PR lto/59468
[official-gcc.git] / libsanitizer / tsan / tsan_platform_linux.cc
blobfe69430b711c42291499b0bad9608b72029ca600
1 //===-- tsan_platform_linux.cc --------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Linux-specific code.
11 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_LINUX
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_libc.h"
19 #include "sanitizer_common/sanitizer_procmaps.h"
20 #include "sanitizer_common/sanitizer_stoptheworld.h"
21 #include "tsan_platform.h"
22 #include "tsan_rtl.h"
23 #include "tsan_flags.h"
25 #include <fcntl.h>
26 #include <pthread.h>
27 #include <signal.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <stdarg.h>
32 #include <sys/mman.h>
33 #include <sys/prctl.h>
34 #include <sys/syscall.h>
35 #include <sys/socket.h>
36 #include <sys/time.h>
37 #include <sys/types.h>
38 #include <sys/resource.h>
39 #include <sys/stat.h>
40 #include <unistd.h>
41 #include <errno.h>
42 #include <sched.h>
43 #include <dlfcn.h>
44 #define __need_res_state
45 #include <resolv.h>
46 #include <malloc.h>
48 #ifdef sa_handler
49 # undef sa_handler
50 #endif
52 #ifdef sa_sigaction
53 # undef sa_sigaction
54 #endif
56 extern "C" struct mallinfo __libc_mallinfo();
58 namespace __tsan {
60 const uptr kPageSize = 4096;
62 #ifndef TSAN_GO
63 ScopedInRtl::ScopedInRtl()
64 : thr_(cur_thread()) {
65 in_rtl_ = thr_->in_rtl;
66 thr_->in_rtl++;
67 errno_ = errno;
70 ScopedInRtl::~ScopedInRtl() {
71 thr_->in_rtl--;
72 errno = errno_;
73 CHECK_EQ(in_rtl_, thr_->in_rtl);
75 #else
76 ScopedInRtl::ScopedInRtl() {
79 ScopedInRtl::~ScopedInRtl() {
81 #endif
83 void FillProfileCallback(uptr start, uptr rss, bool file,
84 uptr *mem, uptr stats_size) {
85 CHECK_EQ(7, stats_size);
86 mem[6] += rss; // total
87 start >>= 40;
88 if (start < 0x10) // shadow
89 mem[0] += rss;
90 else if (start >= 0x20 && start < 0x30) // compat modules
91 mem[file ? 1 : 2] += rss;
92 else if (start >= 0x7e) // modules
93 mem[file ? 1 : 2] += rss;
94 else if (start >= 0x60 && start < 0x62) // traces
95 mem[3] += rss;
96 else if (start >= 0x7d && start < 0x7e) // heap
97 mem[4] += rss;
98 else // other
99 mem[5] += rss;
102 void WriteMemoryProfile(char *buf, uptr buf_size) {
103 uptr mem[7] = {};
104 __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
105 char *buf_pos = buf;
106 char *buf_end = buf + buf_size;
107 buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos,
108 "RSS %zd MB: shadow:%zd file:%zd mmap:%zd trace:%zd heap:%zd other:%zd\n",
109 mem[6] >> 20, mem[0] >> 20, mem[1] >> 20, mem[2] >> 20,
110 mem[3] >> 20, mem[4] >> 20, mem[5] >> 20);
111 struct mallinfo mi = __libc_mallinfo();
112 buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos,
113 "mallinfo: arena=%d mmap=%d fordblks=%d keepcost=%d\n",
114 mi.arena >> 20, mi.hblkhd >> 20, mi.fordblks >> 20, mi.keepcost >> 20);
117 uptr GetRSS() {
118 uptr mem[7] = {};
119 __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
120 return mem[6];
124 void FlushShadowMemoryCallback(
125 const SuspendedThreadsList &suspended_threads_list,
126 void *argument) {
127 FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg);
130 void FlushShadowMemory() {
131 StopTheWorld(FlushShadowMemoryCallback, 0);
134 #ifndef TSAN_GO
135 static void ProtectRange(uptr beg, uptr end) {
136 ScopedInRtl in_rtl;
137 CHECK_LE(beg, end);
138 if (beg == end)
139 return;
140 if (beg != (uptr)Mprotect(beg, end - beg)) {
141 Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end);
142 Printf("FATAL: Make sure you are not using unlimited stack\n");
143 Die();
146 #endif
148 #ifndef TSAN_GO
149 // Mark shadow for .rodata sections with the special kShadowRodata marker.
