(decl_function_context): Handle QUAL_UNION_TYPE.
[official-gcc.git] / gcc / explow.c
blob832f37f070ce925992603507a7981262ee2529b7
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "rtl.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "expr.h"
27 #include "hard-reg-set.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "insn-flags.h"
31 #include "insn-codes.h"
33 static rtx break_out_memory_refs PROTO((rtx));
35 /* Return an rtx for the sum of X and the integer C.
37 This function should be used via the `plus_constant' macro. */
39 rtx
40 plus_constant_wide (x, c)
41 register rtx x;
42 register HOST_WIDE_INT c;
44 register RTX_CODE code;
45 register enum machine_mode mode;
46 register rtx tem;
47 int all_constant = 0;
49 if (c == 0)
50 return x;
52 restart:
54 code = GET_CODE (x);
55 mode = GET_MODE (x);
56 switch (code)
58 case CONST_INT:
59 return GEN_INT (INTVAL (x) + c);
61 case CONST_DOUBLE:
63 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
64 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
65 HOST_WIDE_INT l2 = c;
66 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
67 HOST_WIDE_INT lv, hv;
69 add_double (l1, h1, l2, h2, &lv, &hv);
71 return immed_double_const (lv, hv, VOIDmode);
74 case MEM:
75 /* If this is a reference to the constant pool, try replacing it with
76 a reference to a new constant. If the resulting address isn't
77 valid, don't return it because we have no way to validize it. */
78 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
79 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
81 tem
82 = force_const_mem (GET_MODE (x),
83 plus_constant (get_pool_constant (XEXP (x, 0)),
84 c));
85 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
86 return tem;
88 break;
90 case CONST:
91 /* If adding to something entirely constant, set a flag
92 so that we can add a CONST around the result. */
93 x = XEXP (x, 0);
94 all_constant = 1;
95 goto restart;
97 case SYMBOL_REF:
98 case LABEL_REF:
99 all_constant = 1;
100 break;
102 case PLUS:
103 /* The interesting case is adding the integer to a sum.
104 Look for constant term in the sum and combine
105 with C. For an integer constant term, we make a combined
106 integer. For a constant term that is not an explicit integer,
107 we cannot really combine, but group them together anyway.
109 Use a recursive call in case the remaining operand is something
110 that we handle specially, such as a SYMBOL_REF. */
112 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
113 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
114 else if (CONSTANT_P (XEXP (x, 0)))
115 return gen_rtx (PLUS, mode,
116 plus_constant (XEXP (x, 0), c),
117 XEXP (x, 1));
118 else if (CONSTANT_P (XEXP (x, 1)))
119 return gen_rtx (PLUS, mode,
120 XEXP (x, 0),
121 plus_constant (XEXP (x, 1), c));
124 if (c != 0)
125 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
127 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
128 return x;
129 else if (all_constant)
130 return gen_rtx (CONST, mode, x);
131 else
132 return x;
135 /* This is the same as `plus_constant', except that it handles LO_SUM.
137 This function should be used via the `plus_constant_for_output' macro. */
140 plus_constant_for_output_wide (x, c)
141 register rtx x;
142 register HOST_WIDE_INT c;
144 register RTX_CODE code = GET_CODE (x);
145 register enum machine_mode mode = GET_MODE (x);
146 int all_constant = 0;
148 if (GET_CODE (x) == LO_SUM)
149 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
150 plus_constant_for_output (XEXP (x, 1), c));
152 else
153 return plus_constant (x, c);
156 /* If X is a sum, return a new sum like X but lacking any constant terms.
