 gcc_assert (var
->n_var_parts
== 1);
2287 if (VAR_LOC_1PAUX (var
))
2288 cur_loc
= VAR_LOC_FROM (var
);
2290 cur_loc
= var
->var_part
[0].cur_loc
;
2292 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2295 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2302 /* If we have deleted the location which was last emitted
2303 we have to emit new location so add the variable to set
2304 of changed variables. */
2305 if (cur_loc
== loc
->loc
)
2308 var
->var_part
[0].cur_loc
= NULL
;
2309 if (VAR_LOC_1PAUX (var
))
2310 VAR_LOC_FROM (var
) = NULL
;
2315 if (!var
->var_part
[0].loc_chain
)
2321 variable_was_changed (var
, set
);
2327 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2330 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2332 struct overlapping_mems coms
;
2334 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2337 coms
.loc
= canon_rtx (loc
);
2338 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2340 set
->traversed_vars
= set
->vars
;
2341 shared_hash_htab (set
->vars
)
2342 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2343 set
->traversed_vars
= NULL
;
2346 /* Set the location of DV, OFFSET as the MEM LOC. */
2349 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2350 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2351 enum insert_option iopt
)
2353 if (dv_is_decl_p (dv
))
2354 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2356 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2359 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2361 Adjust the address first if it is stack pointer based. */
2364 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2367 tree decl
= MEM_EXPR (loc
);
2368 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2370 var_mem_decl_set (set
, loc
, initialized
,
2371 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2374 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2375 dataflow set SET to LOC. If MODIFY is true, any other live copies
2376 of the same variable part are also deleted from the dataflow set,
2377 otherwise the variable part is assumed to be copied from another
2378 location holding the same part.
2379 Adjust the address first if it is stack pointer based. */
2382 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2383 enum var_init_status initialized
, rtx set_src
)
2385 tree decl
= MEM_EXPR (loc
);
2386 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2388 clobber_overlapping_mems (set
, loc
);
2389 decl
= var_debug_decl (decl
);
2391 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2392 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2395 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2396 var_mem_set (set
, loc
, initialized
, set_src
);
2399 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2400 true, also delete any other live copies of the same variable part.
2401 Adjust the address first if it is stack pointer based. */
2404 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2406 tree decl
= MEM_EXPR (loc
);
2407 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2409 clobber_overlapping_mems (set
, loc
);
2410 decl
= var_debug_decl (decl
);
2412 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2413 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2416 /* Return true if LOC should not be expanded for location expressions,
2420 unsuitable_loc (rtx loc
)
2422 switch (GET_CODE (loc
))
2436 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2440 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2445 var_regno_delete (set
, REGNO (loc
));
2446 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2447 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2449 else if (MEM_P (loc
))
2451 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2454 clobber_overlapping_mems (set
, loc
);
2456 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2457 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2459 /* If this MEM is a global constant, we don't need it in the
2460 dynamic tables. ??? We should test this before emitting the
2461 micro-op in the first place. */
2463 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2469 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2470 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2474 /* Other kinds of equivalences are necessarily static, at least
2475 so long as we do not perform substitutions while merging
2478 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2479 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2483 /* Bind a value to a location it was just stored in. If MODIFIED
2484 holds, assume the location was modified, detaching it from any
2485 values bound to it. */
2488 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2491 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2493 gcc_assert (cselib_preserved_value_p (v
));
2497 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2498 print_inline_rtx (dump_file
, loc
, 0);
2499 fprintf (dump_file
, " evaluates to ");
2500 print_inline_rtx (dump_file
, val
, 0);
2503 struct elt_loc_list
*l
;
2504 for (l
= v
->locs
; l
; l
= l
->next
)
2506 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2507 print_inline_rtx (dump_file
, l
->loc
, 0);
2510 fprintf (dump_file
, "\n");
2513 gcc_checking_assert (!unsuitable_loc (loc
));
2515 val_bind (set
, val
, loc
, modified
);
2518 /* Clear (canonical address) slots that reference X. */
2521 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2523 if (vt_get_canonicalize_base (*slot
) == x
)
2528 /* Reset this node, detaching all its equivalences. Return the slot
2529 in the variable hash table that holds dv, if there is one. */
2532 val_reset (dataflow_set
*set
, decl_or_value dv
)
2534 variable
*var
= shared_hash_find (set
->vars
, dv
) ;
2535 location_chain
*node
;
2538 if (!var
|| !var
->n_var_parts
)
2541 gcc_assert (var
->n_var_parts
== 1);
2543 if (var
->onepart
== ONEPART_VALUE
)
2545 rtx x
= dv_as_value (dv
);
2547 /* Relationships in the global cache don't change, so reset the
2548 local cache entry only. */
2549 rtx
*slot
= local_get_addr_cache
->get (x
);
2552 /* If the value resolved back to itself, odds are that other
2553 values may have cached it too. These entries now refer
2554 to the old X, so detach them too. Entries that used the
2555 old X but resolved to something else remain ok as long as
2556 that something else isn't also reset. */
2558 local_get_addr_cache
2559 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2565 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2566 if (GET_CODE (node
->loc
) == VALUE
2567 && canon_value_cmp (node
->loc
, cval
))
2570 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2571 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2573 /* Redirect the equivalence link to the new canonical
2574 value, or simply remove it if it would point at
2577 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2578 0, node
->init
, node
->set_src
, NO_INSERT
);
2579 delete_variable_part (set
, dv_as_value (dv
),
2580 dv_from_value (node
->loc
), 0);
2585 decl_or_value cdv
= dv_from_value (cval
);
2587 /* Keep the remaining values connected, accumulating links
2588 in the canonical value. */
2589 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2591 if (node
->loc
== cval
)
2593 else if (GET_CODE (node
->loc
) == REG
)
2594 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2595 node
->set_src
, NO_INSERT
);
2596 else if (GET_CODE (node
->loc
) == MEM
)
2597 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2598 node
->set_src
, NO_INSERT
);
2600 set_variable_part (set
, node
->loc
, cdv
, 0,
2601 node
->init
, node
->set_src
, NO_INSERT
);
2605 /* We remove this last, to make sure that the canonical value is not
2606 removed to the point of requiring reinsertion. */
2608 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2610 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2613 /* Find the values in a given location and map the val to another
2614 value, if it is unique, or add the location as one holding the
2618 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2620 decl_or_value dv
= dv_from_value (val
);
2622 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2625 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2627 fprintf (dump_file
, "head: ");
2628 print_inline_rtx (dump_file
, val
, 0);
2629 fputs (" is at ", dump_file
);
2630 print_inline_rtx (dump_file
, loc
, 0);
2631 fputc ('\n', dump_file
);
2634 val_reset (set
, dv
);
2636 gcc_checking_assert (!unsuitable_loc (loc
));
2640 attrs
*node
, *found
= NULL
;
2642 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2643 if (dv_is_value_p (node
->dv
)
2644 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2648 /* Map incoming equivalences. ??? Wouldn't it be nice if
2649 we just started sharing the location lists? Maybe a
2650 circular list ending at the value itself or some
2652 set_variable_part (set
, dv_as_value (node
->dv
),
2653 dv_from_value (val
), node
->offset
,
2654 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2655 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2656 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2659 /* If we didn't find any equivalence, we need to remember that
2660 this value is held in the named register. */
2664 /* ??? Attempt to find and merge equivalent MEMs or other
2667 val_bind (set
, val
, loc
, false);
2670 /* Initialize dataflow set SET to be empty.
2671 VARS_SIZE is the initial size of hash table VARS. */
2674 dataflow_set_init (dataflow_set
*set
)
2676 init_attrs_list_set (set
->regs
);
2677 set
->vars
= shared_hash_copy (empty_shared_hash
);
2678 set
->stack_adjust
= 0;
2679 set
->traversed_vars
= NULL
;
2682 /* Delete the contents of dataflow set SET. */
2685 dataflow_set_clear (dataflow_set
*set
)
2689 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2690 attrs_list_clear (&set
->regs
[i
]);
2692 shared_hash_destroy (set
->vars
);
2693 set
->vars
= shared_hash_copy (empty_shared_hash
);
2696 /* Copy the contents of dataflow set SRC to DST. */
2699 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2703 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2704 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2706 shared_hash_destroy (dst
->vars
);
2707 dst
->vars
= shared_hash_copy (src
->vars
);
2708 dst
->stack_adjust
= src
->stack_adjust
;
2711 /* Information for merging lists of locations for a given offset of variable.
2713 struct variable_union_info
2715 /* Node of the location chain. */
2718 /* The sum of positions in the input chains. */
2721 /* The position in the chain of DST dataflow set. */
2725 /* Buffer for location list sorting and its allocated size. */
2726 static struct variable_union_info
*vui_vec
;
2727 static int vui_allocated
;
2729 /* Compare function for qsort, order the structures by POS element. */
2732 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2734 const struct variable_union_info
*const i1
=
2735 (const struct variable_union_info
*) n1
;
2736 const struct variable_union_info
*const i2
=
2737 ( const struct variable_union_info
*) n2
;
2739 if (i1
->pos
!= i2
->pos
)
2740 return i1
->pos
- i2
->pos
;
2742 return (i1
->pos_dst
- i2
->pos_dst
);
2745 /* Compute union of location parts of variable *SLOT and the same variable
2746 from hash table DATA. Compute "sorted" union of the location chains
2747 for common offsets, i.e. the locations of a variable part are sorted by
2748 a priority where the priority is the sum of the positions in the 2 chains
2749 (if a location is only in one list the position in the second list is
2750 defined to be larger than the length of the chains).
2751 When we are updating the location parts the newest location is in the
2752 beginning of the chain, so when we do the described "sorted" union
2753 we keep the newest locations in the beginning. */
2756 variable_union (variable
*src
, dataflow_set
*set
)
2762 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2763 if (!dstp
|| !*dstp
)
2767 dst_can_be_shared
= false;
2769 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2773 /* Continue traversing the hash table. */
2779 gcc_assert (src
->n_var_parts
);
2780 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2782 /* We can combine one-part variables very efficiently, because their
2783 entries are in canonical order. */
2786 location_chain
**nodep
, *dnode
, *snode
;
2788 gcc_assert (src
->n_var_parts
== 1
2789 && dst
->n_var_parts
== 1);
2791 snode
= src
->var_part
[0].loc_chain
;
2794 restart_onepart_unshared
:
2795 nodep
= &dst
->var_part
[0].loc_chain
;
2801 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2805 location_chain
*nnode
;
2807 if (shared_var_p (dst
, set
->vars
))
2809 dstp
= unshare_variable (set
, dstp
, dst
,
2810 VAR_INIT_STATUS_INITIALIZED
);
2812 goto restart_onepart_unshared
;
2815 *nodep
= nnode
= new location_chain
;
2816 nnode
->loc
= snode
->loc
;
2817 nnode
->init
= snode
->init
;
2818 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2819 nnode
->set_src
= NULL
;
2821 nnode
->set_src
= snode
->set_src
;
2822 nnode
->next
= dnode
;
2826 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2829 snode
= snode
->next
;
2831 nodep
= &dnode
->next
;
2838 gcc_checking_assert (!src
->onepart
);
2840 /* Count the number of location parts, result is K. */
2841 for (i
= 0, j
= 0, k
= 0;
2842 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2844 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2849 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2854 k
+= src
->n_var_parts
- i
;
2855 k
+= dst
->n_var_parts
- j
;
2857 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2858 thus there are at most MAX_VAR_PARTS different offsets. */
2859 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2861 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2863 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2867 i
= src
->n_var_parts
- 1;
2868 j
= dst
->n_var_parts
- 1;
2869 dst
->n_var_parts
= k
;
2871 for (k
--; k
>= 0; k
--)
2873 location_chain
*node
, *node2
;
2875 if (i
>= 0 && j
>= 0
2876 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2878 /* Compute the "sorted" union of the chains, i.e. the locations which
2879 are in both chains go first, they are sorted by the sum of
2880 positions in the chains. */
2883 struct variable_union_info
*vui
;
2885 /* If DST is shared compare the location chains.
2886 If they are different we will modify the chain in DST with
2887 high probability so make a copy of DST. */
2888 if (shared_var_p (dst
, set
->vars
))
2890 for (node
= src
->var_part
[i
].loc_chain
,
2891 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2892 node
= node
->next
, node2
= node2
->next
)
2894 if (!((REG_P (node2
->loc
)
2895 && REG_P (node
->loc
)
2896 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2897 || rtx_equal_p (node2
->loc
, node
->loc
)))
2899 if (node2
->init
< node
->init
)
2900 node2
->init
= node
->init
;
2906 dstp
= unshare_variable (set
, dstp
, dst
,
2907 VAR_INIT_STATUS_UNKNOWN
);
2908 dst
= (variable
*)*dstp
;
2913 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2916 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2921 /* The most common case, much simpler, no qsort is needed. */
2922 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2923 dst
->var_part
[k
].loc_chain
= dstnode
;
2924 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2926 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2927 if (!((REG_P (dstnode
->loc
)
2928 && REG_P (node
->loc
)
2929 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2930 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2932 location_chain
*new_node
;
2934 /* Copy the location from SRC. */
2935 new_node
= new location_chain
;
2936 new_node
->loc
= node
->loc
;
2937 new_node
->init
= node
->init
;
2938 if (!node
->set_src
|| MEM_P (node
->set_src
))
2939 new_node
->set_src
= NULL
;
2941 new_node
->set_src
= node
->set_src
;
2942 node2
->next
= new_node
;
2949 if (src_l
+ dst_l
> vui_allocated
)
2951 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2952 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2957 /* Fill in the locations from DST. */
2958 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2959 node
= node
->next
, jj
++)
2962 vui
[jj
].pos_dst
= jj
;
2964 /* Pos plus value larger than a sum of 2 valid positions. */
2965 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2968 /* Fill in the locations from SRC. */
2970 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2971 node
= node
->next
, ii
++)
2973 /* Find location from NODE. */
2974 for (jj
= 0; jj
< dst_l
; jj
++)
2976 if ((REG_P (vui
[jj
].lc
->loc
)
2977 && REG_P (node
->loc
)
2978 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2979 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2981 vui
[jj
].pos
= jj
+ ii
;
2985 if (jj
>= dst_l
) /* The location has not been found. */
2987 location_chain
*new_node
;
2989 /* Copy the location from SRC. */
2990 new_node
= new location_chain
;
2991 new_node
->loc
= node
->loc
;
2992 new_node
->init
= node
->init
;
2993 if (!node
->set_src
|| MEM_P (node
->set_src
))
2994 new_node
->set_src
= NULL
;
2996 new_node
->set_src
= node
->set_src
;
2997 vui
[n
].lc
= new_node
;
2998 vui
[n
].pos_dst
= src_l
+ dst_l
;
2999 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
3006 /* Special case still very common case. For dst_l == 2
3007 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3008 vui[i].pos == i + src_l + dst_l. */
3009 if (vui
[0].pos
> vui
[1].pos
)
3011 /* Order should be 1, 0, 2... */
3012 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
3013 vui
[1].lc
->next
= vui
[0].lc
;
3016 vui
[0].lc
->next
= vui
[2].lc
;
3017 vui
[n
- 1].lc
->next
= NULL
;
3020 vui
[0].lc
->next
= NULL
;
3025 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3026 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3028 /* Order should be 0, 2, 1, 3... */
3029 vui
[0].lc
->next
= vui
[2].lc
;
3030 vui
[2].lc
->next
= vui
[1].lc
;
3033 vui
[1].lc
->next
= vui
[3].lc
;
3034 vui
[n
- 1].lc
->next
= NULL
;
3037 vui
[1].lc
->next
= NULL
;
3042 /* Order should be 0, 1, 2... */
3044 vui
[n
- 1].lc
->next
= NULL
;
3047 for (; ii
< n
; ii
++)
3048 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3052 qsort (vui
, n
, sizeof (struct variable_union_info
),
3053 variable_union_info_cmp_pos
);
3055 /* Reconnect the nodes in sorted order. */
3056 for (ii
= 1; ii
< n
; ii
++)
3057 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3058 vui
[n
- 1].lc
->next
= NULL
;
3059 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3062 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3067 else if ((i
>= 0 && j
>= 0
3068 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3071 dst
->var_part
[k
] = dst
->var_part
[j
];
3074 else if ((i
>= 0 && j
>= 0
3075 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3078 location_chain
**nextp
;
3080 /* Copy the chain from SRC. */
3081 nextp
= &dst
->var_part
[k
].loc_chain
;
3082 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3084 location_chain
*new_lc
;
3086 new_lc
= new location_chain
;
3087 new_lc
->next
= NULL
;
3088 new_lc
->init
= node
->init
;
3089 if (!node
->set_src
|| MEM_P (node
->set_src
))
3090 new_lc
->set_src
= NULL
;
3092 new_lc
->set_src
= node
->set_src
;
3093 new_lc
->loc
= node
->loc
;
3096 nextp
= &new_lc
->next
;
3099 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3102 dst
->var_part
[k
].cur_loc
= NULL
;
3105 if (flag_var_tracking_uninit
)
3106 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3108 location_chain
*node
, *node2
;
3109 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3110 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3111 if (rtx_equal_p (node
->loc
, node2
->loc
))
3113 if (node
->init
> node2
->init
)
3114 node2
->init
= node
->init
;
3118 /* Continue traversing the hash table. */
3122 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3125 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3129 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3130 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3132 if (dst
->vars
== empty_shared_hash
)
3134 shared_hash_destroy (dst
->vars
);
3135 dst
->vars
= shared_hash_copy (src
->vars
);
3139 variable_iterator_type hi
;
3142 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3144 variable_union (var
, dst
);
3148 /* Whether the value is currently being expanded. */
3149 #define VALUE_RECURSED_INTO(x) \
3150 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3152 /* Whether no expansion was found, saving useless lookups.
