1 /* Predictive commoning.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
170 for (i = 0; i < n; i++)
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
189 #include "coretypes.h"
194 #include "fold-const.h"
198 #include "hard-reg-set.h"
199 #include "function.h"
200 #include "dominance.h"
202 #include "basic-block.h"
203 #include "tree-ssa-alias.h"
204 #include "internal-fn.h"
206 #include "gimple-expr.h"
208 #include "gimplify.h"
209 #include "gimple-iterator.h"
210 #include "gimplify-me.h"
211 #include "gimple-ssa.h"
212 #include "tree-phinodes.h"
213 #include "ssa-iterators.h"
214 #include "stringpool.h"
215 #include "tree-ssanames.h"
216 #include "tree-ssa-loop-ivopts.h"
217 #include "tree-ssa-loop-manip.h"
218 #include "tree-ssa-loop-niter.h"
219 #include "tree-ssa-loop.h"
220 #include "tree-into-ssa.h"
223 #include "insn-config.h"
228 #include "emit-rtl.h"
232 #include "tree-dfa.h"
233 #include "tree-ssa.h"
234 #include "tree-data-ref.h"
235 #include "tree-scalar-evolution.h"
236 #include "tree-chrec.h"
238 #include "gimple-pretty-print.h"
239 #include "tree-pass.h"
240 #include "tree-affine.h"
241 #include "tree-inline.h"
242 #include "wide-int-print.h"
244 /* The maximum number of iterations between the considered memory
247 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
249 /* Data references (or phi nodes that carry data reference values across
252 typedef struct dref_d
254 /* The reference itself. */
255 struct data_reference
*ref
;
257 /* The statement in that the reference appears. */
260 /* In case that STMT is a phi node, this field is set to the SSA name
261 defined by it in replace_phis_by_defined_names (in order to avoid
262 pointing to phi node that got reallocated in the meantime). */
263 tree name_defined_by_phi
;
265 /* Distance of the reference from the root of the chain (in number of
266 iterations of the loop). */
269 /* Number of iterations offset from the first reference in the component. */
272 /* Number of the reference in a component, in dominance ordering. */
275 /* True if the memory reference is always accessed when the loop is
277 unsigned always_accessed
: 1;
281 /* Type of the chain of the references. */
285 /* The addresses of the references in the chain are constant. */
288 /* There are only loads in the chain. */
291 /* Root of the chain is store, the rest are loads. */
294 /* A combination of two chains. */
298 /* Chains of data references. */
302 /* Type of the chain. */
303 enum chain_type type
;
305 /* For combination chains, the operator and the two chains that are
306 combined, and the type of the result. */
309 struct chain
*ch1
, *ch2
;
311 /* The references in the chain. */
314 /* The maximum distance of the reference in the chain from the root. */
317 /* The variables used to copy the value throughout iterations. */
320 /* Initializers for the variables. */
323 /* True if there is a use of a variable with the maximal distance
324 that comes after the root in the loop. */
325 unsigned has_max_use_after
: 1;
327 /* True if all the memory references in the chain are always accessed. */
328 unsigned all_always_accessed
: 1;
330 /* True if this chain was combined together with some other chain. */
331 unsigned combined
: 1;
335 /* Describes the knowledge about the step of the memory references in
340 /* The step is zero. */
343 /* The step is nonzero. */
346 /* The step may or may not be nonzero. */
350 /* Components of the data dependence graph. */
354 /* The references in the component. */
357 /* What we know about the step of the references in the component. */
358 enum ref_step_type comp_step
;
360 /* Next component in the list. */
361 struct component
*next
;
364 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
366 static bitmap looparound_phis
;
368 /* Cache used by tree_to_aff_combination_expand. */
370 static hash_map
<tree
, name_expansion
*> *name_expansions
;
372 /* Dumps data reference REF to FILE. */
374 extern void dump_dref (FILE *, dref
);
376 dump_dref (FILE *file
, dref ref
)
381 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
382 fprintf (file
, " (id %u%s)\n", ref
->pos
,
383 DR_IS_READ (ref
->ref
) ? "" : ", write");
385 fprintf (file
, " offset ");
386 print_decs (ref
->offset
, file
);
387 fprintf (file
, "\n");
389 fprintf (file
, " distance %u\n", ref
->distance
);
393 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
394 fprintf (file
, " looparound ref\n");
396 fprintf (file
, " combination ref\n");
397 fprintf (file
, " in statement ");
398 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
399 fprintf (file
, "\n");
400 fprintf (file
, " distance %u\n", ref
->distance
);
405 /* Dumps CHAIN to FILE. */
407 extern void dump_chain (FILE *, chain_p
);
409 dump_chain (FILE *file
, chain_p chain
)
412 const char *chain_type
;
419 chain_type
= "Load motion";
423 chain_type
= "Loads-only";
427 chain_type
= "Store-loads";
431 chain_type
= "Combination";
438 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
439 chain
->combined
? " (combined)" : "");
440 if (chain
->type
!= CT_INVARIANT
)
441 fprintf (file
, " max distance %u%s\n", chain
->length
,
442 chain
->has_max_use_after
? "" : ", may reuse first");
444 if (chain
->type
== CT_COMBINATION
)
446 fprintf (file
, " equal to %p %s %p in type ",
447 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
448 (void *) chain
->ch2
);
449 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
450 fprintf (file
, "\n");
453 if (chain
->vars
.exists ())
455 fprintf (file
, " vars");
456 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
459 print_generic_expr (file
, var
, TDF_SLIM
);
461 fprintf (file
, "\n");
464 if (chain
->inits
.exists ())
466 fprintf (file
, " inits");
467 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
470 print_generic_expr (file
, var
, TDF_SLIM
);
472 fprintf (file
, "\n");
475 fprintf (file
, " references:\n");
476 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
479 fprintf (file
, "\n");
482 /* Dumps CHAINS to FILE. */
484 extern void dump_chains (FILE *, vec
<chain_p
> );
486 dump_chains (FILE *file
, vec
<chain_p
> chains
)
491 FOR_EACH_VEC_ELT (chains
, i
, chain
)
492 dump_chain (file
, chain
);
495 /* Dumps COMP to FILE. */
497 extern void dump_component (FILE *, struct component
*);
499 dump_component (FILE *file
, struct component
*comp
)
504 fprintf (file
, "Component%s:\n",
505 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
506 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
508 fprintf (file
, "\n");
511 /* Dumps COMPS to FILE. */
513 extern void dump_components (FILE *, struct component
*);
515 dump_components (FILE *file
, struct component
*comps
)
517 struct component
*comp
;
519 for (comp
= comps
; comp
; comp
= comp
->next
)
520 dump_component (file
, comp
);
523 /* Frees a chain CHAIN. */
526 release_chain (chain_p chain
)
534 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
537 chain
->refs
.release ();
538 chain
->vars
.release ();
539 chain
->inits
.release ();
547 release_chains (vec
<chain_p
> chains
)
552 FOR_EACH_VEC_ELT (chains
, i
, chain
)
553 release_chain (chain
);
557 /* Frees a component COMP. */
560 release_component (struct component
*comp
)
562 comp
->refs
.release ();
566 /* Frees list of components COMPS. */