157 Add all the removed constant terms into *CONSTPTR.
158 X itself is not altered. The result != X if and only if
159 it is not isomorphic to X. */
162 eliminate_constant_term (x, constptr)
163 rtx x;
164 rtx *constptr;
166 register rtx x0, x1;
167 rtx tem;
169 if (GET_CODE (x) != PLUS)
170 return x;
172 /* First handle constants appearing at this level explicitly. */
173 if (GET_CODE (XEXP (x, 1)) == CONST_INT
174 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
175 XEXP (x, 1)))
176 && GET_CODE (tem) == CONST_INT)
178 *constptr = tem;
179 return eliminate_constant_term (XEXP (x, 0), constptr);
182 tem = const0_rtx;
183 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
184 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
185 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
186 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
187 *constptr, tem))
188 && GET_CODE (tem) == CONST_INT)
190 *constptr = tem;
191 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
194 return x;
197 /* Returns the insn that next references REG after INSN, or 0
198 if REG is clobbered before next referenced or we cannot find
199 an insn that references REG in a straight-line piece of code. */
202 find_next_ref (reg, insn)
203 rtx reg;
204 rtx insn;
206 rtx next;
208 for (insn = NEXT_INSN (insn); insn; insn = next)
210 next = NEXT_INSN (insn);
211 if (GET_CODE (insn) == NOTE)
212 continue;
213 if (GET_CODE (insn) == CODE_LABEL
214 || GET_CODE (insn) == BARRIER)
215 return 0;
216 if (GET_CODE (insn) == INSN
217 || GET_CODE (insn) == JUMP_INSN
218 || GET_CODE (insn) == CALL_INSN)
220 if (reg_set_p (reg, insn))
221 return 0;
222 if (reg_mentioned_p (reg, PATTERN (insn)))
223 return insn;
224 if (GET_CODE (insn) == JUMP_INSN)
226 if (simplejump_p (insn))
227 next = JUMP_LABEL (insn);
228 else
229 return 0;
231 if (GET_CODE (insn) == CALL_INSN
232 && REGNO (reg) < FIRST_PSEUDO_REGISTER
233 && call_used_regs[REGNO (reg)])
234 return 0;
236 else
237 abort ();
239 return 0;
242 /* Return an rtx for the size in bytes of the value of EXP. */
245 expr_size (exp)
246 tree exp;
248 tree size = size_in_bytes (TREE_TYPE (exp));
250 if (TREE_CODE (size) != INTEGER_CST
251 && contains_placeholder_p (size))
252 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
257 /* Return a copy of X in which all memory references
258 and all constants that involve symbol refs
259 have been replaced with new temporary registers.
260 Also emit code to load the memory locations and constants
261 into those registers.
263 If X contains no such constants or memory references,
264 X itself (not a copy) is returned.
266 If a constant is found in the address that is not a legitimate constant
267 in an insn, it is left alone in the hope that it might be valid in the
268 address.
270 X may contain no arithmetic except addition, subtraction and multiplication.
271 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
273 static rtx
274 break_out_memory_refs (x)
275 register rtx x;
277 if (GET_CODE (x) == MEM
278 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
279 && GET_MODE (x) != VOIDmode))
280 x = force_reg (GET_MODE (x), x);
281 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
282 || GET_CODE (x) == MULT)
284 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
285 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
287 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
288 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
291 return x;
294 #ifdef POINTERS_EXTEND_UNSIGNED
296 /* Given X, a memory address in ptr_mode, convert it to an address
297 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
298 the fact that pointers are not allowed to overflow by commuting arithmetic
299 operations over conversions so that address arithmetic insns can be
300 used. */
303 convert_memory_address (to_mode, x)
304 enum machine_mode to_mode;
305 rtx x;
307 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
308 rtx temp;
310 /* Here we handle some special cases. If none of them apply, fall through
311 to the default case. */
312 switch (GET_CODE (x))
314 case CONST_INT:
315 case CONST_DOUBLE:
316 return x;
318 case LABEL_REF:
319 return gen_rtx (LABEL_REF, to_mode, XEXP (x, 0));
321 case SYMBOL_REF:
322 temp = gen_rtx (SYMBOL_REF, to_mode, XSTR (x, 0));
323 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
324 return temp;
326 case CONST:
327 return gen_rtx (CONST, to_mode,
328 convert_memory_address (to_mode, XEXP (x, 0)));
330 case PLUS:
331 case MULT:
332 /* For addition the second operand is a small constant, we can safely
333 permute the converstion and addition operation. We can always safely
334 permute them if we are making the address narrower. In addition,
335 always permute the operations if this is a constant. */
336 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
337 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
338 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
339 || CONSTANT_P (XEXP (x, 0)))))
340 return gen_rtx (GET_CODE (x), to_mode,
341 convert_memory_address (to_mode, XEXP (x, 0)),
342 convert_memory_address (to_mode, XEXP (x, 1)));
345 return convert_modes (to_mode, from_mode,
346 x, POINTERS_EXTEND_UNSIGNED);
348 #endif
350 /* Given a memory address or facsimile X, construct a new address,
351 currently equivalent, that is stable: future stores won't change it.
