In libobjc/: 2011-05-24 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / postreload.c
blob0f3e5c24658dbef8b41dfba5db1dba3ce43b53f5
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "diagnostic-core.h"
44 #include "except.h"
45 #include "tree.h"
46 #include "target.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "df.h"
50 #include "dbgcnt.h"
52 static int reload_cse_noop_set_p (rtx);
53 static void reload_cse_simplify (rtx, rtx);
54 static void reload_cse_regs_1 (rtx);
55 static int reload_cse_simplify_set (rtx, rtx);
56 static int reload_cse_simplify_operands (rtx, rtx);
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx *, rtx, int, rtx);
60 static void reload_combine_note_store (rtx, const_rtx, void *);
62 static bool reload_cse_move2add (rtx);
63 static void move2add_note_store (rtx, const_rtx, void *);
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
67 void
68 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
70 bool moves_converted;
71 reload_cse_regs_1 (first);
72 reload_combine ();
73 moves_converted = reload_cse_move2add (first);
74 if (flag_expensive_optimizations)
76 if (moves_converted)
77 reload_combine ();
78 reload_cse_regs_1 (first);
82 /* See whether a single set SET is a noop. */
83 static int
84 reload_cse_noop_set_p (rtx set)
86 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
87 return 0;
89 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
92 /* Try to simplify INSN. */
93 static void
94 reload_cse_simplify (rtx insn, rtx testreg)
96 rtx body = PATTERN (insn);
98 if (GET_CODE (body) == SET)
100 int count = 0;
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
109 if (!count && reload_cse_noop_set_p (body))
111 rtx value = SET_DEST (body);
112 if (REG_P (value)
113 && ! REG_FUNCTION_VALUE_P (value))
114 value = 0;
115 check_for_inc_dec (insn);
116 delete_insn_and_edges (insn);
117 return;
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
125 else if (GET_CODE (body) == PARALLEL)
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
156 if (value)
157 break;
158 value = SET_DEST (part);
161 else if (GET_CODE (part) != CLOBBER)
162 break;
165 if (i < 0)
167 check_for_inc_dec (insn);
168 delete_insn_and_edges (insn);
169 /* We're done with this insn. */
170 return;
173 /* It's not a no-op, but we can try to simplify it. */
174 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
175 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
176 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
178 if (count > 0)
179 apply_change_group ();
180 else
181 reload_cse_simplify_operands (insn, testreg);
185 /* Do a very simple CSE pass over the hard registers.
187 This function detects no-op moves where we happened to assign two
188 different pseudo-registers to the same hard register, and then
189 copied one to the other. Reload will generate a useless
190 instruction copying a register to itself.
192 This function also detects cases where we load a value from memory
193 into two different registers, and (if memory is more expensive than
194 registers) changes it to simply copy the first register into the
195 second register.
197 Another optimization is performed that scans the operands of each
198 instruction to see whether the value is already available in a
199 hard register. It then replaces the operand with the hard register
200 if possible, much like an optional reload would. */
202 static void
203 reload_cse_regs_1 (rtx first)
205 rtx insn;
206 rtx testreg = gen_rtx_REG (VOIDmode, -1);
208 cselib_init (CSELIB_RECORD_MEMORY);
209 init_alias_analysis ();
211 for (insn = first; insn; insn = NEXT_INSN (insn))
213 if (INSN_P (insn))
214 reload_cse_simplify (insn, testreg);
216 cselib_process_insn (insn);
219 /* Clean up. */
220 end_alias_analysis ();
221 cselib_finish ();
224 /* Try to simplify a single SET instruction. SET is the set pattern.
225 INSN is the instruction it came from.
226 This function only handles one case: if we set a register to a value
227 which is not a register, we try to find that value in some other register
228 and change the set into a register copy. */
230 static int
231 reload_cse_simplify_set (rtx set, rtx insn)
233 int did_change = 0;
234 int dreg;
235 rtx src;
236 reg_class_t dclass;
237 int old_cost;
238 cselib_val *val;
239 struct elt_loc_list *l;
240 #ifdef LOAD_EXTEND_OP
241 enum rtx_code extend_op = UNKNOWN;
242 #endif
243 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
245 dreg = true_regnum (SET_DEST (set));
246 if (dreg < 0)
247 return 0;
249 src = SET_SRC (set);
250 if (side_effects_p (src) || true_regnum (src) >= 0)
251 return 0;
253 dclass = REGNO_REG_CLASS (dreg);
255 #ifdef LOAD_EXTEND_OP
256 /* When replacing a memory with a register, we need to honor assumptions
257 that combine made wrt the contents of sign bits. We'll do this by
258 generating an extend instruction instead of a reg->reg copy. Thus
259 the destination must be a register that we can widen. */
260 if (MEM_P (src)
261 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
262 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
263 && !REG_P (SET_DEST (set)))
264 return 0;
265 #endif
267 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
268 if (! val)
269 return 0;
271 /* If memory loads are cheaper than register copies, don't change them. */
272 if (MEM_P (src))
273 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
274 else if (REG_P (src))
275 old_cost = register_move_cost (GET_MODE (src),
276 REGNO_REG_CLASS (REGNO (src)), dclass);
277 else
278 old_cost = rtx_cost (src, SET, speed);
280 for (l = val->locs; l; l = l->next)
282 rtx this_rtx = l->loc;
283 int this_cost;
285 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 #ifdef LOAD_EXTEND_OP
288 if (extend_op != UNKNOWN)
290 HOST_WIDE_INT this_val;
292 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
293 constants, such as SYMBOL_REF, cannot be extended. */
294 if (!CONST_INT_P (this_rtx))
295 continue;
297 this_val = INTVAL (this_rtx);
298 switch (extend_op)
300 case ZERO_EXTEND:
301 this_val &= GET_MODE_MASK (GET_MODE (src));
302 break;
303 case SIGN_EXTEND:
304 /* ??? In theory we're already extended. */
305 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
306 break;
307 default:
308 gcc_unreachable ();
310 this_rtx = GEN_INT (this_val);
312 #endif
313 this_cost = rtx_cost (this_rtx, SET, speed);
315 else if (REG_P (this_rtx))
317 #ifdef LOAD_EXTEND_OP
318 if (extend_op != UNKNOWN)
320 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
321 this_cost = rtx_cost (this_rtx, SET, speed);
323 else
324 #endif
325 this_cost = register_move_cost (GET_MODE (this_rtx),
326 REGNO_REG_CLASS (REGNO (this_rtx)),
327 dclass);
329 else
330 continue;
332 /* If equal costs, prefer registers over anything else. That
333 tends to lead to smaller instructions on some machines. */
334 if (this_cost < old_cost
335 || (this_cost == old_cost
336 && REG_P (this_rtx)
337 && !REG_P (SET_SRC (set))))
339 #ifdef LOAD_EXTEND_OP
340 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
341 && extend_op != UNKNOWN
342 #ifdef CANNOT_CHANGE_MODE_CLASS
343 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
344 word_mode,
345 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
346 #endif
349 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
350 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
351 validate_change (insn, &SET_DEST (set), wide_dest, 1);
353 #endif
355 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
356 old_cost = this_cost, did_change = 1;
360 return did_change;
363 /* Try to replace operands in INSN with equivalent values that are already
364 in registers. This can be viewed as optional reloading.