150 // Accesses to .rodata can't race, so this saves time, memory and trace space.
151 static void MapRodata() {
152 // First create temp file.
153 const char *tmpdir = GetEnv("TMPDIR");
154 if (tmpdir == 0)
155 tmpdir = GetEnv("TEST_TMPDIR");
156 #ifdef P_tmpdir
157 if (tmpdir == 0)
158 tmpdir = P_tmpdir;
159 #endif
160 if (tmpdir == 0)
161 return;
162 char filename[256];
163 internal_snprintf(filename, sizeof(filename), "%s/tsan.rodata.%d",
164 tmpdir, (int)internal_getpid());
165 uptr openrv = internal_open(filename, O_RDWR | O_CREAT | O_EXCL, 0600);
166 if (internal_iserror(openrv))
167 return;
168 fd_t fd = openrv;
169 // Fill the file with kShadowRodata.
170 const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
171 InternalScopedBuffer<u64> marker(kMarkerSize);
172 for (u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
173 *p = kShadowRodata;
174 internal_write(fd, marker.data(), marker.size());
175 // Map the file into memory.
176 uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE,
177 MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
178 if (internal_iserror(page)) {
179 internal_close(fd);
180 internal_unlink(filename);
181 return;
183 // Map the file into shadow of .rodata sections.
184 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
185 uptr start, end, offset, prot;
186 char name[128];
187 while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
188 if (name[0] != 0 && name[0] != '['
189 && (prot & MemoryMappingLayout::kProtectionRead)
190 && (prot & MemoryMappingLayout::kProtectionExecute)
191 && !(prot & MemoryMappingLayout::kProtectionWrite)
192 && IsAppMem(start)) {
193 // Assume it's .rodata
194 char *shadow_start = (char*)MemToShadow(start);
195 char *shadow_end = (char*)MemToShadow(end);
196 for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
197 internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
198 PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
202 internal_close(fd);
203 internal_unlink(filename);
206 void InitializeShadowMemory() {
207 uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg,
208 kLinuxShadowEnd - kLinuxShadowBeg);
209 if (shadow != kLinuxShadowBeg) {
210 Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
211 Printf("FATAL: Make sure to compile with -fPIE and "
212 "to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg);
213 Die();
215 const uptr kClosedLowBeg = 0x200000;
216 const uptr kClosedLowEnd = kLinuxShadowBeg - 1;
217 const uptr kClosedMidBeg = kLinuxShadowEnd + 1;
218 const uptr kClosedMidEnd = min(kLinuxAppMemBeg, kTraceMemBegin);
219 ProtectRange(kClosedLowBeg, kClosedLowEnd);
220 ProtectRange(kClosedMidBeg, kClosedMidEnd);
221 DPrintf("kClosedLow %zx-%zx (%zuGB)\n",
222 kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30);
223 DPrintf("kLinuxShadow %zx-%zx (%zuGB)\n",
224 kLinuxShadowBeg, kLinuxShadowEnd,
225 (kLinuxShadowEnd - kLinuxShadowBeg) >> 30);
226 DPrintf("kClosedMid %zx-%zx (%zuGB)\n",
227 kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30);
228 DPrintf("kLinuxAppMem %zx-%zx (%zuGB)\n",
229 kLinuxAppMemBeg, kLinuxAppMemEnd,
230 (kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30);
231 DPrintf("stack %zx\n", (uptr)&shadow);
233 MapRodata();
235 #endif
237 static uptr g_data_start;
238 static uptr g_data_end;
240 #ifndef TSAN_GO
241 static void CheckPIE() {
242 // Ensure that the binary is indeed compiled with -pie.
243 MemoryMappingLayout proc_maps(true);
244 uptr start, end;
245 if (proc_maps.Next(&start, &end,
246 /*offset*/0, /*filename*/0, /*filename_size*/0,
247 /*protection*/0)) {
248 if ((u64)start < kLinuxAppMemBeg) {
249 Printf("FATAL: ThreadSanitizer can not mmap the shadow memory ("
250 "something is mapped at 0x%zx < 0x%zx)\n",
251 start, kLinuxAppMemBeg);
252 Printf("FATAL: Make sure to compile with -fPIE"
253 " and to link with -pie.\n");
254 Die();
259 static void InitDataSeg() {
260 MemoryMappingLayout proc_maps(true);
261 uptr start, end, offset;
262 char name[128];
263 bool prev_is_data = false;
264 while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
265 /*protection*/ 0)) {
266 DPrintf("%p-%p %p %s\n", start, end, offset, name);
267 bool is_data = offset != 0 && name[0] != 0;
268 // BSS may get merged with [heap] in /proc/self/maps. This is not very
269 // reliable.
