1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
42 #include "basic-block.h"
47 #include "stringpool.h"
50 #include "hard-reg-set.h"
52 #include "insn-config.h"
56 #include "langhooks.h"
61 struct target_rtl default_target_rtl
;
63 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
66 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68 /* Commonly used modes. */
70 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
71 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
72 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
73 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
75 /* Datastructures maintained for currently processed function in RTL form. */
77 struct rtl_data x_rtl
;
79 /* Indexed by pseudo register number, gives the rtx for that pseudo.
80 Allocated in parallel with regno_pointer_align.
81 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
82 with length attribute nested in top level structures. */
86 /* This is *not* reset after each function. It gives each CODE_LABEL
87 in the entire compilation a unique label number. */
89 static GTY(()) int label_num
= 1;
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
94 is set only for MODE_INT and MODE_VECTOR_INT modes. */
96 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
100 REAL_VALUE_TYPE dconst0
;
101 REAL_VALUE_TYPE dconst1
;
102 REAL_VALUE_TYPE dconst2
;
103 REAL_VALUE_TYPE dconstm1
;
104 REAL_VALUE_TYPE dconsthalf
;
106 /* Record fixed-point constant 0 and 1. */
107 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
108 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
110 /* We make one copy of (const_int C) where C is in
111 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
112 to save space during the compilation and simplify comparisons of
115 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
117 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx simple_return_rtx
;
123 /* A hash table storing CONST_INTs whose absolute value is greater
124 than MAX_SAVED_CONST_INT. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
127 htab_t const_int_htab
;
129 /* A hash table storing memory attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
131 htab_t mem_attrs_htab
;
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
135 htab_t reg_attrs_htab
;
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
139 htab_t const_double_htab
;
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
143 htab_t const_fixed_htab
;
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
149 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
150 static void set_used_decls (tree
);
151 static void mark_label_nuses (rtx
);
152 static hashval_t
const_int_htab_hash (const void *);
153 static int const_int_htab_eq (const void *, const void *);
154 static hashval_t
const_double_htab_hash (const void *);
155 static int const_double_htab_eq (const void *, const void *);
156 static rtx
lookup_const_double (rtx
);
157 static hashval_t
const_fixed_htab_hash (const void *);
158 static int const_fixed_htab_eq (const void *, const void *);
159 static rtx
lookup_const_fixed (rtx
);
160 static hashval_t
mem_attrs_htab_hash (const void *);
161 static int mem_attrs_htab_eq (const void *, const void *);
162 static hashval_t
reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs
*get_reg_attrs (tree
, int);
165 static rtx
gen_const_vector (enum machine_mode
, int);
166 static void copy_rtx_if_shared_1 (rtx
*orig
);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability
= -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
175 const_int_htab_hash (const void *x
)
177 return (hashval_t
) INTVAL ((const_rtx
) x
);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
185 const_int_htab_eq (const void *x
, const void *y
)
187 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
192 const_double_htab_hash (const void *x
)
194 const_rtx
const value
= (const_rtx
) x
;
197 if (GET_MODE (value
) == VOIDmode
)
198 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
201 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h
^= GET_MODE (value
);
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
211 const_double_htab_eq (const void *x
, const void *y
)
213 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
215 if (GET_MODE (a
) != GET_MODE (b
))
217 if (GET_MODE (a
) == VOIDmode
)
218 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
219 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
222 CONST_DOUBLE_REAL_VALUE (b
));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
228 const_fixed_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 h
= fixed_hash (CONST_FIXED_VALUE (value
));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h
^= GET_MODE (value
);
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
243 const_fixed_htab_eq (const void *x
, const void *y
)
245 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
247 if (GET_MODE (a
) != GET_MODE (b
))
249 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
255 mem_attrs_htab_hash (const void *x
)
257 const mem_attrs
*const p
= (const mem_attrs
*) x
;
259 return (p
->alias
^ (p
->align
* 1000)
260 ^ (p
->addrspace
* 4000)
261 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
262 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
266 /* Return true if the given memory attributes are equal. */
269 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
271 return (p
->alias
== q
->alias
272 && p
->offset_known_p
== q
->offset_known_p
273 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
274 && p
->size_known_p
== q
->size_known_p
275 && (!p
->size_known_p
|| p
->size
== q
->size
)
276 && p
->align
== q
->align
277 && p
->addrspace
== q
->addrspace
278 && (p
->expr
== q
->expr
279 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
280 && operand_equal_p (p
->expr
, q
->expr
, 0))));
283 /* Returns nonzero if the value represented by X (which is really a
284 mem_attrs *) is the same as that given by Y (which is also really a
288 mem_attrs_htab_eq (const void *x
, const void *y
)
290 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
293 /* Set MEM's memory attributes so that they are the same as ATTRS. */
296 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
300 /* If everything is the default, we can just clear the attributes. */
301 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
307 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
310 *slot
= ggc_alloc_mem_attrs ();
311 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
314 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
317 /* Returns a hash code for X (which is a really a reg_attrs *). */
320 reg_attrs_htab_hash (const void *x
)
322 const reg_attrs
*const p
= (const reg_attrs
*) x
;
324 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
327 /* Returns nonzero if the value represented by X (which is really a
328 reg_attrs *) is the same as that given by Y (which is also really a
332 reg_attrs_htab_eq (const void *x
, const void *y
)
334 const reg_attrs
*const p
= (const reg_attrs
*) x
;
335 const reg_attrs
*const q
= (const reg_attrs
*) y
;
337 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
339 /* Allocate a new reg_attrs structure and insert it into the hash table if
340 one identical to it is not already in the table. We are doing this for
344 get_reg_attrs (tree decl
, int offset
)
349 /* If everything is the default, we can just return zero. */
350 if (decl
== 0 && offset
== 0)
354 attrs
.offset
= offset
;
356 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
359 *slot
= ggc_alloc_reg_attrs ();
360 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
363 return (reg_attrs
*) *slot
;
368 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
369 and to block register equivalences to be seen across this insn. */
374 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
375 MEM_VOLATILE_P (x
) = true;
381 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
382 don't attempt to share with the various global pieces of rtl (such as
383 frame_pointer_rtx). */
386 gen_raw_REG (enum machine_mode mode
, int regno
)
388 rtx x
= gen_rtx_raw_REG (mode
, regno
);
389 ORIGINAL_REGNO (x
) = regno
;
393 /* There are some RTL codes that require special attention; the generation
394 functions do the raw handling. If you add to this list, modify
395 special_rtx in gengenrtl.c as well. */
398 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
402 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
403 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
405 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
406 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
407 return const_true_rtx
;
410 /* Look up the CONST_INT in the hash table. */
411 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
412 (hashval_t
) arg
, INSERT
);
414 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
420 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
422 return GEN_INT (trunc_int_for_mode (c
, mode
));
425 /* CONST_DOUBLEs might be created from pairs of integers, or from
426 REAL_VALUE_TYPEs. Also, their length is known only at run time,
427 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
429 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
430 hash table. If so, return its counterpart; otherwise add it
431 to the hash table and return it. */
433 lookup_const_double (rtx real
)
435 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
442 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
443 VALUE in mode MODE. */
445 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
447 rtx real
= rtx_alloc (CONST_DOUBLE
);
448 PUT_MODE (real
, mode
);
452 return lookup_const_double (real
);
455 /* Determine whether FIXED, a CONST_FIXED, already exists in the
456 hash table. If so, return its counterpart; otherwise add it
457 to the hash table and return it. */
460 lookup_const_fixed (rtx fixed
)
462 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
469 /* Return a CONST_FIXED rtx for a fixed-point value specified by
470 VALUE in mode MODE. */
473 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
475 rtx fixed
= rtx_alloc (CONST_FIXED
);
476 PUT_MODE (fixed
, mode
);
480 return lookup_const_fixed (fixed
);
483 /* Constructs double_int from rtx CST. */
486 rtx_to_double_int (const_rtx cst
)
490 if (CONST_INT_P (cst
))
491 r
= double_int::from_shwi (INTVAL (cst
));
492 else if (CONST_DOUBLE_AS_INT_P (cst
))
494 r
.low
= CONST_DOUBLE_LOW (cst
);
495 r
.high
= CONST_DOUBLE_HIGH (cst
);
504 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
508 immed_double_int_const (double_int i
, enum machine_mode mode
)
510 return immed_double_const (i
.low
, i
.high
, mode
);
513 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
514 of ints: I0 is the low-order word and I1 is the high-order word.
515 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
516 implied upper bits are copies of the high bit of i1. The value
517 itself is neither signed nor unsigned. Do not use this routine for
518 non-integer modes; convert to REAL_VALUE_TYPE and use
519 CONST_DOUBLE_FROM_REAL_VALUE. */
522 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
527 /* There are the following cases (note that there are no modes with
528 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
530 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
532 2) If the value of the integer fits into HOST_WIDE_INT anyway
533 (i.e., i1 consists only from copies of the sign bit, and sign
534 of i0 and i1 are the same), then we return a CONST_INT for i0.
535 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
536 if (mode
!= VOIDmode
)
538 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
539 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
540 /* We can get a 0 for an error mark. */
541 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
542 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
544 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
545 return gen_int_mode (i0
, mode
);
548 /* If this integer fits in one word, return a CONST_INT. */
549 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
552 /* We use VOIDmode for integers. */
553 value
= rtx_alloc (CONST_DOUBLE
);
554 PUT_MODE (value
, VOIDmode
);
556 CONST_DOUBLE_LOW (value
) = i0
;
557 CONST_DOUBLE_HIGH (value
) = i1
;
559 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
560 XWINT (value
, i
) = 0;
562 return lookup_const_double (value
);
566 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
568 /* In case the MD file explicitly references the frame pointer, have
569 all such references point to the same frame pointer. This is
570 used during frame pointer elimination to distinguish the explicit
571 references to these registers from pseudos that happened to be
574 If we have eliminated the frame pointer or arg pointer, we will
575 be using it as a normal register, for example as a spill
576 register. In such cases, we might be accessing it in a mode that
577 is not Pmode and therefore cannot use the pre-allocated rtx.
579 Also don't do this when we are making new REGs in reload, since
580 we don't want to get confused with the real pointers. */
582 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
584 if (regno
== FRAME_POINTER_REGNUM
585 && (!reload_completed
|| frame_pointer_needed
))
586 return frame_pointer_rtx
;
587 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
588 if (regno
== HARD_FRAME_POINTER_REGNUM
589 && (!reload_completed
|| frame_pointer_needed
))
590 return hard_frame_pointer_rtx
;
592 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
593 if (regno
== ARG_POINTER_REGNUM
)
594 return arg_pointer_rtx
;
596 #ifdef RETURN_ADDRESS_POINTER_REGNUM
597 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
598 return return_address_pointer_rtx
;
600 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
601 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
602 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
603 return pic_offset_table_rtx
;
604 if (regno
== STACK_POINTER_REGNUM
)
605 return stack_pointer_rtx
;
609 /* If the per-function register table has been set up, try to re-use
610 an existing entry in that table to avoid useless generation of RTL.
612 This code is disabled for now until we can fix the various backends
613 which depend on having non-shared hard registers in some cases. Long
614 term we want to re-enable this code as it can significantly cut down
615 on the amount of useless RTL that gets generated.
617 We'll also need to fix some code that runs after reload that wants to
618 set ORIGINAL_REGNO. */
623 && regno
< FIRST_PSEUDO_REGISTER
624 && reg_raw_mode
[regno
] == mode
)
625 return regno_reg_rtx
[regno
];
628 return gen_raw_REG (mode
, regno
);
632 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
634 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
636 /* This field is not cleared by the mere allocation of the rtx, so
643 /* Generate a memory referring to non-trapping constant memory. */
646 gen_const_mem (enum machine_mode mode
, rtx addr
)
648 rtx mem
= gen_rtx_MEM (mode
, addr
);
649 MEM_READONLY_P (mem
) = 1;
650 MEM_NOTRAP_P (mem
) = 1;
654 /* Generate a MEM referring to fixed portions of the frame, e.g., register
658 gen_frame_mem (enum machine_mode mode
, rtx addr
)
660 rtx mem
= gen_rtx_MEM (mode
, addr
);
661 MEM_NOTRAP_P (mem
) = 1;
662 set_mem_alias_set (mem
, get_frame_alias_set ());
666 /* Generate a MEM referring to a temporary use of the stack, not part
667 of the fixed stack frame. For example, something which is pushed
668 by a target splitter. */
670 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
672 rtx mem
= gen_rtx_MEM (mode
, addr
);
673 MEM_NOTRAP_P (mem
) = 1;
674 if (!cfun
->calls_alloca
)
675 set_mem_alias_set (mem
, get_frame_alias_set ());
679 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
680 this construct would be valid, and false otherwise. */
683 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
684 const_rtx reg
, unsigned int offset
)
686 unsigned int isize
= GET_MODE_SIZE (imode
);
687 unsigned int osize
= GET_MODE_SIZE (omode
);
689 /* All subregs must be aligned. */
690 if (offset
% osize
!= 0)
693 /* The subreg offset cannot be outside the inner object. */
697 /* ??? This should not be here. Temporarily continue to allow word_mode
698 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
699 Generally, backends are doing something sketchy but it'll take time to
701 if (omode
== word_mode
)
703 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
704 is the culprit here, and not the backends. */
705 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
707 /* Allow component subregs of complex and vector. Though given the below
708 extraction rules, it's not always clear what that means. */
709 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
710 && GET_MODE_INNER (imode
) == omode
)
712 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
713 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
714 represent this. It's questionable if this ought to be represented at
715 all -- why can't this all be hidden in post-reload splitters that make
716 arbitrarily mode changes to the registers themselves. */
717 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
719 /* Subregs involving floating point modes are not allowed to
720 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
721 (subreg:SI (reg:DF) 0) isn't. */
722 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
724 if (! (isize
== osize
725 /* LRA can use subreg to store a floating point value in
726 an integer mode. Although the floating point and the
727 integer modes need the same number of hard registers,
728 the size of floating point mode can be less than the
729 integer mode. LRA also uses subregs for a register
730 should be used in different mode in on insn. */
735 /* Paradoxical subregs must have offset zero. */
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
745 unsigned int regno
= REGNO (reg
);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
749 && GET_MODE_INNER (imode
) == omode
)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
755 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize
< UNITS_PER_WORD
765 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
767 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
768 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
769 if (offset
% UNITS_PER_WORD
!= low_off
)
776 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
778 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
779 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
782 /* Generate a SUBREG representing the least-significant part of REG if MODE
783 is smaller than mode of REG, otherwise paradoxical SUBREG. */
786 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
788 enum machine_mode inmode
;
790 inmode
= GET_MODE (reg
);
791 if (inmode
== VOIDmode
)
793 return gen_rtx_SUBREG (mode
, reg
,
794 subreg_lowpart_offset (mode
, inmode
));
798 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
801 gen_rtvec (int n
, ...)
