(decl_function_context): Handle QUAL_UNION_TYPE.
[official-gcc.git] / gcc / emit-rtl.c
blob337e9732f52aff3eca04c3f6ccc7877c10683078
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 88, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* Middle-to-low level generation of rtx code and insns.
24 This file contains the functions `gen_rtx', `gen_reg_rtx'
25 and `gen_label_rtx' that are the usual ways of creating rtl
26 expressions for most purposes.
28 It also has the functions for creating insns and linking
29 them in the doubly-linked chain.
31 The patterns of the insns are created by machine-dependent
32 routines in insn-emit.c, which is generated automatically from
33 the machine description. These routines use `gen_rtx' to make
34 the individual rtx's of the pattern; what is machine dependent
35 is the kind of rtx's they make and what arguments they use. */
37 #include "config.h"
38 #ifdef __STDC__
39 #include <stdarg.h>
40 #else
41 #include <varargs.h>
42 #endif
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "insn-config.h"
51 #include "real.h"
52 #include "obstack.h"
54 #include "bytecode.h"
55 #include "machmode.h"
56 #include "bc-opcode.h"
57 #include "bc-typecd.h"
58 #include "bc-optab.h"
59 #include "bc-emit.h"
61 #include <stdio.h>
64 /* Opcode names */
65 #ifdef BCDEBUG_PRINT_CODE
66 char *opcode_name[] =
68 #include "bc-opname.h"
70 "***END***"
72 #endif
75 /* Commonly used modes. */
77 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
78 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
79 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
81 /* This is reset to LAST_VIRTUAL_REGISTER + 1 at the start of each function.
82 After rtl generation, it is 1 plus the largest register number used. */
84 int reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
86 /* This is *not* reset after each function. It gives each CODE_LABEL
87 in the entire compilation a unique label number. */
89 static int label_num = 1;
91 /* Lowest label number in current function. */
93 static int first_label_num;
95 /* Highest label number in current function.
96 Zero means use the value of label_num instead.
97 This is nonzero only when belatedly compiling an inline function. */
99 static int last_label_num;
101 /* Value label_num had when set_new_first_and_last_label_number was called.
102 If label_num has not changed since then, last_label_num is valid. */
104 static int base_label_num;
106 /* Nonzero means do not generate NOTEs for source line numbers. */
108 static int no_line_numbers;
110 /* Commonly used rtx's, so that we only need space for one copy.
111 These are initialized once for the entire compilation.
112 All of these except perhaps the floating-point CONST_DOUBLEs
113 are unique; no other rtx-object will be equal to any of these. */
115 rtx pc_rtx; /* (PC) */
116 rtx cc0_rtx; /* (CC0) */
117 rtx cc1_rtx; /* (CC1) (not actually used nowadays) */
118 rtx const0_rtx; /* (CONST_INT 0) */
119 rtx const1_rtx; /* (CONST_INT 1) */
120 rtx const2_rtx; /* (CONST_INT 2) */
121 rtx constm1_rtx; /* (CONST_INT -1) */
122 rtx const_true_rtx; /* (CONST_INT STORE_FLAG_VALUE) */
124 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
125 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
126 record a copy of const[012]_rtx. */
128 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
130 REAL_VALUE_TYPE dconst0;
131 REAL_VALUE_TYPE dconst1;
132 REAL_VALUE_TYPE dconst2;
133 REAL_VALUE_TYPE dconstm1;
135 /* All references to the following fixed hard registers go through
136 these unique rtl objects. On machines where the frame-pointer and
137 arg-pointer are the same register, they use the same unique object.
139 After register allocation, other rtl objects which used to be pseudo-regs
140 may be clobbered to refer to the frame-pointer register.
141 But references that were originally to the frame-pointer can be
142 distinguished from the others because they contain frame_pointer_rtx.
144 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
145 tricky: until register elimination has taken place hard_frame_pointer_rtx
146 should be used if it is being set, and frame_pointer_rtx otherwise. After
147 register elimination hard_frame_pointer_rtx should always be used.
148 On machines where the two registers are same (most) then these are the
149 same.
151 In an inline procedure, the stack and frame pointer rtxs may not be
152 used for anything else. */
153 rtx stack_pointer_rtx; /* (REG:Pmode STACK_POINTER_REGNUM) */
154 rtx frame_pointer_rtx; /* (REG:Pmode FRAME_POINTER_REGNUM) */
155 rtx hard_frame_pointer_rtx; /* (REG:Pmode HARD_FRAME_POINTER_REGNUM) */
156 rtx arg_pointer_rtx; /* (REG:Pmode ARG_POINTER_REGNUM) */
157 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
158 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
159 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
160 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
161 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
163 /* This is used to implement __builtin_return_address for some machines.
164 See for instance the MIPS port. */
165 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
167 rtx virtual_incoming_args_rtx; /* (REG:Pmode VIRTUAL_INCOMING_ARGS_REGNUM) */
168 rtx virtual_stack_vars_rtx; /* (REG:Pmode VIRTUAL_STACK_VARS_REGNUM) */
169 rtx virtual_stack_dynamic_rtx; /* (REG:Pmode VIRTUAL_STACK_DYNAMIC_REGNUM) */
170 rtx virtual_outgoing_args_rtx; /* (REG:Pmode VIRTUAL_OUTGOING_ARGS_REGNUM) */
172 /* We make one copy of (const_int C) where C is in
173 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
174 to save space during the compilation and simplify comparisons of
175 integers. */
177 #define MAX_SAVED_CONST_INT 64
179 static rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
181 /* The ends of the doubly-linked chain of rtl for the current function.
182 Both are reset to null at the start of rtl generation for the function.
184 start_sequence saves both of these on `sequence_stack' along with
185 `sequence_rtl_expr' and then starts a new, nested sequence of insns. */
187 static rtx first_insn = NULL;
188 static rtx last_insn = NULL;
190 /* RTL_EXPR within which the current sequence will be placed. Use to
191 prevent reuse of any temporaries within the sequence until after the
192 RTL_EXPR is emitted. */
194 tree sequence_rtl_expr = NULL;
196 /* INSN_UID for next insn emitted.
197 Reset to 1 for each function compiled. */
199 static int cur_insn_uid = 1;
201 /* Line number and source file of the last line-number NOTE emitted.
202 This is used to avoid generating duplicates. */
204 static int last_linenum = 0;
205 static char *last_filename = 0;
207 /* A vector indexed by pseudo reg number. The allocated length
208 of this vector is regno_pointer_flag_length. Since this
209 vector is needed during the expansion phase when the total
210 number of registers in the function is not yet known,
211 it is copied and made bigger when necessary. */
213 char *regno_pointer_flag;
214 int regno_pointer_flag_length;
216 /* Indexed by pseudo register number, if nonzero gives the known alignment
217 for that pseudo (if regno_pointer_flag is set).
218 Allocated in parallel with regno_pointer_flag. */
219 char *regno_pointer_align;
221 /* Indexed by pseudo register number, gives the rtx for that pseudo.
222 Allocated in parallel with regno_pointer_flag. */
224 rtx *regno_reg_rtx;
226 /* Stack of pending (incomplete) sequences saved by `start_sequence'.
227 Each element describes one pending sequence.
228 The main insn-chain is saved in the last element of the chain,
229 unless the chain is empty. */
231 struct sequence_stack *sequence_stack;
233 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
234 shortly thrown away. We use two mechanisms to prevent this waste:
236 First, we keep a list of the expressions used to represent the sequence
237 stack in sequence_element_free_list.
239 Second, for sizes up to 5 elements, we keep a SEQUENCE and its associated
240 rtvec for use by gen_sequence. One entry for each size is sufficient
241 because most cases are calls to gen_sequence followed by immediately
242 emitting the SEQUENCE. Reuse is safe since emitting a sequence is
243 destructive on the insn in it anyway and hence can't be redone.
245 We do not bother to save this cached data over nested function calls.
246 Instead, we just reinitialize them. */
248 #define SEQUENCE_RESULT_SIZE 5
250 static struct sequence_stack *sequence_element_free_list;
251 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
253 /* During RTL generation, we also keep a list of free INSN rtl codes. */
254 static rtx free_insn;
256 extern int rtx_equal_function_value_matters;
258 /* Filename and line number of last line-number note,
259 whether we actually emitted it or not. */
260 extern char *emit_filename;
261 extern int emit_lineno;
263 rtx change_address ();
264 void init_emit ();
266 extern struct obstack *rtl_obstack;
268 extern int stack_depth;
269 extern int max_stack_depth;
271 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
273 ** This routine generates an RTX of the size specified by
274 ** <code>, which is an RTX code. The RTX structure is initialized
275 ** from the arguments <element1> through <elementn>, which are
276 ** interpreted according to the specific RTX type's format. The
277 ** special machine mode associated with the rtx (if any) is specified
278 ** in <mode>.
280 ** gen_rtx can be invoked in a way which resembles the lisp-like
281 ** rtx it will generate. For example, the following rtx structure:
283 ** (plus:QI (mem:QI (reg:SI 1))
284 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
286 ** ...would be generated by the following C code:
288 ** gen_rtx (PLUS, QImode,
289 ** gen_rtx (MEM, QImode,
290 ** gen_rtx (REG, SImode, 1)),
291 ** gen_rtx (MEM, QImode,
292 ** gen_rtx (PLUS, SImode,
293 ** gen_rtx (REG, SImode, 2),
294 ** gen_rtx (REG, SImode, 3)))),
297 /*VARARGS2*/
299 gen_rtx VPROTO((enum rtx_code code, enum machine_mode mode, ...))
301 #ifndef __STDC__
302 enum rtx_code code;
303 enum machine_mode mode;
304 #endif
305 va_list p;
306 register int i; /* Array indices... */
307 register char *fmt; /* Current rtx's format... */
308 register rtx rt_val; /* RTX to return to caller... */
310 VA_START (p, mode);
312 #ifndef __STDC__
313 code = va_arg (p, enum rtx_code);
314 mode = va_arg (p, enum machine_mode);
315 #endif
317 if (code == CONST_INT)
319 HOST_WIDE_INT arg = va_arg (p, HOST_WIDE_INT);
321 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
322 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
324 if (const_true_rtx && arg == STORE_FLAG_VALUE)
325 return const_true_rtx;
327 rt_val = rtx_alloc (code);
328 INTVAL (rt_val) = arg;
330 else if (code == REG)
332 int regno = va_arg (p, int);
334 /* In case the MD file explicitly references the frame pointer, have
335 all such references point to the same frame pointer. This is used
336 during frame pointer elimination to distinguish the explicit
337 references to these registers from pseudos that happened to be
338 assigned to them.
340 If we have eliminated the frame pointer or arg pointer, we will
341 be using it as a normal register, for example as a spill register.
