2015-07-10 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / vtable-verify.c
blob46506af36d2e3d31745b0d7a9510ea00500a6c7e
1 /* Copyright (C) 2013-2015 Free Software Foundation, Inc.
3 This file is part of GCC.
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 for more details.
15 You should have received a copy of the GNU General Public License
16 along with GCC; see the file COPYING3. If not see
17 <http://www.gnu.org/licenses/>. */
19 /* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
20 before using them for virtual method dispatches. */
22 /* This file is part of the vtable security feature implementation.
23 The vtable security feature is designed to detect when a virtual
24 call is about to be made through an invalid vtable pointer
25 (possibly due to data corruption or malicious attacks). The
26 compiler finds every virtual call, and inserts a verification call
27 before the virtual call. The verification call takes the actual
28 vtable pointer value in the object through which the virtual call
29 is being made, and compares the vtable pointer against a set of all
30 valid vtable pointers that the object could contain (this set is
31 based on the declared type of the object). If the pointer is in
32 the valid set, execution is allowed to continue; otherwise the
33 program is halted.
35 There are several pieces needed in order to make this work: 1. For
36 every virtual class in the program (i.e. a class that contains
37 virtual methods), we need to build the set of all possible valid
38 vtables that an object of that class could point to. This includes
39 vtables for any class(es) that inherit from the class under
40 consideration. 2. For every such data set we build up, we need a
41 way to find and reference the data set. This is complicated by the
42 fact that the real vtable addresses are not known until runtime,
43 when the program is loaded into memory, but we need to reference the
44 sets at compile time when we are inserting verification calls into
45 the program. 3. We need to find every virtual call in the program,
46 and insert the verification call (with the appropriate arguments)
47 before the virtual call. 4. We need some runtime library pieces:
48 the code to build up the data sets at runtime; the code to actually
49 perform the verification using the data sets; and some code to set
50 protections on the data sets, so they themselves do not become
51 hacker targets.
53 To find and reference the set of valid vtable pointers for any given
54 virtual class, we create a special global variable for each virtual
55 class. We refer to this as the "vtable map variable" for that
56 class. The vtable map variable has the type "void *", and is
57 initialized by the compiler to NULL. At runtime when the set of
58 valid vtable pointers for a virtual class, e.g. class Foo, is built,
59 the vtable map variable for class Foo is made to point to the set.
60 During compile time, when the compiler is inserting verification
61 calls into the program, it passes the vtable map variable for the
62 appropriate class to the verification call, so that at runtime the
63 verification call can find the appropriate data set.
65 The actual set of valid vtable pointers for a virtual class,
66 e.g. class Foo, cannot be built until runtime, when the vtables get
67 loaded into memory and their addresses are known. But the knowledge
68 about which vtables belong in which class' hierarchy is only known
69 at compile time. Therefore at compile time we collect class
70 hierarchy and vtable information about every virtual class, and we
71 generate calls to build up the data sets at runtime. To build the
72 data sets, we call one of the functions we add to the runtime
73 library, __VLTRegisterPair. __VLTRegisterPair takes two arguments,
74 a vtable map variable and the address of a vtable. If the vtable
75 map variable is currently NULL, it creates a new data set (hash
76 table), makes the vtable map variable point to the new data set, and
77 inserts the vtable address into the data set. If the vtable map
78 variable is not NULL, it just inserts the vtable address into the
79 data set. In order to make sure that our data sets are built before
80 any verification calls happen, we create a special constructor
81 initialization function for each compilation unit, give it a very
82 high initialization priority, and insert all of our calls to
83 __VLTRegisterPair into our special constructor initialization
84 function.
86 The vtable verification feature is controlled by the flag
87 '-fvtable-verify='. There are three flavors of this:
88 '-fvtable-verify=std', '-fvtable-verify=preinit', and
89 '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is
90 used, then our constructor initialization function gets put into the
91 preinit array. This is necessary if there are data sets that need
92 to be built very early in execution. If the constructor
93 initialization function gets put into the preinit array, the we also
94 add calls to __VLTChangePermission at the beginning and end of the
95 function. The call at the beginning sets the permissions on the
96 data sets and vtable map variables to read/write, and the one at the
97 end makes them read-only. If the '-fvtable-verify=std' option is
98 used, the constructor initialization functions are executed at their
99 normal time, and the __VLTChangePermission calls are handled
100 differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
101 The option '-fvtable-verify=none' turns off vtable verification.
103 This file contains code for the tree pass that goes through all the
104 statements in each basic block, looking for virtual calls, and
105 inserting a call to __VLTVerifyVtablePointer (with appropriate
106 arguments) before each one. It also contains the hash table
107 functions for the data structures used for collecting the class
108 hierarchy data and building/maintaining the vtable map variable data
109 are defined in gcc/vtable-verify.h. These data structures are
110 shared with the code in the C++ front end that collects the class
111 hierarchy & vtable information and generates the vtable map
112 variables (see cp/vtable-class-hierarchy.c). This tree pass should
113 run just before the gimple is converted to RTL.