366 For each non-register operand in the insn, see if any hard regs are
367 known to be equivalent to that operand. Record the alternatives which
368 can accept these hard registers. Among all alternatives, select the
369 ones which are better or equal to the one currently matching, where
370 "better" is in terms of '?' and '!' constraints. Among the remaining
371 alternatives, select the one which replaces most operands with
372 hard registers. */
374 static int
375 reload_cse_simplify_operands (rtx insn, rtx testreg)
377 int i, j;
379 /* For each operand, all registers that are equivalent to it. */
380 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
382 const char *constraints[MAX_RECOG_OPERANDS];
384 /* Vector recording how bad an alternative is. */
385 int *alternative_reject;
386 /* Vector recording how many registers can be introduced by choosing
387 this alternative. */
388 int *alternative_nregs;
389 /* Array of vectors recording, for each operand and each alternative,
390 which hard register to substitute, or -1 if the operand should be
391 left as it is. */
392 int *op_alt_regno[MAX_RECOG_OPERANDS];
393 /* Array of alternatives, sorted in order of decreasing desirability. */
394 int *alternative_order;
396 extract_insn (insn);
398 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
399 return 0;
401 /* Figure out which alternative currently matches. */
402 if (! constrain_operands (1))
403 fatal_insn_not_found (insn);
405 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
406 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
407 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
408 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
409 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
411 /* For each operand, find out which regs are equivalent. */
412 for (i = 0; i < recog_data.n_operands; i++)
414 cselib_val *v;
415 struct elt_loc_list *l;
416 rtx op;
418 CLEAR_HARD_REG_SET (equiv_regs[i]);
420 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
421 right, so avoid the problem here. Likewise if we have a constant
422 and the insn pattern doesn't tell us the mode we need. */
423 if (LABEL_P (recog_data.operand[i])
424 || (CONSTANT_P (recog_data.operand[i])
425 && recog_data.operand_mode[i] == VOIDmode))
426 continue;
428 op = recog_data.operand[i];
429 #ifdef LOAD_EXTEND_OP
430 if (MEM_P (op)
431 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
432 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
434 rtx set = single_set (insn);
436 /* We might have multiple sets, some of which do implicit
437 extension. Punt on this for now. */
438 if (! set)
439 continue;
440 /* If the destination is also a MEM or a STRICT_LOW_PART, no
441 extension applies.
442 Also, if there is an explicit extension, we don't have to
443 worry about an implicit one. */
444 else if (MEM_P (SET_DEST (set))
445 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
446 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
447 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
448 ; /* Continue ordinary processing. */
449 #ifdef CANNOT_CHANGE_MODE_CLASS
450 /* If the register cannot change mode to word_mode, it follows that
451 it cannot have been used in word_mode. */
452 else if (REG_P (SET_DEST (set))
453 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
454 word_mode,
455 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
456 ; /* Continue ordinary processing. */
457 #endif
458 /* If this is a straight load, make the extension explicit. */
459 else if (REG_P (SET_DEST (set))
460 && recog_data.n_operands == 2
461 && SET_SRC (set) == op
462 && SET_DEST (set) == recog_data.operand[1-i])
464 validate_change (insn, recog_data.operand_loc[i],
465 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
466 word_mode, op),
468 validate_change (insn, recog_data.operand_loc[1-i],
469 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
471 if (! apply_change_group ())
472 return 0;
473 return reload_cse_simplify_operands (insn, testreg);
475 else
476 /* ??? There might be arithmetic operations with memory that are
477 safe to optimize, but is it worth the trouble? */
478 continue;
480 #endif /* LOAD_EXTEND_OP */
481 if (side_effects_p (op))
482 continue;
483 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
484 if (! v)
485 continue;
487 for (l = v->locs; l; l = l->next)
488 if (REG_P (l->loc))
489 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
492 for (i = 0; i < recog_data.n_operands; i++)
494 enum machine_mode mode;
495 int regno;
496 const char *p;
498 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
499 for (j = 0; j < recog_data.n_alternatives; j++)
500 op_alt_regno[i][j] = -1;
502 p = constraints[i] = recog_data.constraints[i];
503 mode = recog_data.operand_mode[i];
505 /* Add the reject values for each alternative given by the constraints
506 for this operand. */
507 j = 0;
508 while (*p != '\0')
510 char c = *p++;
511 if (c == ',')
512 j++;
513 else if (c == '?')
514 alternative_reject[j] += 3;
515 else if (c == '!')
516 alternative_reject[j] += 300;
519 /* We won't change operands which are already registers. We
520 also don't want to modify output operands. */
521 regno = true_regnum (recog_data.operand[i]);
522 if (regno >= 0
523 || constraints[i][0] == '='
524 || constraints[i][0] == '+')
525 continue;
527 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
529 enum reg_class rclass = NO_REGS;
531 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
532 continue;
534 SET_REGNO_RAW (testreg, regno);
535 PUT_MODE (testreg, mode);
537 /* We found a register equal to this operand. Now look for all
538 alternatives that can accept this register and have not been
539 assigned a register they can use yet. */
540 j = 0;
541 p = constraints[i];
542 for (;;)
544 char c = *p;
546 switch (c)
548 case '=': case '+': case '?':
549 case '#': case '&': case '!':
550 case '*': case '%':
551 case '0': case '1': case '2': case '3': case '4':
552 case '5': case '6': case '7': case '8': case '9':
553 case '<': case '>': case 'V': case 'o':
554 case 'E': case 'F': case 'G': case 'H':
555 case 's': case 'i': case 'n':
556 case 'I': case 'J': case 'K': case 'L':
557 case 'M': case 'N': case 'O': case 'P':
558 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
559 /* These don't say anything we care about. */
560 break;
562 case 'g': case 'r':
563 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
564 break;
566 default:
567 rclass
568 = (reg_class_subunion
569 [(int) rclass]
570 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
571 break;
573 case ',': case '\0':
574 /* See if REGNO fits this alternative, and set it up as the
575 replacement register if we don't have one for this
576 alternative yet and the operand being replaced is not
577 a cheap CONST_INT. */
578 if (op_alt_regno[i][j] == -1
579 && recog_data.alternative_enabled_p[j]
580 && reg_fits_class_p (testreg, rclass, 0, mode)
581 && (!CONST_INT_P (recog_data.operand[i])
582 || (rtx_cost (recog_data.operand[i], SET,
583 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
584 > rtx_cost (testreg, SET,
585 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))))))
587 alternative_nregs[j]++;
588 op_alt_regno[i][j] = regno;
590 j++;
591 rclass = NO_REGS;
592 break;
594 p += CONSTRAINT_LEN (c, p);
596 if (c == '\0')
597 break;
602 /* Record all alternatives which are better or equal to the currently
603 matching one in the alternative_order array. */
604 for (i = j = 0; i < recog_data.n_alternatives; i++)
605 if (alternative_reject[i] <= alternative_reject[which_alternative])
606 alternative_order[j++] = i;
607 recog_data.n_alternatives = j;
609 /* Sort it. Given a small number of alternatives, a dumb algorithm
610 won't hurt too much. */
611 for (i = 0; i < recog_data.n_alternatives - 1; i++)
613 int best = i;
614 int best_reject = alternative_reject[alternative_order[i]];
615 int best_nregs = alternative_nregs[alternative_order[i]];
616 int tmp;
618 for (j = i + 1; j < recog_data.n_alternatives; j++)
620 int this_reject = alternative_reject[alternative_order[j]];
621 int this_nregs = alternative_nregs[alternative_order[j]];
623 if (this_reject < best_reject
624 || (this_reject == best_reject && this_nregs > best_nregs))
626 best = j;
627 best_reject = this_reject;
628 best_nregs = this_nregs;
632 tmp = alternative_order[best];
633 alternative_order[best] = alternative_order[i];
634 alternative_order[i] = tmp;
637 /* Substitute the operands as determined by op_alt_regno for the best
638 alternative. */
639 j = alternative_order[0];
641 for (i = 0; i < recog_data.n_operands; i++)
643 enum machine_mode mode = recog_data.operand_mode[i];
644 if (op_alt_regno[i][j] == -1)
645 continue;
647 validate_change (insn, recog_data.operand_loc[i],
648 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
651 for (i = recog_data.n_dups - 1; i >= 0; i--)
653 int op = recog_data.dup_num[i];
654 enum machine_mode mode = recog_data.operand_mode[op];
656 if (op_alt_regno[op][j] == -1)
657 continue;
659 validate_change (insn, recog_data.dup_loc[i],
660 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
663 return apply_change_group ();
666 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
667 addressing now.
668 This code might also be useful when reload gave up on reg+reg addressing
669 because of clashes between the return register and INDEX_REG_CLASS. */
671 /* The maximum number of uses of a register we can keep track of to
672 replace them with reg+reg addressing. */
673 #define RELOAD_COMBINE_MAX_USES 16
675 /* Describes a recorded use of a register. */
676 struct reg_use
678 /* The insn where a register has been used. */
679 rtx insn;
680 /* Points to the memory reference enclosing the use, if any, NULL_RTX
681 otherwise. */
682 rtx containing_mem;
683 /* Location of the register withing INSN. */
684 rtx *usep;
685 /* The reverse uid of the insn. */
686 int ruid;
689 /* If the register is used in some unknown fashion, USE_INDEX is negative.
690 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
691 indicates where it is first set or clobbered.
692 Otherwise, USE_INDEX is the index of the last encountered use of the
693 register (which is first among these we have seen since we scan backwards).
694 USE_RUID indicates the first encountered, i.e. last, of these uses.
695 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
696 with a constant offset; OFFSET contains this constant in that case.
697 STORE_RUID is always meaningful if we only want to use a value in a
698 register in a different place: it denotes the next insn in the insn
699 stream (i.e. the last encountered) that sets or clobbers the register.
700 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
701 static struct
703 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
704 rtx offset;
705 int use_index;
706 int store_ruid;
707 int real_store_ruid;
708 int use_ruid;
709 bool all_offsets_match;
710 } reg_state[FIRST_PSEUDO_REGISTER];
712 /* Reverse linear uid. This is increased in reload_combine while scanning
713 the instructions from last to first. It is used to set last_label_ruid
714 and the store_ruid / use_ruid fields in reg_state. */
715 static int reload_combine_ruid;
717 /* The RUID of the last label we encountered in reload_combine. */
718 static int last_label_ruid;
720 /* The RUID of the last jump we encountered in reload_combine. */
721 static int last_jump_ruid;
723 /* The register numbers of the first and last index register. A value of
724 -1 in LAST_INDEX_REG indicates that we've previously computed these
725 values and found no suitable index registers. */
726 static int first_index_reg = -1;
727 static int last_index_reg;
729 #define LABEL_LIVE(LABEL) \
730 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
732 /* Subroutine of reload_combine_split_ruids, called to fix up a single
733 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
735 static inline void
736 reload_combine_split_one_ruid (int *pruid, int split_ruid)
738 if (*pruid > split_ruid)
739 (*pruid)++;
742 /* Called when we insert a new insn in a position we've already passed in
743 the scan. Examine all our state, increasing all ruids that are higher
744 than SPLIT_RUID by one in order to make room for a new insn. */
746 static void
747 reload_combine_split_ruids (int split_ruid)
749 unsigned i;
751 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
752 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
753 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
755 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
757 int j, idx = reg_state[i].use_index;
758 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
759 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
760 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
761 split_ruid);
762 if (idx < 0)
763 continue;
764 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
766 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
767 split_ruid);
772 /* Called when we are about to rescan a previously encountered insn with
773 reload_combine_note_use after modifying some part of it. This clears all
774 information about uses in that particular insn. */
776 static void
777 reload_combine_purge_insn_uses (rtx insn)
779 unsigned i;
781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
783 int j, k, idx = reg_state[i].use_index;
784 if (idx < 0)
785 continue;
786 j = k = RELOAD_COMBINE_MAX_USES;
787 while (j-- > idx)
789 if (reg_state[i].reg_use[j].insn != insn)
791 k--;
792 if (k != j)
793 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
796 reg_state[i].use_index = k;
800 /* Called when we need to forget about all uses of REGNO after an insn
801 which is identified by RUID. */
803 static void
804 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
806 int j, k, idx = reg_state[regno].use_index;
807 if (idx < 0)
808 return;
809 j = k = RELOAD_COMBINE_MAX_USES;
810 while (j-- > idx)
812 if (reg_state[regno].reg_use[j].ruid >= ruid)
814 k--;
815 if (k != j)
816 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
819 reg_state[regno].use_index = k;
822 /* Find the use of REGNO with the ruid that is highest among those
823 lower than RUID_LIMIT, and return it if it is the only use of this
824 reg in the insn. Return NULL otherwise. */
826 static struct reg_use *
827 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
829 int i, best_ruid = 0;
830 int use_idx = reg_state[regno].use_index;
831 struct reg_use *retval;
833 if (use_idx < 0)
834 return NULL;
835 retval = NULL;
836 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
838 struct reg_use *use = reg_state[regno].reg_use + i;
839 int this_ruid = use->ruid;
840 if (this_ruid >= ruid_limit)
841 continue;
842 if (this_ruid > best_ruid)
844 best_ruid = this_ruid;
845 retval = use;
847 else if (this_ruid == best_ruid)
848 retval = NULL;
850 if (last_label_ruid >= best_ruid)
851 return NULL;
852 return retval;
855 /* After we've moved an add insn, fix up any debug insns that occur
856 between the old location of the add and the new location. REG is
857 the destination register of the add insn; REPLACEMENT is the
858 SET_SRC of the add. FROM and TO specify the range in which we
859 should make this change on debug insns. */
861 static void
862 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
864 rtx insn;
865 for (insn = from; insn != to; insn = NEXT_INSN (insn))
867 rtx t;
869 if (!DEBUG_INSN_P (insn))
870 continue;
872 t = INSN_VAR_LOCATION_LOC (insn);
873 t = simplify_replace_rtx (t, reg, replacement);
874 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
878 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
879 with SRC in the insn described by USE, taking costs into account. Return
880 true if we made the replacement. */
882 static bool
883 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
885 rtx use_insn = use->insn;
886 rtx mem = use->containing_mem;
887 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
889 if (mem != NULL_RTX)
891 addr_space_t as = MEM_ADDR_SPACE (mem);
892 rtx oldaddr = XEXP (mem, 0);
893 rtx newaddr = NULL_RTX;
894 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
895 int new_cost;
897 newaddr = simplify_replace_rtx (oldaddr, reg, src);
898 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
900 XEXP (mem, 0) = newaddr;
901 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
902 XEXP (mem, 0) = oldaddr;
903 if (new_cost <= old_cost
904 && validate_change (use_insn,
905 &XEXP (mem, 0), newaddr, 0))
906 return true;
909 else
911 rtx new_set = single_set (use_insn);
912 if (new_set
913 && REG_P (SET_DEST (new_set))
914 && GET_CODE (SET_SRC (new_set)) == PLUS
915 && REG_P (XEXP (SET_SRC (new_set), 0))
916 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
918 rtx new_src;
919 int old_cost = rtx_cost (SET_SRC (new_set), SET, speed);
921 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
922 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
924 if (rtx_cost (new_src, SET, speed) <= old_cost
925 && validate_change (use_insn, &SET_SRC (new_set),
926 new_src, 0))
927 return true;
930 return false;
933 /* Called by reload_combine when scanning INSN. This function tries to detect
934 patterns where a constant is added to a register, and the result is used
935 in an address.
936 Return true if no further processing is needed on INSN; false if it wasn't
937 recognized and should be handled normally. */
939 static bool
940 reload_combine_recognize_const_pattern (rtx insn)
942 int from_ruid = reload_combine_ruid;
943 rtx set, pat, reg, src, addreg;
944 unsigned int regno;
945 struct reg_use *use;
946 bool must_move_add;
947 rtx add_moved_after_insn = NULL_RTX;
948 int add_moved_after_ruid = 0;
949 int clobbered_regno = -1;
951 set = single_set (insn);
952 if (set == NULL_RTX)
953 return false;
955 reg = SET_DEST (set);
956 src = SET_SRC (set);
957 if (!REG_P (reg)
958 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
959 || GET_MODE (reg) != Pmode
960 || reg == stack_pointer_rtx)
961 return false;
963 regno = REGNO (reg);
965 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
966 uses of REG1 inside an address, or inside another add insn. If
967 possible and profitable, merge the addition into subsequent
968 uses. */
969 if (GET_CODE (src) != PLUS
970 || !REG_P (XEXP (src, 0))
971 || !CONSTANT_P (XEXP (src, 1)))
972 return false;
974 addreg = XEXP (src, 0);
975 must_move_add = rtx_equal_p (reg, addreg);
977 pat = PATTERN (insn);
978 if (must_move_add && set != pat)
980 /* We have to be careful when moving the add; apart from the
981 single_set there may also be clobbers. Recognize one special
982 case, that of one clobber alongside the set (likely a clobber
983 of the CC register). */
984 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
985 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
986 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
987 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
988 return false;
989 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
994 use = reload_combine_closest_single_use (regno, from_ruid);
996 if (use)
997 /* Start the search for the next use from here. */
998 from_ruid = use->ruid;
1000 if (use && GET_MODE (*use->usep) == Pmode)
1002 bool delete_add = false;
1003 rtx use_insn = use->insn;
1004 int use_ruid = use->ruid;
1006 /* Avoid moving the add insn past a jump. */
1007 if (must_move_add && use_ruid <= last_jump_ruid)
1008 break;
1010 /* If the add clobbers another hard reg in parallel, don't move
1011 it past a real set of this hard reg. */
1012 if (must_move_add && clobbered_regno >= 0
1013 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1014 break;
1016 #ifdef HAVE_cc0
1017 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1018 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1019 break;
1020 #endif
1022 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1023 /* Avoid moving a use of ADDREG past a point where it is stored. */
1024 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1025 break;
1027 /* We also must not move the addition past an insn that sets
1028 the same register, unless we can combine two add insns. */
1029 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1031 if (use->containing_mem == NULL_RTX)
1032 delete_add = true;
1033 else
1034 break;
1037 if (try_replace_in_use (use, reg, src))
1039 reload_combine_purge_insn_uses (use_insn);
1040 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1041 use_ruid, NULL_RTX);
1043 if (delete_add)
1045 fixup_debug_insns (reg, src, insn, use_insn);
1046 delete_insn (insn);
1047 return true;
1049 if (must_move_add)
1051 add_moved_after_insn = use_insn;
1052 add_moved_after_ruid = use_ruid;
1054 continue;
1057 /* If we get here, we couldn't handle this use. */
1058 if (must_move_add)
1059 break;
1061 while (use);
1063 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1064 /* Process the add normally. */
1065 return false;
1067 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1069 reorder_insns (insn, insn, add_moved_after_insn);
1070 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1071 reload_combine_split_ruids (add_moved_after_ruid - 1);
1072 reload_combine_note_use (&PATTERN (insn), insn,
1073 add_moved_after_ruid, NULL_RTX);
1074 reg_state[regno].store_ruid = add_moved_after_ruid;
1076 return true;
1079 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1080 can handle and improve. Return true if no further processing is needed on
1081 INSN; false if it wasn't recognized and should be handled normally. */
1083 static bool
1084 reload_combine_recognize_pattern (rtx insn)
1086 rtx set, reg, src;
1087 unsigned int regno;
1089 set = single_set (insn);
1090 if (set == NULL_RTX)
1091 return false;
1093 reg = SET_DEST (set);
1094 src = SET_SRC (set);
1095 if (!REG_P (reg)
1096 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1097 return false;
1099 regno = REGNO (reg);
1101 /* Look for (set (REGX) (CONST_INT))
1102 (set (REGX) (PLUS (REGX) (REGY)))
1104 ... (MEM (REGX)) ...
1105 and convert it to
1106 (set (REGZ) (CONST_INT))
1108 ... (MEM (PLUS (REGZ) (REGY)))... .
1110 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1111 and that we know all uses of REGX before it dies.
1112 Also, explicitly check that REGX != REGY; our life information
1113 does not yet show whether REGY changes in this insn. */
1115 if (GET_CODE (src) == PLUS
1116 && reg_state[regno].all_offsets_match
1117 && last_index_reg != -1
1118 && REG_P (XEXP (src, 1))
1119 && rtx_equal_p (XEXP (src, 0), reg)
1120 && !rtx_equal_p (XEXP (src, 1), reg)
1121 && reg_state[regno].use_index >= 0
1122 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1123 && last_label_ruid < reg_state[regno].use_ruid)
1125 rtx base = XEXP (src, 1);
1126 rtx prev = prev_nonnote_nondebug_insn (insn);
1127 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1128 rtx index_reg = NULL_RTX;
1129 rtx reg_sum = NULL_RTX;
1130 int i;
1132 /* Now we need to set INDEX_REG to an index register (denoted as
1133 REGZ in the illustration above) and REG_SUM to the expression
1134 register+register that we want to use to substitute uses of REG
1135 (typically in MEMs) with. First check REG and BASE for being
1136 index registers; we can use them even if they are not dead. */
1137 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1138 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1139 REGNO (base)))
1141 index_reg = reg;
1142 reg_sum = src;
1144 else
1146 /* Otherwise, look for a free index register. Since we have
1147 checked above that neither REG nor BASE are index registers,
1148 if we find anything at all, it will be different from these
1149 two registers. */
1150 for (i = first_index_reg; i <= last_index_reg; i++)
1152 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1153 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1154 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1155 && (call_used_regs[i] || df_regs_ever_live_p (i))
1156 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1157 && !fixed_regs[i] && !global_regs[i]
1158 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1159 && targetm.hard_regno_scratch_ok (i))
1161 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1162 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1163 break;
1168 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1169 (REGY), i.e. BASE, is not clobbered before the last use we'll
1170 create. */
1171 if (reg_sum
1172 && prev_set
1173 && CONST_INT_P (SET_SRC (prev_set))
1174 && rtx_equal_p (SET_DEST (prev_set), reg)
1175 && (reg_state[REGNO (base)].store_ruid
1176 <= reg_state[regno].use_ruid))
1178 /* Change destination register and, if necessary, the constant
1179 value in PREV, the constant loading instruction. */
1180 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1181 if (reg_state[regno].offset != const0_rtx)
1182 validate_change (prev,
1183 &SET_SRC (prev_set),
1184 GEN_INT (INTVAL (SET_SRC (prev_set))
1185 + INTVAL (reg_state[regno].offset)),
1188 /* Now for every use of REG that we have recorded, replace REG
1189 with REG_SUM. */
1190 for (i = reg_state[regno].use_index;
1191 i < RELOAD_COMBINE_MAX_USES; i++)
1192 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1193 reg_state[regno].reg_use[i].usep,
1194 /* Each change must have its own
1195 replacement. */
1196 reg_sum, 1);
1198 if (apply_change_group ())
1200 struct reg_use *lowest_ruid = NULL;
1202 /* For every new use of REG_SUM, we have to record the use
1203 of BASE therein, i.e. operand 1. */
1204 for (i = reg_state[regno].use_index;
1205 i < RELOAD_COMBINE_MAX_USES; i++)
1207 struct reg_use *use = reg_state[regno].reg_use + i;
1208 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1209 use->ruid, use->containing_mem);
1210 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1211 lowest_ruid = use;
1214 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1216 /* Delete the reg-reg addition. */
1217 delete_insn (insn);
1219 if (reg_state[regno].offset != const0_rtx)
1220 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1221 are now invalid. */
1222 remove_reg_equal_equiv_notes (prev);
1224 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1225 return true;
1229 return false;
1232 static void
1233 reload_combine (void)
1235 rtx insn, prev;
1236 basic_block bb;
1237 unsigned int r;
1238 int min_labelno, n_labels;
1239 HARD_REG_SET ever_live_at_start, *label_live;
1241 /* To avoid wasting too much time later searching for an index register,
1242 determine the minimum and maximum index register numbers. */
1243 if (INDEX_REG_CLASS == NO_REGS)
1244 last_index_reg = -1;
1245 else if (first_index_reg == -1 && last_index_reg == 0)
1247 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1248 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1250 if (first_index_reg == -1)
1251 first_index_reg = r;
1253 last_index_reg = r;
1256 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1257 to -1 so we'll know to quit early the next time we get here. */
1258 if (first_index_reg == -1)
1260 last_index_reg = -1;
1261 return;
1265 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1266 information is a bit fuzzy immediately after reload, but it's
1267 still good enough to determine which registers are live at a jump
1268 destination. */
1269 min_labelno = get_first_label_num ();
1270 n_labels = max_label_num () - min_labelno;
1271 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1272 CLEAR_HARD_REG_SET (ever_live_at_start);
1274 FOR_EACH_BB_REVERSE (bb)
1276 insn = BB_HEAD (bb);
1277 if (LABEL_P (insn))
1279 HARD_REG_SET live;
1280 bitmap live_in = df_get_live_in (bb);
1282 REG_SET_TO_HARD_REG_SET (live, live_in);
1283 compute_use_by_pseudos (&live, live_in);
1284 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1285 IOR_HARD_REG_SET (ever_live_at_start, live);
1289 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1290 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1291 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1293 reg_state[r].store_ruid = 0;
1294 reg_state[r].real_store_ruid = 0;
1295 if (fixed_regs[r])
1296 reg_state[r].use_index = -1;
1297 else
1298 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1301 for (insn = get_last_insn (); insn; insn = prev)
1303 bool control_flow_insn;
1304 rtx note;
1306 prev = PREV_INSN (insn);
1308 /* We cannot do our optimization across labels. Invalidating all the use
1309 information we have would be costly, so we just note where the label
1310 is and then later disable any optimization that would cross it. */
1311 if (LABEL_P (insn))
1312 last_label_ruid = reload_combine_ruid;
1313 else if (BARRIER_P (insn))
1314 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1315 if (! fixed_regs[r])
1316 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1318 if (! NONDEBUG_INSN_P (insn))
1319 continue;
1321 reload_combine_ruid++;
1323 control_flow_insn = control_flow_insn_p (insn);
1324 if (control_flow_insn)
1325 last_jump_ruid = reload_combine_ruid;
1327 if (reload_combine_recognize_const_pattern (insn)
1328 || reload_combine_recognize_pattern (insn))
1329 continue;
1331 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1333 if (CALL_P (insn))
1335 rtx link;
1337 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1338 if (call_used_regs[r])
1340 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1341 reg_state[r].store_ruid = reload_combine_ruid;
1344 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1345 link = XEXP (link, 1))
1347 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
1348 if (REG_P (usage_rtx))
1350 unsigned int i;
1351 unsigned int start_reg = REGNO (usage_rtx);
1352 unsigned int num_regs
1353 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1354 unsigned int end_reg = start_reg + num_regs - 1;
1355 for (i = start_reg; i <= end_reg; i++)
1356 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1358 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1359 reg_state[i].store_ruid = reload_combine_ruid;
1361 else
1362 reg_state[i].use_index = -1;
1367 if (control_flow_insn && GET_CODE (PATTERN (insn)) != RETURN)
1369 /* Non-spill registers might be used at the call destination in
1370 some unknown fashion, so we have to mark the unknown use. */
1371 HARD_REG_SET *live;
1373 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1374 && JUMP_LABEL (insn))
1375 live = &LABEL_LIVE (JUMP_LABEL (insn));
1376 else
1377 live = &ever_live_at_start;
1379 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1380 if (TEST_HARD_REG_BIT (*live, r))
1381 reg_state[r].use_index = -1;
1384 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1385 NULL_RTX);
1387 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1389 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1391 int regno = REGNO (XEXP (note, 0));
1392 reg_state[regno].store_ruid = reload_combine_ruid;
1393 reg_state[regno].real_store_ruid = reload_combine_ruid;
1394 reg_state[regno].use_index = -1;
1399 free (label_live);
1402 /* Check if DST is a register or a subreg of a register; if it is,
1403 update store_ruid, real_store_ruid and use_index in the reg_state
1404 structure accordingly. Called via note_stores from reload_combine. */
1406 static void
1407 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1409 int regno = 0;
1410 int i;
1411 enum machine_mode mode = GET_MODE (dst);
1413 if (GET_CODE (dst) == SUBREG)
1415 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1416 GET_MODE (SUBREG_REG (dst)),
1417 SUBREG_BYTE (dst),
1418 GET_MODE (dst));
1419 dst = SUBREG_REG (dst);
1422 /* Some targets do argument pushes without adding REG_INC notes. */
1424 if (MEM_P (dst))
1426 dst = XEXP (dst, 0);
1427 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1428 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1429 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1431 regno = REGNO (XEXP (dst, 0));
1432 mode = GET_MODE (XEXP (dst, 0));
1433 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1435 /* We could probably do better, but for now mark the register
1436 as used in an unknown fashion and set/clobbered at this
1437 insn. */
1438 reg_state[i].use_index = -1;
1439 reg_state[i].store_ruid = reload_combine_ruid;
1440 reg_state[i].real_store_ruid = reload_combine_ruid;
1443 else
1444 return;
1447 if (!REG_P (dst))
1448 return;
1449 regno += REGNO (dst);
1451 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1452 careful with registers / register parts that are not full words.
1453 Similarly for ZERO_EXTRACT. */
1454 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1455 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1457 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1459 reg_state[i].use_index = -1;
1460 reg_state[i].store_ruid = reload_combine_ruid;
1461 reg_state[i].real_store_ruid = reload_combine_ruid;
1464 else
1466 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1468 reg_state[i].store_ruid = reload_combine_ruid;
1469 if (GET_CODE (set) == SET)
1470 reg_state[i].real_store_ruid = reload_combine_ruid;
1471 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1476 /* XP points to a piece of rtl that has to be checked for any uses of
1477 registers.
