Pass name cleanups
[official-gcc.git] / gcc / var-tracking.c
blobdb261c0f03d23a8091e16a2e1b27aed8acd8a4e7
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
118 #include "tm_p.h"
120 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
121 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
122 Currently the value is the same as IDENTIFIER_NODE, which has such
123 a property. If this compile time assertion ever fails, make sure that
124 the new tree code that equals (int) VALUE has the same property. */
125 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
127 /* Type of micro operation. */
128 enum micro_operation_type
130 MO_USE, /* Use location (REG or MEM). */
131 MO_USE_NO_VAR,/* Use location which is not associated with a variable
132 or the variable is not trackable. */
133 MO_VAL_USE, /* Use location which is associated with a value. */
134 MO_VAL_LOC, /* Use location which appears in a debug insn. */
135 MO_VAL_SET, /* Set location associated with a value. */
136 MO_SET, /* Set location. */
137 MO_COPY, /* Copy the same portion of a variable from one
138 location to another. */
139 MO_CLOBBER, /* Clobber location. */
140 MO_CALL, /* Call insn. */
141 MO_ADJUST /* Adjust stack pointer. */
145 static const char * const ATTRIBUTE_UNUSED
146 micro_operation_type_name[] = {
147 "MO_USE",
148 "MO_USE_NO_VAR",
149 "MO_VAL_USE",
150 "MO_VAL_LOC",
151 "MO_VAL_SET",
152 "MO_SET",
153 "MO_COPY",
154 "MO_CLOBBER",
155 "MO_CALL",
156 "MO_ADJUST"
159 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
160 Notes emitted as AFTER_CALL are to take effect during the call,
161 rather than after the call. */
162 enum emit_note_where
164 EMIT_NOTE_BEFORE_INSN,
165 EMIT_NOTE_AFTER_INSN,
166 EMIT_NOTE_AFTER_CALL_INSN
169 /* Structure holding information about micro operation. */
170 typedef struct micro_operation_def
172 /* Type of micro operation. */
173 enum micro_operation_type type;
175 /* The instruction which the micro operation is in, for MO_USE,
176 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
177 instruction or note in the original flow (before any var-tracking
178 notes are inserted, to simplify emission of notes), for MO_SET
179 and MO_CLOBBER. */
180 rtx insn;
182 union {
183 /* Location. For MO_SET and MO_COPY, this is the SET that
184 performs the assignment, if known, otherwise it is the target
185 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
186 CONCAT of the VALUE and the LOC associated with it. For
187 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
188 associated with it. */
189 rtx loc;
191 /* Stack adjustment. */
192 HOST_WIDE_INT adjust;
193 } u;
194 } micro_operation;
196 DEF_VEC_O(micro_operation);
197 DEF_VEC_ALLOC_O(micro_operation,heap);
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Structure for passing some other parameters to function
204 emit_note_insn_var_location. */
205 typedef struct emit_note_data_def
207 /* The instruction which the note will be emitted before/after. */
208 rtx insn;
210 /* Where the note will be emitted (before/after insn)? */
211 enum emit_note_where where;
213 /* The variables and values active at this point. */
214 htab_t vars;
215 } emit_note_data;
217 /* Description of location of a part of a variable. The content of a physical
218 register is described by a chain of these structures.
219 The chains are pretty short (usually 1 or 2 elements) and thus
220 chain is the best data structure. */
221 typedef struct attrs_def
223 /* Pointer to next member of the list. */
224 struct attrs_def *next;
226 /* The rtx of register. */
227 rtx loc;
229 /* The declaration corresponding to LOC. */
230 decl_or_value dv;
232 /* Offset from start of DECL. */
233 HOST_WIDE_INT offset;
234 } *attrs;
236 /* Structure holding a refcounted hash table. If refcount > 1,
237 it must be first unshared before modified. */
238 typedef struct shared_hash_def
240 /* Reference count. */
241 int refcount;
243 /* Actual hash table. */
244 htab_t htab;
245 } *shared_hash;
247 /* Structure holding the IN or OUT set for a basic block. */
248 typedef struct dataflow_set_def
250 /* Adjustment of stack offset. */
251 HOST_WIDE_INT stack_adjust;
253 /* Attributes for registers (lists of attrs). */
254 attrs regs[FIRST_PSEUDO_REGISTER];
256 /* Variable locations. */
257 shared_hash vars;
259 /* Vars that is being traversed. */
260 shared_hash traversed_vars;
261 } dataflow_set;
263 /* The structure (one for each basic block) containing the information
264 needed for variable tracking. */
265 typedef struct variable_tracking_info_def
267 /* The vector of micro operations. */
268 VEC(micro_operation, heap) *mos;
270 /* The IN and OUT set for dataflow analysis. */
271 dataflow_set in;
272 dataflow_set out;
274 /* The permanent-in dataflow set for this block. This is used to
275 hold values for which we had to compute entry values. ??? This
276 should probably be dynamically allocated, to avoid using more
277 memory in non-debug builds. */
278 dataflow_set *permp;
280 /* Has the block been visited in DFS? */
281 bool visited;
283 /* Has the block been flooded in VTA? */
284 bool flooded;
286 } *variable_tracking_info;
288 /* Structure for chaining the locations. */
289 typedef struct location_chain_def
291 /* Next element in the chain. */
292 struct location_chain_def *next;
294 /* The location (REG, MEM or VALUE). */
295 rtx loc;
297 /* The "value" stored in this location. */
298 rtx set_src;
300 /* Initialized? */
301 enum var_init_status init;
302 } *location_chain;
304 /* Structure describing one part of variable. */
305 typedef struct variable_part_def
307 /* Chain of locations of the part. */
308 location_chain loc_chain;
310 /* Location which was last emitted to location list. */
311 rtx cur_loc;
313 /* The offset in the variable. */
314 HOST_WIDE_INT offset;
315 } variable_part;
317 /* Maximum number of location parts. */
318 #define MAX_VAR_PARTS 16
320 /* Structure describing where the variable is located. */
321 typedef struct variable_def
323 /* The declaration of the variable, or an RTL value being handled
324 like a declaration. */
325 decl_or_value dv;
327 /* Reference count. */
328 int refcount;
330 /* Number of variable parts. */
331 char n_var_parts;
333 /* True if this variable changed (any of its) cur_loc fields
334 during the current emit_notes_for_changes resp.
335 emit_notes_for_differences call. */
336 bool cur_loc_changed;
338 /* True if this variable_def struct is currently in the
339 changed_variables hash table. */
340 bool in_changed_variables;
342 /* The variable parts. */
343 variable_part var_part[1];
344 } *variable;
345 typedef const struct variable_def *const_variable;
347 /* Structure for chaining backlinks from referenced VALUEs to
348 DVs that are referencing them. */
349 typedef struct value_chain_def
351 /* Next value_chain entry. */
352 struct value_chain_def *next;
354 /* The declaration of the variable, or an RTL value
355 being handled like a declaration, whose var_parts[0].loc_chain
356 references the VALUE owning this value_chain. */
357 decl_or_value dv;
359 /* Reference count. */
360 int refcount;
361 } *value_chain;
362 typedef const struct value_chain_def *const_value_chain;
364 /* Pointer to the BB's information specific to variable tracking pass. */
365 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
367 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
368 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
370 /* Alloc pool for struct attrs_def. */
371 static alloc_pool attrs_pool;
373 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
374 static alloc_pool var_pool;
376 /* Alloc pool for struct variable_def with a single var_part entry. */
377 static alloc_pool valvar_pool;
379 /* Alloc pool for struct location_chain_def. */
380 static alloc_pool loc_chain_pool;
382 /* Alloc pool for struct shared_hash_def. */
383 static alloc_pool shared_hash_pool;
385 /* Alloc pool for struct value_chain_def. */
386 static alloc_pool value_chain_pool;
388 /* Changed variables, notes will be emitted for them. */
389 static htab_t changed_variables;
391 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
392 static htab_t value_chains;
394 /* Shall notes be emitted? */
395 static bool emit_notes;
397 /* Empty shared hashtable. */
398 static shared_hash empty_shared_hash;
400 /* Scratch register bitmap used by cselib_expand_value_rtx. */
401 static bitmap scratch_regs = NULL;
403 /* Variable used to tell whether cselib_process_insn called our hook. */
404 static bool cselib_hook_called;
406 /* Local function prototypes. */
407 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
408 HOST_WIDE_INT *);
409 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
410 HOST_WIDE_INT *);
411 static bool vt_stack_adjustments (void);
412 static void note_register_arguments (rtx);
413 static hashval_t variable_htab_hash (const void *);
414 static int variable_htab_eq (const void *, const void *);
415 static void variable_htab_free (void *);
417 static void init_attrs_list_set (attrs *);
418 static void attrs_list_clear (attrs *);
419 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
420 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
421 static void attrs_list_copy (attrs *, attrs);
422 static void attrs_list_union (attrs *, attrs);
424 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
425 enum var_init_status);
426 static void vars_copy (htab_t, htab_t);
427 static tree var_debug_decl (tree);
428 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
429 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
430 enum var_init_status, rtx);
431 static void var_reg_delete (dataflow_set *, rtx, bool);
432 static void var_regno_delete (dataflow_set *, int);
433 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
434 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
435 enum var_init_status, rtx);
436 static void var_mem_delete (dataflow_set *, rtx, bool);
438 static void dataflow_set_init (dataflow_set *);
439 static void dataflow_set_clear (dataflow_set *);
440 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
441 static int variable_union_info_cmp_pos (const void *, const void *);
442 static void dataflow_set_union (dataflow_set *, dataflow_set *);
443 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
444 static bool canon_value_cmp (rtx, rtx);
445 static int loc_cmp (rtx, rtx);
446 static bool variable_part_different_p (variable_part *, variable_part *);
447 static bool onepart_variable_different_p (variable, variable);
448 static bool variable_different_p (variable, variable);
449 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
450 static void dataflow_set_destroy (dataflow_set *);
452 static bool contains_symbol_ref (rtx);
453 static bool track_expr_p (tree, bool);
454 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
455 static int add_uses (rtx *, void *);
456 static void add_uses_1 (rtx *, void *);
457 static void add_stores (rtx, const_rtx, void *);
458 static bool compute_bb_dataflow (basic_block);
459 static bool vt_find_locations (void);
461 static void dump_attrs_list (attrs);
462 static int dump_var_slot (void **, void *);
463 static void dump_var (variable);
464 static void dump_vars (htab_t);
465 static void dump_dataflow_set (dataflow_set *);
466 static void dump_dataflow_sets (void);
468 static void variable_was_changed (variable, dataflow_set *);
469 static void **set_slot_part (dataflow_set *, rtx, void **,
470 decl_or_value, HOST_WIDE_INT,
471 enum var_init_status, rtx);
472 static void set_variable_part (dataflow_set *, rtx,
473 decl_or_value, HOST_WIDE_INT,
474 enum var_init_status, rtx, enum insert_option);
475 static void **clobber_slot_part (dataflow_set *, rtx,
476 void **, HOST_WIDE_INT, rtx);
477 static void clobber_variable_part (dataflow_set *, rtx,
478 decl_or_value, HOST_WIDE_INT, rtx);
479 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
480 static void delete_variable_part (dataflow_set *, rtx,
481 decl_or_value, HOST_WIDE_INT);
482 static int emit_note_insn_var_location (void **, void *);
483 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
484 static int emit_notes_for_differences_1 (void **, void *);
485 static int emit_notes_for_differences_2 (void **, void *);
486 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
487 static void emit_notes_in_bb (basic_block, dataflow_set *);
488 static void vt_emit_notes (void);
490 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
491 static void vt_add_function_parameters (void);
492 static bool vt_initialize (void);
493 static void vt_finalize (void);
495 /* Given a SET, calculate the amount of stack adjustment it contains
496 PRE- and POST-modifying stack pointer.
497 This function is similar to stack_adjust_offset. */
499 static void
500 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
501 HOST_WIDE_INT *post)
503 rtx src = SET_SRC (pattern);
504 rtx dest = SET_DEST (pattern);
505 enum rtx_code code;
507 if (dest == stack_pointer_rtx)
509 /* (set (reg sp) (plus (reg sp) (const_int))) */
510 code = GET_CODE (src);
511 if (! (code == PLUS || code == MINUS)
512 || XEXP (src, 0) != stack_pointer_rtx
513 || !CONST_INT_P (XEXP (src, 1)))
514 return;
516 if (code == MINUS)
517 *post += INTVAL (XEXP (src, 1));
518 else
519 *post -= INTVAL (XEXP (src, 1));
521 else if (MEM_P (dest))
523 /* (set (mem (pre_dec (reg sp))) (foo)) */
524 src = XEXP (dest, 0);
525 code = GET_CODE (src);
527 switch (code)
529 case PRE_MODIFY:
530 case POST_MODIFY:
531 if (XEXP (src, 0) == stack_pointer_rtx)
533 rtx val = XEXP (XEXP (src, 1), 1);
534 /* We handle only adjustments by constant amount. */
535 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
536 CONST_INT_P (val));
538 if (code == PRE_MODIFY)
539 *pre -= INTVAL (val);
540 else
541 *post -= INTVAL (val);
542 break;
544 return;
546 case PRE_DEC:
547 if (XEXP (src, 0) == stack_pointer_rtx)
549 *pre += GET_MODE_SIZE (GET_MODE (dest));
550 break;
552 return;
554 case POST_DEC:
555 if (XEXP (src, 0) == stack_pointer_rtx)
557 *post += GET_MODE_SIZE (GET_MODE (dest));
558 break;
560 return;
562 case PRE_INC:
563 if (XEXP (src, 0) == stack_pointer_rtx)
565 *pre -= GET_MODE_SIZE (GET_MODE (dest));
566 break;
568 return;
570 case POST_INC:
571 if (XEXP (src, 0) == stack_pointer_rtx)
573 *post -= GET_MODE_SIZE (GET_MODE (dest));
574 break;
576 return;
578 default:
579 return;
584 /* Given an INSN, calculate the amount of stack adjustment it contains
585 PRE- and POST-modifying stack pointer. */
587 static void
588 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
589 HOST_WIDE_INT *post)
591 rtx pattern;
593 *pre = 0;
594 *post = 0;
596 pattern = PATTERN (insn);
597 if (RTX_FRAME_RELATED_P (insn))
599 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
600 if (expr)
601 pattern = XEXP (expr, 0);
604 if (GET_CODE (pattern) == SET)
605 stack_adjust_offset_pre_post (pattern, pre, post);
606 else if (GET_CODE (pattern) == PARALLEL
607 || GET_CODE (pattern) == SEQUENCE)
609 int i;
611 /* There may be stack adjustments inside compound insns. Search
612 for them. */
613 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
614 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
615 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
619 /* Compute stack adjustments for all blocks by traversing DFS tree.
620 Return true when the adjustments on all incoming edges are consistent.
621 Heavily borrowed from pre_and_rev_post_order_compute. */
623 static bool
624 vt_stack_adjustments (void)
626 edge_iterator *stack;
627 int sp;
629 /* Initialize entry block. */
630 VTI (ENTRY_BLOCK_PTR)->visited = true;
631 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
632 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
634 /* Allocate stack for back-tracking up CFG. */
635 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
636 sp = 0;
638 /* Push the first edge on to the stack. */
639 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
641 while (sp)
643 edge_iterator ei;
644 basic_block src;
645 basic_block dest;
647 /* Look at the edge on the top of the stack. */
648 ei = stack[sp - 1];
649 src = ei_edge (ei)->src;
650 dest = ei_edge (ei)->dest;
652 /* Check if the edge destination has been visited yet. */
653 if (!VTI (dest)->visited)
655 rtx insn;
656 HOST_WIDE_INT pre, post, offset;
657 VTI (dest)->visited = true;
658 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
660 if (dest != EXIT_BLOCK_PTR)
661 for (insn = BB_HEAD (dest);
662 insn != NEXT_INSN (BB_END (dest));
663 insn = NEXT_INSN (insn))
665 if (INSN_P (insn))
667 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
668 offset += pre + post;
670 if (CALL_P (insn))
671 note_register_arguments (insn);
674 VTI (dest)->out.stack_adjust = offset;
676 if (EDGE_COUNT (dest->succs) > 0)
677 /* Since the DEST node has been visited for the first
678 time, check its successors. */
679 stack[sp++] = ei_start (dest->succs);
681 else
683 /* Check whether the adjustments on the edges are the same. */
684 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
686 free (stack);
687 return false;
690 if (! ei_one_before_end_p (ei))
691 /* Go to the next edge. */
692 ei_next (&stack[sp - 1]);
693 else
694 /* Return to previous level if there are no more edges. */
695 sp--;
699 free (stack);
700 return true;
703 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
704 hard_frame_pointer_rtx is being mapped to it and offset for it. */
705 static rtx cfa_base_rtx;
706 static HOST_WIDE_INT cfa_base_offset;
708 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
709 or hard_frame_pointer_rtx. */
711 static inline rtx
712 compute_cfa_pointer (HOST_WIDE_INT adjustment)
714 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
717 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
718 or -1 if the replacement shouldn't be done. */
719 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
721 /* Data for adjust_mems callback. */
723 struct adjust_mem_data
725 bool store;
726 enum machine_mode mem_mode;
727 HOST_WIDE_INT stack_adjust;
728 rtx side_effects;
731 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
732 transformation of wider mode arithmetics to narrower mode,
733 -1 if it is suitable and subexpressions shouldn't be
734 traversed and 0 if it is suitable and subexpressions should
735 be traversed. Called through for_each_rtx. */
737 static int
738 use_narrower_mode_test (rtx *loc, void *data)
740 rtx subreg = (rtx) data;
742 if (CONSTANT_P (*loc))
743 return -1;
744 switch (GET_CODE (*loc))
746 case REG:
747 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
748 return 1;
749 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
750 *loc, subreg_lowpart_offset (GET_MODE (subreg),
751 GET_MODE (*loc))))
752 return 1;
753 return -1;
754 case PLUS:
755 case MINUS:
756 case MULT:
757 return 0;
758 case ASHIFT:
759 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
760 return 1;
761 else
762 return -1;
763 default:
764 return 1;
768 /* Transform X into narrower mode MODE from wider mode WMODE. */
770 static rtx
771 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
773 rtx op0, op1;
774 if (CONSTANT_P (x))
775 return lowpart_subreg (mode, x, wmode);
776 switch (GET_CODE (x))
778 case REG:
779 return lowpart_subreg (mode, x, wmode);
780 case PLUS:
781 case MINUS:
782 case MULT:
783 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
784 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
785 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
786 case ASHIFT:
787 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
788 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
789 default:
790 gcc_unreachable ();
794 /* Helper function for adjusting used MEMs. */
796 static rtx
797 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
799 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
800 rtx mem, addr = loc, tem;
801 enum machine_mode mem_mode_save;
802 bool store_save;
803 switch (GET_CODE (loc))
805 case REG:
806 /* Don't do any sp or fp replacements outside of MEM addresses
807 on the LHS. */
808 if (amd->mem_mode == VOIDmode && amd->store)
809 return loc;
810 if (loc == stack_pointer_rtx
811 && !frame_pointer_needed
812 && cfa_base_rtx)
813 return compute_cfa_pointer (amd->stack_adjust);
814 else if (loc == hard_frame_pointer_rtx
815 && frame_pointer_needed
816 && hard_frame_pointer_adjustment != -1
817 && cfa_base_rtx)
818 return compute_cfa_pointer (hard_frame_pointer_adjustment);
819 gcc_checking_assert (loc != virtual_incoming_args_rtx);
820 return loc;
821 case MEM:
822 mem = loc;
823 if (!amd->store)
825 mem = targetm.delegitimize_address (mem);
826 if (mem != loc && !MEM_P (mem))
827 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
830 addr = XEXP (mem, 0);
831 mem_mode_save = amd->mem_mode;
832 amd->mem_mode = GET_MODE (mem);
833 store_save = amd->store;
834 amd->store = false;
835 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
836 amd->store = store_save;
837 amd->mem_mode = mem_mode_save;
838 if (mem == loc)
839 addr = targetm.delegitimize_address (addr);
840 if (addr != XEXP (mem, 0))
841 mem = replace_equiv_address_nv (mem, addr);
842 if (!amd->store)
843 mem = avoid_constant_pool_reference (mem);
844 return mem;
845 case PRE_INC:
846 case PRE_DEC:
847 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
848 GEN_INT (GET_CODE (loc) == PRE_INC
849 ? GET_MODE_SIZE (amd->mem_mode)
850 : -GET_MODE_SIZE (amd->mem_mode)));
851 case POST_INC:
852 case POST_DEC:
853 if (addr == loc)
854 addr = XEXP (loc, 0);
855 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
856 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
857 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
858 GEN_INT ((GET_CODE (loc) == PRE_INC
859 || GET_CODE (loc) == POST_INC)
860 ? GET_MODE_SIZE (amd->mem_mode)
861 : -GET_MODE_SIZE (amd->mem_mode)));
862 amd->side_effects = alloc_EXPR_LIST (0,
863 gen_rtx_SET (VOIDmode,
864 XEXP (loc, 0),
865 tem),
866 amd->side_effects);
867 return addr;
868 case PRE_MODIFY:
869 addr = XEXP (loc, 1);
870 case POST_MODIFY:
871 if (addr == loc)
872 addr = XEXP (loc, 0);
873 gcc_assert (amd->mem_mode != VOIDmode);
874 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
875 amd->side_effects = alloc_EXPR_LIST (0,
876 gen_rtx_SET (VOIDmode,
877 XEXP (loc, 0),
878 XEXP (loc, 1)),
879 amd->side_effects);
880 return addr;
881 case SUBREG:
882 /* First try without delegitimization of whole MEMs and
883 avoid_constant_pool_reference, which is more likely to succeed. */
884 store_save = amd->store;
885 amd->store = true;
886 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
887 data);
888 amd->store = store_save;
889 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
890 if (mem == SUBREG_REG (loc))
892 tem = loc;
893 goto finish_subreg;
895 tem = simplify_gen_subreg (GET_MODE (loc), mem,
896 GET_MODE (SUBREG_REG (loc)),
897 SUBREG_BYTE (loc));
898 if (tem)
899 goto finish_subreg;
900 tem = simplify_gen_subreg (GET_MODE (loc), addr,
901 GET_MODE (SUBREG_REG (loc)),
902 SUBREG_BYTE (loc));
903 if (tem == NULL_RTX)
904 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
905 finish_subreg:
906 if (MAY_HAVE_DEBUG_INSNS
907 && GET_CODE (tem) == SUBREG
908 && (GET_CODE (SUBREG_REG (tem)) == PLUS
909 || GET_CODE (SUBREG_REG (tem)) == MINUS
910 || GET_CODE (SUBREG_REG (tem)) == MULT
911 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
912 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
913 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
914 && GET_MODE_SIZE (GET_MODE (tem))
915 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
916 && subreg_lowpart_p (tem)
917 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
918 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
919 GET_MODE (SUBREG_REG (tem)));
920 return tem;
921 case ASM_OPERANDS:
922 /* Don't do any replacements in second and following
923 ASM_OPERANDS of inline-asm with multiple sets.
924 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
925 and ASM_OPERANDS_LABEL_VEC need to be equal between
926 all the ASM_OPERANDs in the insn and adjust_insn will
927 fix this up. */
928 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
929 return loc;
930 break;
931 default:
932 break;
934 return NULL_RTX;
937 /* Helper function for replacement of uses. */
939 static void
940 adjust_mem_uses (rtx *x, void *data)
942 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
943 if (new_x != *x)
944 validate_change (NULL_RTX, x, new_x, true);
947 /* Helper function for replacement of stores. */
949 static void
950 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
952 if (MEM_P (loc))
954 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
955 adjust_mems, data);
956 if (new_dest != SET_DEST (expr))
958 rtx xexpr = CONST_CAST_RTX (expr);
959 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
964 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
965 replace them with their value in the insn and add the side-effects
966 as other sets to the insn. */
968 static void
969 adjust_insn (basic_block bb, rtx insn)
971 struct adjust_mem_data amd;
972 rtx set;
973 amd.mem_mode = VOIDmode;
974 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
975 amd.side_effects = NULL_RTX;
977 amd.store = true;
978 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
980 amd.store = false;
981 if (GET_CODE (PATTERN (insn)) == PARALLEL
982 && asm_noperands (PATTERN (insn)) > 0
983 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
985 rtx body, set0;
986 int i;
988 /* inline-asm with multiple sets is tiny bit more complicated,
989 because the 3 vectors in ASM_OPERANDS need to be shared between
990 all ASM_OPERANDS in the instruction. adjust_mems will
991 not touch ASM_OPERANDS other than the first one, asm_noperands
992 test above needs to be called before that (otherwise it would fail)
993 and afterwards this code fixes it up. */
994 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
995 body = PATTERN (insn);
996 set0 = XVECEXP (body, 0, 0);
997 gcc_checking_assert (GET_CODE (set0) == SET
998 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
999 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1000 for (i = 1; i < XVECLEN (body, 0); i++)
1001 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1002 break;
1003 else
1005 set = XVECEXP (body, 0, i);
1006 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1007 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1008 == i);
1009 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1010 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1011 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1012 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1013 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1014 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1016 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1017 ASM_OPERANDS_INPUT_VEC (newsrc)
1018 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1019 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1020 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1021 ASM_OPERANDS_LABEL_VEC (newsrc)
1022 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1023 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1027 else
1028 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1030 /* For read-only MEMs containing some constant, prefer those
1031 constants. */
1032 set = single_set (insn);
1033 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1035 rtx note = find_reg_equal_equiv_note (insn);
1037 if (note && CONSTANT_P (XEXP (note, 0)))
1038 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1041 if (amd.side_effects)
1043 rtx *pat, new_pat, s;
1044 int i, oldn, newn;
1046 pat = &PATTERN (insn);
1047 if (GET_CODE (*pat) == COND_EXEC)
1048 pat = &COND_EXEC_CODE (*pat);
1049 if (GET_CODE (*pat) == PARALLEL)
1050 oldn = XVECLEN (*pat, 0);
1051 else
1052 oldn = 1;
1053 for (s = amd.side_effects, newn = 0; s; newn++)
1054 s = XEXP (s, 1);
1055 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1056 if (GET_CODE (*pat) == PARALLEL)
1057 for (i = 0; i < oldn; i++)
1058 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1059 else
1060 XVECEXP (new_pat, 0, 0) = *pat;
1061 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1062 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1063 free_EXPR_LIST_list (&amd.side_effects);
1064 validate_change (NULL_RTX, pat, new_pat, true);
1068 /* Return true if a decl_or_value DV is a DECL or NULL. */
1069 static inline bool
1070 dv_is_decl_p (decl_or_value dv)
1072 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1075 /* Return true if a decl_or_value is a VALUE rtl. */
1076 static inline bool
1077 dv_is_value_p (decl_or_value dv)
1079 return dv && !dv_is_decl_p (dv);
1082 /* Return the decl in the decl_or_value. */
1083 static inline tree
1084 dv_as_decl (decl_or_value dv)
1086 gcc_checking_assert (dv_is_decl_p (dv));
1087 return (tree) dv;
1090 /* Return the value in the decl_or_value. */
1091 static inline rtx
1092 dv_as_value (decl_or_value dv)
1094 gcc_checking_assert (dv_is_value_p (dv));
1095 return (rtx)dv;
1098 /* Return the opaque pointer in the decl_or_value. */
1099 static inline void *
1100 dv_as_opaque (decl_or_value dv)
1102 return dv;
1105 /* Return true if a decl_or_value must not have more than one variable
1106 part. */
1107 static inline bool
1108 dv_onepart_p (decl_or_value dv)
1110 tree decl;
1112 if (!MAY_HAVE_DEBUG_INSNS)
1113 return false;
1115 if (dv_is_value_p (dv))
1116 return true;
1118 decl = dv_as_decl (dv);
1120 if (!decl)
1121 return true;
1123 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1124 return true;
1126 return (target_for_debug_bind (decl) != NULL_TREE);
1129 /* Return the variable pool to be used for dv, depending on whether it
1130 can have multiple parts or not. */
1131 static inline alloc_pool
1132 dv_pool (decl_or_value dv)
1134 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1137 /* Build a decl_or_value out of a decl. */
1138 static inline decl_or_value
1139 dv_from_decl (tree decl)
1141 decl_or_value dv;
1142 dv = decl;
1143 gcc_checking_assert (dv_is_decl_p (dv));
1144 return dv;
1147 /* Build a decl_or_value out of a value. */
1148 static inline decl_or_value
1149 dv_from_value (rtx value)
1151 decl_or_value dv;
1152 dv = value;
1153 gcc_checking_assert (dv_is_value_p (dv));
1154 return dv;
1157 extern void debug_dv (decl_or_value dv);
1159 DEBUG_FUNCTION void
1160 debug_dv (decl_or_value dv)
1162 if (dv_is_value_p (dv))
1163 debug_rtx (dv_as_value (dv));
1164 else
1165 debug_generic_stmt (dv_as_decl (dv));
1168 typedef unsigned int dvuid;
1170 /* Return the uid of DV. */
1172 static inline dvuid
1173 dv_uid (decl_or_value dv)
1175 if (dv_is_value_p (dv))
1176 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1177 else
1178 return DECL_UID (dv_as_decl (dv));
1181 /* Compute the hash from the uid. */
1183 static inline hashval_t
1184 dv_uid2hash (dvuid uid)
1186 return uid;
1189 /* The hash function for a mask table in a shared_htab chain. */
1191 static inline hashval_t
1192 dv_htab_hash (decl_or_value dv)
1194 return dv_uid2hash (dv_uid (dv));
1197 /* The hash function for variable_htab, computes the hash value
1198 from the declaration of variable X. */
1200 static hashval_t
1201 variable_htab_hash (const void *x)
1203 const_variable const v = (const_variable) x;
1205 return dv_htab_hash (v->dv);
1208 /* Compare the declaration of variable X with declaration Y. */
1210 static int
1211 variable_htab_eq (const void *x, const void *y)
1213 const_variable const v = (const_variable) x;
1214 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1216 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1219 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1221 static void
1222 variable_htab_free (void *elem)
1224 int i;
1225 variable var = (variable) elem;
1226 location_chain node, next;
1228 gcc_checking_assert (var->refcount > 0);
1230 var->refcount--;
1231 if (var->refcount > 0)
1232 return;
1234 for (i = 0; i < var->n_var_parts; i++)
1236 for (node = var->var_part[i].loc_chain; node; node = next)
1238 next = node->next;
1239 pool_free (loc_chain_pool, node);
1241 var->var_part[i].loc_chain = NULL;
1243 pool_free (dv_pool (var->dv), var);
1246 /* The hash function for value_chains htab, computes the hash value
1247 from the VALUE. */
1249 static hashval_t
1250 value_chain_htab_hash (const void *x)
1252 const_value_chain const v = (const_value_chain) x;
1254 return dv_htab_hash (v->dv);
1257 /* Compare the VALUE X with VALUE Y. */
1259 static int
1260 value_chain_htab_eq (const void *x, const void *y)
1262 const_value_chain const v = (const_value_chain) x;
1263 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1265 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1268 /* Initialize the set (array) SET of attrs to empty lists. */
1270 static void
1271 init_attrs_list_set (attrs *set)
1273 int i;
1275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1276 set[i] = NULL;
1279 /* Make the list *LISTP empty. */
1281 static void
1282 attrs_list_clear (attrs *listp)
1284 attrs list, next;
1286 for (list = *listp; list; list = next)
1288 next = list->next;
1289 pool_free (attrs_pool, list);
1291 *listp = NULL;
1294 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1296 static attrs
1297 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1299 for (; list; list = list->next)
1300 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1301 return list;
1302 return NULL;
1305 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1307 static void
1308 attrs_list_insert (attrs *listp, decl_or_value dv,
1309 HOST_WIDE_INT offset, rtx loc)
1311 attrs list;
1313 list = (attrs) pool_alloc (attrs_pool);
1314 list->loc = loc;
1315 list->dv = dv;
1316 list->offset = offset;
1317 list->next = *listp;
1318 *listp = list;
1321 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1323 static void
1324 attrs_list_copy (attrs *dstp, attrs src)
1326 attrs n;
1328 attrs_list_clear (dstp);
1329 for (; src; src = src->next)
1331 n = (attrs) pool_alloc (attrs_pool);
1332 n->loc = src->loc;
1333 n->dv = src->dv;
1334 n->offset = src->offset;
1335 n->next = *dstp;
1336 *dstp = n;
1340 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1342 static void
1343 attrs_list_union (attrs *dstp, attrs src)
1345 for (; src; src = src->next)
1347 if (!attrs_list_member (*dstp, src->dv, src->offset))
1348 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1352 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1353 *DSTP. */
1355 static void
1356 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1358 gcc_assert (!*dstp);
1359 for (; src; src = src->next)
1361 if (!dv_onepart_p (src->dv))
1362 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1364 for (src = src2; src; src = src->next)
1366 if (!dv_onepart_p (src->dv)
1367 && !attrs_list_member (*dstp, src->dv, src->offset))
1368 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1372 /* Shared hashtable support. */
1374 /* Return true if VARS is shared. */
1376 static inline bool
1377 shared_hash_shared (shared_hash vars)
1379 return vars->refcount > 1;
1382 /* Return the hash table for VARS. */
1384 static inline htab_t
1385 shared_hash_htab (shared_hash vars)
1387 return vars->htab;
1390 /* Return true if VAR is shared, or maybe because VARS is shared. */
1392 static inline bool
1393 shared_var_p (variable var, shared_hash vars)
1395 /* Don't count an entry in the changed_variables table as a duplicate. */
1396 return ((var->refcount > 1 + (int) var->in_changed_variables)
1397 || shared_hash_shared (vars));
1400 /* Copy variables into a new hash table. */
1402 static shared_hash
1403 shared_hash_unshare (shared_hash vars)
1405 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1406 gcc_assert (vars->refcount > 1);
1407 new_vars->refcount = 1;
1408 new_vars->htab
1409 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1410 variable_htab_eq, variable_htab_free);
1411 vars_copy (new_vars->htab, vars->htab);
1412 vars->refcount--;
1413 return new_vars;
1416 /* Increment reference counter on VARS and return it. */
1418 static inline shared_hash
1419 shared_hash_copy (shared_hash vars)
1421 vars->refcount++;
1422 return vars;
1425 /* Decrement reference counter and destroy hash table if not shared
1426 anymore. */
1428 static void
1429 shared_hash_destroy (shared_hash vars)
1431 gcc_checking_assert (vars->refcount > 0);
1432 if (--vars->refcount == 0)
1434 htab_delete (vars->htab);
1435 pool_free (shared_hash_pool, vars);
1439 /* Unshare *PVARS if shared and return slot for DV. If INS is
1440 INSERT, insert it if not already present. */
1442 static inline void **
1443 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1444 hashval_t dvhash, enum insert_option ins)
1446 if (shared_hash_shared (*pvars))
1447 *pvars = shared_hash_unshare (*pvars);
1448 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1451 static inline void **
1452 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1453 enum insert_option ins)
1455 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1458 /* Return slot for DV, if it is already present in the hash table.
1459 If it is not present, insert it only VARS is not shared, otherwise
1460 return NULL. */
1462 static inline void **
1463 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1465 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1466 shared_hash_shared (vars)
1467 ? NO_INSERT : INSERT);
1470 static inline void **
1471 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1473 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1476 /* Return slot for DV only if it is already present in the hash table. */
1478 static inline void **
1479 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1480 hashval_t dvhash)
1482 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1483 NO_INSERT);
1486 static inline void **
1487 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1489 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1492 /* Return variable for DV or NULL if not already present in the hash
1493 table. */
1495 static inline variable
1496 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1498 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1501 static inline variable
1502 shared_hash_find (shared_hash vars, decl_or_value dv)
1504 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1507 /* Return true if TVAL is better than CVAL as a canonival value. We
1508 choose lowest-numbered VALUEs, using the RTX address as a
1509 tie-breaker. The idea is to arrange them into a star topology,
1510 such that all of them are at most one step away from the canonical
1511 value, and the canonical value has backlinks to all of them, in
1512 addition to all the actual locations. We don't enforce this
1513 topology throughout the entire dataflow analysis, though.
1516 static inline bool
1517 canon_value_cmp (rtx tval, rtx cval)
1519 return !cval
1520 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1523 static bool dst_can_be_shared;
1525 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1527 static void **
1528 unshare_variable (dataflow_set *set, void **slot, variable var,
1529 enum var_init_status initialized)
1531 variable new_var;
1532 int i;
1534 new_var = (variable) pool_alloc (dv_pool (var->dv));
1535 new_var->dv = var->dv;
1536 new_var->refcount = 1;
1537 var->refcount--;
1538 new_var->n_var_parts = var->n_var_parts;
1539 new_var->cur_loc_changed = var->cur_loc_changed;
1540 var->cur_loc_changed = false;
1541 new_var->in_changed_variables = false;
1543 if (! flag_var_tracking_uninit)
1544 initialized = VAR_INIT_STATUS_INITIALIZED;
1546 for (i = 0; i < var->n_var_parts; i++)
1548 location_chain node;
1549 location_chain *nextp;
1551 new_var->var_part[i].offset = var->var_part[i].offset;
1552 nextp = &new_var->var_part[i].loc_chain;
1553 for (node = var->var_part[i].loc_chain; node; node = node->next)
1555 location_chain new_lc;
1557 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1558 new_lc->next = NULL;
1559 if (node->init > initialized)
1560 new_lc->init = node->init;
1561 else
1562 new_lc->init = initialized;
1563 if (node->set_src && !(MEM_P (node->set_src)))
1564 new_lc->set_src = node->set_src;
1565 else
1566 new_lc->set_src = NULL;
1567 new_lc->loc = node->loc;
1569 *nextp = new_lc;
1570 nextp = &new_lc->next;
1573 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1576 dst_can_be_shared = false;
1577 if (shared_hash_shared (set->vars))
1578 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1579 else if (set->traversed_vars && set->vars != set->traversed_vars)
1580 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1581 *slot = new_var;
1582 if (var->in_changed_variables)
1584 void **cslot
1585 = htab_find_slot_with_hash (changed_variables, var->dv,
1586 dv_htab_hash (var->dv), NO_INSERT);
1587 gcc_assert (*cslot == (void *) var);
1588 var->in_changed_variables = false;
1589 variable_htab_free (var);
1590 *cslot = new_var;
1591 new_var->in_changed_variables = true;
1593 return slot;
1596 /* Copy all variables from hash table SRC to hash table DST. */
1598 static void
1599 vars_copy (htab_t dst, htab_t src)
1601 htab_iterator hi;
1602 variable var;
1604 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1606 void **dstp;
1607 var->refcount++;
1608 dstp = htab_find_slot_with_hash (dst, var->dv,
1609 dv_htab_hash (var->dv),
1610 INSERT);
1611 *dstp = var;
1615 /* Map a decl to its main debug decl. */
1617 static inline tree
1618 var_debug_decl (tree decl)
1620 if (decl && DECL_P (decl)
1621 && DECL_DEBUG_EXPR_IS_FROM (decl))
1623 tree debugdecl = DECL_DEBUG_EXPR (decl);
1624 if (debugdecl && DECL_P (debugdecl))
1625 decl = debugdecl;
1628 return decl;
1631 /* Set the register LOC to contain DV, OFFSET. */
1633 static void
1634 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1635 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1636 enum insert_option iopt)
1638 attrs node;
1639 bool decl_p = dv_is_decl_p (dv);
1641 if (decl_p)
1642 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1644 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1645 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1646 && node->offset == offset)
1647 break;
1648 if (!node)
1649 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1650 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1653 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1655 static void
1656 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1657 rtx set_src)
1659 tree decl = REG_EXPR (loc);
1660 HOST_WIDE_INT offset = REG_OFFSET (loc);
1662 var_reg_decl_set (set, loc, initialized,
1663 dv_from_decl (decl), offset, set_src, INSERT);
1666 static enum var_init_status
1667 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1669 variable var;
1670 int i;
1671 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1673 if (! flag_var_tracking_uninit)
1674 return VAR_INIT_STATUS_INITIALIZED;
1676 var = shared_hash_find (set->vars, dv);
1677 if (var)
1679 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1681 location_chain nextp;
1682 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1683 if (rtx_equal_p (nextp->loc, loc))
1685 ret_val = nextp->init;
1686 break;
1691 return ret_val;
1694 /* Delete current content of register LOC in dataflow set SET and set
1695 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1696 MODIFY is true, any other live copies of the same variable part are
1697 also deleted from the dataflow set, otherwise the variable part is
1698 assumed to be copied from another location holding the same
1699 part. */
1701 static void
1702 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1703 enum var_init_status initialized, rtx set_src)
1705 tree decl = REG_EXPR (loc);
1706 HOST_WIDE_INT offset = REG_OFFSET (loc);
1707 attrs node, next;
1708 attrs *nextp;
1710 decl = var_debug_decl (decl);
1712 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1713 initialized = get_init_value (set, loc, dv_from_decl (decl));
1715 nextp = &set->regs[REGNO (loc)];
1716 for (node = *nextp; node; node = next)
1718 next = node->next;
1719 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1721 delete_variable_part (set, node->loc, node->dv, node->offset);
1722 pool_free (attrs_pool, node);
1723 *nextp = next;
1725 else
1727 node->loc = loc;
1728 nextp = &node->next;
1731 if (modify)
1732 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1733 var_reg_set (set, loc, initialized, set_src);
1736 /* Delete the association of register LOC in dataflow set SET with any
1737 variables that aren't onepart. If CLOBBER is true, also delete any
1738 other live copies of the same variable part, and delete the
1739 association with onepart dvs too. */
1741 static void
1742 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1744 attrs *nextp = &set->regs[REGNO (loc)];
1745 attrs node, next;
1747 if (clobber)
1749 tree decl = REG_EXPR (loc);
1750 HOST_WIDE_INT offset = REG_OFFSET (loc);
1752 decl = var_debug_decl (decl);
1754 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1757 for (node = *nextp; node; node = next)
1759 next = node->next;
1760 if (clobber || !dv_onepart_p (node->dv))
1762 delete_variable_part (set, node->loc, node->dv, node->offset);
1763 pool_free (attrs_pool, node);
1764 *nextp = next;
1766 else
1767 nextp = &node->next;
1771 /* Delete content of register with number REGNO in dataflow set SET. */
1773 static void
1774 var_regno_delete (dataflow_set *set, int regno)
1776 attrs *reg = &set->regs[regno];
1777 attrs node, next;
1779 for (node = *reg; node; node = next)
1781 next = node->next;
1782 delete_variable_part (set, node->loc, node->dv, node->offset);
1783 pool_free (attrs_pool, node);
1785 *reg = NULL;
1788 /* Set the location of DV, OFFSET as the MEM LOC. */
1790 static void
1791 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1792 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1793 enum insert_option iopt)
1795 if (dv_is_decl_p (dv))
1796 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1798 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1801 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1802 SET to LOC.
1803 Adjust the address first if it is stack pointer based. */
1805 static void
1806 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1807 rtx set_src)
1809 tree decl = MEM_EXPR (loc);
1810 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1812 var_mem_decl_set (set, loc, initialized,
1813 dv_from_decl (decl), offset, set_src, INSERT);
1816 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1817 dataflow set SET to LOC. If MODIFY is true, any other live copies
1818 of the same variable part are also deleted from the dataflow set,
1819 otherwise the variable part is assumed to be copied from another
1820 location holding the same part.
1821 Adjust the address first if it is stack pointer based. */
1823 static void
1824 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1825 enum var_init_status initialized, rtx set_src)
1827 tree decl = MEM_EXPR (loc);
1828 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1830 decl = var_debug_decl (decl);
1832 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1833 initialized = get_init_value (set, loc, dv_from_decl (decl));
1835 if (modify)
1836 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1837 var_mem_set (set, loc, initialized, set_src);
1840 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1841 true, also delete any other live copies of the same variable part.
1842 Adjust the address first if it is stack pointer based. */
1844 static void
1845 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1847 tree decl = MEM_EXPR (loc);
1848 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1850 decl = var_debug_decl (decl);
1851 if (clobber)
1852 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1853 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1856 /* Bind a value to a location it was just stored in. If MODIFIED
1857 holds, assume the location was modified, detaching it from any
1858 values bound to it. */
1860 static void
1861 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1863 cselib_val *v = CSELIB_VAL_PTR (val);
1865 gcc_assert (cselib_preserved_value_p (v));
1867 if (dump_file)
1869 fprintf (dump_file, "%i: ", INSN_UID (insn));
1870 print_inline_rtx (dump_file, val, 0);
1871 fprintf (dump_file, " stored in ");
1872 print_inline_rtx (dump_file, loc, 0);
1873 if (v->locs)
1875 struct elt_loc_list *l;
1876 for (l = v->locs; l; l = l->next)
1878 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1879 print_inline_rtx (dump_file, l->loc, 0);
1882 fprintf (dump_file, "\n");
1885 if (REG_P (loc))
1887 if (modified)
1888 var_regno_delete (set, REGNO (loc));
1889 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1890 dv_from_value (val), 0, NULL_RTX, INSERT);
1892 else if (MEM_P (loc))
1893 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1894 dv_from_value (val), 0, NULL_RTX, INSERT);
1895 else
1896 set_variable_part (set, loc, dv_from_value (val), 0,
1897 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1900 /* Reset this node, detaching all its equivalences. Return the slot
1901 in the variable hash table that holds dv, if there is one. */
1903 static void
1904 val_reset (dataflow_set *set, decl_or_value dv)
1906 variable var = shared_hash_find (set->vars, dv) ;
1907 location_chain node;
1908 rtx cval;
1910 if (!var || !var->n_var_parts)
1911 return;
1913 gcc_assert (var->n_var_parts == 1);
1915 cval = NULL;
1916 for (node = var->var_part[0].loc_chain; node; node = node->next)
1917 if (GET_CODE (node->loc) == VALUE
1918 && canon_value_cmp (node->loc, cval))
1919 cval = node->loc;
1921 for (node = var->var_part[0].loc_chain; node; node = node->next)
1922 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1924 /* Redirect the equivalence link to the new canonical
1925 value, or simply remove it if it would point at
1926 itself. */
1927 if (cval)
1928 set_variable_part (set, cval, dv_from_value (node->loc),
1929 0, node->init, node->set_src, NO_INSERT);
1930 delete_variable_part (set, dv_as_value (dv),
1931 dv_from_value (node->loc), 0);
1934 if (cval)
1936 decl_or_value cdv = dv_from_value (cval);
1938 /* Keep the remaining values connected, accummulating links
1939 in the canonical value. */
1940 for (node = var->var_part[0].loc_chain; node; node = node->next)
1942 if (node->loc == cval)
1943 continue;
1944 else if (GET_CODE (node->loc) == REG)
1945 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1946 node->set_src, NO_INSERT);
1947 else if (GET_CODE (node->loc) == MEM)
1948 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1949 node->set_src, NO_INSERT);
1950 else
1951 set_variable_part (set, node->loc, cdv, 0,
1952 node->init, node->set_src, NO_INSERT);
1956 /* We remove this last, to make sure that the canonical value is not
1957 removed to the point of requiring reinsertion. */
1958 if (cval)
1959 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1961 clobber_variable_part (set, NULL, dv, 0, NULL);
1963 /* ??? Should we make sure there aren't other available values or
1964 variables whose values involve this one other than by
1965 equivalence? E.g., at the very least we should reset MEMs, those
1966 shouldn't be too hard to find cselib-looking up the value as an
1967 address, then locating the resulting value in our own hash
1968 table. */
1971 /* Find the values in a given location and map the val to another
1972 value, if it is unique, or add the location as one holding the
1973 value. */
1975 static void
1976 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1978 decl_or_value dv = dv_from_value (val);
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1982 if (insn)
1983 fprintf (dump_file, "%i: ", INSN_UID (insn));
1984 else
1985 fprintf (dump_file, "head: ");
1986 print_inline_rtx (dump_file, val, 0);
1987 fputs (" is at ", dump_file);
1988 print_inline_rtx (dump_file, loc, 0);
1989 fputc ('\n', dump_file);
1992 val_reset (set, dv);
1994 if (REG_P (loc))
1996 attrs node, found = NULL;
1998 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1999 if (dv_is_value_p (node->dv)
2000 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2002 found = node;
2004 /* Map incoming equivalences. ??? Wouldn't it be nice if
2005 we just started sharing the location lists? Maybe a
2006 circular list ending at the value itself or some
2007 such. */
2008 set_variable_part (set, dv_as_value (node->dv),
2009 dv_from_value (val), node->offset,
2010 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2011 set_variable_part (set, val, node->dv, node->offset,
2012 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2015 /* If we didn't find any equivalence, we need to remember that
2016 this value is held in the named register. */
2017 if (!found)
2018 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2019 dv_from_value (val), 0, NULL_RTX, INSERT);
2021 else if (MEM_P (loc))
2022 /* ??? Merge equivalent MEMs. */
2023 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2024 dv_from_value (val), 0, NULL_RTX, INSERT);
2025 else
2026 /* ??? Merge equivalent expressions. */
2027 set_variable_part (set, loc, dv_from_value (val), 0,
2028 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2031 /* Initialize dataflow set SET to be empty.
2032 VARS_SIZE is the initial size of hash table VARS. */
2034 static void
2035 dataflow_set_init (dataflow_set *set)
2037 init_attrs_list_set (set->regs);
2038 set->vars = shared_hash_copy (empty_shared_hash);
2039 set->stack_adjust = 0;
2040 set->traversed_vars = NULL;
2043 /* Delete the contents of dataflow set SET. */
2045 static void
2046 dataflow_set_clear (dataflow_set *set)
2048 int i;
2050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2051 attrs_list_clear (&set->regs[i]);
2053 shared_hash_destroy (set->vars);
2054 set->vars = shared_hash_copy (empty_shared_hash);
2057 /* Copy the contents of dataflow set SRC to DST. */
2059 static void
2060 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2062 int i;
2064 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2065 attrs_list_copy (&dst->regs[i], src->regs[i]);
2067 shared_hash_destroy (dst->vars);
2068 dst->vars = shared_hash_copy (src->vars);
2069 dst->stack_adjust = src->stack_adjust;
2072 /* Information for merging lists of locations for a given offset of variable.
2074 struct variable_union_info
2076 /* Node of the location chain. */
2077 location_chain lc;
2079 /* The sum of positions in the input chains. */
2080 int pos;
2082 /* The position in the chain of DST dataflow set. */
2083 int pos_dst;
2086 /* Buffer for location list sorting and its allocated size. */
2087 static struct variable_union_info *vui_vec;
2088 static int vui_allocated;
2090 /* Compare function for qsort, order the structures by POS element. */
2092 static int
2093 variable_union_info_cmp_pos (const void *n1, const void *n2)
2095 const struct variable_union_info *const i1 =
2096 (const struct variable_union_info *) n1;
2097 const struct variable_union_info *const i2 =
2098 ( const struct variable_union_info *) n2;
2100 if (i1->pos != i2->pos)
2101 return i1->pos - i2->pos;
2103 return (i1->pos_dst - i2->pos_dst);
2106 /* Compute union of location parts of variable *SLOT and the same variable
2107 from hash table DATA. Compute "sorted" union of the location chains
2108 for common offsets, i.e. the locations of a variable part are sorted by
2109 a priority where the priority is the sum of the positions in the 2 chains
2110 (if a location is only in one list the position in the second list is
2111 defined to be larger than the length of the chains).
2112 When we are updating the location parts the newest location is in the
2113 beginning of the chain, so when we do the described "sorted" union
2114 we keep the newest locations in the beginning. */
2116 static int
2117 variable_union (variable src, dataflow_set *set)
2119 variable dst;
2120 void **dstp;
2121 int i, j, k;
2123 dstp = shared_hash_find_slot (set->vars, src->dv);
2124 if (!dstp || !*dstp)
2126 src->refcount++;
2128 dst_can_be_shared = false;
2129 if (!dstp)
2130 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2132 *dstp = src;
2134 /* Continue traversing the hash table. */
2135 return 1;
2137 else
2138 dst = (variable) *dstp;
2140 gcc_assert (src->n_var_parts);
2142 /* We can combine one-part variables very efficiently, because their
2143 entries are in canonical order. */
2144 if (dv_onepart_p (src->dv))
2146 location_chain *nodep, dnode, snode;
2148 gcc_assert (src->n_var_parts == 1
2149 && dst->n_var_parts == 1);
2151 snode = src->var_part[0].loc_chain;
2152 gcc_assert (snode);
2154 restart_onepart_unshared:
2155 nodep = &dst->var_part[0].loc_chain;
2156 dnode = *nodep;
2157 gcc_assert (dnode);
2159 while (snode)
2161 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2163 if (r > 0)
2165 location_chain nnode;
2167 if (shared_var_p (dst, set->vars))
2169 dstp = unshare_variable (set, dstp, dst,
2170 VAR_INIT_STATUS_INITIALIZED);
2171 dst = (variable)*dstp;
2172 goto restart_onepart_unshared;
2175 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2176 nnode->loc = snode->loc;
2177 nnode->init = snode->init;
2178 if (!snode->set_src || MEM_P (snode->set_src))
2179 nnode->set_src = NULL;
2180 else
2181 nnode->set_src = snode->set_src;
2182 nnode->next = dnode;
2183 dnode = nnode;
2185 else if (r == 0)
2186 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2188 if (r >= 0)
2189 snode = snode->next;
2191 nodep = &dnode->next;
2192 dnode = *nodep;
2195 return 1;
2198 /* Count the number of location parts, result is K. */
2199 for (i = 0, j = 0, k = 0;
2200 i < src->n_var_parts && j < dst->n_var_parts; k++)
2202 if (src->var_part[i].offset == dst->var_part[j].offset)
2204 i++;
2205 j++;
2207 else if (src->var_part[i].offset < dst->var_part[j].offset)
2208 i++;
2209 else
2210 j++;
2212 k += src->n_var_parts - i;
2213 k += dst->n_var_parts - j;
2215 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2216 thus there are at most MAX_VAR_PARTS different offsets. */
2217 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2219 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2221 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2222 dst = (variable)*dstp;
2225 i = src->n_var_parts - 1;
2226 j = dst->n_var_parts - 1;
2227 dst->n_var_parts = k;
2229 for (k--; k >= 0; k--)
2231 location_chain node, node2;
2233 if (i >= 0 && j >= 0
2234 && src->var_part[i].offset == dst->var_part[j].offset)
2236 /* Compute the "sorted" union of the chains, i.e. the locations which
2237 are in both chains go first, they are sorted by the sum of
2238 positions in the chains. */
2239 int dst_l, src_l;
2240 int ii, jj, n;
2241 struct variable_union_info *vui;
2243 /* If DST is shared compare the location chains.