809 /* Don't allocate an empty rtvec... */
816 rt_val
= rtvec_alloc (n
);
818 for (i
= 0; i
< n
; i
++)
819 rt_val
->elem
[i
] = va_arg (p
, rtx
);
826 gen_rtvec_v (int n
, rtx
*argp
)
831 /* Don't allocate an empty rtvec... */
835 rt_val
= rtvec_alloc (n
);
837 for (i
= 0; i
< n
; i
++)
838 rt_val
->elem
[i
] = *argp
++;
843 /* Return the number of bytes between the start of an OUTER_MODE
844 in-memory value and the start of an INNER_MODE in-memory value,
845 given that the former is a lowpart of the latter. It may be a
846 paradoxical lowpart, in which case the offset will be negative
847 on big-endian targets. */
850 byte_lowpart_offset (enum machine_mode outer_mode
,
851 enum machine_mode inner_mode
)
853 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
854 return subreg_lowpart_offset (outer_mode
, inner_mode
);
856 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
859 /* Generate a REG rtx for a new pseudo register of mode MODE.
860 This pseudo is assigned the next sequential register number. */
863 gen_reg_rtx (enum machine_mode mode
)
866 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
868 gcc_assert (can_create_pseudo_p ());
870 /* If a virtual register with bigger mode alignment is generated,
871 increase stack alignment estimation because it might be spilled
873 if (SUPPORTS_STACK_ALIGNMENT
874 && crtl
->stack_alignment_estimated
< align
875 && !crtl
->stack_realign_processed
)
877 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
878 if (crtl
->stack_alignment_estimated
< min_align
)
879 crtl
->stack_alignment_estimated
= min_align
;
882 if (generating_concat_p
883 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
884 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
886 /* For complex modes, don't make a single pseudo.
887 Instead, make a CONCAT of two pseudos.
888 This allows noncontiguous allocation of the real and imaginary parts,
889 which makes much better code. Besides, allocating DCmode
890 pseudos overstrains reload on some machines like the 386. */
891 rtx realpart
, imagpart
;
892 enum machine_mode partmode
= GET_MODE_INNER (mode
);
894 realpart
= gen_reg_rtx (partmode
);
895 imagpart
= gen_reg_rtx (partmode
);
896 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
899 /* Make sure regno_pointer_align, and regno_reg_rtx are large
900 enough to have an element for this pseudo reg number. */
902 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
904 int old_size
= crtl
->emit
.regno_pointer_align_length
;
908 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
909 memset (tmp
+ old_size
, 0, old_size
);
910 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
912 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
913 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
914 regno_reg_rtx
= new1
;
916 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
919 val
= gen_raw_REG (mode
, reg_rtx_no
);
920 regno_reg_rtx
[reg_rtx_no
++] = val
;
924 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
927 reg_is_parm_p (rtx reg
)
931 gcc_assert (REG_P (reg
));
932 decl
= REG_EXPR (reg
);
933 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
936 /* Update NEW with the same attributes as REG, but with OFFSET added
937 to the REG_OFFSET. */
940 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
942 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
943 REG_OFFSET (reg
) + offset
);
946 /* Generate a register with same attributes as REG, but with OFFSET
947 added to the REG_OFFSET. */
950 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
953 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
955 update_reg_offset (new_rtx
, reg
, offset
);
959 /* Generate a new pseudo-register with the same attributes as REG, but
960 with OFFSET added to the REG_OFFSET. */
963 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
965 rtx new_rtx
= gen_reg_rtx (mode
);
967 update_reg_offset (new_rtx
, reg
, offset
);
971 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
972 new register is a (possibly paradoxical) lowpart of the old one. */
975 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
977 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
978 PUT_MODE (reg
, mode
);
981 /* Copy REG's attributes from X, if X has any attributes. If REG and X
982 have different modes, REG is a (possibly paradoxical) lowpart of X. */
985 set_reg_attrs_from_value (rtx reg
, rtx x
)
988 bool can_be_reg_pointer
= true;
990 /* Don't call mark_reg_pointer for incompatible pointer sign
992 while (GET_CODE (x
) == SIGN_EXTEND
993 || GET_CODE (x
) == ZERO_EXTEND
994 || GET_CODE (x
) == TRUNCATE
995 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
997 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
998 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
999 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
1000 can_be_reg_pointer
= false;
1005 /* Hard registers can be reused for multiple purposes within the same
1006 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1007 on them is wrong. */
1008 if (HARD_REGISTER_P (reg
))
1011 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1014 if (MEM_OFFSET_KNOWN_P (x
))
1015 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1016 MEM_OFFSET (x
) + offset
);
1017 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1018 mark_reg_pointer (reg
, 0);
1023 update_reg_offset (reg
, x
, offset
);
1024 if (can_be_reg_pointer
&& REG_POINTER (x
))
1025 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1029 /* Generate a REG rtx for a new pseudo register, copying the mode
1030 and attributes from X. */
1033 gen_reg_rtx_and_attrs (rtx x
)
1035 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1036 set_reg_attrs_from_value (reg
, x
);
1040 /* Set the register attributes for registers contained in PARM_RTX.
1041 Use needed values from memory attributes of MEM. */
1044 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1046 if (REG_P (parm_rtx
))
1047 set_reg_attrs_from_value (parm_rtx
, mem
);
1048 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1050 /* Check for a NULL entry in the first slot, used to indicate that the
1051 parameter goes both on the stack and in registers. */
1052 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1053 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1055 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1056 if (REG_P (XEXP (x
, 0)))
1057 REG_ATTRS (XEXP (x
, 0))
1058 = get_reg_attrs (MEM_EXPR (mem
),
1059 INTVAL (XEXP (x
, 1)));
1064 /* Set the REG_ATTRS for registers in value X, given that X represents
1068 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1070 if (GET_CODE (x
) == SUBREG
)
1072 gcc_assert (subreg_lowpart_p (x
));
1077 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1079 if (GET_CODE (x
) == CONCAT
)
1081 if (REG_P (XEXP (x
, 0)))
1082 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1083 if (REG_P (XEXP (x
, 1)))
1084 REG_ATTRS (XEXP (x
, 1))
1085 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1087 if (GET_CODE (x
) == PARALLEL
)
1091 /* Check for a NULL entry, used to indicate that the parameter goes
1092 both on the stack and in registers. */
1093 if (XEXP (XVECEXP (x
, 0, 0), 0))
1098 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1100 rtx y
= XVECEXP (x
, 0, i
);
1101 if (REG_P (XEXP (y
, 0)))
1102 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1107 /* Assign the RTX X to declaration T. */
1110 set_decl_rtl (tree t
, rtx x
)
1112 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1114 set_reg_attrs_for_decl_rtl (t
, x
);
1117 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1118 if the ABI requires the parameter to be passed by reference. */
1121 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1123 DECL_INCOMING_RTL (t
) = x
;
1124 if (x
&& !by_reference_p
)
1125 set_reg_attrs_for_decl_rtl (t
, x
);
1128 /* Identify REG (which may be a CONCAT) as a user register. */
1131 mark_user_reg (rtx reg
)
1133 if (GET_CODE (reg
) == CONCAT
)
1135 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1136 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1140 gcc_assert (REG_P (reg
));
1141 REG_USERVAR_P (reg
) = 1;
1145 /* Identify REG as a probable pointer register and show its alignment
1146 as ALIGN, if nonzero. */
1149 mark_reg_pointer (rtx reg
, int align
)
1151 if (! REG_POINTER (reg
))
1153 REG_POINTER (reg
) = 1;
1156 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1158 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1159 /* We can no-longer be sure just how aligned this pointer is. */
1160 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1163 /* Return 1 plus largest pseudo reg number used in the current function. */
1171 /* Return 1 + the largest label number used so far in the current function. */
1174 max_label_num (void)
1179 /* Return first label number used in this function (if any were used). */
1182 get_first_label_num (void)
1184 return first_label_num
;
1187 /* If the rtx for label was created during the expansion of a nested
1188 function, then first_label_num won't include this label number.
1189 Fix this now so that array indices work later. */
1192 maybe_set_first_label_num (rtx x
)
1194 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1195 first_label_num
= CODE_LABEL_NUMBER (x
);
1198 /* Return a value representing some low-order bits of X, where the number
1199 of low-order bits is given by MODE. Note that no conversion is done
1200 between floating-point and fixed-point values, rather, the bit
1201 representation is returned.
1203 This function handles the cases in common between gen_lowpart, below,
1204 and two variants in cse.c and combine.c. These are the cases that can
1205 be safely handled at all points in the compilation.
1207 If this is not a case we can handle, return 0. */
1210 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1212 int msize
= GET_MODE_SIZE (mode
);
1215 enum machine_mode innermode
;
1217 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1218 so we have to make one up. Yuk. */
1219 innermode
= GET_MODE (x
);
1221 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1222 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1223 else if (innermode
== VOIDmode
)
1224 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1226 xsize
= GET_MODE_SIZE (innermode
);
1228 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1230 if (innermode
== mode
)
1233 /* MODE must occupy no more words than the mode of X. */
1234 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1235 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1238 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1239 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1242 offset
= subreg_lowpart_offset (mode
, innermode
);
1244 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1245 && (GET_MODE_CLASS (mode
) == MODE_INT
1246 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1248 /* If we are getting the low-order part of something that has been
1249 sign- or zero-extended, we can either just use the object being
1250 extended or make a narrower extension. If we want an even smaller
1251 piece than the size of the object being extended, call ourselves
1254 This case is used mostly by combine and cse. */
1256 if (GET_MODE (XEXP (x
, 0)) == mode
)
1258 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1259 return gen_lowpart_common (mode
, XEXP (x
, 0));
1260 else if (msize
< xsize
)
1261 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1263 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1264 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1265 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1266 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1268 /* Otherwise, we can't do this. */
1273 gen_highpart (enum machine_mode mode
, rtx x
)
1275 unsigned int msize
= GET_MODE_SIZE (mode
);
1278 /* This case loses if X is a subreg. To catch bugs early,
1279 complain if an invalid MODE is used even in other cases. */
1280 gcc_assert (msize
<= UNITS_PER_WORD
1281 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1283 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1284 subreg_highpart_offset (mode
, GET_MODE (x
)));
1285 gcc_assert (result
);
1287 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1288 the target if we have a MEM. gen_highpart must return a valid operand,
1289 emitting code if necessary to do so. */
1292 result
= validize_mem (result
);
1293 gcc_assert (result
);
1299 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1300 be VOIDmode constant. */
1302 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1304 if (GET_MODE (exp
) != VOIDmode
)
1306 gcc_assert (GET_MODE (exp
) == innermode
);
1307 return gen_highpart (outermode
, exp
);
1309 return simplify_gen_subreg (outermode
, exp
, innermode
,
1310 subreg_highpart_offset (outermode
, innermode
));
1313 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1316 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1318 unsigned int offset
= 0;
1319 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1323 if (WORDS_BIG_ENDIAN
)
1324 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1325 if (BYTES_BIG_ENDIAN
)
1326 offset
+= difference
% UNITS_PER_WORD
;
1332 /* Return offset in bytes to get OUTERMODE high part
1333 of the value in mode INNERMODE stored in memory in target format. */
1335 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1337 unsigned int offset
= 0;
1338 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1340 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1344 if (! WORDS_BIG_ENDIAN
)
1345 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1346 if (! BYTES_BIG_ENDIAN
)
1347 offset
+= difference
% UNITS_PER_WORD
;
1353 /* Return 1 iff X, assumed to be a SUBREG,
1354 refers to the least significant part of its containing reg.
1355 If X is not a SUBREG, always return 1 (it is its own low part!). */
1358 subreg_lowpart_p (const_rtx x
)
1360 if (GET_CODE (x
) != SUBREG
)
1362 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1365 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1366 == SUBREG_BYTE (x
));
1369 /* Return true if X is a paradoxical subreg, false otherwise. */
1371 paradoxical_subreg_p (const_rtx x
)
1373 if (GET_CODE (x
) != SUBREG
)
1375 return (GET_MODE_PRECISION (GET_MODE (x
))
1376 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1379 /* Return subword OFFSET of operand OP.
1380 The word number, OFFSET, is interpreted as the word number starting
1381 at the low-order address. OFFSET 0 is the low-order word if not
1382 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1384 If we cannot extract the required word, we return zero. Otherwise,
1385 an rtx corresponding to the requested word will be returned.
1387 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1388 reload has completed, a valid address will always be returned. After
1389 reload, if a valid address cannot be returned, we return zero.
1391 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1392 it is the responsibility of the caller.
1394 MODE is the mode of OP in case it is a CONST_INT.
1396 ??? This is still rather broken for some cases. The problem for the
1397 moment is that all callers of this thing provide no 'goal mode' to
1398 tell us to work with. This exists because all callers were written
1399 in a word based SUBREG world.
1400 Now use of this function can be deprecated by simplify_subreg in most
1405 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1407 if (mode
== VOIDmode
)
1408 mode
= GET_MODE (op
);
1410 gcc_assert (mode
!= VOIDmode
);
1412 /* If OP is narrower than a word, fail. */
1414 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1417 /* If we want a word outside OP, return zero. */
1419 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1422 /* Form a new MEM at the requested address. */
1425 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1427 if (! validate_address
)
1430 else if (reload_completed
)
1432 if (! strict_memory_address_addr_space_p (word_mode
,
1434 MEM_ADDR_SPACE (op
)))
1438 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1441 /* Rest can be handled by simplify_subreg. */
1442 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1445 /* Similar to `operand_subword', but never return 0. If we can't
1446 extract the required subword, put OP into a register and try again.