569 release_components (struct component
*comps
)
571 struct component
*act
, *next
;
573 for (act
= comps
; act
; act
= next
)
576 release_component (act
);
580 /* Finds a root of tree given by FATHERS containing A, and performs path
584 component_of (unsigned fathers
[], unsigned a
)
588 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
591 for (; a
!= root
; a
= n
)
600 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
601 components, A and B are components to merge. */
604 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
606 unsigned ca
= component_of (fathers
, a
);
607 unsigned cb
= component_of (fathers
, b
);
612 if (sizes
[ca
] < sizes
[cb
])
614 sizes
[cb
] += sizes
[ca
];
619 sizes
[ca
] += sizes
[cb
];
624 /* Returns true if A is a reference that is suitable for predictive commoning
625 in the innermost loop that contains it. REF_STEP is set according to the
626 step of the reference A. */
629 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
631 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
634 || TREE_THIS_VOLATILE (ref
)
635 || !is_gimple_reg_type (TREE_TYPE (ref
))
636 || tree_could_throw_p (ref
))
639 if (integer_zerop (step
))
640 *ref_step
= RS_INVARIANT
;
641 else if (integer_nonzerop (step
))
642 *ref_step
= RS_NONZERO
;
649 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
652 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
654 tree type
= TREE_TYPE (DR_OFFSET (dr
));
657 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
659 aff_combination_const (&delta
, type
, wi::to_widest (DR_INIT (dr
)));
660 aff_combination_add (offset
, &delta
);
663 /* Determines number of iterations of the innermost enclosing loop before B
664 refers to exactly the same location as A and stores it to OFF. If A and
665 B do not have the same step, they never meet, or anything else fails,
666 returns false, otherwise returns true. Both A and B are assumed to
667 satisfy suitable_reference_p. */
670 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
673 aff_tree diff
, baseb
, step
;
676 /* Check that both the references access the location in the same type. */
677 typea
= TREE_TYPE (DR_REF (a
));
678 typeb
= TREE_TYPE (DR_REF (b
));
679 if (!useless_type_conversion_p (typeb
, typea
))
682 /* Check whether the base address and the step of both references is the
684 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
685 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
688 if (integer_zerop (DR_STEP (a
)))
690 /* If the references have loop invariant address, check that they access
691 exactly the same location. */
693 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
694 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
697 /* Compare the offsets of the addresses, and check whether the difference
698 is a multiple of step. */
699 aff_combination_dr_offset (a
, &diff
);
700 aff_combination_dr_offset (b
, &baseb
);
701 aff_combination_scale (&baseb
, -1);
702 aff_combination_add (&diff
, &baseb
);
704 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
705 &step
, &name_expansions
);
706 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
709 /* Returns the last basic block in LOOP for that we are sure that
710 it is executed whenever the loop is entered. */
713 last_always_executed_block (struct loop
*loop
)
716 vec
<edge
> exits
= get_loop_exit_edges (loop
);
718 basic_block last
= loop
->latch
;
720 FOR_EACH_VEC_ELT (exits
, i
, ex
)
721 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
727 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
729 static struct component
*
730 split_data_refs_to_components (struct loop
*loop
,
731 vec
<data_reference_p
> datarefs
,
734 unsigned i
, n
= datarefs
.length ();
735 unsigned ca
, ia
, ib
, bad
;
736 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
737 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
738 struct component
**comps
;
739 struct data_reference
*dr
, *dra
, *drb
;
740 struct data_dependence_relation
*ddr
;
741 struct component
*comp_list
= NULL
, *comp
;
743 basic_block last_always_executed
= last_always_executed_block (loop
);
745 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
749 /* A fake reference for call or asm_expr that may clobber memory;
753 /* predcom pass isn't prepared to handle calls with data references. */
754 if (is_gimple_call (DR_STMT (dr
)))
756 dr
->aux
= (void *) (size_t) i
;
761 /* A component reserved for the "bad" data references. */
765 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
767 enum ref_step_type dummy
;
769 if (!suitable_reference_p (dr
, &dummy
))
771 ia
= (unsigned) (size_t) dr
->aux
;
772 merge_comps (comp_father
, comp_size
, n
, ia
);
776 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
778 widest_int dummy_off
;
780 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
785 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
786 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
790 bad
= component_of (comp_father
, n
);
792 /* If both A and B are reads, we may ignore unsuitable dependences. */
793 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
795 if (ia
== bad
|| ib
== bad
796 || !determine_offset (dra
, drb
, &dummy_off
))
799 /* If A is read and B write or vice versa and there is unsuitable
800 dependence, instead of merging both components into a component
801 that will certainly not pass suitable_component_p, just put the
802 read into bad component, perhaps at least the write together with
803 all the other data refs in it's component will be optimizable. */
804 else if (DR_IS_READ (dra
) && ib
!= bad
)
808 else if (!determine_offset (dra
, drb
, &dummy_off
))
810 merge_comps (comp_father
, comp_size
, bad
, ia
);
814 else if (DR_IS_READ (drb
) && ia
!= bad
)
818 else if (!determine_offset (dra
, drb
, &dummy_off
))
820 merge_comps (comp_father
, comp_size
, bad
, ib
);
825 merge_comps (comp_father
, comp_size
, ia
, ib
);
828 comps
= XCNEWVEC (struct component
*, n
);
829 bad
= component_of (comp_father
, n
);
830 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
832 ia
= (unsigned) (size_t) dr
->aux
;
833 ca
= component_of (comp_father
, ia
);
840 comp
= XCNEW (struct component
);
841 comp
->refs
.create (comp_size
[ca
]);
845 dataref
= XCNEW (struct dref_d
);
847 dataref
->stmt
= DR_STMT (dr
);
849 dataref
->distance
= 0;
851 dataref
->always_accessed
852 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
853 gimple_bb (dataref
->stmt
));
854 dataref
->pos
= comp
->refs
.length ();
855 comp
->refs
.quick_push (dataref
);
858 for (i
= 0; i
< n
; i
++)
863 comp
->next
= comp_list
;
875 /* Returns true if the component COMP satisfies the conditions
876 described in 2) at the beginning of this file. LOOP is the current
880 suitable_component_p (struct loop
*loop
, struct component
*comp
)
884 basic_block ba
, bp
= loop
->header
;
885 bool ok
, has_write
= false;
887 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
889 ba
= gimple_bb (a
->stmt
);
891 if (!just_once_each_iteration_p (loop
, ba
))
894 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
897 if (DR_IS_WRITE (a
->ref
))
901 first
= comp
->refs
[0];
902 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
906 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