353 X must be composed of constants, register and memory references
354 combined with addition, subtraction and multiplication:
355 in other words, just what you can get from expand_expr if sum_ok is 1.
357 Works by making copies of all regs and memory locations used
358 by X and combining them the same way X does.
359 You could also stabilize the reference to this address
360 by copying the address to a register with copy_to_reg;
361 but then you wouldn't get indexed addressing in the reference. */
364 copy_all_regs (x)
365 register rtx x;
367 if (GET_CODE (x) == REG)
369 if (REGNO (x) != FRAME_POINTER_REGNUM
370 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
371 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
372 #endif
374 x = copy_to_reg (x);
376 else if (GET_CODE (x) == MEM)
377 x = copy_to_reg (x);
378 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
379 || GET_CODE (x) == MULT)
381 register rtx op0 = copy_all_regs (XEXP (x, 0));
382 register rtx op1 = copy_all_regs (XEXP (x, 1));
383 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
384 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
386 return x;
389 /* Return something equivalent to X but valid as a memory address
390 for something of mode MODE. When X is not itself valid, this
391 works by copying X or subexpressions of it into registers. */
394 memory_address (mode, x)
395 enum machine_mode mode;
396 register rtx x;
398 register rtx oldx = x;
400 #ifdef POINTERS_EXTEND_UNSIGNED
401 if (GET_MODE (x) == ptr_mode)
402 x = convert_memory_address (Pmode, x);
403 #endif
405 /* By passing constant addresses thru registers
406 we get a chance to cse them. */
407 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
408 x = force_reg (Pmode, x);
410 /* Accept a QUEUED that refers to a REG
411 even though that isn't a valid address.
412 On attempting to put this in an insn we will call protect_from_queue
413 which will turn it into a REG, which is valid. */
414 else if (GET_CODE (x) == QUEUED
415 && GET_CODE (QUEUED_VAR (x)) == REG)
418 /* We get better cse by rejecting indirect addressing at this stage.
419 Let the combiner create indirect addresses where appropriate.
420 For now, generate the code so that the subexpressions useful to share
421 are visible. But not if cse won't be done! */
422 else
424 if (! cse_not_expected && GET_CODE (x) != REG)
425 x = break_out_memory_refs (x);
427 /* At this point, any valid address is accepted. */
428 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
430 /* If it was valid before but breaking out memory refs invalidated it,
431 use it the old way. */
432 if (memory_address_p (mode, oldx))
433 goto win2;
435 /* Perform machine-dependent transformations on X
436 in certain cases. This is not necessary since the code
437 below can handle all possible cases, but machine-dependent
438 transformations can make better code. */
439 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
441 /* PLUS and MULT can appear in special ways
442 as the result of attempts to make an address usable for indexing.