1447 The second attempt must succeed. We always validate the address in
1450 MODE is the mode of OP, in case it is CONST_INT. */
1453 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1455 rtx result
= operand_subword (op
, offset
, 1, mode
);
1460 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1462 /* If this is a register which can not be accessed by words, copy it
1463 to a pseudo register. */
1465 op
= copy_to_reg (op
);
1467 op
= force_reg (mode
, op
);
1470 result
= operand_subword (op
, offset
, 1, mode
);
1471 gcc_assert (result
);
1476 /* Returns 1 if both MEM_EXPR can be considered equal
1480 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1485 if (! expr1
|| ! expr2
)
1488 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1491 return operand_equal_p (expr1
, expr2
, 0);
1494 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1495 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1499 get_mem_align_offset (rtx mem
, unsigned int align
)
1502 unsigned HOST_WIDE_INT offset
;
1504 /* This function can't use
1505 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1506 || (MAX (MEM_ALIGN (mem),
1507 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1511 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1513 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1514 for <variable>. get_inner_reference doesn't handle it and
1515 even if it did, the alignment in that case needs to be determined
1516 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1517 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1518 isn't sufficiently aligned, the object it is in might be. */
1519 gcc_assert (MEM_P (mem
));
1520 expr
= MEM_EXPR (mem
);
1521 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1524 offset
= MEM_OFFSET (mem
);
1527 if (DECL_ALIGN (expr
) < align
)
1530 else if (INDIRECT_REF_P (expr
))
1532 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1535 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1539 tree inner
= TREE_OPERAND (expr
, 0);
1540 tree field
= TREE_OPERAND (expr
, 1);
1541 tree byte_offset
= component_ref_field_offset (expr
);
1542 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1545 || !tree_fits_uhwi_p (byte_offset
)
1546 || !tree_fits_uhwi_p (bit_offset
))
1549 offset
+= tree_to_uhwi (byte_offset
);
1550 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1552 if (inner
== NULL_TREE
)
1554 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1555 < (unsigned int) align
)
1559 else if (DECL_P (inner
))
1561 if (DECL_ALIGN (inner
) < align
)
1565 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1573 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1576 /* Given REF (a MEM) and T, either the type of X or the expression
1577 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1578 if we are making a new object of this type. BITPOS is nonzero if
1579 there is an offset outstanding on T that will be applied later. */
1582 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1583 HOST_WIDE_INT bitpos
)
1585 HOST_WIDE_INT apply_bitpos
= 0;
1587 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1590 /* It can happen that type_for_mode was given a mode for which there
1591 is no language-level type. In which case it returns NULL, which
1596 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1597 if (type
== error_mark_node
)
1600 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1601 wrong answer, as it assumes that DECL_RTL already has the right alias
1602 info. Callers should not set DECL_RTL until after the call to
1603 set_mem_attributes. */
1604 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1606 memset (&attrs
, 0, sizeof (attrs
));
1608 /* Get the alias set from the expression or type (perhaps using a
1609 front-end routine) and use it. */
1610 attrs
.alias
= get_alias_set (t
);
1612 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1613 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1615 /* Default values from pre-existing memory attributes if present. */
1616 refattrs
= MEM_ATTRS (ref
);
1619 /* ??? Can this ever happen? Calling this routine on a MEM that
1620 already carries memory attributes should probably be invalid. */
1621 attrs
.expr
= refattrs
->expr
;
1622 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1623 attrs
.offset
= refattrs
->offset
;
1624 attrs
.size_known_p
= refattrs
->size_known_p
;
1625 attrs
.size
= refattrs
->size
;
1626 attrs
.align
= refattrs
->align
;
1629 /* Otherwise, default values from the mode of the MEM reference. */
1632 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1633 gcc_assert (!defattrs
->expr
);
1634 gcc_assert (!defattrs
->offset_known_p
);
1636 /* Respect mode size. */
1637 attrs
.size_known_p
= defattrs
->size_known_p
;
1638 attrs
.size
= defattrs
->size
;
1639 /* ??? Is this really necessary? We probably should always get
1640 the size from the type below. */
1642 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1643 if T is an object, always compute the object alignment below. */
1645 attrs
.align
= defattrs
->align
;
1647 attrs
.align
= BITS_PER_UNIT
;
1648 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1649 e.g. if the type carries an alignment attribute. Should we be
1650 able to simply always use TYPE_ALIGN? */
1653 /* We can set the alignment from the type if we are making an object,
1654 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1655 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1656 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1658 /* If the size is known, we can set that. */
1659 tree new_size
= TYPE_SIZE_UNIT (type
);
1661 /* The address-space is that of the type. */
1662 as
= TYPE_ADDR_SPACE (type
);
1664 /* If T is not a type, we may be able to deduce some more information about
1670 if (TREE_THIS_VOLATILE (t
))
1671 MEM_VOLATILE_P (ref
) = 1;
1673 /* Now remove any conversions: they don't change what the underlying
1674 object is. Likewise for SAVE_EXPR. */
1675 while (CONVERT_EXPR_P (t
)
1676 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1677 || TREE_CODE (t
) == SAVE_EXPR
)
1678 t
= TREE_OPERAND (t
, 0);
1680 /* Note whether this expression can trap. */
1681 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1683 base
= get_base_address (t
);
1687 && TREE_READONLY (base
)
1688 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1689 && !TREE_THIS_VOLATILE (base
))
1690 MEM_READONLY_P (ref
) = 1;
1692 /* Mark static const strings readonly as well. */
1693 if (TREE_CODE (base
) == STRING_CST
1694 && TREE_READONLY (base
)
1695 && TREE_STATIC (base
))
1696 MEM_READONLY_P (ref
) = 1;
1698 /* Address-space information is on the base object. */
1699 if (TREE_CODE (base
) == MEM_REF
1700 || TREE_CODE (base
) == TARGET_MEM_REF
)
1701 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1704 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1707 /* If this expression uses it's parent's alias set, mark it such
1708 that we won't change it. */
1709 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1710 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1712 /* If this is a decl, set the attributes of the MEM from it. */
1716 attrs
.offset_known_p
= true;
1718 apply_bitpos
= bitpos
;
1719 new_size
= DECL_SIZE_UNIT (t
);
1722 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1723 else if (CONSTANT_CLASS_P (t
))
1726 /* If this is a field reference, record it. */
1727 else if (TREE_CODE (t
) == COMPONENT_REF
)
1730 attrs
.offset_known_p
= true;
1732 apply_bitpos
= bitpos
;
1733 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1734 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1737 /* If this is an array reference, look for an outer field reference. */
1738 else if (TREE_CODE (t
) == ARRAY_REF
)
1740 tree off_tree
= size_zero_node
;
1741 /* We can't modify t, because we use it at the end of the
1747 tree index
= TREE_OPERAND (t2
, 1);
1748 tree low_bound
= array_ref_low_bound (t2
);
1749 tree unit_size
= array_ref_element_size (t2
);
1751 /* We assume all arrays have sizes that are a multiple of a byte.
1752 First subtract the lower bound, if any, in the type of the
1753 index, then convert to sizetype and multiply by the size of
1754 the array element. */
1755 if (! integer_zerop (low_bound
))
1756 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1759 off_tree
= size_binop (PLUS_EXPR
,
1760 size_binop (MULT_EXPR
,
1761 fold_convert (sizetype
,
1765 t2
= TREE_OPERAND (t2
, 0);
1767 while (TREE_CODE (t2
) == ARRAY_REF
);
1770 || TREE_CODE (t2
) == COMPONENT_REF
)
1773 attrs
.offset_known_p
= false;
1774 if (tree_fits_uhwi_p (off_tree
))
1776 attrs
.offset_known_p
= true;
1777 attrs
.offset
= tree_to_uhwi (off_tree
);
1778 apply_bitpos
= bitpos
;
1781 /* Else do not record a MEM_EXPR. */
1784 /* If this is an indirect reference, record it. */
1785 else if (TREE_CODE (t
) == MEM_REF
1786 || TREE_CODE (t
) == TARGET_MEM_REF
)
1789 attrs
.offset_known_p
= true;
1791 apply_bitpos
= bitpos
;
1794 /* Compute the alignment. */
1795 unsigned int obj_align
;
1796 unsigned HOST_WIDE_INT obj_bitpos
;
1797 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1798 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1799 if (obj_bitpos
!= 0)
1800 obj_align
= (obj_bitpos
& -obj_bitpos
);
1801 attrs
.align
= MAX (attrs
.align
, obj_align
);
1804 if (tree_fits_uhwi_p (new_size
))
1806 attrs
.size_known_p
= true;
1807 attrs
.size
= tree_to_uhwi (new_size
);
1810 /* If we modified OFFSET based on T, then subtract the outstanding
1811 bit position offset. Similarly, increase the size of the accessed
1812 object to contain the negative offset. */
1815 gcc_assert (attrs
.offset_known_p
);
1816 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1817 if (attrs
.size_known_p
)
1818 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1821 /* Now set the attributes we computed above. */
1822 attrs
.addrspace
= as
;
1823 set_mem_attrs (ref
, &attrs
);
1827 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1829 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1832 /* Set the alias set of MEM to SET. */
1835 set_mem_alias_set (rtx mem
, alias_set_type set
)
1837 struct mem_attrs attrs
;
1839 /* If the new and old alias sets don't conflict, something is wrong. */
1840 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1841 attrs
= *get_mem_attrs (mem
);
1843 set_mem_attrs (mem
, &attrs
);
1846 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1849 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1851 struct mem_attrs attrs
;
1853 attrs
= *get_mem_attrs (mem
);
1854 attrs
.addrspace
= addrspace
;
1855 set_mem_attrs (mem
, &attrs
);
1858 /* Set the alignment of MEM to ALIGN bits. */
1861 set_mem_align (rtx mem
, unsigned int align
)
1863 struct mem_attrs attrs
;
1865 attrs
= *get_mem_attrs (mem
);
1866 attrs
.align
= align
;
1867 set_mem_attrs (mem
, &attrs
);
1870 /* Set the expr for MEM to EXPR. */
1873 set_mem_expr (rtx mem
, tree expr
)
1875 struct mem_attrs attrs
;
1877 attrs
= *get_mem_attrs (mem
);
1879 set_mem_attrs (mem
, &attrs
);
1882 /* Set the offset of MEM to OFFSET. */
1885 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1887 struct mem_attrs attrs
;
1889 attrs
= *get_mem_attrs (mem
);
1890 attrs
.offset_known_p
= true;
1891 attrs
.offset
= offset
;
1892 set_mem_attrs (mem
, &attrs
);
1895 /* Clear the offset of MEM. */
1898 clear_mem_offset (rtx mem
)
1900 struct mem_attrs attrs
;
1902 attrs
= *get_mem_attrs (mem
);
1903 attrs
.offset_known_p
= false;
1904 set_mem_attrs (mem
, &attrs
);
1907 /* Set the size of MEM to SIZE. */
1910 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1912 struct mem_attrs attrs
;
1914 attrs
= *get_mem_attrs (mem
);
1915 attrs
.size_known_p
= true;
1917 set_mem_attrs (mem
, &attrs
);
1920 /* Clear the size of MEM. */
1923 clear_mem_size (rtx mem
)
1925 struct mem_attrs attrs
;
1927 attrs
= *get_mem_attrs (mem
);
1928 attrs
.size_known_p
= false;
1929 set_mem_attrs (mem
, &attrs
);
1932 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1933 and its address changed to ADDR. (VOIDmode means don't change the mode.
1934 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1935 returned memory location is required to be valid. The memory
1936 attributes are not changed. */
1939 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1944 gcc_assert (MEM_P (memref
));
1945 as
= MEM_ADDR_SPACE (memref
);
1946 if (mode
== VOIDmode
)
1947 mode
= GET_MODE (memref
);
1949 addr
= XEXP (memref
, 0);
1950 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1951 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1956 if (reload_in_progress
|| reload_completed
)
1957 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1959 addr
= memory_address_addr_space (mode
, addr
, as
);
1962 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1965 new_rtx
= gen_rtx_MEM (mode
, addr
);
1966 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1970 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1971 way we are changing MEMREF, so we only preserve the alias set. */
1974 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1976 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
1977 enum machine_mode mmode
= GET_MODE (new_rtx
);
1978 struct mem_attrs attrs
, *defattrs
;
1980 attrs
= *get_mem_attrs (memref
);
1981 defattrs
= mode_mem_attrs
[(int) mmode
];
1982 attrs
.expr
= NULL_TREE
;
1983 attrs
.offset_known_p
= false;
1984 attrs
.size_known_p
= defattrs
->size_known_p
;
1985 attrs
.size
= defattrs
->size
;
1986 attrs
.align
= defattrs
->align
;
1988 /* If there are no changes, just return the original memory reference. */
1989 if (new_rtx
== memref
)
1991 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
1994 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1995 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1998 set_mem_attrs (new_rtx
, &attrs
);
2002 /* Return a memory reference like MEMREF, but with its mode changed
2003 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2004 nonzero, the memory address is forced to be valid.
2005 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2006 and the caller is responsible for adjusting MEMREF base register.
2007 If ADJUST_OBJECT is zero, the underlying object associated with the
2008 memory reference is left unchanged and the caller is responsible for
2009 dealing with it. Otherwise, if the new memory reference is outside
2010 the underlying object, even partially, then the object is dropped.
2011 SIZE, if nonzero, is the size of an access in cases where MODE
2012 has no inherent size. */
2015 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2016 int validate
, int adjust_address
, int adjust_object
,
2019 rtx addr
= XEXP (memref
, 0);
2021 enum machine_mode address_mode
;
2023 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2024 unsigned HOST_WIDE_INT max_align
;
2025 #ifdef POINTERS_EXTEND_UNSIGNED
2026 enum machine_mode pointer_mode
2027 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2030 /* VOIDmode means no mode change for change_address_1. */
2031 if (mode
== VOIDmode
)
2032 mode
= GET_MODE (memref
);
2034 /* Take the size of non-BLKmode accesses from the mode. */
2035 defattrs
= mode_mem_attrs
[(int) mode
];
2036 if (defattrs
->size_known_p
)
2037 size
= defattrs
->size
;
2039 /* If there are no changes, just return the original memory reference. */
2040 if (mode
== GET_MODE (memref
) && !offset
2041 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2042 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2046 /* ??? Prefer to create garbage instead of creating shared rtl.
2047 This may happen even if offset is nonzero -- consider
2048 (plus (plus reg reg) const_int) -- so do this always. */
2049 addr
= copy_rtx (addr
);
2051 /* Convert a possibly large offset to a signed value within the
2052 range of the target address space. */
2053 address_mode
= get_address_mode (memref
);
2054 pbits
= GET_MODE_BITSIZE (address_mode
);
2055 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2057 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2058 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2064 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2065 object, we can merge it into the LO_SUM. */
2066 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2068 && (unsigned HOST_WIDE_INT
) offset
2069 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2070 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2071 plus_constant (address_mode
,
2072 XEXP (addr
, 1), offset
));
2073 #ifdef POINTERS_EXTEND_UNSIGNED
2074 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2075 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2076 the fact that pointers are not allowed to overflow. */
2077 else if (POINTERS_EXTEND_UNSIGNED
> 0
2078 && GET_CODE (addr
) == ZERO_EXTEND
2079 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2080 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2081 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2082 plus_constant (pointer_mode
,
2083 XEXP (addr
, 0), offset
));
2086 addr
= plus_constant (address_mode
, addr
, offset
);
2089 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2091 /* If the address is a REG, change_address_1 rightfully returns memref,
2092 but this would destroy memref's MEM_ATTRS. */
2093 if (new_rtx
== memref
&& offset
!= 0)
2094 new_rtx
= copy_rtx (new_rtx
);
2096 /* Conservatively drop the object if we don't know where we start from. */
2097 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2099 attrs
.expr
= NULL_TREE
;
2103 /* Compute the new values of the memory attributes due to this adjustment.