342 In such cases, we might be accessing it in a mode that is not
343 Pmode and therefore cannot use the pre-allocated rtx.
345 Also don't do this when we are making new REGs in reload,
346 since we don't want to get confused with the real pointers. */
348 if (frame_pointer_rtx && regno == FRAME_POINTER_REGNUM && mode == Pmode
349 && ! reload_in_progress)
350 return frame_pointer_rtx;
351 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
352 if (hard_frame_pointer_rtx && regno == HARD_FRAME_POINTER_REGNUM
353 && mode == Pmode && ! reload_in_progress)
354 return hard_frame_pointer_rtx;
355 #endif
356 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
357 if (arg_pointer_rtx && regno == ARG_POINTER_REGNUM && mode == Pmode
358 && ! reload_in_progress)
359 return arg_pointer_rtx;
360 #endif
361 #ifdef RETURN_ADDRESS_POINTER_REGNUM
362 if (return_address_pointer_rtx && regno == RETURN_ADDRESS_POINTER_REGNUM
363 && mode == Pmode && ! reload_in_progress)
364 return return_address_pointer_rtx;
365 #endif
366 if (stack_pointer_rtx && regno == STACK_POINTER_REGNUM && mode == Pmode
367 && ! reload_in_progress)
368 return stack_pointer_rtx;
369 else
371 rt_val = rtx_alloc (code);
372 rt_val->mode = mode;
373 REGNO (rt_val) = regno;
374 return rt_val;
377 else
379 rt_val = rtx_alloc (code); /* Allocate the storage space. */
380 rt_val->mode = mode; /* Store the machine mode... */
382 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
383 for (i = 0; i < GET_RTX_LENGTH (code); i++)
385 switch (*fmt++)
387 case '0': /* Unused field. */
388 break;
390 case 'i': /* An integer? */
391 XINT (rt_val, i) = va_arg (p, int);
392 break;
394 case 'w': /* A wide integer? */
395 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
396 break;
398 case 's': /* A string? */
399 XSTR (rt_val, i) = va_arg (p, char *);
400 break;
402 case 'e': /* An expression? */
403 case 'u': /* An insn? Same except when printing. */
404 XEXP (rt_val, i) = va_arg (p, rtx);
405 break;
407 case 'E': /* An RTX vector? */
408 XVEC (rt_val, i) = va_arg (p, rtvec);
409 break;
411 default:
412 abort ();
416 va_end (p);
417 return rt_val; /* Return the new RTX... */
420 /* gen_rtvec (n, [rt1, ..., rtn])
422 ** This routine creates an rtvec and stores within it the
423 ** pointers to rtx's which are its arguments.
426 /*VARARGS1*/
427 rtvec
428 gen_rtvec VPROTO((int n, ...))
430 #ifndef __STDC__
431 int n;
432 #endif
433 int i;
434 va_list p;
435 rtx *vector;
437 VA_START (p, n);
439 #ifndef __STDC__
440 n = va_arg (p, int);
441 #endif
443 if (n == 0)
444 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
446 vector = (rtx *) alloca (n * sizeof (rtx));
448 for (i = 0; i < n; i++)
449 vector[i] = va_arg (p, rtx);
450 va_end (p);
452 return gen_rtvec_v (n, vector);
455 rtvec
456 gen_rtvec_v (n, argp)
457 int n;
458 rtx *argp;
460 register int i;
461 register rtvec rt_val;
463 if (n == 0)
464 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
466 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
468 for (i = 0; i < n; i++)
469 rt_val->elem[i].rtx = *argp++;
471 return rt_val;
474 /* Generate a REG rtx for a new pseudo register of mode MODE.
475 This pseudo is assigned the next sequential register number. */
478 gen_reg_rtx (mode)
479 enum machine_mode mode;
481 register rtx val;
483 /* Don't let anything called by or after reload create new registers
484 (actually, registers can't be created after flow, but this is a good
485 approximation). */
487 if (reload_in_progress || reload_completed)
488 abort ();
490 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
491 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
493 /* For complex modes, don't make a single pseudo.
494 Instead, make a CONCAT of two pseudos.
495 This allows noncontiguous allocation of the real and imaginary parts,
496 which makes much better code. Besides, allocating DCmode
497 pseudos overstrains reload on some machines like the 386. */
498 rtx realpart, imagpart;
499 int size = GET_MODE_UNIT_SIZE (mode);
500 enum machine_mode partmode
501 = mode_for_size (size * BITS_PER_UNIT,
502 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
503 ? MODE_FLOAT : MODE_INT),
506 realpart = gen_reg_rtx (partmode);
507 imagpart = gen_reg_rtx (partmode);
508 return gen_rtx (CONCAT, mode, realpart, imagpart);
511 /* Make sure regno_pointer_flag and regno_reg_rtx are large
512 enough to have an element for this pseudo reg number. */
514 if (reg_rtx_no == regno_pointer_flag_length)
516 rtx *new1;
517 char *new =
518 (char *) savealloc (regno_pointer_flag_length * 2);
519 bcopy (regno_pointer_flag, new, regno_pointer_flag_length);
520 bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
521 regno_pointer_flag = new;
523 new = (char *) savealloc (regno_pointer_flag_length * 2);
524 bcopy (regno_pointer_align, new, regno_pointer_flag_length);
525 bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
526 regno_pointer_align = new;
528 new1 = (rtx *) savealloc (regno_pointer_flag_length * 2 * sizeof (rtx));
529 bcopy ((char *) regno_reg_rtx, (char *) new1,
530 regno_pointer_flag_length * sizeof (rtx));
531 bzero ((char *) &new1[regno_pointer_flag_length],
532 regno_pointer_flag_length * sizeof (rtx));
533 regno_reg_rtx = new1;
535 regno_pointer_flag_length *= 2;
538 val = gen_rtx (REG, mode, reg_rtx_no);
539 regno_reg_rtx[reg_rtx_no++] = val;
540 return val;
543 /* Identify REG (which may be a CONCAT) as a user register. */
545 void
546 mark_user_reg (reg)
547 rtx reg;
549 if (GET_CODE (reg) == CONCAT)
551 REG_USERVAR_P (XEXP (reg, 0)) = 1;
552 REG_USERVAR_P (XEXP (reg, 1)) = 1;
554 else if (GET_CODE (reg) == REG)
555 REG_USERVAR_P (reg) = 1;
556 else
557 abort ();
560 /* Identify REG as a probable pointer register and show its alignment
561 as ALIGN, if nonzero. */
563 void
564 mark_reg_pointer (reg, align)
565 rtx reg;
566 int align;
568 REGNO_POINTER_FLAG (REGNO (reg)) = 1;
570 if (align)
571 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
574 /* Return 1 plus largest pseudo reg number used in the current function. */
577 max_reg_num ()
579 return reg_rtx_no;
582 /* Return 1 + the largest label number used so far in the current function. */
585 max_label_num ()
587 if (last_label_num && label_num == base_label_num)
588 return last_label_num;
589 return label_num;
592 /* Return first label number used in this function (if any were used). */
595 get_first_label_num ()
597 return first_label_num;
600 /* Return a value representing some low-order bits of X, where the number
601 of low-order bits is given by MODE. Note that no conversion is done
602 between floating-point and fixed-point values, rather, the bit
603 representation is returned.
605 This function handles the cases in common between gen_lowpart, below,
606 and two variants in cse.c and combine.c. These are the cases that can
607 be safely handled at all points in the compilation.
609 If this is not a case we can handle, return 0. */
612 gen_lowpart_common (mode, x)
613 enum machine_mode mode;
614 register rtx x;
616 int word = 0;
618 if (GET_MODE (x) == mode)
619 return x;
621 /* MODE must occupy no more words than the mode of X. */
622 if (GET_MODE (x) != VOIDmode
623 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
624 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
625 / UNITS_PER_WORD)))
626 return 0;
628 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
629 word = ((GET_MODE_SIZE (GET_MODE (x))
630 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
631 / UNITS_PER_WORD);
633 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
634 && (GET_MODE_CLASS (mode) == MODE_INT
635 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
637 /* If we are getting the low-order part of something that has been
638 sign- or zero-extended, we can either just use the object being
639 extended or make a narrower extension. If we want an even smaller
640 piece than the size of the object being extended, call ourselves
641 recursively.
643 This case is used mostly by combine and cse. */
645 if (GET_MODE (XEXP (x, 0)) == mode)
646 return XEXP (x, 0);
647 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
648 return gen_lowpart_common (mode, XEXP (x, 0));
649 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
650 return gen_rtx (GET_CODE (x), mode, XEXP (x, 0));
652 else if (GET_CODE (x) == SUBREG
653 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
654 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
655 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
656 ? SUBREG_REG (x)
657 : gen_rtx (SUBREG, mode, SUBREG_REG (x), SUBREG_WORD (x)));
658 else if (GET_CODE (x) == REG)
660 /* If the register is not valid for MODE, return 0. If we don't
661 do this, there is no way to fix up the resulting REG later.
662 But we do do this if the current REG is not valid for its
663 mode. This latter is a kludge, but is required due to the
664 way that parameters are passed on some machines, most
665 notably Sparc. */
666 if (REGNO (x) < FIRST_PSEUDO_REGISTER
667 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
668 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
669 return 0;
670 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
671 /* integrate.c can't handle parts of a return value register. */
672 && (! REG_FUNCTION_VALUE_P (x)
673 || ! rtx_equal_function_value_matters)
674 /* We want to keep the stack, frame, and arg pointers
675 special. */
676 && x != frame_pointer_rtx
677 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
678 && x != arg_pointer_rtx
679 #endif
680 && x != stack_pointer_rtx)
681 return gen_rtx (REG, mode, REGNO (x) + word);
682 else
683 return gen_rtx (SUBREG, mode, x, word);
685 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
686 from the low-order part of the constant. */
687 else if ((GET_MODE_CLASS (mode) == MODE_INT
688 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
689 && GET_MODE (x) == VOIDmode
690 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
692 /* If MODE is twice the host word size, X is already the desired
693 representation. Otherwise, if MODE is wider than a word, we can't
694 do this. If MODE is exactly a word, return just one CONST_INT.
695 If MODE is smaller than a word, clear the bits that don't belong
696 in our mode, unless they and our sign bit are all one. So we get
697 either a reasonable negative value or a reasonable unsigned value
698 for this mode. */
700 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
701 return x;
702 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
703 return 0;
704 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
705 return (GET_CODE (x) == CONST_INT ? x
706 : GEN_INT (CONST_DOUBLE_LOW (x)));
707 else
709 /* MODE must be narrower than HOST_BITS_PER_INT. */
710 int width = GET_MODE_BITSIZE (mode);
711 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
712 : CONST_DOUBLE_LOW (x));
714 if (((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
715 != ((HOST_WIDE_INT) (-1) << (width - 1))))
716 val &= ((HOST_WIDE_INT) 1 << width) - 1;
718 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
719 : GEN_INT (val));
723 /* If X is an integral constant but we want it in floating-point, it
724 must be the case that we have a union of an integer and a floating-point
725 value. If the machine-parameters allow it, simulate that union here
726 and return the result. The two-word and single-word cases are
727 different. */
729 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
730 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
731 || flag_pretend_float)
732 && GET_MODE_CLASS (mode) == MODE_FLOAT
733 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
734 && GET_CODE (x) == CONST_INT
735 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
736 #ifdef REAL_ARITHMETIC
738 REAL_VALUE_TYPE r;
739 HOST_WIDE_INT i;
741 i = INTVAL (x);
742 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
743 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
745 #else
747 union {HOST_WIDE_INT i; float d; } u;
749 u.i = INTVAL (x);
750 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
752 #endif
753 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
754 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
755 || flag_pretend_float)
756 && GET_MODE_CLASS (mode) == MODE_FLOAT
757 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
758 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
759 && GET_MODE (x) == VOIDmode
760 && (sizeof (double) * HOST_BITS_PER_CHAR
761 == 2 * HOST_BITS_PER_WIDE_INT))
762 #ifdef REAL_ARITHMETIC
764 REAL_VALUE_TYPE r;
765 HOST_WIDE_INT i[2];
766 HOST_WIDE_INT low, high;
768 if (GET_CODE (x) == CONST_INT)
769 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
770 else
771 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
773 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
774 target machine. */
775 if (WORDS_BIG_ENDIAN)
776 i[0] = high, i[1] = low;
777 else
778 i[0] = low, i[1] = high;
780 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
781 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
783 #else
785 union {HOST_WIDE_INT i[2]; double d; } u;
786 HOST_WIDE_INT low, high;
788 if (GET_CODE (x) == CONST_INT)
789 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
790 else
791 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
793 #ifdef HOST_WORDS_BIG_ENDIAN
794 u.i[0] = high, u.i[1] = low;
795 #else
796 u.i[0] = low, u.i[1] = high;
797 #endif
799 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
801 #endif
802 /* Similarly, if this is converting a floating-point value into a
803 single-word integer. Only do this is the host and target parameters are
804 compatible. */
806 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
807 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
808 || flag_pretend_float)
809 && (GET_MODE_CLASS (mode) == MODE_INT
810 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
811 && GET_CODE (x) == CONST_DOUBLE
812 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
813 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
814 return operand_subword (x, word, 0, GET_MODE (x));
816 /* Similarly, if this is converting a floating-point value into a
817 two-word integer, we can do this one word at a time and make an
818 integer. Only do this is the host and target parameters are
819 compatible. */
821 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
822 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
823 || flag_pretend_float)
824 && (GET_MODE_CLASS (mode) == MODE_INT
825 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
826 && GET_CODE (x) == CONST_DOUBLE
827 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
828 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
830 rtx lowpart
831 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
832 rtx highpart
833 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
835 if (lowpart && GET_CODE (lowpart) == CONST_INT
836 && highpart && GET_CODE (highpart) == CONST_INT)
837 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
840 /* Otherwise, we can't do this. */
841 return 0;
844 /* Return the real part (which has mode MODE) of a complex value X.
