1 /* Type based alias analysis.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass determines which types in the program contain only
22 instances that are completely encapsulated by the compilation unit.
23 Those types that are encapsulated must also pass the further
24 requirement that there be no bad operations on any instances of
27 A great deal of freedom in compilation is allowed for the instances
28 of those types that pass these conditions.
31 /* The code in this module is called by the ipa pass manager. It
32 should be one of the later passes since its information is used by
33 the rest of the compilation. */
37 #include "coretypes.h"
40 #include "tree-flow.h"
41 #include "tree-inline.h"
42 #include "tree-pass.h"
43 #include "langhooks.h"
44 #include "pointer-set.h"
46 #include "ipa-utils.h"
47 #include "ipa-type-escape.h"
49 #include "tree-gimple.h"
54 #include "diagnostic.h"
55 #include "langhooks.h"
57 /* Some of the aliasing is called very early, before this phase is
58 called. To assure that this is not a problem, we keep track of if
59 this phase has been run. */
60 static bool initialized
= false;
62 /* Scratch bitmap for avoiding work. */
63 static bitmap been_there_done_that
;
64 static bitmap bitmap_tmp
;
66 /* There are two levels of escape that types can undergo.
68 EXPOSED_PARAMETER - some instance of the variable is
69 passed by value into an externally visible function or some
70 instance of the variable is passed out of an externally visible
71 function as a return value. In this case any of the fields of the
72 variable that are pointer types end up having their types marked as
75 FULL_ESCAPE - when bad things happen to good types. One of the
76 following things happens to the type: (a) either an instance of the
77 variable has its address passed to an externally visible function,
78 (b) the address is taken and some bad cast happens to the address
79 or (c) explicit arithmetic is done to the address.
88 /* The following two bit vectors global_types_* correspond to
89 previous cases above. During the analysis phase, a bit is set in
90 one of these vectors if an operation of the offending class is
91 discovered to happen on the associated type. */
93 static bitmap global_types_exposed_parameter
;
94 static bitmap global_types_full_escape
;
96 /* All of the types seen in this compilation unit. */
97 static bitmap global_types_seen
;
98 /* Reverse map to take a canon uid and map it to a canon type. Uid's
99 are never manipulated unless they are associated with a canon
101 static splay_tree uid_to_canon_type
;
103 /* Internal structure of type mapping code. This maps a canon type
104 name to its canon type. */
105 static splay_tree all_canon_types
;
107 /* Map from type clones to the single canon type. */
108 static splay_tree type_to_canon_type
;
110 /* A splay tree of bitmaps. An element X in the splay tree has a bit
111 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (Y)) if there was
112 an operation in the program of the form "&X.Y". */
113 static splay_tree uid_to_addressof_down_map
;
115 /* A splay tree of bitmaps. An element Y in the splay tree has a bit
116 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (X)) if there was
117 an operation in the program of the form "&X.Y". */
118 static splay_tree uid_to_addressof_up_map
;
120 /* Tree to hold the subtype maps used to mark subtypes of escaped
122 static splay_tree uid_to_subtype_map
;
124 /* Records tree nodes seen in cgraph_create_edges. Simply using
125 walk_tree_without_duplicates doesn't guarantee each node is visited
126 once because it gets a new htab upon each recursive call from
128 static struct pointer_set_t
*visited_nodes
;
130 /* Visited stmts by walk_use_def_chains function because it's called
132 static struct pointer_set_t
*visited_stmts
;
134 static bitmap_obstack ipa_obstack
;
136 /* Static functions from this file that are used
137 before being defined. */
138 static unsigned int look_for_casts (tree lhs ATTRIBUTE_UNUSED
, tree
);
139 static bool is_cast_from_non_pointer (tree
, tree
, void *);
141 /* Get the name of TYPE or return the string "<UNNAMED>". */
143 get_name_of_type (tree type
)
145 tree name
= TYPE_NAME (type
);
148 /* Unnamed type, do what you like here. */
151 /* It will be a TYPE_DECL in the case of a typedef, otherwise, an
153 if (TREE_CODE (name
) == TYPE_DECL
)
155 /* Each DECL has a DECL_NAME field which contains an
156 IDENTIFIER_NODE. (Some decls, most often labels, may have
157 zero as the DECL_NAME). */
158 if (DECL_NAME (name
))
159 return IDENTIFIER_POINTER (DECL_NAME (name
));
161 /* Unnamed type, do what you like here. */
164 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
165 return IDENTIFIER_POINTER (name
);
176 /* Splay tree comparison function on type_brand_s structures. */
179 compare_type_brand (splay_tree_key sk1
, splay_tree_key sk2
)
181 struct type_brand_s
* k1
= (struct type_brand_s
*) sk1
;
182 struct type_brand_s
* k2
= (struct type_brand_s
*) sk2
;
184 int value
= strcmp(k1
->name
, k2
->name
);
186 return k2
->seq
- k1
->seq
;
191 /* All of the "unique_type" code is a hack to get around the sleazy
192 implementation used to compile more than file. Currently gcc does
193 not get rid of multiple instances of the same type that have been
194 collected from different compilation units. */
195 /* This is a trivial algorithm for removing duplicate types. This
196 would not work for any language that used structural equivalence as
197 the basis of its type system. */
198 /* Return TYPE if no type compatible with TYPE has been seen so far,
199 otherwise return a type compatible with TYPE that has already been
203 discover_unique_type (tree type
)
205 struct type_brand_s
* brand
= XNEW (struct type_brand_s
);
207 splay_tree_node result
;
209 brand
->name
= get_name_of_type (type
);
214 result
= splay_tree_lookup (all_canon_types
, (splay_tree_key
) brand
);
218 /* Create an alias since this is just the same as
220 tree other_type
= (tree
) result
->value
;
221 if (types_compatible_p (type
, other_type
))
224 /* Insert this new type as an alias for other_type. */
225 splay_tree_insert (type_to_canon_type
,
226 (splay_tree_key
) type
,
227 (splay_tree_value
) other_type
);
230 /* Not compatible, look for next instance with same name. */
234 /* No more instances, create new one since this is the first
235 time we saw this type. */
237 /* Insert the new brand. */
238 splay_tree_insert (all_canon_types
,
239 (splay_tree_key
) brand
,
240 (splay_tree_value
) type
);
242 /* Insert this new type as an alias for itself. */
243 splay_tree_insert (type_to_canon_type
,
244 (splay_tree_key
) type
,
245 (splay_tree_value
) type
);
247 /* Insert the uid for reverse lookup; */
248 splay_tree_insert (uid_to_canon_type
,
249 (splay_tree_key
) TYPE_UID (type
),
250 (splay_tree_value
) type
);
252 bitmap_set_bit (global_types_seen
, TYPE_UID (type
));
258 /* Return true if TYPE is one of the type classes that we are willing
259 to analyze. This skips the goofy types like arrays of pointers to
262 type_to_consider (tree type
)
264 /* Strip the *'s off. */
265 type
