1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
61 #include "diagnostic-core.h"
63 #include "hash-table.h"
66 /* Possible return values of iv_get_reaching_def. */
70 /* More than one reaching def, or reaching def that does not
74 /* The use is trivial invariant of the loop, i.e. is not changed
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
82 /* The use has single dominating def. */
86 /* Information about a biv. */
90 unsigned regno
; /* The register of the biv. */
91 struct rtx_iv iv
; /* Value of the biv. */
94 static bool clean_slate
= true;
96 static unsigned int iv_ref_table_size
= 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv
** iv_ref_table
;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
105 /* The current loop. */
107 static struct loop
*current_loop
;
109 /* Hashtable helper. */
111 struct biv_entry_hasher
: typed_free_remove
<biv_entry
>
113 typedef biv_entry value_type
;
114 typedef rtx_def compare_type
;
115 static inline hashval_t
hash (const value_type
*);
116 static inline bool equal (const value_type
*, const compare_type
*);
119 /* Returns hash value for biv B. */
122 biv_entry_hasher::hash (const value_type
*b
)
127 /* Compares biv B and register R. */
130 biv_entry_hasher::equal (const value_type
*b
, const compare_type
*r
)
132 return b
->regno
== REGNO (r
);
135 /* Bivs of the current loop. */
137 static hash_table
<biv_entry_hasher
> bivs
;
139 static bool iv_analyze_op (rtx
, rtx
, struct rtx_iv
*);
141 /* Return the RTX code corresponding to the IV extend code EXTEND. */
142 static inline enum rtx_code
143 iv_extend_to_rtx_code (enum iv_extend_code extend
)
151 case IV_UNKNOWN_EXTEND
:
157 /* Dumps information about IV to FILE. */
159 extern void dump_iv_info (FILE *, struct rtx_iv
*);
161 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
165 fprintf (file
, "not simple");
169 if (iv
->step
== const0_rtx
170 && !iv
->first_special
)
171 fprintf (file
, "invariant ");
173 print_rtl (file
, iv
->base
);
174 if (iv
->step
!= const0_rtx
)
176 fprintf (file
, " + ");
177 print_rtl (file
, iv
->step
);
178 fprintf (file
, " * iteration");
180 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
182 if (iv
->mode
!= iv
->extend_mode
)
183 fprintf (file
, " %s to %s",
184 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
185 GET_MODE_NAME (iv
->extend_mode
));
187 if (iv
->mult
!= const1_rtx
)
189 fprintf (file
, " * ");
190 print_rtl (file
, iv
->mult
);
192 if (iv
->delta
!= const0_rtx
)
194 fprintf (file
, " + ");
195 print_rtl (file
, iv
->delta
);
197 if (iv
->first_special
)
198 fprintf (file
, " (first special)");
201 /* Generates a subreg to get the least significant part of EXPR (in mode
202 INNER_MODE) to OUTER_MODE. */
205 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
206 enum machine_mode inner_mode
)
208 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
209 subreg_lowpart_offset (outer_mode
, inner_mode
));
213 check_iv_ref_table_size (void)
215 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE ())
217 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
218 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
219 memset (&iv_ref_table
[iv_ref_table_size
], 0,
220 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
221 iv_ref_table_size
= new_size
;
226 /* Checks whether REG is a well-behaved register. */
229 simple_reg_p (rtx reg
)
233 if (GET_CODE (reg
) == SUBREG
)
235 if (!subreg_lowpart_p (reg
))
237 reg
= SUBREG_REG (reg
);
244 if (HARD_REGISTER_NUM_P (r
))
247 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
253 /* Clears the information about ivs stored in df. */
258 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
261 check_iv_ref_table_size ();
262 for (i
= 0; i
< n_defs
; i
++)
264 iv
= iv_ref_table
[i
];
268 iv_ref_table
[i
] = NULL
;
276 /* Prepare the data for an induction variable analysis of a LOOP. */
279 iv_analysis_loop_init (struct loop
*loop
)
281 basic_block
*body
= get_loop_body_in_dom_order (loop
), bb
;
282 bitmap blocks
= BITMAP_ALLOC (NULL
);
287 /* Clear the information from the analysis of the previous loop. */
290 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
297 for (i
= 0; i
< loop
->num_nodes
; i
++)
300 bitmap_set_bit (blocks
, bb
->index
);
302 /* Get rid of the ud chains before processing the rescans. Then add
304 df_remove_problem (df_chain
);
305 df_process_deferred_rescans ();
306 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
307 df_chain_add_problem (DF_UD_CHAIN
);
308 df_note_add_problem ();
309 df_set_blocks (blocks
);
312 df_dump_region (dump_file
);