115 Some implementation details for this pass:
117 To find all of the virtual calls, we iterate through all the
118 gimple statements in each basic block, looking for any call
119 statement with the code "OBJ_TYPE_REF". Once we have found the
120 virtual call, we need to find the vtable pointer through which the
121 call is being made, and the type of the object containing the
122 pointer (to find the appropriate vtable map variable). We then use
123 these to build a call to __VLTVerifyVtablePointer, passing the
124 vtable map variable, and the vtable pointer. We insert the
125 verification call just after the gimple statement that gets the
126 vtable pointer out of the object, and we update the next
127 statement to depend on the result returned from
128 __VLTVerifyVtablePointer (the vtable pointer value), to ensure
129 subsequent compiler phases don't remove or reorder the call (it's no
130 good to have the verification occur after the virtual call, for
131 example). To find the vtable pointer being used (and the type of
132 the object) we search backwards through the def_stmts chain from the
133 virtual call (see verify_bb_vtables for more details). */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "alias.h"
139 #include "backend.h"
140 #include "tree.h"
141 #include "gimple.h"
142 #include "hard-reg-set.h"
143 #include "ssa.h"
144 #include "options.h"
145 #include "fold-const.h"
146 #include "internal-fn.h"
147 #include "gimple-iterator.h"
148 #include "tree-pass.h"
149 #include "cfgloop.h"
151 #include "vtable-verify.h"
153 unsigned num_vtable_map_nodes = 0;
154 int total_num_virtual_calls = 0;
155 int total_num_verified_vcalls = 0;
157 extern GTY(()) tree verify_vtbl_ptr_fndecl;
158 tree verify_vtbl_ptr_fndecl = NULL_TREE;
160 /* Keep track of whether or not any virtual call were verified. */
161 static bool any_verification_calls_generated = false;
163 unsigned int vtable_verify_main (void);
166 /* The following few functions are for the vtbl pointer hash table
167 in the 'registered' field of the struct vtable_map_node. The hash
168 table keeps track of which vtable pointers have been used in
169 calls to __VLTRegisterPair with that particular vtable map variable. */
171 /* This function checks to see if a particular VTABLE_DECL and OFFSET are
172 already in the 'registered' hash table for NODE. */
174 bool
175 vtbl_map_node_registration_find (struct vtbl_map_node *node,
176 tree vtable_decl,
177 unsigned offset)
179 struct vtable_registration key;
180 struct vtable_registration **slot;
182 gcc_assert (node && node->registered);
184 key.vtable_decl = vtable_decl;
185 slot = node->registered->find_slot (&key, NO_INSERT);
187 if (slot && (*slot))
189 unsigned i;
190 for (i = 0; i < ((*slot)->offsets).length (); ++i)
191 if ((*slot)->offsets[i] == offset)
192 return true;
195 return false;
198 /* This function inserts VTABLE_DECL and OFFSET into the 'registered'
199 hash table for NODE. It returns a boolean indicating whether or not
200 it actually inserted anything. */
202 bool
203 vtbl_map_node_registration_insert (struct vtbl_map_node *node,
204 tree vtable_decl,
205 unsigned offset)
207 struct vtable_registration key;
208 struct vtable_registration **slot;
209 bool inserted_something = false;
211 if (!node || !node->registered)
212 return false;
214 key.vtable_decl = vtable_decl;
215 slot = node->registered->find_slot (&key, INSERT);
217 if (! *slot)
219 struct vtable_registration *node;
220 node = XNEW (struct vtable_registration);
221 node->vtable_decl = vtable_decl;
223 (node->offsets).create (10);
224 (node->offsets).safe_push (offset);
225 *slot = node;
226 inserted_something = true;
228 else
230 /* We found the vtable_decl slot; we need to see if it already
231 contains the offset. If not, we need to add the offset. */
232 unsigned i;
233 bool found = false;
234 for (i = 0; i < ((*slot)->offsets).length () && !found; ++i)
235 if ((*slot)->offsets[i] == offset)
236 found = true;
238 if (!found)
240 ((*slot)->offsets).safe_push (offset);
241 inserted_something = true;
244 return inserted_something;
247 /* Hashtable functions for vtable_registration hashtables. */
249 inline hashval_t
250 registration_hasher::hash (const vtable_registration *p)
252 const struct vtable_registration *n = (const struct vtable_registration *) p;
253 return (hashval_t) (DECL_UID (n->vtable_decl));
256 inline bool
257 registration_hasher::equal (const vtable_registration *p1,
258 const vtable_registration *p2)
260 const struct vtable_registration *n1 =
261 (const struct vtable_registration *) p1;
262 const struct vtable_registration *n2 =
263 (const struct vtable_registration *) p2;
264 return (DECL_UID (n1->vtable_decl) == DECL_UID (n2->vtable_decl));
267 /* End of hashtable functions for "registered" hashtables. */
271 /* Hashtable definition and functions for vtbl_map_hash. */
273 struct vtbl_map_hasher : nofree_ptr_hash <struct vtbl_map_node>
275 static inline hashval_t hash (const vtbl_map_node *);
276 static inline bool equal (const vtbl_map_node *, const vtbl_map_node *);
279 /* Returns a hash code for P. */
281 inline hashval_t
282 vtbl_map_hasher::hash (const vtbl_map_node *p)
284 const struct vtbl_map_node n = *((const struct vtbl_map_node *) p);
285 return (hashval_t) IDENTIFIER_HASH_VALUE (n.class_name);
288 /* Returns nonzero if P1 and P2 are equal. */
290 inline bool
291 vtbl_map_hasher::equal (const vtbl_map_node *p1, const vtbl_map_node *p2)
293 const struct vtbl_map_node n1 = *((const struct vtbl_map_node *) p1);
294 const struct vtbl_map_node n2 = *((const struct vtbl_map_node *) p2);
295 return (IDENTIFIER_HASH_VALUE (n1.class_name) ==
296 IDENTIFIER_HASH_VALUE (n2.class_name));
299 /* Here are the two structures into which we insert vtable map nodes.
300 We use two data structures because of the vastly different ways we need
301 to find the nodes for various tasks (see comments in vtable-verify.h
302 for more details. */
304 typedef hash_table<vtbl_map_hasher> vtbl_map_table_type;
305 typedef vtbl_map_table_type::iterator vtbl_map_iterator_type;
307 /* Vtable map variable nodes stored in a hash table. */
308 static vtbl_map_table_type *vtbl_map_hash;
310 /* Vtable map variable nodes stored in a vector. */
311 vec<struct vtbl_map_node *> vtbl_map_nodes_vec;
313 /* Return vtbl_map node for CLASS_NAME without creating a new one. */
315 struct vtbl_map_node *
316 vtbl_map_get_node (tree class_type)
318 struct vtbl_map_node key;
319 struct vtbl_map_node **slot;
321 tree class_type_decl;
322 tree class_name;
323 unsigned int type_quals;
325 if (!vtbl_map_hash)
326 return NULL;
328 gcc_assert (TREE_CODE (class_type) == RECORD_TYPE);
331 /* Find the TYPE_DECL for the class. */
332 class_type_decl = TYPE_NAME (class_type);
334 /* Verify that there aren't any qualifiers on the type. */
335 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
336 gcc_assert (type_quals == TYPE_UNQUALIFIED);
338 /* Get the mangled name for the unqualified type. */
339 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
340 class_name = DECL_ASSEMBLER_NAME (class_type_decl);
342 key.class_name = class_name;
343 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, NO_INSERT);
344 if (!slot)
345 return NULL;
346 return *slot;
349 /* Return vtbl_map node assigned to BASE_CLASS_TYPE. Create new one
350 when needed. */
352 struct vtbl_map_node *
353 find_or_create_vtbl_map_node (tree base_class_type)
355 struct vtbl_map_node key;
356 struct vtbl_map_node *node;
357 struct vtbl_map_node **slot;
358 tree class_type_decl;
359 unsigned int type_quals;
361 if (!vtbl_map_hash)
362 vtbl_map_hash = new vtbl_map_table_type (10);
364 /* Find the TYPE_DECL for the class. */
365 class_type_decl = TYPE_NAME (base_class_type);
367 /* Verify that there aren't any type qualifiers on type. */
368 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
369 gcc_assert (type_quals == TYPE_UNQUALIFIED);
371 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
372 key.class_name = DECL_ASSEMBLER_NAME (class_type_decl);
373 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, INSERT);
375 if (*slot)
376 return *slot;
378 node = XNEW (struct vtbl_map_node);
379 node->vtbl_map_decl = NULL_TREE;
380 node->class_name = key.class_name;
381 node->uid = num_vtable_map_nodes++;
383 node->class_info = XNEW (struct vtv_graph_node);
384 node->class_info->class_type = base_class_type;
385 node->class_info->class_uid = node->uid;
386 node->class_info->num_processed_children = 0;
388 (node->class_info->parents).create (4);
389 (node->class_info->children).create (4);
391 node->registered = new register_table_type (16);
393 node->is_used = false;
395 vtbl_map_nodes_vec.safe_push (node);
396 gcc_assert (vtbl_map_nodes_vec[node->uid] == node);
398 *slot = node;
399 return node;
402 /* End of hashtable functions for vtable_map variables hash table. */
404 /* Given a gimple STMT, this function checks to see if the statement
405 is an assignment, the rhs of which is getting the vtable pointer
406 value out of an object. (i.e. it's the value we need to verify
407 because its the vtable pointer that will be used for a virtual
408 call). */
410 static bool
411 is_vtable_assignment_stmt (gimple stmt)
414 if (gimple_code (stmt) != GIMPLE_ASSIGN)
415 return false;
416 else
418 tree lhs = gimple_assign_lhs (stmt);
419 tree rhs = gimple_assign_rhs1 (stmt);
421 if (TREE_CODE (lhs) != SSA_NAME)
422 return false;
424 if (TREE_CODE (rhs) != COMPONENT_REF)
425 return false;
427 if (! (TREE_OPERAND (rhs, 1))
428 || (TREE_CODE (TREE_OPERAND (rhs, 1)) != FIELD_DECL))
429 return false;
431 if (! DECL_VIRTUAL_P (TREE_OPERAND (rhs, 1)))
432 return false;
435 return true;
438 /* This function attempts to recover the declared class of an object
439 that is used in making a virtual call. We try to get the type from
440 the type cast in the gimple assignment statement that extracts the
441 vtable pointer from the object (DEF_STMT). The gimple statement
442 usually looks something like this:
444 D.2201_4 = MEM[(struct Event *)this_1(D)]._vptr.Event */
446 static tree
447 extract_object_class_type (tree rhs)
449 tree result = NULL_TREE;
451 /* Try to find and extract the type cast from that stmt. */
452 if (TREE_CODE (rhs) == COMPONENT_REF)
454 tree op0 = TREE_OPERAND (rhs, 0);
455 tree op1 = TREE_OPERAND (rhs, 1);
457 if (TREE_CODE (op1) == FIELD_DECL
458 && DECL_VIRTUAL_P (op1))
460 if (TREE_CODE (op0) == COMPONENT_REF
461 && TREE_CODE (TREE_OPERAND (op0, 0)) == MEM_REF
462 && TREE_CODE (TREE_TYPE (TREE_OPERAND (op0, 0)))== RECORD_TYPE)
463 result = TREE_TYPE (TREE_OPERAND (op0, 0));
464 else
465 result = TREE_TYPE (op0);
467 else if (TREE_CODE (op0) == COMPONENT_REF)
469 result = extract_object_class_type (op0);
470 if (result == NULL_TREE
471 && TREE_CODE (op1) == COMPONENT_REF)
472 result = extract_object_class_type (op1);
476 return result;
479 /* This function traces forward through the def-use chain of an SSA
480 variable to see if it ever gets used in a virtual function call. It
481 returns a boolean indicating whether or not it found a virtual call in
482 the use chain. */
484 static bool
485 var_is_used_for_virtual_call_p (tree lhs, int *mem_ref_depth)
487 imm_use_iterator imm_iter;
488 bool found_vcall = false;
489 use_operand_p use_p;
491 if (TREE_CODE (lhs) != SSA_NAME)
492 return false;
494 if (*mem_ref_depth > 2)
495 return false;
497 /* Iterate through the immediate uses of the current variable. If
498 it's a virtual function call, we're done. Otherwise, if there's
499 an LHS for the use stmt, add the ssa var to the work list
500 (assuming it's not already in the list and is not a variable
501 we've already examined. */
503 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
505 gimple stmt2 = USE_STMT (use_p);
507 if (is_gimple_call (stmt2))
509 tree fncall = gimple_call_fn (stmt2);
510 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
511 found_vcall = true;
512 else
513 return false;
515 else if (gimple_code (stmt2) == GIMPLE_PHI)
517 found_vcall = var_is_used_for_virtual_call_p
518 (gimple_phi_result (stmt2),
519 mem_ref_depth);
521 else if (is_gimple_assign (stmt2))
523 tree rhs = gimple_assign_rhs1 (stmt2);
524 if (TREE_CODE (rhs) == ADDR_EXPR
525 || TREE_CODE (rhs) == MEM_REF)
526 *mem_ref_depth = *mem_ref_depth + 1;
528 if (TREE_CODE (rhs) == COMPONENT_REF)
530 while (TREE_CODE (TREE_OPERAND (rhs, 0)) == COMPONENT_REF)
531 rhs = TREE_OPERAND (rhs, 0);
533 if (TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
534 || TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)
535 *mem_ref_depth = *mem_ref_depth + 1;
538 if (*mem_ref_depth < 3)
539 found_vcall = var_is_used_for_virtual_call_p
540 (gimple_assign_lhs (stmt2),
541 mem_ref_depth);
544 else
545 break;
547 if (found_vcall)
548 return true;
551 return false;
554 /* Search through all the statements in a basic block (BB), searching
555 for virtual method calls. For each virtual method dispatch, find
556 the vptr value used, and the statically declared type of the
557 object; retrieve the vtable map variable for the type of the
558 object; generate a call to __VLTVerifyVtablePointer; and insert the
559 generated call into the basic block, after the point where the vptr
560 value is gotten out of the object and before the virtual method
561 dispatch. Make the virtual method dispatch depend on the return
562 value from the verification call, so that subsequent optimizations
563 cannot reorder the two calls. */
565 static void
566 verify_bb_vtables (basic_block bb)
568 gimple_seq stmts;
569 gimple stmt = NULL;
570 gimple_stmt_iterator gsi_vtbl_assign;
571 gimple_stmt_iterator gsi_virtual_call;
573 stmts = bb_seq (bb);
574 gsi_virtual_call = gsi_start (stmts);
575 for (; !gsi_end_p (gsi_virtual_call); gsi_next (&gsi_virtual_call))
577 stmt = gsi_stmt (gsi_virtual_call);
579 /* Count virtual calls. */
580 if (is_gimple_call (stmt))
582 tree fncall = gimple_call_fn (stmt);
583 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
584 total_num_virtual_calls++;
587 if (is_vtable_assignment_stmt (stmt))
589 tree lhs = gimple_assign_lhs (stmt);
590 tree vtbl_var_decl = NULL_TREE;
591 struct vtbl_map_node *vtable_map_node;
592 tree vtbl_decl = NULL_TREE;
593 gcall *call_stmt;
594 const char *vtable_name = "<unknown>";
595 tree tmp0;
596 bool found;
597 int mem_ref_depth = 0;
599 /* Make sure this vptr field access is for a virtual call. */
600 if (!var_is_used_for_virtual_call_p (lhs, &mem_ref_depth))
601 continue;
603 /* Now we have found the virtual method dispatch and
604 the preceding access of the _vptr.* field... Next
605 we need to find the statically declared type of
606 the object, so we can find and use the right
607 vtable map variable in the verification call. */
608 tree class_type = extract_object_class_type
609 (gimple_assign_rhs1 (stmt));
611 gsi_vtbl_assign = gsi_for_stmt (stmt);
613 if (class_type
614 && (TREE_CODE (class_type) == RECORD_TYPE)
615 && TYPE_BINFO (class_type))
617 /* Get the vtable VAR_DECL for the type. */
618 vtbl_var_decl = BINFO_VTABLE (TYPE_BINFO (class_type));
620 if (TREE_CODE (vtbl_var_decl) == POINTER_PLUS_EXPR)