= TYPE_MAIN_VARIANT (type
);
266 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
267 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
269 switch (TREE_CODE (type
))
275 case QUAL_UNION_TYPE
:
277 case FIXED_POINT_TYPE
:
289 /* Get the canon type of TYPE. If SEE_THRU_PTRS is true, remove all
290 the POINTER_TOs and if SEE_THRU_ARRAYS is true, remove all of the
291 ARRAY_OFs and POINTER_TOs. */
294 get_canon_type (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
296 splay_tree_node result
;
297 /* Strip the *'s off. */
298 if (!type
|| !type_to_consider (type
))
301 type
= TYPE_MAIN_VARIANT (type
);
303 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
304 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
306 else if (see_thru_ptrs
)
307 while (POINTER_TYPE_P (type
))
308 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
310 result
= splay_tree_lookup(type_to_canon_type
, (splay_tree_key
) type
);
313 return discover_unique_type (type
);
314 else return (tree
) result
->value
;
317 /* Same as GET_CANON_TYPE, except return the TYPE_ID rather than the
321 get_canon_type_uid (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
323 type
= get_canon_type (type
, see_thru_ptrs
, see_thru_arrays
);
325 return TYPE_UID(type
);
329 /* Return 0 if TYPE is a record or union type. Return a positive
330 number if TYPE is a pointer to a record or union. The number is
331 the number of pointer types stripped to get to the record or union
332 type. Return -1 if TYPE is none of the above. */
335 ipa_type_escape_star_count_of_interesting_type (tree type
)
338 /* Strip the *'s off. */
341 type
= TYPE_MAIN_VARIANT (type
);
342 while (POINTER_TYPE_P (type
))
344 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
348 /* We are interested in records, and unions only. */
349 if (TREE_CODE (type
) == RECORD_TYPE
350 || TREE_CODE (type
) == QUAL_UNION_TYPE
351 || TREE_CODE (type
) == UNION_TYPE
)
358 /* Return 0 if TYPE is a record or union type. Return a positive
359 number if TYPE is a pointer to a record or union. The number is
360 the number of pointer types stripped to get to the record or union
361 type. Return -1 if TYPE is none of the above. */
364 ipa_type_escape_star_count_of_interesting_or_array_type (tree type
)
367 /* Strip the *'s off. */
370 type
= TYPE_MAIN_VARIANT (type
);
371 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
373 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
377 /* We are interested in records, and unions only. */
378 if (TREE_CODE (type
) == RECORD_TYPE
379 || TREE_CODE (type
) == QUAL_UNION_TYPE
380 || TREE_CODE (type
) == UNION_TYPE
)
387 /* Return true if the record, or union TYPE passed in escapes this
388 compilation unit. Note that all of the pointer-to's are removed
389 before testing since these may not be correct. */
392 ipa_type_escape_type_contained_p (tree type
)
396 return !bitmap_bit_p (global_types_full_escape
,
397 get_canon_type_uid (type
, true, false));
400 /* Return true if a modification to a field of type FIELD_TYPE cannot
401 clobber a record of RECORD_TYPE. */
404 ipa_type_escape_field_does_not_clobber_p (tree record_type
, tree field_type
)
406 splay_tree_node result
;
412 /* Strip off all of the pointer tos on the record type. Strip the
413 same number of pointer tos from the field type. If the field
414 type has fewer, it could not have been aliased. */
415 record_type
= TYPE_MAIN_VARIANT (record_type
);
416 field_type
= TYPE_MAIN_VARIANT (field_type
);
417 while (POINTER_TYPE_P (record_type
))
419 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
420 if (POINTER_TYPE_P (field_type
))
421 field_type
= TYPE_MAIN_VARIANT (TREE_TYPE (field_type
));
423 /* However, if field_type is a union, this quick test is not
424 correct since one of the variants of the union may be a
425 pointer to type and we cannot see across that here. So we
426 just strip the remaining pointer tos off the record type
427 and fall thru to the more precise code. */
428 if (TREE_CODE (field_type
) == QUAL_UNION_TYPE
429 || TREE_CODE (field_type
) == UNION_TYPE
)
431 while (POINTER_TYPE_P (record_type
))
432 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
439 record_type
= get_canon_type (record_type
, true, true);
440 /* The record type must be contained. The field type may
442 if (!ipa_type_escape_type_contained_p (record_type
))
445 uid
= TYPE_UID (record_type
);
446 result
= splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
450 bitmap field_type_map
= (bitmap
) result
->value
;
451 uid
= get_canon_type_uid (field_type
, true, true);
452 /* If the bit is there, the address was taken. If not, it
454 return !bitmap_bit_p (field_type_map
, uid
);
457 /* No bitmap means no addresses were taken. */
462 /* Add TYPE to the suspect type set. Return true if the bit needed to
466 mark_type (tree type
, enum escape_t escape_status
)
471 type
= get_canon_type (type
, true, true);
475 switch (escape_status
)
477 case EXPOSED_PARAMETER
:
478 map
= global_types_exposed_parameter
;
481 map
= global_types_full_escape
;
485 uid
= TYPE_UID (type
);
486 if (bitmap_bit_p (map
, uid
))
490 bitmap_set_bit (map
, uid
);
491 if (escape_status
== FULL_ESCAPE
)
493 /* Efficiency hack. When things are bad, do not mess around
494 with this type anymore. */
495 bitmap_set_bit (global_types_exposed_parameter
, uid
);
501 /* Add interesting TYPE to the suspect type set. If the set is
502 EXPOSED_PARAMETER and the TYPE is a pointer type, the set is
503 changed to FULL_ESCAPE. */
506 mark_interesting_type (tree type
, enum escape_t escape_status
)
509 if (ipa_type_escape_star_count_of_interesting_type (type
) >= 0)
511 if ((escape_status
== EXPOSED_PARAMETER
)
512 && POINTER_TYPE_P (type
))
513 /* EXPOSED_PARAMETERs are only structs or unions are passed by
514 value. Anything passed by reference to an external
515 function fully exposes the type. */
516 mark_type (type
, FULL_ESCAPE
);
518 mark_type (type
, escape_status
);
522 /* Return true if PARENT is supertype of CHILD. Both types must be
523 known to be structures or unions. */
526 parent_type_p (tree parent
, tree child
)
529 tree binfo
, base_binfo
;
530 if (TYPE_BINFO (parent
))
531 for (binfo
= TYPE_BINFO (parent
), i
= 0;
532 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
534 tree binfotype
= BINFO_TYPE (base_binfo
);
535 if (binfotype
== child
)
537 else if (parent_type_p (binfotype
, child
))
540 if (TREE_CODE (parent
) == UNION_TYPE
541 || TREE_CODE (parent
) == QUAL_UNION_TYPE
)
544 /* Search all of the variants in the union to see if one of them
546 for (field
= TYPE_FIELDS (parent
);
548 field
= TREE_CHAIN (field
))
551 if (TREE_CODE (field
) != FIELD_DECL
)
554 field_type
= TREE_TYPE (field
);
555 if (field_type
== child
)
559 /* If we did not find it, recursively ask the variants if one of
560 their children is the child type. */
561 for (field
= TYPE_FIELDS (parent
);
563 field
= TREE_CHAIN (field
))
566 if (TREE_CODE (field
) != FIELD_DECL
)
569 field_type
= TREE_TYPE (field
);
570 if (TREE_CODE (field_type
) == RECORD_TYPE
571 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
