fix for PR bootstrap/58951
[official-gcc.git] / gcc / loop-iv.c
blobb9bc3348733d1bf5e08e3f1e8518049fb0f66d6a
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "intl.h"
61 #include "diagnostic-core.h"
62 #include "df.h"
63 #include "hash-table.h"
64 #include "dumpfile.h"
66 /* Possible return values of iv_get_reaching_def. */
68 enum iv_grd_result
70 /* More than one reaching def, or reaching def that does not
71 dominate the use. */
72 GRD_INVALID,
74 /* The use is trivial invariant of the loop, i.e. is not changed
75 inside the loop. */
76 GRD_INVARIANT,
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
80 GRD_MAYBE_BIV,
82 /* The use has single dominating def. */
83 GRD_SINGLE_DOM
86 /* Information about a biv. */
88 struct biv_entry
90 unsigned regno; /* The register of the biv. */
91 struct rtx_iv iv; /* Value of the biv. */
94 static bool clean_slate = true;
96 static unsigned int iv_ref_table_size = 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv ** iv_ref_table;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
105 /* The current loop. */
107 static struct loop *current_loop;
109 /* Hashtable helper. */
111 struct biv_entry_hasher : typed_free_remove <biv_entry>
113 typedef biv_entry value_type;
114 typedef rtx_def compare_type;
115 static inline hashval_t hash (const value_type *);
116 static inline bool equal (const value_type *, const compare_type *);
119 /* Returns hash value for biv B. */
121 inline hashval_t
122 biv_entry_hasher::hash (const value_type *b)
124 return b->regno;
127 /* Compares biv B and register R. */
129 inline bool
130 biv_entry_hasher::equal (const value_type *b, const compare_type *r)
132 return b->regno == REGNO (r);
135 /* Bivs of the current loop. */
137 static hash_table <biv_entry_hasher> bivs;
139 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
141 /* Return the RTX code corresponding to the IV extend code EXTEND. */
142 static inline enum rtx_code
143 iv_extend_to_rtx_code (enum iv_extend_code extend)
145 switch (extend)
147 case IV_SIGN_EXTEND:
148 return SIGN_EXTEND;
149 case IV_ZERO_EXTEND:
150 return ZERO_EXTEND;
151 case IV_UNKNOWN_EXTEND:
152 return UNKNOWN;
154 gcc_unreachable ();
157 /* Dumps information about IV to FILE. */
159 extern void dump_iv_info (FILE *, struct rtx_iv *);
160 void
161 dump_iv_info (FILE *file, struct rtx_iv *iv)
163 if (!iv->base)
165 fprintf (file, "not simple");
166 return;
169 if (iv->step == const0_rtx
170 && !iv->first_special)
171 fprintf (file, "invariant ");
173 print_rtl (file, iv->base);
174 if (iv->step != const0_rtx)
176 fprintf (file, " + ");
177 print_rtl (file, iv->step);
178 fprintf (file, " * iteration");
180 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
182 if (iv->mode != iv->extend_mode)
183 fprintf (file, " %s to %s",
184 rtx_name[iv_extend_to_rtx_code (iv->extend)],
185 GET_MODE_NAME (iv->extend_mode));
187 if (iv->mult != const1_rtx)
189 fprintf (file, " * ");
190 print_rtl (file, iv->mult);
192 if (iv->delta != const0_rtx)
194 fprintf (file, " + ");
195 print_rtl (file, iv->delta);
197 if (iv->first_special)
198 fprintf (file, " (first special)");
201 /* Generates a subreg to get the least significant part of EXPR (in mode
202 INNER_MODE) to OUTER_MODE. */
205 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
206 enum machine_mode inner_mode)
208 return simplify_gen_subreg (outer_mode, expr, inner_mode,
209 subreg_lowpart_offset (outer_mode, inner_mode));
212 static void
213 check_iv_ref_table_size (void)
215 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
217 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
218 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
219 memset (&iv_ref_table[iv_ref_table_size], 0,
220 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
221 iv_ref_table_size = new_size;
226 /* Checks whether REG is a well-behaved register. */
228 static bool
229 simple_reg_p (rtx reg)
231 unsigned r;
233 if (GET_CODE (reg) == SUBREG)
235 if (!subreg_lowpart_p (reg))
236 return false;
237 reg = SUBREG_REG (reg);
240 if (!REG_P (reg))
241 return false;
243 r = REGNO (reg);
244 if (HARD_REGISTER_NUM_P (r))
245 return false;
247 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
248 return false;
250 return true;
253 /* Clears the information about ivs stored in df. */
255 static void
256 clear_iv_info (void)
258 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
259 struct rtx_iv *iv;
261 check_iv_ref_table_size ();
262 for (i = 0; i < n_defs; i++)
264 iv = iv_ref_table[i];
265 if (iv)
267 free (iv);
268 iv_ref_table[i] = NULL;
272 bivs.empty ();
276 /* Prepare the data for an induction variable analysis of a LOOP. */
278 void
279 iv_analysis_loop_init (struct loop *loop)
281 basic_block *body = get_loop_body_in_dom_order (loop), bb;
282 bitmap blocks = BITMAP_ALLOC (NULL);
283 unsigned i;
285 current_loop = loop;
287 /* Clear the information from the analysis of the previous loop. */
288 if (clean_slate)
290 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
291 bivs.create (10);
292 clean_slate = false;
294 else
295 clear_iv_info ();
297 for (i = 0; i < loop->num_nodes; i++)
299 bb = body[i];
300 bitmap_set_bit (blocks, bb->index);
302 /* Get rid of the ud chains before processing the rescans. Then add
303 the problem back. */
304 df_remove_problem (df_chain);
305 df_process_deferred_rescans ();
306 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
307 df_chain_add_problem (DF_UD_CHAIN);
308 df_note_add_problem ();
309 df_set_blocks (blocks);
310 df_analyze ();
311 if (dump_file)
312 df_dump_region (dump_file);
314 check_iv_ref_table_size ();
315 BITMAP_FREE (blocks);
316 free (body);
319 /* Finds the definition of REG that dominates loop latch and stores
320 it to DEF. Returns false if there is not a single definition
321 dominating the latch. If REG has no definition in loop, DEF
322 is set to NULL and true is returned. */
324 static bool
325 latch_dominating_def (rtx reg, df_ref *def)
327 df_ref single_rd = NULL, adef;
328 unsigned regno = REGNO (reg);
329 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
331 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
333 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
334 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
335 continue;
337 /* More than one reaching definition. */
338 if (single_rd)
339 return false;
341 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
342 return false;
344 single_rd = adef;
347 *def = single_rd;
348 return true;
351 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
353 static enum iv_grd_result
354 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
356 df_ref use, adef;
357 basic_block def_bb, use_bb;
358 rtx def_insn;
359 bool dom_p;
361 *def = NULL;
362 if (!simple_reg_p (reg))
363 return GRD_INVALID;
364 if (GET_CODE (reg) == SUBREG)
365 reg = SUBREG_REG (reg);
366 gcc_assert (REG_P (reg));
368 use = df_find_use (insn, reg);
369 gcc_assert (use != NULL);
371 if (!DF_REF_CHAIN (use))
372 return GRD_INVARIANT;
374 /* More than one reaching def. */
375 if (DF_REF_CHAIN (use)->next)
376 return GRD_INVALID;
378 adef = DF_REF_CHAIN (use)->ref;
380 /* We do not handle setting only part of the register. */
381 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
382 return GRD_INVALID;
384 def_insn = DF_REF_INSN (adef);
385 def_bb = DF_REF_BB (adef);
386 use_bb = BLOCK_FOR_INSN (insn);
388 if (use_bb == def_bb)
389 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
390 else
391 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
393 if (dom_p)
395 *def = adef;
396 return GRD_SINGLE_DOM;
399 /* The definition does not dominate the use. This is still OK if
400 this may be a use of a biv, i.e. if the def_bb dominates loop
401 latch. */
402 if (just_once_each_iteration_p (current_loop, def_bb))
403 return GRD_MAYBE_BIV;
405 return GRD_INVALID;
408 /* Sets IV to invariant CST in MODE. Always returns true (just for
409 consistency with other iv manipulation functions that may fail). */
411 static bool
412 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
414 if (mode == VOIDmode)
415 mode = GET_MODE (cst);
417 iv->mode = mode;
418 iv->base = cst;
419 iv->step = const0_rtx;
420 iv->first_special = false;
421 iv->extend = IV_UNKNOWN_EXTEND;
422 iv->extend_mode = iv->mode;
423 iv->delta = const0_rtx;
424 iv->mult = const1_rtx;
426 return true;
429 /* Evaluates application of subreg to MODE on IV. */
431 static bool
432 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
434 /* If iv is invariant, just calculate the new value. */
435 if (iv->step == const0_rtx
436 && !iv->first_special)
438 rtx val = get_iv_value (iv, const0_rtx);
439 val = lowpart_subreg (mode, val, iv->extend_mode);
441 iv->base = val;
442 iv->extend = IV_UNKNOWN_EXTEND;
443 iv->mode = iv->extend_mode = mode;
444 iv->delta = const0_rtx;
445 iv->mult = const1_rtx;
446 return true;
449 if (iv->extend_mode == mode)
450 return true;
452 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
453 return false;
455 iv->extend = IV_UNKNOWN_EXTEND;
456 iv->mode = mode;
458 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
459 simplify_gen_binary (MULT, iv->extend_mode,
460 iv->base, iv->mult));
461 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
462 iv->mult = const1_rtx;
463 iv->delta = const0_rtx;
464 iv->first_special = false;
466 return true;
469 /* Evaluates application of EXTEND to MODE on IV. */
471 static bool
472 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
474 /* If iv is invariant, just calculate the new value. */
475 if (iv->step == const0_rtx
476 && !iv->first_special)
478 rtx val = get_iv_value (iv, const0_rtx);
479 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
480 val, iv->extend_mode);
481 iv->base = val;
482 iv->extend = IV_UNKNOWN_EXTEND;
483 iv->mode = iv->extend_mode = mode;
484 iv->delta = const0_rtx;
485 iv->mult = const1_rtx;
486 return true;
489 if (mode != iv->extend_mode)
490 return false;
492 if (iv->extend != IV_UNKNOWN_EXTEND
493 && iv->extend != extend)
494 return false;
496 iv->extend = extend;
498 return true;
501 /* Evaluates negation of IV. */
503 static bool
504 iv_neg (struct rtx_iv *iv)
506 if (iv->extend == IV_UNKNOWN_EXTEND)
508 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
509 iv->base, iv->extend_mode);
510 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
511 iv->step, iv->extend_mode);
513 else
515 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
516 iv->delta, iv->extend_mode);
517 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
518 iv->mult, iv->extend_mode);
521 return true;
524 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
526 static bool
527 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
529 enum machine_mode mode;
530 rtx arg;
532 /* Extend the constant to extend_mode of the other operand if necessary. */
533 if (iv0->extend == IV_UNKNOWN_EXTEND
534 && iv0->mode == iv0->extend_mode
535 && iv0->step == const0_rtx
536 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
538 iv0->extend_mode = iv1->extend_mode;
539 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
540 iv0->base, iv0->mode);
542 if (iv1->extend == IV_UNKNOWN_EXTEND
543 && iv1->mode == iv1->extend_mode
544 && iv1->step == const0_rtx
545 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
547 iv1->extend_mode = iv0->extend_mode;
548 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
549 iv1->base, iv1->mode);
552 mode = iv0->extend_mode;
553 if (mode != iv1->extend_mode)
554 return false;
556 if (iv0->extend == IV_UNKNOWN_EXTEND
557 && iv1->extend == IV_UNKNOWN_EXTEND)
559 if (iv0->mode != iv1->mode)
560 return false;
562 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
563 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
565 return true;
568 /* Handle addition of constant. */
569 if (iv1->extend == IV_UNKNOWN_EXTEND
570 && iv1->mode == mode
571 && iv1->step == const0_rtx)
573 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
574 return true;
577 if (iv0->extend == IV_UNKNOWN_EXTEND
578 && iv0->mode == mode
579 && iv0->step == const0_rtx)
581 arg = iv0->base;
582 *iv0 = *iv1;
583 if (op == MINUS
584 && !iv_neg (iv0))
585 return false;
587 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
588 return true;
591 return false;
594 /* Evaluates multiplication of IV by constant CST. */
596 static bool
597 iv_mult (struct rtx_iv *iv, rtx mby)
599 enum machine_mode mode = iv->extend_mode;
601 if (GET_MODE (mby) != VOIDmode
602 && GET_MODE (mby) != mode)
603 return false;
605 if (iv->extend == IV_UNKNOWN_EXTEND)
607 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
608 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
610 else
612 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
613 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
616 return true;
619 /* Evaluates shift of IV by constant CST. */
621 static bool
622 iv_shift (struct rtx_iv *iv, rtx mby)
624 enum machine_mode mode = iv->extend_mode;
626 if (GET_MODE (mby) != VOIDmode
627 && GET_MODE (mby) != mode)
628 return false;
630 if (iv->extend == IV_UNKNOWN_EXTEND)
632 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
633 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
635 else
637 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
638 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
641 return true;
644 /* The recursive part of get_biv_step. Gets the value of the single value
645 defined by DEF wrto initial value of REG inside loop, in shape described
646 at get_biv_step. */
648 static bool
649 get_biv_step_1 (df_ref def, rtx reg,
650 rtx *inner_step, enum machine_mode *inner_mode,
651 enum iv_extend_code *extend, enum machine_mode outer_mode,
652 rtx *outer_step)
654 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
655 rtx next, nextr, tmp;
656 enum rtx_code code;
657 rtx insn = DF_REF_INSN (def);
658 df_ref next_def;
659 enum iv_grd_result res;
661 set = single_set (insn);
662 if (!set)
663 return false;
665 rhs = find_reg_equal_equiv_note (insn);
666 if (rhs)
667 rhs = XEXP (rhs, 0);
668 else
669 rhs = SET_SRC (set);
671 code = GET_CODE (rhs);
672 switch (code)
674 case SUBREG:
675 case REG:
676 next = rhs;
677 break;
679 case PLUS:
680 case MINUS:
681 op0 = XEXP (rhs, 0);
682 op1 = XEXP (rhs, 1);
684 if (code == PLUS && CONSTANT_P (op0))
686 tmp = op0; op0 = op1; op1 = tmp;
689 if (!simple_reg_p (op0)
690 || !CONSTANT_P (op1))
691 return false;
693 if (GET_MODE (rhs) != outer_mode)
695 /* ppc64 uses expressions like
697 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
699 this is equivalent to
701 (set x':DI (plus:DI y:DI 1))
702 (set x:SI (subreg:SI (x':DI)). */
703 if (GET_CODE (op0) != SUBREG)
704 return false;
705 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
706 return false;
709 next = op0;
710 break;
712 case SIGN_EXTEND:
713 case ZERO_EXTEND:
714 if (GET_MODE (rhs) != outer_mode)
715 return false;
717 op0 = XEXP (rhs, 0);
718 if (!simple_reg_p (op0))
719 return false;
721 next = op0;
722 break;
724 default:
725 return false;
728 if (GET_CODE (next) == SUBREG)
730 if (!subreg_lowpart_p (next))
731 return false;
733 nextr = SUBREG_REG (next);
734 if (GET_MODE (nextr) != outer_mode)
735 return false;
737 else
738 nextr = next;
740 res = iv_get_reaching_def (insn, nextr, &next_def);
742 if (res == GRD_INVALID || res == GRD_INVARIANT)
743 return false;
745 if (res == GRD_MAYBE_BIV)
747 if (!rtx_equal_p (nextr, reg))
748 return false;
750 *inner_step = const0_rtx;
751 *extend = IV_UNKNOWN_EXTEND;
752 *inner_mode = outer_mode;
753 *outer_step = const0_rtx;
755 else if (!get_biv_step_1 (next_def, reg,
756 inner_step, inner_mode, extend, outer_mode,
757 outer_step))
758 return false;
760 if (GET_CODE (next) == SUBREG)
762 enum machine_mode amode = GET_MODE (next);
764 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
765 return false;
767 *inner_mode = amode;
768 *inner_step = simplify_gen_binary (PLUS, outer_mode,
769 *inner_step, *outer_step);
770 *outer_step = const0_rtx;
771 *extend = IV_UNKNOWN_EXTEND;
774 switch (code)
776 case REG:
777 case SUBREG:
778 break;
780 case PLUS:
781 case MINUS:
782 if (*inner_mode == outer_mode
783 /* See comment in previous switch. */
784 || GET_MODE (rhs) != outer_mode)
785 *inner_step = simplify_gen_binary (code, outer_mode,
786 *inner_step, op1);
787 else
788 *outer_step = simplify_gen_binary (code, outer_mode,
789 *outer_step, op1);
790 break;
792 case SIGN_EXTEND:
793 case ZERO_EXTEND:
794 gcc_assert (GET_MODE (op0) == *inner_mode
795 && *extend == IV_UNKNOWN_EXTEND
796 && *outer_step == const0_rtx);
798 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
799 break;
801 default:
802 return false;
805 return true;
808 /* Gets the operation on register REG inside loop, in shape
810 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
812 If the operation cannot be described in this shape, return false.
813 LAST_DEF is the definition of REG that dominates loop latch. */
815 static bool
816 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
817 enum machine_mode *inner_mode, enum iv_extend_code *extend,
818 enum machine_mode *outer_mode, rtx *outer_step)
820 *outer_mode = GET_MODE (reg);
822 if (!get_biv_step_1 (last_def, reg,
823 inner_step, inner_mode, extend, *outer_mode,
824 outer_step))
825 return false;
827 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
828 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
830 return true;
833 /* Records information that DEF is induction variable IV. */
835 static void
836 record_iv (df_ref def, struct rtx_iv *iv)
838 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
840 *recorded_iv = *iv;
841 check_iv_ref_table_size ();
842 DF_REF_IV_SET (def, recorded_iv);
845 /* If DEF was already analyzed for bivness, store the description of the biv to
846 IV and return true. Otherwise return false. */
848 static bool
849 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
851 struct biv_entry *biv = bivs.find_with_hash (def, REGNO (def));
853 if (!biv)
854 return false;
856 *iv = biv->iv;
857 return true;
860 static void
861 record_biv (rtx def, struct rtx_iv *iv)
863 struct biv_entry *biv = XNEW (struct biv_entry);
864 biv_entry **slot = bivs.find_slot_with_hash (def, REGNO (def), INSERT);
866 biv->regno = REGNO (def);
867 biv->iv = *iv;
868 gcc_assert (!*slot);
869 *slot = biv;
872 /* Determines whether DEF is a biv and if so, stores its description
873 to *IV. */
875 static bool
876 iv_analyze_biv (rtx def, struct rtx_iv *iv)
878 rtx inner_step, outer_step;
879 enum machine_mode inner_mode, outer_mode;
880 enum iv_extend_code extend;
881 df_ref last_def;
883 if (dump_file)
885 fprintf (dump_file, "Analyzing ");
886 print_rtl (dump_file, def);
887 fprintf (dump_file, " for bivness.\n");
890 if (!REG_P (def))
892 if (!CONSTANT_P (def))
893 return false;
895 return iv_constant (iv, def, VOIDmode);
898 if (!latch_dominating_def (def, &last_def))
900 if (dump_file)
901 fprintf (dump_file, " not simple.\n");
902 return false;
905 if (!last_def)
906 return iv_constant (iv, def, VOIDmode);
908 if (analyzed_for_bivness_p (def, iv))
910 if (dump_file)
911 fprintf (dump_file, " already analysed.\n");
912 return iv->base != NULL_RTX;
915 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
916 &outer_mode, &outer_step))
918 iv->base = NULL_RTX;
919 goto end;
922 /* Loop transforms base to es (base + inner_step) + outer_step,
923 where es means extend of subreg between inner_mode and outer_mode.
924 The corresponding induction variable is
926 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
928 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
929 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
930 iv->mode = inner_mode;
931 iv->extend_mode = outer_mode;
932 iv->extend = extend;
933 iv->mult = const1_rtx;
934 iv->delta = outer_step;
935 iv->first_special = inner_mode != outer_mode;
937 end:
938 if (dump_file)
940 fprintf (dump_file, " ");
941 dump_iv_info (dump_file, iv);
942 fprintf (dump_file, "\n");
945 record_biv (def, iv);
946 return iv->base != NULL_RTX;
949 /* Analyzes expression RHS used at INSN and stores the result to *IV.
950 The mode of the induction variable is MODE. */
952 bool
953 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
955 rtx mby = NULL_RTX, tmp;
956 rtx op0 = NULL_RTX, op1 = NULL_RTX;
957 struct rtx_iv iv0, iv1;
958 enum rtx_code code = GET_CODE (rhs);
959 enum machine_mode omode = mode;
961 iv->mode = VOIDmode;
962 iv->base = NULL_RTX;
963 iv->step = NULL_RTX;
965 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
967 if (CONSTANT_P (rhs)
968 || REG_P (rhs)
969 || code == SUBREG)
971 if (!iv_analyze_op (insn, rhs, iv))
972 return false;
974 if (iv->mode == VOIDmode)
976 iv->mode = mode;
977 iv->extend_mode = mode;
980 return true;
983 switch (code)
985 case REG:
986 op0 = rhs;
987 break;
989 case SIGN_EXTEND:
990 case ZERO_EXTEND:
991 case NEG:
992 op0 = XEXP (rhs, 0);
993 omode = GET_MODE (op0);
994 break;
996 case PLUS:
997 case MINUS:
998 op0 = XEXP (rhs, 0);
999 op1 = XEXP (rhs, 1);
1000 break;
1002 case MULT:
1003 op0 = XEXP (rhs, 0);
1004 mby = XEXP (rhs, 1);
1005 if (!CONSTANT_P (mby))
1007 tmp = op0;
1008 op0 = mby;
1009 mby = tmp;
1011 if (!CONSTANT_P (mby))
1012 return false;
1013 break;
1015 case ASHIFT:
1016 op0 = XEXP (rhs, 0);
1017 mby = XEXP (rhs, 1);
1018 if (!CONSTANT_P (mby))
1019 return false;
1020 break;
1022 default:
1023 return false;
1026 if (op0
1027 && !iv_analyze_expr (insn, op0, omode, &iv0))
1028 return false;
1030 if (op1
1031 && !iv_analyze_expr (insn, op1, omode, &iv1))
1032 return false;
1034 switch (code)
1036 case SIGN_EXTEND:
1037 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1038 return false;
1039 break;
1041 case ZERO_EXTEND:
1042 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1043 return false;
1044 break;
1046 case NEG:
1047 if (!iv_neg (&iv0))
1048 return false;
1049 break;
1051 case PLUS:
1052 case MINUS:
1053 if (!iv_add (&iv0, &iv1, code))
1054 return false;
1055 break;
1057 case MULT:
1058 if (!iv_mult (&iv0, mby))
1059 return false;
1060 break;
1062 case ASHIFT:
1063 if (!iv_shift (&iv0, mby))
1064 return false;
1065 break;
1067 default:
1068 break;
1071 *iv = iv0;
1072 return iv->base != NULL_RTX;
1075 /* Analyzes iv DEF and stores the result to *IV. */
1077 static bool
1078 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1080 rtx insn = DF_REF_INSN (def);
1081 rtx reg = DF_REF_REG (def);
1082 rtx set, rhs;
1084 if (dump_file)
1086 fprintf (dump_file, "Analyzing def of ");
1087 print_rtl (dump_file, reg);
1088 fprintf (dump_file, " in insn ");
1089 print_rtl_single (dump_file, insn);
1092 check_iv_ref_table_size ();
1093 if (DF_REF_IV (def))
1095 if (dump_file)
1096 fprintf (dump_file, " already analysed.\n");
1097 *iv = *DF_REF_IV (def);
1098 return iv->base != NULL_RTX;
1101 iv->mode = VOIDmode;
1102 iv->base = NULL_RTX;
1103 iv->step = NULL_RTX;
1105 if (!REG_P (reg))
1106 return false;
1108 set = single_set (insn);
1109 if (!set)
1110 return false;
1112 if (!REG_P (SET_DEST (set)))
1113 return false;
1115 gcc_assert (SET_DEST (set) == reg);
1116 rhs = find_reg_equal_equiv_note (insn);
1117 if (rhs)
1118 rhs = XEXP (rhs, 0);
1119 else
1120 rhs = SET_SRC (set);
1122 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1123 record_iv (def, iv);
1125 if (dump_file)
1127 print_rtl (dump_file, reg);
1128 fprintf (dump_file, " in insn ");
1129 print_rtl_single (dump_file, insn);
1130 fprintf (dump_file, " is ");
1131 dump_iv_info (dump_file, iv);
1132 fprintf (dump_file, "\n");
1135 return iv->base != NULL_RTX;
1138 /* Analyzes operand OP of INSN and stores the result to *IV. */
1140 static bool
1141 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1143 df_ref def = NULL;
1144 enum iv_grd_result res;
1146 if (dump_file)
1148 fprintf (dump_file, "Analyzing operand ");
1149 print_rtl (dump_file, op);
1150 fprintf (dump_file, " of insn ");
1151 print_rtl_single (dump_file, insn);
1154 if (function_invariant_p (op))
1155 res = GRD_INVARIANT;
1156 else if (GET_CODE (op) == SUBREG)
1158 if (!subreg_lowpart_p (op))
1159 return false;
1161 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1162 return false;
1164 return iv_subreg (iv, GET_MODE (op));
1166 else
1168 res = iv_get_reaching_def (insn, op, &def);
1169 if (res == GRD_INVALID)
1171 if (dump_file)
1172 fprintf (dump_file, " not simple.\n");
1173 return false;
1177 if (res == GRD_INVARIANT)
1179 iv_constant (iv, op, VOIDmode);
1181 if (dump_file)
1183 fprintf (dump_file, " ");
1184 dump_iv_info (dump_file, iv);
1185 fprintf (dump_file, "\n");
1187 return true;
1190 if (res == GRD_MAYBE_BIV)
1191 return iv_analyze_biv (op, iv);
1193 return iv_analyze_def (def, iv);
1196 /* Analyzes value VAL at INSN and stores the result to *IV. */
1198 bool
1199 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1201 rtx reg;
1203 /* We must find the insn in that val is used, so that we get to UD chains.
1204 Since the function is sometimes called on result of get_condition,
1205 this does not necessarily have to be directly INSN; scan also the
1206 following insns. */
1207 if (simple_reg_p (val))
1209 if (GET_CODE (val) == SUBREG)
1210 reg = SUBREG_REG (val);
1211 else
1212 reg = val;
1214 while (!df_find_use (insn, reg))
1215 insn = NEXT_INSN (insn);
1218 return iv_analyze_op (insn, val, iv);
1221 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1223 bool
1224 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1226 df_ref adef;
1228 adef = df_find_def (insn, def);
1229 if (!adef)
1230 return false;
1232 return iv_analyze_def (adef, iv);
1235 /* Checks whether definition of register REG in INSN is a basic induction
1236 variable. IV analysis must have been initialized (via a call to
1237 iv_analysis_loop_init) for this function to produce a result. */
1239 bool
1240 biv_p (rtx insn, rtx reg)
1242 struct rtx_iv iv;
1243 df_ref def, last_def;
1245 if (!simple_reg_p (reg))
1246 return false;
1248 def = df_find_def (insn, reg);
1249 gcc_assert (def != NULL);
1250 if (!latch_dominating_def (reg, &last_def))
1251 return false;
1252 if (last_def != def)
1253 return false;
1255 if (!iv_analyze_biv (reg, &iv))
1256 return false;
1258 return iv.step != const0_rtx;
1261 /* Calculates value of IV at ITERATION-th iteration. */
1264 get_iv_value (struct rtx_iv *iv, rtx iteration)
1266 rtx val;
1268 /* We would need to generate some if_then_else patterns, and so far
1269 it is not needed anywhere. */
1270 gcc_assert (!iv->first_special);
1272 if (iv->step != const0_rtx && iteration != const0_rtx)
1273 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1274 simplify_gen_binary (MULT, iv->extend_mode,
1275 iv->step, iteration));
1276 else
1277 val = iv->base;
1279 if (iv->extend_mode == iv->mode)
1280 return val;
1282 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1284 if (iv->extend == IV_UNKNOWN_EXTEND)
1285 return val;
1287 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1288 iv->extend_mode, val, iv->mode);
1289 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1290 simplify_gen_binary (MULT, iv->extend_mode,
1291 iv->mult, val));
1293 return val;
1296 /* Free the data for an induction variable analysis. */
1298 void
1299 iv_analysis_done (void)
1301 if (!clean_slate)
1303 clear_iv_info ();
1304 clean_slate = true;
1305 df_finish_pass (true);
1306 bivs.dispose ();
1307 free (iv_ref_table);
1308 iv_ref_table = NULL;
1309 iv_ref_table_size = 0;
1313 /* Computes inverse to X modulo (1 << MOD). */
1315 static unsigned HOST_WIDEST_INT
1316 inverse (unsigned HOST_WIDEST_INT x, int mod)
1318 unsigned HOST_WIDEST_INT mask =
1319 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1320 unsigned HOST_WIDEST_INT rslt = 1;
1321 int i;
1323 for (i = 0; i < mod - 1; i++)
1325 rslt = (rslt * x) & mask;
1326 x = (x * x) & mask;
1329 return rslt;
1332 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1334 static int
1335 altered_reg_used (rtx *reg, void *alt)
1337 if (!REG_P (*reg))
1338 return 0;
1340 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1343 /* Marks registers altered by EXPR in set ALT. */
1345 static void
1346 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1348 if (GET_CODE (expr) == SUBREG)
1349 expr = SUBREG_REG (expr);
1350 if (!REG_P (expr))
1351 return;
1353 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1356 /* Checks whether RHS is simple enough to process. */
1358 static bool
1359 simple_rhs_p (rtx rhs)
1361 rtx op0, op1;
1363 if (function_invariant_p (rhs)
1364 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1365 return true;
1367 switch (GET_CODE (rhs))
1369 case PLUS:
1370 case MINUS:
1371 case AND:
1372 op0 = XEXP (rhs, 0);
1373 op1 = XEXP (rhs, 1);
1374 /* Allow reg OP const and reg OP reg. */
1375 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1376 && !function_invariant_p (op0))
1377 return false;
1378 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1379 && !function_invariant_p (op1))
1380 return false;
1382 return true;
1384 case ASHIFT:
1385 case ASHIFTRT:
1386 case LSHIFTRT:
1387 case MULT:
1388 op0 = XEXP (rhs, 0);
1389 op1 = XEXP (rhs, 1);
1390 /* Allow reg OP const. */
1391 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1392 return false;
1393 if (!function_invariant_p (op1))
1394 return false;
1396 return true;
1398 default:
1399 return false;
1403 /* If REG has a single definition, replace it with its known value in EXPR.
1404 Callback for for_each_rtx. */
1406 static int
1407 replace_single_def_regs (rtx *reg, void *expr1)
1409 unsigned regno;
1410 df_ref adef;
1411 rtx set, src;
1412 rtx *expr = (rtx *)expr1;
1414 if (!REG_P (*reg))
1415 return 0;
1417 regno = REGNO (*reg);
1418 for (;;)
1420 rtx note;
1421 adef = DF_REG_DEF_CHAIN (regno);
1422 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1423 || DF_REF_IS_ARTIFICIAL (adef))
1424 return -1;
1426 set = single_set (DF_REF_INSN (adef));
1427 if (set == NULL || !REG_P (SET_DEST (set))
1428 || REGNO (SET_DEST (set)) != regno)
1429 return -1;
1431 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1433 if (note && function_invariant_p (XEXP (note, 0)))
1435 src = XEXP (note, 0);
1436 break;
1438 src = SET_SRC (set);
1440 if (REG_P (src))
1442 regno = REGNO (src);
1443 continue;
1445 break;
1447 if (!function_invariant_p (src))
1448 return -1;
1450 *expr = simplify_replace_rtx (*expr, *reg, src);
1451 return 1;
1454 /* A subroutine of simplify_using_initial_values, this function examines INSN
1455 to see if it contains a suitable set that we can use to make a replacement.
1456 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1457 the set; return false otherwise. */
1459 static bool
1460 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1462 rtx set = single_set (insn);
1463 rtx lhs = NULL_RTX, rhs;
1465 if (!set)
1466 return false;
1468 lhs = SET_DEST (set);
1469 if (!REG_P (lhs))
1470 return false;
1472 rhs = find_reg_equal_equiv_note (insn);
1473 if (rhs)
1474 rhs = XEXP (rhs, 0);
1475 else
1476 rhs = SET_SRC (set);
1478 if (!simple_rhs_p (rhs))
1479 return false;
1481 *dest = lhs;
1482 *src = rhs;
1483 return true;
1486 /* Using the data returned by suitable_set_for_replacement, replace DEST
1487 with SRC in *EXPR and return the new expression. Also call
1488 replace_single_def_regs if the replacement changed something. */
1489 static void
1490 replace_in_expr (rtx *expr, rtx dest, rtx src)
1492 rtx old = *expr;
1493 *expr = simplify_replace_rtx (*expr, dest, src);
1494 if (old == *expr)
1495 return;
1496 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1497 continue;
1500 /* Checks whether A implies B. */
1502 static bool
1503 implies_p (rtx a, rtx b)
1505 rtx op0, op1, opb0, opb1, r;
1506 enum machine_mode mode;
1508 if (rtx_equal_p (a, b))
1509 return true;
1511 if (GET_CODE (a) == EQ)
1513 op0 = XEXP (a, 0);
1514 op1 = XEXP (a, 1);
1516 if (REG_P (op0)
1517 || (GET_CODE (op0) == SUBREG
1518 && REG_P (SUBREG_REG (op0))))
1520 r = simplify_replace_rtx (b, op0, op1);
1521 if (r == const_true_rtx)
1522 return true;
1525 if (REG_P (op1)
1526 || (GET_CODE (op1) == SUBREG
1527 && REG_P (SUBREG_REG (op1))))
1529 r = simplify_replace_rtx (b, op1, op0);
1530 if (r == const_true_rtx)
1531 return true;
1535 if (b == const_true_rtx)
1536 return true;
1538 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1539 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1540 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1541 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1542 return false;
1544 op0 = XEXP (a, 0);
1545 op1 = XEXP (a, 1);
1546 opb0 = XEXP (b, 0);
1547 opb1 = XEXP (b, 1);
1549 mode = GET_MODE (op0);
1550 if (mode != GET_MODE (opb0))
1551 mode = VOIDmode;
1552 else if (mode == VOIDmode)
1554 mode = GET_MODE (op1);
1555 if (mode != GET_MODE (opb1))
1556 mode = VOIDmode;
1559 /* A < B implies A + 1 <= B. */
1560 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1561 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1564 if (GET_CODE (a) == GT)
1566 r = op0;
1567 op0 = op1;
1568 op1 = r;
1571 if (GET_CODE (b) == GE)
1573 r = opb0;
1574 opb0 = opb1;
1575 opb1 = r;
1578 if (SCALAR_INT_MODE_P (mode)
1579 && rtx_equal_p (op1, opb1)
1580 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1581 return true;
1582 return false;
1585 /* A < B or A > B imply A != B. TODO: Likewise
1586 A + n < B implies A != B + n if neither wraps. */
1587 if (GET_CODE (b) == NE
1588 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1589 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1591 if (rtx_equal_p (op0, opb0)
1592 && rtx_equal_p (op1, opb1))
1593 return true;
1596 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1597 if (GET_CODE (a) == NE
1598 && op1 == const0_rtx)
1600 if ((GET_CODE (b) == GTU
1601 && opb1 == const0_rtx)
1602 || (GET_CODE (b) == GEU
1603 && opb1 == const1_rtx))
1604 return rtx_equal_p (op0, opb0);
1607 /* A != N is equivalent to A - (N + 1) <u -1. */
1608 if (GET_CODE (a) == NE
1609 && CONST_INT_P (op1)
1610 && GET_CODE (b) == LTU
1611 && opb1 == constm1_rtx
1612 && GET_CODE (opb0) == PLUS
1613 && CONST_INT_P (XEXP (opb0, 1))
1614 /* Avoid overflows. */
1615 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1616 != ((unsigned HOST_WIDE_INT)1
1617 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1618 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1619 return rtx_equal_p (op0, XEXP (opb0, 0));
1621 /* Likewise, A != N implies A - N > 0. */
1622 if (GET_CODE (a) == NE
1623 && CONST_INT_P (op1))
1625 if (GET_CODE (b) == GTU
1626 && GET_CODE (opb0) == PLUS
1627 && opb1 == const0_rtx
1628 && CONST_INT_P (XEXP (opb0, 1))
1629 /* Avoid overflows. */
1630 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1631 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1632 && rtx_equal_p (XEXP (opb0, 0), op0))
1633 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1634 if (GET_CODE (b) == GEU
1635 && GET_CODE (opb0) == PLUS
1636 && opb1 == const1_rtx
1637 && CONST_INT_P (XEXP (opb0, 1))
1638 /* Avoid overflows. */
1639 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1640 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1641 && rtx_equal_p (XEXP (opb0, 0), op0))
1642 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1645 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1646 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1647 && CONST_INT_P (op1)
1648 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1649 || INTVAL (op1) >= 0)
1650 && GET_CODE (b) == LTU
1651 && CONST_INT_P (opb1)
1652 && rtx_equal_p (op0, opb0))
1653 return INTVAL (opb1) < 0;
1655 return false;
1658 /* Canonicalizes COND so that
1660 (1) Ensure that operands are ordered according to
1661 swap_commutative_operands_p.
1662 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1663 for GE, GEU, and LEU. */
1666 canon_condition (rtx cond)
1668 rtx tem;
1669 rtx op0, op1;
1670 enum rtx_code code;
1671 enum machine_mode mode;
1673 code = GET_CODE (cond);
1674 op0 = XEXP (cond, 0);
1675 op1 = XEXP (cond, 1);
1677 if (swap_commutative_operands_p (op0, op1))
1679 code = swap_condition (code);
1680 tem = op0;
1681 op0 = op1;
1682 op1 = tem;
1685 mode = GET_MODE (op0);
1686 if (mode == VOIDmode)
1687 mode = GET_MODE (op1);
1688 gcc_assert (mode != VOIDmode);
1690 if (CONST_INT_P (op1)
1691 && GET_MODE_CLASS (mode) != MODE_CC
1692 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1694 HOST_WIDE_INT const_val = INTVAL (op1);
1695 unsigned HOST_WIDE_INT uconst_val = const_val;
1696 unsigned HOST_WIDE_INT max_val
1697 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1699 switch (code)
1701 case LE:
1702 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1703 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1704 break;
1706 /* When cross-compiling, const_val might be sign-extended from
1707 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1708 case GE:
1709 if ((HOST_WIDE_INT) (const_val & max_val)
1710 != (((HOST_WIDE_INT) 1
1711 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1712 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1713 break;
1715 case LEU:
1716 if (uconst_val < max_val)
1717 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1718 break;
1720 case GEU:
1721 if (uconst_val != 0)
1722 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1723 break;
1725 default:
1726 break;
1730 if (op0 != XEXP (cond, 0)
1731 || op1 != XEXP (cond, 1)
1732 || code != GET_CODE (cond)
1733 || GET_MODE (cond) != SImode)
1734 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1736 return cond;
1739 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1740 set of altered regs. */
1742 void
1743 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1745 rtx rev, reve, exp = *expr;
1747 /* If some register gets altered later, we do not really speak about its
1748 value at the time of comparison. */
1749 if (altered
1750 && for_each_rtx (&cond, altered_reg_used, altered))
1751 return;
1753 if (GET_CODE (cond) == EQ
1754 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1756 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1757 return;
1760 if (!COMPARISON_P (exp))
1761 return;
1763 rev = reversed_condition (cond);
1764 reve = reversed_condition (exp);
1766 cond = canon_condition (cond);
1767 exp = canon_condition (exp);
1768 if (rev)
1769 rev = canon_condition (rev);
1770 if (reve)
1771 reve = canon_condition (reve);
1773 if (rtx_equal_p (exp, cond))
1775 *expr = const_true_rtx;
1776 return;
1779 if (rev && rtx_equal_p (exp, rev))
1781 *expr = const0_rtx;
1782 return;
1785 if (implies_p (cond, exp))
1787 *expr = const_true_rtx;
1788 return;
1791 if (reve && implies_p (cond, reve))
1793 *expr = const0_rtx;
1794 return;
1797 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1798 be false. */
1799 if (rev && implies_p (exp, rev))
1801 *expr = const0_rtx;
1802 return;
1805 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1806 if (rev && reve && implies_p (reve, rev))
1808 *expr = const_true_rtx;
1809 return;
1812 /* We would like to have some other tests here. TODO. */
1814 return;
1817 /* Use relationship between A and *B to eventually eliminate *B.
1818 OP is the operation we consider. */
1820 static void
1821 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1823 switch (op)
1825 case AND:
1826 /* If A implies *B, we may replace *B by true. */
1827 if (implies_p (a, *b))
1828 *b = const_true_rtx;
1829 break;
1831 case IOR:
1832 /* If *B implies A, we may replace *B by false. */
1833 if (implies_p (*b, a))
1834 *b = const0_rtx;
1835 break;
1837 default:
1838 gcc_unreachable ();
1842 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1843 operation we consider. */
1845 static void
1846 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1848 rtx elt;
1850 for (elt = tail; elt; elt = XEXP (elt, 1))
1851 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1852 for (elt = tail; elt; elt = XEXP (elt, 1))
1853 eliminate_implied_condition (op, XEXP (elt, 0), head);
1856 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1857 is a list, its elements are assumed to be combined using OP. */
1859 static void
1860 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1862 bool expression_valid;
1863 rtx head, tail, insn, cond_list, last_valid_expr;
1864 rtx neutral, aggr;
1865 regset altered, this_altered;
1866 edge e;
1868 if (!*expr)
1869 return;
1871 if (CONSTANT_P (*expr))
1872 return;
1874 if (GET_CODE (*expr) == EXPR_LIST)
1876 head = XEXP (*expr, 0);
1877 tail = XEXP (*expr, 1);
1879 eliminate_implied_conditions (op, &head, tail);
1881 switch (op)
1883 case AND:
1884 neutral = const_true_rtx;
1885 aggr = const0_rtx;
1886 break;
1888 case IOR:
1889 neutral = const0_rtx;
1890 aggr = const_true_rtx;
1891 break;
1893 default:
1894 gcc_unreachable ();
1897 simplify_using_initial_values (loop, UNKNOWN, &head);
1898 if (head == aggr)
1900 XEXP (*expr, 0) = aggr;
1901 XEXP (*expr, 1) = NULL_RTX;
1902 return;
1904 else if (head == neutral)
1906 *expr = tail;
1907 simplify_using_initial_values (loop, op, expr);
1908 return;
1910 simplify_using_initial_values (loop, op, &tail);
1912 if (tail && XEXP (tail, 0) == aggr)
1914 *expr = tail;
1915 return;
1918 XEXP (*expr, 0) = head;
1919 XEXP (*expr, 1) = tail;
1920 return;
1923 gcc_assert (op == UNKNOWN);
1925 for (;;)
1926 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1927 break;
1928 if (CONSTANT_P (*expr))
1929 return;
1931 e = loop_preheader_edge (loop);
1932 if (e->src == ENTRY_BLOCK_PTR)
1933 return;
1935 altered = ALLOC_REG_SET (&reg_obstack);
1936 this_altered = ALLOC_REG_SET (&reg_obstack);
1938 expression_valid = true;
1939 last_valid_expr = *expr;
1940 cond_list = NULL_RTX;
1941 while (1)
1943 insn = BB_END (e->src);
1944 if (any_condjump_p (insn))
1946 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1948 if (cond && (e->flags & EDGE_FALLTHRU))
1949 cond = reversed_condition (cond);
1950 if (cond)
1952 rtx old = *expr;
1953 simplify_using_condition (cond, expr, altered);
1954 if (old != *expr)
1956 rtx note;
1957 if (CONSTANT_P (*expr))
1958 goto out;
1959 for (note = cond_list; note; note = XEXP (note, 1))
1961 simplify_using_condition (XEXP (note, 0), expr, altered);
1962 if (CONSTANT_P (*expr))
1963 goto out;
1966 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1970 FOR_BB_INSNS_REVERSE (e->src, insn)
1972 rtx src, dest;
1973 rtx old = *expr;
1975 if (!INSN_P (insn))
1976 continue;
1978 CLEAR_REG_SET (this_altered);
1979 note_stores (PATTERN (insn), mark_altered, this_altered);
1980 if (CALL_P (insn))
1982 /* Kill all call clobbered registers. */
1983 unsigned int i;
1984 hard_reg_set_iterator hrsi;
1985 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1986 0, i, hrsi)
1987 SET_REGNO_REG_SET (this_altered, i);
1990 if (suitable_set_for_replacement (insn, &dest, &src))
1992 rtx *pnote, *pnote_next;
1994 replace_in_expr (expr, dest, src);
1995 if (CONSTANT_P (*expr))
1996 goto out;
1998 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2000 rtx note = *pnote;
2001 rtx old_cond = XEXP (note, 0);
2003 pnote_next = &XEXP (note, 1);
2004 replace_in_expr (&XEXP (note, 0), dest, src);
2006 /* We can no longer use a condition that has been simplified
2007 to a constant, and simplify_using_condition will abort if
2008 we try. */
2009 if (CONSTANT_P (XEXP (note, 0)))
2011 *pnote = *pnote_next;
2012 pnote_next = pnote;
2013 free_EXPR_LIST_node (note);
2015 /* Retry simplifications with this condition if either the
2016 expression or the condition changed. */
2017 else if (old_cond != XEXP (note, 0) || old != *expr)
2018 simplify_using_condition (XEXP (note, 0), expr, altered);
2021 else
2023 rtx *pnote, *pnote_next;
2025 /* If we did not use this insn to make a replacement, any overlap
2026 between stores in this insn and our expression will cause the
2027 expression to become invalid. */
2028 if (for_each_rtx (expr, altered_reg_used, this_altered))
2029 goto out;
2031 /* Likewise for the conditions. */
2032 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2034 rtx note = *pnote;
2035 rtx old_cond = XEXP (note, 0);
2037 pnote_next = &XEXP (note, 1);
2038 if (for_each_rtx (&old_cond, altered_reg_used, this_altered))
2040 *pnote = *pnote_next;
2041 pnote_next = pnote;
2042 free_EXPR_LIST_node (note);
2047 if (CONSTANT_P (*expr))
2048 goto out;
2050 IOR_REG_SET (altered, this_altered);
2052 /* If the expression now contains regs that have been altered, we
2053 can't return it to the caller. However, it is still valid for
2054 further simplification, so keep searching to see if we can
2055 eventually turn it into a constant. */
2056 if (for_each_rtx (expr, altered_reg_used, altered))
2057 expression_valid = false;
2058 if (expression_valid)
2059 last_valid_expr = *expr;
2062 if (!single_pred_p (e->src)
2063 || single_pred (e->src) == ENTRY_BLOCK_PTR)
2064 break;
2065 e = single_pred_edge (e->src);
2068 out:
2069 free_EXPR_LIST_list (&cond_list);
2070 if (!CONSTANT_P (*expr))
2071 *expr = last_valid_expr;
2072 FREE_REG_SET (altered);
2073 FREE_REG_SET (this_altered);
2076 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2077 that IV occurs as left operands of comparison COND and its signedness
2078 is SIGNED_P to DESC. */
2080 static void
2081 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2082 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2084 rtx mmin, mmax, cond_over, cond_under;
2086 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2087 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2088 iv->base, mmin);
2089 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2090 iv->base, mmax);
2092 switch (cond)
2094 case LE:
2095 case LT:
2096 case LEU:
2097 case LTU:
2098 if (cond_under != const0_rtx)
2099 desc->infinite =
2100 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2101 if (cond_over != const0_rtx)
2102 desc->noloop_assumptions =
2103 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2104 break;
2106 case GE:
2107 case GT:
2108 case GEU:
2109 case GTU:
2110 if (cond_over != const0_rtx)
2111 desc->infinite =
2112 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2113 if (cond_under != const0_rtx)
2114 desc->noloop_assumptions =
2115 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2116 break;
2118 case NE:
2119 if (cond_over != const0_rtx)
2120 desc->infinite =
2121 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2122 if (cond_under != const0_rtx)
2123 desc->infinite =
2124 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2125 break;
2127 default:
2128 gcc_unreachable ();
2131 iv->mode = mode;
2132 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2135 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2136 subregs of the same mode if possible (sometimes it is necessary to add
2137 some assumptions to DESC). */
2139 static bool
2140 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2141 enum rtx_code cond, struct niter_desc *desc)
2143 enum machine_mode comp_mode;
2144 bool signed_p;
2146 /* If the ivs behave specially in the first iteration, or are
2147 added/multiplied after extending, we ignore them. */
2148 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2149 return false;
2150 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2151 return false;
2153 /* If there is some extend, it must match signedness of the comparison. */
2154 switch (cond)
2156 case LE:
2157 case LT:
2158 if (iv0->extend == IV_ZERO_EXTEND
2159 || iv1->extend == IV_ZERO_EXTEND)
2160 return false;
2161 signed_p = true;
2162 break;
2164 case LEU:
2165 case LTU:
2166 if (iv0->extend == IV_SIGN_EXTEND
2167 || iv1->extend == IV_SIGN_EXTEND)
2168 return false;
2169 signed_p = false;
2170 break;
2172 case NE:
2173 if (iv0->extend != IV_UNKNOWN_EXTEND
2174 && iv1->extend != IV_UNKNOWN_EXTEND
2175 && iv0->extend != iv1->extend)
2176 return false;
2178 signed_p = false;
2179 if (iv0->extend != IV_UNKNOWN_EXTEND)
2180 signed_p = iv0->extend == IV_SIGN_EXTEND;
2181 if (iv1->extend != IV_UNKNOWN_EXTEND)
2182 signed_p = iv1->extend == IV_SIGN_EXTEND;
2183 break;
2185 default:
2186 gcc_unreachable ();
2189 /* Values of both variables should be computed in the same mode. These
2190 might indeed be different, if we have comparison like
2192 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2194 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2195 in different modes. This does not seem impossible to handle, but
2196 it hardly ever occurs in practice.
2198 The only exception is the case when one of operands is invariant.
2199 For example pentium 3 generates comparisons like
2200 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2201 definitely do not want this prevent the optimization. */
2202 comp_mode = iv0->extend_mode;
2203 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2204 comp_mode = iv1->extend_mode;
2206 if (iv0->extend_mode != comp_mode)
2208 if (iv0->mode != iv0->extend_mode
2209 || iv0->step != const0_rtx)
2210 return false;
2212 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2213 comp_mode, iv0->base, iv0->mode);
2214 iv0->extend_mode = comp_mode;
2217 if (iv1->extend_mode != comp_mode)
2219 if (iv1->mode != iv1->extend_mode
2220 || iv1->step != const0_rtx)
2221 return false;
2223 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2224 comp_mode, iv1->base, iv1->mode);
2225 iv1->extend_mode = comp_mode;
2228 /* Check that both ivs belong to a range of a single mode. If one of the
2229 operands is an invariant, we may need to shorten it into the common
2230 mode. */
2231 if (iv0->mode == iv0->extend_mode
2232 && iv0->step == const0_rtx
2233 && iv0->mode != iv1->mode)
2234 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2236 if (iv1->mode == iv1->extend_mode
2237 && iv1->step == const0_rtx
2238 && iv0->mode != iv1->mode)
2239 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2241 if (iv0->mode != iv1->mode)
2242 return false;
2244 desc->mode = iv0->mode;
2245 desc->signed_p = signed_p;
2247 return true;
2250 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2251 result. This function is called from iv_number_of_iterations with
2252 a number of fields in DESC already filled in. OLD_NITER is the original
2253 expression for the number of iterations, before we tried to simplify it. */
2255 static unsigned HOST_WIDEST_INT
2256 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2258 rtx niter = desc->niter_expr;
2259 rtx mmin, mmax, cmp;
2260 unsigned HOST_WIDEST_INT nmax, inc;
2261 unsigned HOST_WIDEST_INT andmax = 0;
2263 /* We used to look for constant operand 0 of AND,
2264 but canonicalization should always make this impossible. */
2265 gcc_checking_assert (GET_CODE (niter) != AND
2266 || !CONST_INT_P (XEXP (niter, 0)));
2268 if (GET_CODE (niter) == AND
2269 && CONST_INT_P (XEXP (niter, 1)))
2271 andmax = UINTVAL (XEXP (niter, 1));
2272 niter = XEXP (niter, 0);
2275 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2276 nmax = INTVAL (mmax) - INTVAL (mmin);
2278 if (GET_CODE (niter) == UDIV)
2280 if (!CONST_INT_P (XEXP (niter, 1)))
2281 return nmax;
2282 inc = INTVAL (XEXP (niter, 1));
2283 niter = XEXP (niter, 0);
2285 else
2286 inc = 1;
2288 /* We could use a binary search here, but for now improving the upper
2289 bound by just one eliminates one important corner case. */
2290 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2291 desc->mode, old_niter, mmax);
2292 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2293 if (cmp == const_true_rtx)
2295 nmax--;
2297 if (dump_file)
2298 fprintf (dump_file, ";; improved upper bound by one.\n");
2300 nmax /= inc;
2301 if (andmax)
2302 nmax = MIN (nmax, andmax);
2303 if (dump_file)
2304 fprintf (dump_file, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC".\n",
2305 nmax);
2306 return nmax;
2309 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2310 the result into DESC. Very similar to determine_number_of_iterations
2311 (basically its rtl version), complicated by things like subregs. */
2313 static void
2314 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2315 struct niter_desc *desc)
2317 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2318 struct rtx_iv iv0, iv1, tmp_iv;
2319 rtx assumption, may_not_xform;
2320 enum rtx_code cond;
2321 enum machine_mode mode, comp_mode;
2322 rtx mmin, mmax, mode_mmin, mode_mmax;
2323 unsigned HOST_WIDEST_INT s, size, d, inv, max;
2324 HOST_WIDEST_INT up, down, inc, step_val;
2325 int was_sharp = false;
2326 rtx old_niter;
2327 bool step_is_pow2;
2329 /* The meaning of these assumptions is this:
2330 if !assumptions
2331 then the rest of information does not have to be valid
2332 if noloop_assumptions then the loop does not roll
2333 if infinite then this exit is never used */
2335 desc->assumptions = NULL_RTX;
2336 desc->noloop_assumptions = NULL_RTX;
2337 desc->infinite = NULL_RTX;
2338 desc->simple_p = true;
2340 desc->const_iter = false;
2341 desc->niter_expr = NULL_RTX;
2343 cond = GET_CODE (condition);
2344 gcc_assert (COMPARISON_P (condition));
2346 mode = GET_MODE (XEXP (condition, 0));
2347 if (mode == VOIDmode)
2348 mode = GET_MODE (XEXP (condition, 1));
2349 /* The constant comparisons should be folded. */
2350 gcc_assert (mode != VOIDmode);
2352 /* We only handle integers or pointers. */
2353 if (GET_MODE_CLASS (mode) != MODE_INT
2354 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2355 goto fail;
2357 op0 = XEXP (condition, 0);
2358 if (!iv_analyze (insn, op0, &iv0))
2359 goto fail;
2360 if (iv0.extend_mode == VOIDmode)
2361 iv0.mode = iv0.extend_mode = mode;
2363 op1 = XEXP (condition, 1);
2364 if (!iv_analyze (insn, op1, &iv1))
2365 goto fail;
2366 if (iv1.extend_mode == VOIDmode)
2367 iv1.mode = iv1.extend_mode = mode;
2369 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2370 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2371 goto fail;
2373 /* Check condition and normalize it. */
2375 switch (cond)
2377 case GE:
2378 case GT:
2379 case GEU:
2380 case GTU:
2381 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2382 cond = swap_condition (cond);
2383 break;
2384 case NE:
2385 case LE:
2386 case LEU:
2387 case LT:
2388 case LTU:
2389 break;
2390 default:
2391 goto fail;
2394 /* Handle extends. This is relatively nontrivial, so we only try in some
2395 easy cases, when we can canonicalize the ivs (possibly by adding some
2396 assumptions) to shape subreg (base + i * step). This function also fills
2397 in desc->mode and desc->signed_p. */
2399 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2400 goto fail;
2402 comp_mode = iv0.extend_mode;
2403 mode = iv0.mode;
2404 size = GET_MODE_BITSIZE (mode);
2405 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2406 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2407 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2409 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2410 goto fail;
2412 /* We can take care of the case of two induction variables chasing each other
2413 if the test is NE. I have never seen a loop using it, but still it is
2414 cool. */
2415 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2417 if (cond != NE)
2418 goto fail;
2420 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2421 iv1.step = const0_rtx;
2424 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2425 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2427 /* This is either infinite loop or the one that ends immediately, depending
2428 on initial values. Unswitching should remove this kind of conditions. */
2429 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2430 goto fail;
2432 if (cond != NE)
2434 if (iv0.step == const0_rtx)
2435 step_val = -INTVAL (iv1.step);
2436 else
2437 step_val = INTVAL (iv0.step);
2439 /* Ignore loops of while (i-- < 10) type. */
2440 if (step_val < 0)
2441 goto fail;
2443 step_is_pow2 = !(step_val & (step_val - 1));
2445 else
2447 /* We do not care about whether the step is power of two in this
2448 case. */
2449 step_is_pow2 = false;
2450 step_val = 0;
2453 /* Some more condition normalization. We must record some assumptions
2454 due to overflows. */
2455 switch (cond)
2457 case LT:
2458 case LTU:
2459 /* We want to take care only of non-sharp relationals; this is easy,
2460 as in cases the overflow would make the transformation unsafe
2461 the loop does not roll. Seemingly it would make more sense to want
2462 to take care of sharp relationals instead, as NE is more similar to
2463 them, but the problem is that here the transformation would be more
2464 difficult due to possibly infinite loops. */
2465 if (iv0.step == const0_rtx)
2467 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2468 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2469 mode_mmax);
2470 if (assumption == const_true_rtx)
2471 goto zero_iter_simplify;
2472 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2473 iv0.base, const1_rtx);
2475 else
2477 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2478 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2479 mode_mmin);
2480 if (assumption == const_true_rtx)
2481 goto zero_iter_simplify;
2482 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2483 iv1.base, constm1_rtx);
2486 if (assumption != const0_rtx)
2487 desc->noloop_assumptions =
2488 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2489 cond = (cond == LT) ? LE : LEU;
2491 /* It will be useful to be able to tell the difference once more in
2492 LE -> NE reduction. */
2493 was_sharp = true;
2494 break;
2495 default: ;
2498 /* Take care of trivially infinite loops. */
2499 if (cond != NE)
2501 if (iv0.step == const0_rtx)
2503 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2504 if (rtx_equal_p (tmp, mode_mmin))
2506 desc->infinite =
2507 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2508 /* Fill in the remaining fields somehow. */
2509 goto zero_iter_simplify;
2512 else
2514 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2515 if (rtx_equal_p (tmp, mode_mmax))
2517 desc->infinite =
2518 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2519 /* Fill in the remaining fields somehow. */
2520 goto zero_iter_simplify;
2525 /* If we can we want to take care of NE conditions instead of size
2526 comparisons, as they are much more friendly (most importantly
2527 this takes care of special handling of loops with step 1). We can
2528 do it if we first check that upper bound is greater or equal to
2529 lower bound, their difference is constant c modulo step and that
2530 there is not an overflow. */
2531 if (cond != NE)
2533 if (iv0.step == const0_rtx)
2534 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2535 else
2536 step = iv0.step;
2537 step = lowpart_subreg (mode, step, comp_mode);
2538 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2539 delta = lowpart_subreg (mode, delta, comp_mode);
2540 delta = simplify_gen_binary (UMOD, mode, delta, step);
2541 may_xform = const0_rtx;
2542 may_not_xform = const_true_rtx;
2544 if (CONST_INT_P (delta))
2546 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2548 /* A special case. We have transformed condition of type
2549 for (i = 0; i < 4; i += 4)
2550 into
2551 for (i = 0; i <= 3; i += 4)
2552 obviously if the test for overflow during that transformation
2553 passed, we cannot overflow here. Most importantly any
2554 loop with sharp end condition and step 1 falls into this
2555 category, so handling this case specially is definitely
2556 worth the troubles. */
2557 may_xform = const_true_rtx;
2559 else if (iv0.step == const0_rtx)
2561 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2562 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2563 bound = lowpart_subreg (mode, bound, comp_mode);
2564 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2565 may_xform = simplify_gen_relational (cond, SImode, mode,
2566 bound, tmp);
2567 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2568 SImode, mode,
2569 bound, tmp);
2571 else
2573 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2574 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2575 bound = lowpart_subreg (mode, bound, comp_mode);
2576 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2577 may_xform = simplify_gen_relational (cond, SImode, mode,
2578 tmp, bound);
2579 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2580 SImode, mode,
2581 tmp, bound);
2585 if (may_xform != const0_rtx)
2587 /* We perform the transformation always provided that it is not
2588 completely senseless. This is OK, as we would need this assumption
2589 to determine the number of iterations anyway. */
2590 if (may_xform != const_true_rtx)
2592 /* If the step is a power of two and the final value we have
2593 computed overflows, the cycle is infinite. Otherwise it
2594 is nontrivial to compute the number of iterations. */
2595 if (step_is_pow2)
2596 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2597 desc->infinite);
2598 else
2599 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2600 desc->assumptions);
2603 /* We are going to lose some information about upper bound on
2604 number of iterations in this step, so record the information
2605 here. */
2606 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2607 if (CONST_INT_P (iv1.base))
2608 up = INTVAL (iv1.base);
2609 else
2610 up = INTVAL (mode_mmax) - inc;
2611 down = INTVAL (CONST_INT_P (iv0.base)
2612 ? iv0.base
2613 : mode_mmin);
2614 max = (up - down) / inc + 1;
2615 if (!desc->infinite
2616 && !desc->assumptions)
2617 record_niter_bound (loop, double_int::from_uhwi (max),
2618 false, true);
2620 if (iv0.step == const0_rtx)
2622 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2623 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2625 else
2627 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2628 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2631 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2632 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2633 assumption = simplify_gen_relational (reverse_condition (cond),
2634 SImode, mode, tmp0, tmp1);
2635 if (assumption == const_true_rtx)
2636 goto zero_iter_simplify;
2637 else if (assumption != const0_rtx)
2638 desc->noloop_assumptions =
2639 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2640 cond = NE;
2644 /* Count the number of iterations. */
2645 if (cond == NE)
2647 /* Everything we do here is just arithmetics modulo size of mode. This
2648 makes us able to do more involved computations of number of iterations
2649 than in other cases. First transform the condition into shape
2650 s * i <> c, with s positive. */
2651 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2652 iv0.base = const0_rtx;
2653 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2654 iv1.step = const0_rtx;
2655 if (INTVAL (iv0.step) < 0)
2657 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2658 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2660 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2662 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2663 is infinite. Otherwise, the number of iterations is
2664 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2665 s = INTVAL (iv0.step); d = 1;
2666 while (s % 2 != 1)
2668 s /= 2;
2669 d *= 2;
2670 size--;
2672 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2674 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2675 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2676 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2677 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2679 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2680 inv = inverse (s, size);
2681 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2682 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2684 else
2686 if (iv1.step == const0_rtx)
2687 /* Condition in shape a + s * i <= b
2688 We must know that b + s does not overflow and a <= b + s and then we
2689 can compute number of iterations as (b + s - a) / s. (It might
2690 seem that we in fact could be more clever about testing the b + s
2691 overflow condition using some information about b - a mod s,
2692 but it was already taken into account during LE -> NE transform). */
2694 step = iv0.step;
2695 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2696 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2698 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2699 lowpart_subreg (mode, step,
2700 comp_mode));
2701 if (step_is_pow2)
2703 rtx t0, t1;
2705 /* If s is power of 2, we know that the loop is infinite if
2706 a % s <= b % s and b + s overflows. */
2707 assumption = simplify_gen_relational (reverse_condition (cond),
2708 SImode, mode,
2709 tmp1, bound);
2711 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2712 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2713 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2714 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2715 desc->infinite =
2716 alloc_EXPR_LIST (0, assumption, desc->infinite);
2718 else
2720 assumption = simplify_gen_relational (cond, SImode, mode,
2721 tmp1, bound);
2722 desc->assumptions =
2723 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2726 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2727 tmp = lowpart_subreg (mode, tmp, comp_mode);
2728 assumption = simplify_gen_relational (reverse_condition (cond),
2729 SImode, mode, tmp0, tmp);
2731 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2732 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2734 else
2736 /* Condition in shape a <= b - s * i
2737 We must know that a - s does not overflow and a - s <= b and then
2738 we can again compute number of iterations as (b - (a - s)) / s. */
2739 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2740 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2741 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2743 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2744 lowpart_subreg (mode, step, comp_mode));
2745 if (step_is_pow2)
2747 rtx t0, t1;
2749 /* If s is power of 2, we know that the loop is infinite if
2750 a % s <= b % s and a - s overflows. */
2751 assumption = simplify_gen_relational (reverse_condition (cond),
2752 SImode, mode,
2753 bound, tmp0);
2755 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2756 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2757 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2758 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2759 desc->infinite =
2760 alloc_EXPR_LIST (0, assumption, desc->infinite);
2762 else
2764 assumption = simplify_gen_relational (cond, SImode, mode,
2765 bound, tmp0);
2766 desc->assumptions =
2767 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2770 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2771 tmp = lowpart_subreg (mode, tmp, comp_mode);
2772 assumption = simplify_gen_relational (reverse_condition (cond),
2773 SImode, mode,
2774 tmp, tmp1);
2775 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2776 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2778 if (assumption == const_true_rtx)
2779 goto zero_iter_simplify;
2780 else if (assumption != const0_rtx)
2781 desc->noloop_assumptions =
2782 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2783 delta = simplify_gen_binary (UDIV, mode, delta, step);
2784 desc->niter_expr = delta;
2787 old_niter = desc->niter_expr;
2789 simplify_using_initial_values (loop, AND, &desc->assumptions);
2790 if (desc->assumptions
2791 && XEXP (desc->assumptions, 0) == const0_rtx)
2792 goto fail;
2793 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2794 simplify_using_initial_values (loop, IOR, &desc->infinite);
2795 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2797 /* Rerun the simplification. Consider code (created by copying loop headers)
2799 i = 0;
2801 if (0 < n)
2805 i++;
2806 } while (i < n);
2809 The first pass determines that i = 0, the second pass uses it to eliminate
2810 noloop assumption. */
2812 simplify_using_initial_values (loop, AND, &desc->assumptions);
2813 if (desc->assumptions
2814 && XEXP (desc->assumptions, 0) == const0_rtx)
2815 goto fail;
2816 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2817 simplify_using_initial_values (loop, IOR, &desc->infinite);
2818 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2820 if (desc->noloop_assumptions
2821 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2822 goto zero_iter;
2824 if (CONST_INT_P (desc->niter_expr))
2826 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2828 desc->const_iter = true;
2829 desc->niter = val & GET_MODE_MASK (desc->mode);
2830 if (!desc->infinite
2831 && !desc->assumptions)
2832 record_niter_bound (loop, double_int::from_uhwi (desc->niter),
2833 false, true);
2835 else
2837 max = determine_max_iter (loop, desc, old_niter);
2838 if (!max)
2839 goto zero_iter_simplify;
2840 if (!desc->infinite
2841 && !desc->assumptions)
2842 record_niter_bound (loop, double_int::from_uhwi (max),
2843 false, true);
2845 /* simplify_using_initial_values does a copy propagation on the registers
2846 in the expression for the number of iterations. This prolongs life
2847 ranges of registers and increases register pressure, and usually
2848 brings no gain (and if it happens to do, the cse pass will take care
2849 of it anyway). So prevent this behavior, unless it enabled us to
2850 derive that the number of iterations is a constant. */
2851 desc->niter_expr = old_niter;
2854 return;
2856 zero_iter_simplify:
2857 /* Simplify the assumptions. */
2858 simplify_using_initial_values (loop, AND, &desc->assumptions);
2859 if (desc->assumptions
2860 && XEXP (desc->assumptions, 0) == const0_rtx)
2861 goto fail;
2862 simplify_using_initial_values (loop, IOR, &desc->infinite);
2864 /* Fallthru. */
2865 zero_iter:
2866 desc->const_iter = true;
2867 desc->niter = 0;
2868 record_niter_bound (loop, double_int_zero,
2869 true, true);
2870 desc->noloop_assumptions = NULL_RTX;
2871 desc->niter_expr = const0_rtx;
2872 return;
2874 fail:
2875 desc->simple_p = false;
2876 return;
2879 /* Checks whether E is a simple exit from LOOP and stores its description
2880 into DESC. */
2882 static void
2883 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2885 basic_block exit_bb;
2886 rtx condition, at;
2887 edge ein;
2889 exit_bb = e->src;
2890 desc->simple_p = false;
2892 /* It must belong directly to the loop. */
2893 if (exit_bb->loop_father != loop)
2894 return;
2896 /* It must be tested (at least) once during any iteration. */
2897 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2898 return;
2900 /* It must end in a simple conditional jump. */
2901 if (!any_condjump_p (BB_END (exit_bb)))
2902 return;
2904 ein = EDGE_SUCC (exit_bb, 0);
2905 if (ein == e)
2906 ein = EDGE_SUCC (exit_bb, 1);
2908 desc->out_edge = e;
2909 desc->in_edge = ein;
2911 /* Test whether the condition is suitable. */
2912 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2913 return;
2915 if (ein->flags & EDGE_FALLTHRU)
2917 condition = reversed_condition (condition);
2918 if (!condition)
2919 return;
2922 /* Check that we are able to determine number of iterations and fill
2923 in information about it. */
2924 iv_number_of_iterations (loop, at, condition, desc);
2927 /* Finds a simple exit of LOOP and stores its description into DESC. */
2929 void
2930 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2932 unsigned i;
2933 basic_block *body;
2934 edge e;
2935 struct niter_desc act;
2936 bool any = false;
2937 edge_iterator ei;
2939 desc->simple_p = false;
2940 body = get_loop_body (loop);
2942 for (i = 0; i < loop->num_nodes; i++)
2944 FOR_EACH_EDGE (e, ei, body[i]->succs)
2946 if (flow_bb_inside_loop_p (loop, e->dest))
2947 continue;
2949 check_simple_exit (loop, e, &act);
2950 if (!act.simple_p)
2951 continue;
2953 if (!any)
2954 any = true;
2955 else
2957 /* Prefer constant iterations; the less the better. */
2958 if (!act.const_iter
2959 || (desc->const_iter && act.niter >= desc->niter))
2960 continue;
2962 /* Also if the actual exit may be infinite, while the old one
2963 not, prefer the old one. */
2964 if (act.infinite && !desc->infinite)
2965 continue;
2968 *desc = act;
2972 if (dump_file)
2974 if (desc->simple_p)
2976 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2977 fprintf (dump_file, " simple exit %d -> %d\n",
2978 desc->out_edge->src->index,
2979 desc->out_edge->dest->index);
2980 if (desc->assumptions)
2982 fprintf (dump_file, " assumptions: ");
2983 print_rtl (dump_file, desc->assumptions);
2984 fprintf (dump_file, "\n");
2986 if (desc->noloop_assumptions)
2988 fprintf (dump_file, " does not roll if: ");
2989 print_rtl (dump_file, desc->noloop_assumptions);
2990 fprintf (dump_file, "\n");
2992 if (desc->infinite)
2994 fprintf (dump_file, " infinite if: ");
2995 print_rtl (dump_file, desc->infinite);
2996 fprintf (dump_file, "\n");
2999 fprintf (dump_file, " number of iterations: ");
3000 print_rtl (dump_file, desc->niter_expr);
3001 fprintf (dump_file, "\n");
3003 fprintf (dump_file, " upper bound: %li\n",
3004 (long)get_max_loop_iterations_int (loop));
3005 fprintf (dump_file, " realistic bound: %li\n",
3006 (long)get_estimated_loop_iterations_int (loop));
3008 else
3009 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3012 free (body);
3015 /* Creates a simple loop description of LOOP if it was not computed
3016 already. */
3018 struct niter_desc *
3019 get_simple_loop_desc (struct loop *loop)
3021 struct niter_desc *desc = simple_loop_desc (loop);
3023 if (desc)
3024 return desc;
3026 /* At least desc->infinite is not always initialized by
3027 find_simple_loop_exit. */
3028 desc = ggc_alloc_cleared_niter_desc ();
3029 iv_analysis_loop_init (loop);
3030 find_simple_exit (loop, desc);
3031 loop->simple_loop_desc = desc;
3033 if (desc->simple_p && (desc->assumptions || desc->infinite))
3035 const char *wording;
3037 /* Assume that no overflow happens and that the loop is finite.
3038 We already warned at the tree level if we ran optimizations there. */
3039 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3041 if (desc->infinite)
3043 wording =
3044 flag_unsafe_loop_optimizations
3045 ? N_("assuming that the loop is not infinite")
3046 : N_("cannot optimize possibly infinite loops");
3047 warning (OPT_Wunsafe_loop_optimizations, "%s",
3048 gettext (wording));
3050 if (desc->assumptions)
3052 wording =
3053 flag_unsafe_loop_optimizations
3054 ? N_("assuming that the loop counter does not overflow")
3055 : N_("cannot optimize loop, the loop counter may overflow");
3056 warning (OPT_Wunsafe_loop_optimizations, "%s",
3057 gettext (wording));
3061 if (flag_unsafe_loop_optimizations)
3063 desc->assumptions = NULL_RTX;
3064 desc->infinite = NULL_RTX;
3068 return desc;
3071 /* Releases simple loop description for LOOP. */
3073 void
3074 free_simple_loop_desc (struct loop *loop)
3076 struct niter_desc *desc = simple_loop_desc (loop);
3078 if (!desc)
3079 return;
3081 ggc_free (desc);
3082 loop->simple_loop_desc = NULL;