3153 It must only be set when VALUE_CHANGED is clear. */
3154 #define NO_LOC_P(x) \
3155 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3157 /* Whether cur_loc in the value needs to be (re)computed. */
3158 #define VALUE_CHANGED(x) \
3159 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3160 /* Whether cur_loc in the decl needs to be (re)computed. */
3161 #define DECL_CHANGED(x) TREE_VISITED (x)
3163 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3164 user DECLs, this means they're in changed_variables. Values and
3165 debug exprs may be left with this flag set if no user variable
3166 requires them to be evaluated. */
3169 set_dv_changed (decl_or_value dv
, bool newv
)
3171 switch (dv_onepart_p (dv
))
3175 NO_LOC_P (dv_as_value (dv
)) = false;
3176 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3181 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3185 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3190 /* Return true if DV needs to have its cur_loc recomputed. */
3193 dv_changed_p (decl_or_value dv
)
3195 return (dv_is_value_p (dv
)
3196 ? VALUE_CHANGED (dv_as_value (dv
))
3197 : DECL_CHANGED (dv_as_decl (dv
)));
3200 /* Return a location list node whose loc is rtx_equal to LOC, in the
3201 location list of a one-part variable or value VAR, or in that of
3202 any values recursively mentioned in the location lists. VARS must
3203 be in star-canonical form. */
3205 static location_chain
*
3206 find_loc_in_1pdv (rtx loc
, variable
*var
, variable_table_type
*vars
)
3208 location_chain
*node
;
3209 enum rtx_code loc_code
;
3214 gcc_checking_assert (var
->onepart
);
3216 if (!var
->n_var_parts
)
3219 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3221 loc_code
= GET_CODE (loc
);
3222 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3227 if (GET_CODE (node
->loc
) != loc_code
)
3229 if (GET_CODE (node
->loc
) != VALUE
)
3232 else if (loc
== node
->loc
)
3234 else if (loc_code
!= VALUE
)
3236 if (rtx_equal_p (loc
, node
->loc
))
3241 /* Since we're in star-canonical form, we don't need to visit
3242 non-canonical nodes: one-part variables and non-canonical
3243 values would only point back to the canonical node. */
3244 if (dv_is_value_p (var
->dv
)
3245 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3247 /* Skip all subsequent VALUEs. */
3248 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3251 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3252 dv_as_value (var
->dv
)));
3253 if (loc
== node
->loc
)
3259 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3260 gcc_checking_assert (!node
->next
);
3262 dv
= dv_from_value (node
->loc
);
3263 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3264 return find_loc_in_1pdv (loc
, rvar
, vars
);
3267 /* ??? Gotta look in cselib_val locations too. */
3272 /* Hash table iteration argument passed to variable_merge. */
3275 /* The set in which the merge is to be inserted. */
3277 /* The set that we're iterating in. */
3279 /* The set that may contain the other dv we are to merge with. */
3281 /* Number of onepart dvs in src. */
3282 int src_onepart_cnt
;
3285 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3286 loc_cmp order, and it is maintained as such. */
3289 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3290 enum var_init_status status
)
3292 location_chain
*node
;
3295 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3296 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3298 node
->init
= MIN (node
->init
, status
);
3304 node
= new location_chain
;
3307 node
->set_src
= NULL
;
3308 node
->init
= status
;
3309 node
->next
= *nodep
;
3313 /* Insert in DEST the intersection of the locations present in both
3314 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3315 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3319 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3320 location_chain
*s1node
, variable
*s2var
)
3322 dataflow_set
*s1set
= dsm
->cur
;
3323 dataflow_set
*s2set
= dsm
->src
;
3324 location_chain
*found
;
3328 location_chain
*s2node
;
3330 gcc_checking_assert (s2var
->onepart
);
3332 if (s2var
->n_var_parts
)
3334 s2node
= s2var
->var_part
[0].loc_chain
;
3336 for (; s1node
&& s2node
;
3337 s1node
= s1node
->next
, s2node
= s2node
->next
)
3338 if (s1node
->loc
!= s2node
->loc
)
3340 else if (s1node
->loc
== val
)
3343 insert_into_intersection (dest
, s1node
->loc
,
3344 MIN (s1node
->init
, s2node
->init
));
3348 for (; s1node
; s1node
= s1node
->next
)
3350 if (s1node
->loc
== val
)
3353 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3354 shared_hash_htab (s2set
->vars
))))
3356 insert_into_intersection (dest
, s1node
->loc
,
3357 MIN (s1node
->init
, found
->init
));
3361 if (GET_CODE (s1node
->loc
) == VALUE
3362 && !VALUE_RECURSED_INTO (s1node
->loc
))
3364 decl_or_value dv
= dv_from_value (s1node
->loc
);
3365 variable
*svar
= shared_hash_find (s1set
->vars
, dv
);
3368 if (svar
->n_var_parts
== 1)
3370 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3371 intersect_loc_chains (val
, dest
, dsm
,
3372 svar
->var_part
[0].loc_chain
,
3374 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3379 /* ??? gotta look in cselib_val locations too. */
3381 /* ??? if the location is equivalent to any location in src,
3382 searched recursively
3384 add to dst the values needed to represent the equivalence
3386 telling whether locations S is equivalent to another dv's
3389 for each location D in the list
3391 if S and D satisfy rtx_equal_p, then it is present
3393 else if D is a value, recurse without cycles
3395 else if S and D have the same CODE and MODE
3397 for each operand oS and the corresponding oD
3399 if oS and oD are not equivalent, then S an D are not equivalent
3401 else if they are RTX vectors
3403 if any vector oS element is not equivalent to its respective oD,
3404 then S and D are not equivalent
3412 /* Return -1 if X should be before Y in a location list for a 1-part
3413 variable, 1 if Y should be before X, and 0 if they're equivalent
3414 and should not appear in the list. */
3417 loc_cmp (rtx x
, rtx y
)
3420 RTX_CODE code
= GET_CODE (x
);
3430 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3431 if (REGNO (x
) == REGNO (y
))
3433 else if (REGNO (x
) < REGNO (y
))
3446 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3447 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3453 if (GET_CODE (x
) == VALUE
)
3455 if (GET_CODE (y
) != VALUE
)
3457 /* Don't assert the modes are the same, that is true only
3458 when not recursing. (subreg:QI (value:SI 1:1) 0)
3459 and (subreg:QI (value:DI 2:2) 0) can be compared,
3460 even when the modes are different. */
3461 if (canon_value_cmp (x
, y
))
3467 if (GET_CODE (y
) == VALUE
)
3470 /* Entry value is the least preferable kind of expression. */
3471 if (GET_CODE (x
) == ENTRY_VALUE
)
3473 if (GET_CODE (y
) != ENTRY_VALUE
)
3475 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3476 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3479 if (GET_CODE (y
) == ENTRY_VALUE
)
3482 if (GET_CODE (x
) == GET_CODE (y
))
3483 /* Compare operands below. */;
3484 else if (GET_CODE (x
) < GET_CODE (y
))
3489 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3491 if (GET_CODE (x
) == DEBUG_EXPR
)
3493 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3494 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3496 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3497 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3501 fmt
= GET_RTX_FORMAT (code
);
3502 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3506 if (XWINT (x
, i
) == XWINT (y
, i
))
3508 else if (XWINT (x
, i
) < XWINT (y
, i
))
3515 if (XINT (x
, i
) == XINT (y
, i
))
3517 else if (XINT (x
, i
) < XINT (y
, i
))
3523 r
= compare_sizes_for_sort (SUBREG_BYTE (x
), SUBREG_BYTE (y
));
3530 /* Compare the vector length first. */
3531 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3532 /* Compare the vectors elements. */;
3533 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3538 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3539 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3540 XVECEXP (y
, i
, j
))))
3545 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3551 if (XSTR (x
, i
) == XSTR (y
, i
))
3557 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3565 /* These are just backpointers, so they don't matter. */
3572 /* It is believed that rtx's at this level will never
3573 contain anything but integers and other rtx's,
3574 except for within LABEL_REFs and SYMBOL_REFs. */
3578 if (CONST_WIDE_INT_P (x
))
3580 /* Compare the vector length first. */
3581 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3583 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3586 /* Compare the vectors elements. */;
3587 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3589 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3591 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3599 /* Check the order of entries in one-part variables. */
3602 canonicalize_loc_order_check (variable
**slot
,
3603 dataflow_set
*data ATTRIBUTE_UNUSED
)
3605 variable
*var
= *slot
;
3606 location_chain
*node
, *next
;
3608 #ifdef ENABLE_RTL_CHECKING
3610 for (i
= 0; i
< var
->n_var_parts
; i
++)
3611 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3612 gcc_assert (!var
->in_changed_variables
);
3618 gcc_assert (var
->n_var_parts
== 1);
3619 node
= var
->var_part
[0].loc_chain
;
3622 while ((next
= node
->next
))
3624 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3631 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3632 more likely to be chosen as canonical for an equivalence set.
3633 Ensure less likely values can reach more likely neighbors, making
3634 the connections bidirectional. */
3637 canonicalize_values_mark (variable
**slot
, dataflow_set
*set
)
3639 variable
*var
= *slot
;
3640 decl_or_value dv
= var
->dv
;
3642 location_chain
*node
;
3644 if (!dv_is_value_p (dv
))
3647 gcc_checking_assert (var
->n_var_parts
== 1);
3649 val
= dv_as_value (dv
);
3651 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3652 if (GET_CODE (node
->loc
) == VALUE
)
3654 if (canon_value_cmp (node
->loc
, val
))
3655 VALUE_RECURSED_INTO (val
) = true;
3658 decl_or_value odv
= dv_from_value (node
->loc
);
3660 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3662 set_slot_part (set
, val
, oslot
, odv
, 0,
3663 node
->init
, NULL_RTX
);
3665 VALUE_RECURSED_INTO (node
->loc
) = true;
3672 /* Remove redundant entries from equivalence lists in onepart
3673 variables, canonicalizing equivalence sets into star shapes. */
3676 canonicalize_values_star (variable
**slot
, dataflow_set
*set
)
3678 variable
*var
= *slot
;
3679 decl_or_value dv
= var
->dv
;
3680 location_chain
*node
;
3690 gcc_checking_assert (var
->n_var_parts
== 1);
3692 if (dv_is_value_p (dv
))
3694 cval
= dv_as_value (dv
);
3695 if (!VALUE_RECURSED_INTO (cval
))
3697 VALUE_RECURSED_INTO (cval
) = false;
3707 gcc_assert (var
->n_var_parts
== 1);
3709 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3710 if (GET_CODE (node
->loc
) == VALUE
)
3713 if (VALUE_RECURSED_INTO (node
->loc
))
3715 if (canon_value_cmp (node
->loc
, cval
))
3724 if (!has_marks
|| dv_is_decl_p (dv
))
3727 /* Keep it marked so that we revisit it, either after visiting a
3728 child node, or after visiting a new parent that might be
3730 VALUE_RECURSED_INTO (val
) = true;
3732 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3733 if (GET_CODE (node
->loc
) == VALUE
3734 && VALUE_RECURSED_INTO (node
->loc
))
3738 VALUE_RECURSED_INTO (cval
) = false;
3739 dv
= dv_from_value (cval
);
3740 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3743 gcc_assert (dv_is_decl_p (var
->dv
));
3744 /* The canonical value was reset and dropped.
3746 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3750 gcc_assert (dv_is_value_p (var
->dv
));
3751 if (var
->n_var_parts
== 0)
3753 gcc_assert (var
->n_var_parts
== 1);
3757 VALUE_RECURSED_INTO (val
) = false;
3762 /* Push values to the canonical one. */
3763 cdv
= dv_from_value (cval
);
3764 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3766 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3767 if (node
->loc
!= cval
)
3769 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3770 node
->init
, NULL_RTX
);
3771 if (GET_CODE (node
->loc
) == VALUE
)
3773 decl_or_value ndv
= dv_from_value (node
->loc
);
3775 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3778 if (canon_value_cmp (node
->loc
, val
))
3780 /* If it could have been a local minimum, it's not any more,
3781 since it's now neighbor to cval, so it may have to push
3782 to it. Conversely, if it wouldn't have prevailed over
3783 val, then whatever mark it has is fine: if it was to
3784 push, it will now push to a more canonical node, but if
3785 it wasn't, then it has already pushed any values it might
3787 VALUE_RECURSED_INTO (node
->loc
) = true;
3788 /* Make sure we visit node->loc by ensuring we cval is
3790 VALUE_RECURSED_INTO (cval
) = true;
3792 else if (!VALUE_RECURSED_INTO (node
->loc
))
3793 /* If we have no need to "recurse" into this node, it's
3794 already "canonicalized", so drop the link to the old
3796 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3798 else if (GET_CODE (node
->loc
) == REG
)
3800 attrs
*list
= set
->regs
[REGNO (node
->loc
)], **listp
;
3802 /* Change an existing attribute referring to dv so that it
3803 refers to cdv, removing any duplicate this might
3804 introduce, and checking that no previous duplicates
3805 existed, all in a single pass. */
3809 if (list
->offset
== 0
3810 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3811 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3818 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3821 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3826 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3828 *listp
= list
->next
;
3834 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3837 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3839 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3844 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3846 *listp
= list
->next
;
3852 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3861 if (list
->offset
== 0
3862 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3863 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3872 set_slot_part (set
, val
, cslot
, cdv
, 0,
3873 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3875 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3877 /* Variable may have been unshared. */
3879 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3880 && var
->var_part
[0].loc_chain
->next
== NULL
);
3882 if (VALUE_RECURSED_INTO (cval
))
3883 goto restart_with_cval
;
3888 /* Bind one-part variables to the canonical value in an equivalence
3889 set. Not doing this causes dataflow convergence failure in rare
3890 circumstances, see PR42873. Unfortunately we can't do this
3891 efficiently as part of canonicalize_values_star, since we may not
3892 have determined or even seen the canonical value of a set when we
3893 get to a variable that references another member of the set. */
3896 canonicalize_vars_star (variable
**slot
, dataflow_set
*set
)
3898 variable
*var
= *slot
;
3899 decl_or_value dv
= var
->dv
;
3900 location_chain
*node
;
3905 location_chain
*cnode
;
3907 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3910 gcc_assert (var
->n_var_parts
== 1);
3912 node
= var
->var_part
[0].loc_chain
;
3914 if (GET_CODE (node
->loc
) != VALUE
)
3917 gcc_assert (!node
->next
);
3920 /* Push values to the canonical one. */
3921 cdv
= dv_from_value (cval
);
3922 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3926 gcc_assert (cvar
->n_var_parts
== 1);
3928 cnode
= cvar
->var_part
[0].loc_chain
;
3930 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3931 that are not “more canonical” than it. */
3932 if (GET_CODE (cnode
->loc
) != VALUE
3933 || !canon_value_cmp (cnode
->loc
, cval
))
3936 /* CVAL was found to be non-canonical. Change the variable to point
3937 to the canonical VALUE. */
3938 gcc_assert (!cnode
->next
);
3941 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3942 node
->init
, node
->set_src
);
3943 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3948 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3949 corresponding entry in DSM->src. Multi-part variables are combined
3950 with variable_union, whereas onepart dvs are combined with
3954 variable_merge_over_cur (variable
*s1var
, struct dfset_merge
*dsm
)
3956 dataflow_set
*dst
= dsm
->dst
;
3958 variable
*s2var
, *dvar
= NULL
;
3959 decl_or_value dv
= s1var
->dv
;
3960 onepart_enum onepart
= s1var
->onepart
;
3963 location_chain
*node
, **nodep
;
3965 /* If the incoming onepart variable has an empty location list, then
3966 the intersection will be just as empty. For other variables,
3967 it's always union. */
3968 gcc_checking_assert (s1var
->n_var_parts
3969 && s1var
->var_part
[0].loc_chain
);
3972 return variable_union (s1var
, dst
);
3974 gcc_checking_assert (s1var
->n_var_parts
== 1);
3976 dvhash
= dv_htab_hash (dv
);
3977 if (dv_is_value_p (dv
))
3978 val
= dv_as_value (dv
);
3982 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3985 dst_can_be_shared
= false;
3989 dsm
->src_onepart_cnt
--;
3990 gcc_assert (s2var
->var_part
[0].loc_chain
3991 && s2var
->onepart
== onepart
3992 && s2var
->n_var_parts
== 1);
3994 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3998 gcc_assert (dvar
->refcount
== 1
3999 && dvar
->onepart
== onepart
4000 && dvar
->n_var_parts
== 1);
4001 nodep
= &dvar
->var_part
[0].loc_chain
;
4009 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
4011 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
4013 *dstslot
= dvar
= s2var
;
4018 dst_can_be_shared
= false;
4020 intersect_loc_chains (val
, nodep
, dsm
,
4021 s1var
->var_part
[0].loc_chain
, s2var
);
4027 dvar
= onepart_pool_allocate (onepart
);
4030 dvar
->n_var_parts
= 1;
4031 dvar
->onepart
= onepart
;
4032 dvar
->in_changed_variables
= false;
4033 dvar
->var_part
[0].loc_chain
= node
;
4034 dvar
->var_part
[0].cur_loc
= NULL
;
4036 VAR_LOC_1PAUX (dvar
) = NULL
;
4038 VAR_PART_OFFSET (dvar
, 0) = 0;
4041 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4043 gcc_assert (!*dstslot
);
4051 nodep
= &dvar
->var_part
[0].loc_chain
;
4052 while ((node
= *nodep
))
4054 location_chain
**nextp
= &node
->next
;
4056 if (GET_CODE (node
->loc
) == REG
)
4060 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4061 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4062 && dv_is_value_p (list
->dv
))
4066 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4068 /* If this value became canonical for another value that had
4069 this register, we want to leave it alone. */
4070 else if (dv_as_value (list
->dv
) != val
)
4072 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4074 node
->init
, NULL_RTX
);
4075 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4077 /* Since nextp points into the removed node, we can't
4078 use it. The pointer to the next node moved to nodep.