621 vtbl_var_decl = TREE_OPERAND (TREE_OPERAND (vtbl_var_decl, 0),
624 gcc_assert (vtbl_var_decl);
626 vtbl_decl = vtbl_var_decl;
627 vtable_map_node = vtbl_map_get_node
628 (TYPE_MAIN_VARIANT (class_type));
630 gcc_assert (verify_vtbl_ptr_fndecl);
632 /* Given the vtable pointer for the base class of the
633 object, build the call to __VLTVerifyVtablePointer to
634 verify that the object's vtable pointer (contained in
635 lhs) is in the set of valid vtable pointers for the
636 base class. */
638 if (vtable_map_node && vtable_map_node->vtbl_map_decl)
640 vtable_map_node->is_used = true;
641 vtbl_var_decl = vtable_map_node->vtbl_map_decl;
643 if (TREE_CODE (vtbl_decl) == VAR_DECL)
644 vtable_name = IDENTIFIER_POINTER (DECL_NAME (vtbl_decl));
646 /* Call different routines if we are interested in
647 trace information to debug problems. */
648 if (flag_vtv_debug)
650 int len1 = IDENTIFIER_LENGTH
651 (DECL_NAME (vtbl_var_decl));
652 int len2 = strlen (vtable_name);
654 call_stmt = gimple_build_call
655 (verify_vtbl_ptr_fndecl, 4,
656 build1 (ADDR_EXPR,
657 TYPE_POINTER_TO
658 (TREE_TYPE (vtbl_var_decl)),
659 vtbl_var_decl),
660 lhs,
661 build_string_literal
662 (len1 + 1,
663 IDENTIFIER_POINTER
664 (DECL_NAME
665 (vtbl_var_decl))),
666 build_string_literal (len2 + 1,
667 vtable_name));
669 else
670 call_stmt = gimple_build_call
671 (verify_vtbl_ptr_fndecl, 2,
672 build1 (ADDR_EXPR,
673 TYPE_POINTER_TO
674 (TREE_TYPE (vtbl_var_decl)),
675 vtbl_var_decl),
676 lhs);
679 /* Create a new SSA_NAME var to hold the call's
680 return value, and make the call_stmt use the
681 variable for that purpose. */
682 tmp0 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "VTV");
683 gimple_call_set_lhs (call_stmt, tmp0);
684 update_stmt (call_stmt);
686 /* Replace all uses of lhs with tmp0. */
687 found = false;
688 imm_use_iterator iterator;
689 gimple use_stmt;
690 FOR_EACH_IMM_USE_STMT (use_stmt, iterator, lhs)
692 use_operand_p use_p;
693 if (use_stmt == call_stmt)
694 continue;
695 FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
696 SET_USE (use_p, tmp0);
697 update_stmt (use_stmt);
698 found = true;
701 gcc_assert (found);
703 /* Insert the new verification call just after the
704 statement that gets the vtable pointer out of the
705 object. */
706 gcc_assert (gsi_stmt (gsi_vtbl_assign) == stmt);
707 gsi_insert_after (&gsi_vtbl_assign, call_stmt,
708 GSI_NEW_STMT);
710 any_verification_calls_generated = true;
711 total_num_verified_vcalls++;
718 /* Definition of this optimization pass. */
720 namespace {
722 const pass_data pass_data_vtable_verify =
724 GIMPLE_PASS, /* type */
725 "vtable-verify", /* name */
726 OPTGROUP_NONE, /* optinfo_flags */
727 TV_VTABLE_VERIFICATION, /* tv_id */
728 ( PROP_cfg | PROP_ssa ), /* properties_required */
729 0, /* properties_provided */
730 0, /* properties_destroyed */
731 0, /* todo_flags_start */
732 TODO_update_ssa, /* todo_flags_finish */
735 class pass_vtable_verify : public gimple_opt_pass
737 public:
738 pass_vtable_verify (gcc::context *ctxt)
739 : gimple_opt_pass (pass_data_vtable_verify, ctxt)
742 /* opt_pass methods: */
743 virtual bool gate (function *) { return (flag_vtable_verify); }
744 virtual unsigned int execute (function *);
746 }; // class pass_vtable_verify
748 /* Loop through all the basic blocks in the current function, passing them to
749 verify_bb_vtables, which searches for virtual calls, and inserts
750 calls to __VLTVerifyVtablePointer. */
752 unsigned int
753 pass_vtable_verify::execute (function *fun)
755 unsigned int ret = 1;
756 basic_block bb;
758 FOR_ALL_BB_FN (bb, fun)
759 verify_bb_vtables (bb);
761 return ret;
764 } // anon namespace
766 gimple_opt_pass *
767 make_pass_vtable_verify (gcc::context *ctxt)
769 return new pass_vtable_verify (ctxt);
772 #include "gt-vtable-verify.h"