2244 If they are different we will modify the chain in DST with
2245 high probability so make a copy of DST. */
2246 if (shared_var_p (dst, set->vars))
2248 for (node = src->var_part[i].loc_chain,
2249 node2 = dst->var_part[j].loc_chain; node && node2;
2250 node = node->next, node2 = node2->next)
2252 if (!((REG_P (node2->loc)
2253 && REG_P (node->loc)
2254 && REGNO (node2->loc) == REGNO (node->loc))
2255 || rtx_equal_p (node2->loc, node->loc)))
2257 if (node2->init < node->init)
2258 node2->init = node->init;
2259 break;
2262 if (node || node2)
2264 dstp = unshare_variable (set, dstp, dst,
2265 VAR_INIT_STATUS_UNKNOWN);
2266 dst = (variable)*dstp;
2270 src_l = 0;
2271 for (node = src->var_part[i].loc_chain; node; node = node->next)
2272 src_l++;
2273 dst_l = 0;
2274 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2275 dst_l++;
2277 if (dst_l == 1)
2279 /* The most common case, much simpler, no qsort is needed. */
2280 location_chain dstnode = dst->var_part[j].loc_chain;
2281 dst->var_part[k].loc_chain = dstnode;
2282 dst->var_part[k].offset = dst->var_part[j].offset;
2283 node2 = dstnode;
2284 for (node = src->var_part[i].loc_chain; node; node = node->next)
2285 if (!((REG_P (dstnode->loc)
2286 && REG_P (node->loc)
2287 && REGNO (dstnode->loc) == REGNO (node->loc))
2288 || rtx_equal_p (dstnode->loc, node->loc)))
2290 location_chain new_node;
2292 /* Copy the location from SRC. */
2293 new_node = (location_chain) pool_alloc (loc_chain_pool);
2294 new_node->loc = node->loc;
2295 new_node->init = node->init;
2296 if (!node->set_src || MEM_P (node->set_src))
2297 new_node->set_src = NULL;
2298 else
2299 new_node->set_src = node->set_src;
2300 node2->next = new_node;
2301 node2 = new_node;
2303 node2->next = NULL;
2305 else
2307 if (src_l + dst_l > vui_allocated)
2309 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2310 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2311 vui_allocated);
2313 vui = vui_vec;
2315 /* Fill in the locations from DST. */
2316 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2317 node = node->next, jj++)
2319 vui[jj].lc = node;
2320 vui[jj].pos_dst = jj;
2322 /* Pos plus value larger than a sum of 2 valid positions. */
2323 vui[jj].pos = jj + src_l + dst_l;
2326 /* Fill in the locations from SRC. */
2327 n = dst_l;
2328 for (node = src->var_part[i].loc_chain, ii = 0; node;
2329 node = node->next, ii++)
2331 /* Find location from NODE. */
2332 for (jj = 0; jj < dst_l; jj++)
2334 if ((REG_P (vui[jj].lc->loc)
2335 && REG_P (node->loc)
2336 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2337 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2339 vui[jj].pos = jj + ii;
2340 break;
2343 if (jj >= dst_l) /* The location has not been found. */
2345 location_chain new_node;
2347 /* Copy the location from SRC. */
2348 new_node = (location_chain) pool_alloc (loc_chain_pool);
2349 new_node->loc = node->loc;
2350 new_node->init = node->init;
2351 if (!node->set_src || MEM_P (node->set_src))
2352 new_node->set_src = NULL;
2353 else
2354 new_node->set_src = node->set_src;
2355 vui[n].lc = new_node;
2356 vui[n].pos_dst = src_l + dst_l;
2357 vui[n].pos = ii + src_l + dst_l;
2358 n++;
2362 if (dst_l == 2)
2364 /* Special case still very common case. For dst_l == 2
2365 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2366 vui[i].pos == i + src_l + dst_l. */
2367 if (vui[0].pos > vui[1].pos)
2369 /* Order should be 1, 0, 2... */
2370 dst->var_part[k].loc_chain = vui[1].lc;
2371 vui[1].lc->next = vui[0].lc;
2372 if (n >= 3)
2374 vui[0].lc->next = vui[2].lc;
2375 vui[n - 1].lc->next = NULL;
2377 else
2378 vui[0].lc->next = NULL;
2379 ii = 3;
2381 else
2383 dst->var_part[k].loc_chain = vui[0].lc;
2384 if (n >= 3 && vui[2].pos < vui[1].pos)
2386 /* Order should be 0, 2, 1, 3... */
2387 vui[0].lc->next = vui[2].lc;
2388 vui[2].lc->next = vui[1].lc;
2389 if (n >= 4)
2391 vui[1].lc->next = vui[3].lc;
2392 vui[n - 1].lc->next = NULL;
2394 else
2395 vui[1].lc->next = NULL;
2396 ii = 4;
2398 else
2400 /* Order should be 0, 1, 2... */
2401 ii = 1;
2402 vui[n - 1].lc->next = NULL;
2405 for (; ii < n; ii++)
2406 vui[ii - 1].lc->next = vui[ii].lc;
2408 else
2410 qsort (vui, n, sizeof (struct variable_union_info),
2411 variable_union_info_cmp_pos);
2413 /* Reconnect the nodes in sorted order. */
2414 for (ii = 1; ii < n; ii++)
2415 vui[ii - 1].lc->next = vui[ii].lc;
2416 vui[n - 1].lc->next = NULL;
2417 dst->var_part[k].loc_chain = vui[0].lc;
2420 dst->var_part[k].offset = dst->var_part[j].offset;
2422 i--;
2423 j--;
2425 else if ((i >= 0 && j >= 0
2426 && src->var_part[i].offset < dst->var_part[j].offset)
2427 || i < 0)
2429 dst->var_part[k] = dst->var_part[j];
2430 j--;
2432 else if ((i >= 0 && j >= 0
2433 && src->var_part[i].offset > dst->var_part[j].offset)
2434 || j < 0)
2436 location_chain *nextp;
2438 /* Copy the chain from SRC. */
2439 nextp = &dst->var_part[k].loc_chain;
2440 for (node = src->var_part[i].loc_chain; node; node = node->next)
2442 location_chain new_lc;
2444 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2445 new_lc->next = NULL;
2446 new_lc->init = node->init;
2447 if (!node->set_src || MEM_P (node->set_src))
2448 new_lc->set_src = NULL;
2449 else
2450 new_lc->set_src = node->set_src;
2451 new_lc->loc = node->loc;
2453 *nextp = new_lc;
2454 nextp = &new_lc->next;
2457 dst->var_part[k].offset = src->var_part[i].offset;
2458 i--;
2460 dst->var_part[k].cur_loc = NULL;
2463 if (flag_var_tracking_uninit)
2464 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2466 location_chain node, node2;
2467 for (node = src->var_part[i].loc_chain; node; node = node->next)
2468 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2469 if (rtx_equal_p (node->loc, node2->loc))
2471 if (node->init > node2->init)
2472 node2->init = node->init;
2476 /* Continue traversing the hash table. */
2477 return 1;
2480 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2482 static void
2483 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2485 int i;
2487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2488 attrs_list_union (&dst->regs[i], src->regs[i]);
2490 if (dst->vars == empty_shared_hash)
2492 shared_hash_destroy (dst->vars);
2493 dst->vars = shared_hash_copy (src->vars);
2495 else
2497 htab_iterator hi;
2498 variable var;
2500 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2501 variable_union (var, dst);
2505 /* Whether the value is currently being expanded. */
2506 #define VALUE_RECURSED_INTO(x) \
2507 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2508 /* Whether the value is in changed_variables hash table. */
2509 #define VALUE_CHANGED(x) \
2510 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2511 /* Whether the decl is in changed_variables hash table. */
2512 #define DECL_CHANGED(x) TREE_VISITED (x)
2514 /* Record that DV has been added into resp. removed from changed_variables
2515 hashtable. */
2517 static inline void
2518 set_dv_changed (decl_or_value dv, bool newv)
2520 if (dv_is_value_p (dv))
2521 VALUE_CHANGED (dv_as_value (dv)) = newv;
2522 else
2523 DECL_CHANGED (dv_as_decl (dv)) = newv;
2526 /* Return true if DV is present in changed_variables hash table. */
2528 static inline bool
2529 dv_changed_p (decl_or_value dv)
2531 return (dv_is_value_p (dv)
2532 ? VALUE_CHANGED (dv_as_value (dv))
2533 : DECL_CHANGED (dv_as_decl (dv)));
2536 /* Return a location list node whose loc is rtx_equal to LOC, in the
2537 location list of a one-part variable or value VAR, or in that of
2538 any values recursively mentioned in the location lists. VARS must
2539 be in star-canonical form. */
2541 static location_chain
2542 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2544 location_chain node;
2545 enum rtx_code loc_code;
2547 if (!var)
2548 return NULL;
2550 gcc_checking_assert (dv_onepart_p (var->dv));
2552 if (!var->n_var_parts)
2553 return NULL;
2555 gcc_checking_assert (var->var_part[0].offset == 0);
2556 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2558 loc_code = GET_CODE (loc);
2559 for (node = var->var_part[0].loc_chain; node; node = node->next)
2561 decl_or_value dv;
2562 variable rvar;
2564 if (GET_CODE (node->loc) != loc_code)
2566 if (GET_CODE (node->loc) != VALUE)
2567 continue;
2569 else if (loc == node->loc)
2570 return node;
2571 else if (loc_code != VALUE)
2573 if (rtx_equal_p (loc, node->loc))
2574 return node;
2575 continue;
2578 /* Since we're in star-canonical form, we don't need to visit
2579 non-canonical nodes: one-part variables and non-canonical
2580 values would only point back to the canonical node. */
2581 if (dv_is_value_p (var->dv)
2582 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2584 /* Skip all subsequent VALUEs. */
2585 while (node->next && GET_CODE (node->next->loc) == VALUE)
2587 node = node->next;
2588 gcc_checking_assert (!canon_value_cmp (node->loc,
2589 dv_as_value (var->dv)));
2590 if (loc == node->loc)
2591 return node;
2593 continue;
2596 gcc_checking_assert (node == var->var_part[0].loc_chain);
2597 gcc_checking_assert (!node->next);
2599 dv = dv_from_value (node->loc);
2600 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2601 return find_loc_in_1pdv (loc, rvar, vars);
2604 return NULL;
2607 /* Hash table iteration argument passed to variable_merge. */
2608 struct dfset_merge
2610 /* The set in which the merge is to be inserted. */
2611 dataflow_set *dst;
2612 /* The set that we're iterating in. */
2613 dataflow_set *cur;
2614 /* The set that may contain the other dv we are to merge with. */
2615 dataflow_set *src;
2616 /* Number of onepart dvs in src. */
2617 int src_onepart_cnt;
2620 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2621 loc_cmp order, and it is maintained as such. */
2623 static void
2624 insert_into_intersection (location_chain *nodep, rtx loc,
2625 enum var_init_status status)
2627 location_chain node;
2628 int r;
2630 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2631 if ((r = loc_cmp (node->loc, loc)) == 0)
2633 node->init = MIN (node->init, status);
2634 return;
2636 else if (r > 0)
2637 break;
2639 node = (location_chain) pool_alloc (loc_chain_pool);
2641 node->loc = loc;
2642 node->set_src = NULL;
2643 node->init = status;
2644 node->next = *nodep;
2645 *nodep = node;
2648 /* Insert in DEST the intersection the locations present in both
2649 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2650 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2651 DSM->dst. */
2653 static void
2654 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2655 location_chain s1node, variable s2var)
2657 dataflow_set *s1set = dsm->cur;
2658 dataflow_set *s2set = dsm->src;
2659 location_chain found;
2661 if (s2var)
2663 location_chain s2node;
2665 gcc_checking_assert (dv_onepart_p (s2var->dv));
2667 if (s2var->n_var_parts)
2669 gcc_checking_assert (s2var->var_part[0].offset == 0);
2670 s2node = s2var->var_part[0].loc_chain;
2672 for (; s1node && s2node;
2673 s1node = s1node->next, s2node = s2node->next)
2674 if (s1node->loc != s2node->loc)
2675 break;
2676 else if (s1node->loc == val)
2677 continue;
2678 else
2679 insert_into_intersection (dest, s1node->loc,
2680 MIN (s1node->init, s2node->init));
2684 for (; s1node; s1node = s1node->next)
2686 if (s1node->loc == val)
2687 continue;
2689 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2690 shared_hash_htab (s2set->vars))))
2692 insert_into_intersection (dest, s1node->loc,
2693 MIN (s1node->init, found->init));
2694 continue;
2697 if (GET_CODE (s1node->loc) == VALUE
2698 && !VALUE_RECURSED_INTO (s1node->loc))
2700 decl_or_value dv = dv_from_value (s1node->loc);
2701 variable svar = shared_hash_find (s1set->vars, dv);
2702 if (svar)
2704 if (svar->n_var_parts == 1)
2706 VALUE_RECURSED_INTO (s1node->loc) = true;
2707 intersect_loc_chains (val, dest, dsm,
2708 svar->var_part[0].loc_chain,
2709 s2var);
2710 VALUE_RECURSED_INTO (s1node->loc) = false;
2715 /* ??? if the location is equivalent to any location in src,
2716 searched recursively
2718 add to dst the values needed to represent the equivalence
2720 telling whether locations S is equivalent to another dv's
2721 location list:
2723 for each location D in the list
2725 if S and D satisfy rtx_equal_p, then it is present
2727 else if D is a value, recurse without cycles
2729 else if S and D have the same CODE and MODE
2731 for each operand oS and the corresponding oD
2733 if oS and oD are not equivalent, then S an D are not equivalent
2735 else if they are RTX vectors
2737 if any vector oS element is not equivalent to its respective oD,
2738 then S and D are not equivalent
2746 /* Return -1 if X should be before Y in a location list for a 1-part
2747 variable, 1 if Y should be before X, and 0 if they're equivalent
2748 and should not appear in the list. */
2750 static int
2751 loc_cmp (rtx x, rtx y)
2753 int i, j, r;
2754 RTX_CODE code = GET_CODE (x);
2755 const char *fmt;
2757 if (x == y)
2758 return 0;
2760 if (REG_P (x))
2762 if (!REG_P (y))
2763 return -1;
2764 gcc_assert (GET_MODE (x) == GET_MODE (y));
2765 if (REGNO (x) == REGNO (y))
2766 return 0;
2767 else if (REGNO (x) < REGNO (y))
2768 return -1;
2769 else
2770 return 1;
2773 if (REG_P (y))
2774 return 1;
2776 if (MEM_P (x))
2778 if (!MEM_P (y))
2779 return -1;
2780 gcc_assert (GET_MODE (x) == GET_MODE (y));
2781 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2784 if (MEM_P (y))
2785 return 1;
2787 if (GET_CODE (x) == VALUE)
2789 if (GET_CODE (y) != VALUE)
2790 return -1;
2791 /* Don't assert the modes are the same, that is true only
2792 when not recursing. (subreg:QI (value:SI 1:1) 0)
2793 and (subreg:QI (value:DI 2:2) 0) can be compared,
2794 even when the modes are different. */
2795 if (canon_value_cmp (x, y))
2796 return -1;
2797 else
2798 return 1;
2801 if (GET_CODE (y) == VALUE)
2802 return 1;
2804 if (GET_CODE (x) == GET_CODE (y))
2805 /* Compare operands below. */;
2806 else if (GET_CODE (x) < GET_CODE (y))
2807 return -1;
2808 else
2809 return 1;
2811 gcc_assert (GET_MODE (x) == GET_MODE (y));
2813 if (GET_CODE (x) == DEBUG_EXPR)
2815 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2816 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2817 return -1;
2818 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2819 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2820 return 1;
2823 fmt = GET_RTX_FORMAT (code);
2824 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2825 switch (fmt[i])
2827 case 'w':
2828 if (XWINT (x, i) == XWINT (y, i))
2829 break;
2830 else if (XWINT (x, i) < XWINT (y, i))
2831 return -1;
2832 else
2833 return 1;
2835 case 'n':
2836 case 'i':
2837 if (XINT (x, i) == XINT (y, i))
2838 break;
2839 else if (XINT (x, i) < XINT (y, i))
2840 return -1;
2841 else
2842 return 1;
2844 case 'V':
2845 case 'E':
2846 /* Compare the vector length first. */
2847 if (XVECLEN (x, i) == XVECLEN (y, i))
2848 /* Compare the vectors elements. */;
2849 else if (XVECLEN (x, i) < XVECLEN (y, i))
2850 return -1;
2851 else
2852 return 1;
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 if ((r = loc_cmp (XVECEXP (x, i, j),
2856 XVECEXP (y, i, j))))
2857 return r;
2858 break;
2860 case 'e':
2861 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2862 return r;
2863 break;
2865 case 'S':
2866 case 's':
2867 if (XSTR (x, i) == XSTR (y, i))
2868 break;
2869 if (!XSTR (x, i))
2870 return -1;
2871 if (!XSTR (y, i))
2872 return 1;
2873 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2874 break;
2875 else if (r < 0)
2876 return -1;
2877 else
2878 return 1;
2880 case 'u':
2881 /* These are just backpointers, so they don't matter. */
2882 break;
2884 case '0':
2885 case 't':
2886 break;
2888 /* It is believed that rtx's at this level will never
2889 contain anything but integers and other rtx's,
2890 except for within LABEL_REFs and SYMBOL_REFs. */
2891 default:
2892 gcc_unreachable ();
2895 return 0;
2898 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2899 from VALUE to DVP. */
2901 static int
2902 add_value_chain (rtx *loc, void *dvp)
2904 decl_or_value dv, ldv;
2905 value_chain vc, nvc;
2906 void **slot;
2908 if (GET_CODE (*loc) == VALUE)
2909 ldv = dv_from_value (*loc);
2910 else if (GET_CODE (*loc) == DEBUG_EXPR)
2911 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2912 else
2913 return 0;
2915 if (dv_as_opaque (ldv) == dvp)
2916 return 0;
2918 dv = (decl_or_value) dvp;
2919 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2920 INSERT);
2921 if (!*slot)
2923 vc = (value_chain) pool_alloc (value_chain_pool);
2924 vc->dv = ldv;
2925 vc->next = NULL;
2926 vc->refcount = 0;
2927 *slot = (void *) vc;
2929 else
2931 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2932 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2933 break;
2934 if (vc)
2936 vc->refcount++;
2937 return 0;
2940 vc = (value_chain) *slot;
2941 nvc = (value_chain) pool_alloc (value_chain_pool);
2942 nvc->dv = dv;
2943 nvc->next = vc->next;
2944 nvc->refcount = 1;
2945 vc->next = nvc;
2946 return 0;
2949 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2950 from those VALUEs to DVP. */
2952 static void
2953 add_value_chains (decl_or_value dv, rtx loc)
2955 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2957 add_value_chain (&loc, dv_as_opaque (dv));
2958 return;
2960 if (REG_P (loc))
2961 return;
2962 if (MEM_P (loc))
2963 loc = XEXP (loc, 0);
2964 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2967 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2968 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2969 that is something we never can express in .debug_info and can prevent
2970 reverse ops from being used. */
2972 static void
2973 add_cselib_value_chains (decl_or_value dv)
2975 struct elt_loc_list **l;
2977 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2978 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2979 *l = (*l)->next;
2980 else
2982 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2983 l = &(*l)->next;
2987 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2988 from VALUE to DVP. */
2990 static int
2991 remove_value_chain (rtx *loc, void *dvp)
2993 decl_or_value dv, ldv;
2994 value_chain vc;
2995 void **slot;
2997 if (GET_CODE (*loc) == VALUE)
2998 ldv = dv_from_value (*loc);
2999 else if (GET_CODE (*loc) == DEBUG_EXPR)
3000 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
3001 else
3002 return 0;
3004 if (dv_as_opaque (ldv) == dvp)
3005 return 0;
3007 dv = (decl_or_value) dvp;
3008 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
3009 NO_INSERT);
3010 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
3011 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
3013 value_chain dvc = vc->next;
3014 gcc_assert (dvc->refcount > 0);
3015 if (--dvc->refcount == 0)
3017 vc->next = dvc->next;
3018 pool_free (value_chain_pool, dvc);
3019 if (vc->next == NULL && vc == (value_chain) *slot)
3021 pool_free (value_chain_pool, vc);
3022 htab_clear_slot (value_chains, slot);
3025 return 0;
3027 gcc_unreachable ();
3030 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3031 from those VALUEs to DVP. */
3033 static void
3034 remove_value_chains (decl_or_value dv, rtx loc)
3036 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
3038 remove_value_chain (&loc, dv_as_opaque (dv));
3039 return;
3041 if (REG_P (loc))
3042 return;
3043 if (MEM_P (loc))
3044 loc = XEXP (loc, 0);
3045 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
3048 #if ENABLE_CHECKING
3049 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3050 VALUEs to DV. */
3052 static void
3053 remove_cselib_value_chains (decl_or_value dv)
3055 struct elt_loc_list *l;
3057 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
3058 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
3061 /* Check the order of entries in one-part variables. */
3063 static int
3064 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3066 variable var = (variable) *slot;
3067 decl_or_value dv = var->dv;
3068 location_chain node, next;
3070 #ifdef ENABLE_RTL_CHECKING
3071 int i;
3072 for (i = 0; i < var->n_var_parts; i++)
3073 gcc_assert (var->var_part[0].cur_loc == NULL);
3074 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
3075 #endif
3077 if (!dv_onepart_p (dv))
3078 return 1;
3080 gcc_assert (var->n_var_parts == 1);
3081 node = var->var_part[0].loc_chain;
3082 gcc_assert (node);
3084 while ((next = node->next))
3086 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3087 node = next;
3090 return 1;
3092 #endif
3094 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3095 more likely to be chosen as canonical for an equivalence set.
3096 Ensure less likely values can reach more likely neighbors, making
3097 the connections bidirectional. */
3099 static int
3100 canonicalize_values_mark (void **slot, void *data)
3102 dataflow_set *set = (dataflow_set *)data;
3103 variable var = (variable) *slot;
3104 decl_or_value dv = var->dv;
3105 rtx val;
3106 location_chain node;
3108 if (!dv_is_value_p (dv))
3109 return 1;
3111 gcc_checking_assert (var->n_var_parts == 1);
3113 val = dv_as_value (dv);
3115 for (node = var->var_part[0].loc_chain; node; node = node->next)
3116 if (GET_CODE (node->loc) == VALUE)
3118 if (canon_value_cmp (node->loc, val))
3119 VALUE_RECURSED_INTO (val) = true;
3120 else
3122 decl_or_value odv = dv_from_value (node->loc);
3123 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3125 set_slot_part (set, val, oslot, odv, 0,
3126 node->init, NULL_RTX);
3128 VALUE_RECURSED_INTO (node->loc) = true;
3132 return 1;
3135 /* Remove redundant entries from equivalence lists in onepart
3136 variables, canonicalizing equivalence sets into star shapes. */
3138 static int
3139 canonicalize_values_star (void **slot, void *data)
3141 dataflow_set *set = (dataflow_set *)data;
3142 variable var = (variable) *slot;
3143 decl_or_value dv = var->dv;
3144 location_chain node;
3145 decl_or_value cdv;
3146 rtx val, cval;
3147 void **cslot;
3148 bool has_value;
3149 bool has_marks;
3151 if (!dv_onepart_p (dv))
3152 return 1;
3154 gcc_checking_assert (var->n_var_parts == 1);
3156 if (dv_is_value_p (dv))
3158 cval = dv_as_value (dv);
3159 if (!VALUE_RECURSED_INTO (cval))
3160 return 1;
3161 VALUE_RECURSED_INTO (cval) = false;
3163 else
3164 cval = NULL_RTX;
3166 restart:
3167 val = cval;
3168 has_value = false;
3169 has_marks = false;
3171 gcc_assert (var->n_var_parts == 1);
3173 for (node = var->var_part[0].loc_chain; node; node = node->next)
3174 if (GET_CODE (node->loc) == VALUE)
3176 has_value = true;
3177 if (VALUE_RECURSED_INTO (node->loc))
3178 has_marks = true;
3179 if (canon_value_cmp (node->loc, cval))
3180 cval = node->loc;
3183 if (!has_value)
3184 return 1;
3186 if (cval == val)
3188 if (!has_marks || dv_is_decl_p (dv))
3189 return 1;
3191 /* Keep it marked so that we revisit it, either after visiting a
3192 child node, or after visiting a new parent that might be
3193 found out. */
3194 VALUE_RECURSED_INTO (val) = true;
3196 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 if (GET_CODE (node->loc) == VALUE
3198 && VALUE_RECURSED_INTO (node->loc))
3200 cval = node->loc;
3201 restart_with_cval:
3202 VALUE_RECURSED_INTO (cval) = false;
3203 dv = dv_from_value (cval);
3204 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3205 if (!slot)
3207 gcc_assert (dv_is_decl_p (var->dv));
3208 /* The canonical value was reset and dropped.
3209 Remove it. */
3210 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3211 return 1;
3213 var = (variable)*slot;
3214 gcc_assert (dv_is_value_p (var->dv));
3215 if (var->n_var_parts == 0)
3216 return 1;
3217 gcc_assert (var->n_var_parts == 1);
3218 goto restart;
3221 VALUE_RECURSED_INTO (val) = false;
3223 return 1;
3226 /* Push values to the canonical one. */
3227 cdv = dv_from_value (cval);
3228 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3230 for (node = var->var_part[0].loc_chain; node; node = node->next)
3231 if (node->loc != cval)
3233 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3234 node->init, NULL_RTX);
3235 if (GET_CODE (node->loc) == VALUE)
3237 decl_or_value ndv = dv_from_value (node->loc);
3239 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3240 NO_INSERT);
3242 if (canon_value_cmp (node->loc, val))
3244 /* If it could have been a local minimum, it's not any more,
3245 since it's now neighbor to cval, so it may have to push
3246 to it. Conversely, if it wouldn't have prevailed over
3247 val, then whatever mark it has is fine: if it was to
3248 push, it will now push to a more canonical node, but if
3249 it wasn't, then it has already pushed any values it might
3250 have to. */
3251 VALUE_RECURSED_INTO (node->loc) = true;
3252 /* Make sure we visit node->loc by ensuring we cval is
3253 visited too. */
3254 VALUE_RECURSED_INTO (cval) = true;
3256 else if (!VALUE_RECURSED_INTO (node->loc))
3257 /* If we have no need to "recurse" into this node, it's
3258 already "canonicalized", so drop the link to the old
3259 parent. */
3260 clobber_variable_part (set, cval, ndv, 0, NULL);
3262 else if (GET_CODE (node->loc) == REG)
3264 attrs list = set->regs[REGNO (node->loc)], *listp;
3266 /* Change an existing attribute referring to dv so that it
3267 refers to cdv, removing any duplicate this might
3268 introduce, and checking that no previous duplicates
3269 existed, all in a single pass. */
3271 while (list)
3273 if (list->offset == 0
3274 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3275 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3276 break;
3278 list = list->next;
3281 gcc_assert (list);
3282 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3284 list->dv = cdv;
3285 for (listp = &list->next; (list = *listp); listp = &list->next)
3287 if (list->offset)
3288 continue;
3290 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3292 *listp = list->next;
3293 pool_free (attrs_pool, list);
3294 list = *listp;
3295 break;
3298 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3301 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3303 for (listp = &list->next; (list = *listp); listp = &list->next)
3305 if (list->offset)
3306 continue;
3308 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3310 *listp = list->next;
3311 pool_free (attrs_pool, list);
3312 list = *listp;
3313 break;
3316 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3319 else
3320 gcc_unreachable ();
3322 #if ENABLE_CHECKING
3323 while (list)
3325 if (list->offset == 0
3326 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3327 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3328 gcc_unreachable ();
3330 list = list->next;
3332 #endif
3336 if (val)
3337 set_slot_part (set, val, cslot, cdv, 0,
3338 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3340 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3342 /* Variable may have been unshared. */
3343 var = (variable)*slot;
3344 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3345 && var->var_part[0].loc_chain->next == NULL);
3347 if (VALUE_RECURSED_INTO (cval))
3348 goto restart_with_cval;
3350 return 1;
3353 /* Bind one-part variables to the canonical value in an equivalence
3354 set. Not doing this causes dataflow convergence failure in rare
3355 circumstances, see PR42873. Unfortunately we can't do this
3356 efficiently as part of canonicalize_values_star, since we may not
3357 have determined or even seen the canonical value of a set when we
3358 get to a variable that references another member of the set. */
3360 static int
3361 canonicalize_vars_star (void **slot, void *data)
3363 dataflow_set *set = (dataflow_set *)data;
3364 variable var = (variable) *slot;
3365 decl_or_value dv = var->dv;
3366 location_chain node;
3367 rtx cval;
3368 decl_or_value cdv;
3369 void **cslot;
3370 variable cvar;
3371 location_chain cnode;
3373 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3374 return 1;
3376 gcc_assert (var->n_var_parts == 1);
3378 node = var->var_part[0].loc_chain;
3380 if (GET_CODE (node->loc) != VALUE)
3381 return 1;
3383 gcc_assert (!node->next);
3384 cval = node->loc;
3386 /* Push values to the canonical one. */
3387 cdv = dv_from_value (cval);
3388 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3389 if (!cslot)
3390 return 1;
3391 cvar = (variable)*cslot;
3392 gcc_assert (cvar->n_var_parts == 1);
3394 cnode = cvar->var_part[0].loc_chain;
3396 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3397 that are not “more canonical” than it. */
3398 if (GET_CODE (cnode->loc) != VALUE
3399 || !canon_value_cmp (cnode->loc, cval))
3400 return 1;
3402 /* CVAL was found to be non-canonical. Change the variable to point
3403 to the canonical VALUE. */
3404 gcc_assert (!cnode->next);
3405 cval = cnode->loc;
3407 slot = set_slot_part (set, cval, slot, dv, 0,
3408 node->init, node->set_src);
3409 clobber_slot_part (set, cval, slot, 0, node->set_src);
3411 return 1;
3414 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3415 corresponding entry in DSM->src. Multi-part variables are combined
3416 with variable_union, whereas onepart dvs are combined with
3417 intersection. */
3419 static int
3420 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3422 dataflow_set *dst = dsm->dst;
3423 void **dstslot;
3424 variable s2var, dvar = NULL;
3425 decl_or_value dv = s1var->dv;
3426 bool onepart = dv_onepart_p (dv);
3427 rtx val;
3428 hashval_t dvhash;
3429 location_chain node, *nodep;
3431 /* If the incoming onepart variable has an empty location list, then
3432 the intersection will be just as empty. For other variables,
3433 it's always union. */
3434 gcc_checking_assert (s1var->n_var_parts
3435 && s1var->var_part[0].loc_chain);
3437 if (!onepart)
3438 return variable_union (s1var, dst);
3440 gcc_checking_assert (s1var->n_var_parts == 1
3441 && s1var->var_part[0].offset == 0);
3443 dvhash = dv_htab_hash (dv);
3444 if (dv_is_value_p (dv))
3445 val = dv_as_value (dv);
3446 else
3447 val = NULL;
3449 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3450 if (!s2var)
3452 dst_can_be_shared = false;
3453 return 1;
3456 dsm->src_onepart_cnt--;
3457 gcc_assert (s2var->var_part[0].loc_chain
3458 && s2var->n_var_parts == 1
3459 && s2var->var_part[0].offset == 0);
3461 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3462 if (dstslot)
3464 dvar = (variable)*dstslot;
3465 gcc_assert (dvar->refcount == 1
3466 && dvar->n_var_parts == 1
3467 && dvar->var_part[0].offset == 0);
3468 nodep = &dvar->var_part[0].loc_chain;
3470 else
3472 nodep = &node;
3473 node = NULL;
3476 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3478 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3479 dvhash, INSERT);
3480 *dstslot = dvar = s2var;
3481 dvar->refcount++;
3483 else
3485 dst_can_be_shared = false;
3487 intersect_loc_chains (val, nodep, dsm,
3488 s1var->var_part[0].loc_chain, s2var);
3490 if (!dstslot)
3492 if (node)
3494 dvar = (variable) pool_alloc (dv_pool (dv));
3495 dvar->dv = dv;
3496 dvar->refcount = 1;
3497 dvar->n_var_parts = 1;
3498 dvar->cur_loc_changed = false;
3499 dvar->in_changed_variables = false;
3500 dvar->var_part[0].offset = 0;
3501 dvar->var_part[0].loc_chain = node;
3502 dvar->var_part[0].cur_loc = NULL;
3504 dstslot
3505 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3506 INSERT);
3507 gcc_assert (!*dstslot);
3508 *dstslot = dvar;
3510 else
3511 return 1;
3515 nodep = &dvar->var_part[0].loc_chain;
3516 while ((node = *nodep))
3518 location_chain *nextp = &node->next;
3520 if (GET_CODE (node->loc) == REG)
3522 attrs list;
3524 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3525 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3526 && dv_is_value_p (list->dv))
3527 break;
3529 if (!list)
3530 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3531 dv, 0, node->loc);
3532 /* If this value became canonical for another value that had
3533 this register, we want to leave it alone. */
3534 else if (dv_as_value (list->dv) != val)
3536 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3537 dstslot, dv, 0,
3538 node->init, NULL_RTX);
3539 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3541 /* Since nextp points into the removed node, we can't
3542 use it. The pointer to the next node moved to nodep.