314 check_iv_ref_table_size ();
315 BITMAP_FREE (blocks
);
319 /* Finds the definition of REG that dominates loop latch and stores
320 it to DEF. Returns false if there is not a single definition
321 dominating the latch. If REG has no definition in loop, DEF
322 is set to NULL and true is returned. */
325 latch_dominating_def (rtx reg
, df_ref
*def
)
327 df_ref single_rd
= NULL
, adef
;
328 unsigned regno
= REGNO (reg
);
329 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
331 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
333 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
334 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
337 /* More than one reaching definition. */
341 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
351 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
353 static enum iv_grd_result
354 iv_get_reaching_def (rtx insn
, rtx reg
, df_ref
*def
)
357 basic_block def_bb
, use_bb
;
362 if (!simple_reg_p (reg
))
364 if (GET_CODE (reg
) == SUBREG
)
365 reg
= SUBREG_REG (reg
);
366 gcc_assert (REG_P (reg
));
368 use
= df_find_use (insn
, reg
);
369 gcc_assert (use
!= NULL
);
371 if (!DF_REF_CHAIN (use
))
372 return GRD_INVARIANT
;
374 /* More than one reaching def. */
375 if (DF_REF_CHAIN (use
)->next
)
378 adef
= DF_REF_CHAIN (use
)->ref
;
380 /* We do not handle setting only part of the register. */
381 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
384 def_insn
= DF_REF_INSN (adef
);
385 def_bb
= DF_REF_BB (adef
);
386 use_bb
= BLOCK_FOR_INSN (insn
);
388 if (use_bb
== def_bb
)
389 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
391 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
396 return GRD_SINGLE_DOM
;
399 /* The definition does not dominate the use. This is still OK if
400 this may be a use of a biv, i.e. if the def_bb dominates loop
402 if (just_once_each_iteration_p (current_loop
, def_bb
))
403 return GRD_MAYBE_BIV
;
408 /* Sets IV to invariant CST in MODE. Always returns true (just for
409 consistency with other iv manipulation functions that may fail). */
412 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
414 if (mode
== VOIDmode
)
415 mode
= GET_MODE (cst
);
419 iv
->step
= const0_rtx
;
420 iv
->first_special
= false;
421 iv
->extend
= IV_UNKNOWN_EXTEND
;
422 iv
->extend_mode
= iv
->mode
;
423 iv
->delta
= const0_rtx
;
424 iv
->mult
= const1_rtx
;
429 /* Evaluates application of subreg to MODE on IV. */
432 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
434 /* If iv is invariant, just calculate the new value. */
435 if (iv
->step
== const0_rtx
436 && !iv
->first_special
)
438 rtx val
= get_iv_value (iv
, const0_rtx
);
439 val
= lowpart_subreg (mode
, val
, iv
->extend_mode
);
442 iv
->extend
= IV_UNKNOWN_EXTEND
;
443 iv
->mode
= iv
->extend_mode
= mode
;
444 iv
->delta
= const0_rtx
;
445 iv
->mult
= const1_rtx
;
449 if (iv
->extend_mode
== mode
)
452 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
455 iv
->extend
= IV_UNKNOWN_EXTEND
;
458 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
459 simplify_gen_binary (MULT
, iv
->extend_mode
,
460 iv
->base
, iv
->mult
));
461 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
462 iv
->mult
= const1_rtx
;
463 iv
->delta
= const0_rtx
;
464 iv
->first_special
= false;
469 /* Evaluates application of EXTEND to MODE on IV. */
472 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, enum machine_mode mode
)
474 /* If iv is invariant, just calculate the new value. */
475 if (iv
->step
== const0_rtx
476 && !iv
->first_special
)
478 rtx val
= get_iv_value (iv
, const0_rtx
);
479 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
480 val
, iv
->extend_mode
);
482 iv
->extend
= IV_UNKNOWN_EXTEND
;
483 iv
->mode
= iv
->extend_mode
= mode
;
484 iv
->delta
= const0_rtx
;
485 iv
->mult
= const1_rtx
;
489 if (mode
!= iv
->extend_mode
)
492 if (iv
->extend
!= IV_UNKNOWN_EXTEND
493 && iv
->extend
!= extend
)
501 /* Evaluates negation of IV. */
504 iv_neg (struct rtx_iv
*iv
)
506 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
508 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
509 iv
->base
, iv
->extend_mode
);
510 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
511 iv
->step
, iv
->extend_mode
);
515 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
516 iv
->delta
, iv
->extend_mode
);
517 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
518 iv
->mult
, iv
->extend_mode
);
524 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
527 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
529 enum machine_mode mode
;