270 bool is_bss = offset == 0 &&
271 (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
272 if (g_data_start == 0 && is_data)
273 g_data_start = start;
274 if (is_bss)
275 g_data_end = end;
276 prev_is_data = is_data;
278 DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end);
279 CHECK_LT(g_data_start, g_data_end);
280 CHECK_GE((uptr)&g_data_start, g_data_start);
281 CHECK_LT((uptr)&g_data_start, g_data_end);
284 #endif // #ifndef TSAN_GO
286 static rlim_t getlim(int res) {
287 rlimit rlim;
288 CHECK_EQ(0, getrlimit(res, &rlim));
289 return rlim.rlim_cur;
292 static void setlim(int res, rlim_t lim) {
293 // The following magic is to prevent clang from replacing it with memset.
294 volatile rlimit rlim;
295 rlim.rlim_cur = lim;
296 rlim.rlim_max = lim;
297 setrlimit(res, (rlimit*)&rlim);
300 const char *InitializePlatform() {
301 void *p = 0;
302 if (sizeof(p) == 8) {
303 // Disable core dumps, dumping of 16TB usually takes a bit long.
304 setlim(RLIMIT_CORE, 0);
307 // Go maps shadow memory lazily and works fine with limited address space.
308 // Unlimited stack is not a problem as well, because the executable
309 // is not compiled with -pie.
310 if (kCppMode) {
311 bool reexec = false;
312 // TSan doesn't play well with unlimited stack size (as stack
313 // overlaps with shadow memory). If we detect unlimited stack size,
314 // we re-exec the program with limited stack size as a best effort.
315 if (getlim(RLIMIT_STACK) == (rlim_t)-1) {
316 const uptr kMaxStackSize = 32 * 1024 * 1024;
317 Report("WARNING: Program is run with unlimited stack size, which "
318 "wouldn't work with ThreadSanitizer.\n");
319 Report("Re-execing with stack size limited to %zd bytes.\n",
320 kMaxStackSize);
321 SetStackSizeLimitInBytes(kMaxStackSize);
322 reexec = true;
325 if (getlim(RLIMIT_AS) != (rlim_t)-1) {
326 Report("WARNING: Program is run with limited virtual address space,"
327 " which wouldn't work with ThreadSanitizer.\n");
328 Report("Re-execing with unlimited virtual address space.\n");
329 setlim(RLIMIT_AS, -1);
330 reexec = true;
332 if (reexec)
333 ReExec();
336 #ifndef TSAN_GO
337 CheckPIE();
338 InitTlsSize();
339 InitDataSeg();
340 #endif
341 return GetEnv(kTsanOptionsEnv);
344 bool IsGlobalVar(uptr addr) {
345 return g_data_start && addr >= g_data_start && addr < g_data_end;
348 #ifndef TSAN_GO
349 // Extract file descriptors passed to glibc internal __res_iclose function.
350 // This is required to properly "close" the fds, because we do not see internal
351 // closes within glibc. The code is a pure hack.
352 int ExtractResolvFDs(void *state, int *fds, int nfd) {
353 int cnt = 0;
354 __res_state *statp = (__res_state*)state;
355 for (int i = 0; i < MAXNS && cnt < nfd; i++) {
356 if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
357 fds[cnt++] = statp->_u._ext.nssocks[i];
359 return cnt;
362 // Extract file descriptors passed via UNIX domain sockets.
363 // This is requried to properly handle "open" of these fds.
364 // see 'man recvmsg' and 'man 3 cmsg'.
365 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
366 int res = 0;
367 msghdr *msg = (msghdr*)msgp;
368 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
369 for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
370 if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
371 continue;
372 int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
373 for (int i = 0; i < n; i++) {
374 fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
375 if (res == nfd)
376 return res;
379 return res;
381 #endif
384 } // namespace __tsan
386 #endif // SANITIZER_LINUX