572 || TREE_CODE (field_type
) == UNION_TYPE
)
573 if (parent_type_p (field_type
, child
))
578 if (TREE_CODE (parent
) == RECORD_TYPE
)
581 for (field
= TYPE_FIELDS (parent
);
583 field
= TREE_CHAIN (field
))
586 if (TREE_CODE (field
) != FIELD_DECL
)
589 field_type
= TREE_TYPE (field
);
590 if (field_type
== child
)
592 /* You can only cast to the first field so if it does not
594 if (TREE_CODE (field_type
) == RECORD_TYPE
595 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
596 || TREE_CODE (field_type
) == UNION_TYPE
)
598 if (parent_type_p (field_type
, child
))
608 /* Return the number of pointer tos for TYPE and return TYPE with all
609 of these stripped off. */
612 count_stars (tree
* type_ptr
)
614 tree type
= *type_ptr
;
616 type
= TYPE_MAIN_VARIANT (type
);
617 while (POINTER_TYPE_P (type
))
619 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
632 CT_FROM_P_BAD
= 0x10,
633 CT_FROM_NON_P
= 0x20,
634 CT_TO_NON_INTER
= 0x40,
635 CT_FROM_MALLOC
= 0x80,
639 /* Check the cast FROM_TYPE to TO_TYPE. This function requires that
640 the two types have already passed the
641 ipa_type_escape_star_count_of_interesting_type test. */
643 static enum cast_type
644 check_cast_type (tree to_type
, tree from_type
)
646 int to_stars
= count_stars (&to_type
);
647 int from_stars
= count_stars (&from_type
);
648 if (to_stars
!= from_stars
)
651 if (to_type
== from_type
)
654 if (parent_type_p (to_type
, from_type
)) return CT_UP
;
655 if (parent_type_p (from_type
, to_type
)) return CT_DOWN
;
659 /* This function returns nonzero if VAR is result of call
660 to malloc function. */
663 is_malloc_result (tree var
)
672 if (SSA_NAME_IS_DEFAULT_DEF (var
))
675 def_stmt
= SSA_NAME_DEF_STMT (var
);
677 if (TREE_CODE (def_stmt
) != GIMPLE_MODIFY_STMT
)
680 if (var
!= GIMPLE_STMT_OPERAND (def_stmt
, 0))
683 rhs
= get_call_expr_in (def_stmt
);
688 flags
= call_expr_flags (rhs
);
690 return ((flags
& ECF_MALLOC
) != 0);
694 /* Check a cast FROM this variable, TO_TYPE. Mark the escaping types
695 if appropriate. Returns cast_type as detected. */
697 static enum cast_type
698 check_cast (tree to_type
, tree from
)
700 tree from_type
= get_canon_type (TREE_TYPE (from
), false, false);
701 bool to_interesting_type
, from_interesting_type
;
702 enum cast_type cast
= CT_NO_CAST
;
704 to_type
= get_canon_type (to_type
, false, false);
705 if (!from_type
|| !to_type
|| from_type
== to_type
)
708 to_interesting_type
=
709 ipa_type_escape_star_count_of_interesting_type (to_type
) >= 0;
710 from_interesting_type
=
711 ipa_type_escape_star_count_of_interesting_type (from_type
) >= 0;
713 if (to_interesting_type
)
714 if (from_interesting_type
)
716 /* Both types are interesting. This can be one of four types
717 of cast: useless, up, down, or sideways. We do not care
718 about up or useless. Sideways casts are always bad and
719 both sides get marked as escaping. Downcasts are not
720 interesting here because if type is marked as escaping, all
721 of its subtypes escape. */
722 cast
= check_cast_type (to_type
, from_type
);
731 mark_type (to_type
, FULL_ESCAPE
);
732 mark_type (from_type
, FULL_ESCAPE
);
741 /* This code excludes two cases from marking as escaped:
743 1. if this is a cast of index of array of structures/unions
744 that happens before accessing array element, we should not
746 2. if this is a cast from the local that is a result from a
747 call to malloc, do not mark the cast as bad.
751 if (POINTER_TYPE_P (to_type
) && !POINTER_TYPE_P (from_type
))
752 cast
= CT_FROM_NON_P
;
753 else if (TREE_CODE (from
) == SSA_NAME
754 && is_malloc_result (from
))
755 cast
= CT_FROM_MALLOC
;
758 cast
= CT_FROM_P_BAD
;
759 mark_type (to_type
, FULL_ESCAPE
);
762 else if (from_interesting_type
)
764 mark_type (from_type
, FULL_ESCAPE
);
765 cast
= CT_TO_NON_INTER
;
777 /* This function is a callback for walk_tree called from
778 is_cast_from_non_pointer. The data->type is set to be:
780 0 - if there is no cast
781 number - the number of casts from non-pointer type
782 -1 - if there is a cast that makes the type to escape
784 If data->type = number, then data->stmt will contain the
785 last casting stmt met in traversing. */
788 is_cast_from_non_pointer_1 (tree
*tp
, int *walk_subtrees
, void *data
)
793 if (pointer_set_insert (visited_stmts
, def_stmt
))
799 switch (TREE_CODE (def_stmt
))
801 case GIMPLE_MODIFY_STMT
:
805 tree lhs
= GIMPLE_STMT_OPERAND (def_stmt
, 0);
806 tree rhs
= GIMPLE_STMT_OPERAND (def_stmt
, 1);
808 unsigned int cast
= look_for_casts (lhs
, rhs
);
809 /* Check that only one cast happened, and it's of
811 if ((cast
& CT_FROM_NON_P
) == (CT_FROM_NON_P
)
812 && (cast
& ~(CT_FROM_NON_P
)) == 0)
814 ((cast_t
*)data
)->stmt
= def_stmt
;
815 ((cast_t
*)data
)->type
++;
817 FOR_EACH_SSA_USE_OPERAND (use_p
, def_stmt
, iter
, SSA_OP_ALL_USES
)
819 walk_use_def_chains (USE_FROM_PTR (use_p
), is_cast_from_non_pointer
,
821 if (((cast_t
*)data
)->type
== -1)
826 /* Check that there is no cast, or cast is not harmful. */
827 else if ((cast
& CT_NO_CAST
) == (CT_NO_CAST
)
828 || (cast
& CT_DOWN
) == (CT_DOWN
)
829 || (cast
& CT_UP
) == (CT_UP
)
830 || (cast
& CT_USELESS
) == (CT_USELESS
)
831 || (cast
& CT_FROM_MALLOC
) == (CT_FROM_MALLOC
))
833 FOR_EACH_SSA_USE_OPERAND (use_p
, def_stmt
, iter
, SSA_OP_ALL_USES
)
835 walk_use_def_chains (USE_FROM_PTR (use_p
), is_cast_from_non_pointer
,
837 if (((cast_t
*)data
)->type
== -1)
842 /* The cast is harmful. */
845 ((cast_t
*)data
)->type
= -1;
863 /* This function is a callback for walk_use_def_chains function called
864 from is_array_access_through_pointer_and_index. */
867 is_cast_from_non_pointer (tree var
, tree def_stmt
, void *data
)
870 if (!def_stmt
|| !var
)
873 if (TREE_CODE (def_stmt
) == PHI_NODE
)
876 if (SSA_NAME_IS_DEFAULT_DEF (var
))
879 walk_tree (&def_stmt
, is_cast_from_non_pointer_1
, data
, NULL
);
880 if (((cast_t
*)data
)->type
== -1)
886 /* When array element a_p[i] is accessed through the pointer a_p
887 and index i, it's translated into the following sequence
890 i.1_5 = (unsigned int) i_1;
891 D.1605_6 = i.1_5 * 16;
892 D.1606_7 = (struct str_t *) D.1605_6;
894 D.1608_9 = D.1606_7 + a_p.2_8;
896 OP0 and OP1 are of the same pointer types and stand for
897 D.1606_7 and a_p.2_8 or vise versa.
899 This function checks that:
901 1. one of OP0 and OP1 (D.1606_7) has passed only one cast from
902 non-pointer type (D.1606_7 = (struct str_t *) D.1605_6;).
904 2. one of OP0 and OP1 which has passed the cast from
905 non-pointer type (D.1606_7), is actually generated by multiplication of
906 index by size of type to which both OP0 and OP1 point to
907 (in this case D.1605_6 = i.1_5 * 16; ).
909 3. an address of def of the var to which was made cast (D.1605_6)
910 was not taken.(How can it happen?)
912 The following items are checked implicitly by the end of algorithm:
914 4. one of OP0 and OP1 (a_p.2_8) have never been cast
915 (because if it was cast to pointer type, its type, that is also
916 the type of OP0 and OP1, will be marked as escaped during
917 analysis of casting stmt (when check_cast() is called
918 from scan_for_refs for this stmt)).