532 /* Extend the constant to extend_mode of the other operand if necessary. */
533 if (iv0
->extend
== IV_UNKNOWN_EXTEND
534 && iv0
->mode
== iv0
->extend_mode
535 && iv0
->step
== const0_rtx
536 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
538 iv0
->extend_mode
= iv1
->extend_mode
;
539 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
540 iv0
->base
, iv0
->mode
);
542 if (iv1
->extend
== IV_UNKNOWN_EXTEND
543 && iv1
->mode
== iv1
->extend_mode
544 && iv1
->step
== const0_rtx
545 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
547 iv1
->extend_mode
= iv0
->extend_mode
;
548 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
549 iv1
->base
, iv1
->mode
);
552 mode
= iv0
->extend_mode
;
553 if (mode
!= iv1
->extend_mode
)
556 if (iv0
->extend
== IV_UNKNOWN_EXTEND
557 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
559 if (iv0
->mode
!= iv1
->mode
)
562 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
563 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
568 /* Handle addition of constant. */
569 if (iv1
->extend
== IV_UNKNOWN_EXTEND
571 && iv1
->step
== const0_rtx
)
573 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
577 if (iv0
->extend
== IV_UNKNOWN_EXTEND
579 && iv0
->step
== const0_rtx
)
587 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
594 /* Evaluates multiplication of IV by constant CST. */
597 iv_mult (struct rtx_iv
*iv
, rtx mby
)
599 enum machine_mode mode
= iv
->extend_mode
;
601 if (GET_MODE (mby
) != VOIDmode
602 && GET_MODE (mby
) != mode
)
605 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
607 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
608 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
612 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
613 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
619 /* Evaluates shift of IV by constant CST. */
622 iv_shift (struct rtx_iv
*iv
, rtx mby
)
624 enum machine_mode mode
= iv
->extend_mode
;
626 if (GET_MODE (mby
) != VOIDmode
627 && GET_MODE (mby
) != mode
)
630 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
632 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
633 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
637 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
638 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
644 /* The recursive part of get_biv_step. Gets the value of the single value
645 defined by DEF wrto initial value of REG inside loop, in shape described
649 get_biv_step_1 (df_ref def
, rtx reg
,
650 rtx
*inner_step
, enum machine_mode
*inner_mode
,
651 enum iv_extend_code
*extend
, enum machine_mode outer_mode
,
654 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
655 rtx next
, nextr
, tmp
;
657 rtx insn
= DF_REF_INSN (def
);
659 enum iv_grd_result res
;
661 set
= single_set (insn
);
665 rhs
= find_reg_equal_equiv_note (insn
);
671 code
= GET_CODE (rhs
);
684 if (code
== PLUS
&& CONSTANT_P (op0
))
686 tmp
= op0
; op0
= op1
; op1
= tmp
;
689 if (!simple_reg_p (op0
)
690 || !CONSTANT_P (op1
))
693 if (GET_MODE (rhs
) != outer_mode
)
695 /* ppc64 uses expressions like
697 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
699 this is equivalent to
701 (set x':DI (plus:DI y:DI 1))
702 (set x:SI (subreg:SI (x':DI)). */
703 if (GET_CODE (op0
) != SUBREG
)
705 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
714 if (GET_MODE (rhs
) != outer_mode
)
718 if (!simple_reg_p (op0
))
728 if (GET_CODE (next
) == SUBREG
)
730 if (!subreg_lowpart_p (next
))
733 nextr
= SUBREG_REG (next
);
734 if (GET_MODE (nextr
) != outer_mode
)
740 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
742 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
745 if (res
== GRD_MAYBE_BIV
)
747 if (!rtx_equal_p (nextr
, reg
))
750 *inner_step
= const0_rtx
;
751 *extend
= IV_UNKNOWN_EXTEND
;
752 *inner_mode
= outer_mode
;
753 *outer_step
= const0_rtx
;
755 else if (!get_biv_step_1 (next_def
, reg
,
756 inner_step
, inner_mode
, extend
, outer_mode
,
760 if (GET_CODE (next
) == SUBREG
)
762 enum machine_mode amode
= GET_MODE (next
);
764 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
768 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
769 *inner_step
, *outer_step
);
770 *outer_step
= const0_rtx
;
771 *extend
= IV_UNKNOWN_EXTEND
;
782 if (*inner_mode
== outer_mode
783 /* See comment in previous switch. */
784 || GET_MODE (rhs
) != outer_mode
)
785 *inner_step
= simplify_gen_binary (code
, outer_mode
,
788 *outer_step
= simplify_gen_binary (code
, outer_mode
,
794 gcc_assert (GET_MODE (op0
) == *inner_mode
795 && *extend
== IV_UNKNOWN_EXTEND
796 && *outer_step
== const0_rtx
);