4079 However, if the variable we're walking is unshared
4080 during our walk, we'll keep walking the location list
4081 of the previously-shared variable, in which case the
4082 node won't have been removed, and we'll want to skip
4083 it. That's why we test *nodep here. */
4089 /* Canonicalization puts registers first, so we don't have to
4095 if (dvar
!= *dstslot
)
4097 nodep
= &dvar
->var_part
[0].loc_chain
;
4101 /* Mark all referenced nodes for canonicalization, and make sure
4102 we have mutual equivalence links. */
4103 VALUE_RECURSED_INTO (val
) = true;
4104 for (node
= *nodep
; node
; node
= node
->next
)
4105 if (GET_CODE (node
->loc
) == VALUE
)
4107 VALUE_RECURSED_INTO (node
->loc
) = true;
4108 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4109 node
->init
, NULL
, INSERT
);
4112 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4113 gcc_assert (*dstslot
== dvar
);
4114 canonicalize_values_star (dstslot
, dst
);
4115 gcc_checking_assert (dstslot
4116 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4122 bool has_value
= false, has_other
= false;
4124 /* If we have one value and anything else, we're going to
4125 canonicalize this, so make sure all values have an entry in
4126 the table and are marked for canonicalization. */
4127 for (node
= *nodep
; node
; node
= node
->next
)
4129 if (GET_CODE (node
->loc
) == VALUE
)
4131 /* If this was marked during register canonicalization,
4132 we know we have to canonicalize values. */
4147 if (has_value
&& has_other
)
4149 for (node
= *nodep
; node
; node
= node
->next
)
4151 if (GET_CODE (node
->loc
) == VALUE
)
4153 decl_or_value dv
= dv_from_value (node
->loc
);
4154 variable
**slot
= NULL
;
4156 if (shared_hash_shared (dst
->vars
))
4157 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4159 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4163 variable
*var
= onepart_pool_allocate (ONEPART_VALUE
);
4166 var
->n_var_parts
= 1;
4167 var
->onepart
= ONEPART_VALUE
;
4168 var
->in_changed_variables
= false;
4169 var
->var_part
[0].loc_chain
= NULL
;
4170 var
->var_part
[0].cur_loc
= NULL
;
4171 VAR_LOC_1PAUX (var
) = NULL
;
4175 VALUE_RECURSED_INTO (node
->loc
) = true;
4179 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4180 gcc_assert (*dstslot
== dvar
);
4181 canonicalize_values_star (dstslot
, dst
);
4182 gcc_checking_assert (dstslot
4183 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4189 if (!onepart_variable_different_p (dvar
, s2var
))
4191 variable_htab_free (dvar
);
4192 *dstslot
= dvar
= s2var
;
4195 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4197 variable_htab_free (dvar
);
4198 *dstslot
= dvar
= s1var
;
4200 dst_can_be_shared
= false;
4203 dst_can_be_shared
= false;
4208 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4209 multi-part variable. Unions of multi-part variables and
4210 intersections of one-part ones will be handled in
4211 variable_merge_over_cur(). */
4214 variable_merge_over_src (variable
*s2var
, struct dfset_merge
*dsm
)
4216 dataflow_set
*dst
= dsm
->dst
;
4217 decl_or_value dv
= s2var
->dv
;
4219 if (!s2var
->onepart
)
4221 variable
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4227 dsm
->src_onepart_cnt
++;
4231 /* Combine dataflow set information from SRC2 into DST, using PDST
4232 to carry over information across passes. */
4235 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4237 dataflow_set cur
= *dst
;
4238 dataflow_set
*src1
= &cur
;
4239 struct dfset_merge dsm
;
4241 size_t src1_elems
, src2_elems
;
4242 variable_iterator_type hi
;
4245 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4246 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4247 dataflow_set_init (dst
);
4248 dst
->stack_adjust
= cur
.stack_adjust
;
4249 shared_hash_destroy (dst
->vars
);
4250 dst
->vars
= new shared_hash
;
4251 dst
->vars
->refcount
= 1;
4252 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4254 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4255 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4260 dsm
.src_onepart_cnt
= 0;
4262 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4264 variable_merge_over_src (var
, &dsm
);
4265 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4267 variable_merge_over_cur (var
, &dsm
);
4269 if (dsm
.src_onepart_cnt
)
4270 dst_can_be_shared
= false;
4272 dataflow_set_destroy (src1
);
4275 /* Mark register equivalences. */
4278 dataflow_set_equiv_regs (dataflow_set
*set
)
4281 attrs
*list
, **listp
;
4283 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4285 rtx canon
[NUM_MACHINE_MODES
];
4287 /* If the list is empty or one entry, no need to canonicalize
4289 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4292 memset (canon
, 0, sizeof (canon
));
4294 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4295 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4297 rtx val
= dv_as_value (list
->dv
);
4298 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4301 if (canon_value_cmp (val
, cval
))
4305 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4306 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4308 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4313 if (dv_is_value_p (list
->dv
))
4315 rtx val
= dv_as_value (list
->dv
);
4320 VALUE_RECURSED_INTO (val
) = true;
4321 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4322 VAR_INIT_STATUS_INITIALIZED
,
4326 VALUE_RECURSED_INTO (cval
) = true;
4327 set_variable_part (set
, cval
, list
->dv
, 0,
4328 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4331 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4332 listp
= list
? &list
->next
: listp
)
4333 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4335 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4341 if (dv_is_value_p (list
->dv
))
4343 rtx val
= dv_as_value (list
->dv
);
4344 if (!VALUE_RECURSED_INTO (val
))
4348 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4349 canonicalize_values_star (slot
, set
);
4356 /* Remove any redundant values in the location list of VAR, which must
4357 be unshared and 1-part. */
4360 remove_duplicate_values (variable
*var
)
4362 location_chain
*node
, **nodep
;
4364 gcc_assert (var
->onepart
);
4365 gcc_assert (var
->n_var_parts
== 1);
4366 gcc_assert (var
->refcount
== 1);
4368 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4370 if (GET_CODE (node
->loc
) == VALUE
)
4372 if (VALUE_RECURSED_INTO (node
->loc
))
4374 /* Remove duplicate value node. */
4375 *nodep
= node
->next
;
4380 VALUE_RECURSED_INTO (node
->loc
) = true;
4382 nodep
= &node
->next
;
4385 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4386 if (GET_CODE (node
->loc
) == VALUE
)
4388 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4389 VALUE_RECURSED_INTO (node
->loc
) = false;
4394 /* Hash table iteration argument passed to variable_post_merge. */
4395 struct dfset_post_merge
4397 /* The new input set for the current block. */
4399 /* Pointer to the permanent input set for the current block, or
4401 dataflow_set
**permp
;
4404 /* Create values for incoming expressions associated with one-part
4405 variables that don't have value numbers for them. */
4408 variable_post_merge_new_vals (variable
**slot
, dfset_post_merge
*dfpm
)
4410 dataflow_set
*set
= dfpm
->set
;
4411 variable
*var
= *slot
;
4412 location_chain
*node
;
4414 if (!var
->onepart
|| !var
->n_var_parts
)
4417 gcc_assert (var
->n_var_parts
== 1);
4419 if (dv_is_decl_p (var
->dv
))
4421 bool check_dupes
= false;
4424 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4426 if (GET_CODE (node
->loc
) == VALUE
)
4427 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4428 else if (GET_CODE (node
->loc
) == REG
)
4430 attrs
*att
, **attp
, **curp
= NULL
;
4432 if (var
->refcount
!= 1)
4434 slot
= unshare_variable (set
, slot
, var
,
4435 VAR_INIT_STATUS_INITIALIZED
);
4440 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4442 if (att
->offset
== 0
4443 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4445 if (dv_is_value_p (att
->dv
))
4447 rtx cval
= dv_as_value (att
->dv
);
4452 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4460 if ((*curp
)->offset
== 0
4461 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4462 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4465 curp
= &(*curp
)->next
;
4476 *dfpm
->permp
= XNEW (dataflow_set
);
4477 dataflow_set_init (*dfpm
->permp
);
4480 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4481 att
; att
= att
->next
)
4482 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4484 gcc_assert (att
->offset
== 0
4485 && dv_is_value_p (att
->dv
));
4486 val_reset (set
, att
->dv
);
4493 cval
= dv_as_value (cdv
);
4497 /* Create a unique value to hold this register,
4498 that ought to be found and reused in
4499 subsequent rounds. */
4501 gcc_assert (!cselib_lookup (node
->loc
,
4502 GET_MODE (node
->loc
), 0,
4504 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4506 cselib_preserve_value (v
);
4507 cselib_invalidate_rtx (node
->loc
);
4509 cdv
= dv_from_value (cval
);
4512 "Created new value %u:%u for reg %i\n",
4513 v
->uid
, v
->hash
, REGNO (node
->loc
));
4516 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4517 VAR_INIT_STATUS_INITIALIZED
,
4518 cdv
, 0, NULL
, INSERT
);
4524 /* Remove attribute referring to the decl, which now
4525 uses the value for the register, already existing or
4526 to be added when we bring perm in. */
4534 remove_duplicate_values (var
);
4540 /* Reset values in the permanent set that are not associated with the
4541 chosen expression. */
4544 variable_post_merge_perm_vals (variable
**pslot
, dfset_post_merge
*dfpm
)
4546 dataflow_set
*set
= dfpm
->set
;
4547 variable
*pvar
= *pslot
, *var
;
4548 location_chain
*pnode
;
4552 gcc_assert (dv_is_value_p (pvar
->dv
)
4553 && pvar
->n_var_parts
== 1);
4554 pnode
= pvar
->var_part
[0].loc_chain
;
4557 && REG_P (pnode
->loc
));
4561 var
= shared_hash_find (set
->vars
, dv
);
4564 /* Although variable_post_merge_new_vals may have made decls
4565 non-star-canonical, values that pre-existed in canonical form
4566 remain canonical, and newly-created values reference a single
4567 REG, so they are canonical as well. Since VAR has the
4568 location list for a VALUE, using find_loc_in_1pdv for it is
4569 fine, since VALUEs don't map back to DECLs. */
4570 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4572 val_reset (set
, dv
);
4575 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4576 if (att
->offset
== 0
4577 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4578 && dv_is_value_p (att
->dv
))
4581 /* If there is a value associated with this register already, create
4583 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4585 rtx cval
= dv_as_value (att
->dv
);
4586 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4587 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4592 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4594 variable_union (pvar
, set
);
4600 /* Just checking stuff and registering register attributes for
4604 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4606 struct dfset_post_merge dfpm
;
4611 shared_hash_htab (set
->vars
)
4612 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4614 shared_hash_htab ((*permp
)->vars
)
4615 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4616 shared_hash_htab (set
->vars
)
4617 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4618 shared_hash_htab (set
->vars
)
4619 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4622 /* Return a node whose loc is a MEM that refers to EXPR in the
4623 location list of a one-part variable or value VAR, or in that of
4624 any values recursively mentioned in the location lists. */
4626 static location_chain
*
4627 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4629 location_chain
*node
;
4632 location_chain
*where
= NULL
;
4637 gcc_assert (GET_CODE (val
) == VALUE
4638 && !VALUE_RECURSED_INTO (val
));
4640 dv
= dv_from_value (val
);
4641 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4646 gcc_assert (var
->onepart
);
4648 if (!var
->n_var_parts
)
4651 VALUE_RECURSED_INTO (val
) = true;
4653 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4654 if (MEM_P (node
->loc
)
4655 && MEM_EXPR (node
->loc
) == expr
4656 && int_mem_offset (node
->loc
) == 0)
4661 else if (GET_CODE (node
->loc
) == VALUE
4662 && !VALUE_RECURSED_INTO (node
->loc
)
4663 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4666 VALUE_RECURSED_INTO (val
) = false;
4671 /* Return TRUE if the value of MEM may vary across a call. */
4674 mem_dies_at_call (rtx mem
)
4676 tree expr
= MEM_EXPR (mem
);
4682 decl
= get_base_address (expr
);
4690 return (may_be_aliased (decl
)
4691 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4694 /* Remove all MEMs from the location list of a hash table entry for a
4695 one-part variable, except those whose MEM attributes map back to
4696 the variable itself, directly or within a VALUE. */
4699 dataflow_set_preserve_mem_locs (variable
**slot
, dataflow_set
*set
)
4701 variable
*var
= *slot
;
4703 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4705 tree decl
= dv_as_decl (var
->dv
);
4706 location_chain
*loc
, **locp
;
4707 bool changed
= false;
4709 if (!var
->n_var_parts
)
4712 gcc_assert (var
->n_var_parts
== 1);
4714 if (shared_var_p (var
, set
->vars
))
4716 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4718 /* We want to remove dying MEMs that don't refer to DECL. */
4719 if (GET_CODE (loc
->loc
) == MEM
4720 && (MEM_EXPR (loc
->loc
) != decl
4721 || int_mem_offset (loc
->loc
) != 0)
4722 && mem_dies_at_call (loc
->loc
))
4724 /* We want to move here MEMs that do refer to DECL. */
4725 else if (GET_CODE (loc
->loc
) == VALUE
4726 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4727 shared_hash_htab (set
->vars
)))
4734 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4736 gcc_assert (var
->n_var_parts
== 1);
4739 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4742 rtx old_loc
= loc
->loc
;
4743 if (GET_CODE (old_loc
) == VALUE
)
4745 location_chain
*mem_node
4746 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4747 shared_hash_htab (set
->vars
));
4749 /* ??? This picks up only one out of multiple MEMs that
4750 refer to the same variable. Do we ever need to be
4751 concerned about dealing with more than one, or, given
4752 that they should all map to the same variable
4753 location, their addresses will have been merged and
4754 they will be regarded as equivalent? */
4757 loc
->loc
= mem_node
->loc
;
4758 loc
->set_src
= mem_node
->set_src
;
4759 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4763 if (GET_CODE (loc
->loc
) != MEM
4764 || (MEM_EXPR (loc
->loc
) == decl
4765 && int_mem_offset (loc
->loc
) == 0)
4766 || !mem_dies_at_call (loc
->loc
))
4768 if (old_loc
!= loc
->loc
&& emit_notes
)
4770 if (old_loc
== var
->var_part
[0].cur_loc
)
4773 var
->var_part
[0].cur_loc
= NULL
;
4782 if (old_loc
== var
->var_part
[0].cur_loc
)
4785 var
->var_part
[0].cur_loc
= NULL
;
4792 if (!var
->var_part
[0].loc_chain
)
4798 variable_was_changed (var
, set
);
4804 /* Remove all MEMs from the location list of a hash table entry for a
4805 onepart variable. */
4808 dataflow_set_remove_mem_locs (variable
**slot
, dataflow_set
*set
)
4810 variable
*var
= *slot
;
4812 if (var
->onepart
!= NOT_ONEPART
)
4814 location_chain
*loc
, **locp
;
4815 bool changed
= false;
4818 gcc_assert (var
->n_var_parts
== 1);
4820 if (shared_var_p (var
, set
->vars
))
4822 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4823 if (GET_CODE (loc
->loc
) == MEM
4824 && mem_dies_at_call (loc
->loc
))
4830 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4832 gcc_assert (var
->n_var_parts
== 1);
4835 if (VAR_LOC_1PAUX (var
))
4836 cur_loc
= VAR_LOC_FROM (var
);
4838 cur_loc
= var
->var_part
[0].cur_loc
;
4840 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4843 if (GET_CODE (loc
->loc
) != MEM
4844 || !mem_dies_at_call (loc
->loc
))
4851 /* If we have deleted the location which was last emitted
4852 we have to emit new location so add the variable to set
4853 of changed variables. */
4854 if (cur_loc
== loc
->loc
)
4857 var
->var_part
[0].cur_loc
= NULL
;
4858 if (VAR_LOC_1PAUX (var
))
4859 VAR_LOC_FROM (var
) = NULL
;
4864 if (!var
->var_part
[0].loc_chain
)
4870 variable_was_changed (var
, set
);
4876 /* Remove all variable-location information about call-clobbered
4877 registers, as well as associations between MEMs and VALUEs. */
4880 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4883 hard_reg_set_iterator hrsi
;
4884 HARD_REG_SET invalidated_regs
;
4886 get_call_reg_set_usage (call_insn
, &invalidated_regs
,
4887 regs_invalidated_by_call
);
4889 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs
, 0, r
, hrsi
)
4890 var_regno_delete (set
, r
);
4892 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4894 set
->traversed_vars
= set
->vars
;
4895 shared_hash_htab (set
->vars
)
4896 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4897 set
->traversed_vars
= set
->vars
;
4898 shared_hash_htab (set
->vars
)
4899 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4900 set
->traversed_vars
= NULL
;
4905 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4907 location_chain
*lc1
, *lc2
;
4909 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4911 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4913 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4915 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4918 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4927 /* Return true if one-part variables VAR1 and VAR2 are different.
4928 They must be in canonical order. */
4931 onepart_variable_different_p (variable
*var1
, variable
*var2
)
4933 location_chain
*lc1
, *lc2
;
4938 gcc_assert (var1
->n_var_parts
== 1
4939 && var2
->n_var_parts
== 1);
4941 lc1
= var1
->var_part
[0].loc_chain
;
4942 lc2
= var2
->var_part
[0].loc_chain
;
4944 gcc_assert (lc1
&& lc2
);
4948 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4957 /* Return true if one-part variables VAR1 and VAR2 are different.
4958 They must be in canonical order. */
4961 dump_onepart_variable_differences (variable
*var1
, variable
*var2
)
4963 location_chain
*lc1
, *lc2
;
4965 gcc_assert (var1
!= var2
);
4966 gcc_assert (dump_file
);
4967 gcc_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4968 gcc_assert (var1
->n_var_parts
== 1
4969 && var2
->n_var_parts
== 1);
4971 lc1
= var1
->var_part
[0].loc_chain
;
4972 lc2
= var2
->var_part
[0].loc_chain
;
4974 gcc_assert (lc1
&& lc2
);
4978 switch (loc_cmp (lc1
->loc
, lc2
->loc
))
4981 fprintf (dump_file
, "removed: ");
4982 print_rtl_single (dump_file
, lc1
->loc
);
4988 fprintf (dump_file
, "added: ");
4989 print_rtl_single (dump_file
, lc2
->loc
);
5001 fprintf (dump_file
, "removed: ");
5002 print_rtl_single (dump_file
, lc1
->loc
);
5008 fprintf (dump_file
, "added: ");
5009 print_rtl_single (dump_file
, lc2
->loc
);
5014 /* Return true if variables VAR1 and VAR2 are different. */
5017 variable_different_p (variable
*var1
, variable
*var2
)
5024 if (var1
->onepart
!= var2
->onepart
)
5027 if (var1
->n_var_parts
!= var2
->n_var_parts
)
5030 if (var1
->onepart
&& var1
->n_var_parts
)
5032 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
5033 && var1
->n_var_parts
== 1);
5034 /* One-part values have locations in a canonical order. */
5035 return onepart_variable_different_p (var1
, var2
);
5038 for (i
= 0; i
< var1
->n_var_parts
; i
++)
5040 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
5042 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
5044 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
5050 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5053 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
5055 variable_iterator_type hi
;
5057 bool diffound
= false;
5058 bool details
= (dump_file
&& (dump_flags
& TDF_DETAILS
));
5070 if (old_set
->vars
== new_set
->vars
)
5073 if (shared_hash_htab (old_set
->vars
)->elements ()
5074 != shared_hash_htab (new_set
->vars
)->elements ())
5077 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
5080 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
5081 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5087 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5092 else if (variable_different_p (var1
, var2
))
5096 fprintf (dump_file
, "dataflow difference found: "
5097 "old and new follow:\n");
5099 if (dv_onepart_p (var1
->dv
))
5100 dump_onepart_variable_differences (var1
, var2
);
5107 /* There's no need to traverse the second hashtab unless we want to
5108 print the details. If both have the same number of elements and
5109 the second one had all entries found in the first one, then the
5110 second can't have any extra entries. */
5114 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set
->vars
),
5117 variable_table_type
*htab
= shared_hash_htab (old_set
->vars
);
5118 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5123 fprintf (dump_file
, "dataflow difference found: addition of:\n");
5135 /* Free the contents of dataflow set SET. */
5138 dataflow_set_destroy (dataflow_set
*set
)
5142 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5143 attrs_list_clear (&set
->regs
[i
]);
5145 shared_hash_destroy (set
->vars
);
5149 /* Return true if T is a tracked parameter with non-degenerate record type. */
5152 tracked_record_parameter_p (tree t
)
5154 if (TREE_CODE (t
) != PARM_DECL
)
5157 if (DECL_MODE (t
) == BLKmode
)
5160 tree type
= TREE_TYPE (t
);
5161 if (TREE_CODE (type
) != RECORD_TYPE
)
5164 if (TYPE_FIELDS (type
) == NULL_TREE
5165 || DECL_CHAIN (TYPE_FIELDS (type
)) == NULL_TREE
)
5171 /* Shall EXPR be tracked? */
5174 track_expr_p (tree expr
, bool need_rtl
)
5179 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5180 return DECL_RTL_SET_P (expr
);
5182 /* If EXPR is not a parameter or a variable do not track it. */
5183 if (!VAR_P (expr
) && TREE_CODE (expr
) != PARM_DECL
)
5186 /* It also must have a name... */
5187 if (!DECL_NAME (expr
) && need_rtl
)
5190 /* ... and a RTL assigned to it. */
5191 decl_rtl
= DECL_RTL_IF_SET (expr
);
5192 if (!decl_rtl
&& need_rtl
)
5195 /* If this expression is really a debug alias of some other declaration, we
5196 don't need to track this expression if the ultimate declaration is
5199 if (VAR_P (realdecl
) && DECL_HAS_DEBUG_EXPR_P (realdecl
))
5201 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5202 if (!DECL_P (realdecl
))
5204 if (handled_component_p (realdecl
)
5205 || (TREE_CODE (realdecl
) == MEM_REF
5206 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5208 HOST_WIDE_INT bitsize
, bitpos
;
5211 = get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
5212 &bitsize
, &reverse
);
5214 || !DECL_P (innerdecl
)
5215 || DECL_IGNORED_P (innerdecl
)
5216 /* Do not track declarations for parts of tracked record
5217 parameters since we want to track them as a whole. */
5218 || tracked_record_parameter_p (innerdecl
)
5219 || TREE_STATIC (innerdecl
)
5221 || bitpos
+ bitsize
> 256)
5231 /* Do not track EXPR if REALDECL it should be ignored for debugging
5233 if (DECL_IGNORED_P (realdecl
))
5236 /* Do not track global variables until we are able to emit correct location
5238 if (TREE_STATIC (realdecl
))
5241 /* When the EXPR is a DECL for alias of some variable (see example)
5242 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5243 DECL_RTL contains SYMBOL_REF.
5246 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5249 if (decl_rtl
&& MEM_P (decl_rtl
)
5250 && contains_symbol_ref_p (XEXP (decl_rtl
, 0)))
5253 /* If RTX is a memory it should not be very large (because it would be
5254 an array or struct). */
5255 if (decl_rtl
&& MEM_P (decl_rtl
))
5257 /* Do not track structures and arrays. */
5258 if ((GET_MODE (decl_rtl
) == BLKmode
5259 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5260 && !tracked_record_parameter_p (realdecl
))
5262 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5263 && maybe_gt (MEM_SIZE (decl_rtl
), MAX_VAR_PARTS
))
5267 DECL_CHANGED (expr
) = 0;
5268 DECL_CHANGED (realdecl
) = 0;
5272 /* Determine whether a given LOC refers to the same variable part as
5276 same_variable_part_p (rtx loc
, tree expr
, poly_int64 offset
)
5281 if (! DECL_P (expr
))
5286 expr2
= REG_EXPR (loc
);
5287 offset2
= REG_OFFSET (loc
);
5289 else if (MEM_P (loc
))
5291 expr2
= MEM_EXPR (loc
);
5292 offset2
= int_mem_offset (loc
);
5297 if (! expr2
|| ! DECL_P (expr2
))
5300 expr
= var_debug_decl (expr
);
5301 expr2
= var_debug_decl (expr2
);
5303 return (expr
== expr2
&& known_eq (offset
, offset2
));
5306 /* LOC is a REG or MEM that we would like to track if possible.
5307 If EXPR is null, we don't know what expression LOC refers to,
5308 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5309 LOC is an lvalue register.