908 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
911 #ifdef ENABLE_CHECKING
913 enum ref_step_type a_step
;
914 ok
= suitable_reference_p (a
->ref
, &a_step
);
915 gcc_assert (ok
&& a_step
== comp
->comp_step
);
920 /* If there is a write inside the component, we must know whether the
921 step is nonzero or not -- we would not otherwise be able to recognize
922 whether the value accessed by reads comes from the OFFSET-th iteration
923 or the previous one. */
924 if (has_write
&& comp
->comp_step
== RS_ANY
)
930 /* Check the conditions on references inside each of components COMPS,
931 and remove the unsuitable components from the list. The new list
932 of components is returned. The conditions are described in 2) at
933 the beginning of this file. LOOP is the current loop. */
935 static struct component
*
936 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
938 struct component
**comp
, *act
;
940 for (comp
= &comps
; *comp
; )
943 if (suitable_component_p (loop
, act
))
951 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
953 release_component (act
);
960 /* Compares two drefs A and B by their offset and position. Callback for
964 order_drefs (const void *a
, const void *b
)
966 const dref
*const da
= (const dref
*) a
;
967 const dref
*const db
= (const dref
*) b
;
968 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
973 return (*da
)->pos
- (*db
)->pos
;
976 /* Returns root of the CHAIN. */
979 get_chain_root (chain_p chain
)
981 return chain
->refs
[0];
984 /* Adds REF to the chain CHAIN. */
987 add_ref_to_chain (chain_p chain
, dref ref
)
989 dref root
= get_chain_root (chain
);
991 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
992 widest_int dist
= ref
->offset
- root
->offset
;
993 if (wi::leu_p (MAX_DISTANCE
, dist
))
998 gcc_assert (wi::fits_uhwi_p (dist
));
1000 chain
->refs
.safe_push (ref
);
1002 ref
->distance
= dist
.to_uhwi ();
1004 if (ref
->distance
>= chain
->length
)
1006 chain
->length
= ref
->distance
;
1007 chain
->has_max_use_after
= false;
1010 if (ref
->distance
== chain
->length
1011 && ref
->pos
> root
->pos
)
1012 chain
->has_max_use_after
= true;
1014 chain
->all_always_accessed
&= ref
->always_accessed
;
1017 /* Returns the chain for invariant component COMP. */
1020 make_invariant_chain (struct component
*comp
)
1022 chain_p chain
= XCNEW (struct chain
);
1026 chain
->type
= CT_INVARIANT
;
1028 chain
->all_always_accessed
= true;
1030 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1032 chain
->refs
.safe_push (ref
);
1033 chain
->all_always_accessed
&= ref
->always_accessed
;
1039 /* Make a new chain rooted at REF. */
1042 make_rooted_chain (dref ref
)
1044 chain_p chain
= XCNEW (struct chain
);
1046 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1048 chain
->refs
.safe_push (ref
);
1049 chain
->all_always_accessed
= ref
->always_accessed
;
1056 /* Returns true if CHAIN is not trivial. */
1059 nontrivial_chain_p (chain_p chain
)
1061 return chain
!= NULL
&& chain
->refs
.length () > 1;
1064 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1068 name_for_ref (dref ref
)
1072 if (is_gimple_assign (ref
->stmt
))
1074 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1075 name
= gimple_assign_lhs (ref
->stmt
);
1077 name
= gimple_assign_rhs1 (ref
->stmt
);
1080 name
= PHI_RESULT (ref
->stmt
);
1082 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1085 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1086 iterations of the innermost enclosing loop). */
1089 valid_initializer_p (struct data_reference
*ref
,
1090 unsigned distance
, struct data_reference
*root
)
1092 aff_tree diff
, base
, step
;
1095 /* Both REF and ROOT must be accessing the same object. */
1096 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1099 /* The initializer is defined outside of loop, hence its address must be
1100 invariant inside the loop. */
1101 gcc_assert (integer_zerop (DR_STEP (ref
)));
1103 /* If the address of the reference is invariant, initializer must access
1104 exactly the same location. */
1105 if (integer_zerop (DR_STEP (root
)))
1106 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1107 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1109 /* Verify that this index of REF is equal to the root's index at
1110 -DISTANCE-th iteration. */
1111 aff_combination_dr_offset (root
, &diff
);
1112 aff_combination_dr_offset (ref
, &base
);
1113 aff_combination_scale (&base
, -1);
1114 aff_combination_add (&diff
, &base
);
1116 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1117 &step
, &name_expansions
);
1118 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1121 if (off
!= distance
)
1127 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1128 initial value is correct (equal to initial value of REF shifted by one
1129 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1130 is the root of the current chain. */
1133 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1135 tree name
, init
, init_ref
;
1138 edge latch
= loop_latch_edge (loop
);
1139 struct data_reference init_dr
;
1142 if (is_gimple_assign (ref
->stmt
))
1144 if (DR_IS_READ (ref
->ref
))
1145 name
= gimple_assign_lhs (ref
->stmt
);
1147 name
= gimple_assign_rhs1 (ref
->stmt
);
1150 name
= PHI_RESULT (ref
->stmt
);
1154 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1157 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1161 if (gsi_end_p (psi
))
1164 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1165 if (TREE_CODE (init
) != SSA_NAME
)
1167 init_stmt
= SSA_NAME_DEF_STMT (init
);
1168 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1170 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1172 init_ref
= gimple_assign_rhs1 (init_stmt
);
1173 if (!REFERENCE_CLASS_P (init_ref
)
1174 && !DECL_P (init_ref
))
1177 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1178 loop enclosing PHI). */
1179 memset (&init_dr
, 0, sizeof (struct data_reference
));
1180 DR_REF (&init_dr
) = init_ref
;
1181 DR_STMT (&init_dr
) = phi
;
1182 if (!dr_analyze_innermost (&init_dr
, loop
))
1185 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1191 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1194 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1196 dref nw
= XCNEW (struct dref_d
), aref
;
1200 nw
->distance
= ref
->distance
+ 1;
1201 nw
->always_accessed
= 1;
1203 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1204 if (aref
->distance
>= nw
->distance
)
1206 chain
->refs
.safe_insert (i
, nw
);
1208 if (nw
->distance
> chain
->length
)
1210 chain
->length
= nw
->distance
;
1211 chain
->has_max_use_after
= false;
1215 /* For references in CHAIN that are copied around the LOOP (created previously
1216 by PRE, or by user), add the results of such copies to the chain. This
1217 enables us to remove the copies by unrolling, and may need less registers
1218 (also, it may allow us to combine chains together). */
1221 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1224 dref ref
, root
= get_chain_root (chain
);
1227 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1229 phi
= find_looparound_phi (loop
, ref
, root
);
1233 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1234 insert_looparound_copy (chain
, ref
, phi
);
1238 /* Find roots of the values and determine distances in the component COMP.