3543 However, if the variable we're walking is unshared
3544 during our walk, we'll keep walking the location list
3545 of the previously-shared variable, in which case the
3546 node won't have been removed, and we'll want to skip
3547 it. That's why we test *nodep here. */
3548 if (*nodep != node)
3549 nextp = nodep;
3552 else
3553 /* Canonicalization puts registers first, so we don't have to
3554 walk it all. */
3555 break;
3556 nodep = nextp;
3559 if (dvar != (variable)*dstslot)
3560 dvar = (variable)*dstslot;
3561 nodep = &dvar->var_part[0].loc_chain;
3563 if (val)
3565 /* Mark all referenced nodes for canonicalization, and make sure
3566 we have mutual equivalence links. */
3567 VALUE_RECURSED_INTO (val) = true;
3568 for (node = *nodep; node; node = node->next)
3569 if (GET_CODE (node->loc) == VALUE)
3571 VALUE_RECURSED_INTO (node->loc) = true;
3572 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3573 node->init, NULL, INSERT);
3576 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3577 gcc_assert (*dstslot == dvar);
3578 canonicalize_values_star (dstslot, dst);
3579 gcc_checking_assert (dstslot
3580 == shared_hash_find_slot_noinsert_1 (dst->vars,
3581 dv, dvhash));
3582 dvar = (variable)*dstslot;
3584 else
3586 bool has_value = false, has_other = false;
3588 /* If we have one value and anything else, we're going to
3589 canonicalize this, so make sure all values have an entry in
3590 the table and are marked for canonicalization. */
3591 for (node = *nodep; node; node = node->next)
3593 if (GET_CODE (node->loc) == VALUE)
3595 /* If this was marked during register canonicalization,
3596 we know we have to canonicalize values. */
3597 if (has_value)
3598 has_other = true;
3599 has_value = true;
3600 if (has_other)
3601 break;
3603 else
3605 has_other = true;
3606 if (has_value)
3607 break;
3611 if (has_value && has_other)
3613 for (node = *nodep; node; node = node->next)
3615 if (GET_CODE (node->loc) == VALUE)
3617 decl_or_value dv = dv_from_value (node->loc);
3618 void **slot = NULL;
3620 if (shared_hash_shared (dst->vars))
3621 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3622 if (!slot)
3623 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3624 INSERT);
3625 if (!*slot)
3627 variable var = (variable) pool_alloc (dv_pool (dv));
3628 var->dv = dv;
3629 var->refcount = 1;
3630 var->n_var_parts = 1;
3631 var->cur_loc_changed = false;
3632 var->in_changed_variables = false;
3633 var->var_part[0].offset = 0;
3634 var->var_part[0].loc_chain = NULL;
3635 var->var_part[0].cur_loc = NULL;
3636 *slot = var;
3639 VALUE_RECURSED_INTO (node->loc) = true;
3643 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3644 gcc_assert (*dstslot == dvar);
3645 canonicalize_values_star (dstslot, dst);
3646 gcc_checking_assert (dstslot
3647 == shared_hash_find_slot_noinsert_1 (dst->vars,
3648 dv, dvhash));
3649 dvar = (variable)*dstslot;
3653 if (!onepart_variable_different_p (dvar, s2var))
3655 variable_htab_free (dvar);
3656 *dstslot = dvar = s2var;
3657 dvar->refcount++;
3659 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3661 variable_htab_free (dvar);
3662 *dstslot = dvar = s1var;
3663 dvar->refcount++;
3664 dst_can_be_shared = false;
3666 else
3667 dst_can_be_shared = false;
3669 return 1;
3672 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3673 multi-part variable. Unions of multi-part variables and
3674 intersections of one-part ones will be handled in
3675 variable_merge_over_cur(). */
3677 static int
3678 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3680 dataflow_set *dst = dsm->dst;
3681 decl_or_value dv = s2var->dv;
3682 bool onepart = dv_onepart_p (dv);
3684 if (!onepart)
3686 void **dstp = shared_hash_find_slot (dst->vars, dv);
3687 *dstp = s2var;
3688 s2var->refcount++;
3689 return 1;
3692 dsm->src_onepart_cnt++;
3693 return 1;
3696 /* Combine dataflow set information from SRC2 into DST, using PDST
3697 to carry over information across passes. */
3699 static void
3700 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3702 dataflow_set cur = *dst;
3703 dataflow_set *src1 = &cur;
3704 struct dfset_merge dsm;
3705 int i;
3706 size_t src1_elems, src2_elems;
3707 htab_iterator hi;
3708 variable var;
3710 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3711 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3712 dataflow_set_init (dst);
3713 dst->stack_adjust = cur.stack_adjust;
3714 shared_hash_destroy (dst->vars);
3715 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3716 dst->vars->refcount = 1;
3717 dst->vars->htab
3718 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3719 variable_htab_eq, variable_htab_free);
3721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3722 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3724 dsm.dst = dst;
3725 dsm.src = src2;
3726 dsm.cur = src1;
3727 dsm.src_onepart_cnt = 0;
3729 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3730 variable_merge_over_src (var, &dsm);
3731 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3732 variable_merge_over_cur (var, &dsm);
3734 if (dsm.src_onepart_cnt)
3735 dst_can_be_shared = false;
3737 dataflow_set_destroy (src1);
3740 /* Mark register equivalences. */
3742 static void
3743 dataflow_set_equiv_regs (dataflow_set *set)
3745 int i;
3746 attrs list, *listp;
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3750 rtx canon[NUM_MACHINE_MODES];
3752 /* If the list is empty or one entry, no need to canonicalize
3753 anything. */
3754 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3755 continue;
3757 memset (canon, 0, sizeof (canon));
3759 for (list = set->regs[i]; list; list = list->next)
3760 if (list->offset == 0 && dv_is_value_p (list->dv))
3762 rtx val = dv_as_value (list->dv);
3763 rtx *cvalp = &canon[(int)GET_MODE (val)];
3764 rtx cval = *cvalp;
3766 if (canon_value_cmp (val, cval))
3767 *cvalp = val;
3770 for (list = set->regs[i]; list; list = list->next)
3771 if (list->offset == 0 && dv_onepart_p (list->dv))
3773 rtx cval = canon[(int)GET_MODE (list->loc)];
3775 if (!cval)
3776 continue;
3778 if (dv_is_value_p (list->dv))
3780 rtx val = dv_as_value (list->dv);
3782 if (val == cval)
3783 continue;
3785 VALUE_RECURSED_INTO (val) = true;
3786 set_variable_part (set, val, dv_from_value (cval), 0,
3787 VAR_INIT_STATUS_INITIALIZED,
3788 NULL, NO_INSERT);
3791 VALUE_RECURSED_INTO (cval) = true;
3792 set_variable_part (set, cval, list->dv, 0,
3793 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3796 for (listp = &set->regs[i]; (list = *listp);
3797 listp = list ? &list->next : listp)
3798 if (list->offset == 0 && dv_onepart_p (list->dv))
3800 rtx cval = canon[(int)GET_MODE (list->loc)];
3801 void **slot;
3803 if (!cval)
3804 continue;
3806 if (dv_is_value_p (list->dv))
3808 rtx val = dv_as_value (list->dv);
3809 if (!VALUE_RECURSED_INTO (val))
3810 continue;
3813 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3814 canonicalize_values_star (slot, set);
3815 if (*listp != list)
3816 list = NULL;
3821 /* Remove any redundant values in the location list of VAR, which must
3822 be unshared and 1-part. */
3824 static void
3825 remove_duplicate_values (variable var)
3827 location_chain node, *nodep;
3829 gcc_assert (dv_onepart_p (var->dv));
3830 gcc_assert (var->n_var_parts == 1);
3831 gcc_assert (var->refcount == 1);
3833 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3835 if (GET_CODE (node->loc) == VALUE)
3837 if (VALUE_RECURSED_INTO (node->loc))
3839 /* Remove duplicate value node. */
3840 *nodep = node->next;
3841 pool_free (loc_chain_pool, node);
3842 continue;
3844 else
3845 VALUE_RECURSED_INTO (node->loc) = true;
3847 nodep = &node->next;
3850 for (node = var->var_part[0].loc_chain; node; node = node->next)
3851 if (GET_CODE (node->loc) == VALUE)
3853 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3854 VALUE_RECURSED_INTO (node->loc) = false;
3859 /* Hash table iteration argument passed to variable_post_merge. */
3860 struct dfset_post_merge
3862 /* The new input set for the current block. */
3863 dataflow_set *set;
3864 /* Pointer to the permanent input set for the current block, or
3865 NULL. */
3866 dataflow_set **permp;
3869 /* Create values for incoming expressions associated with one-part
3870 variables that don't have value numbers for them. */
3872 static int
3873 variable_post_merge_new_vals (void **slot, void *info)
3875 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3876 dataflow_set *set = dfpm->set;
3877 variable var = (variable)*slot;
3878 location_chain node;
3880 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3881 return 1;
3883 gcc_assert (var->n_var_parts == 1);
3885 if (dv_is_decl_p (var->dv))
3887 bool check_dupes = false;
3889 restart:
3890 for (node = var->var_part[0].loc_chain; node; node = node->next)
3892 if (GET_CODE (node->loc) == VALUE)
3893 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3894 else if (GET_CODE (node->loc) == REG)
3896 attrs att, *attp, *curp = NULL;
3898 if (var->refcount != 1)
3900 slot = unshare_variable (set, slot, var,
3901 VAR_INIT_STATUS_INITIALIZED);
3902 var = (variable)*slot;
3903 goto restart;
3906 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3907 attp = &att->next)
3908 if (att->offset == 0
3909 && GET_MODE (att->loc) == GET_MODE (node->loc))
3911 if (dv_is_value_p (att->dv))
3913 rtx cval = dv_as_value (att->dv);
3914 node->loc = cval;
3915 check_dupes = true;
3916 break;
3918 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3919 curp = attp;
3922 if (!curp)
3924 curp = attp;
3925 while (*curp)
3926 if ((*curp)->offset == 0
3927 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3928 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3929 break;
3930 else
3931 curp = &(*curp)->next;
3932 gcc_assert (*curp);
3935 if (!att)
3937 decl_or_value cdv;
3938 rtx cval;
3940 if (!*dfpm->permp)
3942 *dfpm->permp = XNEW (dataflow_set);
3943 dataflow_set_init (*dfpm->permp);
3946 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3947 att; att = att->next)
3948 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3950 gcc_assert (att->offset == 0
3951 && dv_is_value_p (att->dv));
3952 val_reset (set, att->dv);
3953 break;
3956 if (att)
3958 cdv = att->dv;
3959 cval = dv_as_value (cdv);
3961 else
3963 /* Create a unique value to hold this register,
3964 that ought to be found and reused in
3965 subsequent rounds. */
3966 cselib_val *v;
3967 gcc_assert (!cselib_lookup (node->loc,
3968 GET_MODE (node->loc), 0,
3969 VOIDmode));
3970 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
3971 VOIDmode);
3972 cselib_preserve_value (v);
3973 cselib_invalidate_rtx (node->loc);
3974 cval = v->val_rtx;
3975 cdv = dv_from_value (cval);
3976 if (dump_file)
3977 fprintf (dump_file,
3978 "Created new value %u:%u for reg %i\n",
3979 v->uid, v->hash, REGNO (node->loc));
3982 var_reg_decl_set (*dfpm->permp, node->loc,
3983 VAR_INIT_STATUS_INITIALIZED,
3984 cdv, 0, NULL, INSERT);
3986 node->loc = cval;
3987 check_dupes = true;
3990 /* Remove attribute referring to the decl, which now
3991 uses the value for the register, already existing or
3992 to be added when we bring perm in. */
3993 att = *curp;
3994 *curp = att->next;
3995 pool_free (attrs_pool, att);
3999 if (check_dupes)
4000 remove_duplicate_values (var);
4003 return 1;
4006 /* Reset values in the permanent set that are not associated with the
4007 chosen expression. */
4009 static int
4010 variable_post_merge_perm_vals (void **pslot, void *info)
4012 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4013 dataflow_set *set = dfpm->set;
4014 variable pvar = (variable)*pslot, var;
4015 location_chain pnode;
4016 decl_or_value dv;
4017 attrs att;
4019 gcc_assert (dv_is_value_p (pvar->dv)
4020 && pvar->n_var_parts == 1);
4021 pnode = pvar->var_part[0].loc_chain;
4022 gcc_assert (pnode
4023 && !pnode->next
4024 && REG_P (pnode->loc));
4026 dv = pvar->dv;
4028 var = shared_hash_find (set->vars, dv);
4029 if (var)
4031 /* Although variable_post_merge_new_vals may have made decls
4032 non-star-canonical, values that pre-existed in canonical form
4033 remain canonical, and newly-created values reference a single
4034 REG, so they are canonical as well. Since VAR has the
4035 location list for a VALUE, using find_loc_in_1pdv for it is
4036 fine, since VALUEs don't map back to DECLs. */
4037 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4038 return 1;
4039 val_reset (set, dv);
4042 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4043 if (att->offset == 0
4044 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4045 && dv_is_value_p (att->dv))
4046 break;
4048 /* If there is a value associated with this register already, create
4049 an equivalence. */
4050 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4052 rtx cval = dv_as_value (att->dv);
4053 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4054 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4055 NULL, INSERT);
4057 else if (!att)
4059 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4060 dv, 0, pnode->loc);
4061 variable_union (pvar, set);
4064 return 1;
4067 /* Just checking stuff and registering register attributes for
4068 now. */
4070 static void
4071 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4073 struct dfset_post_merge dfpm;
4075 dfpm.set = set;
4076 dfpm.permp = permp;
4078 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4079 &dfpm);
4080 if (*permp)
4081 htab_traverse (shared_hash_htab ((*permp)->vars),
4082 variable_post_merge_perm_vals, &dfpm);
4083 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4084 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4087 /* Return a node whose loc is a MEM that refers to EXPR in the
4088 location list of a one-part variable or value VAR, or in that of
4089 any values recursively mentioned in the location lists. */
4091 static location_chain
4092 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4094 location_chain node;
4095 decl_or_value dv;
4096 variable var;
4097 location_chain where = NULL;
4099 if (!val)
4100 return NULL;
4102 gcc_assert (GET_CODE (val) == VALUE
4103 && !VALUE_RECURSED_INTO (val));
4105 dv = dv_from_value (val);
4106 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4108 if (!var)
4109 return NULL;
4111 gcc_assert (dv_onepart_p (var->dv));
4113 if (!var->n_var_parts)
4114 return NULL;
4116 gcc_assert (var->var_part[0].offset == 0);
4118 VALUE_RECURSED_INTO (val) = true;
4120 for (node = var->var_part[0].loc_chain; node; node = node->next)
4121 if (MEM_P (node->loc)
4122 && MEM_EXPR (node->loc) == expr
4123 && INT_MEM_OFFSET (node->loc) == 0)
4125 where = node;
4126 break;
4128 else if (GET_CODE (node->loc) == VALUE
4129 && !VALUE_RECURSED_INTO (node->loc)
4130 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4131 break;
4133 VALUE_RECURSED_INTO (val) = false;
4135 return where;
4138 /* Return TRUE if the value of MEM may vary across a call. */
4140 static bool
4141 mem_dies_at_call (rtx mem)
4143 tree expr = MEM_EXPR (mem);
4144 tree decl;
4146 if (!expr)
4147 return true;
4149 decl = get_base_address (expr);
4151 if (!decl)
4152 return true;
4154 if (!DECL_P (decl))
4155 return true;
4157 return (may_be_aliased (decl)
4158 || (!TREE_READONLY (decl) && is_global_var (decl)));
4161 /* Remove all MEMs from the location list of a hash table entry for a
4162 one-part variable, except those whose MEM attributes map back to
4163 the variable itself, directly or within a VALUE. */
4165 static int
4166 dataflow_set_preserve_mem_locs (void **slot, void *data)
4168 dataflow_set *set = (dataflow_set *) data;
4169 variable var = (variable) *slot;
4171 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4173 tree decl = dv_as_decl (var->dv);
4174 location_chain loc, *locp;
4175 bool changed = false;
4177 if (!var->n_var_parts)
4178 return 1;
4180 gcc_assert (var->n_var_parts == 1);
4182 if (shared_var_p (var, set->vars))
4184 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4186 /* We want to remove dying MEMs that doesn't refer to DECL. */
4187 if (GET_CODE (loc->loc) == MEM
4188 && (MEM_EXPR (loc->loc) != decl
4189 || INT_MEM_OFFSET (loc->loc) != 0)
4190 && !mem_dies_at_call (loc->loc))
4191 break;
4192 /* We want to move here MEMs that do refer to DECL. */
4193 else if (GET_CODE (loc->loc) == VALUE
4194 && find_mem_expr_in_1pdv (decl, loc->loc,
4195 shared_hash_htab (set->vars)))
4196 break;
4199 if (!loc)
4200 return 1;
4202 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4203 var = (variable)*slot;
4204 gcc_assert (var->n_var_parts == 1);
4207 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4208 loc; loc = *locp)
4210 rtx old_loc = loc->loc;
4211 if (GET_CODE (old_loc) == VALUE)
4213 location_chain mem_node
4214 = find_mem_expr_in_1pdv (decl, loc->loc,
4215 shared_hash_htab (set->vars));
4217 /* ??? This picks up only one out of multiple MEMs that
4218 refer to the same variable. Do we ever need to be
4219 concerned about dealing with more than one, or, given
4220 that they should all map to the same variable
4221 location, their addresses will have been merged and
4222 they will be regarded as equivalent? */
4223 if (mem_node)
4225 loc->loc = mem_node->loc;
4226 loc->set_src = mem_node->set_src;
4227 loc->init = MIN (loc->init, mem_node->init);
4231 if (GET_CODE (loc->loc) != MEM
4232 || (MEM_EXPR (loc->loc) == decl
4233 && INT_MEM_OFFSET (loc->loc) == 0)
4234 || !mem_dies_at_call (loc->loc))
4236 if (old_loc != loc->loc && emit_notes)
4238 if (old_loc == var->var_part[0].cur_loc)
4240 changed = true;
4241 var->var_part[0].cur_loc = NULL;
4242 var->cur_loc_changed = true;
4244 add_value_chains (var->dv, loc->loc);
4245 remove_value_chains (var->dv, old_loc);
4247 locp = &loc->next;
4248 continue;
4251 if (emit_notes)
4253 remove_value_chains (var->dv, old_loc);
4254 if (old_loc == var->var_part[0].cur_loc)
4256 changed = true;
4257 var->var_part[0].cur_loc = NULL;
4258 var->cur_loc_changed = true;
4261 *locp = loc->next;
4262 pool_free (loc_chain_pool, loc);
4265 if (!var->var_part[0].loc_chain)
4267 var->n_var_parts--;
4268 changed = true;
4270 if (changed)
4271 variable_was_changed (var, set);
4274 return 1;
4277 /* Remove all MEMs from the location list of a hash table entry for a
4278 value. */
4280 static int
4281 dataflow_set_remove_mem_locs (void **slot, void *data)
4283 dataflow_set *set = (dataflow_set *) data;
4284 variable var = (variable) *slot;
4286 if (dv_is_value_p (var->dv))
4288 location_chain loc, *locp;
4289 bool changed = false;
4291 gcc_assert (var->n_var_parts == 1);
4293 if (shared_var_p (var, set->vars))
4295 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4296 if (GET_CODE (loc->loc) == MEM
4297 && mem_dies_at_call (loc->loc))
4298 break;
4300 if (!loc)
4301 return 1;
4303 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4304 var = (variable)*slot;
4305 gcc_assert (var->n_var_parts == 1);
4308 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4309 loc; loc = *locp)
4311 if (GET_CODE (loc->loc) != MEM
4312 || !mem_dies_at_call (loc->loc))
4314 locp = &loc->next;
4315 continue;
4318 if (emit_notes)
4319 remove_value_chains (var->dv, loc->loc);
4320 *locp = loc->next;
4321 /* If we have deleted the location which was last emitted
4322 we have to emit new location so add the variable to set
4323 of changed variables. */
4324 if (var->var_part[0].cur_loc == loc->loc)
4326 changed = true;
4327 var->var_part[0].cur_loc = NULL;
4328 var->cur_loc_changed = true;
4330 pool_free (loc_chain_pool, loc);
4333 if (!var->var_part[0].loc_chain)
4335 var->n_var_parts--;
4336 changed = true;
4338 if (changed)
4339 variable_was_changed (var, set);
4342 return 1;
4345 /* Remove all variable-location information about call-clobbered
4346 registers, as well as associations between MEMs and VALUEs. */
4348 static void
4349 dataflow_set_clear_at_call (dataflow_set *set)
4351 int r;
4353 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4354 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4355 var_regno_delete (set, r);
4357 if (MAY_HAVE_DEBUG_INSNS)
4359 set->traversed_vars = set->vars;
4360 htab_traverse (shared_hash_htab (set->vars),
4361 dataflow_set_preserve_mem_locs, set);
4362 set->traversed_vars = set->vars;
4363 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4364 set);
4365 set->traversed_vars = NULL;
4369 static bool
4370 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4372 location_chain lc1, lc2;
4374 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4376 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4378 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4380 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4381 break;
4383 if (rtx_equal_p (lc1->loc, lc2->loc))
4384 break;
4386 if (!lc2)
4387 return true;
4389 return false;
4392 /* Return true if one-part variables VAR1 and VAR2 are different.
4393 They must be in canonical order. */
4395 static bool
4396 onepart_variable_different_p (variable var1, variable var2)
4398 location_chain lc1, lc2;
4400 if (var1 == var2)
4401 return false;
4403 gcc_assert (var1->n_var_parts == 1
4404 && var2->n_var_parts == 1);
4406 lc1 = var1->var_part[0].loc_chain;
4407 lc2 = var2->var_part[0].loc_chain;
4409 gcc_assert (lc1 && lc2);
4411 while (lc1 && lc2)
4413 if (loc_cmp (lc1->loc, lc2->loc))
4414 return true;
4415 lc1 = lc1->next;
4416 lc2 = lc2->next;
4419 return lc1 != lc2;
4422 /* Return true if variables VAR1 and VAR2 are different. */
4424 static bool
4425 variable_different_p (variable var1, variable var2)
4427 int i;
4429 if (var1 == var2)
4430 return false;
4432 if (var1->n_var_parts != var2->n_var_parts)
4433 return true;
4435 for (i = 0; i < var1->n_var_parts; i++)
4437 if (var1->var_part[i].offset != var2->var_part[i].offset)
4438 return true;
4439 /* One-part values have locations in a canonical order. */
4440 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4442 gcc_assert (var1->n_var_parts == 1
4443 && dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4444 return onepart_variable_different_p (var1, var2);
4446 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4447 return true;
4448 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4449 return true;
4451 return false;
4454 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4456 static bool
4457 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4459 htab_iterator hi;
4460 variable var1;
4462 if (old_set->vars == new_set->vars)
4463 return false;
4465 if (htab_elements (shared_hash_htab (old_set->vars))
4466 != htab_elements (shared_hash_htab (new_set->vars)))
4467 return true;
4469 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4471 htab_t htab = shared_hash_htab (new_set->vars);
4472 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4473 dv_htab_hash (var1->dv));
4474 if (!var2)
4476 if (dump_file && (dump_flags & TDF_DETAILS))
4478 fprintf (dump_file, "dataflow difference found: removal of:\n");
4479 dump_var (var1);
4481 return true;
4484 if (variable_different_p (var1, var2))
4486 if (dump_file && (dump_flags & TDF_DETAILS))
4488 fprintf (dump_file, "dataflow difference found: "
4489 "old and new follow:\n");
4490 dump_var (var1);
4491 dump_var (var2);
4493 return true;
4497 /* No need to traverse the second hashtab, if both have the same number
4498 of elements and the second one had all entries found in the first one,
4499 then it can't have any extra entries. */
4500 return false;
4503 /* Free the contents of dataflow set SET. */
4505 static void
4506 dataflow_set_destroy (dataflow_set *set)
4508 int i;
4510 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4511 attrs_list_clear (&set->regs[i]);
4513 shared_hash_destroy (set->vars);
4514 set->vars = NULL;
4517 /* Return true if RTL X contains a SYMBOL_REF. */
4519 static bool
4520 contains_symbol_ref (rtx x)
4522 const char *fmt;
4523 RTX_CODE code;
4524 int i;
4526 if (!x)
4527 return false;
4529 code = GET_CODE (x);
4530 if (code == SYMBOL_REF)
4531 return true;
4533 fmt = GET_RTX_FORMAT (code);
4534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4536 if (fmt[i] == 'e')
4538 if (contains_symbol_ref (XEXP (x, i)))
4539 return true;
4541 else if (fmt[i] == 'E')
4543 int j;
4544 for (j = 0; j < XVECLEN (x, i); j++)
4545 if (contains_symbol_ref (XVECEXP (x, i, j)))
4546 return true;
4550 return false;
4553 /* Shall EXPR be tracked? */
4555 static bool
4556 track_expr_p (tree expr, bool need_rtl)
4558 rtx decl_rtl;
4559 tree realdecl;
4561 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4562 return DECL_RTL_SET_P (expr);
4564 /* If EXPR is not a parameter or a variable do not track it. */
4565 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4566 return 0;
4568 /* It also must have a name... */
4569 if (!DECL_NAME (expr) && need_rtl)
4570 return 0;
4572 /* ... and a RTL assigned to it. */
4573 decl_rtl = DECL_RTL_IF_SET (expr);
4574 if (!decl_rtl && need_rtl)
4575 return 0;
4577 /* If this expression is really a debug alias of some other declaration, we
4578 don't need to track this expression if the ultimate declaration is
4579 ignored. */
4580 realdecl = expr;
4581 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4583 realdecl = DECL_DEBUG_EXPR (realdecl);
4584 if (realdecl == NULL_TREE)
4585 realdecl = expr;
4586 else if (!DECL_P (realdecl))
4588 if (handled_component_p (realdecl))
4590 HOST_WIDE_INT bitsize, bitpos, maxsize;
4591 tree innerdecl
4592 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4593 &maxsize);
4594 if (!DECL_P (innerdecl)
4595 || DECL_IGNORED_P (innerdecl)
4596 || TREE_STATIC (innerdecl)
4597 || bitsize <= 0
4598 || bitpos + bitsize > 256
4599 || bitsize != maxsize)
4600 return 0;
4601 else
4602 realdecl = expr;
4604 else
4605 return 0;
4609 /* Do not track EXPR if REALDECL it should be ignored for debugging
4610 purposes. */
4611 if (DECL_IGNORED_P (realdecl))
4612 return 0;
4614 /* Do not track global variables until we are able to emit correct location
4615 list for them. */
4616 if (TREE_STATIC (realdecl))
4617 return 0;
4619 /* When the EXPR is a DECL for alias of some variable (see example)
4620 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4621 DECL_RTL contains SYMBOL_REF.