443 Usually they are dealt with by calling force_operand, below.
444 But a sum containing constant terms is special
445 if removing them makes the sum a valid address:
446 then we generate that address in a register
447 and index off of it. We do this because it often makes
448 shorter code, and because the addresses thus generated
449 in registers often become common subexpressions. */
450 if (GET_CODE (x) == PLUS)
452 rtx constant_term = const0_rtx;
453 rtx y = eliminate_constant_term (x, &constant_term);
454 if (constant_term == const0_rtx
455 || ! memory_address_p (mode, y))
456 x = force_operand (x, NULL_RTX);
457 else
459 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
460 if (! memory_address_p (mode, y))
461 x = force_operand (x, NULL_RTX);
462 else
463 x = y;
467 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
468 x = force_operand (x, NULL_RTX);
470 /* If we have a register that's an invalid address,
471 it must be a hard reg of the wrong class. Copy it to a pseudo. */
472 else if (GET_CODE (x) == REG)
473 x = copy_to_reg (x);
475 /* Last resort: copy the value to a register, since
476 the register is a valid address. */
477 else
478 x = force_reg (Pmode, x);
480 goto done;
482 win2:
483 x = oldx;
484 win:
485 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
486 /* Don't copy an addr via a reg if it is one of our stack slots. */
487 && ! (GET_CODE (x) == PLUS
488 && (XEXP (x, 0) == virtual_stack_vars_rtx
489 || XEXP (x, 0) == virtual_incoming_args_rtx)))
491 if (general_operand (x, Pmode))
492 x = force_reg (Pmode, x);
493 else
494 x = force_operand (x, NULL_RTX);
498 done:
500 /* If we didn't change the address, we are done. Otherwise, mark
501 a reg as a pointer if we have REG or REG + CONST_INT. */
502 if (oldx == x)
503 return x;
504 else if (GET_CODE (x) == REG)
505 mark_reg_pointer (x, 1);
506 else if (GET_CODE (x) == PLUS
507 && GET_CODE (XEXP (x, 0)) == REG
508 && GET_CODE (XEXP (x, 1)) == CONST_INT)
509 mark_reg_pointer (XEXP (x, 0), 1);
511 /* OLDX may have been the address on a temporary. Update the address
512 to indicate that X is now used. */
513 update_temp_slot_address (oldx, x);
515 return x;
518 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
521 memory_address_noforce (mode, x)
522 enum machine_mode mode;
523 rtx x;
525 int ambient_force_addr = flag_force_addr;
526 rtx val;
528 flag_force_addr = 0;
529 val = memory_address (mode, x);
530 flag_force_addr = ambient_force_addr;
531 return val;
534 /* Convert a mem ref into one with a valid memory address.
535 Pass through anything else unchanged. */
538 validize_mem (ref)
539 rtx ref;
541 if (GET_CODE (ref) != MEM)
542 return ref;
543 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
544 return ref;
545 /* Don't alter REF itself, since that is probably a stack slot. */
546 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
549 /* Return a modified copy of X with its memory address copied
550 into a temporary register to protect it from side effects.
551 If X is not a MEM, it is returned unchanged (and not copied).
552 Perhaps even if it is a MEM, if there is no need to change it. */
555 stabilize (x)
556 rtx x;
558 register rtx addr;
559 if (GET_CODE (x) != MEM)
560 return x;
561 addr = XEXP (x, 0);
562 if (rtx_unstable_p (addr))
564 rtx temp = copy_all_regs (addr);
565 rtx mem;
566 if (GET_CODE (temp) != REG)
567 temp = copy_to_reg (temp);
568 mem = gen_rtx (MEM, GET_MODE (x), temp);
570 /* Mark returned memref with in_struct if it's in an array or
571 structure. Copy const and volatile from original memref. */
573 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
574 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
575 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
576 return mem;
578 return x;
581 /* Copy the value or contents of X to a new temp reg and return that reg. */
584 copy_to_reg (x)
585 rtx x;
587 register rtx temp = gen_reg_rtx (GET_MODE (x));
589 /* If not an operand, must be an address with PLUS and MULT so
590 do the computation. */
591 if (! general_operand (x, VOIDmode))
592 x = force_operand (x, temp);
594 if (x != temp)
595 emit_move_insn (temp, x);
597 return temp;
600 /* Like copy_to_reg but always give the new register mode Pmode
601 in case X is a constant. */
604 copy_addr_to_reg (x)
605 rtx x;
607 return copy_to_mode_reg (Pmode, x);
610 /* Like copy_to_reg but always give the new register mode MODE
611 in case X is a constant. */
614 copy_to_mode_reg (mode, x)
615 enum machine_mode mode;
616 rtx x;
618 register rtx temp = gen_reg_rtx (mode);
620 /* If not an operand, must be an address with PLUS and MULT so
621 do the computation. */
622 if (! general_operand (x, VOIDmode))
623 x = force_operand (x, temp);
625 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
626 abort ();
627 if (x != temp)
628 emit_move_insn (temp, x);
629 return temp;
632 /* Load X into a register if it is not already one.