845 This always comes at the low address in memory. */
848 gen_realpart (mode, x)
849 enum machine_mode mode;
850 register rtx x;
852 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
853 return XEXP (x, 0);
854 else if (WORDS_BIG_ENDIAN)
855 return gen_highpart (mode, x);
856 else
857 return gen_lowpart (mode, x);
860 /* Return the imaginary part (which has mode MODE) of a complex value X.
861 This always comes at the high address in memory. */
864 gen_imagpart (mode, x)
865 enum machine_mode mode;
866 register rtx x;
868 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
869 return XEXP (x, 1);
870 else if (WORDS_BIG_ENDIAN)
871 return gen_lowpart (mode, x);
872 else
873 return gen_highpart (mode, x);
876 /* Return 1 iff X, assumed to be a SUBREG,
877 refers to the real part of the complex value in its containing reg.
878 Complex values are always stored with the real part in the first word,
879 regardless of WORDS_BIG_ENDIAN. */
882 subreg_realpart_p (x)
883 rtx x;
885 if (GET_CODE (x) != SUBREG)
886 abort ();
888 return SUBREG_WORD (x) == 0;
891 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
892 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
893 least-significant part of X.
894 MODE specifies how big a part of X to return;
895 it usually should not be larger than a word.
896 If X is a MEM whose address is a QUEUED, the value may be so also. */
899 gen_lowpart (mode, x)
900 enum machine_mode mode;
901 register rtx x;
903 rtx result = gen_lowpart_common (mode, x);
905 if (result)
906 return result;
907 else if (GET_CODE (x) == REG)
909 /* Must be a hard reg that's not valid in MODE. */
910 result = gen_lowpart_common (mode, copy_to_reg (x));
911 if (result == 0)
912 abort ();
913 return result;
915 else if (GET_CODE (x) == MEM)
917 /* The only additional case we can do is MEM. */
918 register int offset = 0;
919 if (WORDS_BIG_ENDIAN)
920 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
921 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
923 if (BYTES_BIG_ENDIAN)
924 /* Adjust the address so that the address-after-the-data
925 is unchanged. */
926 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
927 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
929 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
931 else
932 abort ();
935 /* Like `gen_lowpart', but refer to the most significant part.
936 This is used to access the imaginary part of a complex number. */
939 gen_highpart (mode, x)
940 enum machine_mode mode;
941 register rtx x;
943 /* This case loses if X is a subreg. To catch bugs early,
944 complain if an invalid MODE is used even in other cases. */
945 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
946 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
947 abort ();
948 if (GET_CODE (x) == CONST_DOUBLE
949 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
950 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
951 #endif
953 return gen_rtx (CONST_INT, VOIDmode,
954 CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
955 else if (GET_CODE (x) == CONST_INT)
956 return const0_rtx;
957 else if (GET_CODE (x) == MEM)
959 register int offset = 0;
960 if (! WORDS_BIG_ENDIAN)
961 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
962 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
964 if (! BYTES_BIG_ENDIAN
965 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
966 offset -= (GET_MODE_SIZE (mode)
967 - MIN (UNITS_PER_WORD,
968 GET_MODE_SIZE (GET_MODE (x))));
970 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
972 else if (GET_CODE (x) == SUBREG)
974 /* The only time this should occur is when we are looking at a
975 multi-word item with a SUBREG whose mode is the same as that of the
976 item. It isn't clear what we would do if it wasn't. */
977 if (SUBREG_WORD (x) != 0)
978 abort ();
979 return gen_highpart (mode, SUBREG_REG (x));
981 else if (GET_CODE (x) == REG)
983 int word = 0;
985 if (! WORDS_BIG_ENDIAN
986 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
987 word = ((GET_MODE_SIZE (GET_MODE (x))
988 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
989 / UNITS_PER_WORD);
992 * ??? This fails miserably for complex values being passed in registers
993 * where the sizeof the real and imaginary part are not equal to the
994 * sizeof SImode. FIXME
997 if (REGNO (x) < FIRST_PSEUDO_REGISTER
998 /* integrate.c can't handle parts of a return value register. */
999 && (! REG_FUNCTION_VALUE_P (x)
1000 || ! rtx_equal_function_value_matters)
1001 /* We want to keep the stack, frame, and arg pointers special. */
1002 && x != frame_pointer_rtx
1003 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1004 && x != arg_pointer_rtx
1005 #endif
1006 && x != stack_pointer_rtx)
1007 return gen_rtx (REG, mode, REGNO (x) + word);
1008 else
1009 return gen_rtx (SUBREG, mode, x, word);
1011 else
1012 abort ();
1015 /* Return 1 iff X, assumed to be a SUBREG,
1016 refers to the least significant part of its containing reg.
1017 If X is not a SUBREG, always return 1 (it is its own low part!). */
1020 subreg_lowpart_p (x)
1021 rtx x;
1023 if (GET_CODE (x) != SUBREG)
1024 return 1;
1026 if (WORDS_BIG_ENDIAN
1027 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1028 return (SUBREG_WORD (x)
1029 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1030 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1031 / UNITS_PER_WORD));
1033 return SUBREG_WORD (x) == 0;
1036 /* Return subword I of operand OP.
1037 The word number, I, is interpreted as the word number starting at the
1038 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1039 otherwise it is the high-order word.
1041 If we cannot extract the required word, we return zero. Otherwise, an
1042 rtx corresponding to the requested word will be returned.
1044 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1045 reload has completed, a valid address will always be returned. After
1046 reload, if a valid address cannot be returned, we return zero.
1048 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1049 it is the responsibility of the caller.
1051 MODE is the mode of OP in case it is a CONST_INT. */
1054 operand_subword (op, i, validate_address, mode)
1055 rtx op;
1056 int i;
1057 int validate_address;
1058 enum machine_mode mode;
1060 HOST_WIDE_INT val;
1061 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1063 if (mode == VOIDmode)
1064 mode = GET_MODE (op);
1066 if (mode == VOIDmode)
1067 abort ();
1069 /* If OP is narrower than a word or if we want a word outside OP, fail. */
1070 if (mode != BLKmode
1071 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD
1072 || (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode)))
1073 return 0;
1075 /* If OP is already an integer word, return it. */
1076 if (GET_MODE_CLASS (mode) == MODE_INT
1077 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1078 return op;
1080 /* If OP is a REG or SUBREG, we can handle it very simply. */
1081 if (GET_CODE (op) == REG)
1083 /* If the register is not valid for MODE, return 0. If we don't
1084 do this, there is no way to fix up the resulting REG later. */
1085 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1086 && ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode))
1087 return 0;
1088 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1089 || (REG_FUNCTION_VALUE_P (op)
1090 && rtx_equal_function_value_matters)
1091 /* We want to keep the stack, frame, and arg pointers
1092 special. */
1093 || op == frame_pointer_rtx
1094 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1095 || op == arg_pointer_rtx
1096 #endif
1097 || op == stack_pointer_rtx)
1098 return gen_rtx (SUBREG, word_mode, op, i);
1099 else
1100 return gen_rtx (REG, word_mode, REGNO (op) + i);
1102 else if (GET_CODE (op) == SUBREG)
1103 return gen_rtx (SUBREG, word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
1104 else if (GET_CODE (op) == CONCAT)
1106 int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1107 if (i < partwords)
1108 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1109 return operand_subword (XEXP (op, 1), i - partwords,
1110 validate_address, mode);
1113 /* Form a new MEM at the requested address. */
1114 if (GET_CODE (op) == MEM)
1116 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1117 rtx new;
1119 if (validate_address)
1121 if (reload_completed)
1123 if (! strict_memory_address_p (word_mode, addr))
1124 return 0;
1126 else
1127 addr = memory_address (word_mode, addr);
1130 new = gen_rtx (MEM, word_mode, addr);
1132 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (op);
1133 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (op);
1134 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
1136 return new;
1139 /* The only remaining cases are when OP is a constant. If the host and
1140 target floating formats are the same, handling two-word floating
1141 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1142 are defined as returning one or two 32 bit values, respectively,
1143 and not values of BITS_PER_WORD bits. */
1144 #ifdef REAL_ARITHMETIC
1145 /* The output is some bits, the width of the target machine's word.
1146 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1147 host can't. */
1148 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1149 && GET_MODE_CLASS (mode) == MODE_FLOAT
1150 && GET_MODE_BITSIZE (mode) == 64
1151 && GET_CODE (op) == CONST_DOUBLE)
1153 long k[2];
1154 REAL_VALUE_TYPE rv;
1156 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1157 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1159 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1160 which the words are written depends on the word endianness.