1239 The references are redistributed into CHAINS. LOOP is the current
1243 determine_roots_comp (struct loop
*loop
,
1244 struct component
*comp
,
1245 vec
<chain_p
> *chains
)
1249 chain_p chain
= NULL
;
1250 widest_int last_ofs
= 0;
1252 /* Invariants are handled specially. */
1253 if (comp
->comp_step
== RS_INVARIANT
)
1255 chain
= make_invariant_chain (comp
);
1256 chains
->safe_push (chain
);
1260 comp
->refs
.qsort (order_drefs
);
1262 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1264 if (!chain
|| DR_IS_WRITE (a
->ref
)
1265 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1267 if (nontrivial_chain_p (chain
))
1269 add_looparound_copies (loop
, chain
);
1270 chains
->safe_push (chain
);
1273 release_chain (chain
);
1274 chain
= make_rooted_chain (a
);
1275 last_ofs
= a
->offset
;
1279 add_ref_to_chain (chain
, a
);
1282 if (nontrivial_chain_p (chain
))
1284 add_looparound_copies (loop
, chain
);
1285 chains
->safe_push (chain
);
1288 release_chain (chain
);
1291 /* Find roots of the values and determine distances in components COMPS, and
1292 separates the references to CHAINS. LOOP is the current loop. */
1295 determine_roots (struct loop
*loop
,
1296 struct component
*comps
, vec
<chain_p
> *chains
)
1298 struct component
*comp
;
1300 for (comp
= comps
; comp
; comp
= comp
->next
)
1301 determine_roots_comp (loop
, comp
, chains
);
1304 /* Replace the reference in statement STMT with temporary variable
1305 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1306 the reference in the statement. IN_LHS is true if the reference
1307 is in the lhs of STMT, false if it is in rhs. */
1310 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1314 gimple_stmt_iterator bsi
, psi
;
1316 if (gimple_code (stmt
) == GIMPLE_PHI
)
1318 gcc_assert (!in_lhs
&& !set
);
1320 val
= PHI_RESULT (stmt
);
1321 bsi
= gsi_after_labels (gimple_bb (stmt
));
1322 psi
= gsi_for_stmt (stmt
);
1323 remove_phi_node (&psi
, false);
1325 /* Turn the phi node into GIMPLE_ASSIGN. */
1326 new_stmt
= gimple_build_assign (val
, new_tree
);
1327 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1331 /* Since the reference is of gimple_reg type, it should only
1332 appear as lhs or rhs of modify statement. */
1333 gcc_assert (is_gimple_assign (stmt
));
1335 bsi
= gsi_for_stmt (stmt
);
1337 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1340 gcc_assert (!in_lhs
);
1341 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1342 stmt
= gsi_stmt (bsi
);
1349 /* We have statement
1353 If OLD is a memory reference, then VAL is gimple_val, and we transform
1359 Otherwise, we are replacing a combination chain,
1360 VAL is the expression that performs the combination, and OLD is an
1361 SSA name. In this case, we transform the assignment to
1368 val
= gimple_assign_lhs (stmt
);
1369 if (TREE_CODE (val
) != SSA_NAME
)
1371 val
= gimple_assign_rhs1 (stmt
);
1372 gcc_assert (gimple_assign_single_p (stmt
));
1373 if (TREE_CLOBBER_P (val
))
1374 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1376 gcc_assert (gimple_assign_copy_p (stmt
));
1388 val
= gimple_assign_lhs (stmt
);
1391 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1392 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1395 /* Returns a memory reference to DR in the ITER-th iteration of
1396 the loop it was analyzed in. Append init stmts to STMTS. */
1399 ref_at_iteration (data_reference_p dr
, int iter
, gimple_seq
*stmts
)
1401 tree off
= DR_OFFSET (dr
);
1402 tree coff
= DR_INIT (dr
);
1405 else if (TREE_CODE (DR_STEP (dr
)) == INTEGER_CST
)
1406 coff
= size_binop (PLUS_EXPR
, coff
,
1407 size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
)));
1409 off
= size_binop (PLUS_EXPR
, off
,
1410 size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
)));
1411 tree addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1412 addr
= force_gimple_operand_1 (unshare_expr (addr
), stmts
,
1413 is_gimple_mem_ref_addr
, NULL_TREE
);
1414 tree alias_ptr
= fold_convert (reference_alias_ptr_type (DR_REF (dr
)), coff
);
1415 /* While data-ref analysis punts on bit offsets it still handles
1416 bitfield accesses at byte boundaries. Cope with that. Note that
1417 we cannot simply re-apply the outer COMPONENT_REF because the
1418 byte-granular portion of it is already applied via DR_INIT and
1419 DR_OFFSET, so simply build a BIT_FIELD_REF knowing that the bits
1420 start at offset zero. */
1421 if (TREE_CODE (DR_REF (dr
)) == COMPONENT_REF
1422 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr
), 1)))
1424 tree field
= TREE_OPERAND (DR_REF (dr
), 1);
1425 return build3 (BIT_FIELD_REF
, TREE_TYPE (DR_REF (dr
)),
1426 build2 (MEM_REF
, DECL_BIT_FIELD_TYPE (field
),
1428 DECL_SIZE (field
), bitsize_zero_node
);
1431 return fold_build2 (MEM_REF
, TREE_TYPE (DR_REF (dr
)), addr
, alias_ptr
);
1434 /* Get the initialization expression for the INDEX-th temporary variable
1438 get_init_expr (chain_p chain
, unsigned index
)
1440 if (chain
->type
== CT_COMBINATION
)
1442 tree e1
= get_init_expr (chain
->ch1
, index
);
1443 tree e2
= get_init_expr (chain
->ch2
, index
);
1445 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1448 return chain
->inits
[index
];
1451 /* Returns a new temporary variable used for the I-th variable carrying
1452 value of REF. The variable's uid is marked in TMP_VARS. */
1455 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1457 tree type
= TREE_TYPE (ref
);
1458 /* We never access the components of the temporary variable in predictive
1460 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1461 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1465 /* Creates the variables for CHAIN, as well as phi nodes for them and
1466 initialization on entry to LOOP. Uids of the newly created
1467 temporary variables are marked in TMP_VARS. */
1470 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1473 unsigned n
= chain
->length
;