5311 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5312 is something we can track. When returning true, store the mode of
5313 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5314 from EXPR in *OFFSET_OUT (if nonnull). */
5317 track_loc_p (rtx loc
, tree expr
, poly_int64 offset
, bool store_reg_p
,
5318 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5322 if (expr
== NULL
|| !track_expr_p (expr
, true))
5325 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5326 whole subreg, but only the old inner part is really relevant. */
5327 mode
= GET_MODE (loc
);
5328 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5330 machine_mode pseudo_mode
;
5332 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5333 if (paradoxical_subreg_p (mode
, pseudo_mode
))
5335 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5340 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5341 Do the same if we are storing to a register and EXPR occupies
5342 the whole of register LOC; in that case, the whole of EXPR is
5343 being changed. We exclude complex modes from the second case
5344 because the real and imaginary parts are represented as separate
5345 pseudo registers, even if the whole complex value fits into one
5347 if ((paradoxical_subreg_p (mode
, DECL_MODE (expr
))
5349 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5350 && hard_regno_nregs (REGNO (loc
), DECL_MODE (expr
)) == 1))
5351 && known_eq (offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
), 0))
5353 mode
= DECL_MODE (expr
);
5357 HOST_WIDE_INT const_offset
;
5358 if (!track_offset_p (offset
, &const_offset
))
5364 *offset_out
= const_offset
;
5368 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5369 want to track. When returning nonnull, make sure that the attributes
5370 on the returned value are updated. */
5373 var_lowpart (machine_mode mode
, rtx loc
)
5377 if (GET_MODE (loc
) == mode
)
5380 if (!REG_P (loc
) && !MEM_P (loc
))
5383 poly_uint64 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5386 return adjust_address_nv (loc
, mode
, offset
);
5388 poly_uint64 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5389 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5391 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5394 /* Carry information about uses and stores while walking rtx. */
5396 struct count_use_info
5398 /* The insn where the RTX is. */
5401 /* The basic block where insn is. */
5404 /* The array of n_sets sets in the insn, as determined by cselib. */
5405 struct cselib_set
*sets
;
5408 /* True if we're counting stores, false otherwise. */
5412 /* Find a VALUE corresponding to X. */
5414 static inline cselib_val
*
5415 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5421 /* This is called after uses are set up and before stores are
5422 processed by cselib, so it's safe to look up srcs, but not
5423 dsts. So we look up expressions that appear in srcs or in
5424 dest expressions, but we search the sets array for dests of
5428 /* Some targets represent memset and memcpy patterns
5429 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5430 (set (mem:BLK ...) (const_int ...)) or
5431 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5432 in that case, otherwise we end up with mode mismatches. */
5433 if (mode
== BLKmode
&& MEM_P (x
))
5435 for (i
= 0; i
< cui
->n_sets
; i
++)
5436 if (cui
->sets
[i
].dest
== x
)
5437 return cui
->sets
[i
].src_elt
;
5440 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5446 /* Replace all registers and addresses in an expression with VALUE
5447 expressions that map back to them, unless the expression is a
5448 register. If no mapping is or can be performed, returns NULL. */
5451 replace_expr_with_values (rtx loc
)
5453 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5455 else if (MEM_P (loc
))
5457 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5458 get_address_mode (loc
), 0,
5461 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5466 return cselib_subst_to_values (loc
, VOIDmode
);
5469 /* Return true if X contains a DEBUG_EXPR. */
5472 rtx_debug_expr_p (const_rtx x
)
5474 subrtx_iterator::array_type array
;
5475 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5476 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5481 /* Determine what kind of micro operation to choose for a USE. Return
5482 MO_CLOBBER if no micro operation is to be generated. */
5484 static enum micro_operation_type
5485 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5489 if (cui
&& cui
->sets
)
5491 if (GET_CODE (loc
) == VAR_LOCATION
)
5493 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5495 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5496 if (! VAR_LOC_UNKNOWN_P (ploc
))
5498 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5501 /* ??? flag_float_store and volatile mems are never
5502 given values, but we could in theory use them for
5504 gcc_assert (val
|| 1);
5512 if (REG_P (loc
) || MEM_P (loc
))
5515 *modep
= GET_MODE (loc
);
5519 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5520 && cselib_lookup (XEXP (loc
, 0),
5521 get_address_mode (loc
), 0,
5527 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5529 if (val
&& !cselib_preserved_value_p (val
))
5537 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5539 if (loc
== cfa_base_rtx
)
5541 expr
= REG_EXPR (loc
);
5544 return MO_USE_NO_VAR
;
5545 else if (target_for_debug_bind (var_debug_decl (expr
)))
5547 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5548 false, modep
, NULL
))
5551 return MO_USE_NO_VAR
;
5553 else if (MEM_P (loc
))
5555 expr
= MEM_EXPR (loc
);
5559 else if (target_for_debug_bind (var_debug_decl (expr
)))
5561 else if (track_loc_p (loc
, expr
, int_mem_offset (loc
),
5563 /* Multi-part variables shouldn't refer to one-part
5564 variable names such as VALUEs (never happens) or
5565 DEBUG_EXPRs (only happens in the presence of debug
5567 && (!MAY_HAVE_DEBUG_BIND_INSNS
5568 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5577 /* Log to OUT information about micro-operation MOPT involving X in
5581 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5582 enum micro_operation_type mopt
, FILE *out
)
5584 fprintf (out
, "bb %i op %i insn %i %s ",
5585 bb
->index
, VTI (bb
)->mos
.length (),
5586 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5587 print_inline_rtx (out
, x
, 2);
5591 /* Tell whether the CONCAT used to holds a VALUE and its location
5592 needs value resolution, i.e., an attempt of mapping the location
5593 back to other incoming values. */
5594 #define VAL_NEEDS_RESOLUTION(x) \
5595 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5596 /* Whether the location in the CONCAT is a tracked expression, that
5597 should also be handled like a MO_USE. */
5598 #define VAL_HOLDS_TRACK_EXPR(x) \
5599 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5600 /* Whether the location in the CONCAT should be handled like a MO_COPY
5602 #define VAL_EXPR_IS_COPIED(x) \
5603 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5604 /* Whether the location in the CONCAT should be handled like a
5605 MO_CLOBBER as well. */
5606 #define VAL_EXPR_IS_CLOBBERED(x) \
5607 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5609 /* All preserved VALUEs. */
5610 static vec
<rtx
> preserved_values
;
5612 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5615 preserve_value (cselib_val
*val
)
5617 cselib_preserve_value (val
);
5618 preserved_values
.safe_push (val
->val_rtx
);
5621 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5622 any rtxes not suitable for CONST use not replaced by VALUEs
5626 non_suitable_const (const_rtx x
)
5628 subrtx_iterator::array_type array
;
5629 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5631 const_rtx x
= *iter
;
5632 switch (GET_CODE (x
))
5643 if (!MEM_READONLY_P (x
))
5653 /* Add uses (register and memory references) LOC which will be tracked
5654 to VTI (bb)->mos. */
5657 add_uses (rtx loc
, struct count_use_info
*cui
)
5659 machine_mode mode
= VOIDmode
;
5660 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5662 if (type
!= MO_CLOBBER
)
5664 basic_block bb
= cui
->bb
;
5668 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5669 mo
.insn
= cui
->insn
;
5671 if (type
== MO_VAL_LOC
)
5674 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5677 gcc_assert (cui
->sets
);
5680 && !REG_P (XEXP (vloc
, 0))
5681 && !MEM_P (XEXP (vloc
, 0)))
5684 machine_mode address_mode
= get_address_mode (mloc
);
5686 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5689 if (val
&& !cselib_preserved_value_p (val
))
5690 preserve_value (val
);
5693 if (CONSTANT_P (vloc
)
5694 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5695 /* For constants don't look up any value. */;
5696 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5697 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5700 enum micro_operation_type type2
;
5702 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5705 nloc
= replace_expr_with_values (vloc
);
5709 oloc
= shallow_copy_rtx (oloc
);
5710 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5713 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5715 type2
= use_type (vloc
, 0, &mode2
);
5717 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5718 || type2
== MO_CLOBBER
);
5720 if (type2
== MO_CLOBBER
5721 && !cselib_preserved_value_p (val
))
5723 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5724 preserve_value (val
);
5727 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5729 oloc
= shallow_copy_rtx (oloc
);
5730 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5735 else if (type
== MO_VAL_USE
)
5737 machine_mode mode2
= VOIDmode
;
5738 enum micro_operation_type type2
;
5739 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5740 rtx vloc
, oloc
= loc
, nloc
;
5742 gcc_assert (cui
->sets
);
5745 && !REG_P (XEXP (oloc
, 0))
5746 && !MEM_P (XEXP (oloc
, 0)))
5749 machine_mode address_mode
= get_address_mode (mloc
);
5751 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5754 if (val
&& !cselib_preserved_value_p (val
))
5755 preserve_value (val
);
5758 type2
= use_type (loc
, 0, &mode2
);
5760 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5761 || type2
== MO_CLOBBER
);
5763 if (type2
== MO_USE
)
5764 vloc
= var_lowpart (mode2
, loc
);
5768 /* The loc of a MO_VAL_USE may have two forms:
5770 (concat val src): val is at src, a value-based
5773 (concat (concat val use) src): same as above, with use as
5774 the MO_USE tracked value, if it differs from src.
5778 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5779 nloc
= replace_expr_with_values (loc
);
5784 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5786 oloc
= val
->val_rtx
;
5788 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5790 if (type2
== MO_USE
)
5791 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5792 if (!cselib_preserved_value_p (val
))
5794 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5795 preserve_value (val
);
5799 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5801 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5802 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5803 VTI (bb
)->mos
.safe_push (mo
);
5807 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5810 add_uses_1 (rtx
*x
, void *cui
)
5812 subrtx_var_iterator::array_type array
;
5813 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5814 add_uses (*iter
, (struct count_use_info
*) cui
);
5817 /* This is the value used during expansion of locations. We want it
5818 to be unbounded, so that variables expanded deep in a recursion
5819 nest are fully evaluated, so that their values are cached
5820 correctly. We avoid recursion cycles through other means, and we
5821 don't unshare RTL, so excess complexity is not a problem. */
5822 #define EXPR_DEPTH (INT_MAX)
5823 /* We use this to keep too-complex expressions from being emitted as
5824 location notes, and then to debug information. Users can trade
5825 compile time for ridiculously complex expressions, although they're
5826 seldom useful, and they may often have to be discarded as not
5827 representable anyway. */
5828 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5830 /* Attempt to reverse the EXPR operation in the debug info and record
5831 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5832 no longer live we can express its value as VAL - 6. */
5835 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5839 struct elt_loc_list
*l
;
5843 if (GET_CODE (expr
) != SET
)
5846 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5849 src
= SET_SRC (expr
);
5850 switch (GET_CODE (src
))
5857 if (!REG_P (XEXP (src
, 0)))
5862 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5869 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5872 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5873 if (!v
|| !cselib_preserved_value_p (v
))
5876 /* Use canonical V to avoid creating multiple redundant expressions
5877 for different VALUES equivalent to V. */
5878 v
= canonical_cselib_val (v
);
5880 /* Adding a reverse op isn't useful if V already has an always valid
5881 location. Ignore ENTRY_VALUE, while it is always constant, we should
5882 prefer non-ENTRY_VALUE locations whenever possible. */
5883 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5884 if (CONSTANT_P (l
->loc
)
5885 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5887 /* Avoid creating too large locs lists. */
5888 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5891 switch (GET_CODE (src
))
5895 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5897 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5901 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5913 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5915 arg
= XEXP (src
, 1);
5916 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5918 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5919 if (arg
== NULL_RTX
)
5921 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5924 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5930 cselib_add_permanent_equiv (v
, ret
, insn
);
5933 /* Add stores (register and memory references) LOC which will be tracked
5934 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5935 CUIP->insn is instruction which the LOC is part of. */
5938 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5940 machine_mode mode
= VOIDmode
, mode2
;
5941 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5942 basic_block bb
= cui
->bb
;
5944 rtx oloc
= loc
, nloc
, src
= NULL
;
5945 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5946 bool track_p
= false;
5948 bool resolve
, preserve
;
5950 if (type
== MO_CLOBBER
)
5957 gcc_assert (loc
!= cfa_base_rtx
);
5958 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5959 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5960 || GET_CODE (expr
) == CLOBBER
)
5962 mo
.type
= MO_CLOBBER
;
5964 if (GET_CODE (expr
) == SET
5965 && (SET_DEST (expr
) == loc
5966 || (GET_CODE (SET_DEST (expr
)) == STRICT_LOW_PART
5967 && XEXP (SET_DEST (expr
), 0) == loc
))
5968 && !unsuitable_loc (SET_SRC (expr
))
5969 && find_use_val (loc
, mode
, cui
))
5971 gcc_checking_assert (type
== MO_VAL_SET
);
5972 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5977 if (GET_CODE (expr
) == SET
5978 && SET_DEST (expr
) == loc
5979 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5980 src
= var_lowpart (mode2
, SET_SRC (expr
));
5981 loc
= var_lowpart (mode2
, loc
);
5990 rtx xexpr
= gen_rtx_SET (loc
, src
);
5991 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5993 /* If this is an instruction copying (part of) a parameter
5994 passed by invisible reference to its register location,
5995 pretend it's a SET so that the initial memory location
5996 is discarded, as the parameter register can be reused
5997 for other purposes and we do not track locations based
5998 on generic registers. */
6001 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
6002 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
6003 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
6004 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
6015 mo
.insn
= cui
->insn
;
6017 else if (MEM_P (loc
)
6018 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
6021 if (MEM_P (loc
) && type
== MO_VAL_SET
6022 && !REG_P (XEXP (loc
, 0))
6023 && !MEM_P (XEXP (loc
, 0)))
6026 machine_mode address_mode
= get_address_mode (mloc
);
6027 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
6031 if (val
&& !cselib_preserved_value_p (val
))
6032 preserve_value (val
);
6035 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
6037 mo
.type
= MO_CLOBBER
;
6038 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
6042 if (GET_CODE (expr
) == SET
6043 && SET_DEST (expr
) == loc
6044 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
6045 src
= var_lowpart (mode2
, SET_SRC (expr
));
6046 loc
= var_lowpart (mode2
, loc
);
6055 rtx xexpr
= gen_rtx_SET (loc
, src
);
6056 if (same_variable_part_p (SET_SRC (xexpr
),
6058 int_mem_offset (loc
)))
6065 mo
.insn
= cui
->insn
;
6070 if (type
!= MO_VAL_SET
)
6071 goto log_and_return
;
6073 v
= find_use_val (oloc
, mode
, cui
);
6076 goto log_and_return
;
6078 resolve
= preserve
= !cselib_preserved_value_p (v
);
6080 /* We cannot track values for multiple-part variables, so we track only
6081 locations for tracked record parameters. */
6085 && tracked_record_parameter_p (REG_EXPR (loc
)))
6087 /* Although we don't use the value here, it could be used later by the
6088 mere virtue of its existence as the operand of the reverse operation
6089 that gave rise to it (typically extension/truncation). Make sure it
6090 is preserved as required by vt_expand_var_loc_chain. */
6093 goto log_and_return
;
6096 if (loc
== stack_pointer_rtx
6097 && hard_frame_pointer_adjustment
!= -1
6099 cselib_set_value_sp_based (v
);
6101 nloc
= replace_expr_with_values (oloc
);
6105 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6107 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6111 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6113 if (oval
&& !cselib_preserved_value_p (oval
))
6115 micro_operation moa
;
6117 preserve_value (oval
);
6119 moa
.type
= MO_VAL_USE
;
6120 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6121 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6122 moa
.insn
= cui
->insn
;
6124 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6125 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6126 moa
.type
, dump_file
);
6127 VTI (bb
)->mos
.safe_push (moa
);
6132 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6134 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6135 nloc
= replace_expr_with_values (SET_SRC (expr
));
6139 /* Avoid the mode mismatch between oexpr and expr. */
6140 if (!nloc
&& mode
!= mode2
)
6142 nloc
= SET_SRC (expr
);
6143 gcc_assert (oloc
== SET_DEST (expr
));
6146 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6147 oloc
= gen_rtx_SET (oloc
, nloc
);
6150 if (oloc
== SET_DEST (mo
.u
.loc
))
6151 /* No point in duplicating. */
6153 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6159 if (GET_CODE (mo
.u
.loc
) == SET
6160 && oloc
== SET_DEST (mo
.u
.loc
))
6161 /* No point in duplicating. */
6167 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6169 if (mo
.u
.loc
!= oloc
)
6170 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6172 /* The loc of a MO_VAL_SET may have various forms:
6174 (concat val dst): dst now holds val
6176 (concat val (set dst src)): dst now holds val, copied from src
6178 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6179 after replacing mems and non-top-level regs with values.
6181 (concat (concat val dstv) (set dst src)): dst now holds val,
6182 copied from src. dstv is a value-based representation of dst, if
6183 it differs from dst. If resolution is needed, src is a REG, and
6184 its mode is the same as that of val.
6186 (concat (concat val (set dstv srcv)) (set dst src)): src
6187 copied to dst, holding val. dstv and srcv are value-based
6188 representations of dst and src, respectively.