1162 ??? This is a potential portability problem and should
1163 be fixed at some point. */
1164 if (BITS_PER_WORD == 32)
1165 return GEN_INT ((HOST_WIDE_INT) k[i]);
1166 #if HOST_BITS_PER_WIDE_INT > 32
1167 else if (BITS_PER_WORD >= 64 && i == 0)
1168 return GEN_INT ((((HOST_WIDE_INT) k[! WORDS_BIG_ENDIAN]) << 32)
1169 | (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN]);
1170 #endif
1171 else if (BITS_PER_WORD == 16)
1173 long value;
1174 value = k[i >> 1];
1175 if ((i & 0x1) == 0)
1176 value >>= 16;
1177 value &= 0xffff;
1178 return GEN_INT ((HOST_WIDE_INT) value);
1180 else
1181 abort ();
1183 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1184 && GET_MODE_CLASS (mode) == MODE_FLOAT
1185 && GET_MODE_BITSIZE (mode) > 64
1186 && GET_CODE (op) == CONST_DOUBLE)
1188 long k[4];
1189 REAL_VALUE_TYPE rv;
1191 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1192 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1194 if (BITS_PER_WORD == 32)
1195 return GEN_INT ((HOST_WIDE_INT) k[i]);
1197 #else /* no REAL_ARITHMETIC */
1198 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1199 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1200 || flag_pretend_float)
1201 && GET_MODE_CLASS (mode) == MODE_FLOAT
1202 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1203 && GET_CODE (op) == CONST_DOUBLE)
1205 /* The constant is stored in the host's word-ordering,
1206 but we want to access it in the target's word-ordering. Some
1207 compilers don't like a conditional inside macro args, so we have two
1208 copies of the return. */
1209 #ifdef HOST_WORDS_BIG_ENDIAN
1210 return GEN_INT (i == WORDS_BIG_ENDIAN
1211 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1212 #else
1213 return GEN_INT (i != WORDS_BIG_ENDIAN
1214 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1215 #endif
1217 #endif /* no REAL_ARITHMETIC */
1219 /* Single word float is a little harder, since single- and double-word
1220 values often do not have the same high-order bits. We have already
1221 verified that we want the only defined word of the single-word value. */
1222 #ifdef REAL_ARITHMETIC
1223 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1224 && GET_MODE_BITSIZE (mode) == 32
1225 && GET_CODE (op) == CONST_DOUBLE)
1227 long l;
1228 REAL_VALUE_TYPE rv;
1230 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1231 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1232 return GEN_INT ((HOST_WIDE_INT) l);
1234 #else
1235 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1236 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1237 || flag_pretend_float)
1238 && GET_MODE_CLASS (mode) == MODE_FLOAT
1239 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1240 && GET_CODE (op) == CONST_DOUBLE)
1242 double d;
1243 union {float f; HOST_WIDE_INT i; } u;
1245 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1247 u.f = d;
1248 return GEN_INT (u.i);
1250 #endif /* no REAL_ARITHMETIC */
1252 /* The only remaining cases that we can handle are integers.
1253 Convert to proper endianness now since these cases need it.
1254 At this point, i == 0 means the low-order word.
1256 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1257 in general. However, if OP is (const_int 0), we can just return
1258 it for any word. */
1260 if (op == const0_rtx)
1261 return op;
1263 if (GET_MODE_CLASS (mode) != MODE_INT
1264 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1265 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1266 return 0;
1268 if (WORDS_BIG_ENDIAN)
1269 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1271 /* Find out which word on the host machine this value is in and get
1272 it from the constant. */
1273 val = (i / size_ratio == 0
1274 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1275 : (GET_CODE (op) == CONST_INT
1276 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1278 /* If BITS_PER_WORD is smaller than an int, get the appropriate bits. */
1279 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1280 val = ((val >> ((i % size_ratio) * BITS_PER_WORD))
1281 & (((HOST_WIDE_INT) 1
1282 << (BITS_PER_WORD % HOST_BITS_PER_WIDE_INT)) - 1));
1284 return GEN_INT (val);
1287 /* Similar to `operand_subword', but never return 0. If we can't extract
1288 the required subword, put OP into a register and try again. If that fails,
1289 abort. We always validate the address in this case. It is not valid
1290 to call this function after reload; it is mostly meant for RTL
1291 generation.
1293 MODE is the mode of OP, in case it is CONST_INT. */
1296 operand_subword_force (op, i, mode)
1297 rtx op;
1298 int i;
1299 enum machine_mode mode;
1301 rtx result = operand_subword (op, i, 1, mode);
1303 if (result)
1304 return result;
1306 if (mode != BLKmode && mode != VOIDmode)
1307 op = force_reg (mode, op);
1309 result = operand_subword (op, i, 1, mode);
1310 if (result == 0)
1311 abort ();
1313 return result;
1316 /* Given a compare instruction, swap the operands.
1317 A test instruction is changed into a compare of 0 against the operand. */
1319 void
1320 reverse_comparison (insn)
1321 rtx insn;
1323 rtx body = PATTERN (insn);
1324 rtx comp;
1326 if (GET_CODE (body) == SET)
1327 comp = SET_SRC (body);
1328 else
1329 comp = SET_SRC (XVECEXP (body, 0, 0));
1331 if (GET_CODE (comp) == COMPARE)
1333 rtx op0 = XEXP (comp, 0);
1334 rtx op1 = XEXP (comp, 1);
1335 XEXP (comp, 0) = op1;
1336 XEXP (comp, 1) = op0;
1338 else
1340 rtx new = gen_rtx (COMPARE, VOIDmode,
1341 CONST0_RTX (GET_MODE (comp)), comp);
1342 if (GET_CODE (body) == SET)
1343 SET_SRC (body) = new;
1344 else
1345 SET_SRC (XVECEXP (body, 0, 0)) = new;
1349 /* Return a memory reference like MEMREF, but with its mode changed
1350 to MODE and its address changed to ADDR.
1351 (VOIDmode means don't change the mode.
1352 NULL for ADDR means don't change the address.) */
1355 change_address (memref, mode, addr)
1356 rtx memref;
1357 enum machine_mode mode;
1358 rtx addr;
1360 rtx new;
1362 if (GET_CODE (memref) != MEM)
1363 abort ();
1364 if (mode == VOIDmode)
1365 mode = GET_MODE (memref);
1366 if (addr == 0)
1367 addr = XEXP (memref, 0);
1369 /* If reload is in progress or has completed, ADDR must be valid.
1370 Otherwise, we can call memory_address to make it valid. */
1371 if (reload_completed || reload_in_progress)
1373 if (! memory_address_p (mode, addr))
1374 abort ();
1376 else
1377 addr = memory_address (mode, addr);
1379 new = gen_rtx (MEM, mode, addr);
1380 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (memref);
1381 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref);
1382 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (memref);
1383 return new;
1386 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1389 gen_label_rtx ()
1391 register rtx label;
1393 label = (output_bytecode
1394 ? gen_rtx (CODE_LABEL, VOIDmode, NULL, bc_get_bytecode_label ())
1395 : gen_rtx (CODE_LABEL, VOIDmode, 0, 0, 0, label_num++, NULL_PTR));
1397 LABEL_NUSES (label) = 0;
1398 return label;
1401 /* For procedure integration. */
1403 /* Return a newly created INLINE_HEADER rtx. Should allocate this
1404 from a permanent obstack when the opportunity arises. */
1407 gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
1408 last_labelno, max_parm_regnum, max_regnum, args_size,
1409 pops_args, stack_slots, forced_labels, function_flags,
1410 outgoing_args_size, original_arg_vector,
1411 original_decl_initial, regno_rtx, regno_flag,
1412 regno_align)
1413 rtx first_insn, first_parm_insn;
1414 int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size;
1415 int pops_args;
1416 rtx stack_slots;
1417 rtx forced_labels;
1418 int function_flags;
1419 int outgoing_args_size;
1420 rtvec original_arg_vector;
1421 rtx original_decl_initial;
1422 rtvec regno_rtx;
1423 char *regno_flag;
1424 char *regno_align;
1426 rtx header = gen_rtx (INLINE_HEADER, VOIDmode,
1427 cur_insn_uid++, NULL_RTX,
1428 first_insn, first_parm_insn,
1429 first_labelno, last_labelno,
1430 max_parm_regnum, max_regnum, args_size, pops_args,
1431 stack_slots, forced_labels, function_flags,
1432 outgoing_args_size, original_arg_vector,
1433 original_decl_initial,
1434 regno_rtx, regno_flag, regno_align);
1435 return header;
1438 /* Install new pointers to the first and last insns in the chain.
1439 Also, set cur_insn_uid to one higher than the last in use.
1440 Used for an inline-procedure after copying the insn chain. */
1442 void
1443 set_new_first_and_last_insn (first, last)
1444 rtx first, last;
1446 rtx insn;
1448 first_insn = first;
1449 last_insn = last;
1450 cur_insn_uid = 0;
1452 for (insn = first; insn; insn = NEXT_INSN (insn))
1453 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1455 cur_insn_uid++;
1458 /* Set the range of label numbers found in the current function.
1459 This is used when belatedly compiling an inline function. */
1461 void
1462 set_new_first_and_last_label_num (first, last)
1463 int first, last;
1465 base_label_num = label_num;
1466 first_label_num = first;
1467 last_label_num = last;
1470 /* Save all variables describing the current status into the structure *P.
1471 This is used before starting a nested function. */
1473 void
1474 save_emit_status (p)
1475 struct function *p;
1477 p->reg_rtx_no = reg_rtx_no;
1478 p->first_label_num = first_label_num;
1479 p->first_insn = first_insn;
1480 p->last_insn = last_insn;
1481 p->sequence_rtl_expr = sequence_rtl_expr;
1482 p->sequence_stack = sequence_stack;
1483 p->cur_insn_uid = cur_insn_uid;
1484 p->last_linenum = last_linenum;
1485 p->last_filename = last_filename;
1486 p->regno_pointer_flag = regno_pointer_flag;
1487 p->regno_pointer_align = regno_pointer_align;
1488 p->regno_pointer_flag_length = regno_pointer_flag_length;
1489 p->regno_reg_rtx = regno_reg_rtx;
1492 /* Restore all variables describing the current status from the structure *P.
1493 This is used after a nested function. */
1495 void
1496 restore_emit_status (p)
1497 struct function *p;
1499 int i;
1501 reg_rtx_no = p->reg_rtx_no;
1502 first_label_num = p->first_label_num;
1503 last_label_num = 0;
1504 first_insn = p->first_insn;
1505 last_insn = p->last_insn;
1506 sequence_rtl_expr = p->sequence_rtl_expr;
1507 sequence_stack = p->sequence_stack;
1508 cur_insn_uid = p->cur_insn_uid;
1509 last_linenum = p->last_linenum;
1510 last_filename = p->last_filename;
1511 regno_pointer_flag = p->regno_pointer_flag;
1512 regno_pointer_align = p->regno_pointer_align;
1513 regno_pointer_flag_length = p->regno_pointer_flag_length;
1514 regno_reg_rtx = p->regno_reg_rtx;
1516 /* Clear our cache of rtx expressions for start_sequence and
1517 gen_sequence. */
1518 sequence_element_free_list = 0;
1519 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
1520 sequence_result[i] = 0;
1522 free_insn = 0;
1525 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1526 It does not work to do this twice, because the mark bits set here
1527 are not cleared afterwards. */
1529 void
1530 unshare_all_rtl (insn)
1531 register rtx insn;
1533 for (; insn; insn = NEXT_INSN (insn))
1534 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1535 || GET_CODE (insn) == CALL_INSN)
1537 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1538 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1539 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1542 /* Make sure the addresses of stack slots found outside the insn chain
1543 (such as, in DECL_RTL of a variable) are not shared
1544 with the insn chain.