2104 We add the offsets and update the alignment. */
2105 if (attrs
.offset_known_p
)
2107 attrs
.offset
+= offset
;
2109 /* Drop the object if the new left end is not within its bounds. */
2110 if (adjust_object
&& attrs
.offset
< 0)
2112 attrs
.expr
= NULL_TREE
;
2117 /* Compute the new alignment by taking the MIN of the alignment and the
2118 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2122 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2123 attrs
.align
= MIN (attrs
.align
, max_align
);
2128 /* Drop the object if the new right end is not within its bounds. */
2129 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2131 attrs
.expr
= NULL_TREE
;
2134 attrs
.size_known_p
= true;
2137 else if (attrs
.size_known_p
)
2139 gcc_assert (!adjust_object
);
2140 attrs
.size
-= offset
;
2141 /* ??? The store_by_pieces machinery generates negative sizes,
2142 so don't assert for that here. */
2145 set_mem_attrs (new_rtx
, &attrs
);
2150 /* Return a memory reference like MEMREF, but with its mode changed
2151 to MODE and its address changed to ADDR, which is assumed to be
2152 MEMREF offset by OFFSET bytes. If VALIDATE is
2153 nonzero, the memory address is forced to be valid. */
2156 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2157 HOST_WIDE_INT offset
, int validate
)
2159 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2160 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2163 /* Return a memory reference like MEMREF, but whose address is changed by
2164 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2165 known to be in OFFSET (possibly 1). */
2168 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2170 rtx new_rtx
, addr
= XEXP (memref
, 0);
2171 enum machine_mode address_mode
;
2172 struct mem_attrs attrs
, *defattrs
;
2174 attrs
= *get_mem_attrs (memref
);
2175 address_mode
= get_address_mode (memref
);
2176 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2178 /* At this point we don't know _why_ the address is invalid. It
2179 could have secondary memory references, multiplies or anything.
2181 However, if we did go and rearrange things, we can wind up not
2182 being able to recognize the magic around pic_offset_table_rtx.
2183 This stuff is fragile, and is yet another example of why it is
2184 bad to expose PIC machinery too early. */
2185 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2187 && GET_CODE (addr
) == PLUS
2188 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2190 addr
= force_reg (GET_MODE (addr
), addr
);
2191 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2194 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2195 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2197 /* If there are no changes, just return the original memory reference. */
2198 if (new_rtx
== memref
)
2201 /* Update the alignment to reflect the offset. Reset the offset, which
2203 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2204 attrs
.offset_known_p
= false;
2205 attrs
.size_known_p
= defattrs
->size_known_p
;
2206 attrs
.size
= defattrs
->size
;
2207 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2208 set_mem_attrs (new_rtx
, &attrs
);
2212 /* Return a memory reference like MEMREF, but with its address changed to
2213 ADDR. The caller is asserting that the actual piece of memory pointed
2214 to is the same, just the form of the address is being changed, such as
2215 by putting something into a register. */
2218 replace_equiv_address (rtx memref
, rtx addr
)
2220 /* change_address_1 copies the memory attribute structure without change
2221 and that's exactly what we want here. */
2222 update_temp_slot_address (XEXP (memref
, 0), addr
);
2223 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2226 /* Likewise, but the reference is not required to be valid. */
2229 replace_equiv_address_nv (rtx memref
, rtx addr
)
2231 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2234 /* Return a memory reference like MEMREF, but with its mode widened to
2235 MODE and offset by OFFSET. This would be used by targets that e.g.
2236 cannot issue QImode memory operations and have to use SImode memory
2237 operations plus masking logic. */
2240 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2242 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2243 struct mem_attrs attrs
;
2244 unsigned int size
= GET_MODE_SIZE (mode
);
2246 /* If there are no changes, just return the original memory reference. */
2247 if (new_rtx
== memref
)
2250 attrs
= *get_mem_attrs (new_rtx
);
2252 /* If we don't know what offset we were at within the expression, then
2253 we can't know if we've overstepped the bounds. */
2254 if (! attrs
.offset_known_p
)
2255 attrs
.expr
= NULL_TREE
;
2259 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2261 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2262 tree offset
= component_ref_field_offset (attrs
.expr
);
2264 if (! DECL_SIZE_UNIT (field
))
2266 attrs
.expr
= NULL_TREE
;
2270 /* Is the field at least as large as the access? If so, ok,
2271 otherwise strip back to the containing structure. */
2272 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2273 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2274 && attrs
.offset
>= 0)
2277 if (! tree_fits_uhwi_p (offset
))
2279 attrs
.expr
= NULL_TREE
;
2283 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2284 attrs
.offset
+= tree_to_uhwi (offset
);
2285 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2288 /* Similarly for the decl. */
2289 else if (DECL_P (attrs
.expr
)
2290 && DECL_SIZE_UNIT (attrs
.expr
)
2291 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2292 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2293 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2297 /* The widened memory access overflows the expression, which means
2298 that it could alias another expression. Zap it. */
2299 attrs
.expr
= NULL_TREE
;
2305 attrs
.offset_known_p
= false;
2307 /* The widened memory may alias other stuff, so zap the alias set. */
2308 /* ??? Maybe use get_alias_set on any remaining expression. */
2310 attrs
.size_known_p
= true;
2312 set_mem_attrs (new_rtx
, &attrs
);
2316 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2317 static GTY(()) tree spill_slot_decl
;
2320 get_spill_slot_decl (bool force_build_p
)
2322 tree d
= spill_slot_decl
;
2324 struct mem_attrs attrs
;
2326 if (d
|| !force_build_p
)
2329 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2330 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2331 DECL_ARTIFICIAL (d
) = 1;
2332 DECL_IGNORED_P (d
) = 1;
2334 spill_slot_decl
= d
;
2336 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2337 MEM_NOTRAP_P (rd
) = 1;
2338 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2339 attrs
.alias
= new_alias_set ();
2341 set_mem_attrs (rd
, &attrs
);
2342 SET_DECL_RTL (d
, rd
);
2347 /* Given MEM, a result from assign_stack_local, fill in the memory
2348 attributes as appropriate for a register allocator spill slot.
2349 These slots are not aliasable by other memory. We arrange for
2350 them all to use a single MEM_EXPR, so that the aliasing code can
2351 work properly in the case of shared spill slots. */
2354 set_mem_attrs_for_spill (rtx mem
)
2356 struct mem_attrs attrs
;
2359 attrs
= *get_mem_attrs (mem
);
2360 attrs
.expr
= get_spill_slot_decl (true);
2361 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2362 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2364 /* We expect the incoming memory to be of the form:
2365 (mem:MODE (plus (reg sfp) (const_int offset)))
2366 with perhaps the plus missing for offset = 0. */
2367 addr
= XEXP (mem
, 0);
2368 attrs
.offset_known_p
= true;
2370 if (GET_CODE (addr
) == PLUS
2371 && CONST_INT_P (XEXP (addr
, 1)))
2372 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2374 set_mem_attrs (mem
, &attrs
);
2375 MEM_NOTRAP_P (mem
) = 1;
2378 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2381 gen_label_rtx (void)
2383 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2384 NULL
, label_num
++, NULL
);
2387 /* For procedure integration. */
2389 /* Install new pointers to the first and last insns in the chain.
2390 Also, set cur_insn_uid to one higher than the last in use.
2391 Used for an inline-procedure after copying the insn chain. */
2394 set_new_first_and_last_insn (rtx first
, rtx last
)
2398 set_first_insn (first
);
2399 set_last_insn (last
);
2402 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2404 int debug_count
= 0;
2406 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2407 cur_debug_insn_uid
= 0;
2409 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2410 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2411 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2414 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2415 if (DEBUG_INSN_P (insn
))
2420 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2422 cur_debug_insn_uid
++;
2425 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2426 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2431 /* Go through all the RTL insn bodies and copy any invalid shared
2432 structure. This routine should only be called once. */
2435 unshare_all_rtl_1 (rtx insn
)
2437 /* Unshare just about everything else. */
2438 unshare_all_rtl_in_chain (insn
);
2440 /* Make sure the addresses of stack slots found outside the insn chain
2441 (such as, in DECL_RTL of a variable) are not shared
2442 with the insn chain.
2444 This special care is necessary when the stack slot MEM does not
2445 actually appear in the insn chain. If it does appear, its address
2446 is unshared from all else at that point. */
2447 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2450 /* Go through all the RTL insn bodies and copy any invalid shared
2451 structure, again. This is a fairly expensive thing to do so it
2452 should be done sparingly. */
2455 unshare_all_rtl_again (rtx insn
)
2460 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2463 reset_used_flags (PATTERN (p
));
2464 reset_used_flags (REG_NOTES (p
));
2466 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2469 /* Make sure that virtual stack slots are not shared. */
2470 set_used_decls (DECL_INITIAL (cfun
->decl
));
2472 /* Make sure that virtual parameters are not shared. */
2473 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2474 set_used_flags (DECL_RTL (decl
));
2476 reset_used_flags (stack_slot_list
);
2478 unshare_all_rtl_1 (insn
);
2482 unshare_all_rtl (void)
2484 unshare_all_rtl_1 (get_insns ());
2489 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2490 Recursively does the same for subexpressions. */
2493 verify_rtx_sharing (rtx orig
, rtx insn
)
2498 const char *format_ptr
;
2503 code
= GET_CODE (x
);
2505 /* These types may be freely shared. */
2521 /* SCRATCH must be shared because they represent distinct values. */
2524 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2525 clobbers or clobbers of hard registers that originated as pseudos.
2526 This is needed to allow safe register renaming. */
2527 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2528 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2533 if (shared_const_p (orig
))
2538 /* A MEM is allowed to be shared if its address is constant. */
2539 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2540 || reload_completed
|| reload_in_progress
)
2549 /* This rtx may not be shared. If it has already been seen,
2550 replace it with a copy of itself. */
2551 #ifdef ENABLE_CHECKING
2552 if (RTX_FLAG (x
, used
))
2554 error ("invalid rtl sharing found in the insn");
2556 error ("shared rtx");
2558 internal_error ("internal consistency failure");
2561 gcc_assert (!RTX_FLAG (x
, used
));
2563 RTX_FLAG (x
, used
) = 1;
2565 /* Now scan the subexpressions recursively. */
2567 format_ptr
= GET_RTX_FORMAT (code
);
2569 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2571 switch (*format_ptr
++)
2574 verify_rtx_sharing (XEXP (x
, i
), insn
);
2578 if (XVEC (x
, i
) != NULL
)
2581 int len
= XVECLEN (x
, i
);
2583 for (j
= 0; j
< len
; j
++)
2585 /* We allow sharing of ASM_OPERANDS inside single
2587 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2588 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2590 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2592 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2601 /* Reset used-flags for INSN. */
2604 reset_insn_used_flags (rtx insn
)
2606 gcc_assert (INSN_P (insn
));
2607 reset_used_flags (PATTERN (insn
));
2608 reset_used_flags (REG_NOTES (insn
));
2610 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2613 /* Go through all the RTL insn bodies and clear all the USED bits. */
2616 reset_all_used_flags (void)
2620 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2623 rtx pat
= PATTERN (p
);
2624 if (GET_CODE (pat
) != SEQUENCE
)
2625 reset_insn_used_flags (p
);
2628 gcc_assert (REG_NOTES (p
) == NULL
);
2629 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2630 reset_insn_used_flags (XVECEXP (pat
, 0, i
));
2635 /* Verify sharing in INSN. */
2638 verify_insn_sharing (rtx insn
)
2640 gcc_assert (INSN_P (insn
));
2641 reset_used_flags (PATTERN (insn
));
2642 reset_used_flags (REG_NOTES (insn
));
2644 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2647 /* Go through all the RTL insn bodies and check that there is no unexpected
2648 sharing in between the subexpressions. */
2651 verify_rtl_sharing (void)
2655 timevar_push (TV_VERIFY_RTL_SHARING
);
2657 reset_all_used_flags ();
2659 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2662 rtx pat
= PATTERN (p
);
2663 if (GET_CODE (pat
) != SEQUENCE
)
2664 verify_insn_sharing (p
);
2666 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2667 verify_insn_sharing (XVECEXP (pat
, 0, i
));
2670 reset_all_used_flags ();
2672 timevar_pop (TV_VERIFY_RTL_SHARING
);
2675 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2676 Assumes the mark bits are cleared at entry. */
2679 unshare_all_rtl_in_chain (rtx insn
)
2681 for (; insn
; insn
= NEXT_INSN (insn
))
2684 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2685 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2687 CALL_INSN_FUNCTION_USAGE (insn
)
2688 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2692 /* Go through all virtual stack slots of a function and mark them as
2693 shared. We never replace the DECL_RTLs themselves with a copy,
2694 but expressions mentioned into a DECL_RTL cannot be shared with
2695 expressions in the instruction stream.
2697 Note that reload may convert pseudo registers into memories in-place.
2698 Pseudo registers are always shared, but MEMs never are. Thus if we
2699 reset the used flags on MEMs in the instruction stream, we must set
2700 them again on MEMs that appear in DECL_RTLs. */
2703 set_used_decls (tree blk
)
2708 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2709 if (DECL_RTL_SET_P (t
))
2710 set_used_flags (DECL_RTL (t
));
2712 /* Now process sub-blocks. */
2713 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2717 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2718 Recursively does the same for subexpressions. Uses
2719 copy_rtx_if_shared_1 to reduce stack space. */
2722 copy_rtx_if_shared (rtx orig
)
2724 copy_rtx_if_shared_1 (&orig
);
2728 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2729 use. Recursively does the same for subexpressions. */
2732 copy_rtx_if_shared_1 (rtx
*orig1
)
2738 const char *format_ptr
;
2742 /* Repeat is used to turn tail-recursion into iteration. */
2749 code
= GET_CODE (x
);
2751 /* These types may be freely shared. */
2767 /* SCRATCH must be shared because they represent distinct values. */
2770 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2771 clobbers or clobbers of hard registers that originated as pseudos.
2772 This is needed to allow safe register renaming. */
2773 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2774 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2779 if (shared_const_p (x
))
2789 /* The chain of insns is not being copied. */
2796 /* This rtx may not be shared. If it has already been seen,
2797 replace it with a copy of itself. */
2799 if (RTX_FLAG (x
, used
))
2801 x
= shallow_copy_rtx (x
);
2804 RTX_FLAG (x
, used
) = 1;
2806 /* Now scan the subexpressions recursively.