6192 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6193 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6198 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6201 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6204 if (mo
.type
== MO_CLOBBER
)
6205 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6206 if (mo
.type
== MO_COPY
)
6207 VAL_EXPR_IS_COPIED (loc
) = 1;
6209 mo
.type
= MO_VAL_SET
;
6212 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6213 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6214 VTI (bb
)->mos
.safe_push (mo
);
6217 /* Arguments to the call. */
6218 static rtx call_arguments
;
6220 /* Compute call_arguments. */
6223 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6226 rtx prev
, cur
, next
;
6227 rtx this_arg
= NULL_RTX
;
6228 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6229 tree obj_type_ref
= NULL_TREE
;
6230 CUMULATIVE_ARGS args_so_far_v
;
6231 cumulative_args_t args_so_far
;
6233 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6234 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6235 call
= get_call_rtx_from (insn
);
6238 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6240 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6241 if (SYMBOL_REF_DECL (symbol
))
6242 fndecl
= SYMBOL_REF_DECL (symbol
);
6244 if (fndecl
== NULL_TREE
)
6245 fndecl
= MEM_EXPR (XEXP (call
, 0));
6247 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6248 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6250 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6251 type
= TREE_TYPE (fndecl
);
6252 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6254 if (TREE_CODE (fndecl
) == INDIRECT_REF
6255 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6256 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6261 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6263 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6264 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6266 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6270 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6271 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6272 #ifndef PCC_STATIC_STRUCT_RETURN
6273 if (aggregate_value_p (TREE_TYPE (type
), type
)
6274 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6276 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6277 machine_mode mode
= TYPE_MODE (struct_addr
);
6279 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6281 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6283 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6285 if (reg
== NULL_RTX
)
6287 for (; link
; link
= XEXP (link
, 1))
6288 if (GET_CODE (XEXP (link
, 0)) == USE
6289 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6291 link
= XEXP (link
, 1);
6298 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6300 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6303 t
= TYPE_ARG_TYPES (type
);
6304 mode
= TYPE_MODE (TREE_VALUE (t
));
6305 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6306 TREE_VALUE (t
), true);
6307 if (this_arg
&& !REG_P (this_arg
))
6308 this_arg
= NULL_RTX
;
6309 else if (this_arg
== NULL_RTX
)
6311 for (; link
; link
= XEXP (link
, 1))
6312 if (GET_CODE (XEXP (link
, 0)) == USE
6313 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6315 this_arg
= XEXP (XEXP (link
, 0), 0);
6323 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6325 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6326 if (GET_CODE (XEXP (link
, 0)) == USE
)
6328 rtx item
= NULL_RTX
;
6329 x
= XEXP (XEXP (link
, 0), 0);
6330 if (GET_MODE (link
) == VOIDmode
6331 || GET_MODE (link
) == BLKmode
6332 || (GET_MODE (link
) != GET_MODE (x
)
6333 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6334 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6335 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6336 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6337 /* Can't do anything for these, if the original type mode
6338 isn't known or can't be converted. */;
6341 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6342 scalar_int_mode mode
;
6343 if (val
&& cselib_preserved_value_p (val
))
6344 item
= val
->val_rtx
;
6345 else if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
6347 opt_scalar_int_mode mode_iter
;
6348 FOR_EACH_WIDER_MODE (mode_iter
, mode
)
6350 mode
= mode_iter
.require ();
6351 if (GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
6354 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6355 if (reg
== NULL_RTX
|| !REG_P (reg
))
6357 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6358 if (val
&& cselib_preserved_value_p (val
))
6360 item
= val
->val_rtx
;
6371 if (!frame_pointer_needed
)
6373 struct adjust_mem_data amd
;
6374 amd
.mem_mode
= VOIDmode
;
6375 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6377 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6379 gcc_assert (amd
.side_effects
.is_empty ());
6381 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6382 if (val
&& cselib_preserved_value_p (val
))
6383 item
= val
->val_rtx
;
6384 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6385 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6387 /* For non-integer stack argument see also if they weren't
6388 initialized by integers. */
6389 scalar_int_mode imode
;
6390 if (int_mode_for_mode (GET_MODE (mem
)).exists (&imode
)
6391 && imode
!= GET_MODE (mem
))
6393 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6394 imode
, 0, VOIDmode
);
6395 if (val
&& cselib_preserved_value_p (val
))
6396 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6404 if (GET_MODE (item
) != GET_MODE (link
))
6405 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6406 if (GET_MODE (x2
) != GET_MODE (link
))
6407 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6408 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6410 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6412 if (t
&& t
!= void_list_node
)
6414 tree argtype
= TREE_VALUE (t
);
6415 machine_mode mode
= TYPE_MODE (argtype
);
6417 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6419 argtype
= build_pointer_type (argtype
);
6420 mode
= TYPE_MODE (argtype
);
6422 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6424 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6425 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6428 && GET_MODE (reg
) == mode
6429 && (GET_MODE_CLASS (mode
) == MODE_INT
6430 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6432 && REGNO (x
) == REGNO (reg
)
6433 && GET_MODE (x
) == mode
6436 machine_mode indmode
6437 = TYPE_MODE (TREE_TYPE (argtype
));
6438 rtx mem
= gen_rtx_MEM (indmode
, x
);
6439 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6440 if (val
&& cselib_preserved_value_p (val
))
6442 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6443 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6448 struct elt_loc_list
*l
;
6451 /* Try harder, when passing address of a constant
6452 pool integer it can be easily read back. */
6453 item
= XEXP (item
, 1);
6454 if (GET_CODE (item
) == SUBREG
)
6455 item
= SUBREG_REG (item
);
6456 gcc_assert (GET_CODE (item
) == VALUE
);
6457 val
= CSELIB_VAL_PTR (item
);
6458 for (l
= val
->locs
; l
; l
= l
->next
)
6459 if (GET_CODE (l
->loc
) == SYMBOL_REF
6460 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6461 && SYMBOL_REF_DECL (l
->loc
)
6462 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6464 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6465 if (tree_fits_shwi_p (initial
))
6467 item
= GEN_INT (tree_to_shwi (initial
));
6468 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6470 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6477 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6483 /* Add debug arguments. */
6485 && TREE_CODE (fndecl
) == FUNCTION_DECL
6486 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6488 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6493 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6496 tree dtemp
= (**debug_args
)[ix
+ 1];
6497 machine_mode mode
= DECL_MODE (dtemp
);
6498 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6499 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6500 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6506 /* Reverse call_arguments chain. */
6508 for (cur
= call_arguments
; cur
; cur
= next
)
6510 next
= XEXP (cur
, 1);
6511 XEXP (cur
, 1) = prev
;
6514 call_arguments
= prev
;
6516 x
= get_call_rtx_from (insn
);
6519 x
= XEXP (XEXP (x
, 0), 0);
6520 if (GET_CODE (x
) == SYMBOL_REF
)
6521 /* Don't record anything. */;
6522 else if (CONSTANT_P (x
))
6524 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6527 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6531 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6532 if (val
&& cselib_preserved_value_p (val
))
6534 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6536 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6543 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6544 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6546 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6548 clobbered
= plus_constant (mode
, clobbered
,
6549 token
* GET_MODE_SIZE (mode
));
6550 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6551 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6553 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6557 /* Callback for cselib_record_sets_hook, that records as micro
6558 operations uses and stores in an insn after cselib_record_sets has
6559 analyzed the sets in an insn, but before it modifies the stored
6560 values in the internal tables, unless cselib_record_sets doesn't
6561 call it directly (perhaps because we're not doing cselib in the
6562 first place, in which case sets and n_sets will be 0). */
6565 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6567 basic_block bb
= BLOCK_FOR_INSN (insn
);
6569 struct count_use_info cui
;
6570 micro_operation
*mos
;
6572 cselib_hook_called
= true;
6577 cui
.n_sets
= n_sets
;
6579 n1
= VTI (bb
)->mos
.length ();
6580 cui
.store_p
= false;
6581 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6582 n2
= VTI (bb
)->mos
.length () - 1;
6583 mos
= VTI (bb
)->mos
.address ();
6585 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6589 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6591 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6594 std::swap (mos
[n1
], mos
[n2
]);
6597 n2
= VTI (bb
)->mos
.length () - 1;
6600 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6602 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6605 std::swap (mos
[n1
], mos
[n2
]);
6614 mo
.u
.loc
= call_arguments
;
6615 call_arguments
= NULL_RTX
;
6617 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6618 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6619 VTI (bb
)->mos
.safe_push (mo
);
6622 n1
= VTI (bb
)->mos
.length ();
6623 /* This will record NEXT_INSN (insn), such that we can
6624 insert notes before it without worrying about any
6625 notes that MO_USEs might emit after the insn. */
6627 note_stores (PATTERN (insn
), add_stores
, &cui
);
6628 n2
= VTI (bb
)->mos
.length () - 1;
6629 mos
= VTI (bb
)->mos
.address ();
6631 /* Order the MO_VAL_USEs first (note_stores does nothing
6632 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6633 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6636 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6638 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6641 std::swap (mos
[n1
], mos
[n2
]);
6644 n2
= VTI (bb
)->mos
.length () - 1;
6647 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6649 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6652 std::swap (mos
[n1
], mos
[n2
]);
6656 static enum var_init_status
6657 find_src_status (dataflow_set
*in
, rtx src
)
6659 tree decl
= NULL_TREE
;
6660 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6662 if (! flag_var_tracking_uninit
)
6663 status
= VAR_INIT_STATUS_INITIALIZED
;
6665 if (src
&& REG_P (src
))
6666 decl
= var_debug_decl (REG_EXPR (src
));
6667 else if (src
&& MEM_P (src
))
6668 decl
= var_debug_decl (MEM_EXPR (src
));
6671 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6676 /* SRC is the source of an assignment. Use SET to try to find what
6677 was ultimately assigned to SRC. Return that value if known,
6678 otherwise return SRC itself. */
6681 find_src_set_src (dataflow_set
*set
, rtx src
)
6683 tree decl
= NULL_TREE
; /* The variable being copied around. */
6684 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6686 location_chain
*nextp
;
6690 if (src
&& REG_P (src
))
6691 decl
= var_debug_decl (REG_EXPR (src
));
6692 else if (src
&& MEM_P (src
))
6693 decl
= var_debug_decl (MEM_EXPR (src
));
6697 decl_or_value dv
= dv_from_decl (decl
);
6699 var
= shared_hash_find (set
->vars
, dv
);
6703 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6704 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6705 nextp
= nextp
->next
)
6706 if (rtx_equal_p (nextp
->loc
, src
))
6708 set_src
= nextp
->set_src
;
6718 /* Compute the changes of variable locations in the basic block BB. */
6721 compute_bb_dataflow (basic_block bb
)
6724 micro_operation
*mo
;
6726 dataflow_set old_out
;
6727 dataflow_set
*in
= &VTI (bb
)->in
;
6728 dataflow_set
*out
= &VTI (bb
)->out
;
6730 dataflow_set_init (&old_out
);
6731 dataflow_set_copy (&old_out
, out
);
6732 dataflow_set_copy (out
, in
);
6734 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6735 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6737 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6739 rtx_insn
*insn
= mo
->insn
;
6744 dataflow_set_clear_at_call (out
, insn
);
6749 rtx loc
= mo
->u
.loc
;
6752 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6753 else if (MEM_P (loc
))
6754 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6760 rtx loc
= mo
->u
.loc
;
6764 if (GET_CODE (loc
) == CONCAT
)
6766 val
= XEXP (loc
, 0);
6767 vloc
= XEXP (loc
, 1);
6775 var
= PAT_VAR_LOCATION_DECL (vloc
);
6777 clobber_variable_part (out
, NULL_RTX
,
6778 dv_from_decl (var
), 0, NULL_RTX
);
6781 if (VAL_NEEDS_RESOLUTION (loc
))
6782 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6783 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6784 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6787 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6788 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6789 dv_from_decl (var
), 0,
6790 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6797 rtx loc
= mo
->u
.loc
;
6798 rtx val
, vloc
, uloc
;
6800 vloc
= uloc
= XEXP (loc
, 1);
6801 val
= XEXP (loc
, 0);
6803 if (GET_CODE (val
) == CONCAT
)
6805 uloc
= XEXP (val
, 1);
6806 val
= XEXP (val
, 0);
6809 if (VAL_NEEDS_RESOLUTION (loc
))
6810 val_resolve (out
, val
, vloc
, insn
);
6812 val_store (out
, val
, uloc
, insn
, false);
6814 if (VAL_HOLDS_TRACK_EXPR (loc
))
6816 if (GET_CODE (uloc
) == REG
)
6817 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6819 else if (GET_CODE (uloc
) == MEM
)
6820 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6828 rtx loc
= mo
->u
.loc
;
6829 rtx val
, vloc
, uloc
;
6833 uloc
= XEXP (vloc
, 1);
6834 val
= XEXP (vloc
, 0);
6837 if (GET_CODE (uloc
) == SET
)
6839 dstv
= SET_DEST (uloc
);
6840 srcv
= SET_SRC (uloc
);
6848 if (GET_CODE (val
) == CONCAT
)
6850 dstv
= vloc
= XEXP (val
, 1);
6851 val
= XEXP (val
, 0);
6854 if (GET_CODE (vloc
) == SET
)
6856 srcv
= SET_SRC (vloc
);
6858 gcc_assert (val
!= srcv
);
6859 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6861 dstv
= vloc
= SET_DEST (vloc
);
6863 if (VAL_NEEDS_RESOLUTION (loc
))
6864 val_resolve (out
, val
, srcv
, insn
);
6866 else if (VAL_NEEDS_RESOLUTION (loc
))
6868 gcc_assert (GET_CODE (uloc
) == SET
6869 && GET_CODE (SET_SRC (uloc
)) == REG
);
6870 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6873 if (VAL_HOLDS_TRACK_EXPR (loc
))
6875 if (VAL_EXPR_IS_CLOBBERED (loc
))
6878 var_reg_delete (out
, uloc
, true);
6879 else if (MEM_P (uloc
))
6881 gcc_assert (MEM_P (dstv
));
6882 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6883 var_mem_delete (out
, dstv
, true);
6888 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6889 rtx src
= NULL
, dst
= uloc
;
6890 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6892 if (GET_CODE (uloc
) == SET
)
6894 src
= SET_SRC (uloc
);
6895 dst
= SET_DEST (uloc
);
6900 if (flag_var_tracking_uninit
)
6902 status
= find_src_status (in
, src
);
6904 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6905 status
= find_src_status (out
, src
);
6908 src
= find_src_set_src (in
, src
);
6912 var_reg_delete_and_set (out
, dst
, !copied_p
,
6914 else if (MEM_P (dst
))
6916 gcc_assert (MEM_P (dstv
));
6917 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6918 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6923 else if (REG_P (uloc
))
6924 var_regno_delete (out
, REGNO (uloc
));
6925 else if (MEM_P (uloc
))
6927 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6928 gcc_checking_assert (dstv
== vloc
);
6930 clobber_overlapping_mems (out
, vloc
);
6933 val_store (out
, val
, dstv
, insn
, true);
6939 rtx loc
= mo
->u
.loc
;
6942 if (GET_CODE (loc
) == SET
)
6944 set_src
= SET_SRC (loc
);
6945 loc
= SET_DEST (loc
);
6949 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6951 else if (MEM_P (loc
))
6952 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6959 rtx loc
= mo
->u
.loc
;
6960 enum var_init_status src_status
;
6963 if (GET_CODE (loc
) == SET
)
6965 set_src
= SET_SRC (loc
);
6966 loc
= SET_DEST (loc
);
6969 if (! flag_var_tracking_uninit
)
6970 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6973 src_status
= find_src_status (in
, set_src
);
6975 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6976 src_status
= find_src_status (out
, set_src
);
6979 set_src
= find_src_set_src (in
, set_src
);
6982 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
6983 else if (MEM_P (loc
))
6984 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
6990 rtx loc
= mo
->u
.loc
;
6993 var_reg_delete (out
, loc
, false);
6994 else if (MEM_P (loc
))
6995 var_mem_delete (out
, loc
, false);
7001 rtx loc
= mo
->u
.loc
;
7004 var_reg_delete (out
, loc
, true);
7005 else if (MEM_P (loc
))
7006 var_mem_delete (out
, loc
, true);
7011 out
->stack_adjust
+= mo
->u
.adjust
;
7016 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7018 delete local_get_addr_cache
;
7019 local_get_addr_cache
= NULL
;
7021 dataflow_set_equiv_regs (out
);
7022 shared_hash_htab (out
->vars
)
7023 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
7024 shared_hash_htab (out
->vars
)
7025 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
7027 shared_hash_htab (out
->vars
)
7028 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
7030 changed
= dataflow_set_different (&old_out
, out
);
7031 dataflow_set_destroy (&old_out
);
7035 /* Find the locations of variables in the whole function. */
7038 vt_find_locations (void)
7040 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
7041 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
7042 sbitmap in_worklist
, in_pending
;
7049 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
7050 bool success
= true;
7052 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
7053 /* Compute reverse completion order of depth first search of the CFG
7054 so that the data-flow runs faster. */
7055 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
7056 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
7057 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
7058 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
7059 bb_order
[rc_order
[i
]] = i
;
7062 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
7063 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7064 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7065 bitmap_clear (in_worklist
);
7067 FOR_EACH_BB_FN (bb
, cfun
)
7068 pending
->insert (bb_order
[bb
->index
], bb
);
7069 bitmap_ones (in_pending
);
7071 while (success
&& !pending
->empty ())
7073 std::swap (worklist
, pending
);
7074 std::swap (in_worklist
, in_pending
);
7076 bitmap_clear (visited
);
7078 while (!worklist
->empty ())
7080 bb
= worklist
->extract_min ();
7081 bitmap_clear_bit (in_worklist
, bb
->index
);
7082 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
7083 if (!bitmap_bit_p (visited
, bb
->index
))
7087 int oldinsz
, oldoutsz
;
7089 bitmap_set_bit (visited
, bb
->index
);
7091 if (VTI (bb
)->in
.vars
)
7094 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7095 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7096 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7098 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7101 oldinsz
= oldoutsz
= 0;
7103 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7105 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7106 bool first
= true, adjust
= false;
7108 /* Calculate the IN set as the intersection of
7109 predecessor OUT sets. */
7111 dataflow_set_clear (in
);
7112 dst_can_be_shared
= true;
7114 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7115 if (!VTI (e
->src
)->flooded
)
7116 gcc_assert (bb_order
[bb
->index
]
7117 <= bb_order
[e
->src
->index
]);
7120 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7121 first_out
= &VTI (e
->src
)->out
;
7126 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7132 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7135 /* Merge and merge_adjust should keep entries in
7137 shared_hash_htab (in
->vars
)
7138 ->traverse
<dataflow_set
*,
7139 canonicalize_loc_order_check
> (in
);
7141 if (dst_can_be_shared
)
7143 shared_hash_destroy (in
->vars
);
7144 in
->vars
= shared_hash_copy (first_out
->vars
);
7148 VTI (bb
)->flooded
= true;
7152 /* Calculate the IN set as union of predecessor OUT sets. */
7153 dataflow_set_clear (&VTI (bb
)->in
);
7154 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7155 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7158 changed
= compute_bb_dataflow (bb
);
7159 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7160 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7162 if (htabmax
&& htabsz
> htabmax
)
7164 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7165 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7166 "variable tracking size limit exceeded with "
7167 "-fvar-tracking-assignments, retrying without");
7169 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7170 "variable tracking size limit exceeded");
7177 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7179 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7182 if (bitmap_bit_p (visited
, e
->dest
->index
))
7184 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7186 /* Send E->DEST to next round. */
7187 bitmap_set_bit (in_pending
, e
->dest
->index
);
7188 pending
->insert (bb_order
[e
->dest
->index
],
7192 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7194 /* Add E->DEST to current round. */
7195 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7196 worklist
->insert (bb_order
[e
->dest
->index
],
7204 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7206 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7208 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7210 (int)worklist
->nodes (), (int)pending
->nodes (),
7213 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7215 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7216 dump_dataflow_set (&VTI (bb
)->in
);
7217 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7218 dump_dataflow_set (&VTI (bb
)->out
);
7224 if (success
&& MAY_HAVE_DEBUG_BIND_INSNS
)
7225 FOR_EACH_BB_FN (bb
, cfun
)
7226 gcc_assert (VTI (bb
)->flooded
);
7231 sbitmap_free (in_worklist
);
7232 sbitmap_free (in_pending
);
7234 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7238 /* Print the content of the LIST to dump file. */
7241 dump_attrs_list (attrs
*list
)
7243 for (; list
; list
= list
->next
)
7245 if (dv_is_decl_p (list
->dv
))
7246 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7248 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7249 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7251 fprintf (dump_file
, "\n");
7254 /* Print the information about variable *SLOT to dump file. */
7257 dump_var_tracking_slot (variable
**slot
, void *data ATTRIBUTE_UNUSED
)
7259 variable
*var
= *slot
;
7263 /* Continue traversing the hash table. */
7267 /* Print the information about variable VAR to dump file. */
7270 dump_var (variable
*var
)
7273 location_chain
*node
;
7275 if (dv_is_decl_p (var
->dv
))
7277 const_tree decl
= dv_as_decl (var
->dv
);
7279 if (DECL_NAME (decl
))
7281 fprintf (dump_file
, " name: %s",
7282 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7283 if (dump_flags
& TDF_UID
)
7284 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7286 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7287 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7289 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7290 fprintf (dump_file
, "\n");
7294 fputc (' ', dump_file
);
7295 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7298 for (i
= 0; i
< var
->n_var_parts
; i
++)
7300 fprintf (dump_file
, " offset %ld\n",
7301 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7302 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7304 fprintf (dump_file
, " ");
7305 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7306 fprintf (dump_file
, "[uninit]");
7307 print_rtl_single (dump_file
, node
->loc
);
7312 /* Print the information about variables from hash table VARS to dump file. */
7315 dump_vars (variable_table_type
*vars
)
7317 if (vars
->elements () > 0)
7319 fprintf (dump_file
, "Variables:\n");
7320 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7324 /* Print the dataflow set SET to dump file. */
7327 dump_dataflow_set (dataflow_set
*set
)
7331 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7333 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7337 fprintf (dump_file
, "Reg %d:", i
);
7338 dump_attrs_list (set
->regs
[i
]);
7341 dump_vars (shared_hash_htab (set
->vars
));
7342 fprintf (dump_file
, "\n");
7345 /* Print the IN and OUT sets for each basic block to dump file. */
7348 dump_dataflow_sets (void)
7352 FOR_EACH_BB_FN (bb
, cfun
)
7354 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7355 fprintf (dump_file
, "IN:\n");
7356 dump_dataflow_set (&VTI (bb
)->in
);
7357 fprintf (dump_file
, "OUT:\n");
7358 dump_dataflow_set (&VTI (bb
)->out
);
7362 /* Return the variable for DV in dropped_values, inserting one if
7363 requested with INSERT. */
7365 static inline variable
*
7366 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7369 variable
*empty_var
;
7370 onepart_enum onepart
;
7372 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7380 gcc_checking_assert (insert
== INSERT
);
7382 onepart
= dv_onepart_p (dv
);
7384 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7386 empty_var
= onepart_pool_allocate (onepart
);
7388 empty_var
->refcount
= 1;
7389 empty_var
->n_var_parts
= 0;
7390 empty_var
->onepart
= onepart
;
7391 empty_var
->in_changed_variables
= false;
7392 empty_var
->var_part
[0].loc_chain
= NULL
;
7393 empty_var
->var_part
[0].cur_loc
= NULL
;
7394 VAR_LOC_1PAUX (empty_var
) = NULL
;
7395 set_dv_changed (dv
, true);
7402 /* Recover the one-part aux from dropped_values. */
7404 static struct onepart_aux
*
7405 recover_dropped_1paux (variable
*var
)
7409 gcc_checking_assert (var
->onepart
);
7411 if (VAR_LOC_1PAUX (var
))
7412 return VAR_LOC_1PAUX (var
);
7414 if (var
->onepart
== ONEPART_VDECL
)
7417 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7422 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7423 VAR_LOC_1PAUX (dvar
) = NULL
;
7425 return VAR_LOC_1PAUX (var
);
7428 /* Add variable VAR to the hash table of changed variables and
7429 if it has no locations delete it from SET's hash table. */
7432 variable_was_changed (variable
*var
, dataflow_set
*set
)
7434 hashval_t hash
= dv_htab_hash (var
->dv
);
7440 /* Remember this decl or VALUE has been added to changed_variables. */
7441 set_dv_changed (var
->dv
, true);
7443 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7447 variable
*old_var
= *slot
;
7448 gcc_assert (old_var
->in_changed_variables
);
7449 old_var
->in_changed_variables
= false;
7450 if (var
!= old_var
&& var
->onepart
)
7452 /* Restore the auxiliary info from an empty variable
7453 previously created for changed_variables, so it is
7455 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7456 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7457 VAR_LOC_1PAUX (old_var
) = NULL
;
7459 variable_htab_free (*slot
);
7462 if (set
&& var
->n_var_parts
== 0)
7464 onepart_enum onepart
= var
->onepart
;
7465 variable
*empty_var
= NULL
;
7466 variable
**dslot
= NULL
;
7468 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7470 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7471 dv_htab_hash (var
->dv
),
7477 gcc_checking_assert (!empty_var
->in_changed_variables
);
7478 if (!VAR_LOC_1PAUX (var
))
7480 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7481 VAR_LOC_1PAUX (empty_var
) = NULL
;
7484 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7490 empty_var
= onepart_pool_allocate (onepart
);
7491 empty_var
->dv
= var
->dv
;
7492 empty_var
->refcount
= 1;
7493 empty_var
->n_var_parts
= 0;
7494 empty_var
->onepart
= onepart
;
7497 empty_var
->refcount
++;
7502 empty_var
->refcount
++;
7503 empty_var
->in_changed_variables
= true;
7507 empty_var
->var_part
[0].loc_chain
= NULL
;
7508 empty_var
->var_part
[0].cur_loc
= NULL
;
7509 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7510 VAR_LOC_1PAUX (var
) = NULL
;
7516 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7517 recover_dropped_1paux (var
);
7519 var
->in_changed_variables
= true;
7526 if (var
->n_var_parts
== 0)
7531 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7534 if (shared_hash_shared (set
->vars
))
7535 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7537 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7543 /* Look for the index in VAR->var_part corresponding to OFFSET.
7544 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7545 referenced int will be set to the index that the part has or should
7546 have, if it should be inserted. */
7549 find_variable_location_part (variable
*var
, HOST_WIDE_INT offset
,
7550 int *insertion_point
)
7559 if (insertion_point
)
7560 *insertion_point
= 0;
7562 return var
->n_var_parts
- 1;
7565 /* Find the location part. */
7567 high
= var
->n_var_parts
;
7570 pos
= (low
+ high
) / 2;
7571 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7578 if (insertion_point
)
7579 *insertion_point
= pos
;
7581 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7588 set_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7589 decl_or_value dv
, HOST_WIDE_INT offset
,
7590 enum var_init_status initialized
, rtx set_src
)
7593 location_chain
*node
, *next
;
7594 location_chain
**nextp
;
7596 onepart_enum onepart
;
7601 onepart
= var
->onepart
;
7603 onepart
= dv_onepart_p (dv
);
7605 gcc_checking_assert (offset
== 0 || !onepart
);
7606 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7608 if (! flag_var_tracking_uninit
)
7609 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7613 /* Create new variable information. */
7614 var
= onepart_pool_allocate (onepart
);
7617 var
->n_var_parts
= 1;
7618 var
->onepart
= onepart
;
7619 var
->in_changed_variables
= false;
7621 VAR_LOC_1PAUX (var
) = NULL
;
7623 VAR_PART_OFFSET (var
, 0) = offset
;
7624 var
->var_part
[0].loc_chain
= NULL
;
7625 var
->var_part
[0].cur_loc
= NULL
;
7628 nextp
= &var
->var_part
[0].loc_chain
;
7634 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7638 if (GET_CODE (loc
) == VALUE
)
7640 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7641 nextp
= &node
->next
)
7642 if (GET_CODE (node
->loc
) == VALUE
)
7644 if (node
->loc
== loc
)
7649 if (canon_value_cmp (node
->loc
, loc
))
7657 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7665 else if (REG_P (loc
))
7667 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7668 nextp
= &node
->next
)
7669 if (REG_P (node
->loc
))
7671 if (REGNO (node
->loc
) < REGNO (loc
))
7675 if (REGNO (node
->loc
) == REGNO (loc
))
7688 else if (MEM_P (loc
))
7690 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7691 nextp
= &node
->next
)
7692 if (REG_P (node
->loc
))
7694 else if (MEM_P (node
->loc
))
7696 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7708 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7709 nextp
= &node
->next
)
7710 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7718 if (shared_var_p (var
, set
->vars
))
7720 slot
= unshare_variable (set
, slot
, var
, initialized
);
7722 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7723 nextp
= &(*nextp
)->next
)
7725 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7732 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7734 pos
= find_variable_location_part (var
, offset
, &inspos
);
7738 node
= var
->var_part
[pos
].loc_chain
;
7741 && ((REG_P (node
->loc
) && REG_P (loc
)
7742 && REGNO (node
->loc
) == REGNO (loc
))
7743 || rtx_equal_p (node
->loc
, loc
)))
7745 /* LOC is in the beginning of the chain so we have nothing
7747 if (node
->init
< initialized
)
7748 node
->init
= initialized
;
7749 if (set_src
!= NULL
)
7750 node
->set_src
= set_src
;
7756 /* We have to make a copy of a shared variable. */
7757 if (shared_var_p (var
, set
->vars
))
7759 slot
= unshare_variable (set
, slot
, var
, initialized
);
7766 /* We have not found the location part, new one will be created. */
7768 /* We have to make a copy of the shared variable. */
7769 if (shared_var_p (var
, set
->vars
))
7771 slot
= unshare_variable (set
, slot
, var
, initialized
);
7775 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7776 thus there are at most MAX_VAR_PARTS different offsets. */
7777 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7778 && (!var
->n_var_parts
|| !onepart
));
7780 /* We have to move the elements of array starting at index
7781 inspos to the next position. */
7782 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7783 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7786 gcc_checking_assert (!onepart
);
7787 VAR_PART_OFFSET (var
, pos
) = offset
;
7788 var
->var_part
[pos
].loc_chain
= NULL
;
7789 var
->var_part
[pos
].cur_loc
= NULL
;
7792 /* Delete the location from the list. */
7793 nextp
= &var
->var_part
[pos
].loc_chain
;
7794 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7797 if ((REG_P (node
->loc
) && REG_P (loc
)
7798 && REGNO (node
->loc
) == REGNO (loc
))
7799 || rtx_equal_p (node
->loc
, loc
))
7801 /* Save these values, to assign to the new node, before
7802 deleting this one. */
7803 if (node
->init
> initialized
)
7804 initialized
= node
->init
;
7805 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7806 set_src
= node
->set_src
;
7807 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7808 var
->var_part
[pos
].cur_loc
= NULL
;
7814 nextp
= &node
->next
;
7817 nextp
= &var
->var_part
[pos
].loc_chain
;
7820 /* Add the location to the beginning. */
7821 node
= new location_chain
;
7823 node
->init
= initialized
;
7824 node
->set_src
= set_src
;
7825 node
->next
= *nextp
;
7828 /* If no location was emitted do so. */
7829 if (var
->var_part
[pos
].cur_loc
== NULL
)
7830 variable_was_changed (var
, set
);
7835 /* Set the part of variable's location in the dataflow set SET. The
7836 variable part is specified by variable's declaration in DV and
7837 offset OFFSET and the part's location by LOC. IOPT should be
7838 NO_INSERT if the variable is known to be in SET already and the
7839 variable hash table must not be resized, and INSERT otherwise. */
7842 set_variable_part (dataflow_set
*set
, rtx loc
,
7843 decl_or_value dv
, HOST_WIDE_INT offset
,
7844 enum var_init_status initialized
, rtx set_src
,
7845 enum insert_option iopt
)
7849 if (iopt
== NO_INSERT
)
7850 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7853 slot
= shared_hash_find_slot (set
->vars
, dv
);
7855 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7857 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7860 /* Remove all recorded register locations for the given variable part
7861 from dataflow set SET, except for those that are identical to loc.
7862 The variable part is specified by variable's declaration or value
7863 DV and offset OFFSET. */
7866 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7867 HOST_WIDE_INT offset
, rtx set_src
)
7869 variable
*var
= *slot
;
7870 int pos
= find_variable_location_part (var
, offset
, NULL
);
7874 location_chain
*node
, *next
;
7876 /* Remove the register locations from the dataflow set. */
7877 next
= var
->var_part
[pos
].loc_chain
;
7878 for (node
= next
; node
; node
= next
)
7881 if (node
->loc
!= loc
7882 && (!flag_var_tracking_uninit
7885 || !rtx_equal_p (set_src
, node
->set_src
)))
7887 if (REG_P (node
->loc
))
7889 attrs
*anode
, *anext
;
7892 /* Remove the variable part from the register's
7893 list, but preserve any other variable parts
7894 that might be regarded as live in that same
7896 anextp
= &set
->regs
[REGNO (node
->loc
)];
7897 for (anode
= *anextp
; anode
; anode
= anext
)
7899 anext
= anode
->next
;
7900 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7901 && anode
->offset
== offset
)
7907 anextp
= &anode
->next
;
7911 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7919 /* Remove all recorded register locations for the given variable part
7920 from dataflow set SET, except for those that are identical to loc.
7921 The variable part is specified by variable's declaration or value
7922 DV and offset OFFSET. */
7925 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7926 HOST_WIDE_INT offset
, rtx set_src
)
7930 if (!dv_as_opaque (dv
)
7931 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7934 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7938 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7941 /* Delete the part of variable's location from dataflow set SET. The
7942 variable part is specified by its SET->vars slot SLOT and offset
7943 OFFSET and the part's location by LOC. */
7946 delete_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7947 HOST_WIDE_INT offset
)
7949 variable
*var
= *slot
;
7950 int pos
= find_variable_location_part (var
, offset
, NULL
);
7954 location_chain
*node
, *next
;
7955 location_chain
**nextp
;
7959 if (shared_var_p (var
, set
->vars
))
7961 /* If the variable contains the location part we have to
7962 make a copy of the variable. */
7963 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7966 if ((REG_P (node
->loc
) && REG_P (loc
)
7967 && REGNO (node
->loc
) == REGNO (loc
))
7968 || rtx_equal_p (node
->loc
, loc
))
7970 slot
= unshare_variable (set
, slot
, var
,
7971 VAR_INIT_STATUS_UNKNOWN
);
7978 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7979 cur_loc
= VAR_LOC_FROM (var
);
7981 cur_loc
= var
->var_part
[pos
].cur_loc
;
7983 /* Delete the location part. */
7985 nextp
= &var
->var_part
[pos
].loc_chain
;
7986 for (node
= *nextp
; node
; node
= next
)
7989 if ((REG_P (node
->loc
) && REG_P (loc
)
7990 && REGNO (node
->loc
) == REGNO (loc
))
7991 || rtx_equal_p (node
->loc
, loc
))
7993 /* If we have deleted the location which was last emitted
7994 we have to emit new location so add the variable to set
7995 of changed variables. */
7996 if (cur_loc
== node
->loc
)
7999 var
->var_part
[pos
].cur_loc
= NULL
;
8000 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
8001 VAR_LOC_FROM (var
) = NULL
;
8008 nextp
= &node
->next
;
8011 if (var
->var_part
[pos
].loc_chain
== NULL
)
8015 while (pos
< var
->n_var_parts
)
8017 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
8022 variable_was_changed (var
, set
);
8028 /* Delete the part of variable's location from dataflow set SET. The
8029 variable part is specified by variable's declaration or value DV
8030 and offset OFFSET and the part's location by LOC. */
8033 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
8034 HOST_WIDE_INT offset
)
8036 variable
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
8040 delete_slot_part (set
, loc
, slot
, offset
);
8044 /* Structure for passing some other parameters to function
8045 vt_expand_loc_callback. */
8046 struct expand_loc_callback_data
8048 /* The variables and values active at this point. */
8049 variable_table_type
*vars
;
8051 /* Stack of values and debug_exprs under expansion, and their
8053 auto_vec
<rtx
, 4> expanding
;
8055 /* Stack of values and debug_exprs whose expansion hit recursion
8056 cycles. They will have VALUE_RECURSED_INTO marked when added to
8057 this list. This flag will be cleared if any of its dependencies
8058 resolves to a valid location. So, if the flag remains set at the
8059 end of the search, we know no valid location for this one can
8061 auto_vec
<rtx
, 4> pending
;
8063 /* The maximum depth among the sub-expressions under expansion.
8064 Zero indicates no expansion so far. */
8068 /* Allocate the one-part auxiliary data structure for VAR, with enough
8069 room for COUNT dependencies. */
8072 loc_exp_dep_alloc (variable
*var
, int count
)
8076 gcc_checking_assert (var
->onepart
);
8078 /* We can be called with COUNT == 0 to allocate the data structure
8079 without any dependencies, e.g. for the backlinks only. However,
8080 if we are specifying a COUNT, then the dependency list must have
8081 been emptied before. It would be possible to adjust pointers or
8082 force it empty here, but this is better done at an earlier point
8083 in the algorithm, so we instead leave an assertion to catch
8085 gcc_checking_assert (!count
8086 || VAR_LOC_DEP_VEC (var
) == NULL
8087 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8089 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8092 allocsize
= offsetof (struct onepart_aux
, deps
)
8093 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8095 if (VAR_LOC_1PAUX (var
))
8097 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8098 VAR_LOC_1PAUX (var
), allocsize
);
8099 /* If the reallocation moves the onepaux structure, the
8100 back-pointer to BACKLINKS in the first list member will still
8101 point to its old location. Adjust it. */
8102 if (VAR_LOC_DEP_LST (var
))
8103 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8107 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8108 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8109 VAR_LOC_FROM (var
) = NULL
;
8110 VAR_LOC_DEPTH (var
).complexity
= 0;
8111 VAR_LOC_DEPTH (var
).entryvals
= 0;
8113 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8116 /* Remove all entries from the vector of active dependencies of VAR,
8117 removing them from the back-links lists too. */
8120 loc_exp_dep_clear (variable
*var
)
8122 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8124 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8126 led
->next
->pprev
= led
->pprev
;
8128 *led
->pprev
= led
->next
;
8129 VAR_LOC_DEP_VEC (var
)->pop ();
8133 /* Insert an active dependency from VAR on X to the vector of
8134 dependencies, and add the corresponding back-link to X's list of
8135 back-links in VARS. */
8138 loc_exp_insert_dep (variable
*var
, rtx x
, variable_table_type
*vars
)
8144 dv
= dv_from_rtx (x
);
8146 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8147 an additional look up? */
8148 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8152 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8153 gcc_checking_assert (xvar
);
8156 /* No point in adding the same backlink more than once. This may
8157 arise if say the same value appears in two complex expressions in
8158 the same loc_list, or even more than once in a single
8160 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8163 if (var
->onepart
== NOT_ONEPART
)
8164 led
= new loc_exp_dep
;
8168 memset (&empty
, 0, sizeof (empty
));
8169 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8170 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8175 loc_exp_dep_alloc (xvar
, 0);
8176 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8177 led
->next
= *led
->pprev
;
8179 led
->next
->pprev
= &led
->next
;
8183 /* Create active dependencies of VAR on COUNT values starting at
8184 VALUE, and corresponding back-links to the entries in VARS. Return
8185 true if we found any pending-recursion results. */
8188 loc_exp_dep_set (variable
*var
, rtx result
, rtx
*value
, int count
,
8189 variable_table_type
*vars
)
8191 bool pending_recursion
= false;
8193 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8194 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8196 /* Set up all dependencies from last_child (as set up at the end of
8197 the loop above) to the end. */
8198 loc_exp_dep_alloc (var
, count
);
8204 if (!pending_recursion
)
8205 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8207 loc_exp_insert_dep (var
, x
, vars
);
8210 return pending_recursion
;
8213 /* Notify the back-links of IVAR that are pending recursion that we
8214 have found a non-NIL value for it, so they are cleared for another
8215 attempt to compute a current location. */
8218 notify_dependents_of_resolved_value (variable
*ivar
, variable_table_type
*vars
)
8220 loc_exp_dep
*led
, *next
;
8222 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8224 decl_or_value dv
= led
->dv
;
8229 if (dv_is_value_p (dv
))
8231 rtx value
= dv_as_value (dv
);
8233 /* If we have already resolved it, leave it alone. */
8234 if (!VALUE_RECURSED_INTO (value
))
8237 /* Check that VALUE_RECURSED_INTO, true from the test above,
8238 implies NO_LOC_P. */
8239 gcc_checking_assert (NO_LOC_P (value
));
8241 /* We won't notify variables that are being expanded,
8242 because their dependency list is cleared before
8244 NO_LOC_P (value
) = false;
8245 VALUE_RECURSED_INTO (value
) = false;
8247 gcc_checking_assert (dv_changed_p (dv
));
8251 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8252 if (!dv_changed_p (dv
))
8256 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8259 var
= variable_from_dropped (dv
, NO_INSERT
);
8262 notify_dependents_of_resolved_value (var
, vars
);
8265 next
->pprev
= led
->pprev
;
8273 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8274 int max_depth
, void *data
);
8276 /* Return the combined depth, when one sub-expression evaluated to
8277 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8279 static inline expand_depth
8280 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8282 /* If we didn't find anything, stick with what we had. */
8283 if (!best_depth
.complexity
)
8286 /* If we found hadn't found anything, use the depth of the current
8287 expression. Do NOT add one extra level, we want to compute the
8288 maximum depth among sub-expressions. We'll increment it later,
8290 if (!saved_depth
.complexity
)
8293 /* Combine the entryval count so that regardless of which one we
8294 return, the entryval count is accurate. */
8295 best_depth
.entryvals
= saved_depth
.entryvals
8296 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8298 if (saved_depth
.complexity
< best_depth
.complexity
)
8304 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8305 DATA for cselib expand callback. If PENDRECP is given, indicate in
8306 it whether any sub-expression couldn't be fully evaluated because
8307 it is pending recursion resolution. */
8310 vt_expand_var_loc_chain (variable
*var
, bitmap regs
, void *data
,
8313 struct expand_loc_callback_data
*elcd
8314 = (struct expand_loc_callback_data
*) data
;
8315 location_chain
*loc
, *next
;
8317 int first_child
, result_first_child
, last_child
;
8318 bool pending_recursion
;
8319 rtx loc_from
= NULL
;
8320 struct elt_loc_list
*cloc
= NULL
;
8321 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8322 int wanted_entryvals
, found_entryvals
= 0;
8324 /* Clear all backlinks pointing at this, so that we're not notified
8325 while we're active. */
8326 loc_exp_dep_clear (var
);
8329 if (var
->onepart
== ONEPART_VALUE
)
8331 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8333 gcc_checking_assert (cselib_preserved_value_p (val
));
8338 first_child
= result_first_child
= last_child
8339 = elcd
->expanding
.length ();
8341 wanted_entryvals
= found_entryvals
;
8343 /* Attempt to expand each available location in turn. */
8344 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8345 loc
|| cloc
; loc
= next
)
8347 result_first_child
= last_child
;
8351 loc_from
= cloc
->loc
;
8354 if (unsuitable_loc (loc_from
))
8359 loc_from
= loc
->loc
;
8363 gcc_checking_assert (!unsuitable_loc (loc_from
));
8365 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8366 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8367 vt_expand_loc_callback
, data
);
8368 last_child
= elcd
->expanding
.length ();
8372 depth
= elcd
->depth
;
8374 gcc_checking_assert (depth
.complexity
8375 || result_first_child
== last_child
);
8377 if (last_child
- result_first_child
!= 1)
8379 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8384 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8386 if (depth
.entryvals
<= wanted_entryvals
)
8388 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8389 found_entryvals
= depth
.entryvals
;
8395 /* Set it up in case we leave the loop. */
8396 depth
.complexity
= depth
.entryvals
= 0;
8398 result_first_child
= first_child
;
8401 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8403 /* We found entries with ENTRY_VALUEs and skipped them. Since
8404 we could not find any expansions without ENTRY_VALUEs, but we
8405 found at least one with them, go back and get an entry with
8406 the minimum number ENTRY_VALUE count that we found. We could
8407 avoid looping, but since each sub-loc is already resolved,
8408 the re-expansion should be trivial. ??? Should we record all
8409 attempted locs as dependencies, so that we retry the
8410 expansion should any of them change, in the hope it can give
8411 us a new entry without an ENTRY_VALUE? */
8412 elcd
->expanding
.truncate (first_child
);
8416 /* Register all encountered dependencies as active. */
8417 pending_recursion
= loc_exp_dep_set
8418 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8419 last_child
- result_first_child
, elcd
->vars
);
8421 elcd
->expanding
.truncate (first_child
);
8423 /* Record where the expansion came from. */
8424 gcc_checking_assert (!result
|| !pending_recursion
);
8425 VAR_LOC_FROM (var
) = loc_from
;
8426 VAR_LOC_DEPTH (var
) = depth
;
8428 gcc_checking_assert (!depth
.complexity
== !result
);
8430 elcd
->depth
= update_depth (saved_depth
, depth
);
8432 /* Indicate whether any of the dependencies are pending recursion
8435 *pendrecp
= pending_recursion
;
8437 if (!pendrecp
|| !pending_recursion
)
8438 var
->var_part
[0].cur_loc
= result
;
8443 /* Callback for cselib_expand_value, that looks for expressions
8444 holding the value in the var-tracking hash tables. Return X for
8445 standard processing, anything else is to be used as-is. */
8448 vt_expand_loc_callback (rtx x
, bitmap regs
,
8449 int max_depth ATTRIBUTE_UNUSED
,
8452 struct expand_loc_callback_data
*elcd
8453 = (struct expand_loc_callback_data
*) data
;
8457 bool pending_recursion
= false;
8458 bool from_empty
= false;
8460 switch (GET_CODE (x
))
8463 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8465 vt_expand_loc_callback
, data
);
8470 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8471 GET_MODE (SUBREG_REG (x
)),
8474 /* Invalid SUBREGs are ok in debug info. ??? We could try
8475 alternate expansions for the VALUE as well. */
8477 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8483 dv
= dv_from_rtx (x
);
8490 elcd
->expanding
.safe_push (x
);
8492 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8493 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8497 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8501 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8506 var
= variable_from_dropped (dv
, INSERT
);
8509 gcc_checking_assert (var
);
8511 if (!dv_changed_p (dv
))
8513 gcc_checking_assert (!NO_LOC_P (x
));
8514 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8515 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8516 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8518 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8520 return var
->var_part
[0].cur_loc
;
8523 VALUE_RECURSED_INTO (x
) = true;
8524 /* This is tentative, but it makes some tests simpler. */
8525 NO_LOC_P (x
) = true;
8527 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8529 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8531 if (pending_recursion
)
8533 gcc_checking_assert (!result
);
8534 elcd
->pending
.safe_push (x
);
8538 NO_LOC_P (x
) = !result
;
8539 VALUE_RECURSED_INTO (x
) = false;
8540 set_dv_changed (dv
, false);
8543 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8549 /* While expanding variables, we may encounter recursion cycles
8550 because of mutual (possibly indirect) dependencies between two
8551 particular variables (or values), say A and B. If we're trying to
8552 expand A when we get to B, which in turn attempts to expand A, if
8553 we can't find any other expansion for B, we'll add B to this
8554 pending-recursion stack, and tentatively return NULL for its
8555 location. This tentative value will be used for any other
8556 occurrences of B, unless A gets some other location, in which case
8557 it will notify B that it is worth another try at computing a
8558 location for it, and it will use the location computed for A then.