1546 This special care is necessary when the stack slot MEM does not
1547 actually appear in the insn chain. If it does appear, its address
1548 is unshared from all else at that point. */
1550 copy_rtx_if_shared (stack_slot_list);
1553 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1554 Recursively does the same for subexpressions. */
1557 copy_rtx_if_shared (orig)
1558 rtx orig;
1560 register rtx x = orig;
1561 register int i;
1562 register enum rtx_code code;
1563 register char *format_ptr;
1564 int copied = 0;
1566 if (x == 0)
1567 return 0;
1569 code = GET_CODE (x);
1571 /* These types may be freely shared. */
1573 switch (code)
1575 case REG:
1576 case QUEUED:
1577 case CONST_INT:
1578 case CONST_DOUBLE:
1579 case SYMBOL_REF:
1580 case CODE_LABEL:
1581 case PC:
1582 case CC0:
1583 case SCRATCH:
1584 /* SCRATCH must be shared because they represent distinct values. */
1585 return x;
1587 case CONST:
1588 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1589 a LABEL_REF, it isn't sharable. */
1590 if (GET_CODE (XEXP (x, 0)) == PLUS
1591 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1592 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1593 return x;
1594 break;
1596 case INSN:
1597 case JUMP_INSN:
1598 case CALL_INSN:
1599 case NOTE:
1600 case BARRIER:
1601 /* The chain of insns is not being copied. */
1602 return x;
1604 case MEM:
1605 /* A MEM is allowed to be shared if its address is constant
1606 or is a constant plus one of the special registers. */
1607 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
1608 || XEXP (x, 0) == virtual_stack_vars_rtx
1609 || XEXP (x, 0) == virtual_incoming_args_rtx)
1610 return x;
1612 if (GET_CODE (XEXP (x, 0)) == PLUS
1613 && (XEXP (XEXP (x, 0), 0) == virtual_stack_vars_rtx
1614 || XEXP (XEXP (x, 0), 0) == virtual_incoming_args_rtx)
1615 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
1617 /* This MEM can appear in more than one place,
1618 but its address better not be shared with anything else. */
1619 if (! x->used)
1620 XEXP (x, 0) = copy_rtx_if_shared (XEXP (x, 0));
1621 x->used = 1;
1622 return x;
1626 /* This rtx may not be shared. If it has already been seen,
1627 replace it with a copy of itself. */
1629 if (x->used)
1631 register rtx copy;
1633 copy = rtx_alloc (code);
1634 bcopy ((char *) x, (char *) copy,
1635 (sizeof (*copy) - sizeof (copy->fld)
1636 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
1637 x = copy;
1638 copied = 1;
1640 x->used = 1;
1642 /* Now scan the subexpressions recursively.
1643 We can store any replaced subexpressions directly into X
1644 since we know X is not shared! Any vectors in X
1645 must be copied if X was copied. */
1647 format_ptr = GET_RTX_FORMAT (code);
1649 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1651 switch (*format_ptr++)
1653 case 'e':
1654 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1655 break;
1657 case 'E':
1658 if (XVEC (x, i) != NULL)
1660 register int j;
1661 int len = XVECLEN (x, i);
1663 if (copied && len > 0)
1664 XVEC (x, i) = gen_rtvec_v (len, &XVECEXP (x, i, 0));
1665 for (j = 0; j < len; j++)
1666 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
1668 break;
1671 return x;
1674 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1675 to look for shared sub-parts. */
1677 void
1678 reset_used_flags (x)
1679 rtx x;
1681 register int i, j;
1682 register enum rtx_code code;
1683 register char *format_ptr;
1685 if (x == 0)
1686 return;
1688 code = GET_CODE (x);
1690 /* These types may be freely shared so we needn't do any resetting
1691 for them. */
1693 switch (code)
1695 case REG:
1696 case QUEUED:
1697 case CONST_INT:
1698 case CONST_DOUBLE:
1699 case SYMBOL_REF:
1700 case CODE_LABEL:
1701 case PC:
1702 case CC0:
1703 return;
1705 case INSN:
1706 case JUMP_INSN:
1707 case CALL_INSN:
1708 case NOTE:
1709 case LABEL_REF:
1710 case BARRIER:
1711 /* The chain of insns is not being copied. */
1712 return;
1715 x->used = 0;
1717 format_ptr = GET_RTX_FORMAT (code);
1718 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1720 switch (*format_ptr++)
1722 case 'e':
1723 reset_used_flags (XEXP (x, i));
1724 break;
1726 case 'E':
1727 for (j = 0; j < XVECLEN (x, i); j++)
1728 reset_used_flags (XVECEXP (x, i, j));
1729 break;
1734 /* Copy X if necessary so that it won't be altered by changes in OTHER.
1735 Return X or the rtx for the pseudo reg the value of X was copied into.
1736 OTHER must be valid as a SET_DEST. */
1739 make_safe_from (x, other)
1740 rtx x, other;
1742 while (1)
1743 switch (GET_CODE (other))
1745 case SUBREG:
1746 other = SUBREG_REG (other);
1747 break;
1748 case STRICT_LOW_PART:
1749 case SIGN_EXTEND:
1750 case ZERO_EXTEND:
1751 other = XEXP (other, 0);
1752 break;
1753 default:
1754 goto done;
1756 done:
1757 if ((GET_CODE (other) == MEM
1758 && ! CONSTANT_P (x)
1759 && GET_CODE (x) != REG
1760 && GET_CODE (x) != SUBREG)
1761 || (GET_CODE (other) == REG
1762 && (REGNO (other) < FIRST_PSEUDO_REGISTER
1763 || reg_mentioned_p (other, x))))
1765 rtx temp = gen_reg_rtx (GET_MODE (x));
1766 emit_move_insn (temp, x);
1767 return temp;
1769 return x;
1772 /* Emission of insns (adding them to the doubly-linked list). */
1774 /* Return the first insn of the current sequence or current function. */
1777 get_insns ()
1779 return first_insn;
1782 /* Return the last insn emitted in current sequence or current function. */
1785 get_last_insn ()
1787 return last_insn;
1790 /* Specify a new insn as the last in the chain. */
1792 void
1793 set_last_insn (insn)
1794 rtx insn;
1796 if (NEXT_INSN (insn) != 0)
1797 abort ();
1798 last_insn = insn;
1801 /* Return the last insn emitted, even if it is in a sequence now pushed. */
1804 get_last_insn_anywhere ()
1806 struct sequence_stack *stack;
1807 if (last_insn)
1808 return last_insn;
1809 for (stack = sequence_stack; stack; stack = stack->next)
1810 if (stack->last != 0)
1811 return stack->last;
1812 return 0;
1815 /* Return a number larger than any instruction's uid in this function. */
1818 get_max_uid ()
1820 return cur_insn_uid;
1823 /* Return the next insn. If it is a SEQUENCE, return the first insn
1824 of the sequence. */
1827 next_insn (insn)
1828 rtx insn;
1830 if (insn)
1832 insn = NEXT_INSN (insn);
1833 if (insn && GET_CODE (insn) == INSN
1834 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1835 insn = XVECEXP (PATTERN (insn), 0, 0);
1838 return insn;
1841 /* Return the previous insn. If it is a SEQUENCE, return the last insn
1842 of the sequence. */
1845 previous_insn (insn)
1846 rtx insn;
1848 if (insn)
1850 insn = PREV_INSN (insn);
1851 if (insn && GET_CODE (insn) == INSN
1852 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1853 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
1856 return insn;
1859 /* Return the next insn after INSN that is not a NOTE. This routine does not
1860 look inside SEQUENCEs. */
1863 next_nonnote_insn (insn)
1864 rtx insn;
1866 while (insn)
1868 insn = NEXT_INSN (insn);
1869 if (insn == 0 || GET_CODE (insn) != NOTE)
1870 break;
1873 return insn;
1876 /* Return the previous insn before INSN that is not a NOTE. This routine does
1877 not look inside SEQUENCEs. */
1880 prev_nonnote_insn (insn)
1881 rtx insn;
1883 while (insn)
1885 insn = PREV_INSN (insn);
1886 if (insn == 0 || GET_CODE (insn) != NOTE)
1887 break;
1890 return insn;
1893 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
1894 or 0, if there is none. This routine does not look inside
1895 SEQUENCEs. */
1898 next_real_insn (insn)
1899 rtx insn;
1901 while (insn)
1903 insn = NEXT_INSN (insn);
1904 if (insn == 0 || GET_CODE (insn) == INSN
1905 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
1906 break;
1909 return insn;
1912 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
1913 or 0, if there is none. This routine does not look inside
1914 SEQUENCEs. */
1917 prev_real_insn (insn)
1918 rtx insn;
1920 while (insn)
1922 insn = PREV_INSN (insn);
1923 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
1924 || GET_CODE (insn) == JUMP_INSN)
1925 break;
1928 return insn;
1931 /* Find the next insn after INSN that really does something. This routine
1932 does not look inside SEQUENCEs. Until reload has completed, this is the
1933 same as next_real_insn. */
1936 next_active_insn (insn)
1937 rtx insn;
1939 while (insn)
1941 insn = NEXT_INSN (insn);
1942 if (insn == 0
1943 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
1944 || (GET_CODE (insn) == INSN
1945 && (! reload_completed
1946 || (GET_CODE (PATTERN (insn)) != USE
1947 && GET_CODE (PATTERN (insn)) != CLOBBER))))
1948 break;
1951 return insn;
1954 /* Find the last insn before INSN that really does something. This routine
1955 does not look inside SEQUENCEs. Until reload has completed, this is the
1956 same as prev_real_insn. */
1959 prev_active_insn (insn)
1960 rtx insn;
1962 while (insn)
1964 insn = PREV_INSN (insn);
1965 if (insn == 0
1966 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
1967 || (GET_CODE (insn) == INSN
1968 && (! reload_completed
1969 || (GET_CODE (PATTERN (insn)) != USE
1970 && GET_CODE (PATTERN (insn)) != CLOBBER))))
1971 break;
1974 return insn;
1977 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
1980 next_label (insn)
1981 rtx insn;
1983 while (insn)
1985 insn = NEXT_INSN (insn);
1986 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
1987 break;
1990 return insn;
1993 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
1996 prev_label (insn)
1997 rtx insn;
1999 while (insn)
2001 insn = PREV_INSN (insn);
2002 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2003 break;
2006 return insn;
2009 #ifdef HAVE_cc0
2010 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2011 and REG_CC_USER notes so we can find it. */
2013 void
2014 link_cc0_insns (insn)
2015 rtx insn;
2017 rtx user = next_nonnote_insn (insn);
2019 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2020 user = XVECEXP (PATTERN (user), 0, 0);
2022 REG_NOTES (user) = gen_rtx (INSN_LIST, REG_CC_SETTER, insn,
2023 REG_NOTES (user));
2024 REG_NOTES (insn) = gen_rtx (INSN_LIST, REG_CC_USER, user, REG_NOTES (insn));
2027 /* Return the next insn that uses CC0 after INSN, which is assumed to
2028 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2029 applied to the result of this function should yield INSN).
2031 Normally, this is simply the next insn. However, if a REG_CC_USER note
2032 is present, it contains the insn that uses CC0.
2034 Return 0 if we can't find the insn. */
2037 next_cc0_user (insn)
2038 rtx insn;
2040 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2042 if (note)
2043 return XEXP (note, 0);
2045 insn = next_nonnote_insn (insn);
2046 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2047 insn = XVECEXP (PATTERN (insn), 0, 0);
2049 if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2050 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2051 return insn;
2053 return 0;
2056 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2057 note, it is the previous insn. */
2060 prev_cc0_setter (insn)
2061 rtx insn;
2063 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2064 rtx link;
2066 if (note)
2067 return XEXP (note, 0);
2069 insn = prev_nonnote_insn (insn);
2070 if (! sets_cc0_p (PATTERN (insn)))
2071 abort ();
2073 return insn;
2075 #endif
2077 /* Try splitting insns that can be split for better scheduling.
2078 PAT is the pattern which might split.
2079 TRIAL is the insn providing PAT.
2080 LAST is non-zero if we should return the last insn of the sequence produced.
2082 If this routine succeeds in splitting, it returns the first or last
2083 replacement insn depending on the value of LAST. Otherwise, it
2084 returns TRIAL. If the insn to be returned can be split, it will be. */
2087 try_split (pat, trial, last)
2088 rtx pat, trial;
2089 int last;
2091 rtx before = PREV_INSN (trial);
2092 rtx after = NEXT_INSN (trial);
2093 rtx seq = split_insns (pat, trial);
2094 int has_barrier = 0;
2095 rtx tem;
2097 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2098 We may need to handle this specially. */
2099 if (after && GET_CODE (after) == BARRIER)
2101 has_barrier = 1;
2102 after = NEXT_INSN (after);
2105 if (seq)
2107 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2108 The latter case will normally arise only when being done so that
2109 it, in turn, will be split (SFmode on the 29k is an example). */
2110 if (GET_CODE (seq) == SEQUENCE)
2112 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2113 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2114 increment the usage count so we don't delete the label. */
2115 int i;
2117 if (GET_CODE (trial) == JUMP_INSN)
2118 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2119 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2121 JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
2123 if (JUMP_LABEL (trial))
2124 LABEL_NUSES (JUMP_LABEL (trial))++;
2127 tem = emit_insn_after (seq, before);
2129 delete_insn (trial);
2130 if (has_barrier)
2131 emit_barrier_after (tem);
2133 /* Recursively call try_split for each new insn created; by the
2134 time control returns here that insn will be fully split, so
2135 set LAST and continue from the insn after the one returned.
2136 We can't use next_active_insn here since AFTER may be a note.
2137 Ignore deleted insns, which can be occur if not optimizing. */
2138 for (tem = NEXT_INSN (before); tem != after;
2139 tem = NEXT_INSN (tem))
2140 if (! INSN_DELETED_P (tem))
2141 tem = try_split (PATTERN (tem), tem, 1);
2143 /* Avoid infinite loop if the result matches the original pattern. */
2144 else if (rtx_equal_p (seq, pat))
2145 return trial;
2146 else
2148 PATTERN (trial) = seq;
2149 INSN_CODE (trial) = -1;
2150 try_split (seq, trial, last);
2153 /* Return either the first or the last insn, depending on which was
2154 requested. */
2155 return last ? prev_active_insn (after) : next_active_insn (before);
2158 return trial;
2161 /* Make and return an INSN rtx, initializing all its slots.
2162 Store PATTERN in the pattern slots. */
2165 make_insn_raw (pattern)
2166 rtx pattern;
2168 register rtx insn;
2170 /* If in RTL generation phase, see if FREE_INSN can be used. */
2171 if (free_insn != 0 && rtx_equal_function_value_matters)
2173 insn = free_insn;
2174 free_insn = NEXT_INSN (free_insn);
2175 PUT_CODE (insn, INSN);
2177 else
2178 insn = rtx_alloc (INSN);
2180 INSN_UID (insn) = cur_insn_uid++;
2181 PATTERN (insn) = pattern;
2182 INSN_CODE (insn) = -1;
2183 LOG_LINKS (insn) = NULL;
2184 REG_NOTES (insn) = NULL;
2186 return insn;
2189 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2191 static rtx
2192 make_jump_insn_raw (pattern)
2193 rtx pattern;
2195 register rtx insn;
2197 insn = rtx_alloc (JUMP_INSN);
2198 INSN_UID (insn) = cur_insn_uid++;
2200 PATTERN (insn) = pattern;
2201 INSN_CODE (insn) = -1;
2202 LOG_LINKS (insn) = NULL;
2203 REG_NOTES (insn) = NULL;
2204 JUMP_LABEL (insn) = NULL;
2206 return insn;
2209 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2211 static rtx
2212 make_call_insn_raw (pattern)
2213 rtx pattern;
2215 register rtx insn;
2217 insn = rtx_alloc (CALL_INSN);
2218 INSN_UID (insn) = cur_insn_uid++;
2220 PATTERN (insn) = pattern;
2221 INSN_CODE (insn) = -1;
2222 LOG_LINKS (insn) = NULL;
2223 REG_NOTES (insn) = NULL;
2224 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2226 return insn;
2229 /* Add INSN to the end of the doubly-linked list.
2230 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2232 void
2233 add_insn (insn)
2234 register rtx insn;
2236 PREV_INSN (insn) = last_insn;
2237 NEXT_INSN (insn) = 0;
2239 if (NULL != last_insn)
2240 NEXT_INSN (last_insn) = insn;
2242 if (NULL == first_insn)
2243 first_insn = insn;
2245 last_insn = insn;
2248 /* Add INSN into the doubly-linked list after insn AFTER. This and
2249 the next should be the only functions called to insert an insn once
2250 delay slots have been filled since only they know how to update a
2251 SEQUENCE. */
2253 void
2254 add_insn_after (insn, after)
2255 rtx insn, after;
2257 rtx next = NEXT_INSN (after);
2259 if (optimize && INSN_DELETED_P (after))
2260 abort ();
2262 NEXT_INSN (insn) = next;
2263 PREV_INSN (insn) = after;
2265 if (next)
2267 PREV_INSN (next) = insn;
2268 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2269 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2271 else if (last_insn == after)
2272 last_insn = insn;
2273 else
2275 struct sequence_stack *stack = sequence_stack;
2276 /* Scan all pending sequences too. */
2277 for (; stack; stack = stack->next)
2278 if (after == stack->last)
2280 stack->last = insn;
2281 break;
2284 if (stack == 0)
2285 abort ();
2288 NEXT_INSN (after) = insn;
2289 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2291 rtx sequence = PATTERN (after);
2292 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2296 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2297 the previous should be the only functions called to insert an insn once
2298 delay slots have been filled since only they know how to update a
2299 SEQUENCE. */
2301 void
2302 add_insn_before (insn, before)
2303 rtx insn, before;
2305 rtx prev = PREV_INSN (before);
2307 if (optimize && INSN_DELETED_P (before))
2308 abort ();
2310 PREV_INSN (insn) = prev;
2311 NEXT_INSN (insn) = before;
2313 if (prev)
2315 NEXT_INSN (prev) = insn;
2316 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2318 rtx sequence = PATTERN (prev);
2319 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2322 else if (first_insn == before)
2323 first_insn = insn;
2324 else
2326 struct sequence_stack *stack = sequence_stack;
2327 /* Scan all pending sequences too. */
2328 for (; stack; stack = stack->next)
2329 if (before == stack->first)
2331 stack->first = insn;
2332 break;
2335 if (stack == 0)
2336 abort ();
2339 PREV_INSN (before) = insn;
2340 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2341 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2344 /* Delete all insns made since FROM.
2345 FROM becomes the new last instruction. */
2347 void
2348 delete_insns_since (from)
2349 rtx from;
2351 if (from == 0)
2352 first_insn = 0;
2353 else
2354 NEXT_INSN (from) = 0;
2355 last_insn = from;
2358 /* This function is deprecated, please use sequences instead.
2360 Move a consecutive bunch of insns to a different place in the chain.
2361 The insns to be moved are those between FROM and TO.
2362 They are moved to a new position after the insn AFTER.
2363 AFTER must not be FROM or TO or any insn in between.
2365 This function does not know about SEQUENCEs and hence should not be
2366 called after delay-slot filling has been done. */
2368 void
2369 reorder_insns (from, to, after)
2370 rtx from, to, after;
2372 /* Splice this bunch out of where it is now. */
2373 if (PREV_INSN (from))
2374 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2375 if (NEXT_INSN (to))
2376 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2377 if (last_insn == to)
2378 last_insn = PREV_INSN (from);
2379 if (first_insn == from)
2380 first_insn = NEXT_INSN (to);
2382 /* Make the new neighbors point to it and it to them. */
2383 if (NEXT_INSN (after))
2384 PREV_INSN (NEXT_INSN (after)) = to;
2386 NEXT_INSN (to) = NEXT_INSN (after);
2387 PREV_INSN (from) = after;
2388 NEXT_INSN (after) = from;
2389 if (after == last_insn)
2390 last_insn = to;
2393 /* Return the line note insn preceding INSN. */
2395 static rtx
2396 find_line_note (insn)
2397 rtx insn;
2399 if (no_line_numbers)
2400 return 0;
2402 for (; insn; insn = PREV_INSN (insn))
2403 if (GET_CODE (insn) == NOTE
2404 && NOTE_LINE_NUMBER (insn) >= 0)
2405 break;
2407 return insn;
2410 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2411 of the moved insns when debugging. This may insert a note between AFTER
2412 and FROM, and another one after TO. */
2414 void
2415 reorder_insns_with_line_notes (from, to, after)
2416 rtx from, to, after;
2418 rtx from_line = find_line_note (from);
2419 rtx after_line = find_line_note (after);
2421 reorder_insns (from, to, after);
2423 if (from_line == after_line)
2424 return;
2426 if (from_line)
2427 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2428 NOTE_LINE_NUMBER (from_line),
2429 after);
2430 if (after_line)
2431 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2432 NOTE_LINE_NUMBER (after_line),
2433 to);
2436 /* Emit an insn of given code and pattern
2437 at a specified place within the doubly-linked list. */
2439 /* Make an instruction with body PATTERN
2440 and output it before the instruction BEFORE. */
2443 emit_insn_before (pattern, before)
2444 register rtx pattern, before;
2446 register rtx insn = before;
2448 if (GET_CODE (pattern) == SEQUENCE)
2450 register int i;
2452 for (i = 0; i < XVECLEN (pattern, 0); i++)
2454 insn = XVECEXP (pattern, 0, i);
2455 add_insn_before (insn, before);
2457 if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
2458 sequence_result[XVECLEN (pattern, 0)] = pattern;
2460 else
2462 insn = make_insn_raw (pattern);
2463 add_insn_before (insn, before);
2466 return insn;
2469 /* Make an instruction with body PATTERN and code JUMP_INSN
2470 and output it before the instruction BEFORE. */
2473 emit_jump_insn_before (pattern, before)
2474 register rtx pattern, before;
2476 register rtx insn;
2478 if (GET_CODE (pattern) == SEQUENCE)
2479 insn = emit_insn_before (pattern, before);
2480 else
2482 insn = make_jump_insn_raw (pattern);
2483 add_insn_before (insn, before);
2486 return insn;
2489 /* Make an instruction with body PATTERN and code CALL_INSN
2490 and output it before the instruction BEFORE. */
2493 emit_call_insn_before (pattern, before)
2494 register rtx pattern, before;
2496 register rtx insn;
2498 if (GET_CODE (pattern) == SEQUENCE)
2499 insn = emit_insn_before (pattern, before);
2500 else
2502 insn = make_call_insn_raw (pattern);
2503 add_insn_before (insn, before);
2504 PUT_CODE (insn, CALL_INSN);
2507 return insn;
2510 /* Make an insn of code BARRIER
2511 and output it before the insn AFTER. */
2514 emit_barrier_before (before)
2515 register rtx before;
2517 register rtx insn = rtx_alloc (BARRIER);
2519 INSN_UID (insn) = cur_insn_uid++;
2521 add_insn_before (insn, before);
2522 return insn;
2525 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
2528 emit_note_before (subtype, before)
2529 int subtype;
2530 rtx before;
2532 register rtx note = rtx_alloc (NOTE);
2533 INSN_UID (note) = cur_insn_uid++;
2534 NOTE_SOURCE_FILE (note) = 0;
2535 NOTE_LINE_NUMBER (note) = subtype;
2537 add_insn_before (note, before);
2538 return note;
2541 /* Make an insn of code INSN with body PATTERN
2542 and output it after the insn AFTER. */
2545 emit_insn_after (pattern, after)
2546 register rtx pattern, after;
2548 register rtx insn = after;
2550 if (GET_CODE (pattern) == SEQUENCE)
2552 register int i;
2554 for (i = 0; i < XVECLEN (pattern, 0); i++)
2556 insn = XVECEXP (pattern, 0, i);
2557 add_insn_after (insn, after);
2558 after = insn;
2560 if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
2561 sequence_result[XVECLEN (pattern, 0)] = pattern;
2563 else
2565 insn = make_insn_raw (pattern);
2566 add_insn_after (insn, after);
2569 return insn;
2572 /* Similar to emit_insn_after, except that line notes are to be inserted so
2573 as to act as if this insn were at FROM. */
2575 void
2576 emit_insn_after_with_line_notes (pattern, after, from)
2577 rtx pattern, after, from;
2579 rtx from_line = find_line_note (from);
2580 rtx after_line = find_line_note (after);
2581 rtx insn = emit_insn_after (pattern, after);
2583 if (from_line)
2584 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2585 NOTE_LINE_NUMBER (from_line),
2586 after);
2588 if (after_line)
2589 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2590 NOTE_LINE_NUMBER (after_line),
2591 insn);
2594 /* Make an insn of code JUMP_INSN with body PATTERN
2595 and output it after the insn AFTER. */
2598 emit_jump_insn_after (pattern, after)
2599 register rtx pattern, after;
2601 register rtx insn;
2603 if (GET_CODE (pattern) == SEQUENCE)
2604 insn = emit_insn_after (pattern, after);
2605 else
2607 insn = make_jump_insn_raw (pattern);
2608 add_insn_after (insn, after);
2611 return insn;
2614 /* Make an insn of code BARRIER
2615 and output it after the insn AFTER. */
2618 emit_barrier_after (after)
2619 register rtx after;
2621 register rtx insn = rtx_alloc (BARRIER);
2623 INSN_UID (insn) = cur_insn_uid++;
2625 add_insn_after (insn, after);
2626 return insn;
2629 /* Emit the label LABEL after the insn AFTER. */
2632 emit_label_after (label, after)
2633 rtx label, after;
2635 /* This can be called twice for the same label
2636 as a result of the confusion that follows a syntax error!