2807 We can store any replaced subexpressions directly into X
2808 since we know X is not shared! Any vectors in X
2809 must be copied if X was copied. */
2811 format_ptr
= GET_RTX_FORMAT (code
);
2812 length
= GET_RTX_LENGTH (code
);
2815 for (i
= 0; i
< length
; i
++)
2817 switch (*format_ptr
++)
2821 copy_rtx_if_shared_1 (last_ptr
);
2822 last_ptr
= &XEXP (x
, i
);
2826 if (XVEC (x
, i
) != NULL
)
2829 int len
= XVECLEN (x
, i
);
2831 /* Copy the vector iff I copied the rtx and the length
2833 if (copied
&& len
> 0)
2834 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2836 /* Call recursively on all inside the vector. */
2837 for (j
= 0; j
< len
; j
++)
2840 copy_rtx_if_shared_1 (last_ptr
);
2841 last_ptr
= &XVECEXP (x
, i
, j
);
2856 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2859 mark_used_flags (rtx x
, int flag
)
2863 const char *format_ptr
;
2866 /* Repeat is used to turn tail-recursion into iteration. */
2871 code
= GET_CODE (x
);
2873 /* These types may be freely shared so we needn't do any resetting
2897 /* The chain of insns is not being copied. */
2904 RTX_FLAG (x
, used
) = flag
;
2906 format_ptr
= GET_RTX_FORMAT (code
);
2907 length
= GET_RTX_LENGTH (code
);
2909 for (i
= 0; i
< length
; i
++)
2911 switch (*format_ptr
++)
2919 mark_used_flags (XEXP (x
, i
), flag
);
2923 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2924 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2930 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2931 to look for shared sub-parts. */
2934 reset_used_flags (rtx x
)
2936 mark_used_flags (x
, 0);
2939 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2940 to look for shared sub-parts. */
2943 set_used_flags (rtx x
)
2945 mark_used_flags (x
, 1);
2948 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2949 Return X or the rtx for the pseudo reg the value of X was copied into.
2950 OTHER must be valid as a SET_DEST. */
2953 make_safe_from (rtx x
, rtx other
)
2956 switch (GET_CODE (other
))
2959 other
= SUBREG_REG (other
);
2961 case STRICT_LOW_PART
:
2964 other
= XEXP (other
, 0);
2973 && GET_CODE (x
) != SUBREG
)
2975 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2976 || reg_mentioned_p (other
, x
))))
2978 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2979 emit_move_insn (temp
, x
);
2985 /* Emission of insns (adding them to the doubly-linked list). */
2987 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2990 get_last_insn_anywhere (void)
2992 struct sequence_stack
*stack
;
2993 if (get_last_insn ())
2994 return get_last_insn ();
2995 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2996 if (stack
->last
!= 0)
3001 /* Return the first nonnote insn emitted in current sequence or current
3002 function. This routine looks inside SEQUENCEs. */
3005 get_first_nonnote_insn (void)
3007 rtx insn
= get_insns ();
3012 for (insn
= next_insn (insn
);
3013 insn
&& NOTE_P (insn
);
3014 insn
= next_insn (insn
))
3018 if (NONJUMP_INSN_P (insn
)
3019 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3020 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3027 /* Return the last nonnote insn emitted in current sequence or current
3028 function. This routine looks inside SEQUENCEs. */
3031 get_last_nonnote_insn (void)
3033 rtx insn
= get_last_insn ();
3038 for (insn
= previous_insn (insn
);
3039 insn
&& NOTE_P (insn
);
3040 insn
= previous_insn (insn
))
3044 if (NONJUMP_INSN_P (insn
)
3045 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3046 insn
= XVECEXP (PATTERN (insn
), 0,
3047 XVECLEN (PATTERN (insn
), 0) - 1);
3054 /* Return the number of actual (non-debug) insns emitted in this
3058 get_max_insn_count (void)
3060 int n
= cur_insn_uid
;
3062 /* The table size must be stable across -g, to avoid codegen
3063 differences due to debug insns, and not be affected by
3064 -fmin-insn-uid, to avoid excessive table size and to simplify
3065 debugging of -fcompare-debug failures. */
3066 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3067 n
-= cur_debug_insn_uid
;
3069 n
-= MIN_NONDEBUG_INSN_UID
;
3075 /* Return the next insn. If it is a SEQUENCE, return the first insn
3079 next_insn (rtx insn
)
3083 insn
= NEXT_INSN (insn
);
3084 if (insn
&& NONJUMP_INSN_P (insn
)
3085 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3086 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3092 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3096 previous_insn (rtx insn
)
3100 insn
= PREV_INSN (insn
);
3101 if (insn
&& NONJUMP_INSN_P (insn
)
3102 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3103 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3109 /* Return the next insn after INSN that is not a NOTE. This routine does not
3110 look inside SEQUENCEs. */
3113 next_nonnote_insn (rtx insn
)
3117 insn
= NEXT_INSN (insn
);
3118 if (insn
== 0 || !NOTE_P (insn
))
3125 /* Return the next insn after INSN that is not a NOTE, but stop the
3126 search before we enter another basic block. This routine does not
3127 look inside SEQUENCEs. */
3130 next_nonnote_insn_bb (rtx insn
)
3134 insn
= NEXT_INSN (insn
);
3135 if (insn
== 0 || !NOTE_P (insn
))
3137 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3144 /* Return the previous insn before INSN that is not a NOTE. This routine does
3145 not look inside SEQUENCEs. */
3148 prev_nonnote_insn (rtx insn
)
3152 insn
= PREV_INSN (insn
);
3153 if (insn
== 0 || !NOTE_P (insn
))
3160 /* Return the previous insn before INSN that is not a NOTE, but stop
3161 the search before we enter another basic block. This routine does
3162 not look inside SEQUENCEs. */
3165 prev_nonnote_insn_bb (rtx insn
)
3169 insn
= PREV_INSN (insn
);
3170 if (insn
== 0 || !NOTE_P (insn
))
3172 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3179 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3180 routine does not look inside SEQUENCEs. */
3183 next_nondebug_insn (rtx insn
)
3187 insn
= NEXT_INSN (insn
);
3188 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3195 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3196 This routine does not look inside SEQUENCEs. */
3199 prev_nondebug_insn (rtx insn
)
3203 insn
= PREV_INSN (insn
);
3204 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3211 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3212 This routine does not look inside SEQUENCEs. */
3215 next_nonnote_nondebug_insn (rtx insn
)
3219 insn
= NEXT_INSN (insn
);
3220 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3227 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3228 This routine does not look inside SEQUENCEs. */
3231 prev_nonnote_nondebug_insn (rtx insn
)
3235 insn
= PREV_INSN (insn
);
3236 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3243 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3244 or 0, if there is none. This routine does not look inside
3248 next_real_insn (rtx insn
)
3252 insn
= NEXT_INSN (insn
);
3253 if (insn
== 0 || INSN_P (insn
))
3260 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3261 or 0, if there is none. This routine does not look inside
3265 prev_real_insn (rtx insn
)
3269 insn
= PREV_INSN (insn
);
3270 if (insn
== 0 || INSN_P (insn
))
3277 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3278 This routine does not look inside SEQUENCEs. */
3281 last_call_insn (void)
3285 for (insn
= get_last_insn ();
3286 insn
&& !CALL_P (insn
);
3287 insn
= PREV_INSN (insn
))
3293 /* Find the next insn after INSN that really does something. This routine
3294 does not look inside SEQUENCEs. After reload this also skips over
3295 standalone USE and CLOBBER insn. */
3298 active_insn_p (const_rtx insn
)
3300 return (CALL_P (insn
) || JUMP_P (insn
)
3301 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3302 || (NONJUMP_INSN_P (insn
)
3303 && (! reload_completed
3304 || (GET_CODE (PATTERN (insn
)) != USE
3305 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3309 next_active_insn (rtx insn
)
3313 insn
= NEXT_INSN (insn
);
3314 if (insn
== 0 || active_insn_p (insn
))
3321 /* Find the last insn before INSN that really does something. This routine
3322 does not look inside SEQUENCEs. After reload this also skips over
3323 standalone USE and CLOBBER insn. */
3326 prev_active_insn (rtx insn
)
3330 insn
= PREV_INSN (insn
);
3331 if (insn
== 0 || active_insn_p (insn
))
3339 /* Return the next insn that uses CC0 after INSN, which is assumed to
3340 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3341 applied to the result of this function should yield INSN).
3343 Normally, this is simply the next insn. However, if a REG_CC_USER note
3344 is present, it contains the insn that uses CC0.
3346 Return 0 if we can't find the insn. */
3349 next_cc0_user (rtx insn
)
3351 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3354 return XEXP (note
, 0);
3356 insn
= next_nonnote_insn (insn
);
3357 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3358 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3360 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3366 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3367 note, it is the previous insn. */
3370 prev_cc0_setter (rtx insn
)
3372 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3375 return XEXP (note
, 0);
3377 insn
= prev_nonnote_insn (insn
);
3378 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3385 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3388 find_auto_inc (rtx
*xp
, void *data
)
3391 rtx reg
= (rtx
) data
;
3393 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3396 switch (GET_CODE (x
))
3404 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3415 /* Increment the label uses for all labels present in rtx. */
3418 mark_label_nuses (rtx x
)
3424 code
= GET_CODE (x
);
3425 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3426 LABEL_NUSES (XEXP (x
, 0))++;
3428 fmt
= GET_RTX_FORMAT (code
);
3429 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3432 mark_label_nuses (XEXP (x
, i
));
3433 else if (fmt
[i
] == 'E')
3434 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3435 mark_label_nuses (XVECEXP (x
, i
, j
));
3440 /* Try splitting insns that can be split for better scheduling.
3441 PAT is the pattern which might split.
3442 TRIAL is the insn providing PAT.
3443 LAST is nonzero if we should return the last insn of the sequence produced.
3445 If this routine succeeds in splitting, it returns the first or last
3446 replacement insn depending on the value of LAST. Otherwise, it
3447 returns TRIAL. If the insn to be returned can be split, it will be. */
3450 try_split (rtx pat
, rtx trial
, int last
)
3452 rtx before
= PREV_INSN (trial
);
3453 rtx after
= NEXT_INSN (trial
);
3454 int has_barrier
= 0;
3457 rtx insn_last
, insn
;
3460 /* We're not good at redistributing frame information. */
3461 if (RTX_FRAME_RELATED_P (trial
))
3464 if (any_condjump_p (trial
)
3465 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3466 split_branch_probability
= XINT (note
, 0);
3467 probability
= split_branch_probability
;
3469 seq
= split_insns (pat
, trial
);
3471 split_branch_probability
= -1;
3473 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3474 We may need to handle this specially. */
3475 if (after
&& BARRIER_P (after
))
3478 after
= NEXT_INSN (after
);
3484 /* Avoid infinite loop if any insn of the result matches
3485 the original pattern. */
3489 if (INSN_P (insn_last
)
3490 && rtx_equal_p (PATTERN (insn_last
), pat
))
3492 if (!NEXT_INSN (insn_last
))
3494 insn_last
= NEXT_INSN (insn_last
);
3497 /* We will be adding the new sequence to the function. The splitters
3498 may have introduced invalid RTL sharing, so unshare the sequence now. */
3499 unshare_all_rtl_in_chain (seq
);
3502 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3506 mark_jump_label (PATTERN (insn
), insn
, 0);
3508 if (probability
!= -1
3509 && any_condjump_p (insn
)
3510 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3512 /* We can preserve the REG_BR_PROB notes only if exactly
3513 one jump is created, otherwise the machine description
3514 is responsible for this step using
3515 split_branch_probability variable. */
3516 gcc_assert (njumps
== 1);
3517 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3522 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3523 in SEQ and copy any additional information across. */
3526 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3531 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3532 target may have explicitly specified. */
3533 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3536 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3538 /* If the old call was a sibling call, the new one must
3540 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3542 /* If the new call is the last instruction in the sequence,
3543 it will effectively replace the old call in-situ. Otherwise
3544 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3545 so that it comes immediately after the new call. */
3546 if (NEXT_INSN (insn
))
3547 for (next
= NEXT_INSN (trial
);
3548 next
&& NOTE_P (next
);
3549 next
= NEXT_INSN (next
))
3550 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3553 add_insn_after (next
, insn
, NULL
);
3559 /* Copy notes, particularly those related to the CFG. */
3560 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3562 switch (REG_NOTE_KIND (note
))
3565 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3571 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3574 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3578 case REG_NON_LOCAL_GOTO
:
3579 case REG_CROSSING_JUMP
:
3580 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3583 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3589 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3591 rtx reg
= XEXP (note
, 0);
3592 if (!FIND_REG_INC_NOTE (insn
, reg
)
3593 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3594 add_reg_note (insn
, REG_INC
, reg
);
3600 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3608 /* If there are LABELS inside the split insns increment the
3609 usage count so we don't delete the label. */
3613 while (insn
!= NULL_RTX
)
3615 /* JUMP_P insns have already been "marked" above. */
3616 if (NONJUMP_INSN_P (insn
))
3617 mark_label_nuses (PATTERN (insn
));
3619 insn
= PREV_INSN (insn
);
3623 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3625 delete_insn (trial
);
3627 emit_barrier_after (tem
);
3629 /* Recursively call try_split for each new insn created; by the
3630 time control returns here that insn will be fully split, so
3631 set LAST and continue from the insn after the one returned.
3632 We can't use next_active_insn here since AFTER may be a note.
3633 Ignore deleted insns, which can be occur if not optimizing. */
3634 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3635 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3636 tem
= try_split (PATTERN (tem
), tem
, 1);
3638 /* Return either the first or the last insn, depending on which was
3641 ? (after
? PREV_INSN (after
) : get_last_insn ())
3642 : NEXT_INSN (before
);
3645 /* Make and return an INSN rtx, initializing all its slots.