1474 dref root
= get_chain_root (chain
);
1475 bool reuse_first
= !chain
->has_max_use_after
;
1476 tree ref
, init
, var
, next
;
1479 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1481 /* If N == 0, then all the references are within the single iteration. And
1482 since this is an nonempty chain, reuse_first cannot be true. */
1483 gcc_assert (n
> 0 || !reuse_first
);
1485 chain
->vars
.create (n
+ 1);
1487 if (chain
->type
== CT_COMBINATION
)
1488 ref
= gimple_assign_lhs (root
->stmt
);
1490 ref
= DR_REF (root
->ref
);
1492 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1494 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1495 chain
->vars
.quick_push (var
);
1498 chain
->vars
.quick_push (chain
->vars
[0]);
1500 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1501 chain
->vars
[i
] = make_ssa_name (var
);
1503 for (i
= 0; i
< n
; i
++)
1505 var
= chain
->vars
[i
];
1506 next
= chain
->vars
[i
+ 1];
1507 init
= get_init_expr (chain
, i
);
1509 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1511 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1513 phi
= create_phi_node (var
, loop
->header
);
1514 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1515 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1519 /* Create the variables and initialization statement for root of chain
1520 CHAIN. Uids of the newly created temporary variables are marked
1524 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1526 dref root
= get_chain_root (chain
);
1527 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1528 || chain
->type
== CT_COMBINATION
);
1530 initialize_root_vars (loop
, chain
, tmp_vars
);
1531 replace_ref_with (root
->stmt
,
1532 chain
->vars
[chain
->length
],
1536 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1537 initialization on entry to LOOP if necessary. The ssa name for the variable
1538 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1539 around the loop is created. Uid of the newly created temporary variable
1540 is marked in TMP_VARS. INITS is the list containing the (single)
1544 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1545 vec
<tree
> *vars
, vec
<tree
> inits
,
1549 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1552 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1554 /* Find the initializer for the variable, and check that it cannot
1558 vars
->create (written
? 2 : 1);
1559 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1560 vars
->quick_push (var
);
1562 vars
->quick_push ((*vars
)[0]);
1564 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1565 (*vars
)[i
] = make_ssa_name (var
);
1569 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1571 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1576 phi
= create_phi_node (var
, loop
->header
);
1577 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1578 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1582 gassign
*init_stmt
= gimple_build_assign (var
, init
);
1583 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1588 /* Execute load motion for references in chain CHAIN. Uids of the newly
1589 created temporary variables are marked in TMP_VARS. */
1592 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1594 auto_vec
<tree
> vars
;
1596 unsigned n_writes
= 0, ridx
, i
;
1599 gcc_assert (chain
->type
== CT_INVARIANT
);
1600 gcc_assert (!chain
->combined
);
1601 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1602 if (DR_IS_WRITE (a
->ref
))
1605 /* If there are no reads in the loop, there is nothing to do. */
1606 if (n_writes
== chain
->refs
.length ())
1609 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1610 &vars
, chain
->inits
, tmp_vars
);
1613 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1615 bool is_read
= DR_IS_READ (a
->ref
);
1617 if (DR_IS_WRITE (a
->ref
))
1623 var
= make_ssa_name (SSA_NAME_VAR (var
));
1630 replace_ref_with (a
->stmt
, vars
[ridx
],
1631 !is_read
, !is_read
);
1635 /* Returns the single statement in that NAME is used, excepting
1636 the looparound phi nodes contained in one of the chains. If there is no
1637 such statement, or more statements, NULL is returned. */
1640 single_nonlooparound_use (tree name
)
1643 imm_use_iterator it
;
1644 gimple stmt
, ret
= NULL
;
1646 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1648 stmt
= USE_STMT (use
);
1650 if (gimple_code (stmt
) == GIMPLE_PHI
)
1652 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1653 could not be processed anyway, so just fail for them. */
1654 if (bitmap_bit_p (looparound_phis
,
1655 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1660 else if (is_gimple_debug (stmt
))
1662 else if (ret
!= NULL
)
1671 /* Remove statement STMT, as well as the chain of assignments in that it is
1675 remove_stmt (gimple stmt
)
1679 gimple_stmt_iterator psi
;
1681 if (gimple_code (stmt
) == GIMPLE_PHI
)
1683 name
= PHI_RESULT (stmt
);
1684 next
= single_nonlooparound_use (name
);
1685 reset_debug_uses (stmt
);
1686 psi
= gsi_for_stmt (stmt
);
1687 remove_phi_node (&psi
, true);
1690 || !gimple_assign_ssa_name_copy_p (next
)
1691 || gimple_assign_rhs1 (next
) != name
)
1699 gimple_stmt_iterator bsi
;
1701 bsi
= gsi_for_stmt (stmt
);
1703 name
= gimple_assign_lhs (stmt
);
1704 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1706 next
= single_nonlooparound_use (name
);
1707 reset_debug_uses (stmt
);
1709 unlink_stmt_vdef (stmt
);
1710 gsi_remove (&bsi
, true);
1711 release_defs (stmt
);
1714 || !gimple_assign_ssa_name_copy_p (next
)
1715 || gimple_assign_rhs1 (next
) != name
)
1722 /* Perform the predictive commoning optimization for a chain CHAIN.
1723 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1726 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1733 if (chain
->combined
)
1735 /* For combined chains, just remove the statements that are used to
1736 compute the values of the expression (except for the root one).