2637 So make it harmless. */
2638 if (INSN_UID (label) == 0)
2640 INSN_UID (label) = cur_insn_uid++;
2641 add_insn_after (label, after);
2644 return label;
2647 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
2650 emit_note_after (subtype, after)
2651 int subtype;
2652 rtx after;
2654 register rtx note = rtx_alloc (NOTE);
2655 INSN_UID (note) = cur_insn_uid++;
2656 NOTE_SOURCE_FILE (note) = 0;
2657 NOTE_LINE_NUMBER (note) = subtype;
2658 add_insn_after (note, after);
2659 return note;
2662 /* Emit a line note for FILE and LINE after the insn AFTER. */
2665 emit_line_note_after (file, line, after)
2666 char *file;
2667 int line;
2668 rtx after;
2670 register rtx note;
2672 if (no_line_numbers && line > 0)
2674 cur_insn_uid++;
2675 return 0;
2678 note = rtx_alloc (NOTE);
2679 INSN_UID (note) = cur_insn_uid++;
2680 NOTE_SOURCE_FILE (note) = file;
2681 NOTE_LINE_NUMBER (note) = line;
2682 add_insn_after (note, after);
2683 return note;
2686 /* Make an insn of code INSN with pattern PATTERN
2687 and add it to the end of the doubly-linked list.
2688 If PATTERN is a SEQUENCE, take the elements of it
2689 and emit an insn for each element.
2691 Returns the last insn emitted. */
2694 emit_insn (pattern)
2695 rtx pattern;
2697 rtx insn = last_insn;
2699 if (GET_CODE (pattern) == SEQUENCE)
2701 register int i;
2703 for (i = 0; i < XVECLEN (pattern, 0); i++)
2705 insn = XVECEXP (pattern, 0, i);
2706 add_insn (insn);
2708 if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
2709 sequence_result[XVECLEN (pattern, 0)] = pattern;
2711 else
2713 insn = make_insn_raw (pattern);
2714 add_insn (insn);
2717 return insn;
2720 /* Emit the insns in a chain starting with INSN.
2721 Return the last insn emitted. */
2724 emit_insns (insn)
2725 rtx insn;
2727 rtx last = 0;
2729 while (insn)
2731 rtx next = NEXT_INSN (insn);
2732 add_insn (insn);
2733 last = insn;
2734 insn = next;
2737 return last;
2740 /* Emit the insns in a chain starting with INSN and place them in front of
2741 the insn BEFORE. Return the last insn emitted. */
2744 emit_insns_before (insn, before)
2745 rtx insn;
2746 rtx before;
2748 rtx last = 0;
2750 while (insn)
2752 rtx next = NEXT_INSN (insn);
2753 add_insn_before (insn, before);
2754 last = insn;
2755 insn = next;
2758 return last;
2761 /* Emit the insns in a chain starting with FIRST and place them in back of
2762 the insn AFTER. Return the last insn emitted. */
2765 emit_insns_after (first, after)
2766 register rtx first;
2767 register rtx after;
2769 register rtx last;
2770 register rtx after_after;
2772 if (!after)
2773 abort ();
2775 if (!first)
2776 return first;
2778 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
2779 continue;
2781 after_after = NEXT_INSN (after);
2783 NEXT_INSN (after) = first;
2784 PREV_INSN (first) = after;
2785 NEXT_INSN (last) = after_after;
2786 if (after_after)
2787 PREV_INSN (after_after) = last;
2789 if (after == last_insn)
2790 last_insn = last;
2791 return last;
2794 /* Make an insn of code JUMP_INSN with pattern PATTERN
2795 and add it to the end of the doubly-linked list. */
2798 emit_jump_insn (pattern)
2799 rtx pattern;
2801 if (GET_CODE (pattern) == SEQUENCE)
2802 return emit_insn (pattern);
2803 else
2805 register rtx insn = make_jump_insn_raw (pattern);
2806 add_insn (insn);
2807 return insn;
2811 /* Make an insn of code CALL_INSN with pattern PATTERN
2812 and add it to the end of the doubly-linked list. */
2815 emit_call_insn (pattern)
2816 rtx pattern;
2818 if (GET_CODE (pattern) == SEQUENCE)
2819 return emit_insn (pattern);
2820 else
2822 register rtx insn = make_call_insn_raw (pattern);
2823 add_insn (insn);
2824 PUT_CODE (insn, CALL_INSN);
2825 return insn;
2829 /* Add the label LABEL to the end of the doubly-linked list. */
2832 emit_label (label)
2833 rtx label;
2835 /* This can be called twice for the same label
2836 as a result of the confusion that follows a syntax error!
2837 So make it harmless. */
2838 if (INSN_UID (label) == 0)
2840 INSN_UID (label) = cur_insn_uid++;
2841 add_insn (label);
2843 return label;
2846 /* Make an insn of code BARRIER
2847 and add it to the end of the doubly-linked list. */
2850 emit_barrier ()
2852 register rtx barrier = rtx_alloc (BARRIER);
2853 INSN_UID (barrier) = cur_insn_uid++;
2854 add_insn (barrier);
2855 return barrier;
2858 /* Make an insn of code NOTE
2859 with data-fields specified by FILE and LINE
2860 and add it to the end of the doubly-linked list,
2861 but only if line-numbers are desired for debugging info. */
2864 emit_line_note (file, line)
2865 char *file;
2866 int line;
2868 if (output_bytecode)
2870 /* FIXME: for now we do nothing, but eventually we will have to deal with
2871 debugging information. */
2872 return 0;
2875 emit_filename = file;
2876 emit_lineno = line;
2878 #if 0
2879 if (no_line_numbers)
2880 return 0;
2881 #endif
2883 return emit_note (file, line);
2886 /* Make an insn of code NOTE
2887 with data-fields specified by FILE and LINE
2888 and add it to the end of the doubly-linked list.
2889 If it is a line-number NOTE, omit it if it matches the previous one. */
2892 emit_note (file, line)
2893 char *file;
2894 int line;
2896 register rtx note;
2898 if (line > 0)
2900 if (file && last_filename && !strcmp (file, last_filename)
2901 && line == last_linenum)
2902 return 0;
2903 last_filename = file;
2904 last_linenum = line;
2907 if (no_line_numbers && line > 0)
2909 cur_insn_uid++;
2910 return 0;
2913 note = rtx_alloc (NOTE);
2914 INSN_UID (note) = cur_insn_uid++;
2915 NOTE_SOURCE_FILE (note) = file;
2916 NOTE_LINE_NUMBER (note) = line;
2917 add_insn (note);
2918 return note;
2921 /* Emit a NOTE, and don't omit it even if LINE it the previous note. */
2924 emit_line_note_force (file, line)
2925 char *file;
2926 int line;
2928 last_linenum = -1;
2929 return emit_line_note (file, line);
2932 /* Cause next statement to emit a line note even if the line number
2933 has not changed. This is used at the beginning of a function. */
2935 void
2936 force_next_line_note ()
2938 last_linenum = -1;
2941 /* Return an indication of which type of insn should have X as a body.
2942 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
2944 enum rtx_code
2945 classify_insn (x)
2946 rtx x;
2948 if (GET_CODE (x) == CODE_LABEL)
2949 return CODE_LABEL;
2950 if (GET_CODE (x) == CALL)
2951 return CALL_INSN;
2952 if (GET_CODE (x) == RETURN)
2953 return JUMP_INSN;
2954 if (GET_CODE (x) == SET)
2956 if (SET_DEST (x) == pc_rtx)
2957 return JUMP_INSN;
2958 else if (GET_CODE (SET_SRC (x)) == CALL)
2959 return CALL_INSN;
2960 else
2961 return INSN;
2963 if (GET_CODE (x) == PARALLEL)
2965 register int j;
2966 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
2967 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
2968 return CALL_INSN;
2969 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
2970 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
2971 return JUMP_INSN;
2972 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
2973 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
2974 return CALL_INSN;
2976 return INSN;
2979 /* Emit the rtl pattern X as an appropriate kind of insn.
2980 If X is a label, it is simply added into the insn chain. */
2983 emit (x)
2984 rtx x;
2986 enum rtx_code code = classify_insn (x);
2988 if (code == CODE_LABEL)
2989 return emit_label (x);
2990 else if (code == INSN)
2991 return emit_insn (x);
2992 else if (code == JUMP_INSN)
2994 register rtx insn = emit_jump_insn (x);
2995 if (simplejump_p (insn) || GET_CODE (x) == RETURN)
2996 return emit_barrier ();
2997 return insn;
2999 else if (code == CALL_INSN)
3000 return emit_call_insn (x);
3001 else
3002 abort ();
3005 /* Begin emitting insns to a sequence which can be packaged in an RTL_EXPR. */
3007 void
3008 start_sequence ()
3010 struct sequence_stack *tem;
3012 if (sequence_element_free_list)
3014 /* Reuse a previously-saved struct sequence_stack. */
3015 tem = sequence_element_free_list;
3016 sequence_element_free_list = tem->next;
3018 else
3019 tem = (struct sequence_stack *) permalloc (sizeof (struct sequence_stack));
3021 tem->next = sequence_stack;
3022 tem->first = first_insn;
3023 tem->last = last_insn;
3024 tem->sequence_rtl_expr = sequence_rtl_expr;
3026 sequence_stack = tem;
3028 first_insn = 0;
3029 last_insn = 0;
3032 /* Similarly, but indicate that this sequence will be placed in
3033 T, an RTL_EXPR. */
3035 void
3036 start_sequence_for_rtl_expr (t)
3037 tree t;
3039 start_sequence ();
3041 sequence_rtl_expr = t;
3044 /* Set up the insn chain starting with FIRST
3045 as the current sequence, saving the previously current one. */
3047 void
3048 push_to_sequence (first)
3049 rtx first;
3051 rtx last;
3053 start_sequence ();
3055 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3057 first_insn = first;
3058 last_insn = last;
3061 /* Set up the outer-level insn chain
3062 as the current sequence, saving the previously current one. */
3064 void
3065 push_topmost_sequence ()
3067 struct sequence_stack *stack, *top;
3069 start_sequence ();
3071 for (stack = sequence_stack; stack; stack = stack->next)
3072 top = stack;
3074 first_insn = top->first;
3075 last_insn = top->last;
3076 sequence_rtl_expr = top->sequence_rtl_expr;
3079 /* After emitting to the outer-level insn chain, update the outer-level
3080 insn chain, and restore the previous saved state. */
3082 void
3083 pop_topmost_sequence ()
3085 struct sequence_stack *stack, *top;
3087 for (stack = sequence_stack; stack; stack = stack->next)
3088 top = stack;
3090 top->first = first_insn;
3091 top->last = last_insn;
3092 /* ??? Why don't we save sequence_rtl_expr here? */
3094 end_sequence ();
3097 /* After emitting to a sequence, restore previous saved state.