3646 Store PATTERN in the pattern slots. */
3649 make_insn_raw (rtx pattern
)
3653 insn
= rtx_alloc (INSN
);
3655 INSN_UID (insn
) = cur_insn_uid
++;
3656 PATTERN (insn
) = pattern
;
3657 INSN_CODE (insn
) = -1;
3658 REG_NOTES (insn
) = NULL
;
3659 INSN_LOCATION (insn
) = curr_insn_location ();
3660 BLOCK_FOR_INSN (insn
) = NULL
;
3662 #ifdef ENABLE_RTL_CHECKING
3665 && (returnjump_p (insn
)
3666 || (GET_CODE (insn
) == SET
3667 && SET_DEST (insn
) == pc_rtx
)))
3669 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3677 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3680 make_debug_insn_raw (rtx pattern
)
3684 insn
= rtx_alloc (DEBUG_INSN
);
3685 INSN_UID (insn
) = cur_debug_insn_uid
++;
3686 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3687 INSN_UID (insn
) = cur_insn_uid
++;
3689 PATTERN (insn
) = pattern
;
3690 INSN_CODE (insn
) = -1;
3691 REG_NOTES (insn
) = NULL
;
3692 INSN_LOCATION (insn
) = curr_insn_location ();
3693 BLOCK_FOR_INSN (insn
) = NULL
;
3698 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3701 make_jump_insn_raw (rtx pattern
)
3705 insn
= rtx_alloc (JUMP_INSN
);
3706 INSN_UID (insn
) = cur_insn_uid
++;
3708 PATTERN (insn
) = pattern
;
3709 INSN_CODE (insn
) = -1;
3710 REG_NOTES (insn
) = NULL
;
3711 JUMP_LABEL (insn
) = NULL
;
3712 INSN_LOCATION (insn
) = curr_insn_location ();
3713 BLOCK_FOR_INSN (insn
) = NULL
;
3718 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3721 make_call_insn_raw (rtx pattern
)
3725 insn
= rtx_alloc (CALL_INSN
);
3726 INSN_UID (insn
) = cur_insn_uid
++;
3728 PATTERN (insn
) = pattern
;
3729 INSN_CODE (insn
) = -1;
3730 REG_NOTES (insn
) = NULL
;
3731 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3732 INSN_LOCATION (insn
) = curr_insn_location ();
3733 BLOCK_FOR_INSN (insn
) = NULL
;
3738 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3741 make_note_raw (enum insn_note subtype
)
3743 /* Some notes are never created this way at all. These notes are
3744 only created by patching out insns. */
3745 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3746 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3748 rtx note
= rtx_alloc (NOTE
);
3749 INSN_UID (note
) = cur_insn_uid
++;
3750 NOTE_KIND (note
) = subtype
;
3751 BLOCK_FOR_INSN (note
) = NULL
;
3752 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3756 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3757 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3758 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3761 link_insn_into_chain (rtx insn
, rtx prev
, rtx next
)
3763 PREV_INSN (insn
) = prev
;
3764 NEXT_INSN (insn
) = next
;
3767 NEXT_INSN (prev
) = insn
;
3768 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3770 rtx sequence
= PATTERN (prev
);
3771 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3776 PREV_INSN (next
) = insn
;
3777 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3778 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3781 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3783 rtx sequence
= PATTERN (insn
);
3784 PREV_INSN (XVECEXP (sequence
, 0, 0)) = prev
;
3785 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3789 /* Add INSN to the end of the doubly-linked list.
3790 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3795 rtx prev
= get_last_insn ();
3796 link_insn_into_chain (insn
, prev
, NULL
);
3797 if (NULL
== get_insns ())
3798 set_first_insn (insn
);
3799 set_last_insn (insn
);
3802 /* Add INSN into the doubly-linked list after insn AFTER. */
3805 add_insn_after_nobb (rtx insn
, rtx after
)
3807 rtx next
= NEXT_INSN (after
);
3809 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3811 link_insn_into_chain (insn
, after
, next
);
3815 if (get_last_insn () == after
)
3816 set_last_insn (insn
);
3819 struct sequence_stack
*stack
= seq_stack
;
3820 /* Scan all pending sequences too. */
3821 for (; stack
; stack
= stack
->next
)
3822 if (after
== stack
->last
)
3831 /* Add INSN into the doubly-linked list before insn BEFORE. */
3834 add_insn_before_nobb (rtx insn
, rtx before
)
3836 rtx prev
= PREV_INSN (before
);
3838 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3840 link_insn_into_chain (insn
, prev
, before
);
3844 if (get_insns () == before
)
3845 set_first_insn (insn
);
3848 struct sequence_stack
*stack
= seq_stack
;
3849 /* Scan all pending sequences too. */
3850 for (; stack
; stack
= stack
->next
)
3851 if (before
== stack
->first
)
3853 stack
->first
= insn
;
3862 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3863 If BB is NULL, an attempt is made to infer the bb from before.
3865 This and the next function should be the only functions called
3866 to insert an insn once delay slots have been filled since only
3867 they know how to update a SEQUENCE. */
3870 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3872 add_insn_after_nobb (insn
, after
);
3873 if (!BARRIER_P (after
)
3874 && !BARRIER_P (insn
)
3875 && (bb
= BLOCK_FOR_INSN (after
)))
3877 set_block_for_insn (insn
, bb
);
3879 df_insn_rescan (insn
);
3880 /* Should not happen as first in the BB is always
3881 either NOTE or LABEL. */
3882 if (BB_END (bb
) == after
3883 /* Avoid clobbering of structure when creating new BB. */
3884 && !BARRIER_P (insn
)
3885 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3890 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3891 If BB is NULL, an attempt is made to infer the bb from before.
3893 This and the previous function should be the only functions called
3894 to insert an insn once delay slots have been filled since only
3895 they know how to update a SEQUENCE. */
3898 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3900 add_insn_before_nobb (insn
, before
);
3903 && !BARRIER_P (before
)
3904 && !BARRIER_P (insn
))
3905 bb
= BLOCK_FOR_INSN (before
);
3909 set_block_for_insn (insn
, bb
);
3911 df_insn_rescan (insn
);
3912 /* Should not happen as first in the BB is always either NOTE or
3914 gcc_assert (BB_HEAD (bb
) != insn
3915 /* Avoid clobbering of structure when creating new BB. */
3917 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3921 /* Replace insn with an deleted instruction note. */
3924 set_insn_deleted (rtx insn
)
3927 df_insn_delete (insn
);
3928 PUT_CODE (insn
, NOTE
);
3929 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3933 /* Unlink INSN from the insn chain.
3935 This function knows how to handle sequences.
3937 This function does not invalidate data flow information associated with
3938 INSN (i.e. does not call df_insn_delete). That makes this function
3939 usable for only disconnecting an insn from the chain, and re-emit it
3942 To later insert INSN elsewhere in the insn chain via add_insn and
3943 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3944 the caller. Nullifying them here breaks many insn chain walks.
3946 To really delete an insn and related DF information, use delete_insn. */
3949 remove_insn (rtx insn
)
3951 rtx next
= NEXT_INSN (insn
);
3952 rtx prev
= PREV_INSN (insn
);
3957 NEXT_INSN (prev
) = next
;
3958 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3960 rtx sequence
= PATTERN (prev
);
3961 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3964 else if (get_insns () == insn
)
3967 PREV_INSN (next
) = NULL
;
3968 set_first_insn (next
);
3972 struct sequence_stack
*stack
= seq_stack
;
3973 /* Scan all pending sequences too. */
3974 for (; stack
; stack
= stack
->next
)
3975 if (insn
== stack
->first
)
3977 stack
->first
= next
;
3986 PREV_INSN (next
) = prev
;
3987 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3988 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3990 else if (get_last_insn () == insn
)
3991 set_last_insn (prev
);
3994 struct sequence_stack
*stack
= seq_stack
;
3995 /* Scan all pending sequences too. */
3996 for (; stack
; stack
= stack
->next
)
3997 if (insn
== stack
->last
)
4006 /* Fix up basic block boundaries, if necessary. */
4007 if (!BARRIER_P (insn
)
4008 && (bb
= BLOCK_FOR_INSN (insn
)))
4010 if (BB_HEAD (bb
) == insn
)
4012 /* Never ever delete the basic block note without deleting whole
4014 gcc_assert (!NOTE_P (insn
));
4015 BB_HEAD (bb
) = next
;
4017 if (BB_END (bb
) == insn
)
4022 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4025 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4027 gcc_assert (call_insn
&& CALL_P (call_insn
));
4029 /* Put the register usage information on the CALL. If there is already
4030 some usage information, put ours at the end. */
4031 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4035 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4036 link
= XEXP (link
, 1))
4039 XEXP (link
, 1) = call_fusage
;
4042 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4045 /* Delete all insns made since FROM.
4046 FROM becomes the new last instruction. */
4049 delete_insns_since (rtx from
)
4054 NEXT_INSN (from
) = 0;
4055 set_last_insn (from
);
4058 /* This function is deprecated, please use sequences instead.
4060 Move a consecutive bunch of insns to a different place in the chain.
4061 The insns to be moved are those between FROM and TO.
4062 They are moved to a new position after the insn AFTER.
4063 AFTER must not be FROM or TO or any insn in between.
4065 This function does not know about SEQUENCEs and hence should not be
4066 called after delay-slot filling has been done. */
4069 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4071 #ifdef ENABLE_CHECKING
4073 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4074 gcc_assert (after
!= x
);
4075 gcc_assert (after
!= to
);
4078 /* Splice this bunch out of where it is now. */
4079 if (PREV_INSN (from
))
4080 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4082 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4083 if (get_last_insn () == to
)
4084 set_last_insn (PREV_INSN (from
));
4085 if (get_insns () == from
)
4086 set_first_insn (NEXT_INSN (to
));
4088 /* Make the new neighbors point to it and it to them. */
4089 if (NEXT_INSN (after
))
4090 PREV_INSN (NEXT_INSN (after
)) = to
;
4092 NEXT_INSN (to
) = NEXT_INSN (after
);
4093 PREV_INSN (from
) = after
;
4094 NEXT_INSN (after
) = from
;
4095 if (after
== get_last_insn ())
4099 /* Same as function above, but take care to update BB boundaries. */
4101 reorder_insns (rtx from
, rtx to
, rtx after
)
4103 rtx prev
= PREV_INSN (from
);
4104 basic_block bb
, bb2
;
4106 reorder_insns_nobb (from
, to
, after
);
4108 if (!BARRIER_P (after
)
4109 && (bb
= BLOCK_FOR_INSN (after
)))
4112 df_set_bb_dirty (bb
);
4114 if (!BARRIER_P (from
)
4115 && (bb2
= BLOCK_FOR_INSN (from
)))
4117 if (BB_END (bb2
) == to
)
4118 BB_END (bb2
) = prev
;
4119 df_set_bb_dirty (bb2
);
4122 if (BB_END (bb
) == after
)
4125 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4127 df_insn_change_bb (x
, bb
);
4132 /* Emit insn(s) of given code and pattern
4133 at a specified place within the doubly-linked list.
4135 All of the emit_foo global entry points accept an object
4136 X which is either an insn list or a PATTERN of a single
4139 There are thus a few canonical ways to generate code and
4140 emit it at a specific place in the instruction stream. For
4141 example, consider the instruction named SPOT and the fact that
4142 we would like to emit some instructions before SPOT. We might
4146 ... emit the new instructions ...
4147 insns_head = get_insns ();
4150 emit_insn_before (insns_head, SPOT);
4152 It used to be common to generate SEQUENCE rtl instead, but that
4153 is a relic of the past which no longer occurs. The reason is that
4154 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4155 generated would almost certainly die right after it was created. */
4158 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4159 rtx (*make_raw
) (rtx
))
4163 gcc_assert (before
);
4168 switch (GET_CODE (x
))
4180 rtx next
= NEXT_INSN (insn
);
4181 add_insn_before (insn
, before
, bb
);
4187 #ifdef ENABLE_RTL_CHECKING
4194 last
= (*make_raw
) (x
);
4195 add_insn_before (last
, before
, bb
);
4202 /* Make X be output before the instruction BEFORE. */
4205 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4207 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4210 /* Make an instruction with body X and code JUMP_INSN
4211 and output it before the instruction BEFORE. */
4214 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4216 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4217 make_jump_insn_raw
);
4220 /* Make an instruction with body X and code CALL_INSN
4221 and output it before the instruction BEFORE. */
4224 emit_call_insn_before_noloc (rtx x
, rtx before
)
4226 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4227 make_call_insn_raw
);
4230 /* Make an instruction with body X and code DEBUG_INSN
4231 and output it before the instruction BEFORE. */
4234 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4236 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4237 make_debug_insn_raw
);
4240 /* Make an insn of code BARRIER
4241 and output it before the insn BEFORE. */
4244 emit_barrier_before (rtx before
)
4246 rtx insn
= rtx_alloc (BARRIER
);
4248 INSN_UID (insn
) = cur_insn_uid
++;
4250 add_insn_before (insn
, before
, NULL
);
4254 /* Emit the label LABEL before the insn BEFORE. */
4257 emit_label_before (rtx label
, rtx before
)
4259 gcc_checking_assert (INSN_UID (label
) == 0);
4260 INSN_UID (label
) = cur_insn_uid
++;
4261 add_insn_before (label
, before
, NULL
);
4265 /* Helper for emit_insn_after, handles lists of instructions
4269 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4273 if (!bb
&& !BARRIER_P (after
))
4274 bb
= BLOCK_FOR_INSN (after
);
4278 df_set_bb_dirty (bb
);
4279 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4280 if (!BARRIER_P (last
))
4282 set_block_for_insn (last
, bb
);
4283 df_insn_rescan (last
);
4285 if (!BARRIER_P (last
))
4287 set_block_for_insn (last
, bb
);
4288 df_insn_rescan (last
);
4290 if (BB_END (bb
) == after
)
4294 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4297 after_after
= NEXT_INSN (after
);
4299 NEXT_INSN (after
) = first
;
4300 PREV_INSN (first
) = after
;
4301 NEXT_INSN (last
) = after_after
;
4303 PREV_INSN (after_after
) = last
;
4305 if (after
== get_last_insn ())
4306 set_last_insn (last
);
4312 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4313 rtx (*make_raw
)(rtx
))
4322 switch (GET_CODE (x
))
4331 last
= emit_insn_after_1 (x
, after
, bb
);
4334 #ifdef ENABLE_RTL_CHECKING
4341 last
= (*make_raw
) (x
);
4342 add_insn_after (last
, after
, bb
);
4349 /* Make X be output after the insn AFTER and set the BB of insn. If
4350 BB is NULL, an attempt is made to infer the BB from AFTER. */
4353 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4355 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4359 /* Make an insn of code JUMP_INSN with body X
4360 and output it after the insn AFTER. */
4363 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4365 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4368 /* Make an instruction with body X and code CALL_INSN
4369 and output it after the instruction AFTER. */
4372 emit_call_insn_after_noloc (rtx x
, rtx after
)
4374 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4377 /* Make an instruction with body X and code CALL_INSN
4378 and output it after the instruction AFTER. */
4381 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4383 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4386 /* Make an insn of code BARRIER
4387 and output it after the insn AFTER. */
4390 emit_barrier_after (rtx after
)
4392 rtx insn
= rtx_alloc (BARRIER
);
4394 INSN_UID (insn
) = cur_insn_uid
++;
4396 add_insn_after (insn
, after
, NULL
);
4400 /* Emit the label LABEL after the insn AFTER. */
4403 emit_label_after (rtx label
, rtx after
)
4405 gcc_checking_assert (INSN_UID (label
) == 0);
4406 INSN_UID (label
) = cur_insn_uid
++;
4407 add_insn_after (label
, after
, NULL
);
4411 /* Notes require a bit of special handling: Some notes need to have their
4412 BLOCK_FOR_INSN set, others should never have it set, and some should
4413 have it set or clear depending on the context. */
4415 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4416 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4417 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4420 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4424 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4425 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4428 /* Notes for var tracking and EH region markers can appear between or
4429 inside basic blocks. If the caller is emitting on the basic block