4623 Example:
4624 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4625 char **_dl_argv;
4627 if (decl_rtl && MEM_P (decl_rtl)
4628 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4629 return 0;
4631 /* If RTX is a memory it should not be very large (because it would be
4632 an array or struct). */
4633 if (decl_rtl && MEM_P (decl_rtl))
4635 /* Do not track structures and arrays. */
4636 if (GET_MODE (decl_rtl) == BLKmode
4637 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4638 return 0;
4639 if (MEM_SIZE (decl_rtl)
4640 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4641 return 0;
4644 DECL_CHANGED (expr) = 0;
4645 DECL_CHANGED (realdecl) = 0;
4646 return 1;
4649 /* Determine whether a given LOC refers to the same variable part as
4650 EXPR+OFFSET. */
4652 static bool
4653 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4655 tree expr2;
4656 HOST_WIDE_INT offset2;
4658 if (! DECL_P (expr))
4659 return false;
4661 if (REG_P (loc))
4663 expr2 = REG_EXPR (loc);
4664 offset2 = REG_OFFSET (loc);
4666 else if (MEM_P (loc))
4668 expr2 = MEM_EXPR (loc);
4669 offset2 = INT_MEM_OFFSET (loc);
4671 else
4672 return false;
4674 if (! expr2 || ! DECL_P (expr2))
4675 return false;
4677 expr = var_debug_decl (expr);
4678 expr2 = var_debug_decl (expr2);
4680 return (expr == expr2 && offset == offset2);
4683 /* LOC is a REG or MEM that we would like to track if possible.
4684 If EXPR is null, we don't know what expression LOC refers to,
4685 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4686 LOC is an lvalue register.
4688 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4689 is something we can track. When returning true, store the mode of
4690 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4691 from EXPR in *OFFSET_OUT (if nonnull). */
4693 static bool
4694 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4695 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4697 enum machine_mode mode;
4699 if (expr == NULL || !track_expr_p (expr, true))
4700 return false;
4702 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4703 whole subreg, but only the old inner part is really relevant. */
4704 mode = GET_MODE (loc);
4705 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4707 enum machine_mode pseudo_mode;
4709 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4710 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4712 offset += byte_lowpart_offset (pseudo_mode, mode);
4713 mode = pseudo_mode;
4717 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4718 Do the same if we are storing to a register and EXPR occupies
4719 the whole of register LOC; in that case, the whole of EXPR is
4720 being changed. We exclude complex modes from the second case
4721 because the real and imaginary parts are represented as separate
4722 pseudo registers, even if the whole complex value fits into one
4723 hard register. */
4724 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4725 || (store_reg_p
4726 && !COMPLEX_MODE_P (DECL_MODE (expr))
4727 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4728 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4730 mode = DECL_MODE (expr);
4731 offset = 0;
4734 if (offset < 0 || offset >= MAX_VAR_PARTS)
4735 return false;
4737 if (mode_out)
4738 *mode_out = mode;
4739 if (offset_out)
4740 *offset_out = offset;
4741 return true;
4744 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4745 want to track. When returning nonnull, make sure that the attributes
4746 on the returned value are updated. */
4748 static rtx
4749 var_lowpart (enum machine_mode mode, rtx loc)
4751 unsigned int offset, reg_offset, regno;
4753 if (!REG_P (loc) && !MEM_P (loc))
4754 return NULL;
4756 if (GET_MODE (loc) == mode)
4757 return loc;
4759 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4761 if (MEM_P (loc))
4762 return adjust_address_nv (loc, mode, offset);
4764 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4765 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4766 reg_offset, mode);
4767 return gen_rtx_REG_offset (loc, mode, regno, offset);
4770 /* Carry information about uses and stores while walking rtx. */
4772 struct count_use_info
4774 /* The insn where the RTX is. */
4775 rtx insn;
4777 /* The basic block where insn is. */
4778 basic_block bb;
4780 /* The array of n_sets sets in the insn, as determined by cselib. */
4781 struct cselib_set *sets;
4782 int n_sets;
4784 /* True if we're counting stores, false otherwise. */
4785 bool store_p;
4788 /* Find a VALUE corresponding to X. */
4790 static inline cselib_val *
4791 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4793 int i;
4795 if (cui->sets)
4797 /* This is called after uses are set up and before stores are
4798 processed by cselib, so it's safe to look up srcs, but not
4799 dsts. So we look up expressions that appear in srcs or in
4800 dest expressions, but we search the sets array for dests of
4801 stores. */
4802 if (cui->store_p)
4804 /* Some targets represent memset and memcpy patterns
4805 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
4806 (set (mem:BLK ...) (const_int ...)) or
4807 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
4808 in that case, otherwise we end up with mode mismatches. */
4809 if (mode == BLKmode && MEM_P (x))
4810 return NULL;
4811 for (i = 0; i < cui->n_sets; i++)
4812 if (cui->sets[i].dest == x)
4813 return cui->sets[i].src_elt;
4815 else
4816 return cselib_lookup (x, mode, 0, VOIDmode);
4819 return NULL;
4822 /* Helper function to get mode of MEM's address. */
4824 static inline enum machine_mode
4825 get_address_mode (rtx mem)
4827 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4828 if (mode != VOIDmode)
4829 return mode;
4830 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4833 /* Replace all registers and addresses in an expression with VALUE
4834 expressions that map back to them, unless the expression is a
4835 register. If no mapping is or can be performed, returns NULL. */
4837 static rtx
4838 replace_expr_with_values (rtx loc)
4840 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
4841 return NULL;
4842 else if (MEM_P (loc))
4844 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4845 get_address_mode (loc), 0,
4846 GET_MODE (loc));
4847 if (addr)
4848 return replace_equiv_address_nv (loc, addr->val_rtx);
4849 else
4850 return NULL;
4852 else
4853 return cselib_subst_to_values (loc, VOIDmode);
4856 /* Determine what kind of micro operation to choose for a USE. Return
4857 MO_CLOBBER if no micro operation is to be generated. */
4859 static enum micro_operation_type
4860 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4862 tree expr;
4864 if (cui && cui->sets)
4866 if (GET_CODE (loc) == VAR_LOCATION)
4868 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4870 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4871 if (! VAR_LOC_UNKNOWN_P (ploc))
4873 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4874 VOIDmode);
4876 /* ??? flag_float_store and volatile mems are never
4877 given values, but we could in theory use them for
4878 locations. */
4879 gcc_assert (val || 1);
4881 return MO_VAL_LOC;
4883 else
4884 return MO_CLOBBER;
4887 if (REG_P (loc) || MEM_P (loc))
4889 if (modep)
4890 *modep = GET_MODE (loc);
4891 if (cui->store_p)
4893 if (REG_P (loc)
4894 || (find_use_val (loc, GET_MODE (loc), cui)
4895 && cselib_lookup (XEXP (loc, 0),
4896 get_address_mode (loc), 0,
4897 GET_MODE (loc))))
4898 return MO_VAL_SET;
4900 else
4902 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4904 if (val && !cselib_preserved_value_p (val))
4905 return MO_VAL_USE;
4910 if (REG_P (loc))
4912 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4914 if (loc == cfa_base_rtx)
4915 return MO_CLOBBER;
4916 expr = REG_EXPR (loc);
4918 if (!expr)
4919 return MO_USE_NO_VAR;
4920 else if (target_for_debug_bind (var_debug_decl (expr)))
4921 return MO_CLOBBER;
4922 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4923 false, modep, NULL))
4924 return MO_USE;
4925 else
4926 return MO_USE_NO_VAR;
4928 else if (MEM_P (loc))
4930 expr = MEM_EXPR (loc);
4932 if (!expr)
4933 return MO_CLOBBER;
4934 else if (target_for_debug_bind (var_debug_decl (expr)))
4935 return MO_CLOBBER;
4936 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4937 false, modep, NULL))
4938 return MO_USE;
4939 else
4940 return MO_CLOBBER;
4943 return MO_CLOBBER;
4946 /* Log to OUT information about micro-operation MOPT involving X in
4947 INSN of BB. */
4949 static inline void
4950 log_op_type (rtx x, basic_block bb, rtx insn,
4951 enum micro_operation_type mopt, FILE *out)
4953 fprintf (out, "bb %i op %i insn %i %s ",
4954 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4955 INSN_UID (insn), micro_operation_type_name[mopt]);
4956 print_inline_rtx (out, x, 2);
4957 fputc ('\n', out);
4960 /* Tell whether the CONCAT used to holds a VALUE and its location
4961 needs value resolution, i.e., an attempt of mapping the location
4962 back to other incoming values. */
4963 #define VAL_NEEDS_RESOLUTION(x) \
4964 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4965 /* Whether the location in the CONCAT is a tracked expression, that
4966 should also be handled like a MO_USE. */
4967 #define VAL_HOLDS_TRACK_EXPR(x) \
4968 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4969 /* Whether the location in the CONCAT should be handled like a MO_COPY
4970 as well. */
4971 #define VAL_EXPR_IS_COPIED(x) \
4972 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4973 /* Whether the location in the CONCAT should be handled like a
4974 MO_CLOBBER as well. */
4975 #define VAL_EXPR_IS_CLOBBERED(x) \
4976 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4977 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4978 a reverse operation that should be handled afterwards. */
4979 #define VAL_EXPR_HAS_REVERSE(x) \
4980 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4982 /* All preserved VALUEs. */
4983 static VEC (rtx, heap) *preserved_values;
4985 /* Registers used in the current function for passing parameters. */
4986 static HARD_REG_SET argument_reg_set;
4988 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4990 static void
4991 preserve_value (cselib_val *val)
4993 cselib_preserve_value (val);
4994 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4997 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4998 any rtxes not suitable for CONST use not replaced by VALUEs
4999 are discovered. */
5001 static int
5002 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5004 if (*x == NULL_RTX)
5005 return 0;
5007 switch (GET_CODE (*x))
5009 case REG:
5010 case DEBUG_EXPR:
5011 case PC:
5012 case SCRATCH:
5013 case CC0:
5014 case ASM_INPUT:
5015 case ASM_OPERANDS:
5016 return 1;
5017 case MEM:
5018 return !MEM_READONLY_P (*x);
5019 default:
5020 return 0;
5024 /* Add uses (register and memory references) LOC which will be tracked
5025 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5027 static int
5028 add_uses (rtx *ploc, void *data)
5030 rtx loc = *ploc;
5031 enum machine_mode mode = VOIDmode;
5032 struct count_use_info *cui = (struct count_use_info *)data;
5033 enum micro_operation_type type = use_type (loc, cui, &mode);
5035 if (type != MO_CLOBBER)
5037 basic_block bb = cui->bb;
5038 micro_operation mo;
5040 mo.type = type;
5041 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5042 mo.insn = cui->insn;
5044 if (type == MO_VAL_LOC)
5046 rtx oloc = loc;
5047 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5048 cselib_val *val;
5050 gcc_assert (cui->sets);
5052 if (MEM_P (vloc)
5053 && !REG_P (XEXP (vloc, 0))
5054 && !MEM_P (XEXP (vloc, 0))
5055 && (GET_CODE (XEXP (vloc, 0)) != PLUS
5056 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
5057 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
5059 rtx mloc = vloc;
5060 enum machine_mode address_mode = get_address_mode (mloc);
5061 cselib_val *val
5062 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5063 GET_MODE (mloc));
5065 if (val && !cselib_preserved_value_p (val))
5067 micro_operation moa;
5068 preserve_value (val);
5069 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5070 GET_MODE (mloc));
5071 moa.type = MO_VAL_USE;
5072 moa.insn = cui->insn;
5073 moa.u.loc = gen_rtx_CONCAT (address_mode,
5074 val->val_rtx, mloc);
5075 if (dump_file && (dump_flags & TDF_DETAILS))
5076 log_op_type (moa.u.loc, cui->bb, cui->insn,
5077 moa.type, dump_file);
5078 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5082 if (CONSTANT_P (vloc)
5083 && (GET_CODE (vloc) != CONST
5084 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5085 /* For constants don't look up any value. */;
5086 else if (!VAR_LOC_UNKNOWN_P (vloc)
5087 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5089 enum machine_mode mode2;
5090 enum micro_operation_type type2;
5091 rtx nloc = replace_expr_with_values (vloc);
5093 if (nloc)
5095 oloc = shallow_copy_rtx (oloc);
5096 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5099 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5101 type2 = use_type (vloc, 0, &mode2);
5103 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5104 || type2 == MO_CLOBBER);
5106 if (type2 == MO_CLOBBER
5107 && !cselib_preserved_value_p (val))
5109 VAL_NEEDS_RESOLUTION (oloc) = 1;
5110 preserve_value (val);
5113 else if (!VAR_LOC_UNKNOWN_P (vloc))
5115 oloc = shallow_copy_rtx (oloc);
5116 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5119 mo.u.loc = oloc;
5121 else if (type == MO_VAL_USE)
5123 enum machine_mode mode2 = VOIDmode;
5124 enum micro_operation_type type2;
5125 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5126 rtx vloc, oloc = loc, nloc;
5128 gcc_assert (cui->sets);
5130 if (MEM_P (oloc)
5131 && !REG_P (XEXP (oloc, 0))
5132 && !MEM_P (XEXP (oloc, 0))
5133 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5134 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5135 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5137 rtx mloc = oloc;
5138 enum machine_mode address_mode = get_address_mode (mloc);
5139 cselib_val *val
5140 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5141 GET_MODE (mloc));
5143 if (val && !cselib_preserved_value_p (val))
5145 micro_operation moa;
5146 preserve_value (val);
5147 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5148 GET_MODE (mloc));
5149 moa.type = MO_VAL_USE;
5150 moa.insn = cui->insn;
5151 moa.u.loc = gen_rtx_CONCAT (address_mode,
5152 val->val_rtx, mloc);
5153 if (dump_file && (dump_flags & TDF_DETAILS))
5154 log_op_type (moa.u.loc, cui->bb, cui->insn,
5155 moa.type, dump_file);
5156 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5160 type2 = use_type (loc, 0, &mode2);
5162 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5163 || type2 == MO_CLOBBER);
5165 if (type2 == MO_USE)
5166 vloc = var_lowpart (mode2, loc);
5167 else
5168 vloc = oloc;
5170 /* The loc of a MO_VAL_USE may have two forms:
5172 (concat val src): val is at src, a value-based
5173 representation.
5175 (concat (concat val use) src): same as above, with use as
5176 the MO_USE tracked value, if it differs from src.
5180 nloc = replace_expr_with_values (loc);
5181 if (!nloc)
5182 nloc = oloc;
5184 if (vloc != nloc)
5185 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5186 else
5187 oloc = val->val_rtx;
5189 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5191 if (type2 == MO_USE)
5192 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5193 if (!cselib_preserved_value_p (val))
5195 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5196 preserve_value (val);
5199 else
5200 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5202 if (dump_file && (dump_flags & TDF_DETAILS))
5203 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5204 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5207 return 0;
5210 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5212 static void
5213 add_uses_1 (rtx *x, void *cui)
5215 for_each_rtx (x, add_uses, cui);
5218 #define EXPR_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5220 /* Attempt to reverse the EXPR operation in the debug info. Say for
5221 reg1 = reg2 + 6 even when reg2 is no longer live we
5222 can express its value as VAL - 6. */
5224 static rtx
5225 reverse_op (rtx val, const_rtx expr)
5227 rtx src, arg, ret;
5228 cselib_val *v;
5229 enum rtx_code code;
5231 if (GET_CODE (expr) != SET)
5232 return NULL_RTX;
5234 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5235 return NULL_RTX;
5237 src = SET_SRC (expr);
5238 switch (GET_CODE (src))
5240 case PLUS:
5241 case MINUS:
5242 case XOR:
5243 case NOT:
5244 case NEG:
5245 if (!REG_P (XEXP (src, 0)))
5246 return NULL_RTX;
5247 break;
5248 case SIGN_EXTEND:
5249 case ZERO_EXTEND:
5250 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5251 return NULL_RTX;
5252 break;
5253 default:
5254 return NULL_RTX;
5257 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5258 return NULL_RTX;
5260 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5261 if (!v || !cselib_preserved_value_p (v))
5262 return NULL_RTX;
5264 switch (GET_CODE (src))
5266 case NOT:
5267 case NEG:
5268 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5269 return NULL_RTX;
5270 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5271 break;
5272 case SIGN_EXTEND:
5273 case ZERO_EXTEND:
5274 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5275 break;
5276 case XOR:
5277 code = XOR;
5278 goto binary;
5279 case PLUS:
5280 code = MINUS;
5281 goto binary;
5282 case MINUS:
5283 code = PLUS;
5284 goto binary;
5285 binary:
5286 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5287 return NULL_RTX;
5288 arg = XEXP (src, 1);
5289 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5291 arg = cselib_expand_value_rtx (arg, scratch_regs, EXPR_DEPTH);
5292 if (arg == NULL_RTX)
5293 return NULL_RTX;
5294 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5295 return NULL_RTX;
5297 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5298 if (ret == val)
5299 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5300 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5301 breaks a lot of routines during var-tracking. */
5302 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5303 break;
5304 default:
5305 gcc_unreachable ();
5308 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5311 /* Add stores (register and memory references) LOC which will be tracked
5312 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5313 CUIP->insn is instruction which the LOC is part of. */
5315 static void
5316 add_stores (rtx loc, const_rtx expr, void *cuip)
5318 enum machine_mode mode = VOIDmode, mode2;
5319 struct count_use_info *cui = (struct count_use_info *)cuip;
5320 basic_block bb = cui->bb;
5321 micro_operation mo;
5322 rtx oloc = loc, nloc, src = NULL;
5323 enum micro_operation_type type = use_type (loc, cui, &mode);
5324 bool track_p = false;
5325 cselib_val *v;
5326 bool resolve, preserve;
5327 rtx reverse;
5329 if (type == MO_CLOBBER)
5330 return;
5332 mode2 = mode;
5334 if (REG_P (loc))
5336 gcc_assert (loc != cfa_base_rtx);
5337 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5338 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5339 || GET_CODE (expr) == CLOBBER)
5341 mo.type = MO_CLOBBER;
5342 mo.u.loc = loc;
5343 if (GET_CODE (expr) == SET
5344 && SET_DEST (expr) == loc
5345 && REGNO (loc) < FIRST_PSEUDO_REGISTER
5346 && TEST_HARD_REG_BIT (argument_reg_set, REGNO (loc))
5347 && find_use_val (loc, mode, cui)
5348 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5350 gcc_checking_assert (type == MO_VAL_SET);
5351 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5354 else
5356 if (GET_CODE (expr) == SET
5357 && SET_DEST (expr) == loc
5358 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5359 src = var_lowpart (mode2, SET_SRC (expr));
5360 loc = var_lowpart (mode2, loc);
5362 if (src == NULL)
5364 mo.type = MO_SET;
5365 mo.u.loc = loc;
5367 else
5369 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5370 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5371 mo.type = MO_COPY;
5372 else
5373 mo.type = MO_SET;
5374 mo.u.loc = xexpr;
5377 mo.insn = cui->insn;
5379 else if (MEM_P (loc)
5380 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5381 || cui->sets))
5383 if (MEM_P (loc) && type == MO_VAL_SET
5384 && !REG_P (XEXP (loc, 0))
5385 && !MEM_P (XEXP (loc, 0))
5386 && (GET_CODE (XEXP (loc, 0)) != PLUS
5387 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5388 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5390 rtx mloc = loc;
5391 enum machine_mode address_mode = get_address_mode (mloc);
5392 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5393 address_mode, 0,
5394 GET_MODE (mloc));
5396 if (val && !cselib_preserved_value_p (val))
5398 preserve_value (val);
5399 mo.type = MO_VAL_USE;
5400 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5401 GET_MODE (mloc));
5402 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5403 mo.insn = cui->insn;
5404 if (dump_file && (dump_flags & TDF_DETAILS))
5405 log_op_type (mo.u.loc, cui->bb, cui->insn,
5406 mo.type, dump_file);
5407 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5411 if (GET_CODE (expr) == CLOBBER || !track_p)
5413 mo.type = MO_CLOBBER;
5414 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5416 else
5418 if (GET_CODE (expr) == SET
5419 && SET_DEST (expr) == loc
5420 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5421 src = var_lowpart (mode2, SET_SRC (expr));
5422 loc = var_lowpart (mode2, loc);
5424 if (src == NULL)
5426 mo.type = MO_SET;
5427 mo.u.loc = loc;
5429 else
5431 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5432 if (same_variable_part_p (SET_SRC (xexpr),
5433 MEM_EXPR (loc),
5434 INT_MEM_OFFSET (loc)))
5435 mo.type = MO_COPY;
5436 else
5437 mo.type = MO_SET;
5438 mo.u.loc = xexpr;
5441 mo.insn = cui->insn;
5443 else
5444 return;
5446 if (type != MO_VAL_SET)
5447 goto log_and_return;
5449 v = find_use_val (oloc, mode, cui);
5451 if (!v)
5452 goto log_and_return;
5454 resolve = preserve = !cselib_preserved_value_p (v);
5456 nloc = replace_expr_with_values (oloc);
5457 if (nloc)
5458 oloc = nloc;
5460 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5462 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5464 gcc_assert (oval != v);
5465 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5467 if (!cselib_preserved_value_p (oval))
5469 micro_operation moa;
5471 preserve_value (oval);
5473 moa.type = MO_VAL_USE;
5474 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5475 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5476 moa.insn = cui->insn;
5478 if (dump_file && (dump_flags & TDF_DETAILS))
5479 log_op_type (moa.u.loc, cui->bb, cui->insn,
5480 moa.type, dump_file);
5481 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5484 resolve = false;
5486 else if (resolve && GET_CODE (mo.u.loc) == SET)
5488 nloc = replace_expr_with_values (SET_SRC (expr));
5490 /* Avoid the mode mismatch between oexpr and expr. */
5491 if (!nloc && mode != mode2)
5493 nloc = SET_SRC (expr);
5494 gcc_assert (oloc == SET_DEST (expr));
5497 if (nloc)
5498 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5499 else
5501 if (oloc == SET_DEST (mo.u.loc))
5502 /* No point in duplicating. */
5503 oloc = mo.u.loc;
5504 if (!REG_P (SET_SRC (mo.u.loc)))
5505 resolve = false;
5508 else if (!resolve)
5510 if (GET_CODE (mo.u.loc) == SET
5511 && oloc == SET_DEST (mo.u.loc))
5512 /* No point in duplicating. */
5513 oloc = mo.u.loc;
5515 else
5516 resolve = false;
5518 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5520 if (mo.u.loc != oloc)
5521 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5523 /* The loc of a MO_VAL_SET may have various forms:
5525 (concat val dst): dst now holds val
5527 (concat val (set dst src)): dst now holds val, copied from src
5529 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5530 after replacing mems and non-top-level regs with values.
5532 (concat (concat val dstv) (set dst src)): dst now holds val,
5533 copied from src. dstv is a value-based representation of dst, if
5534 it differs from dst. If resolution is needed, src is a REG, and
5535 its mode is the same as that of val.
5537 (concat (concat val (set dstv srcv)) (set dst src)): src
5538 copied to dst, holding val. dstv and srcv are value-based
5539 representations of dst and src, respectively.