1737 We delay this until after all chains are processed. */
1741 /* For non-combined chains, set up the variables that hold its value,
1742 and replace the uses of the original references by these
1744 initialize_root (loop
, chain
, tmp_vars
);
1745 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1747 var
= chain
->vars
[chain
->length
- a
->distance
];
1748 replace_ref_with (a
->stmt
, var
, false, false);
1753 /* Determines the unroll factor necessary to remove as many temporary variable
1754 copies as possible. CHAINS is the list of chains that will be
1758 determine_unroll_factor (vec
<chain_p
> chains
)
1761 unsigned factor
= 1, af
, nfactor
, i
;
1762 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1764 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1766 if (chain
->type
== CT_INVARIANT
)
1769 if (chain
->combined
)
1771 /* For combined chains, we can't handle unrolling if we replace
1775 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
1776 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1781 /* The best unroll factor for this chain is equal to the number of
1782 temporary variables that we create for it. */
1784 if (chain
->has_max_use_after
)
1787 nfactor
= factor
* af
/ gcd (factor
, af
);
1795 /* Perform the predictive commoning optimization for CHAINS.
1796 Uids of the newly created temporary variables are marked in TMP_VARS. */
1799 execute_pred_commoning (struct loop
*loop
, vec
<chain_p
> chains
,
1805 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1807 if (chain
->type
== CT_INVARIANT
)
1808 execute_load_motion (loop
, chain
, tmp_vars
);
1810 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1813 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1815 if (chain
->type
== CT_INVARIANT
)
1817 else if (chain
->combined
)
1819 /* For combined chains, just remove the statements that are used to
1820 compute the values of the expression (except for the root one). */
1823 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
1824 remove_stmt (a
->stmt
);
1828 update_ssa (TODO_update_ssa_only_virtuals
);
1831 /* For each reference in CHAINS, if its defining statement is
1832 phi node, record the ssa name that is defined by it. */
1835 replace_phis_by_defined_names (vec
<chain_p
> chains
)
1841 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1842 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1844 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1846 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1852 /* For each reference in CHAINS, if name_defined_by_phi is not
1853 NULL, use it to set the stmt field. */
1856 replace_names_by_phis (vec
<chain_p
> chains
)
1862 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1863 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1864 if (a
->stmt
== NULL
)
1866 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1867 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1868 a
->name_defined_by_phi
= NULL_TREE
;
1872 /* Wrapper over execute_pred_commoning, to pass it as a callback
1873 to tree_transform_and_unroll_loop. */
1877 vec
<chain_p
> chains
;
1882 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1884 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1886 /* Restore phi nodes that were replaced by ssa names before
1887 tree_transform_and_unroll_loop (see detailed description in
1888 tree_predictive_commoning_loop). */
1889 replace_names_by_phis (dta
->chains
);
1890 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1893 /* Base NAME and all the names in the chain of phi nodes that use it
1894 on variable VAR. The phi nodes are recognized by being in the copies of
1895 the header of the LOOP. */
1898 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1901 imm_use_iterator iter
;
1903 replace_ssa_name_symbol (name
, var
);
1908 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1910 if (gimple_code (stmt
) == GIMPLE_PHI
1911 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1914 BREAK_FROM_IMM_USE_STMT (iter
);
1920 name
= PHI_RESULT (phi
);
1921 replace_ssa_name_symbol (name
, var
);
1925 /* Given an unrolled LOOP after predictive commoning, remove the
1926 register copies arising from phi nodes by changing the base
1927 variables of SSA names. TMP_VARS is the set of the temporary variables
1928 for those we want to perform this. */
1931 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1936 tree name
, use
, var
;
1939 e
= loop_latch_edge (loop
);
1940 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1943 name
= PHI_RESULT (phi
);
1944 var
= SSA_NAME_VAR (name
);
1945 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1947 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1948 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1950 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1951 stmt
= SSA_NAME_DEF_STMT (use
);
1952 while (gimple_code (stmt
) == GIMPLE_PHI
1953 /* In case we could not unroll the loop enough to eliminate
1954 all copies, we may reach the loop header before the defining
1955 statement (in that case, some register copies will be present
1956 in loop latch in the final code, corresponding to the newly
1957 created looparound phi nodes). */
1958 && gimple_bb (stmt
) != loop
->header
)
1960 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1961 use
= PHI_ARG_DEF (stmt
, 0);
1962 stmt
= SSA_NAME_DEF_STMT (use
);
1965 base_names_in_chain_on (loop
, use
, var
);
1969 /* Returns true if CHAIN is suitable to be combined. */
1972 chain_can_be_combined_p (chain_p chain
)
1974 return (!chain
->combined
1975 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1978 /* Returns the modify statement that uses NAME. Skips over assignment
1979 statements, NAME is replaced with the actual name used in the returned
1983 find_use_stmt (tree
*name
)
1988 /* Skip over assignments. */
1991 stmt
= single_nonlooparound_use (*name
);
1995 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1998 lhs
= gimple_assign_lhs (stmt
);
1999 if (TREE_CODE (lhs
) != SSA_NAME
)
2002 if (gimple_assign_copy_p (stmt
))
2004 rhs
= gimple_assign_rhs1 (stmt
);
2010 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2011 == GIMPLE_BINARY_RHS
)
2018 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2021 may_reassociate_p (tree type
, enum tree_code code
)
2023 if (FLOAT_TYPE_P (type
)
2024 && !flag_unsafe_math_optimizations
)
2027 return (commutative_tree_code (code
)
2028 && associative_tree_code (code
));
2031 /* If the operation used in STMT is associative and commutative, go through the
2032 tree of the same operations and returns its root. Distance to the root
2033 is stored in DISTANCE. */
2036 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2040 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2041 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2044 if (!may_reassociate_p (type
, code
))
2049 lhs
= gimple_assign_lhs (stmt
);
2050 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2052 next