633 Use mode MODE for the register.
634 X should be valid for mode MODE, but it may be a constant which
635 is valid for all integer modes; that's why caller must specify MODE.
637 The caller must not alter the value in the register we return,
638 since we mark it as a "constant" register. */
641 force_reg (mode, x)
642 enum machine_mode mode;
643 rtx x;
645 register rtx temp, insn, set;
647 if (GET_CODE (x) == REG)
648 return x;
649 temp = gen_reg_rtx (mode);
650 insn = emit_move_insn (temp, x);
652 /* Let optimizers know that TEMP's value never changes
653 and that X can be substituted for it. Don't get confused
654 if INSN set something else (such as a SUBREG of TEMP). */
655 if (CONSTANT_P (x)
656 && (set = single_set (insn)) != 0
657 && SET_DEST (set) == temp)
659 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
661 if (note)
662 XEXP (note, 0) = x;
663 else
664 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
666 return temp;
669 /* If X is a memory ref, copy its contents to a new temp reg and return
670 that reg. Otherwise, return X. */
673 force_not_mem (x)
674 rtx x;
676 register rtx temp;
677 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
678 return x;
679 temp = gen_reg_rtx (GET_MODE (x));
680 emit_move_insn (temp, x);
681 return temp;
684 /* Copy X to TARGET (if it's nonzero and a reg)
685 or to a new temp reg and return that reg.
686 MODE is the mode to use for X in case it is a constant. */
689 copy_to_suggested_reg (x, target, mode)
690 rtx x, target;
691 enum machine_mode mode;
693 register rtx temp;
695 if (target && GET_CODE (target) == REG)
696 temp = target;
697 else
698 temp = gen_reg_rtx (mode);
700 emit_move_insn (temp, x);
701 return temp;
704 /* Return the mode to use to store a scalar of TYPE and MODE.
705 PUNSIGNEDP points to the signedness of the type and may be adjusted
706 to show what signedness to use on extension operations.
708 FOR_CALL is non-zero if this call is promoting args for a call. */
710 enum machine_mode
711 promote_mode (type, mode, punsignedp, for_call)
712 tree type;
713 enum machine_mode mode;
714 int *punsignedp;
715 int for_call;
717 enum tree_code code = TREE_CODE (type);
718 int unsignedp = *punsignedp;
720 #ifdef PROMOTE_FOR_CALL_ONLY
721 if (! for_call)
722 return mode;
723 #endif
725 switch (code)
727 #ifdef PROMOTE_MODE
728 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
729 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
730 PROMOTE_MODE (mode, unsignedp, type);
731 break;
732 #endif
734 #ifdef POINTERS_EXTEND_UNSIGNED
735 case REFERENCE_TYPE:
736 case POINTER_TYPE:
737 mode = Pmode;
738 unsignedp = POINTERS_EXTEND_UNSIGNED;
739 break;
740 #endif
743 *punsignedp = unsignedp;
744 return mode;
747 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
748 This pops when ADJUST is positive. ADJUST need not be constant. */
750 void
751 adjust_stack (adjust)
752 rtx adjust;
754 rtx temp;
755 adjust = protect_from_queue (adjust, 0);
757 if (adjust == const0_rtx)
758 return;
760 temp = expand_binop (Pmode,
761 #ifdef STACK_GROWS_DOWNWARD
762 add_optab,
763 #else
764 sub_optab,
765 #endif
766 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
767 OPTAB_LIB_WIDEN);
769 if (temp != stack_pointer_rtx)
770 emit_move_insn (stack_pointer_rtx, temp);
773 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
774 This pushes when ADJUST is positive. ADJUST need not be constant. */
776 void
777 anti_adjust_stack (adjust)
778 rtx adjust;
780 rtx temp;
781 adjust = protect_from_queue (adjust, 0);