920 5. defs of OP0 and OP1 are not passed into externally visible function
921 (because if they are passed then their type, that is also the type of OP0
922 and OP1, will be marked and escaped during check_call function called from
923 scan_for_refs with call stmt).
925 In total, 1-5 guaranty that it's an access to array by pointer and index.
930 is_array_access_through_pointer_and_index (enum tree_code code
, tree op0
,
931 tree op1
, tree
*base
, tree
*offset
,
932 tree
*offset_cast_stmt
)
934 tree before_cast
, before_cast_def_stmt
;
935 cast_t op0_cast
, op1_cast
;
939 *offset_cast_stmt
= NULL
;
942 if (code
== POINTER_PLUS_EXPR
)
944 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
945 tree op1type
= TYPE_MAIN_VARIANT (TREE_TYPE (op1
));
947 /* One of op0 and op1 is of pointer type and the other is numerical. */
948 if (POINTER_TYPE_P (op0type
) && NUMERICAL_TYPE_CHECK (op1type
))
953 else if (POINTER_TYPE_P (op1type
) && NUMERICAL_TYPE_CHECK (op0type
))
963 /* Init data for walk_use_def_chains function. */
964 op0_cast
.type
= op1_cast
.type
= 0;
965 op0_cast
.stmt
= op1_cast
.stmt
= NULL
;
967 visited_stmts
= pointer_set_create ();
968 walk_use_def_chains (op0
, is_cast_from_non_pointer
,(void *)(&op0_cast
),
970 pointer_set_destroy (visited_stmts
);
972 visited_stmts
= pointer_set_create ();
973 walk_use_def_chains (op1
, is_cast_from_non_pointer
,(void *)(&op1_cast
),
975 pointer_set_destroy (visited_stmts
);
977 if (op0_cast
.type
== 1 && op1_cast
.type
== 0)
981 *offset_cast_stmt
= op0_cast
.stmt
;
983 else if (op0_cast
.type
== 0 && op1_cast
.type
== 1)
987 *offset_cast_stmt
= op1_cast
.stmt
;
994 offset_cast_stmt is of the form:
995 D.1606_7 = (struct str_t *) D.1605_6; */
997 if (*offset_cast_stmt
)
999 before_cast
= SINGLE_SSA_TREE_OPERAND (*offset_cast_stmt
, SSA_OP_USE
);
1003 if (SSA_NAME_IS_DEFAULT_DEF (before_cast
))
1006 before_cast_def_stmt
= SSA_NAME_DEF_STMT (before_cast
);
1007 if (!before_cast_def_stmt
)
1011 before_cast_def_stmt
= SSA_NAME_DEF_STMT (*offset
);
1013 /* before_cast_def_stmt should be of the form:
1014 D.1605_6 = i.1_5 * 16; */
1016 if (TREE_CODE (before_cast_def_stmt
) == GIMPLE_MODIFY_STMT
)
1018 tree lhs
= GIMPLE_STMT_OPERAND (before_cast_def_stmt
,0);
1019 tree rhs
= GIMPLE_STMT_OPERAND (before_cast_def_stmt
,1);
1021 /* We expect temporary here. */
1022 if (!is_gimple_reg (lhs
))
1025 if (TREE_CODE (rhs
) == MULT_EXPR
)
1027 tree arg0
= TREE_OPERAND (rhs
, 0);
1028 tree arg1
= TREE_OPERAND (rhs
, 1);
1030 TYPE_SIZE_UNIT (TREE_TYPE (TYPE_MAIN_VARIANT (TREE_TYPE (op0
))));
1032 if (!(CONSTANT_CLASS_P (arg0
)
1033 && simple_cst_equal (arg0
,unit_size
))
1034 && !(CONSTANT_CLASS_P (arg1
)
1035 && simple_cst_equal (arg1
,unit_size
)))
1045 check that address of D.1605_6 was not taken.
1046 FIXME: if D.1605_6 is gimple reg than it cannot be addressable. */
1051 /* Register the parameter and return types of function FN. The type
1052 ESCAPES if the function is visible outside of the compilation
1055 check_function_parameter_and_return_types (tree fn
, bool escapes
)
1059 if (TYPE_ARG_TYPES (TREE_TYPE (fn
)))
1061 for (arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1062 arg
&& TREE_VALUE (arg
) != void_type_node
;
1063 arg
= TREE_CHAIN (arg
))
1065 tree type
= get_canon_type (TREE_VALUE (arg
), false, false);
1067 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1072 /* FIXME - According to Geoff Keating, we should never have to
1073 do this; the front ends should always process the arg list
1074 from the TYPE_ARG_LIST. However, Geoff is wrong, this code
1075 does seem to be live. */
1077 for (arg
= DECL_ARGUMENTS (fn
); arg
; arg
= TREE_CHAIN (arg
))
1079 tree type
= get_canon_type (TREE_TYPE (arg
), false, false);
1081 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1086 tree type
= get_canon_type (TREE_TYPE (TREE_TYPE (fn
)), false, false);
1087 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1091 /* Return true if the variable T is the right kind of static variable to
1092 perform compilation unit scope escape analysis. */
1095 has_proper_scope_for_analysis (tree t
)
1097 /* If the variable has the "used" attribute, treat it as if it had a
1098 been touched by the devil. */
1099 tree type
= get_canon_type (TREE_TYPE (t
), false, false);
1102 if (lookup_attribute ("used", DECL_ATTRIBUTES (t
)))
1104 mark_interesting_type (type
, FULL_ESCAPE
);
1108 /* Do not want to do anything with volatile except mark any
1109 function that uses one to be not const or pure. */
1110 if (TREE_THIS_VOLATILE (t
))
1113 /* Do not care about a local automatic that is not static. */
1114 if (!TREE_STATIC (t
) && !DECL_EXTERNAL (t
))
1117 if (DECL_EXTERNAL (t
) || TREE_PUBLIC (t
))
1119 /* If the front end set the variable to be READONLY and
1120 constant, we can allow this variable in pure or const
1121 functions but the scope is too large for our analysis to set
1122 these bits ourselves. */
1124 if (TREE_READONLY (t
)
1126 && is_gimple_min_invariant (DECL_INITIAL (t
)))
1127 ; /* Read of a constant, do not change the function state. */
1130 /* The type escapes for all public and externs. */
1131 mark_interesting_type (type
, FULL_ESCAPE
);
1136 /* If T is a VAR_DECL for a static that we are interested in, add the
1137 uid to the bitmap. */
1140 check_operand (tree t
)
1144 /* This is an assignment from a function, register the types as
1146 if (TREE_CODE (t
) == FUNCTION_DECL
)
1147 check_function_parameter_and_return_types (t
, true);
1149 else if (TREE_CODE (t
) == VAR_DECL
)
1150 has_proper_scope_for_analysis (t
);
1153 /* Examine tree T for references. */
1158 if ((TREE_CODE (t
) == EXC_PTR_EXPR
) || (TREE_CODE (t
) == FILTER_EXPR
))
1161 /* We want to catch here also REALPART_EXPR and IMAGEPART_EXPR,
1162 but they already included in handled_component_p. */
1163 while (handled_component_p (t
))
1165 if (TREE_CODE (t
) == ARRAY_REF
)
1166 check_operand (TREE_OPERAND (t
, 1));
1167 t
= TREE_OPERAND (t
, 0);
1170 if (INDIRECT_REF_P (t
))
1171 /* || TREE_CODE (t) == MEM_REF) */
1172 check_tree (TREE_OPERAND (t
, 0));
1174 if (SSA_VAR_P (t
) || (TREE_CODE (t
) == FUNCTION_DECL
))
1178 /* Create an address_of edge FROM_TYPE.TO_TYPE. */
1180 mark_interesting_addressof (tree to_type
, tree from_type
)
1185 splay_tree_node result
;
1187 from_type
= get_canon_type (from_type
, false, false);
1188 to_type
= get_canon_type (to_type
, false, false);
1190 if (!from_type
|| !to_type
)
1193 from_uid
= TYPE_UID (from_type
);
1194 to_uid
= TYPE_UID (to_type
);
1196 gcc_assert (ipa_type_escape_star_count_of_interesting_type (from_type
) == 0);
1198 /* Process the Y into X map pointer. */
1199 result
= splay_tree_lookup (uid_to_addressof_down_map
,
1200 (splay_tree_key
) from_uid