8559 At the end of the expansion, the tentative NULL locations become
8560 final for all members of PENDING that didn't get a notification.
8561 This function performs this finalization of NULL locations. */
8564 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8566 while (!pending
->is_empty ())
8568 rtx x
= pending
->pop ();
8571 if (!VALUE_RECURSED_INTO (x
))
8574 gcc_checking_assert (NO_LOC_P (x
));
8575 VALUE_RECURSED_INTO (x
) = false;
8576 dv
= dv_from_rtx (x
);
8577 gcc_checking_assert (dv_changed_p (dv
));
8578 set_dv_changed (dv
, false);
8582 /* Initialize expand_loc_callback_data D with variable hash table V.
8583 It must be a macro because of alloca (vec stack). */
8584 #define INIT_ELCD(d, v) \
8588 (d).depth.complexity = (d).depth.entryvals = 0; \
8591 /* Finalize expand_loc_callback_data D, resolved to location L. */
8592 #define FINI_ELCD(d, l) \
8595 resolve_expansions_pending_recursion (&(d).pending); \
8596 (d).pending.release (); \
8597 (d).expanding.release (); \
8599 if ((l) && MEM_P (l)) \
8600 (l) = targetm.delegitimize_address (l); \
8604 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8605 equivalences in VARS, updating their CUR_LOCs in the process. */
8608 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8610 struct expand_loc_callback_data data
;
8613 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
8616 INIT_ELCD (data
, vars
);
8618 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8619 vt_expand_loc_callback
, &data
);
8621 FINI_ELCD (data
, result
);
8626 /* Expand the one-part VARiable to a location, using the equivalences
8627 in VARS, updating their CUR_LOCs in the process. */
8630 vt_expand_1pvar (variable
*var
, variable_table_type
*vars
)
8632 struct expand_loc_callback_data data
;
8635 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8637 if (!dv_changed_p (var
->dv
))
8638 return var
->var_part
[0].cur_loc
;
8640 INIT_ELCD (data
, vars
);
8642 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8644 gcc_checking_assert (data
.expanding
.is_empty ());
8646 FINI_ELCD (data
, loc
);
8651 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8652 additional parameters: WHERE specifies whether the note shall be emitted
8653 before or after instruction INSN. */
8656 emit_note_insn_var_location (variable
**varp
, emit_note_data
*data
)
8658 variable
*var
= *varp
;
8659 rtx_insn
*insn
= data
->insn
;
8660 enum emit_note_where where
= data
->where
;
8661 variable_table_type
*vars
= data
->vars
;
8664 int i
, j
, n_var_parts
;
8666 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8667 HOST_WIDE_INT last_limit
;
8668 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8669 rtx loc
[MAX_VAR_PARTS
];
8673 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8674 || var
->onepart
== ONEPART_VDECL
);
8676 decl
= dv_as_decl (var
->dv
);
8682 for (i
= 0; i
< var
->n_var_parts
; i
++)
8683 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8684 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8685 for (i
= 0; i
< var
->n_var_parts
; i
++)
8687 machine_mode mode
, wider_mode
;
8689 HOST_WIDE_INT offset
, size
, wider_size
;
8691 if (i
== 0 && var
->onepart
)
8693 gcc_checking_assert (var
->n_var_parts
== 1);
8695 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8696 loc2
= vt_expand_1pvar (var
, vars
);
8700 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8705 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8707 offset
= VAR_PART_OFFSET (var
, i
);
8708 loc2
= var
->var_part
[i
].cur_loc
;
8709 if (loc2
&& GET_CODE (loc2
) == MEM
8710 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8712 rtx depval
= XEXP (loc2
, 0);
8714 loc2
= vt_expand_loc (loc2
, vars
);
8717 loc_exp_insert_dep (var
, depval
, vars
);
8724 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8725 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8726 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8728 initialized
= lc
->init
;
8734 offsets
[n_var_parts
] = offset
;
8740 loc
[n_var_parts
] = loc2
;
8741 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8742 if (mode
== VOIDmode
&& var
->onepart
)
8743 mode
= DECL_MODE (decl
);
8744 /* We ony track subparts of constant-sized objects, since at present
8745 there's no representation for polynomial pieces. */
8746 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
8751 last_limit
= offsets
[n_var_parts
] + size
;
8753 /* Attempt to merge adjacent registers or memory. */
8754 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8755 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8757 if (j
< var
->n_var_parts
8758 && GET_MODE_WIDER_MODE (mode
).exists (&wider_mode
)
8759 && GET_MODE_SIZE (wider_mode
).is_constant (&wider_size
)
8760 && var
->var_part
[j
].cur_loc
8761 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8762 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8763 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8764 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8765 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8769 if (REG_P (loc
[n_var_parts
])
8770 && hard_regno_nregs (REGNO (loc
[n_var_parts
]), mode
) * 2
8771 == hard_regno_nregs (REGNO (loc
[n_var_parts
]), wider_mode
)
8772 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8775 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8776 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8778 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8779 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8782 if (!REG_P (new_loc
)
8783 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8786 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8789 else if (MEM_P (loc
[n_var_parts
])
8790 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8791 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8792 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
8794 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
8795 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
8796 XEXP (XEXP (loc2
, 0), 0))
8797 && INTVAL (XEXP (XEXP (loc2
, 0), 1)) == size
)
8798 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
8799 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8800 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
8801 XEXP (XEXP (loc2
, 0), 0))
8802 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1)) + size
8803 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
8804 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8810 loc
[n_var_parts
] = new_loc
;
8812 last_limit
= offsets
[n_var_parts
] + wider_size
;
8818 poly_uint64 type_size_unit
8819 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl
)));
8820 if (maybe_lt (poly_uint64 (last_limit
), type_size_unit
))
8823 if (! flag_var_tracking_uninit
)
8824 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8828 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8829 else if (n_var_parts
== 1)
8833 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8834 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8838 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8840 else if (n_var_parts
)
8844 for (i
= 0; i
< n_var_parts
; i
++)
8846 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8848 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8849 gen_rtvec_v (n_var_parts
, loc
));
8850 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8851 parallel
, initialized
);
8854 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8856 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8857 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8858 NOTE_DURING_CALL_P (note
) = true;
8862 /* Make sure that the call related notes come first. */
8863 while (NEXT_INSN (insn
)
8865 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8866 && NOTE_DURING_CALL_P (insn
))
8867 insn
= NEXT_INSN (insn
);
8869 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8870 && NOTE_DURING_CALL_P (insn
))
8871 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8873 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8875 NOTE_VAR_LOCATION (note
) = note_vl
;
8877 set_dv_changed (var
->dv
, false);
8878 gcc_assert (var
->in_changed_variables
);
8879 var
->in_changed_variables
= false;
8880 changed_variables
->clear_slot (varp
);
8882 /* Continue traversing the hash table. */
8886 /* While traversing changed_variables, push onto DATA (a stack of RTX
8887 values) entries that aren't user variables. */
8890 var_track_values_to_stack (variable
**slot
,
8891 vec
<rtx
, va_heap
> *changed_values_stack
)
8893 variable
*var
= *slot
;
8895 if (var
->onepart
== ONEPART_VALUE
)
8896 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8897 else if (var
->onepart
== ONEPART_DEXPR
)
8898 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8903 /* Remove from changed_variables the entry whose DV corresponds to
8904 value or debug_expr VAL. */
8906 remove_value_from_changed_variables (rtx val
)
8908 decl_or_value dv
= dv_from_rtx (val
);
8912 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8915 var
->in_changed_variables
= false;
8916 changed_variables
->clear_slot (slot
);
8919 /* If VAL (a value or debug_expr) has backlinks to variables actively
8920 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8921 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8922 have dependencies of their own to notify. */
8925 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8926 vec
<rtx
, va_heap
> *changed_values_stack
)
8931 decl_or_value dv
= dv_from_rtx (val
);
8933 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8936 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8938 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8942 while ((led
= VAR_LOC_DEP_LST (var
)))
8944 decl_or_value ldv
= led
->dv
;
8947 /* Deactivate and remove the backlink, as it was “used up”. It
8948 makes no sense to attempt to notify the same entity again:
8949 either it will be recomputed and re-register an active
8950 dependency, or it will still have the changed mark. */
8952 led
->next
->pprev
= led
->pprev
;
8954 *led
->pprev
= led
->next
;
8958 if (dv_changed_p (ldv
))
8961 switch (dv_onepart_p (ldv
))
8965 set_dv_changed (ldv
, true);
8966 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8970 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8971 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8972 variable_was_changed (ivar
, NULL
);
8977 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8980 int i
= ivar
->n_var_parts
;
8983 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8985 if (loc
&& GET_CODE (loc
) == MEM
8986 && XEXP (loc
, 0) == val
)
8988 variable_was_changed (ivar
, NULL
);
9001 /* Take out of changed_variables any entries that don't refer to use
9002 variables. Back-propagate change notifications from values and
9003 debug_exprs to their active dependencies in HTAB or in
9004 CHANGED_VARIABLES. */
9007 process_changed_values (variable_table_type
*htab
)
9011 auto_vec
<rtx
, 20> changed_values_stack
;
9013 /* Move values from changed_variables to changed_values_stack. */
9015 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
9016 (&changed_values_stack
);
9018 /* Back-propagate change notifications in values while popping
9019 them from the stack. */
9020 for (n
= i
= changed_values_stack
.length ();
9021 i
> 0; i
= changed_values_stack
.length ())
9023 val
= changed_values_stack
.pop ();
9024 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
9026 /* This condition will hold when visiting each of the entries
9027 originally in changed_variables. We can't remove them
9028 earlier because this could drop the backlinks before we got a
9029 chance to use them. */
9032 remove_value_from_changed_variables (val
);
9038 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9039 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9040 the notes shall be emitted before of after instruction INSN. */
9043 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
9046 emit_note_data data
;
9047 variable_table_type
*htab
= shared_hash_htab (vars
);
9049 if (!changed_variables
->elements ())
9052 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9053 process_changed_values (htab
);
9060 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
9063 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9064 same variable in hash table DATA or is not there at all. */
9067 emit_notes_for_differences_1 (variable
**slot
, variable_table_type
*new_vars
)
9069 variable
*old_var
, *new_var
;
9072 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9076 /* Variable has disappeared. */
9077 variable
*empty_var
= NULL
;
9079 if (old_var
->onepart
== ONEPART_VALUE
9080 || old_var
->onepart
== ONEPART_DEXPR
)
9082 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9085 gcc_checking_assert (!empty_var
->in_changed_variables
);
9086 if (!VAR_LOC_1PAUX (old_var
))
9088 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9089 VAR_LOC_1PAUX (empty_var
) = NULL
;
9092 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9098 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9099 empty_var
->dv
= old_var
->dv
;
9100 empty_var
->refcount
= 0;
9101 empty_var
->n_var_parts
= 0;
9102 empty_var
->onepart
= old_var
->onepart
;
9103 empty_var
->in_changed_variables
= false;
9106 if (empty_var
->onepart
)
9108 /* Propagate the auxiliary data to (ultimately)
9109 changed_variables. */
9110 empty_var
->var_part
[0].loc_chain
= NULL
;
9111 empty_var
->var_part
[0].cur_loc
= NULL
;
9112 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9113 VAR_LOC_1PAUX (old_var
) = NULL
;
9115 variable_was_changed (empty_var
, NULL
);
9116 /* Continue traversing the hash table. */
9119 /* Update cur_loc and one-part auxiliary data, before new_var goes
9120 through variable_was_changed. */
9121 if (old_var
!= new_var
&& new_var
->onepart
)
9123 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9124 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9125 VAR_LOC_1PAUX (old_var
) = NULL
;
9126 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9128 if (variable_different_p (old_var
, new_var
))
9129 variable_was_changed (new_var
, NULL
);
9131 /* Continue traversing the hash table. */
9135 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9139 emit_notes_for_differences_2 (variable
**slot
, variable_table_type
*old_vars
)
9141 variable
*old_var
, *new_var
;
9144 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9148 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9149 new_var
->var_part
[i
].cur_loc
= NULL
;
9150 variable_was_changed (new_var
, NULL
);
9153 /* Continue traversing the hash table. */
9157 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9161 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9162 dataflow_set
*new_set
)
9164 shared_hash_htab (old_set
->vars
)
9165 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9166 (shared_hash_htab (new_set
->vars
));
9167 shared_hash_htab (new_set
->vars
)
9168 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9169 (shared_hash_htab (old_set
->vars
));
9170 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9173 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9176 next_non_note_insn_var_location (rtx_insn
*insn
)
9180 insn
= NEXT_INSN (insn
);
9183 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9190 /* Emit the notes for changes of location parts in the basic block BB. */
9193 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9196 micro_operation
*mo
;
9198 dataflow_set_clear (set
);
9199 dataflow_set_copy (set
, &VTI (bb
)->in
);
9201 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9203 rtx_insn
*insn
= mo
->insn
;
9204 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9209 dataflow_set_clear_at_call (set
, insn
);
9210 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9212 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9215 XEXP (XEXP (*p
, 0), 1)
9216 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9217 shared_hash_htab (set
->vars
));
9218 /* If expansion is successful, keep it in the list. */
9219 if (XEXP (XEXP (*p
, 0), 1))
9221 XEXP (XEXP (*p
, 0), 1)
9222 = copy_rtx_if_shared (XEXP (XEXP (*p
, 0), 1));
9225 /* Otherwise, if the following item is data_value for it,
9227 else if (XEXP (*p
, 1)
9228 && REG_P (XEXP (XEXP (*p
, 0), 0))
9229 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9230 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9232 && REGNO (XEXP (XEXP (*p
, 0), 0))
9233 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9235 *p
= XEXP (XEXP (*p
, 1), 1);
9236 /* Just drop this item. */
9240 add_reg_note (insn
, REG_CALL_ARG_LOCATION
, arguments
);
9246 rtx loc
= mo
->u
.loc
;
9249 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9251 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9253 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9259 rtx loc
= mo
->u
.loc
;
9263 if (GET_CODE (loc
) == CONCAT
)
9265 val
= XEXP (loc
, 0);
9266 vloc
= XEXP (loc
, 1);
9274 var
= PAT_VAR_LOCATION_DECL (vloc
);
9276 clobber_variable_part (set
, NULL_RTX
,
9277 dv_from_decl (var
), 0, NULL_RTX
);
9280 if (VAL_NEEDS_RESOLUTION (loc
))
9281 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9282 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9283 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9286 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9287 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9288 dv_from_decl (var
), 0,
9289 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9292 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9298 rtx loc
= mo
->u
.loc
;
9299 rtx val
, vloc
, uloc
;
9301 vloc
= uloc
= XEXP (loc
, 1);
9302 val
= XEXP (loc
, 0);
9304 if (GET_CODE (val
) == CONCAT
)
9306 uloc
= XEXP (val
, 1);
9307 val
= XEXP (val
, 0);
9310 if (VAL_NEEDS_RESOLUTION (loc
))
9311 val_resolve (set
, val
, vloc
, insn
);
9313 val_store (set
, val
, uloc
, insn
, false);
9315 if (VAL_HOLDS_TRACK_EXPR (loc
))
9317 if (GET_CODE (uloc
) == REG
)
9318 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9320 else if (GET_CODE (uloc
) == MEM
)
9321 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9325 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9331 rtx loc
= mo
->u
.loc
;
9332 rtx val
, vloc
, uloc
;
9336 uloc
= XEXP (vloc
, 1);
9337 val
= XEXP (vloc
, 0);
9340 if (GET_CODE (uloc
) == SET
)
9342 dstv
= SET_DEST (uloc
);
9343 srcv
= SET_SRC (uloc
);
9351 if (GET_CODE (val
) == CONCAT
)
9353 dstv
= vloc
= XEXP (val
, 1);
9354 val
= XEXP (val
, 0);
9357 if (GET_CODE (vloc
) == SET
)
9359 srcv
= SET_SRC (vloc
);
9361 gcc_assert (val
!= srcv
);
9362 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9364 dstv
= vloc
= SET_DEST (vloc
);
9366 if (VAL_NEEDS_RESOLUTION (loc
))
9367 val_resolve (set
, val
, srcv
, insn
);
9369 else if (VAL_NEEDS_RESOLUTION (loc
))
9371 gcc_assert (GET_CODE (uloc
) == SET
9372 && GET_CODE (SET_SRC (uloc
)) == REG
);
9373 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9376 if (VAL_HOLDS_TRACK_EXPR (loc
))
9378 if (VAL_EXPR_IS_CLOBBERED (loc
))
9381 var_reg_delete (set
, uloc
, true);
9382 else if (MEM_P (uloc
))
9384 gcc_assert (MEM_P (dstv
));
9385 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9386 var_mem_delete (set
, dstv
, true);
9391 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9392 rtx src
= NULL
, dst
= uloc
;
9393 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9395 if (GET_CODE (uloc
) == SET
)
9397 src
= SET_SRC (uloc
);
9398 dst
= SET_DEST (uloc
);
9403 status
= find_src_status (set
, src
);
9405 src
= find_src_set_src (set
, src
);
9409 var_reg_delete_and_set (set
, dst
, !copied_p
,
9411 else if (MEM_P (dst
))
9413 gcc_assert (MEM_P (dstv
));
9414 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9415 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9420 else if (REG_P (uloc
))
9421 var_regno_delete (set
, REGNO (uloc
));
9422 else if (MEM_P (uloc
))
9424 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9425 gcc_checking_assert (vloc
== dstv
);
9427 clobber_overlapping_mems (set
, vloc
);
9430 val_store (set
, val
, dstv
, insn
, true);
9432 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9439 rtx loc
= mo
->u
.loc
;
9442 if (GET_CODE (loc
) == SET
)
9444 set_src
= SET_SRC (loc
);
9445 loc
= SET_DEST (loc
);
9449 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9452 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9455 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9462 rtx loc
= mo
->u
.loc
;
9463 enum var_init_status src_status
;
9466 if (GET_CODE (loc
) == SET
)
9468 set_src
= SET_SRC (loc
);
9469 loc
= SET_DEST (loc
);
9472 src_status
= find_src_status (set
, set_src
);
9473 set_src
= find_src_set_src (set
, set_src
);
9476 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9478 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9480 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9487 rtx loc
= mo
->u
.loc
;
9490 var_reg_delete (set
, loc
, false);
9492 var_mem_delete (set
, loc
, false);
9494 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9500 rtx loc
= mo
->u
.loc
;
9503 var_reg_delete (set
, loc
, true);
9505 var_mem_delete (set
, loc
, true);
9507 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9513 set
->stack_adjust
+= mo
->u
.adjust
;
9519 /* Emit notes for the whole function. */
9522 vt_emit_notes (void)
9527 gcc_assert (!changed_variables
->elements ());
9529 /* Free memory occupied by the out hash tables, as they aren't used
9531 FOR_EACH_BB_FN (bb
, cfun
)
9532 dataflow_set_clear (&VTI (bb
)->out
);
9534 /* Enable emitting notes by functions (mainly by set_variable_part and
9535 delete_variable_part). */
9538 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9539 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9541 dataflow_set_init (&cur
);
9543 FOR_EACH_BB_FN (bb
, cfun
)
9545 /* Emit the notes for changes of variable locations between two
9546 subsequent basic blocks. */
9547 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9549 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9550 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9552 /* Emit the notes for the changes in the basic block itself. */
9553 emit_notes_in_bb (bb
, &cur
);
9555 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9556 delete local_get_addr_cache
;
9557 local_get_addr_cache
= NULL
;
9559 /* Free memory occupied by the in hash table, we won't need it
9561 dataflow_set_clear (&VTI (bb
)->in
);
9565 shared_hash_htab (cur
.vars
)
9566 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9567 (shared_hash_htab (empty_shared_hash
));
9569 dataflow_set_destroy (&cur
);
9571 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9572 delete dropped_values
;
9573 dropped_values
= NULL
;
9578 /* If there is a declaration and offset associated with register/memory RTL
9579 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9582 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, poly_int64