783 if (adjust == const0_rtx)
784 return;
786 temp = expand_binop (Pmode,
787 #ifdef STACK_GROWS_DOWNWARD
788 sub_optab,
789 #else
790 add_optab,
791 #endif
792 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
793 OPTAB_LIB_WIDEN);
795 if (temp != stack_pointer_rtx)
796 emit_move_insn (stack_pointer_rtx, temp);
799 /* Round the size of a block to be pushed up to the boundary required
800 by this machine. SIZE is the desired size, which need not be constant. */
803 round_push (size)
804 rtx size;
806 #ifdef STACK_BOUNDARY
807 int align = STACK_BOUNDARY / BITS_PER_UNIT;
808 if (align == 1)
809 return size;
810 if (GET_CODE (size) == CONST_INT)
812 int new = (INTVAL (size) + align - 1) / align * align;
813 if (INTVAL (size) != new)
814 size = GEN_INT (new);
816 else
818 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
819 but we know it can't. So add ourselves and then do
820 TRUNC_DIV_EXPR. */
821 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
822 NULL_RTX, 1, OPTAB_LIB_WIDEN);
823 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
824 NULL_RTX, 1);
825 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
827 #endif /* STACK_BOUNDARY */
828 return size;
831 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
832 to a previously-created save area. If no save area has been allocated,
833 this function will allocate one. If a save area is specified, it
834 must be of the proper mode.
836 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
837 are emitted at the current position. */
839 void
840 emit_stack_save (save_level, psave, after)
841 enum save_level save_level;
842 rtx *psave;
843 rtx after;
845 rtx sa = *psave;
846 /* The default is that we use a move insn and save in a Pmode object. */
847 rtx (*fcn) () = gen_move_insn;
848 enum machine_mode mode = Pmode;
850 /* See if this machine has anything special to do for this kind of save. */
851 switch (save_level)
853 #ifdef HAVE_save_stack_block
854 case SAVE_BLOCK:
855 if (HAVE_save_stack_block)
857 fcn = gen_save_stack_block;
858 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
860 break;
861 #endif
862 #ifdef HAVE_save_stack_function
863 case SAVE_FUNCTION:
864 if (HAVE_save_stack_function)
866 fcn = gen_save_stack_function;
867 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
869 break;
870 #endif
871 #ifdef HAVE_save_stack_nonlocal
872 case SAVE_NONLOCAL:
873 if (HAVE_save_stack_nonlocal)
875 fcn = gen_save_stack_nonlocal;
876 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
878 break;
879 #endif
882 /* If there is no save area and we have to allocate one, do so. Otherwise
883 verify the save area is the proper mode. */
885 if (sa == 0)
887 if (mode != VOIDmode)
889 if (save_level == SAVE_NONLOCAL)
890 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
891 else
892 *psave = sa = gen_reg_rtx (mode);
895 else
897 if (mode == VOIDmode || GET_MODE (sa) != mode)
898 abort ();
901 if (after)
903 rtx seq;
905 start_sequence ();
906 /* We must validize inside the sequence, to ensure that any instructions
907 created by the validize call also get moved to the right place. */
908 if (sa != 0)
909 sa = validize_mem (sa);
910 emit_insn (fcn (sa, stack_pointer_rtx));
911 seq = gen_sequence ();
912 end_sequence ();
913 emit_insn_after (seq, after);
915 else
917 if (sa != 0)
918 sa = validize_mem (sa);
919 emit_insn (fcn (sa, stack_pointer_rtx));
923 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
924 area made by emit_stack_save. If it is zero, we have nothing to do.