798 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
808 /* Gets the operation on register REG inside loop, in shape
810 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
812 If the operation cannot be described in this shape, return false.
813 LAST_DEF is the definition of REG that dominates loop latch. */
816 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
817 enum machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
818 enum machine_mode
*outer_mode
, rtx
*outer_step
)
820 *outer_mode
= GET_MODE (reg
);
822 if (!get_biv_step_1 (last_def
, reg
,
823 inner_step
, inner_mode
, extend
, *outer_mode
,
827 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
828 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
833 /* Records information that DEF is induction variable IV. */
836 record_iv (df_ref def
, struct rtx_iv
*iv
)
838 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
841 check_iv_ref_table_size ();
842 DF_REF_IV_SET (def
, recorded_iv
);
845 /* If DEF was already analyzed for bivness, store the description of the biv to
846 IV and return true. Otherwise return false. */
849 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
851 struct biv_entry
*biv
= bivs
.find_with_hash (def
, REGNO (def
));
861 record_biv (rtx def
, struct rtx_iv
*iv
)
863 struct biv_entry
*biv
= XNEW (struct biv_entry
);
864 biv_entry
**slot
= bivs
.find_slot_with_hash (def
, REGNO (def
), INSERT
);
866 biv
->regno
= REGNO (def
);
872 /* Determines whether DEF is a biv and if so, stores its description
876 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
878 rtx inner_step
, outer_step
;
879 enum machine_mode inner_mode
, outer_mode
;
880 enum iv_extend_code extend
;
885 fprintf (dump_file
, "Analyzing ");
886 print_rtl (dump_file
, def
);
887 fprintf (dump_file
, " for bivness.\n");
892 if (!CONSTANT_P (def
))
895 return iv_constant (iv
, def
, VOIDmode
);
898 if (!latch_dominating_def (def
, &last_def
))
901 fprintf (dump_file
, " not simple.\n");
906 return iv_constant (iv
, def
, VOIDmode
);
908 if (analyzed_for_bivness_p (def
, iv
))
911 fprintf (dump_file
, " already analysed.\n");
912 return iv
->base
!= NULL_RTX
;
915 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
916 &outer_mode
, &outer_step
))
922 /* Loop transforms base to es (base + inner_step) + outer_step,
923 where es means extend of subreg between inner_mode and outer_mode.
924 The corresponding induction variable is
926 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
928 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
929 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
930 iv
->mode
= inner_mode
;
931 iv
->extend_mode
= outer_mode
;
933 iv
->mult
= const1_rtx
;
934 iv
->delta
= outer_step
;
935 iv
->first_special
= inner_mode
!= outer_mode
;
940 fprintf (dump_file
, " ");
941 dump_iv_info (dump_file
, iv
);
942 fprintf (dump_file
, "\n");
945 record_biv (def
, iv
);
946 return iv
->base
!= NULL_RTX
;
949 /* Analyzes expression RHS used at INSN and stores the result to *IV.