= find_use_stmt (&lhs
);
2054 || gimple_assign_rhs_code (next
) != code
)
2066 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2067 is no such statement, returns NULL_TREE. In case the operation used on
2068 NAME1 and NAME2 is associative and commutative, returns the root of the
2069 tree formed by this operation instead of the statement that uses NAME1 or
2073 find_common_use_stmt (tree
*name1
, tree
*name2
)
2075 gimple stmt1
, stmt2
;
2077 stmt1
= find_use_stmt (name1
);
2081 stmt2
= find_use_stmt (name2
);
2088 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2091 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2095 return (stmt1
== stmt2
? stmt1
: NULL
);
2098 /* Checks whether R1 and R2 are combined together using CODE, with the result
2099 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2100 if it is true. If CODE is ERROR_MARK, set these values instead. */
2103 combinable_refs_p (dref r1
, dref r2
,
2104 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2106 enum tree_code acode
;
2112 name1
= name_for_ref (r1
);
2113 name2
= name_for_ref (r2
);
2114 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2116 stmt
= find_common_use_stmt (&name1
, &name2
);
2119 /* A simple post-dominance check - make sure the combination
2120 is executed under the same condition as the references. */
2121 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2122 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2125 acode
= gimple_assign_rhs_code (stmt
);
2126 aswap
= (!commutative_tree_code (acode
)
2127 && gimple_assign_rhs1 (stmt
) != name1
);
2128 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2130 if (*code
== ERROR_MARK
)
2138 return (*code
== acode
2140 && *rslt_type
== atype
);
2143 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2144 an assignment of the remaining operand. */
2147 remove_name_from_operation (gimple stmt
, tree op
)
2150 gimple_stmt_iterator si
;
2152 gcc_assert (is_gimple_assign (stmt
));
2154 if (gimple_assign_rhs1 (stmt
) == op
)
2155 other_op
= gimple_assign_rhs2 (stmt
);
2157 other_op
= gimple_assign_rhs1 (stmt
);
2159 si
= gsi_for_stmt (stmt
);
2160 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2162 /* We should not have reallocated STMT. */
2163 gcc_assert (gsi_stmt (si
) == stmt
);
2168 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2169 are combined in a single statement, and returns this statement. */
2172 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2174 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2175 gassign
*new_stmt
, *tmp_stmt
;
2176 tree new_name
, tmp_name
, var
, r1
, r2
;
2177 unsigned dist1
, dist2
;
2178 enum tree_code code
;
2179 tree type
= TREE_TYPE (name1
);
2180 gimple_stmt_iterator bsi
;
2182 stmt1
= find_use_stmt (&name1
);
2183 stmt2
= find_use_stmt (&name2
);
2184 root1
= find_associative_operation_root (stmt1
, &dist1
);
2185 root2
= find_associative_operation_root (stmt2
, &dist2
);
2186 code
= gimple_assign_rhs_code (stmt1
);
2188 gcc_assert (root1
&& root2
&& root1
== root2
2189 && code
== gimple_assign_rhs_code (stmt2
));
2191 /* Find the root of the nearest expression in that both NAME1 and NAME2
2198 while (dist1
> dist2
)
2200 s1
= find_use_stmt (&r1
);
2201 r1
= gimple_assign_lhs (s1
);
2204 while (dist2
> dist1
)
2206 s2
= find_use_stmt (&r2
);
2207 r2
= gimple_assign_lhs (s2
);
2213 s1
= find_use_stmt (&r1
);
2214 r1
= gimple_assign_lhs (s1
);
2215 s2
= find_use_stmt (&r2
);
2216 r2
= gimple_assign_lhs (s2
);
2219 /* Remove NAME1 and NAME2 from the statements in that they are used
2221 remove_name_from_operation (stmt1
, name1
);
2222 remove_name_from_operation (stmt2
, name2
);
2224 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2225 combine it with the rhs of S1. */
2226 var
= create_tmp_reg (type
, "predreastmp");
2227 new_name
= make_ssa_name (var
);
2228 new_stmt
= gimple_build_assign (new_name
, code
, name1
, name2
);
2230 var
= create_tmp_reg (type
, "predreastmp");
2231 tmp_name
= make_ssa_name (var
);
2233 /* Rhs of S1 may now be either a binary expression with operation
2234 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2235 so that name1 or name2 was removed from it). */
2236 tmp_stmt
= gimple_build_assign (tmp_name
, gimple_assign_rhs_code (s1
),
2237 gimple_assign_rhs1 (s1
),
2238 gimple_assign_rhs2 (s1
));
2240 bsi
= gsi_for_stmt (s1
);
2241 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2242 s1
= gsi_stmt (bsi
);
2245 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2246 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2251 /* Returns the statement that combines references R1 and R2. In case R1
2252 and R2 are not used in the same statement, but they are used with an
2253 associative and commutative operation in the same expression, reassociate
2254 the expression so that they are used in the same statement. */
2257 stmt_combining_refs (dref r1
, dref r2
)
2259 gimple stmt1
, stmt2
;
2260 tree name1
= name_for_ref (r1
);
2261 tree name2
= name_for_ref (r2
);
2263 stmt1
= find_use_stmt (&name1
);
2264 stmt2
= find_use_stmt (&name2
);
2268 return reassociate_to_the_same_stmt (name1
, name2
);
2271 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2272 description of the new chain is returned, otherwise we return NULL. */
2275 combine_chains (chain_p ch1
, chain_p ch2
)
2278 enum tree_code op
= ERROR_MARK
;
2283 tree rslt_type
= NULL_TREE
;
2287 if (ch1
->length
!= ch2
->length
)
2290 if (ch1
->refs
.length () != ch2
->refs
.length ())
2293 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2294 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2296 if (r1
->distance
!= r2
->distance
)
2299 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2304 std::swap (ch1
, ch2
);
2306 new_chain
= XCNEW (struct chain
);
2307 new_chain
->type
= CT_COMBINATION
;
2309 new_chain
->ch1
= ch1
;
2310 new_chain
->ch2
= ch2
;
2311 new_chain
->rslt_type
= rslt_type
;
2312 new_chain
->length
= ch1
->length
;
2314 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2315 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2317 nw
= XCNEW (struct dref_d
);
2318 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2319 nw
->distance
= r1
->distance
;
2321 new_chain
->refs
.safe_push (nw
);
2324 new_chain
->has_max_use_after
= false;
2325 root_stmt
= get_chain_root (new_chain
)->stmt
;
2326 for (i
= 1; new_chain
->refs
.iterate (i
, &nw
); i
++)
2328 if (nw
->distance
== new_chain
->length
2329 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2331 new_chain
->has_max_use_after
= true;
2336 ch1
->combined
= true;
2337 ch2
->combined
= true;
2341 /* Try to combine the CHAINS. */
2344 try_combine_chains (vec
<chain_p
> *chains
)
2347 chain_p ch1
, ch2
, cch
;
2348 auto_vec
<chain_p
> worklist
;
2350 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2351 if (chain_can_be_combined_p (ch1
))
2352 worklist
.safe_push (ch1
);
2354 while (!worklist
.is_empty ())
2356 ch1
= worklist
.pop ();