4430 boundary, do not set BLOCK_FOR_INSN on the new note. */
4431 case NOTE_INSN_VAR_LOCATION
:
4432 case NOTE_INSN_CALL_ARG_LOCATION
:
4433 case NOTE_INSN_EH_REGION_BEG
:
4434 case NOTE_INSN_EH_REGION_END
:
4435 return on_bb_boundary_p
;
4437 /* Otherwise, BLOCK_FOR_INSN must be set. */
4443 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4446 emit_note_after (enum insn_note subtype
, rtx after
)
4448 rtx note
= make_note_raw (subtype
);
4449 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4450 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4452 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4453 add_insn_after_nobb (note
, after
);
4455 add_insn_after (note
, after
, bb
);
4459 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4462 emit_note_before (enum insn_note subtype
, rtx before
)
4464 rtx note
= make_note_raw (subtype
);
4465 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4466 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4468 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4469 add_insn_before_nobb (note
, before
);
4471 add_insn_before (note
, before
, bb
);
4475 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4476 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4479 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4480 rtx (*make_raw
) (rtx
))
4482 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4484 if (pattern
== NULL_RTX
|| !loc
)
4487 after
= NEXT_INSN (after
);
4490 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4491 INSN_LOCATION (after
) = loc
;
4494 after
= NEXT_INSN (after
);
4499 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4500 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4504 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4505 rtx (*make_raw
) (rtx
))
4509 if (skip_debug_insns
)
4510 while (DEBUG_INSN_P (prev
))
4511 prev
= PREV_INSN (prev
);
4514 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4517 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4520 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4522 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4524 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4527 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4529 emit_insn_after (rtx pattern
, rtx after
)
4531 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4534 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4536 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4538 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4541 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4543 emit_jump_insn_after (rtx pattern
, rtx after
)
4545 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4548 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4550 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4552 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4555 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4557 emit_call_insn_after (rtx pattern
, rtx after
)
4559 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4562 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4564 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4566 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4569 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4571 emit_debug_insn_after (rtx pattern
, rtx after
)
4573 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4576 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4577 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4578 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4582 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4583 rtx (*make_raw
) (rtx
))
4585 rtx first
= PREV_INSN (before
);
4586 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4587 insnp
? before
: NULL_RTX
,
4590 if (pattern
== NULL_RTX
|| !loc
)
4594 first
= get_insns ();
4596 first
= NEXT_INSN (first
);
4599 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4600 INSN_LOCATION (first
) = loc
;
4603 first
= NEXT_INSN (first
);
4608 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4609 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4610 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4611 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4614 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4615 bool insnp
, rtx (*make_raw
) (rtx
))
4619 if (skip_debug_insns
)
4620 while (DEBUG_INSN_P (next
))
4621 next
= PREV_INSN (next
);
4624 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4627 return emit_pattern_before_noloc (pattern
, before
,
4628 insnp
? before
: NULL_RTX
,
4632 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4634 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4636 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4640 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4642 emit_insn_before (rtx pattern
, rtx before
)
4644 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4647 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4649 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4651 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4652 make_jump_insn_raw
);
4655 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4657 emit_jump_insn_before (rtx pattern
, rtx before
)
4659 return emit_pattern_before (pattern
, before
, true, false,
4660 make_jump_insn_raw
);
4663 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4665 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4667 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4668 make_call_insn_raw
);
4671 /* Like emit_call_insn_before_noloc,
4672 but set insn_location according to BEFORE. */
4674 emit_call_insn_before (rtx pattern
, rtx before
)
4676 return emit_pattern_before (pattern
, before
, true, false,
4677 make_call_insn_raw
);
4680 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4682 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4684 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4685 make_debug_insn_raw
);
4688 /* Like emit_debug_insn_before_noloc,
4689 but set insn_location according to BEFORE. */
4691 emit_debug_insn_before (rtx pattern
, rtx before
)
4693 return emit_pattern_before (pattern
, before
, false, false,
4694 make_debug_insn_raw
);
4697 /* Take X and emit it at the end of the doubly-linked
4700 Returns the last insn emitted. */
4705 rtx last
= get_last_insn ();
4711 switch (GET_CODE (x
))
4723 rtx next
= NEXT_INSN (insn
);
4730 #ifdef ENABLE_RTL_CHECKING
4731 case JUMP_TABLE_DATA
:
4738 last
= make_insn_raw (x
);
4746 /* Make an insn of code DEBUG_INSN with pattern X
4747 and add it to the end of the doubly-linked list. */
4750 emit_debug_insn (rtx x
)
4752 rtx last
= get_last_insn ();
4758 switch (GET_CODE (x
))
4770 rtx next
= NEXT_INSN (insn
);
4777 #ifdef ENABLE_RTL_CHECKING
4778 case JUMP_TABLE_DATA
:
4785 last
= make_debug_insn_raw (x
);
4793 /* Make an insn of code JUMP_INSN with pattern X
4794 and add it to the end of the doubly-linked list. */
4797 emit_jump_insn (rtx x
)
4799 rtx last
= NULL_RTX
, insn
;
4801 switch (GET_CODE (x
))
4813 rtx next
= NEXT_INSN (insn
);
4820 #ifdef ENABLE_RTL_CHECKING
4821 case JUMP_TABLE_DATA
:
4828 last
= make_jump_insn_raw (x
);
4836 /* Make an insn of code CALL_INSN with pattern X
4837 and add it to the end of the doubly-linked list. */
4840 emit_call_insn (rtx x
)
4844 switch (GET_CODE (x
))
4853 insn
= emit_insn (x
);
4856 #ifdef ENABLE_RTL_CHECKING
4858 case JUMP_TABLE_DATA
:
4864 insn
= make_call_insn_raw (x
);
4872 /* Add the label LABEL to the end of the doubly-linked list. */
4875 emit_label (rtx label
)
4877 gcc_checking_assert (INSN_UID (label
) == 0);
4878 INSN_UID (label
) = cur_insn_uid
++;
4883 /* Make an insn of code JUMP_TABLE_DATA
4884 and add it to the end of the doubly-linked list. */
4887 emit_jump_table_data (rtx table
)
4889 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
4890 INSN_UID (jump_table_data
) = cur_insn_uid
++;
4891 PATTERN (jump_table_data
) = table
;
4892 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
4893 add_insn (jump_table_data
);
4894 return jump_table_data
;
4897 /* Make an insn of code BARRIER
4898 and add it to the end of the doubly-linked list. */
4903 rtx barrier
= rtx_alloc (BARRIER
);
4904 INSN_UID (barrier
) = cur_insn_uid
++;
4909 /* Emit a copy of note ORIG. */
4912 emit_note_copy (rtx orig
)
4914 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
4915 rtx note
= make_note_raw (kind
);
4916 NOTE_DATA (note
) = NOTE_DATA (orig
);
4921 /* Make an insn of code NOTE or type NOTE_NO
4922 and add it to the end of the doubly-linked list. */
4925 emit_note (enum insn_note kind
)
4927 rtx note
= make_note_raw (kind
);
4932 /* Emit a clobber of lvalue X. */
4935 emit_clobber (rtx x
)
4937 /* CONCATs should not appear in the insn stream. */
4938 if (GET_CODE (x
) == CONCAT
)
4940 emit_clobber (XEXP (x
, 0));
4941 return emit_clobber (XEXP (x
, 1));
4943 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4946 /* Return a sequence of insns to clobber lvalue X. */
4960 /* Emit a use of rvalue X. */
4965 /* CONCATs should not appear in the insn stream. */
4966 if (GET_CODE (x
) == CONCAT
)
4968 emit_use (XEXP (x
, 0));
4969 return emit_use (XEXP (x
, 1));
4971 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4974 /* Return a sequence of insns to use rvalue X. */
4988 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4989 note of this type already exists, remove it first. */
4992 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4994 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5000 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5001 has multiple sets (some callers assume single_set
5002 means the insn only has one set, when in fact it
5003 means the insn only has one * useful * set). */
5004 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5010 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5011 It serves no useful purpose and breaks eliminate_regs. */
5012 if (GET_CODE (datum
) == ASM_OPERANDS
)
5017 XEXP (note
, 0) = datum
;
5018 df_notes_rescan (insn
);
5026 XEXP (note
, 0) = datum
;
5032 add_reg_note (insn
, kind
, datum
);
5038 df_notes_rescan (insn
);
5044 return REG_NOTES (insn
);
5047 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5049 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5051 rtx set
= single_set (insn
);
5053 if (set
&& SET_DEST (set
) == dst
)
5054 return set_unique_reg_note (insn
, kind
, datum
);
5058 /* Return an indication of which type of insn should have X as a body.
5059 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5061 static enum rtx_code
5062 classify_insn (rtx x
)
5066 if (GET_CODE (x
) == CALL
)
5068 if (ANY_RETURN_P (x
))
5070 if (GET_CODE (x
) == SET
)
5072 if (SET_DEST (x
) == pc_rtx
)
5074 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5079 if (GET_CODE (x
) == PARALLEL
)
5082 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5083 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5085 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5086 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5088 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5089 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5095 /* Emit the rtl pattern X as an appropriate kind of insn.
5096 If X is a label, it is simply added into the insn chain. */
5101 enum rtx_code code
= classify_insn (x
);
5106 return emit_label (x
);
5108 return emit_insn (x
);
5111 rtx insn
= emit_jump_insn (x
);
5112 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5113 return emit_barrier ();
5117 return emit_call_insn (x
);
5119 return emit_debug_insn (x
);
5125 /* Space for free sequence stack entries. */
5126 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5128 /* Begin emitting insns to a sequence. If this sequence will contain
5129 something that might cause the compiler to pop arguments to function
5130 calls (because those pops have previously been deferred; see
5131 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5132 before calling this function. That will ensure that the deferred
5133 pops are not accidentally emitted in the middle of this sequence. */
5136 start_sequence (void)
5138 struct sequence_stack
*tem
;
5140 if (free_sequence_stack
!= NULL
)
5142 tem
= free_sequence_stack
;
5143 free_sequence_stack
= tem
->next
;
5146 tem
= ggc_alloc_sequence_stack ();
5148 tem
->next
= seq_stack
;
5149 tem
->first
= get_insns ();
5150 tem
->last
= get_last_insn ();
5158 /* Set up the insn chain starting with FIRST as the current sequence,
5159 saving the previously current one. See the documentation for
5160 start_sequence for more information about how to use this function. */
5163 push_to_sequence (rtx first
)
5169 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5172 set_first_insn (first
);
5173 set_last_insn (last
);
5176 /* Like push_to_sequence, but take the last insn as an argument to avoid
5177 looping through the list. */
5180 push_to_sequence2 (rtx first
, rtx last
)
5184 set_first_insn (first
);
5185 set_last_insn (last
);
5188 /* Set up the outer-level insn chain
5189 as the current sequence, saving the previously current one. */
5192 push_topmost_sequence (void)
5194 struct sequence_stack
*stack
, *top
= NULL
;
5198 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5201 set_first_insn (top
->first
);
5202 set_last_insn (top
->last
);
5205 /* After emitting to the outer-level insn chain, update the outer-level
5206 insn chain, and restore the previous saved state. */
5209 pop_topmost_sequence (void)
5211 struct sequence_stack
*stack
, *top
= NULL
;
5213 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5216 top
->first
= get_insns ();
5217 top
->last
= get_last_insn ();
5222 /* After emitting to a sequence, restore previous saved state.
5224 To get the contents of the sequence just made, you must call
5225 `get_insns' *before* calling here.
5227 If the compiler might have deferred popping arguments while
5228 generating this sequence, and this sequence will not be immediately
5229 inserted into the instruction stream, use do_pending_stack_adjust
5230 before calling get_insns. That will ensure that the deferred
5231 pops are inserted into this sequence, and not into some random
5232 location in the instruction stream. See INHIBIT_DEFER_POP for more
5233 information about deferred popping of arguments. */
5238 struct sequence_stack
*tem
= seq_stack
;
5240 set_first_insn (tem
->first
);
5241 set_last_insn (tem
->last
);
5242 seq_stack
= tem
->next
;
5244 memset (tem
, 0, sizeof (*tem
));
5245 tem
->next
= free_sequence_stack
;
5246 free_sequence_stack
= tem
;
5249 /* Return 1 if currently emitting into a sequence. */
5252 in_sequence_p (void)
5254 return seq_stack
!= 0;
5257 /* Put the various virtual registers into REGNO_REG_RTX. */
5260 init_virtual_regs (void)
5262 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5263 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5264 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5265 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5266 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5267 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5268 = virtual_preferred_stack_boundary_rtx
;
5272 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5273 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5274 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5275 static int copy_insn_n_scratches
;
5277 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5278 copied an ASM_OPERANDS.
5279 In that case, it is the original input-operand vector. */
5280 static rtvec orig_asm_operands_vector
;
5282 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5283 copied an ASM_OPERANDS.
5284 In that case, it is the copied input-operand vector. */
5285 static rtvec copy_asm_operands_vector
;
5287 /* Likewise for the constraints vector. */
5288 static rtvec orig_asm_constraints_vector
;
5289 static rtvec copy_asm_constraints_vector
;
5291 /* Recursively create a new copy of an rtx for copy_insn.
5292 This function differs from copy_rtx in that it handles SCRATCHes and
5293 ASM_OPERANDs properly.
5294 Normally, this function is not used directly; use copy_insn as front end.
5295 However, you could first copy an insn pattern with copy_insn and then use
5296 this function afterwards to properly copy any REG_NOTEs containing
5300 copy_insn_1 (rtx orig
)
5305 const char *format_ptr
;
5310 code
= GET_CODE (orig
);
5325 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5326 clobbers or clobbers of hard registers that originated as pseudos.