950 The mode of the induction variable is MODE. */
953 iv_analyze_expr (rtx insn
, rtx rhs
, enum machine_mode mode
, struct rtx_iv
*iv
)
955 rtx mby
= NULL_RTX
, tmp
;
956 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
957 struct rtx_iv iv0
, iv1
;
958 enum rtx_code code
= GET_CODE (rhs
);
959 enum machine_mode omode
= mode
;
965 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
971 if (!iv_analyze_op (insn
, rhs
, iv
))
974 if (iv
->mode
== VOIDmode
)
977 iv
->extend_mode
= mode
;
993 omode
= GET_MODE (op0
);
1003 op0
= XEXP (rhs
, 0);
1004 mby
= XEXP (rhs
, 1);
1005 if (!CONSTANT_P (mby
))
1011 if (!CONSTANT_P (mby
))
1016 op0
= XEXP (rhs
, 0);
1017 mby
= XEXP (rhs
, 1);
1018 if (!CONSTANT_P (mby
))
1027 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1031 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1037 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1042 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1053 if (!iv_add (&iv0
, &iv1
, code
))
1058 if (!iv_mult (&iv0
, mby
))
1063 if (!iv_shift (&iv0
, mby
))
1072 return iv
->base
!= NULL_RTX
;
1075 /* Analyzes iv DEF and stores the result to *IV. */
1078 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1080 rtx insn
= DF_REF_INSN (def
);
1081 rtx reg
= DF_REF_REG (def
);
1086 fprintf (dump_file
, "Analyzing def of ");
1087 print_rtl (dump_file
, reg
);
1088 fprintf (dump_file
, " in insn ");
1089 print_rtl_single (dump_file
, insn
);
1092 check_iv_ref_table_size ();
1093 if (DF_REF_IV (def
))
1096 fprintf (dump_file
, " already analysed.\n");
1097 *iv
= *DF_REF_IV (def
);
1098 return iv
->base
!= NULL_RTX
;
1101 iv
->mode
= VOIDmode
;
1102 iv
->base
= NULL_RTX
;
1103 iv
->step
= NULL_RTX
;
1108 set
= single_set (insn
);
1112 if (!REG_P (SET_DEST (set
)))
1115 gcc_assert (SET_DEST (set
) == reg
);
1116 rhs
= find_reg_equal_equiv_note (insn
);
1118 rhs
= XEXP (rhs
, 0);
1120 rhs
= SET_SRC (set
);
1122 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1123 record_iv (def
, iv
);
1127 print_rtl (dump_file
, reg
);
1128 fprintf (dump_file
, " in insn ");
1129 print_rtl_single (dump_file
, insn
);
1130 fprintf (dump_file
, " is ");
1131 dump_iv_info (dump_file
, iv
);
1132 fprintf (dump_file
, "\n");
1135 return iv
->base
!= NULL_RTX
;
1138 /* Analyzes operand OP of INSN and stores the result to *IV. */
1141 iv_analyze_op (rtx insn
, rtx op
, struct rtx_iv
*iv
)
1144 enum iv_grd_result res
;
1148 fprintf (dump_file
, "Analyzing operand ");
1149 print_rtl (dump_file
, op
);
1150 fprintf (dump_file
, " of insn ");
1151 print_rtl_single (dump_file
, insn
);
1154 if (function_invariant_p (op
))
1155 res
= GRD_INVARIANT
;
1156 else if (GET_CODE (op
) == SUBREG
)
1158 if (!subreg_lowpart_p (op
))
1161 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1164 return iv_subreg (iv
, GET_MODE (op
));
1168 res
= iv_get_reaching_def (insn
, op
, &def
);
1169 if (res
== GRD_INVALID
)
1172 fprintf (dump_file
, " not simple.\n");
1177 if (res
== GRD_INVARIANT
)
1179 iv_constant (iv
, op
, VOIDmode
);
1183 fprintf (dump_file
, " ");
1184 dump_iv_info (dump_file
, iv
);
1185 fprintf (dump_file
, "\n");
1190 if (res
== GRD_MAYBE_BIV
)
1191 return iv_analyze_biv (op
, iv
);
1193 return iv_analyze_def (def
, iv
);
1196 /* Analyzes value VAL at INSN and stores the result to *IV. */
1199 iv_analyze (rtx insn
, rtx val
, struct rtx_iv
*iv
)
1203 /* We must find the insn in that val is used, so that we get to UD chains.