3099 To get the contents of the sequence just made,
3100 you must call `gen_sequence' *before* calling here. */
3102 void
3103 end_sequence ()
3105 struct sequence_stack *tem = sequence_stack;
3107 first_insn = tem->first;
3108 last_insn = tem->last;
3109 sequence_rtl_expr = tem->sequence_rtl_expr;
3110 sequence_stack = tem->next;
3112 tem->next = sequence_element_free_list;
3113 sequence_element_free_list = tem;
3116 /* Return 1 if currently emitting into a sequence. */
3119 in_sequence_p ()
3121 return sequence_stack != 0;
3124 /* Generate a SEQUENCE rtx containing the insns already emitted
3125 to the current sequence.
3127 This is how the gen_... function from a DEFINE_EXPAND
3128 constructs the SEQUENCE that it returns. */
3131 gen_sequence ()
3133 rtx result;
3134 rtx tem;
3135 int i;
3136 int len;
3138 /* Count the insns in the chain. */
3139 len = 0;
3140 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3141 len++;
3143 /* If only one insn, return its pattern rather than a SEQUENCE.
3144 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3145 the case of an empty list.) */
3146 if (len == 1
3147 && (GET_CODE (first_insn) == INSN
3148 || GET_CODE (first_insn) == JUMP_INSN
3149 /* Don't discard the call usage field. */
3150 || (GET_CODE (first_insn) == CALL_INSN
3151 && CALL_INSN_FUNCTION_USAGE (first_insn) == NULL_RTX)))
3153 NEXT_INSN (first_insn) = free_insn;
3154 free_insn = first_insn;
3155 return PATTERN (first_insn);
3158 /* Put them in a vector. See if we already have a SEQUENCE of the
3159 appropriate length around. */
3160 if (len < SEQUENCE_RESULT_SIZE && (result = sequence_result[len]) != 0)
3161 sequence_result[len] = 0;
3162 else
3164 /* Ensure that this rtl goes in saveable_obstack, since we may
3165 cache it. */
3166 push_obstacks_nochange ();
3167 rtl_in_saveable_obstack ();
3168 result = gen_rtx (SEQUENCE, VOIDmode, rtvec_alloc (len));
3169 pop_obstacks ();
3172 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3173 XVECEXP (result, 0, i) = tem;
3175 return result;
3178 /* Initialize data structures and variables in this file
3179 before generating rtl for each function. */
3181 void
3182 init_emit ()
3184 int i;
3186 first_insn = NULL;
3187 last_insn = NULL;
3188 sequence_rtl_expr = NULL;
3189 cur_insn_uid = 1;
3190 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3191 last_linenum = 0;
3192 last_filename = 0;
3193 first_label_num = label_num;
3194 last_label_num = 0;
3195 sequence_stack = NULL;
3197 /* Clear the start_sequence/gen_sequence cache. */
3198 sequence_element_free_list = 0;
3199 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3200 sequence_result[i] = 0;
3201 free_insn = 0;
3203 /* Init the tables that describe all the pseudo regs. */
3205 regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
3207 regno_pointer_flag
3208 = (char *) savealloc (regno_pointer_flag_length);
3209 bzero (regno_pointer_flag, regno_pointer_flag_length);
3211 regno_pointer_align
3212 = (char *) savealloc (regno_pointer_flag_length);
3213 bzero (regno_pointer_align, regno_pointer_flag_length);
3215 regno_reg_rtx
3216 = (rtx *) savealloc (regno_pointer_flag_length * sizeof (rtx));
3217 bzero ((char *) regno_reg_rtx, regno_pointer_flag_length * sizeof (rtx));
3219 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3220 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3221 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3222 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3223 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3225 /* Indicate that the virtual registers and stack locations are
3226 all pointers. */
3227 REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
3228 REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
3229 REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
3230 REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
3232 REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
3233 REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
3234 REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
3235 REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
3237 #ifdef STACK_BOUNDARY
3238 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
3239 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
3240 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)
3241 = STACK_BOUNDARY / BITS_PER_UNIT;
3242 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
3244 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)
3245 = STACK_BOUNDARY / BITS_PER_UNIT;
3246 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM)
3247 = STACK_BOUNDARY / BITS_PER_UNIT;
3248 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)
3249 = STACK_BOUNDARY / BITS_PER_UNIT;
3250 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)
3251 = STACK_BOUNDARY / BITS_PER_UNIT;
3252 #endif
3254 #ifdef INIT_EXPANDERS
3255 INIT_EXPANDERS;
3256 #endif
3259 /* Create some permanent unique rtl objects shared between all functions.
3260 LINE_NUMBERS is nonzero if line numbers are to be generated. */
3262 void
3263 init_emit_once (line_numbers)
3264 int line_numbers;
3266 int i;
3267 enum machine_mode mode;
3269 no_line_numbers = ! line_numbers;
3271 sequence_stack = NULL;
3273 /* Compute the word and byte modes. */
3275 byte_mode = VOIDmode;
3276 word_mode = VOIDmode;
3278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3279 mode = GET_MODE_WIDER_MODE (mode))
3281 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
3282 && byte_mode == VOIDmode)
3283 byte_mode = mode;
3285 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
3286 && word_mode == VOIDmode)
3287 word_mode = mode;
3290 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
3292 /* Create the unique rtx's for certain rtx codes and operand values. */
3294 pc_rtx = gen_rtx (PC, VOIDmode);
3295 cc0_rtx = gen_rtx (CC0, VOIDmode);
3297 /* Don't use gen_rtx here since gen_rtx in this case
3298 tries to use these variables. */
3299 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
3301 const_int_rtx[i + MAX_SAVED_CONST_INT] = rtx_alloc (CONST_INT);
3302 PUT_MODE (const_int_rtx[i + MAX_SAVED_CONST_INT], VOIDmode);
3303 INTVAL (const_int_rtx[i + MAX_SAVED_CONST_INT]) = i;
3306 /* These four calls obtain some of the rtx expressions made above. */
3307 const0_rtx = GEN_INT (0);
3308 const1_rtx = GEN_INT (1);
3309 const2_rtx = GEN_INT (2);
3310 constm1_rtx = GEN_INT (-1);
3312 /* This will usually be one of the above constants, but may be a new rtx. */
3313 const_true_rtx = GEN_INT (STORE_FLAG_VALUE);
3315 dconst0 = REAL_VALUE_ATOF ("0", DFmode);
3316 dconst1 = REAL_VALUE_ATOF ("1", DFmode);
3317 dconst2 = REAL_VALUE_ATOF ("2", DFmode);
3318 dconstm1 = REAL_VALUE_ATOF ("-1", DFmode);
3320 for (i = 0; i <= 2; i++)
3322 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
3323 mode = GET_MODE_WIDER_MODE (mode))
3325 rtx tem = rtx_alloc (CONST_DOUBLE);
3326 union real_extract u;
3328 bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
3329 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
3331 bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
3332 CONST_DOUBLE_MEM (tem) = cc0_rtx;
3333 PUT_MODE (tem, mode);
3335 const_tiny_rtx[i][(int) mode] = tem;
3338 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
3340 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3341 mode = GET_MODE_WIDER_MODE (mode))
3342 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
3344 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
3345 mode != VOIDmode;
3346 mode = GET_MODE_WIDER_MODE (mode))
3347 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
3350 for (mode = GET_CLASS_NARROWEST_MODE (MODE_CC); mode != VOIDmode;
3351 mode = GET_MODE_WIDER_MODE (mode))
3352 const_tiny_rtx[0][(int) mode] = const0_rtx;
3354 stack_pointer_rtx = gen_rtx (REG, Pmode, STACK_POINTER_REGNUM);
3355 frame_pointer_rtx = gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM);
3357 if (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3358 hard_frame_pointer_rtx = frame_pointer_rtx;
3359 else
3360 hard_frame_pointer_rtx = gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM);
3362 if (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3363 arg_pointer_rtx = frame_pointer_rtx;
3364 else if (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3365 arg_pointer_rtx = hard_frame_pointer_rtx;
3366 else if (STACK_POINTER_REGNUM == ARG_POINTER_REGNUM)
3367 arg_pointer_rtx = stack_pointer_rtx;
3368 else
3369 arg_pointer_rtx = gen_rtx (REG, Pmode, ARG_POINTER_REGNUM);
3371 #ifdef RETURN_ADDRESS_POINTER_REGNUM
3372 return_address_pointer_rtx = gen_rtx (REG, Pmode,
3373 RETURN_ADDRESS_POINTER_REGNUM);
3374 #endif
3376 /* Create the virtual registers. Do so here since the following objects
3377 might reference them. */
3379 virtual_incoming_args_rtx = gen_rtx (REG, Pmode,
3380 VIRTUAL_INCOMING_ARGS_REGNUM);
3381 virtual_stack_vars_rtx = gen_rtx (REG, Pmode,
3382 VIRTUAL_STACK_VARS_REGNUM);
3383 virtual_stack_dynamic_rtx = gen_rtx (REG, Pmode,
3384 VIRTUAL_STACK_DYNAMIC_REGNUM);
3385 virtual_outgoing_args_rtx = gen_rtx (REG, Pmode,
3386 VIRTUAL_OUTGOING_ARGS_REGNUM);
3388 #ifdef STRUCT_VALUE
3389 struct_value_rtx = STRUCT_VALUE;
3390 #else
3391 struct_value_rtx = gen_rtx (REG, Pmode, STRUCT_VALUE_REGNUM);
3392 #endif
3394 #ifdef STRUCT_VALUE_INCOMING
3395 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
3396 #else
3397 #ifdef STRUCT_VALUE_INCOMING_REGNUM
3398 struct_value_incoming_rtx
3399 = gen_rtx (REG, Pmode, STRUCT_VALUE_INCOMING_REGNUM);
3400 #else
3401 struct_value_incoming_rtx = struct_value_rtx;
3402 #endif
3403 #endif
3405 #ifdef STATIC_CHAIN_REGNUM
3406 static_chain_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_REGNUM);
3408 #ifdef STATIC_CHAIN_INCOMING_REGNUM
3409 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
3410 static_chain_incoming_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_INCOMING_REGNUM);
3411 else
3412 #endif
3413 static_chain_incoming_rtx = static_chain_rtx;
3414 #endif
3416 #ifdef STATIC_CHAIN
3417 static_chain_rtx = STATIC_CHAIN;
3419 #ifdef STATIC_CHAIN_INCOMING
3420 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
3421 #else
3422 static_chain_incoming_rtx = static_chain_rtx;
3423 #endif
3424 #endif
3426 #ifdef PIC_OFFSET_TABLE_REGNUM
3427 pic_offset_table_rtx = gen_rtx (REG, Pmode, PIC_OFFSET_TABLE_REGNUM);
3428 #endif