926 Put any emitted insns after insn AFTER, if nonzero, otherwise at
927 current position. */
929 void
930 emit_stack_restore (save_level, sa, after)
931 enum save_level save_level;
932 rtx after;
933 rtx sa;
935 /* The default is that we use a move insn. */
936 rtx (*fcn) () = gen_move_insn;
938 /* See if this machine has anything special to do for this kind of save. */
939 switch (save_level)
941 #ifdef HAVE_restore_stack_block
942 case SAVE_BLOCK:
943 if (HAVE_restore_stack_block)
944 fcn = gen_restore_stack_block;
945 break;
946 #endif
947 #ifdef HAVE_restore_stack_function
948 case SAVE_FUNCTION:
949 if (HAVE_restore_stack_function)
950 fcn = gen_restore_stack_function;
951 break;
952 #endif
953 #ifdef HAVE_restore_stack_nonlocal
955 case SAVE_NONLOCAL:
956 if (HAVE_restore_stack_nonlocal)
957 fcn = gen_restore_stack_nonlocal;
958 break;
959 #endif
962 if (sa != 0)
963 sa = validize_mem (sa);
965 if (after)
967 rtx seq;
969 start_sequence ();
970 emit_insn (fcn (stack_pointer_rtx, sa));
971 seq = gen_sequence ();
972 end_sequence ();
973 emit_insn_after (seq, after);
975 else
976 emit_insn (fcn (stack_pointer_rtx, sa));
979 /* Return an rtx representing the address of an area of memory dynamically
980 pushed on the stack. This region of memory is always aligned to
981 a multiple of BIGGEST_ALIGNMENT.
983 Any required stack pointer alignment is preserved.
985 SIZE is an rtx representing the size of the area.
986 TARGET is a place in which the address can be placed.
988 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
991 allocate_dynamic_stack_space (size, target, known_align)
992 rtx size;
993 rtx target;
994 int known_align;
996 /* If we're asking for zero bytes, it doesn't matter what we point
997 to since we can't dereference it. But return a reasonable
998 address anyway. */
999 if (size == const0_rtx)
1000 return virtual_stack_dynamic_rtx;
1002 /* Otherwise, show we're calling alloca or equivalent. */
1003 current_function_calls_alloca = 1;
1005 /* Ensure the size is in the proper mode. */
1006 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1007 size = convert_to_mode (Pmode, size, 1);
1009 /* We will need to ensure that the address we return is aligned to
1010 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1011 always know its final value at this point in the compilation (it
1012 might depend on the size of the outgoing parameter lists, for
1013 example), so we must align the value to be returned in that case.
1014 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1015 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1016 We must also do an alignment operation on the returned value if
1017 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1019 If we have to align, we must leave space in SIZE for the hole
1020 that might result from the alignment operation. */
1022 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1023 #define MUST_ALIGN 1
1024 #else
1025 #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1026 #endif
1028 if (MUST_ALIGN)
1030 if (GET_CODE (size) == CONST_INT)
1031 size = GEN_INT (INTVAL (size)
1032 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1033 else
1034 size = expand_binop (Pmode, add_optab, size,
1035 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1036 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1039 #ifdef SETJMP_VIA_SAVE_AREA
1040 /* If setjmp restores regs from a save area in the stack frame,
1041 avoid clobbering the reg save area. Note that the offset of
1042 virtual_incoming_args_rtx includes the preallocated stack args space.
1043 It would be no problem to clobber that, but it's on the wrong side
1044 of the old save area. */
1046 rtx dynamic_offset
1047 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1048 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1049 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1050 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1052 #endif /* SETJMP_VIA_SAVE_AREA */
1054 /* Round the size to a multiple of the required stack alignment.
1055 Since the stack if presumed to be rounded before this allocation,
1056 this will maintain the required alignment.