5543 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5545 reverse = reverse_op (v->val_rtx, expr);
5546 if (reverse)
5548 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5549 VAL_EXPR_HAS_REVERSE (loc) = 1;
5553 mo.u.loc = loc;
5555 if (track_p)
5556 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5557 if (preserve)
5559 VAL_NEEDS_RESOLUTION (loc) = resolve;
5560 preserve_value (v);
5562 if (mo.type == MO_CLOBBER)
5563 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5564 if (mo.type == MO_COPY)
5565 VAL_EXPR_IS_COPIED (loc) = 1;
5567 mo.type = MO_VAL_SET;
5569 log_and_return:
5570 if (dump_file && (dump_flags & TDF_DETAILS))
5571 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5572 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5575 /* Arguments to the call. */
5576 static rtx call_arguments;
5578 /* Compute call_arguments. */
5580 static void
5581 prepare_call_arguments (basic_block bb, rtx insn)
5583 rtx link, x;
5584 rtx prev, cur, next;
5585 rtx call = PATTERN (insn);
5586 rtx this_arg = NULL_RTX;
5587 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5588 tree obj_type_ref = NULL_TREE;
5589 CUMULATIVE_ARGS args_so_far;
5591 memset (&args_so_far, 0, sizeof (args_so_far));
5592 if (GET_CODE (call) == PARALLEL)
5593 call = XVECEXP (call, 0, 0);
5594 if (GET_CODE (call) == SET)
5595 call = SET_SRC (call);
5596 if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)))
5598 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5600 rtx symbol = XEXP (XEXP (call, 0), 0);
5601 if (SYMBOL_REF_DECL (symbol))
5602 fndecl = SYMBOL_REF_DECL (symbol);
5604 if (fndecl == NULL_TREE)
5605 fndecl = MEM_EXPR (XEXP (call, 0));
5606 if (fndecl
5607 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5608 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5609 fndecl = NULL_TREE;
5610 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5611 type = TREE_TYPE (fndecl);
5612 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5614 if (TREE_CODE (fndecl) == INDIRECT_REF
5615 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5616 obj_type_ref = TREE_OPERAND (fndecl, 0);
5617 fndecl = NULL_TREE;
5619 if (type)
5621 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5622 t = TREE_CHAIN (t))
5623 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5624 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5625 break;
5626 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5627 type = NULL;
5628 else
5630 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5631 link = CALL_INSN_FUNCTION_USAGE (insn);
5632 #ifndef PCC_STATIC_STRUCT_RETURN
5633 if (aggregate_value_p (TREE_TYPE (type), type)
5634 && targetm.calls.struct_value_rtx (type, 0) == 0)
5636 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5637 enum machine_mode mode = TYPE_MODE (struct_addr);
5638 rtx reg;
5639 INIT_CUMULATIVE_ARGS (args_so_far, type, NULL_RTX, fndecl,
5640 nargs + 1);
5641 reg = targetm.calls.function_arg (&args_so_far, mode,
5642 struct_addr, true);
5643 targetm.calls.function_arg_advance (&args_so_far, mode,
5644 struct_addr, true);
5645 if (reg == NULL_RTX)
5647 for (; link; link = XEXP (link, 1))
5648 if (GET_CODE (XEXP (link, 0)) == USE
5649 && MEM_P (XEXP (XEXP (link, 0), 0)))
5651 link = XEXP (link, 1);
5652 break;
5656 else
5657 #endif
5658 INIT_CUMULATIVE_ARGS (args_so_far, type, NULL_RTX, fndecl,
5659 nargs);
5660 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5662 enum machine_mode mode;
5663 t = TYPE_ARG_TYPES (type);
5664 mode = TYPE_MODE (TREE_VALUE (t));
5665 this_arg = targetm.calls.function_arg (&args_so_far, mode,
5666 TREE_VALUE (t), true);
5667 if (this_arg && !REG_P (this_arg))
5668 this_arg = NULL_RTX;
5669 else if (this_arg == NULL_RTX)
5671 for (; link; link = XEXP (link, 1))
5672 if (GET_CODE (XEXP (link, 0)) == USE
5673 && MEM_P (XEXP (XEXP (link, 0), 0)))
5675 this_arg = XEXP (XEXP (link, 0), 0);
5676 break;
5683 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
5685 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
5686 if (GET_CODE (XEXP (link, 0)) == USE)
5688 rtx item = NULL_RTX;
5689 x = XEXP (XEXP (link, 0), 0);
5690 if (REG_P (x))
5692 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5693 if (val && cselib_preserved_value_p (val))
5694 item = gen_rtx_CONCAT (GET_MODE (x), x, val->val_rtx);
5695 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
5697 enum machine_mode mode = GET_MODE (x);
5699 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
5700 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
5702 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
5704 if (reg == NULL_RTX || !REG_P (reg))
5705 continue;
5706 val = cselib_lookup (reg, mode, 0, VOIDmode);
5707 if (val && cselib_preserved_value_p (val))
5709 item = gen_rtx_CONCAT (GET_MODE (x), x,
5710 lowpart_subreg (GET_MODE (x),
5711 val->val_rtx,
5712 mode));
5713 break;
5718 else if (MEM_P (x))
5720 rtx mem = x;
5721 cselib_val *val;
5723 if (!frame_pointer_needed)
5725 struct adjust_mem_data amd;
5726 amd.mem_mode = VOIDmode;
5727 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
5728 amd.side_effects = NULL_RTX;
5729 amd.store = true;
5730 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
5731 &amd);
5732 gcc_assert (amd.side_effects == NULL_RTX);
5734 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
5735 if (val && cselib_preserved_value_p (val))
5736 item = gen_rtx_CONCAT (GET_MODE (x), copy_rtx (x), val->val_rtx);
5738 if (item)
5739 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
5740 if (t && t != void_list_node)
5742 tree argtype = TREE_VALUE (t);
5743 enum machine_mode mode = TYPE_MODE (argtype);
5744 rtx reg;
5745 if (pass_by_reference (&args_so_far, mode, argtype, true))
5747 argtype = build_pointer_type (argtype);
5748 mode = TYPE_MODE (argtype);
5750 reg = targetm.calls.function_arg (&args_so_far, mode,
5751 argtype, true);
5752 if (TREE_CODE (argtype) == REFERENCE_TYPE
5753 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
5754 && reg
5755 && REG_P (reg)
5756 && GET_MODE (reg) == mode
5757 && GET_MODE_CLASS (mode) == MODE_INT
5758 && REG_P (x)
5759 && REGNO (x) == REGNO (reg)
5760 && GET_MODE (x) == mode
5761 && item)
5763 enum machine_mode indmode
5764 = TYPE_MODE (TREE_TYPE (argtype));
5765 rtx mem = gen_rtx_MEM (indmode, x);
5766 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
5767 if (val && cselib_preserved_value_p (val))
5769 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
5770 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5771 call_arguments);
5773 else
5775 struct elt_loc_list *l;
5776 tree initial;
5778 /* Try harder, when passing address of a constant
5779 pool integer it can be easily read back. */
5780 item = XEXP (item, 1);
5781 if (GET_CODE (item) == SUBREG)
5782 item = SUBREG_REG (item);
5783 gcc_assert (GET_CODE (item) == VALUE);
5784 val = CSELIB_VAL_PTR (item);
5785 for (l = val->locs; l; l = l->next)
5786 if (GET_CODE (l->loc) == SYMBOL_REF
5787 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
5788 && SYMBOL_REF_DECL (l->loc)
5789 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
5791 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
5792 if (host_integerp (initial, 0))
5794 item = GEN_INT (tree_low_cst (initial, 0));
5795 item = gen_rtx_CONCAT (indmode, mem, item);
5796 call_arguments
5797 = gen_rtx_EXPR_LIST (VOIDmode, item,
5798 call_arguments);
5800 break;
5804 targetm.calls.function_arg_advance (&args_so_far, mode,
5805 argtype, true);
5806 t = TREE_CHAIN (t);
5810 /* Reverse call_arguments chain. */
5811 prev = NULL_RTX;
5812 for (cur = call_arguments; cur; cur = next)
5814 next = XEXP (cur, 1);
5815 XEXP (cur, 1) = prev;
5816 prev = cur;
5818 call_arguments = prev;
5820 x = PATTERN (insn);
5821 if (GET_CODE (x) == PARALLEL)
5822 x = XVECEXP (x, 0, 0);
5823 if (GET_CODE (x) == SET)
5824 x = SET_SRC (x);
5825 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
5827 x = XEXP (XEXP (x, 0), 0);
5828 if (GET_CODE (x) == SYMBOL_REF)
5829 /* Don't record anything. */;
5830 else if (CONSTANT_P (x))
5832 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
5833 pc_rtx, x);
5834 call_arguments
5835 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5837 else
5839 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5840 if (val && cselib_preserved_value_p (val))
5842 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
5843 call_arguments
5844 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5848 if (this_arg)
5850 enum machine_mode mode
5851 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
5852 rtx clobbered = gen_rtx_MEM (mode, this_arg);
5853 HOST_WIDE_INT token
5854 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
5855 if (token)
5856 clobbered = plus_constant (clobbered, token * GET_MODE_SIZE (mode));
5857 clobbered = gen_rtx_MEM (mode, clobbered);
5858 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
5859 call_arguments
5860 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5864 /* Callback for cselib_record_sets_hook, that records as micro
5865 operations uses and stores in an insn after cselib_record_sets has
5866 analyzed the sets in an insn, but before it modifies the stored
5867 values in the internal tables, unless cselib_record_sets doesn't
5868 call it directly (perhaps because we're not doing cselib in the
5869 first place, in which case sets and n_sets will be 0). */
5871 static void
5872 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5874 basic_block bb = BLOCK_FOR_INSN (insn);
5875 int n1, n2;
5876 struct count_use_info cui;
5877 micro_operation *mos;
5879 cselib_hook_called = true;
5881 cui.insn = insn;
5882 cui.bb = bb;
5883 cui.sets = sets;
5884 cui.n_sets = n_sets;
5886 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5887 cui.store_p = false;
5888 note_uses (&PATTERN (insn), add_uses_1, &cui);
5889 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5890 mos = VEC_address (micro_operation, VTI (bb)->mos);
5892 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5893 MO_VAL_LOC last. */
5894 while (n1 < n2)
5896 while (n1 < n2 && mos[n1].type == MO_USE)
5897 n1++;
5898 while (n1 < n2 && mos[n2].type != MO_USE)
5899 n2--;
5900 if (n1 < n2)
5902 micro_operation sw;
5904 sw = mos[n1];
5905 mos[n1] = mos[n2];
5906 mos[n2] = sw;
5910 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5911 while (n1 < n2)
5913 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5914 n1++;
5915 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5916 n2--;
5917 if (n1 < n2)
5919 micro_operation sw;
5921 sw = mos[n1];
5922 mos[n1] = mos[n2];
5923 mos[n2] = sw;
5927 if (CALL_P (insn))
5929 micro_operation mo;
5931 mo.type = MO_CALL;
5932 mo.insn = insn;
5933 mo.u.loc = call_arguments;
5934 call_arguments = NULL_RTX;
5936 if (dump_file && (dump_flags & TDF_DETAILS))
5937 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5938 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5941 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5942 /* This will record NEXT_INSN (insn), such that we can
5943 insert notes before it without worrying about any
5944 notes that MO_USEs might emit after the insn. */
5945 cui.store_p = true;
5946 note_stores (PATTERN (insn), add_stores, &cui);
5947 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5948 mos = VEC_address (micro_operation, VTI (bb)->mos);
5950 /* Order the MO_VAL_USEs first (note_stores does nothing
5951 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5952 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5953 while (n1 < n2)
5955 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5956 n1++;
5957 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5958 n2--;
5959 if (n1 < n2)
5961 micro_operation sw;
5963 sw = mos[n1];
5964 mos[n1] = mos[n2];
5965 mos[n2] = sw;
5969 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5970 while (n1 < n2)
5972 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5973 n1++;
5974 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5975 n2--;
5976 if (n1 < n2)
5978 micro_operation sw;
5980 sw = mos[n1];
5981 mos[n1] = mos[n2];
5982 mos[n2] = sw;
5987 static enum var_init_status
5988 find_src_status (dataflow_set *in, rtx src)
5990 tree decl = NULL_TREE;
5991 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5993 if (! flag_var_tracking_uninit)
5994 status = VAR_INIT_STATUS_INITIALIZED;
5996 if (src && REG_P (src))
5997 decl = var_debug_decl (REG_EXPR (src));
5998 else if (src && MEM_P (src))
5999 decl = var_debug_decl (MEM_EXPR (src));
6001 if (src && decl)
6002 status = get_init_value (in, src, dv_from_decl (decl));
6004 return status;
6007 /* SRC is the source of an assignment. Use SET to try to find what
6008 was ultimately assigned to SRC. Return that value if known,
6009 otherwise return SRC itself. */
6011 static rtx
6012 find_src_set_src (dataflow_set *set, rtx src)
6014 tree decl = NULL_TREE; /* The variable being copied around. */
6015 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6016 variable var;
6017 location_chain nextp;
6018 int i;
6019 bool found;
6021 if (src && REG_P (src))
6022 decl = var_debug_decl (REG_EXPR (src));
6023 else if (src && MEM_P (src))
6024 decl = var_debug_decl (MEM_EXPR (src));
6026 if (src && decl)
6028 decl_or_value dv = dv_from_decl (decl);
6030 var = shared_hash_find (set->vars, dv);
6031 if (var)
6033 found = false;
6034 for (i = 0; i < var->n_var_parts && !found; i++)
6035 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6036 nextp = nextp->next)
6037 if (rtx_equal_p (nextp->loc, src))
6039 set_src = nextp->set_src;
6040 found = true;
6046 return set_src;
6049 /* Compute the changes of variable locations in the basic block BB. */
6051 static bool
6052 compute_bb_dataflow (basic_block bb)
6054 unsigned int i;
6055 micro_operation *mo;
6056 bool changed;
6057 dataflow_set old_out;
6058 dataflow_set *in = &VTI (bb)->in;
6059 dataflow_set *out = &VTI (bb)->out;
6061 dataflow_set_init (&old_out);
6062 dataflow_set_copy (&old_out, out);
6063 dataflow_set_copy (out, in);
6065 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6067 rtx insn = mo->insn;
6069 switch (mo->type)
6071 case MO_CALL:
6072 dataflow_set_clear_at_call (out);
6073 break;
6075 case MO_USE:
6077 rtx loc = mo->u.loc;
6079 if (REG_P (loc))
6080 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6081 else if (MEM_P (loc))
6082 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6084 break;
6086 case MO_VAL_LOC:
6088 rtx loc = mo->u.loc;
6089 rtx val, vloc;
6090 tree var;
6092 if (GET_CODE (loc) == CONCAT)
6094 val = XEXP (loc, 0);
6095 vloc = XEXP (loc, 1);
6097 else
6099 val = NULL_RTX;
6100 vloc = loc;
6103 var = PAT_VAR_LOCATION_DECL (vloc);
6105 clobber_variable_part (out, NULL_RTX,
6106 dv_from_decl (var), 0, NULL_RTX);
6107 if (val)
6109 if (VAL_NEEDS_RESOLUTION (loc))
6110 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6111 set_variable_part (out, val, dv_from_decl (var), 0,
6112 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6113 INSERT);
6115 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6116 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6117 dv_from_decl (var), 0,
6118 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6119 INSERT);
6121 break;
6123 case MO_VAL_USE:
6125 rtx loc = mo->u.loc;
6126 rtx val, vloc, uloc;
6128 vloc = uloc = XEXP (loc, 1);
6129 val = XEXP (loc, 0);
6131 if (GET_CODE (val) == CONCAT)
6133 uloc = XEXP (val, 1);
6134 val = XEXP (val, 0);
6137 if (VAL_NEEDS_RESOLUTION (loc))
6138 val_resolve (out, val, vloc, insn);
6139 else
6140 val_store (out, val, uloc, insn, false);
6142 if (VAL_HOLDS_TRACK_EXPR (loc))
6144 if (GET_CODE (uloc) == REG)
6145 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6146 NULL);
6147 else if (GET_CODE (uloc) == MEM)
6148 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6149 NULL);
6152 break;
6154 case MO_VAL_SET:
6156 rtx loc = mo->u.loc;
6157 rtx val, vloc, uloc, reverse = NULL_RTX;
6159 vloc = loc;
6160 if (VAL_EXPR_HAS_REVERSE (loc))
6162 reverse = XEXP (loc, 1);
6163 vloc = XEXP (loc, 0);
6165 uloc = XEXP (vloc, 1);
6166 val = XEXP (vloc, 0);
6167 vloc = uloc;
6169 if (GET_CODE (val) == CONCAT)
6171 vloc = XEXP (val, 1);
6172 val = XEXP (val, 0);
6175 if (GET_CODE (vloc) == SET)
6177 rtx vsrc = SET_SRC (vloc);
6179 gcc_assert (val != vsrc);
6180 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6182 vloc = SET_DEST (vloc);
6184 if (VAL_NEEDS_RESOLUTION (loc))
6185 val_resolve (out, val, vsrc, insn);
6187 else if (VAL_NEEDS_RESOLUTION (loc))
6189 gcc_assert (GET_CODE (uloc) == SET
6190 && GET_CODE (SET_SRC (uloc)) == REG);
6191 val_resolve (out, val, SET_SRC (uloc), insn);
6194 if (VAL_HOLDS_TRACK_EXPR (loc))
6196 if (VAL_EXPR_IS_CLOBBERED (loc))
6198 if (REG_P (uloc))
6199 var_reg_delete (out, uloc, true);
6200 else if (MEM_P (uloc))
6201 var_mem_delete (out, uloc, true);
6203 else
6205 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6206 rtx set_src = NULL;
6207 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6209 if (GET_CODE (uloc) == SET)
6211 set_src = SET_SRC (uloc);
6212 uloc = SET_DEST (uloc);
6215 if (copied_p)
6217 if (flag_var_tracking_uninit)
6219 status = find_src_status (in, set_src);
6221 if (status == VAR_INIT_STATUS_UNKNOWN)
6222 status = find_src_status (out, set_src);
6225 set_src = find_src_set_src (in, set_src);
6228 if (REG_P (uloc))
6229 var_reg_delete_and_set (out, uloc, !copied_p,
6230 status, set_src);
6231 else if (MEM_P (uloc))
6232 var_mem_delete_and_set (out, uloc, !copied_p,
6233 status, set_src);
6236 else if (REG_P (uloc))
6237 var_regno_delete (out, REGNO (uloc));
6239 val_store (out, val, vloc, insn, true);
6241 if (reverse)
6242 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
6243 insn, false);
6245 break;
6247 case MO_SET:
6249 rtx loc = mo->u.loc;
6250 rtx set_src = NULL;
6252 if (GET_CODE (loc) == SET)
6254 set_src = SET_SRC (loc);
6255 loc = SET_DEST (loc);
6258 if (REG_P (loc))
6259 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6260 set_src);
6261 else if (MEM_P (loc))
6262 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6263 set_src);
6265 break;
6267 case MO_COPY:
6269 rtx loc = mo->u.loc;
6270 enum var_init_status src_status;
6271 rtx set_src = NULL;
6273 if (GET_CODE (loc) == SET)
6275 set_src = SET_SRC (loc);
6276 loc = SET_DEST (loc);
6279 if (! flag_var_tracking_uninit)
6280 src_status = VAR_INIT_STATUS_INITIALIZED;
6281 else
6283 src_status = find_src_status (in, set_src);
6285 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6286 src_status = find_src_status (out, set_src);
6289 set_src = find_src_set_src (in, set_src);
6291 if (REG_P (loc))
6292 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6293 else if (MEM_P (loc))
6294 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6296 break;
6298 case MO_USE_NO_VAR:
6300 rtx loc = mo->u.loc;
6302 if (REG_P (loc))
6303 var_reg_delete (out, loc, false);
6304 else if (MEM_P (loc))
6305 var_mem_delete (out, loc, false);
6307 break;
6309 case MO_CLOBBER:
6311 rtx loc = mo->u.loc;
6313 if (REG_P (loc))
6314 var_reg_delete (out, loc, true);
6315 else if (MEM_P (loc))
6316 var_mem_delete (out, loc, true);
6318 break;
6320 case MO_ADJUST:
6321 out->stack_adjust += mo->u.adjust;
6322 break;
6326 if (MAY_HAVE_DEBUG_INSNS)
6328 dataflow_set_equiv_regs (out);
6329 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6330 out);
6331 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6332 out);
6333 #if ENABLE_CHECKING
6334 htab_traverse (shared_hash_htab (out->vars),
6335 canonicalize_loc_order_check, out);
6336 #endif
6338 changed = dataflow_set_different (&old_out, out);
6339 dataflow_set_destroy (&old_out);
6340 return changed;
6343 /* Find the locations of variables in the whole function. */
6345 static bool
6346 vt_find_locations (void)
6348 fibheap_t worklist, pending, fibheap_swap;
6349 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6350 basic_block bb;
6351 edge e;
6352 int *bb_order;
6353 int *rc_order;
6354 int i;
6355 int htabsz = 0;
6356 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6357 bool success = true;
6359 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6360 /* Compute reverse completion order of depth first search of the CFG
6361 so that the data-flow runs faster. */
6362 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6363 bb_order = XNEWVEC (int, last_basic_block);
6364 pre_and_rev_post_order_compute (NULL, rc_order, false);
6365 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6366 bb_order[rc_order[i]] = i;
6367 free (rc_order);
6369 worklist = fibheap_new ();
6370 pending = fibheap_new ();
6371 visited = sbitmap_alloc (last_basic_block);
6372 in_worklist = sbitmap_alloc (last_basic_block);
6373 in_pending = sbitmap_alloc (last_basic_block);
6374 sbitmap_zero (in_worklist);
6376 FOR_EACH_BB (bb)
6377 fibheap_insert (pending, bb_order[bb->index], bb);
6378 sbitmap_ones (in_pending);
6380 while (success && !fibheap_empty (pending))
6382 fibheap_swap = pending;
6383 pending = worklist;
6384 worklist = fibheap_swap;
6385 sbitmap_swap = in_pending;
6386 in_pending = in_worklist;
6387 in_worklist = sbitmap_swap;
6389 sbitmap_zero (visited);
6391 while (!fibheap_empty (worklist))
6393 bb = (basic_block) fibheap_extract_min (worklist);
6394 RESET_BIT (in_worklist, bb->index);
6395 gcc_assert (!TEST_BIT (visited, bb->index));
6396 if (!TEST_BIT (visited, bb->index))
6398 bool changed;
6399 edge_iterator ei;
6400 int oldinsz, oldoutsz;
6402 SET_BIT (visited, bb->index);
6404 if (VTI (bb)->in.vars)
6406 htabsz
6407 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6408 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6409 oldinsz
6410 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6411 oldoutsz
6412 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6414 else
6415 oldinsz = oldoutsz = 0;
6417 if (MAY_HAVE_DEBUG_INSNS)
6419 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6420 bool first = true, adjust = false;
6422 /* Calculate the IN set as the intersection of
6423 predecessor OUT sets. */
6425 dataflow_set_clear (in);
6426 dst_can_be_shared = true;
6428 FOR_EACH_EDGE (e, ei, bb->preds)
6429 if (!VTI (e->src)->flooded)
6430 gcc_assert (bb_order[bb->index]
6431 <= bb_order[e->src->index]);
6432 else if (first)
6434 dataflow_set_copy (in, &VTI (e->src)->out);
6435 first_out = &VTI (e->src)->out;
6436 first = false;
6438 else
6440 dataflow_set_merge (in, &VTI (e->src)->out);
6441 adjust = true;
6444 if (adjust)
6446 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6447 #if ENABLE_CHECKING
6448 /* Merge and merge_adjust should keep entries in
6449 canonical order. */
6450 htab_traverse (shared_hash_htab (in->vars),
6451 canonicalize_loc_order_check,
6452 in);
6453 #endif
6454 if (dst_can_be_shared)
6456 shared_hash_destroy (in->vars);
6457 in->vars = shared_hash_copy (first_out->vars);
6461 VTI (bb)->flooded = true;
6463 else
6465 /* Calculate the IN set as union of predecessor OUT sets. */
6466 dataflow_set_clear (&VTI (bb)->in);
6467 FOR_EACH_EDGE (e, ei, bb->preds)
6468 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6471 changed = compute_bb_dataflow (bb);
6472 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6473 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6475 if (htabmax && htabsz > htabmax)
6477 if (MAY_HAVE_DEBUG_INSNS)
6478 inform (DECL_SOURCE_LOCATION (cfun->decl),
6479 "variable tracking size limit exceeded with "
6480 "-fvar-tracking-assignments, retrying without");
6481 else
6482 inform (DECL_SOURCE_LOCATION (cfun->decl),
6483 "variable tracking size limit exceeded");
6484 success = false;
6485 break;
6488 if (changed)
6490 FOR_EACH_EDGE (e, ei, bb->succs)
6492 if (e->dest == EXIT_BLOCK_PTR)
6493 continue;
6495 if (TEST_BIT (visited, e->dest->index))
6497 if (!TEST_BIT (in_pending, e->dest->index))
6499 /* Send E->DEST to next round. */
6500 SET_BIT (in_pending, e->dest->index);
6501 fibheap_insert (pending,
6502 bb_order[e->dest->index],
6503 e->dest);
6506 else if (!TEST_BIT (in_worklist, e->dest->index))
6508 /* Add E->DEST to current round. */
6509 SET_BIT (in_worklist, e->dest->index);
6510 fibheap_insert (worklist, bb_order[e->dest->index],
6511 e->dest);
6516 if (dump_file)
6517 fprintf (dump_file,
6518 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6519 bb->index,
6520 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6521 oldinsz,
6522 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6523 oldoutsz,
6524 (int)worklist->nodes, (int)pending->nodes, htabsz);
6526 if (dump_file && (dump_flags & TDF_DETAILS))
6528 fprintf (dump_file, "BB %i IN:\n", bb->index);
6529 dump_dataflow_set (&VTI (bb)->in);
6530 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6531 dump_dataflow_set (&VTI (bb)->out);
6537 if (success && MAY_HAVE_DEBUG_INSNS)
6538 FOR_EACH_BB (bb)
6539 gcc_assert (VTI (bb)->flooded);
6541 free (bb_order);
6542 fibheap_delete (worklist);
6543 fibheap_delete (pending);
6544 sbitmap_free (visited);
6545 sbitmap_free (in_worklist);
6546 sbitmap_free (in_pending);
6548 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6549 return success;
6552 /* Print the content of the LIST to dump file. */
6554 static void
6555 dump_attrs_list (attrs list)
6557 for (; list; list = list->next)
6559 if (dv_is_decl_p (list->dv))
6560 print_mem_expr (dump_file, dv_as_decl (list->dv));
6561 else
6562 print_rtl_single (dump_file, dv_as_value (list->dv));
6563 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6565 fprintf (dump_file, "\n");
6568 /* Print the information about variable *SLOT to dump file. */
6570 static int
6571 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6573 variable var = (variable) *slot;
6575 dump_var (var);
6577 /* Continue traversing the hash table. */
6578 return 1;
6581 /* Print the information about variable VAR to dump file. */
6583 static void
6584 dump_var (variable var)
6586 int i;
6587 location_chain node;
6589 if (dv_is_decl_p (var->dv))
6591 const_tree decl = dv_as_decl (var->dv);
6593 if (DECL_NAME (decl))
6595 fprintf (dump_file, " name: %s",
6596 IDENTIFIER_POINTER (DECL_NAME (decl)));
6597 if (dump_flags & TDF_UID)
6598 fprintf (dump_file, "D.%u", DECL_UID (decl));
6600 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6601 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6602 else
6603 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6604 fprintf (dump_file, "\n");
6606 else
6608 fputc (' ', dump_file);
6609 print_rtl_single (dump_file, dv_as_value (var->dv));
6612 for (i = 0; i < var->n_var_parts; i++)
6614 fprintf (dump_file, " offset %ld\n",
6615 (long) var->var_part[i].offset);
6616 for (node = var->var_part[i].loc_chain; node; node = node->next)
6618 fprintf (dump_file, " ");
6619 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6620 fprintf (dump_file, "[uninit]");
6621 print_rtl_single (dump_file, node->loc);
6626 /* Print the information about variables from hash table VARS to dump file. */
6628 static void
6629 dump_vars (htab_t vars)
6631 if (htab_elements (vars) > 0)
6633 fprintf (dump_file, "Variables:\n");
6634 htab_traverse (vars, dump_var_slot, NULL);
6638 /* Print the dataflow set SET to dump file. */
6640 static void
6641 dump_dataflow_set (dataflow_set *set)
6643 int i;
6645 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6646 set->stack_adjust);
6647 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6649 if (set->regs[i])
6651 fprintf (dump_file, "Reg %d:", i);
6652 dump_attrs_list (set->regs[i]);
6655 dump_vars (shared_hash_htab (set->vars));
6656 fprintf (dump_file, "\n");
6659 /* Print the IN and OUT sets for each basic block to dump file. */
6661 static void
6662 dump_dataflow_sets (void)
6664 basic_block bb;
6666 FOR_EACH_BB (bb)
6668 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6669 fprintf (dump_file, "IN:\n");
6670 dump_dataflow_set (&VTI (bb)->in);
6671 fprintf (dump_file, "OUT:\n");
6672 dump_dataflow_set (&VTI (bb)->out);
6676 /* Add variable VAR to the hash table of changed variables and
6677 if it has no locations delete it from SET's hash table. */
6679 static void
6680 variable_was_changed (variable var, dataflow_set *set)
6682 hashval_t hash = dv_htab_hash (var->dv);
6684 if (emit_notes)
6686 void **slot;
6687 bool old_cur_loc_changed = false;
6689 /* Remember this decl or VALUE has been added to changed_variables. */
6690 set_dv_changed (var->dv, true);
6692 slot = htab_find_slot_with_hash (changed_variables,
6693 var->dv,
6694 hash, INSERT);
6696 if (*slot)
6698 variable old_var = (variable) *slot;
6699 gcc_assert (old_var->in_changed_variables);
6700 old_var->in_changed_variables = false;
6701 old_cur_loc_changed = old_var->cur_loc_changed;
6702 variable_htab_free (*slot);
6704 if (set && var->n_var_parts == 0)
6706 variable empty_var;
6708 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6709 empty_var->dv = var->dv;
6710 empty_var->refcount = 1;
6711 empty_var->n_var_parts = 0;
6712 empty_var->cur_loc_changed = true;
6713 empty_var->in_changed_variables = true;
6714 *slot = empty_var;
6715 goto drop_var;
6717 else
6719 var->refcount++;
6720 var->in_changed_variables = true;
6721 /* If within processing one uop a variable is deleted
6722 and then readded, we need to assume it has changed. */
6723 if (old_cur_loc_changed)
6724 var->cur_loc_changed = true;
6725 *slot = var;
6728 else
6730 gcc_assert (set);
6731 if (var->n_var_parts == 0)
6733 void **slot;
6735 drop_var:
6736 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6737 if (slot)
6739 if (shared_hash_shared (set->vars))
6740 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6741 NO_INSERT);
6742 htab_clear_slot (shared_hash_htab (set->vars), slot);
6748 /* Look for the index in VAR->var_part corresponding to OFFSET.