);
1203 type_map
= (bitmap
) result
->value
;
1206 type_map
= BITMAP_ALLOC (&ipa_obstack
);
1207 splay_tree_insert (uid_to_addressof_down_map
,
1209 (splay_tree_value
)type_map
);
1211 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
1213 /* Process the X into Y reverse map pointer. */
1215 splay_tree_lookup (uid_to_addressof_up_map
, (splay_tree_key
) to_uid
);
1218 type_map
= (bitmap
) result
->value
;
1221 type_map
= BITMAP_ALLOC (&ipa_obstack
);
1222 splay_tree_insert (uid_to_addressof_up_map
,
1224 (splay_tree_value
)type_map
);
1226 bitmap_set_bit (type_map
, TYPE_UID (from_type
));
1229 /* Scan tree T to see if there are any addresses taken in within T. */
1232 look_for_address_of (tree t
)
1234 if (TREE_CODE (t
) == ADDR_EXPR
)
1236 tree x
= get_base_var (t
);
1237 tree cref
= TREE_OPERAND (t
, 0);
1239 /* If we have an expression of the form "&a.b.c.d", mark a.b,
1240 b.c and c.d. as having its address taken. */
1241 tree fielddecl
= NULL_TREE
;
1244 if (TREE_CODE (cref
) == COMPONENT_REF
)
1246 fielddecl
= TREE_OPERAND (cref
, 1);
1247 mark_interesting_addressof (TREE_TYPE (fielddecl
),
1248 DECL_FIELD_CONTEXT (fielddecl
));
1250 else if (TREE_CODE (cref
) == ARRAY_REF
)
1251 get_canon_type (TREE_TYPE (cref
), false, false);
1253 cref
= TREE_OPERAND (cref
, 0);
1256 if (TREE_CODE (x
) == VAR_DECL
)
1257 has_proper_scope_for_analysis (x
);
1262 /* Scan tree T to see if there are any casts within it.
1263 LHS Is the LHS of the expression involving the cast. */
1266 look_for_casts (tree lhs ATTRIBUTE_UNUSED
, tree t
)
1268 unsigned int cast
= 0;
1271 if (is_gimple_cast (t
) || TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
1273 tree castfromvar
= TREE_OPERAND (t
, 0);
1274 cast
= cast
| check_cast (TREE_TYPE (t
), castfromvar
);
1277 while (handled_component_p (t
))
1279 t
= TREE_OPERAND (t
, 0);
1280 if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
1282 /* This may be some part of a component ref.
1283 IE it may be a.b.VIEW_CONVERT_EXPR<weird_type>(c).d, AFAIK.
1284 castfromref will give you a.b.c, not a. */
1285 tree castfromref
= TREE_OPERAND (t
, 0);
1286 cast
= cast
| check_cast (TREE_TYPE (t
), castfromref
);
1288 else if (TREE_CODE (t
) == COMPONENT_REF
)
1289 get_canon_type (TREE_TYPE (TREE_OPERAND (t
, 1)), false, false);
1297 /* Check to see if T is a read or address of operation on a static var
1298 we are interested in analyzing. */
1301 check_rhs_var (tree t
)
1303 look_for_address_of (t
);
1307 /* Check to see if T is an assignment to a static var we are
1308 interested in analyzing. */
1311 check_lhs_var (tree t
)
1316 /* This is a scaled down version of get_asm_expr_operands from
1317 tree_ssa_operands.c. The version there runs much later and assumes
1318 that aliasing information is already available. Here we are just
1319 trying to find if the set of inputs and outputs contain references
1320 or address of operations to local. FN is the function being
1321 analyzed and STMT is the actual asm statement. */
1324 get_asm_expr_operands (tree stmt
)
1326 int noutputs
= list_length (ASM_OUTPUTS (stmt
));
1327 const char **oconstraints
1328 = (const char **) alloca ((noutputs
) * sizeof (const char *));
1331 const char *constraint
;
1332 bool allows_mem
, allows_reg
, is_inout
;
1334 for (i
=0, link
= ASM_OUTPUTS (stmt
); link
; ++i
, link
= TREE_CHAIN (link
))
1336 oconstraints
[i
] = constraint
1337 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1338 parse_output_constraint (&constraint
, i
, 0, 0,
1339 &allows_mem
, &allows_reg
, &is_inout
);
1341 check_lhs_var (TREE_VALUE (link
));
1344 for (link
= ASM_INPUTS (stmt
); link
; link
= TREE_CHAIN (link
))
1347 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1348 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
1349 oconstraints
, &allows_mem
, &allows_reg
);
1351 check_rhs_var (TREE_VALUE (link
));
1354 /* There is no code here to check for asm memory clobbers. The
1355 casual maintainer might think that such code would be necessary,
1356 but that appears to be wrong. In other parts of the compiler,
1357 the asm memory clobbers are assumed to only clobber variables
1358 that are addressable. All types with addressable instances are
1359 assumed to already escape. So, we are protected here. */
1362 /* Check the parameters of a function call to CALL_EXPR to mark the
1363 types that pass across the function boundary. Also check to see if
1364 this is either an indirect call, a call outside the compilation
1368 check_call (tree call_expr
)
1371 tree callee_t
= get_callee_fndecl (call_expr
);
1372 struct cgraph_node
* callee
;
1373 enum availability avail
= AVAIL_NOT_AVAILABLE
;
1374 call_expr_arg_iterator iter
;
1376 FOR_EACH_CALL_EXPR_ARG (operand
, iter
, call_expr
)
1377 check_rhs_var (operand
);
1382 tree last_arg_type
= NULL
;
1383 callee
= cgraph_node(callee_t
);
1384 avail
= cgraph_function_body_availability (callee
);
1386 /* Check that there are no implicit casts in the passing of
1388 if (TYPE_ARG_TYPES (TREE_TYPE (callee_t
)))
1390 for (arg_type
= TYPE_ARG_TYPES (TREE_TYPE (callee_t
)),
1391 operand
= first_call_expr_arg (call_expr
, &iter
);
1392 arg_type
&& TREE_VALUE (arg_type
) != void_type_node
;
1393 arg_type
= TREE_CHAIN (arg_type
),
1394 operand
= next_call_expr_arg (&iter
))
1398 last_arg_type
= TREE_VALUE(arg_type
);
1399 check_cast (last_arg_type
, operand
);
1402 /* The code reaches here for some unfortunate
1403 builtin functions that do not have a list of
1410 /* FIXME - According to Geoff Keating, we should never
1411 have to do this; the front ends should always process
1412 the arg list from the TYPE_ARG_LIST. */
1413 for (arg_type
= DECL_ARGUMENTS (callee_t
),
1414 operand
= first_call_expr_arg (call_expr
, &iter
);
1416 arg_type
= TREE_CHAIN (arg_type
),
1417 operand
= next_call_expr_arg (&iter
))
1421 last_arg_type
= TREE_TYPE(arg_type
);
1422 check_cast (last_arg_type
, operand
);
1425 /* The code reaches here for some unfortunate
1426 builtin functions that do not have a list of
1432 /* In the case where we have a var_args function, we need to
1433 check the remaining parameters against the last argument. */
1434 arg_type
= last_arg_type
;
1436 operand
!= NULL_TREE
;
1437 operand
= next_call_expr_arg (&iter
))
1440 check_cast (arg_type
, operand
);
1443 /* The code reaches here for some unfortunate
1444 builtin functions that do not have a list of
1445 argument types. Most of these functions have
1446 been marked as having their parameters not
1447 escape, but for the rest, the type is doomed. */
1448 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1449 mark_interesting_type (type
, FULL_ESCAPE
);
1454 /* The callee is either unknown (indirect call) or there is just no
1455 scannable code for it (external call) . We look to see if there
1456 are any bits available for the callee (such as by declaration or
1457 because it is builtin) and process solely on the basis of those
1460 if (avail
== AVAIL_NOT_AVAILABLE
|| avail
== AVAIL_OVERWRITABLE
)
1462 /* If this is a direct call to an external function, mark all of
1463 the parameter and return types. */
1464 FOR_EACH_CALL_EXPR_ARG (operand
, iter
, call_expr
)
1466 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1467 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1473 get_canon_type (TREE_TYPE (TREE_TYPE (callee_t
)), false, false);
1474 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1479 /* CODE is the operation on OP0 and OP1. OP0 is the operand that we
1480 *know* is a pointer type. OP1 may be a pointer type. */
1482 okay_pointer_operation (enum tree_code code
, tree op0
, tree op1
)
1484 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
1489 /* Multiplication does not change alignment. */
1494 case POINTER_PLUS_EXPR
:
1496 tree base
, offset
, offset_cast_stmt
;
1498 if (POINTER_TYPE_P (op0type
)
1499 && TREE_CODE (op0
) == SSA_NAME
1500 && TREE_CODE (op1
) == SSA_NAME
1501 && is_array_access_through_pointer_and_index (code
, op0
, op1
,
1508 tree size_of_op0_points_to
= TYPE_SIZE_UNIT (TREE_TYPE (op0type
));
1510 if (CONSTANT_CLASS_P (op1
)
1511 && size_of_op0_points_to
1512 && multiple_of_p (TREE_TYPE (size_of_op0_points_to
),
1513 op1
, size_of_op0_points_to
))
1516 if (CONSTANT_CLASS_P (op0
)
1517 && size_of_op0_points_to
1518 && multiple_of_p (TREE_TYPE (size_of_op0_points_to
),
1519 op0
, size_of_op0_points_to
))
1530 /* TP is the part of the tree currently under the microscope.
1531 WALK_SUBTREES is part of the walk_tree api but is unused here.
1532 DATA is cgraph_node of the function being walked. */
1534 /* FIXME: When this is converted to run over SSA form, this code
1535 should be converted to use the operand scanner. */
1538 scan_for_refs (tree
*tp
, int *walk_subtrees
, void *data
)
1540 struct cgraph_node
*fn
= (struct cgraph_node
*) data
;
1543 switch (TREE_CODE (t
))
1546 if (DECL_INITIAL (t
))
1547 walk_tree (&DECL_INITIAL (t
), scan_for_refs
, fn
, visited_nodes
);
1551 case GIMPLE_MODIFY_STMT
:
1553 /* First look on the lhs and see what variable is stored to */
1554 tree lhs
= GIMPLE_STMT_OPERAND (t
, 0);
1555 tree rhs
= GIMPLE_STMT_OPERAND (t
, 1);
1557 check_lhs_var (lhs
);
1558 check_cast (TREE_TYPE (lhs
), rhs
);
1560 /* For the purposes of figuring out what the cast affects */
1562 /* Next check the operands on the rhs to see if they are ok. */
1563 switch (TREE_CODE_CLASS (TREE_CODE (rhs
)))
1567 tree op0
= TREE_OPERAND (rhs
, 0);
1568 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1569 tree op1
= TREE_OPERAND (rhs
, 1);
1570 tree type1
= get_canon_type (TREE_TYPE (op1
), false, false);
1572 /* If this is pointer arithmetic of any bad sort, then
1573 we need to mark the types as bad. For binary
1574 operations, no binary operator we currently support
1575 is always "safe" in regard to what it would do to
1576 pointers for purposes of determining which types
1577 escape, except operations of the size of the type.
1578 It is possible that min and max under the right set
1579 of circumstances and if the moon is in the correct
1580 place could be safe, but it is hard to see how this
1581 is worth the effort. */
1583 if (type0
&& POINTER_TYPE_P (type0
)
1584 && !okay_pointer_operation (TREE_CODE (rhs
), op0
, op1
))
1585 mark_interesting_type (type0
, FULL_ESCAPE
);
1586 if (type1
&& POINTER_TYPE_P (type1
)
1587 && !okay_pointer_operation (TREE_CODE (rhs
), op1
, op0
))
1588 mark_interesting_type (type1
, FULL_ESCAPE
);
1590 look_for_casts (lhs
, op0
);
1591 look_for_casts (lhs
, op1
);
1592 check_rhs_var (op0
);
1593 check_rhs_var (op1
);
1598 tree op0
= TREE_OPERAND (rhs
, 0);
1599 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1600 /* For unary operations, if the operation is NEGATE or
1601 ABS on a pointer, this is also considered pointer
1602 arithmetic and thus, bad for business. */
1603 if (type0
&& (TREE_CODE (op0
) == NEGATE_EXPR
1604 || TREE_CODE (op0
) == ABS_EXPR
)
1605 && POINTER_TYPE_P (type0
))
1607 mark_interesting_type (type0
, FULL_ESCAPE
);
1609 check_rhs_var (op0
);
1610 look_for_casts (lhs
, op0
);
1611 look_for_casts (lhs
, rhs
);
1616 look_for_casts (lhs
, rhs
);
1617 check_rhs_var (rhs
);
1619 case tcc_declaration
:
1620 check_rhs_var (rhs
);
1622 case tcc_expression
:
1623 switch (TREE_CODE (rhs
))
1626 look_for_casts (lhs
, TREE_OPERAND (rhs
, 0));
1627 check_rhs_var (rhs
);
1634 switch (TREE_CODE (rhs
))
1637 /* If this is a call to malloc, squirrel away the
1638 result so we do mark the resulting cast as being
1654 /* This case is here to find addresses on rhs of constructors in
1655 decl_initial of static variables. */
1666 get_asm_expr_operands (t
);
1677 /* The init routine for analyzing global static variable usage. See
1678 comments at top for description. */
1682 bitmap_obstack_initialize (&ipa_obstack
);
1683 global_types_exposed_parameter
= BITMAP_ALLOC (&ipa_obstack
);
1684 global_types_full_escape
= BITMAP_ALLOC (&ipa_obstack
);
1685 global_types_seen
= BITMAP_ALLOC (&ipa_obstack
);
1687 uid_to_canon_type
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1688 all_canon_types
= splay_tree_new (compare_type_brand
, 0, 0);
1689 type_to_canon_type
= splay_tree_new (splay_tree_compare_pointers
, 0, 0);
1690 uid_to_subtype_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1691 uid_to_addressof_down_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1692 uid_to_addressof_up_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1694 /* There are some shared nodes, in particular the initializers on
1695 static declarations. We do not need to scan them more than once
1696 since all we would be interested in are the addressof
1698 visited_nodes
= pointer_set_create ();
1702 /* Check out the rhs of a static or global initialization VNODE to see
1703 if any of them contain addressof operations. Note that some of
1704 these variables may not even be referenced in the code in this
1705 compilation unit but their right hand sides may contain references
1706 to variables defined within this unit. */
1709 analyze_variable (struct varpool_node
*vnode
)
1711 tree global
= vnode
->decl
;
1712 tree type
= get_canon_type (TREE_TYPE (global
), false, false);
1714 /* If this variable has exposure beyond the compilation unit, add
1715 its type to the global types. */
1717 if (vnode
->externally_visible
)
1718 mark_interesting_type (type
, FULL_ESCAPE
);
1720 gcc_assert (TREE_CODE (global
) == VAR_DECL
);
1722 if (DECL_INITIAL (global
))