2357 if (!chain_can_be_combined_p (ch1
))
2360 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2362 if (!chain_can_be_combined_p (ch2
))
2365 cch
= combine_chains (ch1
, ch2
);
2368 worklist
.safe_push (cch
);
2369 chains
->safe_push (cch
);
2376 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2377 impossible because one of these initializers may trap, true otherwise. */
2380 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2382 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2383 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2386 edge entry
= loop_preheader_edge (loop
);
2388 /* Find the initializers for the variables, and check that they cannot
2390 chain
->inits
.create (n
);
2391 for (i
= 0; i
< n
; i
++)
2392 chain
->inits
.quick_push (NULL_TREE
);
2394 /* If we have replaced some looparound phi nodes, use their initializers
2395 instead of creating our own. */
2396 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
2398 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2401 gcc_assert (laref
->distance
> 0);
2402 chain
->inits
[n
- laref
->distance
]
2403 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
2406 for (i
= 0; i
< n
; i
++)
2408 gimple_seq stmts
= NULL
;
2410 if (chain
->inits
[i
] != NULL_TREE
)
2413 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
2414 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2416 gimple_seq_discard (stmts
);
2421 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2423 chain
->inits
[i
] = init
;
2429 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2430 be used because the initializers might trap. */
2433 prepare_initializers (struct loop
*loop
, vec
<chain_p
> chains
)
2438 for (i
= 0; i
< chains
.length (); )
2441 if (prepare_initializers_chain (loop
, chain
))
2445 release_chain (chain
);
2446 chains
.unordered_remove (i
);
2451 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2455 tree_predictive_commoning_loop (struct loop
*loop
)
2457 vec
<data_reference_p
> datarefs
;
2458 vec
<ddr_p
> dependences
;
2459 struct component
*components
;
2460 vec
<chain_p
> chains
= vNULL
;
2461 unsigned unroll_factor
;
2462 struct tree_niter_desc desc
;
2463 bool unroll
= false;
2467 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2468 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2470 /* Find the data references and split them into components according to their
2471 dependence relations. */
2472 auto_vec
<loop_p
, 3> loop_nest
;
2473 dependences
.create (10);
2474 datarefs
.create (10);
2475 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
2478 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2479 fprintf (dump_file
, "Cannot analyze data dependencies\n");
2480 free_data_refs (datarefs
);
2481 free_dependence_relations (dependences
);
2485 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2486 dump_data_dependence_relations (dump_file
, dependences
);
2488 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2489 loop_nest
.release ();
2490 free_dependence_relations (dependences
);
2493 free_data_refs (datarefs
);
2494 free_affine_expand_cache (&name_expansions
);
2498 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2500 fprintf (dump_file
, "Initial state:\n\n");
2501 dump_components (dump_file
, components
);
2504 /* Find the suitable components and split them into chains. */
2505 components
= filter_suitable_components (loop
, components
);
2507 tmp_vars
= BITMAP_ALLOC (NULL
);
2508 looparound_phis
= BITMAP_ALLOC (NULL
);
2509 determine_roots (loop
, components
, &chains
);
2510 release_components (components
);
2512 if (!chains
.exists ())
2514 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2516 "Predictive commoning failed: no suitable chains\n");
2519 prepare_initializers (loop
, chains
);
2521 /* Try to combine the chains that are always worked with together. */
2522 try_combine_chains (&chains
);
2524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2526 fprintf (dump_file
, "Before commoning:\n\n");
2527 dump_chains (dump_file
, chains
);
2530 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2531 that its number of iterations is divisible by the factor. */
2532 unroll_factor
= determine_unroll_factor (chains
);
2534 unroll
= (unroll_factor
> 1
2535 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2536 exit
= single_dom_exit (loop
);
2538 /* Execute the predictive commoning transformations, and possibly unroll the
2542 struct epcc_data dta
;
2544 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2545 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2547 dta
.chains
= chains
;
2548 dta
.tmp_vars
= tmp_vars
;
2550 update_ssa (TODO_update_ssa_only_virtuals
);
2552 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2553 execute_pred_commoning_cbck is called may cause phi nodes to be
2554 reallocated, which is a problem since CHAINS may point to these
2555 statements. To fix this, we store the ssa names defined by the
2556 phi nodes here instead of the phi nodes themselves, and restore
2557 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2558 replace_phis_by_defined_names (chains
);
2560 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2561 execute_pred_commoning_cbck
, &dta
);
2562 eliminate_temp_copies (loop
, tmp_vars
);
2566 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2568 "Executing predictive commoning without unrolling.\n");
2569 execute_pred_commoning (loop
, chains
, tmp_vars
);
2573 release_chains (chains
);
2574 free_data_refs (datarefs
);
2575 BITMAP_FREE (tmp_vars
);
2576 BITMAP_FREE (looparound_phis
);
2578 free_affine_expand_cache (&name_expansions
);
2583 /* Runs predictive commoning. */
2586 tree_predictive_commoning (void)
2588 bool unrolled
= false;
2592 initialize_original_copy_tables ();
2593 FOR_EACH_LOOP (loop
, LI_ONLY_INNERMOST
)
2594 if (optimize_loop_for_speed_p (loop
))
2596 unrolled
|= tree_predictive_commoning_loop (loop
);
2602 ret
= TODO_cleanup_cfg
;
2604 free_original_copy_tables ();
2609 /* Predictive commoning Pass. */
2612 run_tree_predictive_commoning (struct function
*fun
)
2614 if (number_of_loops (fun
) <= 1)
2617 return tree_predictive_commoning ();
2622 const pass_data pass_data_predcom
=
2624 GIMPLE_PASS
, /* type */
2626 OPTGROUP_LOOP
, /* optinfo_flags */
2627 TV_PREDCOM
, /* tv_id */
2628 PROP_cfg
, /* properties_required */
2629 0, /* properties_provided */
2630 0, /* properties_destroyed */
2631 0, /* todo_flags_start */
2632 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
2635 class pass_predcom
: public gimple_opt_pass
2638 pass_predcom (gcc::context
*ctxt
)
2639 : gimple_opt_pass (pass_data_predcom
, ctxt
)
2642 /* opt_pass methods: */
2643 virtual bool gate (function
*) { return flag_predictive_commoning
!= 0; }
2644 virtual unsigned int execute (function
*fun
)
2646 return run_tree_predictive_commoning (fun
);
2649 }; // class pass_predcom
2654 make_pass_predcom (gcc::context
*ctxt
)
2656 return new pass_predcom (ctxt
);