6749 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6750 referenced int will be set to the index that the part has or should
6751 have, if it should be inserted. */
6753 static inline int
6754 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6755 int *insertion_point)
6757 int pos, low, high;
6759 /* Find the location part. */
6760 low = 0;
6761 high = var->n_var_parts;
6762 while (low != high)
6764 pos = (low + high) / 2;
6765 if (var->var_part[pos].offset < offset)
6766 low = pos + 1;
6767 else
6768 high = pos;
6770 pos = low;
6772 if (insertion_point)
6773 *insertion_point = pos;
6775 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6776 return pos;
6778 return -1;
6781 static void **
6782 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6783 decl_or_value dv, HOST_WIDE_INT offset,
6784 enum var_init_status initialized, rtx set_src)
6786 int pos;
6787 location_chain node, next;
6788 location_chain *nextp;
6789 variable var;
6790 bool onepart = dv_onepart_p (dv);
6792 gcc_assert (offset == 0 || !onepart);
6793 gcc_assert (loc != dv_as_opaque (dv));
6795 var = (variable) *slot;
6797 if (! flag_var_tracking_uninit)
6798 initialized = VAR_INIT_STATUS_INITIALIZED;
6800 if (!var)
6802 /* Create new variable information. */
6803 var = (variable) pool_alloc (dv_pool (dv));
6804 var->dv = dv;
6805 var->refcount = 1;
6806 var->n_var_parts = 1;
6807 var->cur_loc_changed = false;
6808 var->in_changed_variables = false;
6809 var->var_part[0].offset = offset;
6810 var->var_part[0].loc_chain = NULL;
6811 var->var_part[0].cur_loc = NULL;
6812 *slot = var;
6813 pos = 0;
6814 nextp = &var->var_part[0].loc_chain;
6816 else if (onepart)
6818 int r = -1, c = 0;
6820 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6822 pos = 0;
6824 if (GET_CODE (loc) == VALUE)
6826 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6827 nextp = &node->next)
6828 if (GET_CODE (node->loc) == VALUE)
6830 if (node->loc == loc)
6832 r = 0;
6833 break;
6835 if (canon_value_cmp (node->loc, loc))
6836 c++;
6837 else
6839 r = 1;
6840 break;
6843 else if (REG_P (node->loc) || MEM_P (node->loc))
6844 c++;
6845 else
6847 r = 1;
6848 break;
6851 else if (REG_P (loc))
6853 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6854 nextp = &node->next)
6855 if (REG_P (node->loc))
6857 if (REGNO (node->loc) < REGNO (loc))
6858 c++;
6859 else
6861 if (REGNO (node->loc) == REGNO (loc))
6862 r = 0;
6863 else
6864 r = 1;
6865 break;
6868 else
6870 r = 1;
6871 break;
6874 else if (MEM_P (loc))
6876 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6877 nextp = &node->next)
6878 if (REG_P (node->loc))
6879 c++;
6880 else if (MEM_P (node->loc))
6882 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6883 break;
6884 else
6885 c++;
6887 else
6889 r = 1;
6890 break;
6893 else
6894 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6895 nextp = &node->next)
6896 if ((r = loc_cmp (node->loc, loc)) >= 0)
6897 break;
6898 else
6899 c++;
6901 if (r == 0)
6902 return slot;
6904 if (shared_var_p (var, set->vars))
6906 slot = unshare_variable (set, slot, var, initialized);
6907 var = (variable)*slot;
6908 for (nextp = &var->var_part[0].loc_chain; c;
6909 nextp = &(*nextp)->next)
6910 c--;
6911 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6914 else
6916 int inspos = 0;
6918 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6920 pos = find_variable_location_part (var, offset, &inspos);
6922 if (pos >= 0)
6924 node = var->var_part[pos].loc_chain;
6926 if (node
6927 && ((REG_P (node->loc) && REG_P (loc)
6928 && REGNO (node->loc) == REGNO (loc))
6929 || rtx_equal_p (node->loc, loc)))
6931 /* LOC is in the beginning of the chain so we have nothing
6932 to do. */
6933 if (node->init < initialized)
6934 node->init = initialized;
6935 if (set_src != NULL)
6936 node->set_src = set_src;
6938 return slot;
6940 else
6942 /* We have to make a copy of a shared variable. */
6943 if (shared_var_p (var, set->vars))
6945 slot = unshare_variable (set, slot, var, initialized);
6946 var = (variable)*slot;
6950 else
6952 /* We have not found the location part, new one will be created. */
6954 /* We have to make a copy of the shared variable. */
6955 if (shared_var_p (var, set->vars))
6957 slot = unshare_variable (set, slot, var, initialized);
6958 var = (variable)*slot;
6961 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6962 thus there are at most MAX_VAR_PARTS different offsets. */
6963 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6964 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6966 /* We have to move the elements of array starting at index
6967 inspos to the next position. */
6968 for (pos = var->n_var_parts; pos > inspos; pos--)
6969 var->var_part[pos] = var->var_part[pos - 1];
6971 var->n_var_parts++;
6972 var->var_part[pos].offset = offset;
6973 var->var_part[pos].loc_chain = NULL;
6974 var->var_part[pos].cur_loc = NULL;
6977 /* Delete the location from the list. */
6978 nextp = &var->var_part[pos].loc_chain;
6979 for (node = var->var_part[pos].loc_chain; node; node = next)
6981 next = node->next;
6982 if ((REG_P (node->loc) && REG_P (loc)
6983 && REGNO (node->loc) == REGNO (loc))
6984 || rtx_equal_p (node->loc, loc))
6986 /* Save these values, to assign to the new node, before
6987 deleting this one. */
6988 if (node->init > initialized)
6989 initialized = node->init;
6990 if (node->set_src != NULL && set_src == NULL)
6991 set_src = node->set_src;
6992 if (var->var_part[pos].cur_loc == node->loc)
6994 var->var_part[pos].cur_loc = NULL;
6995 var->cur_loc_changed = true;
6997 pool_free (loc_chain_pool, node);
6998 *nextp = next;
6999 break;
7001 else
7002 nextp = &node->next;
7005 nextp = &var->var_part[pos].loc_chain;
7008 /* Add the location to the beginning. */
7009 node = (location_chain) pool_alloc (loc_chain_pool);
7010 node->loc = loc;
7011 node->init = initialized;
7012 node->set_src = set_src;
7013 node->next = *nextp;
7014 *nextp = node;
7016 if (onepart && emit_notes)
7017 add_value_chains (var->dv, loc);
7019 /* If no location was emitted do so. */
7020 if (var->var_part[pos].cur_loc == NULL)
7021 variable_was_changed (var, set);
7023 return slot;
7026 /* Set the part of variable's location in the dataflow set SET. The
7027 variable part is specified by variable's declaration in DV and
7028 offset OFFSET and the part's location by LOC. IOPT should be
7029 NO_INSERT if the variable is known to be in SET already and the
7030 variable hash table must not be resized, and INSERT otherwise. */
7032 static void
7033 set_variable_part (dataflow_set *set, rtx loc,
7034 decl_or_value dv, HOST_WIDE_INT offset,
7035 enum var_init_status initialized, rtx set_src,
7036 enum insert_option iopt)
7038 void **slot;
7040 if (iopt == NO_INSERT)
7041 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7042 else
7044 slot = shared_hash_find_slot (set->vars, dv);
7045 if (!slot)
7046 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7048 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7051 /* Remove all recorded register locations for the given variable part
7052 from dataflow set SET, except for those that are identical to loc.
7053 The variable part is specified by variable's declaration or value
7054 DV and offset OFFSET. */
7056 static void **
7057 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7058 HOST_WIDE_INT offset, rtx set_src)
7060 variable var = (variable) *slot;
7061 int pos = find_variable_location_part (var, offset, NULL);
7063 if (pos >= 0)
7065 location_chain node, next;
7067 /* Remove the register locations from the dataflow set. */
7068 next = var->var_part[pos].loc_chain;
7069 for (node = next; node; node = next)
7071 next = node->next;
7072 if (node->loc != loc
7073 && (!flag_var_tracking_uninit
7074 || !set_src
7075 || MEM_P (set_src)
7076 || !rtx_equal_p (set_src, node->set_src)))
7078 if (REG_P (node->loc))
7080 attrs anode, anext;
7081 attrs *anextp;
7083 /* Remove the variable part from the register's
7084 list, but preserve any other variable parts
7085 that might be regarded as live in that same
7086 register. */
7087 anextp = &set->regs[REGNO (node->loc)];
7088 for (anode = *anextp; anode; anode = anext)
7090 anext = anode->next;
7091 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7092 && anode->offset == offset)
7094 pool_free (attrs_pool, anode);
7095 *anextp = anext;
7097 else
7098 anextp = &anode->next;
7102 slot = delete_slot_part (set, node->loc, slot, offset);
7107 return slot;
7110 /* Remove all recorded register locations for the given variable part
7111 from dataflow set SET, except for those that are identical to loc.
7112 The variable part is specified by variable's declaration or value
7113 DV and offset OFFSET. */
7115 static void
7116 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7117 HOST_WIDE_INT offset, rtx set_src)
7119 void **slot;
7121 if (!dv_as_opaque (dv)
7122 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7123 return;
7125 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7126 if (!slot)
7127 return;
7129 clobber_slot_part (set, loc, slot, offset, set_src);
7132 /* Delete the part of variable's location from dataflow set SET. The
7133 variable part is specified by its SET->vars slot SLOT and offset
7134 OFFSET and the part's location by LOC. */
7136 static void **
7137 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7138 HOST_WIDE_INT offset)
7140 variable var = (variable) *slot;
7141 int pos = find_variable_location_part (var, offset, NULL);
7143 if (pos >= 0)
7145 location_chain node, next;
7146 location_chain *nextp;
7147 bool changed;
7149 if (shared_var_p (var, set->vars))
7151 /* If the variable contains the location part we have to
7152 make a copy of the variable. */
7153 for (node = var->var_part[pos].loc_chain; node;
7154 node = node->next)
7156 if ((REG_P (node->loc) && REG_P (loc)
7157 && REGNO (node->loc) == REGNO (loc))
7158 || rtx_equal_p (node->loc, loc))
7160 slot = unshare_variable (set, slot, var,
7161 VAR_INIT_STATUS_UNKNOWN);
7162 var = (variable)*slot;
7163 break;
7168 /* Delete the location part. */
7169 changed = false;
7170 nextp = &var->var_part[pos].loc_chain;
7171 for (node = *nextp; node; node = next)
7173 next = node->next;
7174 if ((REG_P (node->loc) && REG_P (loc)
7175 && REGNO (node->loc) == REGNO (loc))
7176 || rtx_equal_p (node->loc, loc))
7178 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
7179 remove_value_chains (var->dv, node->loc);
7180 /* If we have deleted the location which was last emitted
7181 we have to emit new location so add the variable to set
7182 of changed variables. */
7183 if (var->var_part[pos].cur_loc == node->loc)
7185 changed = true;
7186 var->var_part[pos].cur_loc = NULL;
7187 var->cur_loc_changed = true;
7189 pool_free (loc_chain_pool, node);
7190 *nextp = next;
7191 break;
7193 else
7194 nextp = &node->next;
7197 if (var->var_part[pos].loc_chain == NULL)
7199 changed = true;
7200 var->n_var_parts--;
7201 if (emit_notes)
7202 var->cur_loc_changed = true;
7203 while (pos < var->n_var_parts)
7205 var->var_part[pos] = var->var_part[pos + 1];
7206 pos++;
7209 if (changed)
7210 variable_was_changed (var, set);
7213 return slot;
7216 /* Delete the part of variable's location from dataflow set SET. The
7217 variable part is specified by variable's declaration or value DV
7218 and offset OFFSET and the part's location by LOC. */
7220 static void
7221 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7222 HOST_WIDE_INT offset)
7224 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7225 if (!slot)
7226 return;
7228 delete_slot_part (set, loc, slot, offset);
7231 /* Structure for passing some other parameters to function
7232 vt_expand_loc_callback. */
7233 struct expand_loc_callback_data
7235 /* The variables and values active at this point. */
7236 htab_t vars;
7238 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
7239 Non-NULL should be returned if vt_expand_loc would return
7240 non-NULL in that case, NULL otherwise. cur_loc_changed should be
7241 computed and cur_loc recomputed when possible (but just once
7242 per emit_notes_for_changes call). */
7243 bool dummy;
7245 /* True if expansion of subexpressions had to recompute some
7246 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
7247 whose cur_loc has been already recomputed during current
7248 emit_notes_for_changes call. */
7249 bool cur_loc_changed;
7251 /* True if cur_loc should be ignored and any possible location
7252 returned. */
7253 bool ignore_cur_loc;
7256 /* Callback for cselib_expand_value, that looks for expressions
7257 holding the value in the var-tracking hash tables. Return X for
7258 standard processing, anything else is to be used as-is. */
7260 static rtx
7261 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
7263 struct expand_loc_callback_data *elcd
7264 = (struct expand_loc_callback_data *) data;
7265 bool dummy = elcd->dummy;
7266 bool cur_loc_changed = elcd->cur_loc_changed;
7267 rtx cur_loc;
7268 decl_or_value dv;
7269 variable var;
7270 location_chain loc;
7271 rtx result, subreg, xret;
7273 switch (GET_CODE (x))
7275 case SUBREG:
7276 if (dummy)
7278 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
7279 max_depth - 1,
7280 vt_expand_loc_callback, data))
7281 return pc_rtx;
7282 else
7283 return NULL;
7286 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
7287 max_depth - 1,
7288 vt_expand_loc_callback, data);
7290 if (!subreg)
7291 return NULL;
7293 result = simplify_gen_subreg (GET_MODE (x), subreg,
7294 GET_MODE (SUBREG_REG (x)),
7295 SUBREG_BYTE (x));
7297 /* Invalid SUBREGs are ok in debug info. ??? We could try
7298 alternate expansions for the VALUE as well. */
7299 if (!result)
7300 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
7302 return result;
7304 case DEBUG_EXPR:
7305 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
7306 xret = NULL;
7307 break;
7309 case VALUE:
7310 dv = dv_from_value (x);
7311 xret = x;
7312 break;
7314 default:
7315 return x;
7318 if (VALUE_RECURSED_INTO (x))
7319 return NULL;
7321 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
7323 if (!var)
7325 if (dummy && dv_changed_p (dv))
7326 elcd->cur_loc_changed = true;
7327 return xret;
7330 if (var->n_var_parts == 0)
7332 if (dummy)
7333 elcd->cur_loc_changed = true;
7334 return xret;
7337 gcc_assert (var->n_var_parts == 1);
7339 VALUE_RECURSED_INTO (x) = true;
7340 result = NULL;
7342 if (var->var_part[0].cur_loc && !elcd->ignore_cur_loc)
7344 if (dummy)
7346 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7347 max_depth,
7348 vt_expand_loc_callback, data))
7349 result = pc_rtx;
7351 else
7352 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7353 max_depth,
7354 vt_expand_loc_callback, data);
7355 if (result)
7356 set_dv_changed (dv, false);
7357 cur_loc = var->var_part[0].cur_loc;
7359 else
7360 cur_loc = NULL_RTX;
7361 if (!result && (dv_changed_p (dv) || elcd->ignore_cur_loc))
7363 if (!elcd->ignore_cur_loc)
7364 set_dv_changed (dv, false);
7365 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
7366 if (loc->loc == cur_loc)
7367 continue;
7368 else if (dummy)
7370 elcd->cur_loc_changed = cur_loc_changed;
7371 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
7372 vt_expand_loc_callback,
7373 data))
7375 result = pc_rtx;
7376 break;
7379 else
7381 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
7382 vt_expand_loc_callback, data);
7383 if (result)
7384 break;
7386 if (dummy && (result || var->var_part[0].cur_loc))
7387 var->cur_loc_changed = true;
7388 if (!elcd->ignore_cur_loc)
7389 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
7391 if (dummy)
7393 if (var->cur_loc_changed)
7394 elcd->cur_loc_changed = true;
7395 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
7396 elcd->cur_loc_changed = cur_loc_changed;
7399 VALUE_RECURSED_INTO (x) = false;
7400 if (result)
7401 return result;
7402 else
7403 return xret;
7406 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7407 tables. */
7409 static rtx
7410 vt_expand_loc (rtx loc, htab_t vars, bool ignore_cur_loc)
7412 struct expand_loc_callback_data data;
7414 if (!MAY_HAVE_DEBUG_INSNS)
7415 return loc;
7417 data.vars = vars;
7418 data.dummy = false;
7419 data.cur_loc_changed = false;
7420 data.ignore_cur_loc = ignore_cur_loc;
7421 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7422 vt_expand_loc_callback, &data);
7424 if (loc && MEM_P (loc))
7425 loc = targetm.delegitimize_address (loc);
7426 return loc;
7429 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7430 would succeed or not, without actually allocating new rtxes. */
7432 static bool
7433 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
7435 struct expand_loc_callback_data data;
7436 bool ret;
7438 gcc_assert (MAY_HAVE_DEBUG_INSNS);
7439 data.vars = vars;
7440 data.dummy = true;
7441 data.cur_loc_changed = false;
7442 data.ignore_cur_loc = false;
7443 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7444 vt_expand_loc_callback, &data);
7445 *pcur_loc_changed = data.cur_loc_changed;
7446 return ret;
7449 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7450 additional parameters: WHERE specifies whether the note shall be emitted
7451 before or after instruction INSN. */
7453 static int
7454 emit_note_insn_var_location (void **varp, void *data)
7456 variable var = (variable) *varp;
7457 rtx insn = ((emit_note_data *)data)->insn;
7458 enum emit_note_where where = ((emit_note_data *)data)->where;
7459 htab_t vars = ((emit_note_data *)data)->vars;
7460 rtx note, note_vl;
7461 int i, j, n_var_parts;
7462 bool complete;
7463 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7464 HOST_WIDE_INT last_limit;
7465 tree type_size_unit;
7466 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7467 rtx loc[MAX_VAR_PARTS];
7468 tree decl;
7469 location_chain lc;
7471 if (dv_is_value_p (var->dv))
7472 goto value_or_debug_decl;
7474 decl = dv_as_decl (var->dv);
7476 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7477 goto value_or_debug_decl;
7479 complete = true;
7480 last_limit = 0;
7481 n_var_parts = 0;
7482 if (!MAY_HAVE_DEBUG_INSNS)
7484 for (i = 0; i < var->n_var_parts; i++)
7485 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7487 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7488 var->cur_loc_changed = true;
7490 if (var->n_var_parts == 0)
7491 var->cur_loc_changed = true;
7493 if (!var->cur_loc_changed)
7494 goto clear;
7495 for (i = 0; i < var->n_var_parts; i++)
7497 enum machine_mode mode, wider_mode;
7498 rtx loc2;
7500 if (last_limit < var->var_part[i].offset)
7502 complete = false;
7503 break;
7505 else if (last_limit > var->var_part[i].offset)
7506 continue;
7507 offsets[n_var_parts] = var->var_part[i].offset;
7508 if (!var->var_part[i].cur_loc)
7510 complete = false;
7511 continue;
7513 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars, false);
7514 if (!loc2)
7516 complete = false;
7517 continue;
7519 loc[n_var_parts] = loc2;
7520 mode = GET_MODE (var->var_part[i].cur_loc);
7521 if (mode == VOIDmode && dv_onepart_p (var->dv))
7522 mode = DECL_MODE (decl);
7523 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7524 if (var->var_part[i].cur_loc == lc->loc)
7526 initialized = lc->init;
7527 break;
7529 gcc_assert (lc);
7530 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7532 /* Attempt to merge adjacent registers or memory. */
7533 wider_mode = GET_MODE_WIDER_MODE (mode);
7534 for (j = i + 1; j < var->n_var_parts; j++)
7535 if (last_limit <= var->var_part[j].offset)
7536 break;
7537 if (j < var->n_var_parts
7538 && wider_mode != VOIDmode
7539 && var->var_part[j].cur_loc
7540 && mode == GET_MODE (var->var_part[j].cur_loc)
7541 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7542 && last_limit == var->var_part[j].offset
7543 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars, false))
7544 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7546 rtx new_loc = NULL;
7548 if (REG_P (loc[n_var_parts])
7549 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7550 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7551 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7552 == REGNO (loc2))
7554 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7555 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7556 mode, 0);
7557 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7558 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7559 if (new_loc)
7561 if (!REG_P (new_loc)
7562 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7563 new_loc = NULL;
7564 else
7565 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7568 else if (MEM_P (loc[n_var_parts])
7569 && GET_CODE (XEXP (loc2, 0)) == PLUS
7570 && REG_P (XEXP (XEXP (loc2, 0), 0))
7571 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7573 if ((REG_P (XEXP (loc[n_var_parts], 0))
7574 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7575 XEXP (XEXP (loc2, 0), 0))
7576 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7577 == GET_MODE_SIZE (mode))
7578 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7579 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7580 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7581 XEXP (XEXP (loc2, 0), 0))
7582 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7583 + GET_MODE_SIZE (mode)
7584 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7585 new_loc = adjust_address_nv (loc[n_var_parts],
7586 wider_mode, 0);
7589 if (new_loc)
7591 loc[n_var_parts] = new_loc;
7592 mode = wider_mode;
7593 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7594 i = j;
7597 ++n_var_parts;
7599 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7600 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7601 complete = false;
7603 if (! flag_var_tracking_uninit)
7604 initialized = VAR_INIT_STATUS_INITIALIZED;
7606 note_vl = NULL_RTX;
7607 if (!complete)
7608 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7609 (int) initialized);
7610 else if (n_var_parts == 1)
7612 rtx expr_list;
7614 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7615 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7616 else
7617 expr_list = loc[0];
7619 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7620 (int) initialized);
7622 else if (n_var_parts)
7624 rtx parallel;
7626 for (i = 0; i < n_var_parts; i++)
7627 loc[i]
7628 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7630 parallel = gen_rtx_PARALLEL (VOIDmode,
7631 gen_rtvec_v (n_var_parts, loc));
7632 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7633 parallel, (int) initialized);
7636 if (where != EMIT_NOTE_BEFORE_INSN)
7638 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7639 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7640 NOTE_DURING_CALL_P (note) = true;
7642 else
7644 /* Make sure that the call related notes come first. */
7645 while (NEXT_INSN (insn)
7646 && NOTE_P (insn)
7647 && NOTE_DURING_CALL_P (insn))
7648 insn = NEXT_INSN (insn);
7649 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
7650 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7651 else
7652 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7654 NOTE_VAR_LOCATION (note) = note_vl;
7656 clear:
7657 set_dv_changed (var->dv, false);
7658 var->cur_loc_changed = false;
7659 gcc_assert (var->in_changed_variables);
7660 var->in_changed_variables = false;
7661 htab_clear_slot (changed_variables, varp);
7663 /* Continue traversing the hash table. */
7664 return 1;
7666 value_or_debug_decl:
7667 if (dv_changed_p (var->dv) && var->n_var_parts)
7669 location_chain lc;
7670 bool cur_loc_changed;
7672 if (var->var_part[0].cur_loc
7673 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7674 &cur_loc_changed))
7675 goto clear;
7676 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7677 if (lc->loc != var->var_part[0].cur_loc
7678 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7679 break;
7680 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7682 goto clear;
7685 DEF_VEC_P (variable);
7686 DEF_VEC_ALLOC_P (variable, heap);
7688 /* Stack of variable_def pointers that need processing with
7689 check_changed_vars_2. */
7691 static VEC (variable, heap) *changed_variables_stack;
7693 /* VALUEs with no variables that need set_dv_changed (val, false)
7694 called before check_changed_vars_3. */
7696 static VEC (rtx, heap) *changed_values_stack;
7698 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7700 static void
7701 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7703 value_chain vc
7704 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7706 if (vc == NULL)
7707 return;
7708 for (vc = vc->next; vc; vc = vc->next)
7709 if (!dv_changed_p (vc->dv))
7711 variable vcvar
7712 = (variable) htab_find_with_hash (htab, vc->dv,
7713 dv_htab_hash (vc->dv));
7714 if (vcvar)
7716 set_dv_changed (vc->dv, true);
7717 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7719 else if (dv_is_value_p (vc->dv))
7721 set_dv_changed (vc->dv, true);
7722 VEC_safe_push (rtx, heap, changed_values_stack,
7723 dv_as_value (vc->dv));
7724 check_changed_vars_0 (vc->dv, htab);
7729 /* Populate changed_variables_stack with variable_def pointers
7730 that need variable_was_changed called on them. */
7732 static int
7733 check_changed_vars_1 (void **slot, void *data)
7735 variable var = (variable) *slot;
7736 htab_t htab = (htab_t) data;
7738 if (dv_is_value_p (var->dv)
7739 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7740 check_changed_vars_0 (var->dv, htab);
7741 return 1;
7744 /* Add VAR to changed_variables and also for VALUEs add recursively
7745 all DVs that aren't in changed_variables yet but reference the
7746 VALUE from its loc_chain. */
7748 static void
7749 check_changed_vars_2 (variable var, htab_t htab)
7751 variable_was_changed (var, NULL);
7752 if (dv_is_value_p (var->dv)
7753 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7754 check_changed_vars_0 (var->dv, htab);
7757 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7758 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7759 it needs and are also in changed variables) and track whether
7760 cur_loc (or anything it uses to compute location) had to change
7761 during the current emit_notes_for_changes call. */
7763 static int
7764 check_changed_vars_3 (void **slot, void *data)
7766 variable var = (variable) *slot;
7767 htab_t vars = (htab_t) data;
7768 int i;
7769 location_chain lc;
7770 bool cur_loc_changed;
7772 if (dv_is_value_p (var->dv)
7773 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7774 return 1;
7776 for (i = 0; i < var->n_var_parts; i++)
7778 if (var->var_part[i].cur_loc
7779 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7780 &cur_loc_changed))
7782 if (cur_loc_changed)
7783 var->cur_loc_changed = true;
7784 continue;
7786 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7787 if (lc->loc != var->var_part[i].cur_loc
7788 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7789 break;
7790 if (lc || var->var_part[i].cur_loc)
7791 var->cur_loc_changed = true;
7792 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7794 if (var->n_var_parts == 0)
7795 var->cur_loc_changed = true;
7796 return 1;
7799 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7800 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7801 shall be emitted before of after instruction INSN. */
7803 static void
7804 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7805 shared_hash vars)
7807 emit_note_data data;
7808 htab_t htab = shared_hash_htab (vars);
7810 if (!htab_elements (changed_variables))
7811 return;
7813 if (MAY_HAVE_DEBUG_INSNS)
7815 /* Unfortunately this has to be done in two steps, because
7816 we can't traverse a hashtab into which we are inserting
7817 through variable_was_changed. */
7818 htab_traverse (changed_variables, check_changed_vars_1, htab);
7819 while (VEC_length (variable, changed_variables_stack) > 0)
7820 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7821 htab);
7822 while (VEC_length (rtx, changed_values_stack) > 0)
7823 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7824 false);
7825 htab_traverse (changed_variables, check_changed_vars_3, htab);
7828 data.insn = insn;
7829 data.where = where;
7830 data.vars = htab;
7832 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7835 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7836 same variable in hash table DATA or is not there at all. */
7838 static int
7839 emit_notes_for_differences_1 (void **slot, void *data)
7841 htab_t new_vars = (htab_t) data;
7842 variable old_var, new_var;
7844 old_var = (variable) *slot;
7845 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7846 dv_htab_hash (old_var->dv));
7848 if (!new_var)
7850 /* Variable has disappeared. */
7851 variable empty_var;
7853 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7854 empty_var->dv = old_var->dv;
7855 empty_var->refcount = 0;
7856 empty_var->n_var_parts = 0;
7857 empty_var->cur_loc_changed = false;
7858 empty_var->in_changed_variables = false;
7859 if (dv_onepart_p (old_var->dv))
7861 location_chain lc;
7863 gcc_assert (old_var->n_var_parts == 1);
7864 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7865 remove_value_chains (old_var->dv, lc->loc);
7867 variable_was_changed (empty_var, NULL);
7868 /* Continue traversing the hash table. */
7869 return 1;
7871 if (variable_different_p (old_var, new_var))
7873 if (dv_onepart_p (old_var->dv))
7875 location_chain lc1, lc2;
7877 gcc_assert (old_var->n_var_parts == 1
7878 && new_var->n_var_parts == 1);
7879 lc1 = old_var->var_part[0].loc_chain;
7880 lc2 = new_var->var_part[0].loc_chain;
7881 while (lc1
7882 && lc2
7883 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7884 || rtx_equal_p (lc1->loc, lc2->loc)))
7886 lc1 = lc1->next;
7887 lc2 = lc2->next;
7889 for (; lc2; lc2 = lc2->next)
7890 add_value_chains (old_var->dv, lc2->loc);
7891 for (; lc1; lc1 = lc1->next)
7892 remove_value_chains (old_var->dv, lc1->loc);
7894 variable_was_changed (new_var, NULL);
7896 /* Update cur_loc. */
7897 if (old_var != new_var)
7899 int i;
7900 for (i = 0; i < new_var->n_var_parts; i++)
7902 new_var->var_part[i].cur_loc = NULL;
7903 if (old_var->n_var_parts != new_var->n_var_parts
7904 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7905 new_var->cur_loc_changed = true;
7906 else if (old_var->var_part[i].cur_loc != NULL)
7908 location_chain lc;
7909 rtx cur_loc = old_var->var_part[i].cur_loc;