1723 walk_tree (&DECL_INITIAL (global
), scan_for_refs
, NULL
, visited_nodes
);
1726 /* This is the main routine for finding the reference patterns for
1727 global variables within a function FN. */
1730 analyze_function (struct cgraph_node
*fn
)
1732 tree decl
= fn
->decl
;
1733 check_function_parameter_and_return_types (decl
,
1734 fn
->local
.externally_visible
);
1736 fprintf (dump_file
, "\n local analysis of %s", cgraph_node_name (fn
));
1739 struct function
*this_cfun
= DECL_STRUCT_FUNCTION (decl
);
1740 basic_block this_block
;
1742 FOR_EACH_BB_FN (this_block
, this_cfun
)
1744 block_stmt_iterator bsi
;
1745 for (bsi
= bsi_start (this_block
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1746 walk_tree (bsi_stmt_ptr (bsi
), scan_for_refs
,
1751 /* There may be const decls with interesting right hand sides. */
1752 if (DECL_STRUCT_FUNCTION (decl
))
1755 for (step
= DECL_STRUCT_FUNCTION (decl
)->unexpanded_var_list
;
1757 step
= TREE_CHAIN (step
))
1759 tree var
= TREE_VALUE (step
);
1760 if (TREE_CODE (var
) == VAR_DECL
1761 && DECL_INITIAL (var
)
1762 && !TREE_STATIC (var
))
1763 walk_tree (&DECL_INITIAL (var
), scan_for_refs
,
1765 get_canon_type (TREE_TYPE (var
), false, false);
1772 /* Convert a type_UID into a type. */
1774 type_for_uid (int uid
)
1776 splay_tree_node result
=
1777 splay_tree_lookup (uid_to_canon_type
, (splay_tree_key
) uid
);
1780 return (tree
) result
->value
;
1784 /* Return the a bitmap with the subtypes of the type for UID. If it
1785 does not exist, return either NULL or a new bitmap depending on the
1789 subtype_map_for_uid (int uid
, bool create
)
1791 splay_tree_node result
= splay_tree_lookup (uid_to_subtype_map
,
1792 (splay_tree_key
) uid
);
1795 return (bitmap
) result
->value
;
1798 bitmap subtype_map
= BITMAP_ALLOC (&ipa_obstack
);
1799 splay_tree_insert (uid_to_subtype_map
,
1801 (splay_tree_value
)subtype_map
);
1807 /* Mark all of the supertypes and field types of TYPE as being seen.
1808 Also accumulate the subtypes for each type so that
1809 close_types_full_escape can mark a subtype as escaping if the
1810 supertype escapes. */
1813 close_type_seen (tree type
)
1817 tree binfo
, base_binfo
;
1819 /* See thru all pointer tos and array ofs. */
1820 type
= get_canon_type (type
, true, true);
1824 uid
= TYPE_UID (type
);
1826 if (bitmap_bit_p (been_there_done_that
, uid
))
1828 bitmap_set_bit (been_there_done_that
, uid
);
1830 /* If we are doing a language with a type hierarchy, mark all of
1831 the superclasses. */
1832 if (TYPE_BINFO (type
))
1833 for (binfo
= TYPE_BINFO (type
), i
= 0;
1834 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1836 tree binfo_type
= BINFO_TYPE (base_binfo
);
1837 bitmap subtype_map
= subtype_map_for_uid
1838 (TYPE_UID (TYPE_MAIN_VARIANT (binfo_type
)), true);
1839 bitmap_set_bit (subtype_map
, uid
);
1840 close_type_seen (get_canon_type (binfo_type
, true, true));
1843 /* If the field is a struct or union type, mark all of the
1845 for (field
= TYPE_FIELDS (type
);
1847 field
= TREE_CHAIN (field
))
1850 if (TREE_CODE (field
) != FIELD_DECL
)
1853 field_type
= TREE_TYPE (field
);
1854 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1855 close_type_seen (get_canon_type (field_type
, true, true));
1859 /* Take a TYPE that has been passed by value to an external function
1860 and mark all of the fields that have pointer types as escaping. For
1861 any of the non pointer types that are structures or unions,
1862 recurse. TYPE is never a pointer type. */
1865 close_type_exposed_parameter (tree type
)
1870 type
= get_canon_type (type
, false, false);
1873 uid
= TYPE_UID (type
);
1874 gcc_assert (!POINTER_TYPE_P (type
));
1876 if (bitmap_bit_p (been_there_done_that
, uid
))
1878 bitmap_set_bit (been_there_done_that
, uid
);
1880 /* If the field is a struct or union type, mark all of the
1882 for (field
= TYPE_FIELDS (type
);
1884 field
= TREE_CHAIN (field
))
1888 if (TREE_CODE (field
) != FIELD_DECL
)
1891 field_type
= get_canon_type (TREE_TYPE (field
), false, false);
1892 mark_interesting_type (field_type
, EXPOSED_PARAMETER
);
1894 /* Only recurse for non pointer types of structures and unions. */
1895 if (ipa_type_escape_star_count_of_interesting_type (field_type
) == 0)
1896 close_type_exposed_parameter (field_type
);
1900 /* The next function handles the case where a type fully escapes.
1901 This means that not only does the type itself escape,
1903 a) the type of every field recursively escapes
1904 b) the type of every subtype escapes as well as the super as well
1905 as all of the pointer to types for each field.
1907 Note that pointer to types are not marked as escaping. If the
1908 pointed to type escapes, the pointer to type also escapes.
1910 Take a TYPE that has had the address taken for an instance of it
1911 and mark all of the types for its fields as having their addresses
1915 close_type_full_escape (tree type
)
1920 tree binfo
, base_binfo
;
1923 splay_tree_node address_result
;
1925 /* Strip off any pointer or array types. */
1926 type
= get_canon_type (type
, true, true);
1929 uid
= TYPE_UID (type
);
1931 if (bitmap_bit_p (been_there_done_that
, uid
))
1933 bitmap_set_bit (been_there_done_that
, uid
);
1935 subtype_map
= subtype_map_for_uid (uid
, false);
1937 /* If we are doing a language with a type hierarchy, mark all of
1938 the superclasses. */
1939 if (TYPE_BINFO (type
))
1940 for (binfo
= TYPE_BINFO (type
), i
= 0;
1941 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1943 tree binfotype
= BINFO_TYPE (base_binfo
);
1944 binfotype
= mark_type (binfotype
, FULL_ESCAPE
);
1945 close_type_full_escape (binfotype
);
1948 /* Mark as escaped any types that have been down casted to
1951 EXECUTE_IF_SET_IN_BITMAP (subtype_map
, 0, i
, bi
)
1953 tree subtype
= type_for_uid (i
);
1954 subtype
= mark_type (subtype
, FULL_ESCAPE
);
1955 close_type_full_escape (subtype
);
1958 /* If the field is a struct or union type, mark all of the
1960 for (field
= TYPE_FIELDS (type
);
1962 field
= TREE_CHAIN (field
))
1965 if (TREE_CODE (field
) != FIELD_DECL
)
1968 field_type
= TREE_TYPE (field
);
1969 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1971 field_type
= mark_type (field_type
, FULL_ESCAPE
);
1972 close_type_full_escape (field_type
);
1976 /* For all of the types A that contain this type B and were part of
1977 an expression like "&...A.B...", mark the A's as escaping. */
1978 address_result
= splay_tree_lookup (uid_to_addressof_up_map
,
1979 (splay_tree_key
) uid
);
1982 bitmap containing_classes
= (bitmap
) address_result
->value
;
1983 EXECUTE_IF_SET_IN_BITMAP (containing_classes
, 0, i
, bi
)
1985 close_type_full_escape (type_for_uid (i
));
1990 /* Transitively close the addressof bitmap for the type with UID.