*offsetp
)
9586 if (REG_ATTRS (rtl
))
9588 *declp
= REG_EXPR (rtl
);
9589 *offsetp
= REG_OFFSET (rtl
);
9593 else if (GET_CODE (rtl
) == PARALLEL
)
9595 tree decl
= NULL_TREE
;
9596 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9597 int len
= XVECLEN (rtl
, 0), i
;
9599 for (i
= 0; i
< len
; i
++)
9601 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9602 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9605 decl
= REG_EXPR (reg
);
9606 if (REG_EXPR (reg
) != decl
)
9608 HOST_WIDE_INT this_offset
;
9609 if (!track_offset_p (REG_OFFSET (reg
), &this_offset
))
9611 offset
= MIN (offset
, this_offset
);
9621 else if (MEM_P (rtl
))
9623 if (MEM_ATTRS (rtl
))
9625 *declp
= MEM_EXPR (rtl
);
9626 *offsetp
= int_mem_offset (rtl
);
9633 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9637 record_entry_value (cselib_val
*val
, rtx rtl
)
9639 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9641 ENTRY_VALUE_EXP (ev
) = rtl
;
9643 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9646 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9649 vt_add_function_parameter (tree parm
)
9651 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9652 rtx incoming
= DECL_INCOMING_RTL (parm
);
9658 bool incoming_ok
= true;
9660 if (TREE_CODE (parm
) != PARM_DECL
)
9663 if (!decl_rtl
|| !incoming
)
9666 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9669 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9670 rewrite the incoming location of parameters passed on the stack
9671 into MEMs based on the argument pointer, so that incoming doesn't
9672 depend on a pseudo. */
9673 if (MEM_P (incoming
)
9674 && (XEXP (incoming
, 0) == crtl
->args
.internal_arg_pointer
9675 || (GET_CODE (XEXP (incoming
, 0)) == PLUS
9676 && XEXP (XEXP (incoming
, 0), 0)
9677 == crtl
->args
.internal_arg_pointer
9678 && CONST_INT_P (XEXP (XEXP (incoming
, 0), 1)))))
9680 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9681 if (GET_CODE (XEXP (incoming
, 0)) == PLUS
)
9682 off
+= INTVAL (XEXP (XEXP (incoming
, 0), 1));
9684 = replace_equiv_address_nv (incoming
,
9685 plus_constant (Pmode
,
9686 arg_pointer_rtx
, off
));
9689 #ifdef HAVE_window_save
9690 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9691 If the target machine has an explicit window save instruction, the
9692 actual entry value is the corresponding OUTGOING_REGNO instead. */
9693 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9695 if (REG_P (incoming
)
9696 && HARD_REGISTER_P (incoming
)
9697 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9700 p
.incoming
= incoming
;
9702 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9703 OUTGOING_REGNO (REGNO (incoming
)), 0);
9704 p
.outgoing
= incoming
;
9705 vec_safe_push (windowed_parm_regs
, p
);
9707 else if (GET_CODE (incoming
) == PARALLEL
)
9710 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9713 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9715 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9718 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9719 OUTGOING_REGNO (REGNO (reg
)), 0);
9721 XVECEXP (outgoing
, 0, i
)
9722 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9723 XEXP (XVECEXP (incoming
, 0, i
), 1));
9724 vec_safe_push (windowed_parm_regs
, p
);
9727 incoming
= outgoing
;
9729 else if (MEM_P (incoming
)
9730 && REG_P (XEXP (incoming
, 0))
9731 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9733 rtx reg
= XEXP (incoming
, 0);
9734 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9738 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9740 vec_safe_push (windowed_parm_regs
, p
);
9741 incoming
= replace_equiv_address_nv (incoming
, reg
);
9747 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9749 incoming_ok
= false;
9750 if (MEM_P (incoming
))
9752 /* This means argument is passed by invisible reference. */
9758 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9760 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9761 GET_MODE (decl_rtl
));
9770 /* If that DECL_RTL wasn't a pseudo that got spilled to
9771 memory, bail out. Otherwise, the spill slot sharing code
9772 will force the memory to reference spill_slot_decl (%sfp),
9773 so we don't match above. That's ok, the pseudo must have
9774 referenced the entire parameter, so just reset OFFSET. */
9775 if (decl
!= get_spill_slot_decl (false))
9780 HOST_WIDE_INT const_offset
;
9781 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &const_offset
))
9784 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9786 dv
= dv_from_decl (parm
);
9788 if (target_for_debug_bind (parm
)
9789 /* We can't deal with these right now, because this kind of
9790 variable is single-part. ??? We could handle parallels
9791 that describe multiple locations for the same single
9792 value, but ATM we don't. */
9793 && GET_CODE (incoming
) != PARALLEL
)
9798 /* ??? We shouldn't ever hit this, but it may happen because
9799 arguments passed by invisible reference aren't dealt with
9800 above: incoming-rtl will have Pmode rather than the
9801 expected mode for the type. */
9805 lowpart
= var_lowpart (mode
, incoming
);
9809 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9810 VOIDmode
, get_insns ());
9812 /* ??? Float-typed values in memory are not handled by
9816 preserve_value (val
);
9817 set_variable_part (out
, val
->val_rtx
, dv
, const_offset
,
9818 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9819 dv
= dv_from_value (val
->val_rtx
);
9822 if (MEM_P (incoming
))
9824 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9825 VOIDmode
, get_insns ());
9828 preserve_value (val
);
9829 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9834 if (REG_P (incoming
))
9836 incoming
= var_lowpart (mode
, incoming
);
9837 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9838 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, const_offset
,
9840 set_variable_part (out
, incoming
, dv
, const_offset
,
9841 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9842 if (dv_is_value_p (dv
))
9844 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9845 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9846 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9848 machine_mode indmode
9849 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9850 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9851 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9856 preserve_value (val
);
9857 record_entry_value (val
, mem
);
9858 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9859 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9864 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9868 /* The following code relies on vt_get_decl_and_offset returning true for
9869 incoming, which might not be always the case. */
9872 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9874 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9875 /* vt_get_decl_and_offset has already checked that the offset
9876 is a valid variable part. */
9877 const_offset
= get_tracked_reg_offset (reg
);
9878 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9879 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, const_offset
, reg
);
9880 set_variable_part (out
, reg
, dv
, const_offset
,
9881 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9884 else if (MEM_P (incoming
))
9886 incoming
= var_lowpart (mode
, incoming
);
9887 set_variable_part (out
, incoming
, dv
, const_offset
,
9888 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9892 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9895 vt_add_function_parameters (void)
9899 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9900 parm
; parm
= DECL_CHAIN (parm
))
9901 if (!POINTER_BOUNDS_P (parm
))
9902 vt_add_function_parameter (parm
);
9904 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9906 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9908 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9909 vexpr
= TREE_OPERAND (vexpr
, 0);
9911 if (TREE_CODE (vexpr
) == PARM_DECL
9912 && DECL_ARTIFICIAL (vexpr
)
9913 && !DECL_IGNORED_P (vexpr
)
9914 && DECL_NAMELESS (vexpr
))
9915 vt_add_function_parameter (vexpr
);
9919 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9920 ensure it isn't flushed during cselib_reset_table.
9921 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9922 has been eliminated. */
9925 vt_init_cfa_base (void)
9929 #ifdef FRAME_POINTER_CFA_OFFSET
9930 cfa_base_rtx
= frame_pointer_rtx
;
9931 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9933 cfa_base_rtx
= arg_pointer_rtx
;
9934 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9936 if (cfa_base_rtx
== hard_frame_pointer_rtx
9937 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9939 cfa_base_rtx
= NULL_RTX
;
9942 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
9945 /* Tell alias analysis that cfa_base_rtx should share
9946 find_base_term value with stack pointer or hard frame pointer. */
9947 if (!frame_pointer_needed
)
9948 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9949 else if (!crtl
->stack_realign_tried
)
9950 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9952 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9953 VOIDmode
, get_insns ());
9954 preserve_value (val
);
9955 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9958 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9961 reemit_marker_as_note (rtx_insn
*insn
)
9963 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn
));
9965 enum insn_note kind
= INSN_DEBUG_MARKER_KIND (insn
);
9969 case NOTE_INSN_BEGIN_STMT
:
9970 case NOTE_INSN_INLINE_ENTRY
:
9972 rtx_insn
*note
= NULL
;
9973 if (cfun
->debug_nonbind_markers
)
9975 note
= emit_note_before (kind
, insn
);
9976 NOTE_MARKER_LOCATION (note
) = INSN_LOCATION (insn
);
9987 /* Allocate and initialize the data structures for variable tracking
9988 and parse the RTL to get the micro operations. */
9991 vt_initialize (void)
9994 HOST_WIDE_INT fp_cfa_offset
= -1;
9996 alloc_aux_for_blocks (sizeof (variable_tracking_info
));
9998 empty_shared_hash
= shared_hash_pool
.allocate ();
9999 empty_shared_hash
->refcount
= 1;
10000 empty_shared_hash
->htab
= new variable_table_type (1);
10001 changed_variables
= new variable_table_type (10);
10003 /* Init the IN and OUT sets. */
10004 FOR_ALL_BB_FN (bb
, cfun
)
10006 VTI (bb
)->visited
= false;
10007 VTI (bb
)->flooded
= false;
10008 dataflow_set_init (&VTI (bb
)->in
);
10009 dataflow_set_init (&VTI (bb
)->out
);
10010 VTI (bb
)->permp
= NULL
;
10013 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10015 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
10016 scratch_regs
= BITMAP_ALLOC (NULL
);
10017 preserved_values
.create (256);
10018 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
10022 scratch_regs
= NULL
;
10023 global_get_addr_cache
= NULL
;
10026 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10032 #ifdef FRAME_POINTER_CFA_OFFSET
10033 reg
= frame_pointer_rtx
;
10034 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10036 reg
= arg_pointer_rtx
;
10037 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10040 ofst
-= INCOMING_FRAME_SP_OFFSET
;
10042 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
10043 VOIDmode
, get_insns ());
10044 preserve_value (val
);
10045 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
10046 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
10047 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
10048 stack_pointer_rtx
, -ofst
);
10049 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10053 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
10054 GET_MODE (stack_pointer_rtx
), 1,
10055 VOIDmode
, get_insns ());
10056 preserve_value (val
);
10057 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
10058 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10062 /* In order to factor out the adjustments made to the stack pointer or to
10063 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10064 instead of individual location lists, we're going to rewrite MEMs based
10065 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10066 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10067 resp. arg_pointer_rtx. We can do this either when there is no frame
10068 pointer in the function and stack adjustments are consistent for all
10069 basic blocks or when there is a frame pointer and no stack realignment.
10070 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10071 has been eliminated. */
10072 if (!frame_pointer_needed
)
10076 if (!vt_stack_adjustments ())
10079 #ifdef FRAME_POINTER_CFA_OFFSET
10080 reg
= frame_pointer_rtx
;
10082 reg
= arg_pointer_rtx
;
10084 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10087 if (GET_CODE (elim
) == PLUS
)
10088 elim
= XEXP (elim
, 0);
10089 if (elim
== stack_pointer_rtx
)
10090 vt_init_cfa_base ();
10093 else if (!crtl
->stack_realign_tried
)
10097 #ifdef FRAME_POINTER_CFA_OFFSET
10098 reg
= frame_pointer_rtx
;
10099 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10101 reg
= arg_pointer_rtx
;
10102 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10104 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10107 if (GET_CODE (elim
) == PLUS
)
10109 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
10110 elim
= XEXP (elim
, 0);
10112 if (elim
!= hard_frame_pointer_rtx
)
10113 fp_cfa_offset
= -1;
10116 fp_cfa_offset
= -1;
10119 /* If the stack is realigned and a DRAP register is used, we're going to
10120 rewrite MEMs based on it representing incoming locations of parameters
10121 passed on the stack into MEMs based on the argument pointer. Although
10122 we aren't going to rewrite other MEMs, we still need to initialize the
10123 virtual CFA pointer in order to ensure that the argument pointer will
10124 be seen as a constant throughout the function.
10126 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10127 else if (stack_realign_drap
)
10131 #ifdef FRAME_POINTER_CFA_OFFSET
10132 reg
= frame_pointer_rtx
;
10134 reg
= arg_pointer_rtx
;
10136 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10139 if (GET_CODE (elim
) == PLUS
)
10140 elim
= XEXP (elim
, 0);
10141 if (elim
== hard_frame_pointer_rtx
)
10142 vt_init_cfa_base ();
10146 hard_frame_pointer_adjustment
= -1;
10148 vt_add_function_parameters ();
10150 FOR_EACH_BB_FN (bb
, cfun
)
10153 HOST_WIDE_INT pre
, post
= 0;
10154 basic_block first_bb
, last_bb
;
10156 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10158 cselib_record_sets_hook
= add_with_sets
;
10159 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10160 fprintf (dump_file
, "first value: %i\n",
10161 cselib_get_next_uid ());
10168 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10169 || ! single_pred_p (bb
->next_bb
))
10171 e
= find_edge (bb
, bb
->next_bb
);
10172 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10178 /* Add the micro-operations to the vector. */
10179 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10181 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10182 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10185 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10189 if (!frame_pointer_needed
)
10191 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10194 micro_operation mo
;
10195 mo
.type
= MO_ADJUST
;
10198 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10199 log_op_type (PATTERN (insn
), bb
, insn
,
10200 MO_ADJUST
, dump_file
);
10201 VTI (bb
)->mos
.safe_push (mo
);
10202 VTI (bb
)->out
.stack_adjust
+= pre
;
10206 cselib_hook_called
= false;
10207 adjust_insn (bb
, insn
);
10208 if (DEBUG_MARKER_INSN_P (insn
))
10210 reemit_marker_as_note (insn
);
10214 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10217 prepare_call_arguments (bb
, insn
);
10218 cselib_process_insn (insn
);
10219 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10221 print_rtl_single (dump_file
, insn
);
10222 dump_cselib_table (dump_file
);
10225 if (!cselib_hook_called
)
10226 add_with_sets (insn
, 0, 0);
10227 cancel_changes (0);
10229 if (!frame_pointer_needed
&& post
)
10231 micro_operation mo
;
10232 mo
.type
= MO_ADJUST
;
10233 mo
.u
.adjust
= post
;
10235 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10236 log_op_type (PATTERN (insn
), bb
, insn
,
10237 MO_ADJUST
, dump_file
);
10238 VTI (bb
)->mos
.safe_push (mo
);
10239 VTI (bb
)->out
.stack_adjust
+= post
;
10242 if (fp_cfa_offset
!= -1
10243 && hard_frame_pointer_adjustment
== -1
10244 && fp_setter_insn (insn
))
10246 vt_init_cfa_base ();
10247 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10248 /* Disassociate sp from fp now. */
10249 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10252 cselib_invalidate_rtx (stack_pointer_rtx
);
10253 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10255 if (v
&& !cselib_preserved_value_p (v
))
10257 cselib_set_value_sp_based (v
);
10258 preserve_value (v
);
10264 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10269 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10271 cselib_preserve_only_values ();
10272 cselib_reset_table (cselib_get_next_uid ());
10273 cselib_record_sets_hook
= NULL
;
10277 hard_frame_pointer_adjustment
= -1;
10278 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10279 cfa_base_rtx
= NULL_RTX
;
10283 /* This is *not* reset after each function. It gives each
10284 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10285 a unique label number. */
10287 static int debug_label_num
= 1;
10289 /* Remove from the insn stream a single debug insn used for
10290 variable tracking at assignments. */
10293 delete_vta_debug_insn (rtx_insn
*insn
)
10295 if (DEBUG_MARKER_INSN_P (insn
))
10297 reemit_marker_as_note (insn
);
10301 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10302 if (TREE_CODE (decl
) == LABEL_DECL
10303 && DECL_NAME (decl
)
10304 && !DECL_RTL_SET_P (decl
))
10306 PUT_CODE (insn
, NOTE
);
10307 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10308 NOTE_DELETED_LABEL_NAME (insn
)
10309 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10310 SET_DECL_RTL (decl
, insn
);
10311 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10314 delete_insn (insn
);
10317 /* Remove from the insn stream all debug insns used for variable
10318 tracking at assignments. USE_CFG should be false if the cfg is no
10322 delete_vta_debug_insns (bool use_cfg
)
10325 rtx_insn
*insn
, *next
;
10327 if (!MAY_HAVE_DEBUG_INSNS
)
10331 FOR_EACH_BB_FN (bb
, cfun
)
10333 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10334 if (DEBUG_INSN_P (insn
))
10335 delete_vta_debug_insn (insn
);
10338 for (insn
= get_insns (); insn
; insn
= next
)
10340 next
= NEXT_INSN (insn
);
10341 if (DEBUG_INSN_P (insn
))
10342 delete_vta_debug_insn (insn
);
10346 /* Run a fast, BB-local only version of var tracking, to take care of
10347 information that we don't do global analysis on, such that not all
10348 information is lost. If SKIPPED holds, we're skipping the global
10349 pass entirely, so we should try to use information it would have
10350 handled as well.. */
10353 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10355 /* ??? Just skip it all for now. */
10356 delete_vta_debug_insns (true);
10359 /* Free the data structures needed for variable tracking. */
10366 FOR_EACH_BB_FN (bb
, cfun
)
10368 VTI (bb
)->mos
.release ();
10371 FOR_ALL_BB_FN (bb
, cfun
)
10373 dataflow_set_destroy (&VTI (bb
)->in
);
10374 dataflow_set_destroy (&VTI (bb
)->out
);
10375 if (VTI (bb
)->permp
)
10377 dataflow_set_destroy (VTI (bb
)->permp
);
10378 XDELETE (VTI (bb
)->permp
);
10381 free_aux_for_blocks ();
10382 delete empty_shared_hash
->htab
;
10383 empty_shared_hash
->htab
= NULL
;
10384 delete changed_variables
;
10385 changed_variables
= NULL
;
10386 attrs_pool
.release ();
10387 var_pool
.release ();
10388 location_chain_pool
.release ();
10389 shared_hash_pool
.release ();
10391 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10393 if (global_get_addr_cache
)
10394 delete global_get_addr_cache
;
10395 global_get_addr_cache
= NULL
;
10396 loc_exp_dep_pool
.release ();
10397 valvar_pool
.release ();
10398 preserved_values
.release ();
10400 BITMAP_FREE (scratch_regs
);
10401 scratch_regs
= NULL
;
10404 #ifdef HAVE_window_save
10405 vec_free (windowed_parm_regs
);
10409 XDELETEVEC (vui_vec
);
10414 /* The entry point to variable tracking pass. */
10416 static inline unsigned int
10417 variable_tracking_main_1 (void)
10421 /* We won't be called as a separate pass if flag_var_tracking is not
10422 set, but final may call us to turn debug markers into notes. */
10423 if ((!flag_var_tracking
&& MAY_HAVE_DEBUG_INSNS
)
10424 || flag_var_tracking_assignments
< 0
10425 /* Var-tracking right now assumes the IR doesn't contain
10426 any pseudos at this point. */
10427 || targetm
.no_register_allocation
)
10429 delete_vta_debug_insns (true);
10433 if (!flag_var_tracking
)
10436 if (n_basic_blocks_for_fn (cfun
) > 500
10437 && n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10439 vt_debug_insns_local (true);
10443 mark_dfs_back_edges ();
10444 if (!vt_initialize ())
10447 vt_debug_insns_local (true);
10451 success
= vt_find_locations ();
10453 if (!success
&& flag_var_tracking_assignments
> 0)
10457 delete_vta_debug_insns (true);
10459 /* This is later restored by our caller. */
10460 flag_var_tracking_assignments
= 0;
10462 success
= vt_initialize ();
10463 gcc_assert (success
);
10465 success
= vt_find_locations ();
10471 vt_debug_insns_local (false);
10475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10477 dump_dataflow_sets ();
10478 dump_reg_info (dump_file
);
10479 dump_flow_info (dump_file
, dump_flags
);
10482 timevar_push (TV_VAR_TRACKING_EMIT
);
10484 timevar_pop (TV_VAR_TRACKING_EMIT
);
10487 vt_debug_insns_local (false);
10492 variable_tracking_main (void)
10495 int save
= flag_var_tracking_assignments
;
10497 ret
= variable_tracking_main_1 ();
10499 flag_var_tracking_assignments
= save
;
10506 const pass_data pass_data_variable_tracking
=
10508 RTL_PASS
, /* type */
10509 "vartrack", /* name */
10510 OPTGROUP_NONE
, /* optinfo_flags */
10511 TV_VAR_TRACKING
, /* tv_id */
10512 0, /* properties_required */
10513 0, /* properties_provided */
10514 0, /* properties_destroyed */
10515 0, /* todo_flags_start */
10516 0, /* todo_flags_finish */
10519 class pass_variable_tracking
: public rtl_opt_pass
10522 pass_variable_tracking (gcc::context
*ctxt
)
10523 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10526 /* opt_pass methods: */
10527 virtual bool gate (function
*)
10529 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10532 virtual unsigned int execute (function
*)
10534 return variable_tracking_main ();
10537 }; // class pass_variable_tracking
10539 } // anon namespace
10542 make_pass_variable_tracking (gcc::context
*ctxt
)
10544 return new pass_variable_tracking (ctxt
);