7911 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7912 if (lc->loc == cur_loc
7913 || rtx_equal_p (cur_loc, lc->loc))
7915 new_var->var_part[i].cur_loc = lc->loc;
7916 break;
7918 if (lc == NULL)
7919 new_var->cur_loc_changed = true;
7924 /* Continue traversing the hash table. */
7925 return 1;
7928 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7929 table DATA. */
7931 static int
7932 emit_notes_for_differences_2 (void **slot, void *data)
7934 htab_t old_vars = (htab_t) data;
7935 variable old_var, new_var;
7937 new_var = (variable) *slot;
7938 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7939 dv_htab_hash (new_var->dv));
7940 if (!old_var)
7942 int i;
7943 /* Variable has appeared. */
7944 if (dv_onepart_p (new_var->dv))
7946 location_chain lc;
7948 gcc_assert (new_var->n_var_parts == 1);
7949 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7950 add_value_chains (new_var->dv, lc->loc);
7952 for (i = 0; i < new_var->n_var_parts; i++)
7953 new_var->var_part[i].cur_loc = NULL;
7954 variable_was_changed (new_var, NULL);
7957 /* Continue traversing the hash table. */
7958 return 1;
7961 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7962 NEW_SET. */
7964 static void
7965 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7966 dataflow_set *new_set)
7968 htab_traverse (shared_hash_htab (old_set->vars),
7969 emit_notes_for_differences_1,
7970 shared_hash_htab (new_set->vars));
7971 htab_traverse (shared_hash_htab (new_set->vars),
7972 emit_notes_for_differences_2,
7973 shared_hash_htab (old_set->vars));
7974 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7977 /* Emit the notes for changes of location parts in the basic block BB. */
7979 static void
7980 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7982 unsigned int i;
7983 micro_operation *mo;
7985 dataflow_set_clear (set);
7986 dataflow_set_copy (set, &VTI (bb)->in);
7988 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
7990 rtx insn = mo->insn;
7992 switch (mo->type)
7994 case MO_CALL:
7995 dataflow_set_clear_at_call (set);
7996 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
7998 rtx arguments = mo->u.loc, *p = &arguments, note;
7999 while (*p)
8001 XEXP (XEXP (*p, 0), 1)
8002 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8003 shared_hash_htab (set->vars), true);
8004 /* If expansion is successful, keep it in the list. */
8005 if (XEXP (XEXP (*p, 0), 1))
8006 p = &XEXP (*p, 1);
8007 /* Otherwise, if the following item is data_value for it,
8008 drop it too too. */
8009 else if (XEXP (*p, 1)
8010 && REG_P (XEXP (XEXP (*p, 0), 0))
8011 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8012 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8014 && REGNO (XEXP (XEXP (*p, 0), 0))
8015 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8016 0), 0)))
8017 *p = XEXP (XEXP (*p, 1), 1);
8018 /* Just drop this item. */
8019 else
8020 *p = XEXP (*p, 1);
8022 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8023 NOTE_VAR_LOCATION (note) = arguments;
8025 break;
8027 case MO_USE:
8029 rtx loc = mo->u.loc;
8031 if (REG_P (loc))
8032 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8033 else
8034 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8036 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8038 break;
8040 case MO_VAL_LOC:
8042 rtx loc = mo->u.loc;
8043 rtx val, vloc;
8044 tree var;
8046 if (GET_CODE (loc) == CONCAT)
8048 val = XEXP (loc, 0);
8049 vloc = XEXP (loc, 1);
8051 else
8053 val = NULL_RTX;
8054 vloc = loc;
8057 var = PAT_VAR_LOCATION_DECL (vloc);
8059 clobber_variable_part (set, NULL_RTX,
8060 dv_from_decl (var), 0, NULL_RTX);
8061 if (val)
8063 if (VAL_NEEDS_RESOLUTION (loc))
8064 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8065 set_variable_part (set, val, dv_from_decl (var), 0,
8066 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8067 INSERT);
8069 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8070 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8071 dv_from_decl (var), 0,
8072 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8073 INSERT);
8075 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8077 break;
8079 case MO_VAL_USE:
8081 rtx loc = mo->u.loc;
8082 rtx val, vloc, uloc;
8084 vloc = uloc = XEXP (loc, 1);
8085 val = XEXP (loc, 0);
8087 if (GET_CODE (val) == CONCAT)
8089 uloc = XEXP (val, 1);
8090 val = XEXP (val, 0);
8093 if (VAL_NEEDS_RESOLUTION (loc))
8094 val_resolve (set, val, vloc, insn);
8095 else
8096 val_store (set, val, uloc, insn, false);
8098 if (VAL_HOLDS_TRACK_EXPR (loc))
8100 if (GET_CODE (uloc) == REG)
8101 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8102 NULL);
8103 else if (GET_CODE (uloc) == MEM)
8104 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8105 NULL);
8108 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
8110 break;
8112 case MO_VAL_SET:
8114 rtx loc = mo->u.loc;
8115 rtx val, vloc, uloc, reverse = NULL_RTX;
8117 vloc = loc;
8118 if (VAL_EXPR_HAS_REVERSE (loc))
8120 reverse = XEXP (loc, 1);
8121 vloc = XEXP (loc, 0);
8123 uloc = XEXP (vloc, 1);
8124 val = XEXP (vloc, 0);
8125 vloc = uloc;
8127 if (GET_CODE (val) == CONCAT)
8129 vloc = XEXP (val, 1);
8130 val = XEXP (val, 0);
8133 if (GET_CODE (vloc) == SET)
8135 rtx vsrc = SET_SRC (vloc);
8137 gcc_assert (val != vsrc);
8138 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
8140 vloc = SET_DEST (vloc);
8142 if (VAL_NEEDS_RESOLUTION (loc))
8143 val_resolve (set, val, vsrc, insn);
8145 else if (VAL_NEEDS_RESOLUTION (loc))
8147 gcc_assert (GET_CODE (uloc) == SET
8148 && GET_CODE (SET_SRC (uloc)) == REG);
8149 val_resolve (set, val, SET_SRC (uloc), insn);
8152 if (VAL_HOLDS_TRACK_EXPR (loc))
8154 if (VAL_EXPR_IS_CLOBBERED (loc))
8156 if (REG_P (uloc))
8157 var_reg_delete (set, uloc, true);
8158 else if (MEM_P (uloc))
8159 var_mem_delete (set, uloc, true);
8161 else
8163 bool copied_p = VAL_EXPR_IS_COPIED (loc);
8164 rtx set_src = NULL;
8165 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
8167 if (GET_CODE (uloc) == SET)
8169 set_src = SET_SRC (uloc);
8170 uloc = SET_DEST (uloc);
8173 if (copied_p)
8175 status = find_src_status (set, set_src);
8177 set_src = find_src_set_src (set, set_src);
8180 if (REG_P (uloc))
8181 var_reg_delete_and_set (set, uloc, !copied_p,
8182 status, set_src);
8183 else if (MEM_P (uloc))
8184 var_mem_delete_and_set (set, uloc, !copied_p,
8185 status, set_src);
8188 else if (REG_P (uloc))
8189 var_regno_delete (set, REGNO (uloc));
8191 val_store (set, val, vloc, insn, true);
8193 if (reverse)
8194 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
8195 insn, false);
8197 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8198 set->vars);
8200 break;
8202 case MO_SET:
8204 rtx loc = mo->u.loc;
8205 rtx set_src = NULL;
8207 if (GET_CODE (loc) == SET)
8209 set_src = SET_SRC (loc);
8210 loc = SET_DEST (loc);
8213 if (REG_P (loc))
8214 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8215 set_src);
8216 else
8217 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8218 set_src);
8220 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8221 set->vars);
8223 break;
8225 case MO_COPY:
8227 rtx loc = mo->u.loc;
8228 enum var_init_status src_status;
8229 rtx set_src = NULL;
8231 if (GET_CODE (loc) == SET)
8233 set_src = SET_SRC (loc);
8234 loc = SET_DEST (loc);
8237 src_status = find_src_status (set, set_src);
8238 set_src = find_src_set_src (set, set_src);
8240 if (REG_P (loc))
8241 var_reg_delete_and_set (set, loc, false, src_status, set_src);
8242 else
8243 var_mem_delete_and_set (set, loc, false, src_status, set_src);
8245 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8246 set->vars);
8248 break;
8250 case MO_USE_NO_VAR:
8252 rtx loc = mo->u.loc;
8254 if (REG_P (loc))
8255 var_reg_delete (set, loc, false);
8256 else
8257 var_mem_delete (set, loc, false);
8259 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8261 break;
8263 case MO_CLOBBER:
8265 rtx loc = mo->u.loc;
8267 if (REG_P (loc))
8268 var_reg_delete (set, loc, true);
8269 else
8270 var_mem_delete (set, loc, true);
8272 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8273 set->vars);
8275 break;
8277 case MO_ADJUST:
8278 set->stack_adjust += mo->u.adjust;
8279 break;
8284 /* Emit notes for the whole function. */
8286 static void
8287 vt_emit_notes (void)
8289 basic_block bb;
8290 dataflow_set cur;
8292 gcc_assert (!htab_elements (changed_variables));
8294 /* Free memory occupied by the out hash tables, as they aren't used
8295 anymore. */
8296 FOR_EACH_BB (bb)
8297 dataflow_set_clear (&VTI (bb)->out);
8299 /* Enable emitting notes by functions (mainly by set_variable_part and
8300 delete_variable_part). */
8301 emit_notes = true;
8303 if (MAY_HAVE_DEBUG_INSNS)
8305 unsigned int i;
8306 rtx val;
8308 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8309 add_cselib_value_chains (dv_from_value (val));
8310 changed_variables_stack = VEC_alloc (variable, heap, 40);
8311 changed_values_stack = VEC_alloc (rtx, heap, 40);
8314 dataflow_set_init (&cur);
8316 FOR_EACH_BB (bb)
8318 /* Emit the notes for changes of variable locations between two
8319 subsequent basic blocks. */
8320 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
8322 /* Emit the notes for the changes in the basic block itself. */
8323 emit_notes_in_bb (bb, &cur);
8325 /* Free memory occupied by the in hash table, we won't need it
8326 again. */
8327 dataflow_set_clear (&VTI (bb)->in);
8329 #ifdef ENABLE_CHECKING
8330 htab_traverse (shared_hash_htab (cur.vars),
8331 emit_notes_for_differences_1,
8332 shared_hash_htab (empty_shared_hash));
8333 if (MAY_HAVE_DEBUG_INSNS)
8335 unsigned int i;
8336 rtx val;
8338 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8339 remove_cselib_value_chains (dv_from_value (val));
8340 gcc_assert (htab_elements (value_chains) == 0);
8342 #endif
8343 dataflow_set_destroy (&cur);
8345 if (MAY_HAVE_DEBUG_INSNS)
8347 VEC_free (variable, heap, changed_variables_stack);
8348 VEC_free (rtx, heap, changed_values_stack);
8351 emit_notes = false;
8354 /* If there is a declaration and offset associated with register/memory RTL
8355 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8357 static bool
8358 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
8360 if (REG_P (rtl))
8362 if (REG_ATTRS (rtl))
8364 *declp = REG_EXPR (rtl);
8365 *offsetp = REG_OFFSET (rtl);
8366 return true;
8369 else if (MEM_P (rtl))
8371 if (MEM_ATTRS (rtl))
8373 *declp = MEM_EXPR (rtl);
8374 *offsetp = INT_MEM_OFFSET (rtl);
8375 return true;
8378 return false;
8381 /* Helper function for vt_add_function_parameter. RTL is
8382 the expression and VAL corresponding cselib_val pointer
8383 for which ENTRY_VALUE should be created. */
8385 static void
8386 create_entry_value (rtx rtl, cselib_val *val)
8388 cselib_val *val2;
8389 struct elt_loc_list *el;
8390 el = (struct elt_loc_list *) ggc_alloc_cleared_atomic (sizeof (*el));
8391 el->next = val->locs;
8392 el->loc = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
8393 ENTRY_VALUE_EXP (el->loc) = rtl;
8394 el->setting_insn = get_insns ();
8395 val->locs = el;
8396 val2 = cselib_lookup_from_insn (el->loc, GET_MODE (rtl), true,
8397 VOIDmode, get_insns ());
8398 if (val2
8399 && val2 != val
8400 && val2->locs
8401 && rtx_equal_p (val2->locs->loc, el->loc))
8403 struct elt_loc_list *el2;
8405 preserve_value (val2);
8406 el2 = (struct elt_loc_list *) ggc_alloc_cleared_atomic (sizeof (*el2));
8407 el2->next = val2->locs;
8408 el2->loc = val->val_rtx;
8409 el2->setting_insn = get_insns ();
8410 val2->locs = el2;
8414 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8416 static void
8417 vt_add_function_parameter (tree parm)
8419 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8420 rtx incoming = DECL_INCOMING_RTL (parm);
8421 tree decl;
8422 enum machine_mode mode;
8423 HOST_WIDE_INT offset;
8424 dataflow_set *out;
8425 decl_or_value dv;
8427 if (TREE_CODE (parm) != PARM_DECL)
8428 return;
8430 if (!decl_rtl || !incoming)
8431 return;
8433 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8434 return;
8436 /* If there is a DRAP register, rewrite the incoming location of parameters
8437 passed on the stack into MEMs based on the argument pointer, as the DRAP
8438 register can be reused for other purposes and we do not track locations
8439 based on generic registers. But the prerequisite is that this argument
8440 pointer be also the virtual CFA pointer, see vt_initialize. */
8441 if (MEM_P (incoming)
8442 && stack_realign_drap
8443 && arg_pointer_rtx == cfa_base_rtx
8444 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
8445 || (GET_CODE (XEXP (incoming, 0)) == PLUS
8446 && XEXP (XEXP (incoming, 0), 0)
8447 == crtl->args.internal_arg_pointer
8448 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
8450 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
8451 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
8452 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
8453 incoming
8454 = replace_equiv_address_nv (incoming,
8455 plus_constant (arg_pointer_rtx, off));
8458 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8460 if (REG_P (incoming) || MEM_P (incoming))
8462 /* This means argument is passed by invisible reference. */
8463 offset = 0;
8464 decl = parm;
8465 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
8467 else
8469 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
8470 return;
8471 offset += byte_lowpart_offset (GET_MODE (incoming),
8472 GET_MODE (decl_rtl));
8476 if (!decl)
8477 return;
8479 if (parm != decl)
8481 /* Assume that DECL_RTL was a pseudo that got spilled to
8482 memory. The spill slot sharing code will force the
8483 memory to reference spill_slot_decl (%sfp), so we don't
8484 match above. That's ok, the pseudo must have referenced
8485 the entire parameter, so just reset OFFSET. */
8486 gcc_assert (decl == get_spill_slot_decl (false));
8487 offset = 0;
8490 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
8491 return;
8493 out = &VTI (ENTRY_BLOCK_PTR)->out;
8495 dv = dv_from_decl (parm);
8497 if (target_for_debug_bind (parm)
8498 /* We can't deal with these right now, because this kind of
8499 variable is single-part. ??? We could handle parallels
8500 that describe multiple locations for the same single
8501 value, but ATM we don't. */
8502 && GET_CODE (incoming) != PARALLEL)
8504 cselib_val *val;
8506 /* ??? We shouldn't ever hit this, but it may happen because
8507 arguments passed by invisible reference aren't dealt with
8508 above: incoming-rtl will have Pmode rather than the
8509 expected mode for the type. */
8510 if (offset)
8511 return;
8513 val = cselib_lookup_from_insn (var_lowpart (mode, incoming), mode, true,
8514 VOIDmode, get_insns ());
8516 /* ??? Float-typed values in memory are not handled by
8517 cselib. */
8518 if (val)
8520 preserve_value (val);
8521 set_variable_part (out, val->val_rtx, dv, offset,
8522 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8523 dv = dv_from_value (val->val_rtx);
8527 if (REG_P (incoming))
8529 incoming = var_lowpart (mode, incoming);
8530 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8531 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8532 incoming);
8533 set_variable_part (out, incoming, dv, offset,
8534 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8535 if (dv_is_value_p (dv))
8537 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (dv));
8538 create_entry_value (incoming, val);
8539 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
8540 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
8542 enum machine_mode indmode
8543 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
8544 rtx mem = gen_rtx_MEM (indmode, incoming);
8545 val = cselib_lookup_from_insn (mem, indmode, true,
8546 VOIDmode, get_insns ());
8547 if (val)
8549 preserve_value (val);
8550 create_entry_value (mem, val);
8555 else if (MEM_P (incoming))
8557 incoming = var_lowpart (mode, incoming);
8558 set_variable_part (out, incoming, dv, offset,
8559 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8563 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8565 static void
8566 vt_add_function_parameters (void)
8568 tree parm;
8570 for (parm = DECL_ARGUMENTS (current_function_decl);
8571 parm; parm = DECL_CHAIN (parm))
8572 vt_add_function_parameter (parm);
8574 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
8576 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
8578 if (TREE_CODE (vexpr) == INDIRECT_REF)
8579 vexpr = TREE_OPERAND (vexpr, 0);
8581 if (TREE_CODE (vexpr) == PARM_DECL
8582 && DECL_ARTIFICIAL (vexpr)
8583 && !DECL_IGNORED_P (vexpr)
8584 && DECL_NAMELESS (vexpr))
8585 vt_add_function_parameter (vexpr);
8589 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8591 static bool
8592 fp_setter (rtx insn)
8594 rtx pat = PATTERN (insn);
8595 if (RTX_FRAME_RELATED_P (insn))
8597 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8598 if (expr)
8599 pat = XEXP (expr, 0);
8601 if (GET_CODE (pat) == SET)
8602 return SET_DEST (pat) == hard_frame_pointer_rtx;
8603 else if (GET_CODE (pat) == PARALLEL)
8605 int i;
8606 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8607 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8608 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8609 return true;
8611 return false;
8614 /* Gather all registers used for passing arguments to other functions
8615 called from the current routine. */
8617 static void
8618 note_register_arguments (rtx insn)
8620 rtx link, x;
8622 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
8623 if (GET_CODE (XEXP (link, 0)) == USE)
8625 x = XEXP (XEXP (link, 0), 0);
8626 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8627 SET_HARD_REG_BIT (argument_reg_set, REGNO (x));
8631 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8632 ensure it isn't flushed during cselib_reset_table.
8633 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8634 has been eliminated. */
8636 static void
8637 vt_init_cfa_base (void)
8639 cselib_val *val;
8641 #ifdef FRAME_POINTER_CFA_OFFSET
8642 cfa_base_rtx = frame_pointer_rtx;
8643 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
8644 #else
8645 cfa_base_rtx = arg_pointer_rtx;
8646 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
8647 #endif
8648 if (cfa_base_rtx == hard_frame_pointer_rtx
8649 || !fixed_regs[REGNO (cfa_base_rtx)])
8651 cfa_base_rtx = NULL_RTX;
8652 return;
8654 if (!MAY_HAVE_DEBUG_INSNS)
8655 return;
8657 /* Tell alias analysis that cfa_base_rtx should share
8658 find_base_term value with stack pointer or hard frame pointer. */
8659 if (!frame_pointer_needed)
8660 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
8661 else if (!crtl->stack_realign_tried)
8662 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
8664 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8665 VOIDmode, get_insns ());
8666 preserve_value (val);
8667 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
8668 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8669 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8670 0, NULL_RTX, INSERT);
8673 /* Allocate and initialize the data structures for variable tracking
8674 and parse the RTL to get the micro operations. */
8676 static bool
8677 vt_initialize (void)
8679 basic_block bb, prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8680 HOST_WIDE_INT fp_cfa_offset = -1;
8682 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8684 attrs_pool = create_alloc_pool ("attrs_def pool",
8685 sizeof (struct attrs_def), 1024);
8686 var_pool = create_alloc_pool ("variable_def pool",
8687 sizeof (struct variable_def)
8688 + (MAX_VAR_PARTS - 1)
8689 * sizeof (((variable)NULL)->var_part[0]), 64);
8690 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8691 sizeof (struct location_chain_def),
8692 1024);
8693 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8694 sizeof (struct shared_hash_def), 256);
8695 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8696 empty_shared_hash->refcount = 1;
8697 empty_shared_hash->htab
8698 = htab_create (1, variable_htab_hash, variable_htab_eq,
8699 variable_htab_free);
8700 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8701 variable_htab_free);
8702 if (MAY_HAVE_DEBUG_INSNS)
8704 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8705 sizeof (struct value_chain_def),
8706 1024);
8707 value_chains = htab_create (32, value_chain_htab_hash,
8708 value_chain_htab_eq, NULL);
8711 /* Init the IN and OUT sets. */
8712 FOR_ALL_BB (bb)
8714 VTI (bb)->visited = false;
8715 VTI (bb)->flooded = false;
8716 dataflow_set_init (&VTI (bb)->in);
8717 dataflow_set_init (&VTI (bb)->out);
8718 VTI (bb)->permp = NULL;
8721 if (MAY_HAVE_DEBUG_INSNS)
8723 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8724 scratch_regs = BITMAP_ALLOC (NULL);
8725 valvar_pool = create_alloc_pool ("small variable_def pool",
8726 sizeof (struct variable_def), 256);
8727 preserved_values = VEC_alloc (rtx, heap, 256);
8729 else
8731 scratch_regs = NULL;
8732 valvar_pool = NULL;
8735 CLEAR_HARD_REG_SET (argument_reg_set);
8737 /* In order to factor out the adjustments made to the stack pointer or to
8738 the hard frame pointer and thus be able to use DW_OP_fbreg operations
8739 instead of individual location lists, we're going to rewrite MEMs based
8740 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
8741 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
8742 resp. arg_pointer_rtx. We can do this either when there is no frame
8743 pointer in the function and stack adjustments are consistent for all
8744 basic blocks or when there is a frame pointer and no stack realignment.
8745 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
8746 has been eliminated. */
8747 if (!frame_pointer_needed)
8749 rtx reg, elim;
8751 if (!vt_stack_adjustments ())
8752 return false;
8754 #ifdef FRAME_POINTER_CFA_OFFSET
8755 reg = frame_pointer_rtx;
8756 #else
8757 reg = arg_pointer_rtx;
8758 #endif
8759 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8760 if (elim != reg)
8762 if (GET_CODE (elim) == PLUS)
8763 elim = XEXP (elim, 0);
8764 if (elim == stack_pointer_rtx)
8765 vt_init_cfa_base ();
8768 else if (!crtl->stack_realign_tried)
8770 rtx reg, elim;
8772 #ifdef FRAME_POINTER_CFA_OFFSET
8773 reg = frame_pointer_rtx;
8774 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8775 #else
8776 reg = arg_pointer_rtx;
8777 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8778 #endif
8779 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8780 if (elim != reg)
8782 if (GET_CODE (elim) == PLUS)
8784 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8785 elim = XEXP (elim, 0);
8787 if (elim != hard_frame_pointer_rtx)
8788 fp_cfa_offset = -1;
8790 else
8791 fp_cfa_offset = -1;
8794 /* If the stack is realigned and a DRAP register is used, we're going to
8795 rewrite MEMs based on it representing incoming locations of parameters
8796 passed on the stack into MEMs based on the argument pointer. Although
8797 we aren't going to rewrite other MEMs, we still need to initialize the
8798 virtual CFA pointer in order to ensure that the argument pointer will
8799 be seen as a constant throughout the function.
8801 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
8802 else if (stack_realign_drap)
8804 rtx reg, elim;
8806 #ifdef FRAME_POINTER_CFA_OFFSET
8807 reg = frame_pointer_rtx;
8808 #else
8809 reg = arg_pointer_rtx;
8810 #endif
8811 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8812 if (elim != reg)
8814 if (GET_CODE (elim) == PLUS)
8815 elim = XEXP (elim, 0);
8816 if (elim == hard_frame_pointer_rtx)
8817 vt_init_cfa_base ();
8821 if (frame_pointer_needed)
8823 rtx insn;
8824 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
8825 if (CALL_P (insn))
8826 note_register_arguments (insn);
8829 hard_frame_pointer_adjustment = -1;
8831 vt_add_function_parameters ();
8833 FOR_EACH_BB (bb)
8835 rtx insn;
8836 HOST_WIDE_INT pre, post = 0;
8837 basic_block first_bb, last_bb;
8839 if (MAY_HAVE_DEBUG_INSNS)
8841 cselib_record_sets_hook = add_with_sets;
8842 if (dump_file && (dump_flags & TDF_DETAILS))
8843 fprintf (dump_file, "first value: %i\n",
8844 cselib_get_next_uid ());
8847 first_bb = bb;
8848 for (;;)
8850 edge e;
8851 if (bb->next_bb == EXIT_BLOCK_PTR
8852 || ! single_pred_p (bb->next_bb))
8853 break;
8854 e = find_edge (bb, bb->next_bb);
8855 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8856 break;
8857 bb = bb->next_bb;
8859 last_bb = bb;
8861 /* Add the micro-operations to the vector. */
8862 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8864 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8865 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8866 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8867 insn = NEXT_INSN (insn))
8869 if (INSN_P (insn))
8871 if (!frame_pointer_needed)
8873 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8874 if (pre)
8876 micro_operation mo;
8877 mo.type = MO_ADJUST;
8878 mo.u.adjust = pre;
8879 mo.insn = insn;
8880 if (dump_file && (dump_flags & TDF_DETAILS))
8881 log_op_type (PATTERN (insn), bb, insn,
8882 MO_ADJUST, dump_file);
8883 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8884 &mo);
8885 VTI (bb)->out.stack_adjust += pre;
8889 cselib_hook_called = false;
8890 adjust_insn (bb, insn);
8891 if (MAY_HAVE_DEBUG_INSNS)
8893 if (CALL_P (insn))
8894 prepare_call_arguments (bb, insn);
8895 cselib_process_insn (insn);
8896 if (dump_file && (dump_flags & TDF_DETAILS))
8898 print_rtl_single (dump_file, insn);
8899 dump_cselib_table (dump_file);
8902 if (!cselib_hook_called)
8903 add_with_sets (insn, 0, 0);
8904 cancel_changes (0);
8906 if (!frame_pointer_needed && post)
8908 micro_operation mo;
8909 mo.type = MO_ADJUST;
8910 mo.u.adjust = post;
8911 mo.insn = insn;
8912 if (dump_file && (dump_flags & TDF_DETAILS))
8913 log_op_type (PATTERN (insn), bb, insn,
8914 MO_ADJUST, dump_file);
8915 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8916 &mo);
8917 VTI (bb)->out.stack_adjust += post;
8920 if (bb == prologue_bb
8921 && fp_cfa_offset != -1
8922 && hard_frame_pointer_adjustment == -1
8923 && RTX_FRAME_RELATED_P (insn)
8924 && fp_setter (insn))
8926 vt_init_cfa_base ();
8927 hard_frame_pointer_adjustment = fp_cfa_offset;
8931 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8934 bb = last_bb;
8936 if (MAY_HAVE_DEBUG_INSNS)
8938 cselib_preserve_only_values ();
8939 cselib_reset_table (cselib_get_next_uid ());
8940 cselib_record_sets_hook = NULL;
8944 hard_frame_pointer_adjustment = -1;
8945 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8946 cfa_base_rtx = NULL_RTX;
8947 return true;
8950 /* Get rid of all debug insns from the insn stream. */
8952 static void
8953 delete_debug_insns (void)
8955 basic_block bb;
8956 rtx insn, next;
8958 if (!MAY_HAVE_DEBUG_INSNS)
8959 return;
8961 FOR_EACH_BB (bb)
8963 FOR_BB_INSNS_SAFE (bb, insn, next)
8964 if (DEBUG_INSN_P (insn))
8965 delete_insn (insn);
8969 /* Run a fast, BB-local only version of var tracking, to take care of
8970 information that we don't do global analysis on, such that not all
8971 information is lost. If SKIPPED holds, we're skipping the global
8972 pass entirely, so we should try to use information it would have
8973 handled as well.. */
8975 static void
8976 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8978 /* ??? Just skip it all for now. */
8979 delete_debug_insns ();
8982 /* Free the data structures needed for variable tracking. */
8984 static void
8985 vt_finalize (void)
8987 basic_block bb;
8989 FOR_EACH_BB (bb)
8991 VEC_free (micro_operation, heap, VTI (bb)->mos);
8994 FOR_ALL_BB (bb)
8996 dataflow_set_destroy (&VTI (bb)->in);
8997 dataflow_set_destroy (&VTI (bb)->out);
8998 if (VTI (bb)->permp)
9000 dataflow_set_destroy (VTI (bb)->permp);
9001 XDELETE (VTI (bb)->permp);
9004 free_aux_for_blocks ();
9005 htab_delete (empty_shared_hash->htab);
9006 htab_delete (changed_variables);
9007 free_alloc_pool (attrs_pool);
9008 free_alloc_pool (var_pool);
9009 free_alloc_pool (loc_chain_pool);
9010 free_alloc_pool (shared_hash_pool);
9012 if (MAY_HAVE_DEBUG_INSNS)
9014 htab_delete (value_chains);
9015 free_alloc_pool (value_chain_pool);
9016 free_alloc_pool (valvar_pool);
9017 VEC_free (rtx, heap, preserved_values);
9018 cselib_finish ();
9019 BITMAP_FREE (scratch_regs);
9020 scratch_regs = NULL;
9023 if (vui_vec)
9024 XDELETEVEC (vui_vec);
9025 vui_vec = NULL;
9026 vui_allocated = 0;
9029 /* The entry point to variable tracking pass. */
9031 static inline unsigned int
9032 variable_tracking_main_1 (void)
9034 bool success;
9036 if (flag_var_tracking_assignments < 0)
9038 delete_debug_insns ();
9039 return 0;
9042 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
9044 vt_debug_insns_local (true);
9045 return 0;
9048 mark_dfs_back_edges ();
9049 if (!vt_initialize ())
9051 vt_finalize ();
9052 vt_debug_insns_local (true);
9053 return 0;
9056 success = vt_find_locations ();
9058 if (!success && flag_var_tracking_assignments > 0)
9060 vt_finalize ();
9062 delete_debug_insns ();
9064 /* This is later restored by our caller. */
9065 flag_var_tracking_assignments = 0;
9067 success = vt_initialize ();
9068 gcc_assert (success);
9070 success = vt_find_locations ();
9073 if (!success)
9075 vt_finalize ();
9076 vt_debug_insns_local (false);
9077 return 0;
9080 if (dump_file && (dump_flags & TDF_DETAILS))
9082 dump_dataflow_sets ();
9083 dump_flow_info (dump_file, dump_flags);
9086 timevar_push (TV_VAR_TRACKING_EMIT);
9087 vt_emit_notes ();
9088 timevar_pop (TV_VAR_TRACKING_EMIT);
9090 vt_finalize ();
9091 vt_debug_insns_local (false);
9092 return 0;
9095 unsigned int
9096 variable_tracking_main (void)
9098 unsigned int ret;
9099 int save = flag_var_tracking_assignments;
9101 ret = variable_tracking_main_1 ();
9103 flag_var_tracking_assignments = save;
9105 return ret;
9108 static bool
9109 gate_handle_var_tracking (void)
9111 return (flag_var_tracking);
9116 struct rtl_opt_pass pass_variable_tracking =
9119 RTL_PASS,
9120 "vartrack", /* name */
9121 gate_handle_var_tracking, /* gate */
9122 variable_tracking_main, /* execute */
9123 NULL, /* sub */
9124 NULL, /* next */
9125 0, /* static_pass_number */
9126 TV_VAR_TRACKING, /* tv_id */
9127 0, /* properties_required */
9128 0, /* properties_provided */
9129 0, /* properties_destroyed */
9130 0, /* todo_flags_start */
9131 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */