In libobjc/: 2011-05-24 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blob7619d74b910fd72db0b8ac410aadbffb4beab6c7
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
41 /*************************************************************************
42 Simple Loop Peeling Utilities
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
48 /* Renames the use *OP_P. */
50 static void
51 rename_use_op (use_operand_p op_p)
53 tree new_name;
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
58 new_name = get_current_def (USE_FROM_PTR (op_p));
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
64 /* An ordinary ssa name defined in the loop. */
66 SET_USE (op_p, new_name);
70 /* Renames the variables in basic block BB. */
72 void
73 rename_variables_in_bb (basic_block bb)
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
90 FOR_EACH_EDGE (e, ei, bb->succs)
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
100 /* Renames variables in new generated LOOP. */
102 void
103 rename_variables_in_loop (struct loop *loop)
105 unsigned i;
106 basic_block *bbs;
108 bbs = get_loop_body (loop);
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
113 free (bbs);
116 typedef struct
118 tree from, to;
119 basic_block bb;
120 } adjust_info;
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
132 static VEC(adjust_info, stack) *adjust_vec;
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
154 use_operand_p use_p;
155 basic_block bbuse;
157 if (!is_gimple_debug (stmt))
158 continue;
160 gcc_assert (gimple_debug_bind_p (stmt));
162 bbuse = gimple_bb (stmt);
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
181 /* Adjust debug stmts as scheduled before. */
183 static void
184 adjust_vec_debug_stmts (void)
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
189 gcc_assert (adjust_vec);
191 while (!VEC_empty (adjust_info, adjust_vec))
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
197 VEC_free (adjust_info, stack, adjust_vec);
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
205 static void
206 adjust_debug_stmts (tree from, tree to, basic_block bb)
208 adjust_info ai;
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
242 /* Update the PHI nodes of NEW_LOOP.
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
272 step 3. Update the phis in the successor block of NEW_LOOP.
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
327 /* step 3 (case 1). */
328 if (!after)
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
337 /* Update PHI nodes for a guard of the LOOP.
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
392 There are two flavors to this function:
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
404 I.E., the overall structure is:
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
464 /* Function slpeel_update_phi_nodes_for_guard1
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
471 In the context of the overall structure, we have:
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
504 gimple_stmt_iterator gsi_orig, gsi_update;
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
516 source_location loop_locus, guard_locus;;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
520 /** 1. Handle new-merge-point phis **/
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
547 /** 2. Handle loop-closed-ssa-form phis **/
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
594 /* Function slpeel_update_phi_nodes_for_guard2
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
599 In the context of the overall structure, we have:
601 loop1_preheader_bb:
602 guard1 (goto loop1/merge1_bb)
603 loop1
604 loop1_exit_bb:
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607 LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
620 static void
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
653 /** 1. Handle new-merge-point phis **/
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
673 if (is_new_loop)
675 guard_arg = orig_def;
676 loop_arg = new_name;
678 else
680 guard_arg = new_name;
681 loop_arg = orig_def;
683 if (new_name2)
684 guard_arg = new_name2;
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
695 /** 2. Handle loop-closed-ssa-form phis **/
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
802 loop->nb_iterations = niters;
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
826 bbs = get_loop_body (loop);
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
831 free (bbs);
832 return NULL;
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
839 free (bbs);
840 return NULL;
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
863 edge new_loop_exit_edge;
864 source_location locus;
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
876 if (at_exit) /* Add the loop copy at exit. */
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
884 else /* Add the copy at entry. */
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
919 free (new_bbs);
920 free (bbs);
922 return new_loop;
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
965 /* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
973 bool
974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
981 if (need_ssa_update_p (cfun))
982 return false;
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
996 return true;
999 #ifdef ENABLE_CHECKING
1000 static void
1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1031 #endif
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1038 static void
1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 tree first_niters,
1041 struct loop *loop,
1042 unsigned int th)
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
1053 tree scalar_loop_iters =
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1073 cost_pre_condition =
1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
1093 prologue_after_cost_adjust_name =
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1100 newphi = create_phi_node (var, bb_before_first_loop);
1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 UNKNOWN_LOCATION);
1103 add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
1105 first_niters = PHI_RESULT (newphi);
1109 /* Remove dead assignments from loop NEW_LOOP. */
1111 static void
1112 remove_dead_stmts_from_loop (struct loop *new_loop)
1114 basic_block *bbs = get_loop_body (new_loop);
1115 unsigned i;
1116 for (i = 0; i < new_loop->num_nodes; ++i)
1118 gimple_stmt_iterator gsi;
1119 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1121 gimple stmt = gsi_stmt (gsi);
1122 if (is_gimple_assign (stmt)
1123 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
1124 && has_zero_uses (gimple_assign_lhs (stmt)))
1126 gsi_remove (&gsi, true);
1127 release_defs (stmt);
1129 else
1130 gsi_next (&gsi);
1133 free (bbs);
1137 /* Function slpeel_tree_peel_loop_to_edge.
1139 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1140 that is placed on the entry (exit) edge E of LOOP. After this transformation
1141 we have two loops one after the other - first-loop iterates FIRST_NITERS
1142 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1143 If the cost model indicates that it is profitable to emit a scalar
1144 loop instead of the vector one, then the prolog (epilog) loop will iterate
1145 for the entire unchanged scalar iterations of the loop.
1147 Input:
1148 - LOOP: the loop to be peeled.
1149 - E: the exit or entry edge of LOOP.
1150 If it is the entry edge, we peel the first iterations of LOOP. In this
1151 case first-loop is LOOP, and second-loop is the newly created loop.
1152 If it is the exit edge, we peel the last iterations of LOOP. In this
1153 case, first-loop is the newly created loop, and second-loop is LOOP.
1154 - NITERS: the number of iterations that LOOP iterates.
1155 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1156 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1157 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1158 is false, the caller of this function may want to take care of this
1159 (this can be useful if we don't want new stmts added to first-loop).
1160 - TH: cost model profitability threshold of iterations for vectorization.
1161 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1162 during versioning and hence needs to occur during
1163 prologue generation or whether cost model check
1164 has not occurred during prologue generation and hence
1165 needs to occur during epilogue generation.
1168 Output:
1169 The function returns a pointer to the new loop-copy, or NULL if it failed
1170 to perform the transformation.
1172 The function generates two if-then-else guards: one before the first loop,
1173 and the other before the second loop:
1174 The first guard is:
1175 if (FIRST_NITERS == 0) then skip the first loop,
1176 and go directly to the second loop.
1177 The second guard is:
1178 if (FIRST_NITERS == NITERS) then skip the second loop.
1180 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1181 then the generated condition is combined with COND_EXPR and the
1182 statements in COND_EXPR_STMT_LIST are emitted together with it.
1184 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1185 FORNOW the resulting code will not be in loop-closed-ssa form.
1188 static struct loop*
1189 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1190 edge e, tree first_niters,
1191 tree niters, bool update_first_loop_count,
1192 unsigned int th, bool check_profitability,
1193 tree cond_expr, gimple_seq cond_expr_stmt_list)
1195 struct loop *new_loop = NULL, *first_loop, *second_loop;
1196 edge skip_e;
1197 tree pre_condition = NULL_TREE;
1198 bitmap definitions;
1199 basic_block bb_before_second_loop, bb_after_second_loop;
1200 basic_block bb_before_first_loop;
1201 basic_block bb_between_loops;
1202 basic_block new_exit_bb;
1203 edge exit_e = single_exit (loop);
1204 LOC loop_loc;
1205 tree cost_pre_condition = NULL_TREE;
1207 if (!slpeel_can_duplicate_loop_p (loop, e))
1208 return NULL;
1210 /* We have to initialize cfg_hooks. Then, when calling
1211 cfg_hooks->split_edge, the function tree_split_edge
1212 is actually called and, when calling cfg_hooks->duplicate_block,
1213 the function tree_duplicate_bb is called. */
1214 gimple_register_cfg_hooks ();
1217 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1218 Resulting CFG would be:
1220 first_loop:
1221 do {
1222 } while ...
1224 second_loop:
1225 do {
1226 } while ...
1228 orig_exit_bb:
1231 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1233 loop_loc = find_loop_location (loop);
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1236 if (loop_loc != UNKNOWN_LOC)
1237 fprintf (dump_file, "\n%s:%d: note: ",
1238 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1239 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1241 return NULL;
1244 if (MAY_HAVE_DEBUG_STMTS)
1246 gcc_assert (!adjust_vec);
1247 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1250 if (e == exit_e)
1252 /* NEW_LOOP was placed after LOOP. */
1253 first_loop = loop;
1254 second_loop = new_loop;
1256 else
1258 /* NEW_LOOP was placed before LOOP. */
1259 first_loop = new_loop;
1260 second_loop = loop;
1263 definitions = ssa_names_to_replace ();
1264 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1265 rename_variables_in_loop (new_loop);
1268 /* 2. Add the guard code in one of the following ways:
1270 2.a Add the guard that controls whether the first loop is executed.
1271 This occurs when this function is invoked for prologue or epilogue
1272 generation and when the cost model check can be done at compile time.
1274 Resulting CFG would be:
1276 bb_before_first_loop:
1277 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1278 GOTO first-loop
1280 first_loop:
1281 do {
1282 } while ...
1284 bb_before_second_loop:
1286 second_loop:
1287 do {
1288 } while ...
1290 orig_exit_bb:
1292 2.b Add the cost model check that allows the prologue
1293 to iterate for the entire unchanged scalar
1294 iterations of the loop in the event that the cost
1295 model indicates that the scalar loop is more
1296 profitable than the vector one. This occurs when
1297 this function is invoked for prologue generation
1298 and the cost model check needs to be done at run
1299 time.
1301 Resulting CFG after prologue peeling would be:
1303 if (scalar_loop_iterations <= th)
1304 FIRST_NITERS = scalar_loop_iterations
1306 bb_before_first_loop:
1307 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1308 GOTO first-loop
1310 first_loop:
1311 do {
1312 } while ...
1314 bb_before_second_loop:
1316 second_loop:
1317 do {
1318 } while ...
1320 orig_exit_bb:
1322 2.c Add the cost model check that allows the epilogue
1323 to iterate for the entire unchanged scalar
1324 iterations of the loop in the event that the cost
1325 model indicates that the scalar loop is more
1326 profitable than the vector one. This occurs when
1327 this function is invoked for epilogue generation
1328 and the cost model check needs to be done at run
1329 time. This check is combined with any pre-existing
1330 check in COND_EXPR to avoid versioning.
1332 Resulting CFG after prologue peeling would be:
1334 bb_before_first_loop:
1335 if ((scalar_loop_iterations <= th)
1337 FIRST_NITERS == 0) GOTO bb_before_second_loop
1338 GOTO first-loop
1340 first_loop:
1341 do {
1342 } while ...
1344 bb_before_second_loop:
1346 second_loop:
1347 do {
1348 } while ...
1350 orig_exit_bb:
1353 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1354 bb_before_second_loop = split_edge (single_exit (first_loop));
1356 /* Epilogue peeling. */
1357 if (!update_first_loop_count)
1359 pre_condition =
1360 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1361 build_int_cst (TREE_TYPE (first_niters), 0));
1362 if (check_profitability)
1364 tree scalar_loop_iters
1365 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1366 (loop_vec_info_for_loop (loop)));
1367 cost_pre_condition =
1368 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1369 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1371 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1372 cost_pre_condition, pre_condition);
1374 if (cond_expr)
1376 pre_condition =
1377 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1378 pre_condition,
1379 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1380 cond_expr));
1384 /* Prologue peeling. */
1385 else
1387 if (check_profitability)
1388 set_prologue_iterations (bb_before_first_loop, first_niters,
1389 loop, th);
1391 pre_condition =
1392 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1393 build_int_cst (TREE_TYPE (first_niters), 0));
1396 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1397 cond_expr_stmt_list,
1398 bb_before_second_loop, bb_before_first_loop);
1399 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1400 first_loop == new_loop,
1401 &new_exit_bb, &definitions);
1404 /* 3. Add the guard that controls whether the second loop is executed.
1405 Resulting CFG would be:
1407 bb_before_first_loop:
1408 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1409 GOTO first-loop
1411 first_loop:
1412 do {
1413 } while ...
1415 bb_between_loops:
1416 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1417 GOTO bb_before_second_loop
1419 bb_before_second_loop:
1421 second_loop:
1422 do {
1423 } while ...
1425 bb_after_second_loop:
1427 orig_exit_bb:
1430 bb_between_loops = new_exit_bb;
1431 bb_after_second_loop = split_edge (single_exit (second_loop));
1433 pre_condition =
1434 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1435 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1436 bb_after_second_loop, bb_before_first_loop);
1437 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1438 second_loop == new_loop, &new_exit_bb);
1440 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1442 if (update_first_loop_count)
1443 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1445 BITMAP_FREE (definitions);
1446 delete_update_ssa ();
1448 /* Remove all pattern statements from the loop copy. They will confuse
1449 the expander if DCE is disabled.
1450 ??? The pattern recognizer should be split into an analysis and
1451 a transformation phase that is then run only on the loop that is
1452 going to be transformed. */
1453 remove_dead_stmts_from_loop (new_loop);
1455 adjust_vec_debug_stmts ();
1457 return new_loop;
1460 /* Function vect_get_loop_location.
1462 Extract the location of the loop in the source code.
1463 If the loop is not well formed for vectorization, an estimated
1464 location is calculated.
1465 Return the loop location if succeed and NULL if not. */
1468 find_loop_location (struct loop *loop)
1470 gimple stmt = NULL;
1471 basic_block bb;
1472 gimple_stmt_iterator si;
1474 if (!loop)
1475 return UNKNOWN_LOC;
1477 stmt = get_loop_exit_condition (loop);
1479 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1480 return gimple_location (stmt);
1482 /* If we got here the loop is probably not "well formed",
1483 try to estimate the loop location */
1485 if (!loop->header)
1486 return UNKNOWN_LOC;
1488 bb = loop->header;
1490 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1492 stmt = gsi_stmt (si);
1493 if (gimple_location (stmt) != UNKNOWN_LOC)
1494 return gimple_location (stmt);
1497 return UNKNOWN_LOC;
1501 /* This function builds ni_name = number of iterations loop executes
1502 on the loop preheader. If SEQ is given the stmt is instead emitted
1503 there. */
1505 static tree
1506 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1508 tree ni_name, var;
1509 gimple_seq stmts = NULL;
1510 edge pe;
1511 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1512 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1514 var = create_tmp_var (TREE_TYPE (ni), "niters");
1515 add_referenced_var (var);
1516 ni_name = force_gimple_operand (ni, &stmts, false, var);
1518 pe = loop_preheader_edge (loop);
1519 if (stmts)
1521 if (seq)
1522 gimple_seq_add_seq (&seq, stmts);
1523 else
1525 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1526 gcc_assert (!new_bb);
1530 return ni_name;
1534 /* This function generates the following statements:
1536 ni_name = number of iterations loop executes
1537 ratio = ni_name / vf
1538 ratio_mult_vf_name = ratio * vf
1540 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1541 if that is non-NULL. */
1543 static void
1544 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1545 tree *ni_name_ptr,
1546 tree *ratio_mult_vf_name_ptr,
1547 tree *ratio_name_ptr,
1548 gimple_seq cond_expr_stmt_list)
1551 edge pe;
1552 basic_block new_bb;
1553 gimple_seq stmts;
1554 tree ni_name;
1555 tree var;
1556 tree ratio_name;
1557 tree ratio_mult_vf_name;
1558 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1559 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1560 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1561 tree log_vf;
1563 pe = loop_preheader_edge (loop);
1565 /* Generate temporary variable that contains
1566 number of iterations loop executes. */
1568 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1569 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1571 /* Create: ratio = ni >> log2(vf) */
1573 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf);
1574 if (!is_gimple_val (ratio_name))
1576 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1577 add_referenced_var (var);
1579 stmts = NULL;
1580 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1581 if (cond_expr_stmt_list)
1582 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1583 else
1585 pe = loop_preheader_edge (loop);
1586 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1587 gcc_assert (!new_bb);
1591 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1593 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1594 ratio_name, log_vf);
1595 if (!is_gimple_val (ratio_mult_vf_name))
1597 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1598 add_referenced_var (var);
1600 stmts = NULL;
1601 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1602 true, var);
1603 if (cond_expr_stmt_list)
1604 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1605 else
1607 pe = loop_preheader_edge (loop);
1608 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1609 gcc_assert (!new_bb);
1613 *ni_name_ptr = ni_name;
1614 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1615 *ratio_name_ptr = ratio_name;
1617 return;
1620 /* Function vect_can_advance_ivs_p
1622 In case the number of iterations that LOOP iterates is unknown at compile
1623 time, an epilog loop will be generated, and the loop induction variables
1624 (IVs) will be "advanced" to the value they are supposed to take just before
1625 the epilog loop. Here we check that the access function of the loop IVs
1626 and the expression that represents the loop bound are simple enough.
1627 These restrictions will be relaxed in the future. */
1629 bool
1630 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1632 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1633 basic_block bb = loop->header;
1634 gimple phi;
1635 gimple_stmt_iterator gsi;
1637 /* Analyze phi functions of the loop header. */
1639 if (vect_print_dump_info (REPORT_DETAILS))
1640 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1642 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1644 tree access_fn = NULL;
1645 tree evolution_part;
1647 phi = gsi_stmt (gsi);
1648 if (vect_print_dump_info (REPORT_DETAILS))
1650 fprintf (vect_dump, "Analyze phi: ");
1651 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1654 /* Skip virtual phi's. The data dependences that are associated with
1655 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1657 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1659 if (vect_print_dump_info (REPORT_DETAILS))
1660 fprintf (vect_dump, "virtual phi. skip.");
1661 continue;
1664 /* Skip reduction phis. */
1666 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1668 if (vect_print_dump_info (REPORT_DETAILS))
1669 fprintf (vect_dump, "reduc phi. skip.");
1670 continue;
1673 /* Analyze the evolution function. */
1675 access_fn = instantiate_parameters
1676 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1678 if (!access_fn)
1680 if (vect_print_dump_info (REPORT_DETAILS))
1681 fprintf (vect_dump, "No Access function.");
1682 return false;
1685 if (vect_print_dump_info (REPORT_DETAILS))
1687 fprintf (vect_dump, "Access function of PHI: ");
1688 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1691 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1693 if (evolution_part == NULL_TREE)
1695 if (vect_print_dump_info (REPORT_DETAILS))
1696 fprintf (vect_dump, "No evolution.");
1697 return false;
1700 /* FORNOW: We do not transform initial conditions of IVs
1701 which evolution functions are a polynomial of degree >= 2. */
1703 if (tree_is_chrec (evolution_part))
1704 return false;
1707 return true;
1711 /* Function vect_update_ivs_after_vectorizer.
1713 "Advance" the induction variables of LOOP to the value they should take
1714 after the execution of LOOP. This is currently necessary because the
1715 vectorizer does not handle induction variables that are used after the
1716 loop. Such a situation occurs when the last iterations of LOOP are
1717 peeled, because:
1718 1. We introduced new uses after LOOP for IVs that were not originally used
1719 after LOOP: the IVs of LOOP are now used by an epilog loop.
1720 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1721 times, whereas the loop IVs should be bumped N times.
1723 Input:
1724 - LOOP - a loop that is going to be vectorized. The last few iterations
1725 of LOOP were peeled.
1726 - NITERS - the number of iterations that LOOP executes (before it is
1727 vectorized). i.e, the number of times the ivs should be bumped.
1728 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1729 coming out from LOOP on which there are uses of the LOOP ivs
1730 (this is the path from LOOP->exit to epilog_loop->preheader).
1732 The new definitions of the ivs are placed in LOOP->exit.
1733 The phi args associated with the edge UPDATE_E in the bb
1734 UPDATE_E->dest are updated accordingly.
1736 Assumption 1: Like the rest of the vectorizer, this function assumes
1737 a single loop exit that has a single predecessor.
1739 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1740 organized in the same order.
1742 Assumption 3: The access function of the ivs is simple enough (see
1743 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1745 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1746 coming out of LOOP on which the ivs of LOOP are used (this is the path
1747 that leads to the epilog loop; other paths skip the epilog loop). This
1748 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1749 needs to have its phis updated.
1752 static void
1753 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1754 edge update_e)
1756 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1757 basic_block exit_bb = single_exit (loop)->dest;
1758 gimple phi, phi1;
1759 gimple_stmt_iterator gsi, gsi1;
1760 basic_block update_bb = update_e->dest;
1762 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1764 /* Make sure there exists a single-predecessor exit bb: */
1765 gcc_assert (single_pred_p (exit_bb));
1767 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1768 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1769 gsi_next (&gsi), gsi_next (&gsi1))
1771 tree access_fn = NULL;
1772 tree evolution_part;
1773 tree init_expr;
1774 tree step_expr, off;
1775 tree type;
1776 tree var, ni, ni_name;
1777 gimple_stmt_iterator last_gsi;
1779 phi = gsi_stmt (gsi);
1780 phi1 = gsi_stmt (gsi1);
1781 if (vect_print_dump_info (REPORT_DETAILS))
1783 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1784 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1787 /* Skip virtual phi's. */
1788 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1790 if (vect_print_dump_info (REPORT_DETAILS))
1791 fprintf (vect_dump, "virtual phi. skip.");
1792 continue;
1795 /* Skip reduction phis. */
1796 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1798 if (vect_print_dump_info (REPORT_DETAILS))
1799 fprintf (vect_dump, "reduc phi. skip.");
1800 continue;
1803 access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1804 gcc_assert (access_fn);
1805 /* We can end up with an access_fn like
1806 (short int) {(short unsigned int) i_49, +, 1}_1
1807 for further analysis we need to strip the outer cast but we
1808 need to preserve the original type. */
1809 type = TREE_TYPE (access_fn);
1810 STRIP_NOPS (access_fn);
1811 evolution_part =
1812 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1813 gcc_assert (evolution_part != NULL_TREE);
1815 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1816 of degree >= 2 or exponential. */
1817 gcc_assert (!tree_is_chrec (evolution_part));
1819 step_expr = evolution_part;
1820 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1821 loop->num));
1822 init_expr = fold_convert (type, init_expr);
1824 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1825 fold_convert (TREE_TYPE (step_expr), niters),
1826 step_expr);
1827 if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1828 ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
1829 init_expr,
1830 fold_convert (sizetype, off));
1831 else
1832 ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1833 init_expr,
1834 fold_convert (TREE_TYPE (init_expr), off));
1836 var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1837 add_referenced_var (var);
1839 last_gsi = gsi_last_bb (exit_bb);
1840 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1841 true, GSI_SAME_STMT);
1843 /* Fix phi expressions in the successor bb. */
1844 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1848 /* Return the more conservative threshold between the
1849 min_profitable_iters returned by the cost model and the user
1850 specified threshold, if provided. */
1852 static unsigned int
1853 conservative_cost_threshold (loop_vec_info loop_vinfo,
1854 int min_profitable_iters)
1856 unsigned int th;
1857 int min_scalar_loop_bound;
1859 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1860 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1862 /* Use the cost model only if it is more conservative than user specified
1863 threshold. */
1864 th = (unsigned) min_scalar_loop_bound;
1865 if (min_profitable_iters
1866 && (!min_scalar_loop_bound
1867 || min_profitable_iters > min_scalar_loop_bound))
1868 th = (unsigned) min_profitable_iters;
1870 if (th && vect_print_dump_info (REPORT_COST))
1871 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1873 return th;
1876 /* Function vect_do_peeling_for_loop_bound
1878 Peel the last iterations of the loop represented by LOOP_VINFO.
1879 The peeled iterations form a new epilog loop. Given that the loop now
1880 iterates NITERS times, the new epilog loop iterates
1881 NITERS % VECTORIZATION_FACTOR times.
1883 The original loop will later be made to iterate
1884 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1886 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1887 test. */
1889 void
1890 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1891 tree cond_expr, gimple_seq cond_expr_stmt_list)
1893 tree ni_name, ratio_mult_vf_name;
1894 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1895 struct loop *new_loop;
1896 edge update_e;
1897 basic_block preheader;
1898 int loop_num;
1899 bool check_profitability = false;
1900 unsigned int th = 0;
1901 int min_profitable_iters;
1903 if (vect_print_dump_info (REPORT_DETAILS))
1904 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1906 initialize_original_copy_tables ();
1908 /* Generate the following variables on the preheader of original loop:
1910 ni_name = number of iteration the original loop executes
1911 ratio = ni_name / vf
1912 ratio_mult_vf_name = ratio * vf */
1913 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1914 &ratio_mult_vf_name, ratio,
1915 cond_expr_stmt_list);
1917 loop_num = loop->num;
1919 /* If cost model check not done during versioning and
1920 peeling for alignment. */
1921 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1922 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1923 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1924 && !cond_expr)
1926 check_profitability = true;
1928 /* Get profitability threshold for vectorized loop. */
1929 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1931 th = conservative_cost_threshold (loop_vinfo,
1932 min_profitable_iters);
1935 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1936 ratio_mult_vf_name, ni_name, false,
1937 th, check_profitability,
1938 cond_expr, cond_expr_stmt_list);
1939 gcc_assert (new_loop);
1940 gcc_assert (loop_num == loop->num);
1941 #ifdef ENABLE_CHECKING
1942 slpeel_verify_cfg_after_peeling (loop, new_loop);
1943 #endif
1945 /* A guard that controls whether the new_loop is to be executed or skipped
1946 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1947 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1948 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1949 is on the path where the LOOP IVs are used and need to be updated. */
1951 preheader = loop_preheader_edge (new_loop)->src;
1952 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1953 update_e = EDGE_PRED (preheader, 0);
1954 else
1955 update_e = EDGE_PRED (preheader, 1);
1957 /* Update IVs of original loop as if they were advanced
1958 by ratio_mult_vf_name steps. */
1959 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1961 /* After peeling we have to reset scalar evolution analyzer. */
1962 scev_reset ();
1964 free_original_copy_tables ();
1968 /* Function vect_gen_niters_for_prolog_loop
1970 Set the number of iterations for the loop represented by LOOP_VINFO
1971 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1972 and the misalignment of DR - the data reference recorded in
1973 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1974 this loop, the data reference DR will refer to an aligned location.
1976 The following computation is generated:
1978 If the misalignment of DR is known at compile time:
1979 addr_mis = int mis = DR_MISALIGNMENT (dr);
1980 Else, compute address misalignment in bytes:
1981 addr_mis = addr & (vectype_size - 1)
1983 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1985 (elem_size = element type size; an element is the scalar element whose type
1986 is the inner type of the vectype)
1988 When the step of the data-ref in the loop is not 1 (as in interleaved data
1989 and SLP), the number of iterations of the prolog must be divided by the step
1990 (which is equal to the size of interleaved group).
1992 The above formulas assume that VF == number of elements in the vector. This
1993 may not hold when there are multiple-types in the loop.
1994 In this case, for some data-references in the loop the VF does not represent
1995 the number of elements that fit in the vector. Therefore, instead of VF we
1996 use TYPE_VECTOR_SUBPARTS. */
1998 static tree
1999 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters,
2000 tree *wide_prolog_niters)
2002 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2003 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2004 tree var;
2005 gimple_seq stmts;
2006 tree iters, iters_name;
2007 edge pe;
2008 basic_block new_bb;
2009 gimple dr_stmt = DR_STMT (dr);
2010 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2011 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2012 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2013 tree niters_type = TREE_TYPE (loop_niters);
2014 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2016 pe = loop_preheader_edge (loop);
2018 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2020 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2022 if (vect_print_dump_info (REPORT_DETAILS))
2023 fprintf (vect_dump, "known peeling = %d.", npeel);
2025 iters = build_int_cst (niters_type, npeel);
2027 else
2029 gimple_seq new_stmts = NULL;
2030 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2031 tree offset = negative
2032 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2033 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2034 &new_stmts, offset, loop);
2035 tree ptr_type = TREE_TYPE (start_addr);
2036 tree size = TYPE_SIZE (ptr_type);
2037 tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
2038 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2039 tree elem_size_log =
2040 build_int_cst (type, exact_log2 (vectype_align/nelements));
2041 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2042 tree nelements_tree = build_int_cst (type, nelements);
2043 tree byte_misalign;
2044 tree elem_misalign;
2046 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2047 gcc_assert (!new_bb);
2049 /* Create: byte_misalign = addr & (vectype_size - 1) */
2050 byte_misalign =
2051 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2052 vectype_size_minus_1);
2054 /* Create: elem_misalign = byte_misalign / element_size */
2055 elem_misalign =
2056 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2058 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2059 if (negative)
2060 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2061 else
2062 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2063 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2064 iters = fold_convert (niters_type, iters);
2067 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2068 /* If the loop bound is known at compile time we already verified that it is
2069 greater than vf; since the misalignment ('iters') is at most vf, there's
2070 no need to generate the MIN_EXPR in this case. */
2071 if (TREE_CODE (loop_niters) != INTEGER_CST)
2072 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2074 if (vect_print_dump_info (REPORT_DETAILS))
2076 fprintf (vect_dump, "niters for prolog loop: ");
2077 print_generic_expr (vect_dump, iters, TDF_SLIM);
2080 var = create_tmp_var (niters_type, "prolog_loop_niters");
2081 add_referenced_var (var);
2082 stmts = NULL;
2083 iters_name = force_gimple_operand (iters, &stmts, false, var);
2084 if (types_compatible_p (sizetype, niters_type))
2085 *wide_prolog_niters = iters_name;
2086 else
2088 gimple_seq seq = NULL;
2089 tree wide_iters = fold_convert (sizetype, iters);
2090 var = create_tmp_var (sizetype, "prolog_loop_niters");
2091 add_referenced_var (var);
2092 *wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2093 var);
2094 if (seq)
2095 gimple_seq_add_seq (&stmts, seq);
2098 /* Insert stmt on loop preheader edge. */
2099 if (stmts)
2101 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2102 gcc_assert (!new_bb);
2105 return iters_name;
2109 /* Function vect_update_init_of_dr
2111 NITERS iterations were peeled from LOOP. DR represents a data reference
2112 in LOOP. This function updates the information recorded in DR to
2113 account for the fact that the first NITERS iterations had already been
2114 executed. Specifically, it updates the OFFSET field of DR. */
2116 static void
2117 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2119 tree offset = DR_OFFSET (dr);
2121 niters = fold_build2 (MULT_EXPR, sizetype,
2122 fold_convert (sizetype, niters),
2123 fold_convert (sizetype, DR_STEP (dr)));
2124 offset = fold_build2 (PLUS_EXPR, sizetype,
2125 fold_convert (sizetype, offset), niters);
2126 DR_OFFSET (dr) = offset;
2130 /* Function vect_update_inits_of_drs
2132 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2133 This function updates the information recorded for the data references in
2134 the loop to account for the fact that the first NITERS iterations had
2135 already been executed. Specifically, it updates the initial_condition of
2136 the access_function of all the data_references in the loop. */
2138 static void
2139 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2141 unsigned int i;
2142 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2143 struct data_reference *dr;
2145 if (vect_print_dump_info (REPORT_DETAILS))
2146 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2148 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2149 vect_update_init_of_dr (dr, niters);
2153 /* Function vect_do_peeling_for_alignment
2155 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2156 'niters' is set to the misalignment of one of the data references in the
2157 loop, thereby forcing it to refer to an aligned location at the beginning
2158 of the execution of this loop. The data reference for which we are
2159 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2161 void
2162 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2164 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2165 tree niters_of_prolog_loop, ni_name;
2166 tree n_iters;
2167 tree wide_prolog_niters;
2168 struct loop *new_loop;
2169 unsigned int th = 0;
2170 int min_profitable_iters;
2172 if (vect_print_dump_info (REPORT_DETAILS))
2173 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2175 initialize_original_copy_tables ();
2177 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2178 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name,
2179 &wide_prolog_niters);
2182 /* Get profitability threshold for vectorized loop. */
2183 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2184 th = conservative_cost_threshold (loop_vinfo,
2185 min_profitable_iters);
2187 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2188 new_loop =
2189 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2190 niters_of_prolog_loop, ni_name, true,
2191 th, true, NULL_TREE, NULL);
2193 gcc_assert (new_loop);
2194 #ifdef ENABLE_CHECKING
2195 slpeel_verify_cfg_after_peeling (new_loop, loop);
2196 #endif
2198 /* Update number of times loop executes. */
2199 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2200 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2201 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2203 /* Update the init conditions of the access functions of all data refs. */
2204 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2206 /* After peeling we have to reset scalar evolution analyzer. */
2207 scev_reset ();
2209 free_original_copy_tables ();
2213 /* Function vect_create_cond_for_align_checks.
2215 Create a conditional expression that represents the alignment checks for
2216 all of data references (array element references) whose alignment must be
2217 checked at runtime.
2219 Input:
2220 COND_EXPR - input conditional expression. New conditions will be chained
2221 with logical AND operation.
2222 LOOP_VINFO - two fields of the loop information are used.
2223 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2224 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2226 Output:
2227 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2228 expression.
2229 The returned value is the conditional expression to be used in the if
2230 statement that controls which version of the loop gets executed at runtime.
2232 The algorithm makes two assumptions:
2233 1) The number of bytes "n" in a vector is a power of 2.
2234 2) An address "a" is aligned if a%n is zero and that this
2235 test can be done as a&(n-1) == 0. For example, for 16
2236 byte vectors the test is a&0xf == 0. */
2238 static void
2239 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2240 tree *cond_expr,
2241 gimple_seq *cond_expr_stmt_list)
2243 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2244 VEC(gimple,heap) *may_misalign_stmts
2245 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2246 gimple ref_stmt;
2247 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2248 tree mask_cst;
2249 unsigned int i;
2250 tree psize;
2251 tree int_ptrsize_type;
2252 char tmp_name[20];
2253 tree or_tmp_name = NULL_TREE;
2254 tree and_tmp, and_tmp_name;
2255 gimple and_stmt;
2256 tree ptrsize_zero;
2257 tree part_cond_expr;
2259 /* Check that mask is one less than a power of 2, i.e., mask is
2260 all zeros followed by all ones. */
2261 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2263 /* CHECKME: what is the best integer or unsigned type to use to hold a
2264 cast from a pointer value? */
2265 psize = TYPE_SIZE (ptr_type_node);
2266 int_ptrsize_type
2267 = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2269 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2270 of the first vector of the i'th data reference. */
2272 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2274 gimple_seq new_stmt_list = NULL;
2275 tree addr_base;
2276 tree addr_tmp, addr_tmp_name;
2277 tree or_tmp, new_or_tmp_name;
2278 gimple addr_stmt, or_stmt;
2279 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2280 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2281 bool negative = tree_int_cst_compare
2282 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2283 tree offset = negative
2284 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2286 /* create: addr_tmp = (int)(address_of_first_vector) */
2287 addr_base =
2288 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2289 offset, loop);
2290 if (new_stmt_list != NULL)
2291 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2293 sprintf (tmp_name, "%s%d", "addr2int", i);
2294 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2295 add_referenced_var (addr_tmp);
2296 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2297 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2298 addr_base, NULL_TREE);
2299 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2300 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2302 /* The addresses are OR together. */
2304 if (or_tmp_name != NULL_TREE)
2306 /* create: or_tmp = or_tmp | addr_tmp */
2307 sprintf (tmp_name, "%s%d", "orptrs", i);
2308 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2309 add_referenced_var (or_tmp);
2310 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2311 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2312 new_or_tmp_name,
2313 or_tmp_name, addr_tmp_name);
2314 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2315 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2316 or_tmp_name = new_or_tmp_name;
2318 else
2319 or_tmp_name = addr_tmp_name;
2321 } /* end for i */
2323 mask_cst = build_int_cst (int_ptrsize_type, mask);
2325 /* create: and_tmp = or_tmp & mask */
2326 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2327 add_referenced_var (and_tmp);
2328 and_tmp_name = make_ssa_name (and_tmp, NULL);
2330 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2331 or_tmp_name, mask_cst);
2332 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2333 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2335 /* Make and_tmp the left operand of the conditional test against zero.
2336 if and_tmp has a nonzero bit then some address is unaligned. */
2337 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2338 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2339 and_tmp_name, ptrsize_zero);
2340 if (*cond_expr)
2341 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2342 *cond_expr, part_cond_expr);
2343 else
2344 *cond_expr = part_cond_expr;
2348 /* Function vect_vfa_segment_size.
2350 Create an expression that computes the size of segment
2351 that will be accessed for a data reference. The functions takes into
2352 account that realignment loads may access one more vector.
2354 Input:
2355 DR: The data reference.
2356 LENGTH_FACTOR: segment length to consider.
2358 Return an expression whose value is the size of segment which will be
2359 accessed by DR. */
2361 static tree
2362 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2364 tree segment_length;
2365 segment_length = size_binop (MULT_EXPR,
2366 fold_convert (sizetype, DR_STEP (dr)),
2367 fold_convert (sizetype, length_factor));
2368 if (vect_supportable_dr_alignment (dr, false)
2369 == dr_explicit_realign_optimized)
2371 tree vector_size = TYPE_SIZE_UNIT
2372 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2374 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2376 return segment_length;
2380 /* Function vect_create_cond_for_alias_checks.
2382 Create a conditional expression that represents the run-time checks for
2383 overlapping of address ranges represented by a list of data references
2384 relations passed as input.
2386 Input:
2387 COND_EXPR - input conditional expression. New conditions will be chained
2388 with logical AND operation.
2389 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2390 to be checked.
2392 Output:
2393 COND_EXPR - conditional expression.
2394 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2395 expression.
2398 The returned value is the conditional expression to be used in the if
2399 statement that controls which version of the loop gets executed at runtime.
2402 static void
2403 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2404 tree * cond_expr,
2405 gimple_seq * cond_expr_stmt_list)
2407 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2408 VEC (ddr_p, heap) * may_alias_ddrs =
2409 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2410 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2411 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2413 ddr_p ddr;
2414 unsigned int i;
2415 tree part_cond_expr, length_factor;
2417 /* Create expression
2418 ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
2419 || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
2423 ((store_ptr_n + store_segment_length_n) < load_ptr_n)
2424 || (load_ptr_n + load_segment_length_n) < store_ptr_n)) */
2426 if (VEC_empty (ddr_p, may_alias_ddrs))
2427 return;
2429 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2431 struct data_reference *dr_a, *dr_b;
2432 gimple dr_group_first_a, dr_group_first_b;
2433 tree addr_base_a, addr_base_b;
2434 tree segment_length_a, segment_length_b;
2435 gimple stmt_a, stmt_b;
2436 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2438 dr_a = DDR_A (ddr);
2439 stmt_a = DR_STMT (DDR_A (ddr));
2440 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2441 if (dr_group_first_a)
2443 stmt_a = dr_group_first_a;
2444 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2447 dr_b = DDR_B (ddr);
2448 stmt_b = DR_STMT (DDR_B (ddr));
2449 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2450 if (dr_group_first_b)
2452 stmt_b = dr_group_first_b;
2453 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2456 addr_base_a =
2457 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2458 NULL_TREE, loop);
2459 addr_base_b =
2460 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2461 NULL_TREE, loop);
2463 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2464 length_factor = scalar_loop_iters;
2465 else
2466 length_factor = size_int (vect_factor);
2467 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2468 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2470 if (vect_print_dump_info (REPORT_DR_DETAILS))
2472 fprintf (vect_dump,
2473 "create runtime check for data references ");
2474 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2475 fprintf (vect_dump, " and ");
2476 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2479 seg_a_min = addr_base_a;
2480 seg_a_max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
2481 addr_base_a, segment_length_a);
2482 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2483 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2485 seg_b_min = addr_base_b;
2486 seg_b_max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
2487 addr_base_b, segment_length_b);
2488 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2489 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2491 part_cond_expr =
2492 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2493 fold_build2 (LT_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2494 fold_build2 (LT_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2496 if (*cond_expr)
2497 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2498 *cond_expr, part_cond_expr);
2499 else
2500 *cond_expr = part_cond_expr;
2503 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2504 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2505 VEC_length (ddr_p, may_alias_ddrs));
2509 /* Function vect_loop_versioning.
2511 If the loop has data references that may or may not be aligned or/and
2512 has data reference relations whose independence was not proven then
2513 two versions of the loop need to be generated, one which is vectorized
2514 and one which isn't. A test is then generated to control which of the
2515 loops is executed. The test checks for the alignment of all of the
2516 data references that may or may not be aligned. An additional
2517 sequence of runtime tests is generated for each pairs of DDRs whose
2518 independence was not proven. The vectorized version of loop is
2519 executed only if both alias and alignment tests are passed.
2521 The test generated to check which version of loop is executed
2522 is modified to also check for profitability as indicated by the
2523 cost model initially.
2525 The versioning precondition(s) are placed in *COND_EXPR and
2526 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2527 also performed, otherwise only the conditions are generated. */
2529 void
2530 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2531 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2533 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2534 basic_block condition_bb;
2535 gimple_stmt_iterator gsi, cond_exp_gsi;
2536 basic_block merge_bb;
2537 basic_block new_exit_bb;
2538 edge new_exit_e, e;
2539 gimple orig_phi, new_phi;
2540 tree arg;
2541 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2542 gimple_seq gimplify_stmt_list = NULL;
2543 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2544 int min_profitable_iters = 0;
2545 unsigned int th;
2547 /* Get profitability threshold for vectorized loop. */
2548 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2550 th = conservative_cost_threshold (loop_vinfo,
2551 min_profitable_iters);
2553 *cond_expr =
2554 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2555 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2557 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2558 false, NULL_TREE);
2560 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2561 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2562 cond_expr_stmt_list);
2564 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2565 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2566 cond_expr_stmt_list);
2568 *cond_expr =
2569 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2570 *cond_expr =
2571 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2572 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2574 /* If we only needed the extra conditions and a new loop copy
2575 bail out here. */
2576 if (!do_versioning)
2577 return;
2579 initialize_original_copy_tables ();
2580 loop_version (loop, *cond_expr, &condition_bb,
2581 prob, prob, REG_BR_PROB_BASE - prob, true);
2582 free_original_copy_tables();
2584 /* Loop versioning violates an assumption we try to maintain during
2585 vectorization - that the loop exit block has a single predecessor.
2586 After versioning, the exit block of both loop versions is the same
2587 basic block (i.e. it has two predecessors). Just in order to simplify
2588 following transformations in the vectorizer, we fix this situation
2589 here by adding a new (empty) block on the exit-edge of the loop,
2590 with the proper loop-exit phis to maintain loop-closed-form. */
2592 merge_bb = single_exit (loop)->dest;
2593 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2594 new_exit_bb = split_edge (single_exit (loop));
2595 new_exit_e = single_exit (loop);
2596 e = EDGE_SUCC (new_exit_bb, 0);
2598 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2600 orig_phi = gsi_stmt (gsi);
2601 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2602 new_exit_bb);
2603 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2604 add_phi_arg (new_phi, arg, new_exit_e,
2605 gimple_phi_arg_location_from_edge (orig_phi, e));
2606 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2609 /* End loop-exit-fixes after versioning. */
2611 update_ssa (TODO_update_ssa);
2612 if (*cond_expr_stmt_list)
2614 cond_exp_gsi = gsi_last_bb (condition_bb);
2615 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2616 GSI_SAME_STMT);
2617 *cond_expr_stmt_list = NULL;
2619 *cond_expr = NULL_TREE;