1058 If the stack grows downward, we could save an insn by subtracting
1059 SIZE from the stack pointer and then aligning the stack pointer.
1060 The problem with this is that the stack pointer may be unaligned
1061 between the execution of the subtraction and alignment insns and
1062 some machines do not allow this. Even on those that do, some
1063 signal handlers malfunction if a signal should occur between those
1064 insns. Since this is an extremely rare event, we have no reliable
1065 way of knowing which systems have this problem. So we avoid even
1066 momentarily mis-aligning the stack. */
1068 #ifdef STACK_BOUNDARY
1069 /* If we added a variable amount to SIZE,
1070 we can no longer assume it is aligned. */
1071 #if !defined (SETJMP_VIA_SAVE_AREA)
1072 if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
1073 #endif
1074 size = round_push (size);
1075 #endif
1077 do_pending_stack_adjust ();
1079 /* Don't use a TARGET that isn't a pseudo. */
1080 if (target == 0 || GET_CODE (target) != REG
1081 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1082 target = gen_reg_rtx (Pmode);
1084 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1086 #ifndef STACK_GROWS_DOWNWARD
1087 emit_move_insn (target, virtual_stack_dynamic_rtx);
1088 #endif
1090 /* Perform the required allocation from the stack. Some systems do
1091 this differently than simply incrementing/decrementing from the
1092 stack pointer. */
1093 #ifdef HAVE_allocate_stack
1094 if (HAVE_allocate_stack)
1096 enum machine_mode mode
1097 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
1099 size = convert_modes (mode, ptr_mode, size, 1);
1101 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1102 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1103 (size, mode)))
1104 size = copy_to_mode_reg (mode, size);
1106 emit_insn (gen_allocate_stack (size));
1108 else
1109 #endif
1111 size = convert_modes (Pmode, ptr_mode, size, 1);
1112 anti_adjust_stack (size);
1115 #ifdef STACK_GROWS_DOWNWARD
1116 emit_move_insn (target, virtual_stack_dynamic_rtx);
1117 #endif
1119 if (MUST_ALIGN)
1121 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1122 but we know it can't. So add ourselves and then do
1123 TRUNC_DIV_EXPR. */
1124 target = expand_binop (Pmode, add_optab, target,
1125 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1126 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1127 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1128 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1129 NULL_RTX, 1);
1130 target = expand_mult (Pmode, target,
1131 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1132 NULL_RTX, 1);
1135 /* Some systems require a particular insn to refer to the stack
1136 to make the pages exist. */
1137 #ifdef HAVE_probe
1138 if (HAVE_probe)
1139 emit_insn (gen_probe ());
1140 #endif
1142 /* Record the new stack level for nonlocal gotos. */
1143 if (nonlocal_goto_handler_slot != 0)
1144 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1146 return target;
1149 /* Return an rtx representing the register or memory location
1150 in which a scalar value of data type VALTYPE
1151 was returned by a function call to function FUNC.
1152 FUNC is a FUNCTION_DECL node if the precise function is known,
1153 otherwise 0. */
1156 hard_function_value (valtype, func)
1157 tree valtype;
1158 tree func;
1160 rtx val = FUNCTION_VALUE (valtype, func);
1161 if (GET_CODE (val) == REG
1162 && GET_MODE (val) == BLKmode)
1164 int bytes = int_size_in_bytes (valtype);
1165 enum machine_mode tmpmode;
1166 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1167 tmpmode != MAX_MACHINE_MODE;
1168 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1170 /* Have we found a large enough mode? */
1171 if (GET_MODE_SIZE (tmpmode) >= bytes)
1172 break;
1175 /* No suitable mode found. */
1176 if (tmpmode == MAX_MACHINE_MODE)
1177 abort ();
1179 PUT_MODE (val, tmpmode);
1181 return val;
1184 /* Return an rtx representing the register or memory location
1185 in which a scalar value of mode MODE was returned by a library call. */
1188 hard_libcall_value (mode)
1189 enum machine_mode mode;
1191 return LIBCALL_VALUE (mode);
1194 /* Look up the tree code for a given rtx code
1195 to provide the arithmetic operation for REAL_ARITHMETIC.
1196 The function returns an int because the caller may not know
1197 what `enum tree_code' means. */
1200 rtx_to_tree_code (code)
1201 enum rtx_code code;
1203 enum tree_code tcode;
1205 switch (code)
1207 case PLUS:
1208 tcode = PLUS_EXPR;
1209 break;
1210 case MINUS:
1211 tcode = MINUS_EXPR;
1212 break;
1213 case MULT:
1214 tcode = MULT_EXPR;
1215 break;
1216 case DIV:
1217 tcode = RDIV_EXPR;
1218 break;
1219 case SMIN:
1220 tcode = MIN_EXPR;
1221 break;
1222 case SMAX:
1223 tcode = MAX_EXPR;
1224 break;
1225 default:
1226 tcode = LAST_AND_UNUSED_TREE_CODE;
1227 break;
1229 return ((int) tcode);