1478 *XP is the pattern of INSN, or a part of it.
1479 Called from reload_combine, and recursively by itself. */
1480 static void
1481 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1483 rtx x = *xp;
1484 enum rtx_code code = x->code;
1485 const char *fmt;
1486 int i, j;
1487 rtx offset = const0_rtx; /* For the REG case below. */
1489 switch (code)
1491 case SET:
1492 if (REG_P (SET_DEST (x)))
1494 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1495 return;
1497 break;
1499 case USE:
1500 /* If this is the USE of a return value, we can't change it. */
1501 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1503 /* Mark the return register as used in an unknown fashion. */
1504 rtx reg = XEXP (x, 0);
1505 int regno = REGNO (reg);
1506 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1508 while (--nregs >= 0)
1509 reg_state[regno + nregs].use_index = -1;
1510 return;
1512 break;
1514 case CLOBBER:
1515 if (REG_P (SET_DEST (x)))
1517 /* No spurious CLOBBERs of pseudo registers may remain. */
1518 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1519 return;
1521 break;
1523 case PLUS:
1524 /* We are interested in (plus (reg) (const_int)) . */
1525 if (!REG_P (XEXP (x, 0))
1526 || !CONST_INT_P (XEXP (x, 1)))
1527 break;
1528 offset = XEXP (x, 1);
1529 x = XEXP (x, 0);
1530 /* Fall through. */
1531 case REG:
1533 int regno = REGNO (x);
1534 int use_index;
1535 int nregs;
1537 /* No spurious USEs of pseudo registers may remain. */
1538 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1540 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1542 /* We can't substitute into multi-hard-reg uses. */
1543 if (nregs > 1)
1545 while (--nregs >= 0)
1546 reg_state[regno + nregs].use_index = -1;
1547 return;
1550 /* We may be called to update uses in previously seen insns.
1551 Don't add uses beyond the last store we saw. */
1552 if (ruid < reg_state[regno].store_ruid)
1553 return;
1555 /* If this register is already used in some unknown fashion, we
1556 can't do anything.
1557 If we decrement the index from zero to -1, we can't store more
1558 uses, so this register becomes used in an unknown fashion. */
1559 use_index = --reg_state[regno].use_index;
1560 if (use_index < 0)
1561 return;
1563 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1565 /* This is the first use of this register we have seen since we
1566 marked it as dead. */
1567 reg_state[regno].offset = offset;
1568 reg_state[regno].all_offsets_match = true;
1569 reg_state[regno].use_ruid = ruid;
1571 else
1573 if (reg_state[regno].use_ruid > ruid)
1574 reg_state[regno].use_ruid = ruid;
1576 if (! rtx_equal_p (offset, reg_state[regno].offset))
1577 reg_state[regno].all_offsets_match = false;
1580 reg_state[regno].reg_use[use_index].insn = insn;
1581 reg_state[regno].reg_use[use_index].ruid = ruid;
1582 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1583 reg_state[regno].reg_use[use_index].usep = xp;
1584 return;
1587 case MEM:
1588 containing_mem = x;
1589 break;
1591 default:
1592 break;
1595 /* Recursively process the components of X. */
1596 fmt = GET_RTX_FORMAT (code);
1597 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1599 if (fmt[i] == 'e')
1600 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1601 else if (fmt[i] == 'E')
1603 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1604 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1605 containing_mem);
1610 /* See if we can reduce the cost of a constant by replacing a move
1611 with an add. We track situations in which a register is set to a
1612 constant or to a register plus a constant. */
1613 /* We cannot do our optimization across labels. Invalidating all the
1614 information about register contents we have would be costly, so we
1615 use move2add_last_label_luid to note where the label is and then
1616 later disable any optimization that would cross it.
1617 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1618 are only valid if reg_set_luid[n] is greater than
1619 move2add_last_label_luid. */
1620 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1622 /* If reg_base_reg[n] is negative, register n has been set to
1623 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1624 If reg_base_reg[n] is non-negative, register n has been set to the
1625 sum of reg_offset[n] and the value of register reg_base_reg[n]
1626 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1627 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1628 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1629 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1630 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1632 /* move2add_luid is linearly increased while scanning the instructions
1633 from first to last. It is used to set reg_set_luid in
1634 reload_cse_move2add and move2add_note_store. */
1635 static int move2add_luid;
1637 /* move2add_last_label_luid is set whenever a label is found. Labels
1638 invalidate all previously collected reg_offset data. */
1639 static int move2add_last_label_luid;
1641 /* ??? We don't know how zero / sign extension is handled, hence we
1642 can't go from a narrower to a wider mode. */
1643 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1644 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1645 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1646 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1647 GET_MODE_BITSIZE (INMODE))))
1649 /* This function is called with INSN that sets REG to (SYM + OFF),
1650 while REG is known to already have value (SYM + offset).
1651 This function tries to change INSN into an add instruction
1652 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1653 It also updates the information about REG's known value.
1654 Return true if we made a change. */
1656 static bool
1657 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1659 rtx pat = PATTERN (insn);
1660 rtx src = SET_SRC (pat);
1661 int regno = REGNO (reg);
1662 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1663 GET_MODE (reg));
1664 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1665 bool changed = false;
1667 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1668 use (set (reg) (reg)) instead.
1669 We don't delete this insn, nor do we convert it into a
1670 note, to avoid losing register notes or the return
1671 value flag. jump2 already knows how to get rid of
1672 no-op moves. */
1673 if (new_src == const0_rtx)
1675 /* If the constants are different, this is a
1676 truncation, that, if turned into (set (reg)
1677 (reg)), would be discarded. Maybe we should
1678 try a truncMN pattern? */
1679 if (INTVAL (off) == reg_offset [regno])
1680 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1682 else
1684 struct full_rtx_costs oldcst, newcst;
1685 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1687 get_full_rtx_cost (pat, SET, &oldcst);
1688 SET_SRC (pat) = tem;
1689 get_full_rtx_cost (pat, SET, &newcst);
1690 SET_SRC (pat) = src;
1692 if (costs_lt_p (&newcst, &oldcst, speed)
1693 && have_add2_insn (reg, new_src))
1694 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1695 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1697 enum machine_mode narrow_mode;
1698 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1699 narrow_mode != VOIDmode
1700 && narrow_mode != GET_MODE (reg);
1701 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1703 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1704 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1705 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1707 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1708 REGNO (reg));
1709 rtx narrow_src = gen_int_mode (INTVAL (off),
1710 narrow_mode);
1711 rtx new_set
1712 = gen_rtx_SET (VOIDmode,
1713 gen_rtx_STRICT_LOW_PART (VOIDmode,
1714 narrow_reg),
1715 narrow_src);
1716 changed = validate_change (insn, &PATTERN (insn),
1717 new_set, 0);
1718 if (changed)
1719 break;
1724 reg_set_luid[regno] = move2add_luid;
1725 reg_base_reg[regno] = -1;
1726 reg_mode[regno] = GET_MODE (reg);
1727 reg_symbol_ref[regno] = sym;
1728 reg_offset[regno] = INTVAL (off);
1729 return changed;
1733 /* This function is called with INSN that sets REG to (SYM + OFF),
1734 but REG doesn't have known value (SYM + offset). This function
1735 tries to find another register which is known to already have
1736 value (SYM + offset) and change INSN into an add instruction
1737 (set (REG) (plus (the found register) (OFF - offset))) if such
1738 a register is found. It also updates the information about
1739 REG's known value.
1740 Return true iff we made a change. */
1742 static bool
1743 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1745 rtx pat = PATTERN (insn);
1746 rtx src = SET_SRC (pat);
1747 int regno = REGNO (reg);
1748 int min_regno = 0;
1749 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1750 int i;
1751 bool changed = false;
1752 struct full_rtx_costs oldcst, newcst, mincst;
1753 rtx plus_expr;
1755 init_costs_to_max (&mincst);
1756 get_full_rtx_cost (pat, SET, &oldcst);
1758 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1759 SET_SRC (pat) = plus_expr;
1761 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1762 if (reg_set_luid[i] > move2add_last_label_luid
1763 && reg_mode[i] == GET_MODE (reg)
1764 && reg_base_reg[i] < 0
1765 && reg_symbol_ref[i] != NULL_RTX
1766 && rtx_equal_p (sym, reg_symbol_ref[i]))
1768 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1769 GET_MODE (reg));
1770 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1771 use (set (reg) (reg)) instead.
1772 We don't delete this insn, nor do we convert it into a
1773 note, to avoid losing register notes or the return
1774 value flag. jump2 already knows how to get rid of
1775 no-op moves. */
1776 if (new_src == const0_rtx)
1778 init_costs_to_zero (&mincst);
1779 min_regno = i;
1780 break;
1782 else
1784 XEXP (plus_expr, 1) = new_src;
1785 get_full_rtx_cost (pat, SET, &newcst);
1787 if (costs_lt_p (&newcst, &mincst, speed))
1789 mincst = newcst;
1790 min_regno = i;
1794 SET_SRC (pat) = src;
1796 if (costs_lt_p (&mincst, &oldcst, speed))
1798 rtx tem;
1800 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1801 if (i != min_regno)
1803 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1804 GET_MODE (reg));
1805 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1807 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1808 changed = true;
1810 reg_set_luid[regno] = move2add_luid;
1811 reg_base_reg[regno] = -1;
1812 reg_mode[regno] = GET_MODE (reg);
1813 reg_symbol_ref[regno] = sym;
1814 reg_offset[regno] = INTVAL (off);
1815 return changed;
1818 /* Convert move insns with constant inputs to additions if they are cheaper.
1819 Return true if any changes were made. */
1820 static bool
1821 reload_cse_move2add (rtx first)
1823 int i;
1824 rtx insn;
1825 bool changed = false;
1827 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1829 reg_set_luid[i] = 0;
1830 reg_offset[i] = 0;
1831 reg_base_reg[i] = 0;
1832 reg_symbol_ref[i] = NULL_RTX;
1833 reg_mode[i] = VOIDmode;
1836 move2add_last_label_luid = 0;
1837 move2add_luid = 2;
1838 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1840 rtx pat, note;
1842 if (LABEL_P (insn))
1844 move2add_last_label_luid = move2add_luid;
1845 /* We're going to increment move2add_luid twice after a
1846 label, so that we can use move2add_last_label_luid + 1 as
1847 the luid for constants. */
1848 move2add_luid++;
1849 continue;
1851 if (! INSN_P (insn))
1852 continue;
1853 pat = PATTERN (insn);
1854 /* For simplicity, we only perform this optimization on
1855 straightforward SETs. */
1856 if (GET_CODE (pat) == SET
1857 && REG_P (SET_DEST (pat)))
1859 rtx reg = SET_DEST (pat);
1860 int regno = REGNO (reg);
1861 rtx src = SET_SRC (pat);
1863 /* Check if we have valid information on the contents of this
1864 register in the mode of REG. */
1865 if (reg_set_luid[regno] > move2add_last_label_luid
1866 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1867 && dbg_cnt (cse2_move2add))
1869 /* Try to transform (set (REGX) (CONST_INT A))
1871 (set (REGX) (CONST_INT B))
1873 (set (REGX) (CONST_INT A))
1875 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1877 (set (REGX) (CONST_INT A))
1879 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1882 if (CONST_INT_P (src)
1883 && reg_base_reg[regno] < 0
1884 && reg_symbol_ref[regno] == NULL_RTX)
1886 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1887 continue;
1890 /* Try to transform (set (REGX) (REGY))
1891 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1893 (set (REGX) (REGY))
1894 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1896 (set (REGX) (REGY))
1897 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1899 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1900 else if (REG_P (src)
1901 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1902 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1903 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1904 reg_mode[REGNO (src)]))
1906 rtx next = next_nonnote_nondebug_insn (insn);
1907 rtx set = NULL_RTX;
1908 if (next)
1909 set = single_set (next);
1910 if (set
1911 && SET_DEST (set) == reg
1912 && GET_CODE (SET_SRC (set)) == PLUS
1913 && XEXP (SET_SRC (set), 0) == reg
1914 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1916 rtx src3 = XEXP (SET_SRC (set), 1);
1917 HOST_WIDE_INT added_offset = INTVAL (src3);
1918 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1919 HOST_WIDE_INT regno_offset = reg_offset[regno];
1920 rtx new_src =
1921 gen_int_mode (added_offset
1922 + base_offset
1923 - regno_offset,
1924 GET_MODE (reg));
1925 bool success = false;
1926 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1928 if (new_src == const0_rtx)
1929 /* See above why we create (set (reg) (reg)) here. */
1930 success
1931 = validate_change (next, &SET_SRC (set), reg, 0);
1932 else
1934 rtx old_src = SET_SRC (set);
1935 struct full_rtx_costs oldcst, newcst;
1936 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1938 get_full_rtx_cost (set, SET, &oldcst);
1939 SET_SRC (set) = tem;
1940 get_full_rtx_cost (tem, SET, &newcst);
1941 SET_SRC (set) = old_src;
1942 costs_add_n_insns (&oldcst, 1);
1944 if (costs_lt_p (&newcst, &oldcst, speed)
1945 && have_add2_insn (reg, new_src))
1947 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1948 success
1949 = validate_change (next, &PATTERN (next),
1950 newpat, 0);
1953 if (success)
1954 delete_insn (insn);
1955 changed |= success;
1956 insn = next;
1957 reg_mode[regno] = GET_MODE (reg);
1958 reg_offset[regno] =
1959 trunc_int_for_mode (added_offset + base_offset,
1960 GET_MODE (reg));
1961 continue;
1966 /* Try to transform
1967 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1969 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1971 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1973 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1974 if ((GET_CODE (src) == SYMBOL_REF
1975 || (GET_CODE (src) == CONST
1976 && GET_CODE (XEXP (src, 0)) == PLUS
1977 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1978 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1979 && dbg_cnt (cse2_move2add))
1981 rtx sym, off;
1983 if (GET_CODE (src) == SYMBOL_REF)
1985 sym = src;
1986 off = const0_rtx;
1988 else
1990 sym = XEXP (XEXP (src, 0), 0);
1991 off = XEXP (XEXP (src, 0), 1);
1994 /* If the reg already contains the value which is sum of
1995 sym and some constant value, we can use an add2 insn. */
1996 if (reg_set_luid[regno] > move2add_last_label_luid
1997 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1998 && reg_base_reg[regno] < 0
1999 && reg_symbol_ref[regno] != NULL_RTX
2000 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2001 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2003 /* Otherwise, we have to find a register whose value is sum
2004 of sym and some constant value. */
2005 else
2006 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2008 continue;
2012 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2014 if (REG_NOTE_KIND (note) == REG_INC
2015 && REG_P (XEXP (note, 0)))
2017 /* Reset the information about this register. */
2018 int regno = REGNO (XEXP (note, 0));
2019 if (regno < FIRST_PSEUDO_REGISTER)
2020 reg_set_luid[regno] = 0;
2023 note_stores (PATTERN (insn), move2add_note_store, insn);
2025 /* If INSN is a conditional branch, we try to extract an
2026 implicit set out of it. */
2027 if (any_condjump_p (insn))
2029 rtx cnd = fis_get_condition (insn);
2031 if (cnd != NULL_RTX
2032 && GET_CODE (cnd) == NE
2033 && REG_P (XEXP (cnd, 0))
2034 && !reg_set_p (XEXP (cnd, 0), insn)
2035 /* The following two checks, which are also in
2036 move2add_note_store, are intended to reduce the
2037 number of calls to gen_rtx_SET to avoid memory
2038 allocation if possible. */
2039 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2040 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2041 && CONST_INT_P (XEXP (cnd, 1)))
2043 rtx implicit_set =
2044 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2045 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2049 /* If this is a CALL_INSN, all call used registers are stored with
2050 unknown values. */
2051 if (CALL_P (insn))
2053 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2055 if (call_used_regs[i])
2056 /* Reset the information about this register. */
2057 reg_set_luid[i] = 0;
2061 return changed;
2064 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2065 contains SET.
2066 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2067 Called from reload_cse_move2add via note_stores. */
2069 static void
2070 move2add_note_store (rtx dst, const_rtx set, void *data)
2072 rtx insn = (rtx) data;
2073 unsigned int regno = 0;
2074 unsigned int nregs = 0;
2075 unsigned int i;
2076 enum machine_mode mode = GET_MODE (dst);
2078 if (GET_CODE (dst) == SUBREG)
2080 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2081 GET_MODE (SUBREG_REG (dst)),
2082 SUBREG_BYTE (dst),
2083 GET_MODE (dst));
2084 nregs = subreg_nregs (dst);
2085 dst = SUBREG_REG (dst);
2088 /* Some targets do argument pushes without adding REG_INC notes. */
2090 if (MEM_P (dst))
2092 dst = XEXP (dst, 0);
2093 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2094 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2095 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2096 return;
2098 if (!REG_P (dst))
2099 return;
2101 regno += REGNO (dst);
2102 if (!nregs)
2103 nregs = hard_regno_nregs[regno][mode];
2105 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2106 && nregs == 1 && GET_CODE (set) == SET)
2108 rtx note, sym = NULL_RTX;
2109 HOST_WIDE_INT off;
2111 note = find_reg_equal_equiv_note (insn);
2112 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2114 sym = XEXP (note, 0);
2115 off = 0;
2117 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2118 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2119 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2120 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2122 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2123 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2126 if (sym != NULL_RTX)
2128 reg_base_reg[regno] = -1;
2129 reg_symbol_ref[regno] = sym;
2130 reg_offset[regno] = off;
2131 reg_mode[regno] = mode;
2132 reg_set_luid[regno] = move2add_luid;
2133 return;
2137 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2138 && nregs == 1 && GET_CODE (set) == SET
2139 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2140 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2142 rtx src = SET_SRC (set);
2143 rtx base_reg;
2144 HOST_WIDE_INT offset;
2145 int base_regno;
2146 /* This may be different from mode, if SET_DEST (set) is a
2147 SUBREG. */
2148 enum machine_mode dst_mode = GET_MODE (dst);
2150 switch (GET_CODE (src))
2152 case PLUS:
2153 if (REG_P (XEXP (src, 0)))
2155 base_reg = XEXP (src, 0);
2157 if (CONST_INT_P (XEXP (src, 1)))
2158 offset = INTVAL (XEXP (src, 1));
2159 else if (REG_P (XEXP (src, 1))
2160 && (reg_set_luid[REGNO (XEXP (src, 1))]
2161 > move2add_last_label_luid)
2162 && (MODES_OK_FOR_MOVE2ADD
2163 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2165 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2166 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2167 offset = reg_offset[REGNO (XEXP (src, 1))];
2168 /* Maybe the first register is known to be a
2169 constant. */
2170 else if (reg_set_luid[REGNO (base_reg)]
2171 > move2add_last_label_luid
2172 && (MODES_OK_FOR_MOVE2ADD
2173 (dst_mode, reg_mode[REGNO (base_reg)]))
2174 && reg_base_reg[REGNO (base_reg)] < 0
2175 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2177 offset = reg_offset[REGNO (base_reg)];
2178 base_reg = XEXP (src, 1);
2180 else
2181 goto invalidate;
2183 else
2184 goto invalidate;
2186 break;
2189 goto invalidate;
2191 case REG:
2192 base_reg = src;
2193 offset = 0;
2194 break;
2196 case CONST_INT:
2197 /* Start tracking the register as a constant. */
2198 reg_base_reg[regno] = -1;
2199 reg_symbol_ref[regno] = NULL_RTX;
2200 reg_offset[regno] = INTVAL (SET_SRC (set));
2201 /* We assign the same luid to all registers set to constants. */
2202 reg_set_luid[regno] = move2add_last_label_luid + 1;
2203 reg_mode[regno] = mode;
2204 return;
2206 default:
2207 invalidate:
2208 /* Invalidate the contents of the register. */
2209 reg_set_luid[regno] = 0;
2210 return;
2213 base_regno = REGNO (base_reg);
2214 /* If information about the base register is not valid, set it
2215 up as a new base register, pretending its value is known
2216 starting from the current insn. */
2217 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2219 reg_base_reg[base_regno] = base_regno;
2220 reg_symbol_ref[base_regno] = NULL_RTX;
2221 reg_offset[base_regno] = 0;
2222 reg_set_luid[base_regno] = move2add_luid;
2223 reg_mode[base_regno] = mode;
2225 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2226 reg_mode[base_regno]))
2227 goto invalidate;
2229 reg_mode[regno] = mode;
2231 /* Copy base information from our base register. */
2232 reg_set_luid[regno] = reg_set_luid[base_regno];
2233 reg_base_reg[regno] = reg_base_reg[base_regno];
2234 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2236 /* Compute the sum of the offsets or constants. */
2237 reg_offset[regno] = trunc_int_for_mode (offset
2238 + reg_offset[base_regno],
2239 dst_mode);
2241 else
2243 unsigned int endregno = regno + nregs;
2245 for (i = regno; i < endregno; i++)
2246 /* Reset the information about this register. */
2247 reg_set_luid[i] = 0;
2251 static bool
2252 gate_handle_postreload (void)
2254 return (optimize > 0 && reload_completed);
2258 static unsigned int
2259 rest_of_handle_postreload (void)
2261 if (!dbg_cnt (postreload_cse))
2262 return 0;
2264 /* Do a very simple CSE pass over just the hard registers. */
2265 reload_cse_regs (get_insns ());
2266 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2267 Remove any EH edges associated with them. */
2268 if (cfun->can_throw_non_call_exceptions)
2269 purge_all_dead_edges ();
2271 return 0;
2274 struct rtl_opt_pass pass_postreload_cse =
2277 RTL_PASS,
2278 "postreload", /* name */
2279 gate_handle_postreload, /* gate */
2280 rest_of_handle_postreload, /* execute */
2281 NULL, /* sub */
2282 NULL, /* next */
2283 0, /* static_pass_number */
2284 TV_RELOAD_CSE_REGS, /* tv_id */
2285 0, /* properties_required */
2286 0, /* properties_provided */
2287 0, /* properties_destroyed */
2288 0, /* todo_flags_start */
2289 TODO_df_finish | TODO_verify_rtl_sharing |
2290 TODO_dump_func /* todo_flags_finish */