1991 This means that if we had a.b and b.c, a would have both b and c in
1995 close_addressof_down (int uid
)
1998 splay_tree_node result
=
1999 splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
2005 map
= (bitmap
) result
->value
;
2009 if (bitmap_bit_p (been_there_done_that
, uid
))
2011 bitmap_set_bit (been_there_done_that
, uid
);
2013 /* If the type escapes, get rid of the addressof map, it will not be
2015 if (bitmap_bit_p (global_types_full_escape
, uid
))
2018 splay_tree_remove (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
2022 /* The new_map will have all of the bits for the enclosed fields and
2023 will have the unique id version of the old map. */
2024 new_map
= BITMAP_ALLOC (&ipa_obstack
);
2026 EXECUTE_IF_SET_IN_BITMAP (map
, 0, i
, bi
)
2028 bitmap submap
= close_addressof_down (i
);
2029 bitmap_set_bit (new_map
, i
);
2031 bitmap_ior_into (new_map
, submap
);
2033 result
->value
= (splay_tree_value
) new_map
;
2040 /* The main entry point for type escape analysis. */
2043 type_escape_execute (void)
2045 struct cgraph_node
*node
;
2046 struct varpool_node
*vnode
;
2049 splay_tree_node result
;
2053 /* Process all of the variables first. */
2054 FOR_EACH_STATIC_VARIABLE (vnode
)
2055 analyze_variable (vnode
);
2057 /* Process all of the functions. next
2059 We do not want to process any of the clones so we check that this
2060 is a master clone. However, we do need to process any
2061 AVAIL_OVERWRITABLE functions (these are never clones) because
2062 they may cause a type variable to escape.
2064 for (node
= cgraph_nodes
; node
; node
= node
->next
)
2066 && (cgraph_is_master_clone (node
)
2067 || (cgraph_function_body_availability (node
) == AVAIL_OVERWRITABLE
)))
2068 analyze_function (node
);
2071 pointer_set_destroy (visited_nodes
);
2072 visited_nodes
= NULL
;
2074 /* Do all of the closures to discover which types escape the
2075 compilation unit. */
2077 been_there_done_that
= BITMAP_ALLOC (&ipa_obstack
);
2078 bitmap_tmp
= BITMAP_ALLOC (&ipa_obstack
);
2080 /* Examine the types that we have directly seen in scanning the code
2081 and add to that any contained types or superclasses. */
2083 bitmap_copy (bitmap_tmp
, global_types_seen
);
2084 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2086 tree type
= type_for_uid (i
);
2087 /* Only look at records and unions and pointer tos. */
2088 if (ipa_type_escape_star_count_of_interesting_or_array_type (type
) >= 0)
2089 close_type_seen (type
);
2091 bitmap_clear (been_there_done_that
);
2093 /* Examine all of the types passed by value and mark any enclosed
2094 pointer types as escaping. */
2095 bitmap_copy (bitmap_tmp
, global_types_exposed_parameter
);
2096 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2098 close_type_exposed_parameter (type_for_uid (i
));
2100 bitmap_clear (been_there_done_that
);
2102 /* Close the types for escape. If something escapes, then any
2103 enclosed types escape as well as any subtypes. */
2104 bitmap_copy (bitmap_tmp
, global_types_full_escape
);
2105 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2107 close_type_full_escape (type_for_uid (i
));
2109 bitmap_clear (been_there_done_that
);
2111 /* Before this pass, the uid_to_addressof_down_map for type X
2112 contained an entry for Y if there had been an operation of the
2113 form &X.Y. This step adds all of the fields contained within Y
2114 (recursively) to X's map. */
2116 result
= splay_tree_min (uid_to_addressof_down_map
);
2119 int uid
= result
->key
;
2120 /* Close the addressof map, i.e. copy all of the transitive
2121 substructures up to this level. */
2122 close_addressof_down (uid
);
2123 result
= splay_tree_successor (uid_to_addressof_down_map
, uid
);
2126 /* Do not need the array types and pointer types in the persistent
2128 result
= splay_tree_min (all_canon_types
);
2131 tree type
= (tree
) result
->value
;
2132 tree key
= (tree
) result
->key
;
2133 if (POINTER_TYPE_P (type
)
2134 || TREE_CODE (type
) == ARRAY_TYPE
)
2136 splay_tree_remove (all_canon_types
, (splay_tree_key
) result
->key
);
2137 splay_tree_remove (type_to_canon_type
, (splay_tree_key
) type
);
2138 splay_tree_remove (uid_to_canon_type
, (splay_tree_key
) TYPE_UID (type
));
2139 bitmap_clear_bit (global_types_seen
, TYPE_UID (type
));
2141 result
= splay_tree_successor (all_canon_types
, (splay_tree_key
) key
);
2146 EXECUTE_IF_SET_IN_BITMAP (global_types_seen
, 0, i
, bi
)
2148 /* The pointer types are in the global_types_full_escape
2149 bitmap but not in the backwards map. They also contain
2150 no useful information since they are not marked. */
2151 tree type
= type_for_uid (i
);
2152 fprintf(dump_file
, "type %d ", i
);
2153 print_generic_expr (dump_file
, type
, 0);
2154 if (bitmap_bit_p (global_types_full_escape
, i
))
2155 fprintf(dump_file
, " escaped\n");
2157 fprintf(dump_file
, " contained\n");
2161 /* Get rid of uid_to_addressof_up_map and its bitmaps. */
2162 result
= splay_tree_min (uid_to_addressof_up_map
);
2165 int uid
= (int)result
->key
;
2166 bitmap bm
= (bitmap
)result
->value
;
2169 splay_tree_remove (uid_to_addressof_up_map
, (splay_tree_key
) uid
);
2170 result
= splay_tree_successor (uid_to_addressof_up_map
, uid
);
2173 /* Get rid of the subtype map. */
2174 result
= splay_tree_min (uid_to_subtype_map
);
2177 bitmap b
= (bitmap
)result
->value
;
2179 splay_tree_remove (uid_to_subtype_map
, result
->key
);
2180 result
= splay_tree_min (uid_to_subtype_map
);
2182 splay_tree_delete (uid_to_subtype_map
);
2183 uid_to_subtype_map
= NULL
;
2185 BITMAP_FREE (global_types_exposed_parameter
);
2186 BITMAP_FREE (been_there_done_that
);
2187 BITMAP_FREE (bitmap_tmp
);
2192 gate_type_escape_vars (void)
2194 return (flag_unit_at_a_time
!= 0 && flag_ipa_type_escape
2195 /* Don't bother doing anything if the program has errors. */
2196 && !(errorcount
|| sorrycount
));
2199 struct tree_opt_pass pass_ipa_type_escape
=
2201 "type-escape-var", /* name */
2202 gate_type_escape_vars
, /* gate */
2203 type_escape_execute
, /* execute */
2206 0, /* static_pass_number */
2207 TV_IPA_TYPE_ESCAPE
, /* tv_id */
2208 0, /* properties_required */
2209 0, /* properties_provided */
2210 0, /* properties_destroyed */
2211 0, /* todo_flags_start */
2212 0, /* todo_flags_finish */