5327 This is needed to allow safe register renaming. */
5328 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5329 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5334 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5335 if (copy_insn_scratch_in
[i
] == orig
)
5336 return copy_insn_scratch_out
[i
];
5340 if (shared_const_p (orig
))
5344 /* A MEM with a constant address is not sharable. The problem is that
5345 the constant address may need to be reloaded. If the mem is shared,
5346 then reloading one copy of this mem will cause all copies to appear
5347 to have been reloaded. */
5353 /* Copy the various flags, fields, and other information. We assume
5354 that all fields need copying, and then clear the fields that should
5355 not be copied. That is the sensible default behavior, and forces
5356 us to explicitly document why we are *not* copying a flag. */
5357 copy
= shallow_copy_rtx (orig
);
5359 /* We do not copy the USED flag, which is used as a mark bit during
5360 walks over the RTL. */
5361 RTX_FLAG (copy
, used
) = 0;
5363 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5366 RTX_FLAG (copy
, jump
) = 0;
5367 RTX_FLAG (copy
, call
) = 0;
5368 RTX_FLAG (copy
, frame_related
) = 0;
5371 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5373 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5374 switch (*format_ptr
++)
5377 if (XEXP (orig
, i
) != NULL
)
5378 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5383 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5384 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5385 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5386 XVEC (copy
, i
) = copy_asm_operands_vector
;
5387 else if (XVEC (orig
, i
) != NULL
)
5389 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5390 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5391 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5402 /* These are left unchanged. */
5409 if (code
== SCRATCH
)
5411 i
= copy_insn_n_scratches
++;
5412 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5413 copy_insn_scratch_in
[i
] = orig
;
5414 copy_insn_scratch_out
[i
] = copy
;
5416 else if (code
== ASM_OPERANDS
)
5418 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5419 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5420 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5421 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5427 /* Create a new copy of an rtx.
5428 This function differs from copy_rtx in that it handles SCRATCHes and
5429 ASM_OPERANDs properly.
5430 INSN doesn't really have to be a full INSN; it could be just the
5433 copy_insn (rtx insn
)
5435 copy_insn_n_scratches
= 0;
5436 orig_asm_operands_vector
= 0;
5437 orig_asm_constraints_vector
= 0;
5438 copy_asm_operands_vector
= 0;
5439 copy_asm_constraints_vector
= 0;
5440 return copy_insn_1 (insn
);
5443 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5444 on that assumption that INSN itself remains in its original place. */
5447 copy_delay_slot_insn (rtx insn
)
5449 /* Copy INSN with its rtx_code, all its notes, location etc. */
5450 insn
= copy_rtx (insn
);
5451 INSN_UID (insn
) = cur_insn_uid
++;
5455 /* Initialize data structures and variables in this file
5456 before generating rtl for each function. */
5461 set_first_insn (NULL
);
5462 set_last_insn (NULL
);
5463 if (MIN_NONDEBUG_INSN_UID
)
5464 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5467 cur_debug_insn_uid
= 1;
5468 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5469 first_label_num
= label_num
;
5472 /* Init the tables that describe all the pseudo regs. */
5474 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5476 crtl
->emit
.regno_pointer_align
5477 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5479 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5481 /* Put copies of all the hard registers into regno_reg_rtx. */
5482 memcpy (regno_reg_rtx
,
5483 initial_regno_reg_rtx
,
5484 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5486 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5487 init_virtual_regs ();
5489 /* Indicate that the virtual registers and stack locations are
5491 REG_POINTER (stack_pointer_rtx
) = 1;
5492 REG_POINTER (frame_pointer_rtx
) = 1;
5493 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5494 REG_POINTER (arg_pointer_rtx
) = 1;
5496 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5497 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5498 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5499 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5500 REG_POINTER (virtual_cfa_rtx
) = 1;
5502 #ifdef STACK_BOUNDARY
5503 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5504 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5505 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5506 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5508 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5509 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5510 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5511 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5512 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5515 #ifdef INIT_EXPANDERS
5520 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5523 gen_const_vector (enum machine_mode mode
, int constant
)
5528 enum machine_mode inner
;
5530 units
= GET_MODE_NUNITS (mode
);
5531 inner
= GET_MODE_INNER (mode
);
5533 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5535 v
= rtvec_alloc (units
);
5537 /* We need to call this function after we set the scalar const_tiny_rtx
5539 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5541 for (i
= 0; i
< units
; ++i
)
5542 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5544 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5548 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5549 all elements are zero, and the one vector when all elements are one. */
5551 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5553 enum machine_mode inner
= GET_MODE_INNER (mode
);
5554 int nunits
= GET_MODE_NUNITS (mode
);
5558 /* Check to see if all of the elements have the same value. */
5559 x
= RTVEC_ELT (v
, nunits
- 1);
5560 for (i
= nunits
- 2; i
>= 0; i
--)
5561 if (RTVEC_ELT (v
, i
) != x
)
5564 /* If the values are all the same, check to see if we can use one of the
5565 standard constant vectors. */
5568 if (x
== CONST0_RTX (inner
))
5569 return CONST0_RTX (mode
);
5570 else if (x
== CONST1_RTX (inner
))
5571 return CONST1_RTX (mode
);
5572 else if (x
== CONSTM1_RTX (inner
))
5573 return CONSTM1_RTX (mode
);
5576 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5579 /* Initialise global register information required by all functions. */
5582 init_emit_regs (void)
5585 enum machine_mode mode
;
5588 /* Reset register attributes */
5589 htab_empty (reg_attrs_htab
);
5591 /* We need reg_raw_mode, so initialize the modes now. */
5592 init_reg_modes_target ();
5594 /* Assign register numbers to the globally defined register rtx. */
5595 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5596 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5597 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5598 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5599 virtual_incoming_args_rtx
=
5600 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5601 virtual_stack_vars_rtx
=
5602 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5603 virtual_stack_dynamic_rtx
=
5604 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5605 virtual_outgoing_args_rtx
=
5606 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5607 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5608 virtual_preferred_stack_boundary_rtx
=
5609 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5611 /* Initialize RTL for commonly used hard registers. These are
5612 copied into regno_reg_rtx as we begin to compile each function. */
5613 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5614 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5616 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5617 return_address_pointer_rtx
5618 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5621 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5622 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5624 pic_offset_table_rtx
= NULL_RTX
;
5626 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5628 mode
= (enum machine_mode
) i
;
5629 attrs
= ggc_alloc_cleared_mem_attrs ();
5630 attrs
->align
= BITS_PER_UNIT
;
5631 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5632 if (mode
!= BLKmode
)
5634 attrs
->size_known_p
= true;
5635 attrs
->size
= GET_MODE_SIZE (mode
);
5636 if (STRICT_ALIGNMENT
)
5637 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5639 mode_mem_attrs
[i
] = attrs
;
5643 /* Create some permanent unique rtl objects shared between all functions. */
5646 init_emit_once (void)
5649 enum machine_mode mode
;
5650 enum machine_mode double_mode
;
5652 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5654 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5655 const_int_htab_eq
, NULL
);
5657 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5658 const_double_htab_eq
, NULL
);
5660 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5661 const_fixed_htab_eq
, NULL
);
5663 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5664 mem_attrs_htab_eq
, NULL
);
5665 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5666 reg_attrs_htab_eq
, NULL
);
5668 /* Compute the word and byte modes. */
5670 byte_mode
= VOIDmode
;
5671 word_mode
= VOIDmode
;
5672 double_mode
= VOIDmode
;
5674 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5676 mode
= GET_MODE_WIDER_MODE (mode
))
5678 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5679 && byte_mode
== VOIDmode
)
5682 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5683 && word_mode
== VOIDmode
)
5687 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5689 mode
= GET_MODE_WIDER_MODE (mode
))
5691 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5692 && double_mode
== VOIDmode
)
5696 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5698 #ifdef INIT_EXPANDERS
5699 /* This is to initialize {init|mark|free}_machine_status before the first
5700 call to push_function_context_to. This is needed by the Chill front
5701 end which calls push_function_context_to before the first call to
5702 init_function_start. */
5706 /* Create the unique rtx's for certain rtx codes and operand values. */
5708 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5709 tries to use these variables. */
5710 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5711 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5712 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5714 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5715 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5716 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5718 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5720 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5721 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5722 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5727 dconsthalf
= dconst1
;
5728 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5730 for (i
= 0; i
< 3; i
++)
5732 const REAL_VALUE_TYPE
*const r
=
5733 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5735 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5737 mode
= GET_MODE_WIDER_MODE (mode
))
5738 const_tiny_rtx
[i
][(int) mode
] =
5739 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5741 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5743 mode
= GET_MODE_WIDER_MODE (mode
))
5744 const_tiny_rtx
[i
][(int) mode
] =
5745 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5747 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5749 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5751 mode
= GET_MODE_WIDER_MODE (mode
))
5752 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5754 for (mode
= MIN_MODE_PARTIAL_INT
;
5755 mode
<= MAX_MODE_PARTIAL_INT
;
5756 mode
= (enum machine_mode
)((int)(mode
) + 1))
5757 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5760 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5762 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5764 mode
= GET_MODE_WIDER_MODE (mode
))
5765 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5767 for (mode
= MIN_MODE_PARTIAL_INT
;
5768 mode
<= MAX_MODE_PARTIAL_INT
;
5769 mode
= (enum machine_mode
)((int)(mode
) + 1))
5770 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5772 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5774 mode
= GET_MODE_WIDER_MODE (mode
))
5776 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5777 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5780 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5782 mode
= GET_MODE_WIDER_MODE (mode
))
5784 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5785 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5788 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5790 mode
= GET_MODE_WIDER_MODE (mode
))
5792 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5793 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5794 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5797 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5799 mode
= GET_MODE_WIDER_MODE (mode
))
5801 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5802 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5805 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5807 mode
= GET_MODE_WIDER_MODE (mode
))
5809 FCONST0 (mode
).data
.high
= 0;
5810 FCONST0 (mode
).data
.low
= 0;
5811 FCONST0 (mode
).mode
= mode
;
5812 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5813 FCONST0 (mode
), mode
);
5816 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5818 mode
= GET_MODE_WIDER_MODE (mode
))
5820 FCONST0 (mode
).data
.high
= 0;
5821 FCONST0 (mode
).data
.low
= 0;
5822 FCONST0 (mode
).mode
= mode
;
5823 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5824 FCONST0 (mode
), mode
);
5827 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5829 mode
= GET_MODE_WIDER_MODE (mode
))
5831 FCONST0 (mode
).data
.high
= 0;
5832 FCONST0 (mode
).data
.low
= 0;
5833 FCONST0 (mode
).mode
= mode
;
5834 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5835 FCONST0 (mode
), mode
);
5837 /* We store the value 1. */
5838 FCONST1 (mode
).data
.high
= 0;
5839 FCONST1 (mode
).data
.low
= 0;
5840 FCONST1 (mode
).mode
= mode
;
5842 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5843 HOST_BITS_PER_DOUBLE_INT
,
5844 SIGNED_FIXED_POINT_MODE_P (mode
));
5845 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5846 FCONST1 (mode
), mode
);
5849 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5851 mode
= GET_MODE_WIDER_MODE (mode
))
5853 FCONST0 (mode
).data
.high
= 0;
5854 FCONST0 (mode
).data
.low
= 0;
5855 FCONST0 (mode
).mode
= mode
;
5856 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5857 FCONST0 (mode
), mode
);
5859 /* We store the value 1. */
5860 FCONST1 (mode
).data
.high
= 0;
5861 FCONST1 (mode
).data
.low
= 0;
5862 FCONST1 (mode
).mode
= mode
;
5864 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5865 HOST_BITS_PER_DOUBLE_INT
,
5866 SIGNED_FIXED_POINT_MODE_P (mode
));
5867 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5868 FCONST1 (mode
), mode
);
5871 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5873 mode
= GET_MODE_WIDER_MODE (mode
))
5875 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5878 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5880 mode
= GET_MODE_WIDER_MODE (mode
))
5882 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5885 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5887 mode
= GET_MODE_WIDER_MODE (mode
))
5889 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5890 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5893 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5895 mode
= GET_MODE_WIDER_MODE (mode
))
5897 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5898 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5901 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5902 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5903 const_tiny_rtx
[0][i
] = const0_rtx
;
5905 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5906 if (STORE_FLAG_VALUE
== 1)
5907 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5909 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5910 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5911 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5912 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5915 /* Produce exact duplicate of insn INSN after AFTER.
5916 Care updating of libcall regions if present. */
5919 emit_copy_of_insn_after (rtx insn
, rtx after
)
5923 switch (GET_CODE (insn
))
5926 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5930 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5934 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5938 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5939 if (CALL_INSN_FUNCTION_USAGE (insn
))
5940 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5941 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5942 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5943 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5944 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5945 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5946 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5953 /* Update LABEL_NUSES. */
5954 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5956 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5958 /* If the old insn is frame related, then so is the new one. This is
5959 primarily needed for IA-64 unwind info which marks epilogue insns,
5960 which may be duplicated by the basic block reordering code. */
5961 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5963 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5964 will make them. REG_LABEL_TARGETs are created there too, but are
5965 supposed to be sticky, so we copy them. */
5966 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5967 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5969 if (GET_CODE (link
) == EXPR_LIST
)
5970 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5971 copy_insn_1 (XEXP (link
, 0)));
5973 add_shallow_copy_of_reg_note (new_rtx
, link
);
5976 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5980 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5982 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5984 if (hard_reg_clobbers
[mode
][regno
])
5985 return hard_reg_clobbers
[mode
][regno
];
5987 return (hard_reg_clobbers
[mode
][regno
] =
5988 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5991 location_t prologue_location
;
5992 location_t epilogue_location
;
5994 /* Hold current location information and last location information, so the
5995 datastructures are built lazily only when some instructions in given
5996 place are needed. */
5997 static location_t curr_location
;
5999 /* Allocate insn location datastructure. */
6001 insn_locations_init (void)
6003 prologue_location
= epilogue_location
= 0;
6004 curr_location
= UNKNOWN_LOCATION
;
6007 /* At the end of emit stage, clear current location. */
6009 insn_locations_finalize (void)
6011 epilogue_location
= curr_location
;
6012 curr_location
= UNKNOWN_LOCATION
;
6015 /* Set current location. */
6017 set_curr_insn_location (location_t location
)
6019 curr_location
= location
;
6022 /* Get current location. */
6024 curr_insn_location (void)
6026 return curr_location
;
6029 /* Return lexical scope block insn belongs to. */
6031 insn_scope (const_rtx insn
)
6033 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6036 /* Return line number of the statement that produced this insn. */
6038 insn_line (const_rtx insn
)
6040 return LOCATION_LINE (INSN_LOCATION (insn
));
6043 /* Return source file of the statement that produced this insn. */
6045 insn_file (const_rtx insn
)
6047 return LOCATION_FILE (INSN_LOCATION (insn
));
6050 /* Return true if memory model MODEL requires a pre-operation (release-style)
6051 barrier or a post-operation (acquire-style) barrier. While not universal,
6052 this function matches behavior of several targets. */
6055 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6057 switch (model
& MEMMODEL_MASK
)
6059 case MEMMODEL_RELAXED
:
6060 case MEMMODEL_CONSUME
:
6062 case MEMMODEL_RELEASE
:
6064 case MEMMODEL_ACQUIRE
:
6066 case MEMMODEL_ACQ_REL
:
6067 case MEMMODEL_SEQ_CST
:
6074 #include "gt-emit-rtl.h"