1204 Since the function is sometimes called on result of get_condition,
1205 this does not necessarily have to be directly INSN; scan also the
1207 if (simple_reg_p (val
))
1209 if (GET_CODE (val
) == SUBREG
)
1210 reg
= SUBREG_REG (val
);
1214 while (!df_find_use (insn
, reg
))
1215 insn
= NEXT_INSN (insn
);
1218 return iv_analyze_op (insn
, val
, iv
);
1221 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1224 iv_analyze_result (rtx insn
, rtx def
, struct rtx_iv
*iv
)
1228 adef
= df_find_def (insn
, def
);
1232 return iv_analyze_def (adef
, iv
);
1235 /* Checks whether definition of register REG in INSN is a basic induction
1236 variable. IV analysis must have been initialized (via a call to
1237 iv_analysis_loop_init) for this function to produce a result. */
1240 biv_p (rtx insn
, rtx reg
)
1243 df_ref def
, last_def
;
1245 if (!simple_reg_p (reg
))
1248 def
= df_find_def (insn
, reg
);
1249 gcc_assert (def
!= NULL
);
1250 if (!latch_dominating_def (reg
, &last_def
))
1252 if (last_def
!= def
)
1255 if (!iv_analyze_biv (reg
, &iv
))
1258 return iv
.step
!= const0_rtx
;
1261 /* Calculates value of IV at ITERATION-th iteration. */
1264 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1268 /* We would need to generate some if_then_else patterns, and so far
1269 it is not needed anywhere. */
1270 gcc_assert (!iv
->first_special
);
1272 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1273 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1274 simplify_gen_binary (MULT
, iv
->extend_mode
,
1275 iv
->step
, iteration
));
1279 if (iv
->extend_mode
== iv
->mode
)
1282 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1284 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1287 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1288 iv
->extend_mode
, val
, iv
->mode
);
1289 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1290 simplify_gen_binary (MULT
, iv
->extend_mode
,
1296 /* Free the data for an induction variable analysis. */
1299 iv_analysis_done (void)
1305 df_finish_pass (true);
1307 free (iv_ref_table
);
1308 iv_ref_table
= NULL
;
1309 iv_ref_table_size
= 0;
1313 /* Computes inverse to X modulo (1 << MOD). */
1315 static unsigned HOST_WIDEST_INT
1316 inverse (unsigned HOST_WIDEST_INT x
, int mod
)
1318 unsigned HOST_WIDEST_INT mask
=
1319 ((unsigned HOST_WIDEST_INT
) 1 << (mod
- 1) << 1) - 1;
1320 unsigned HOST_WIDEST_INT rslt
= 1;
1323 for (i
= 0; i
< mod
- 1; i
++)
1325 rslt
= (rslt
* x
) & mask
;
1332 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1335 altered_reg_used (rtx
*reg
, void *alt
)
1340 return REGNO_REG_SET_P ((bitmap
) alt
, REGNO (*reg
));
1343 /* Marks registers altered by EXPR in set ALT. */
1346 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1348 if (GET_CODE (expr
) == SUBREG
)
1349 expr
= SUBREG_REG (expr
);
1353 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1356 /* Checks whether RHS is simple enough to process. */
1359 simple_rhs_p (rtx rhs
)
1363 if (function_invariant_p (rhs
)
1364 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1367 switch (GET_CODE (rhs
))
1372 op0
= XEXP (rhs
, 0);
1373 op1
= XEXP (rhs
, 1);
1374 /* Allow reg OP const and reg OP reg. */
1375 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1376 && !function_invariant_p (op0
))
1378 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1379 && !function_invariant_p (op1
))
1388 op0
= XEXP (rhs
, 0);
1389 op1
= XEXP (rhs
, 1);
1390 /* Allow reg OP const. */
1391 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1393 if (!function_invariant_p (op1
))
1403 /* If REG has a single definition, replace it with its known value in EXPR.
1404 Callback for for_each_rtx. */
1407 replace_single_def_regs (rtx
*reg
, void *expr1
)
1412 rtx
*expr
= (rtx
*)expr1
;
1417 regno
= REGNO (*reg
);
1421 adef
= DF_REG_DEF_CHAIN (regno
);
1422 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1423 || DF_REF_IS_ARTIFICIAL (adef
))
1426 set
= single_set (DF_REF_INSN (adef
));
1427 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1428 || REGNO (SET_DEST (set
)) != regno
)
1431 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1433 if (note
&& function_invariant_p (XEXP (note
, 0)))
1435 src
= XEXP (note
, 0);
1438 src
= SET_SRC (set
);
1442 regno
= REGNO (src
);
1447 if (!function_invariant_p (src
))
1450 *expr
= simplify_replace_rtx (*expr
, *reg
, src
);
1454 /* A subroutine of simplify_using_initial_values, this function examines INSN
1455 to see if it contains a suitable set that we can use to make a replacement.
1456 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1457 the set; return false otherwise. */
1460 suitable_set_for_replacement (rtx insn
, rtx
*dest
, rtx
*src
)
1462 rtx set
= single_set (insn
);
1463 rtx lhs
= NULL_RTX
, rhs
;
1468 lhs
= SET_DEST (set
);
1472 rhs
= find_reg_equal_equiv_note (insn
);
1474 rhs
= XEXP (rhs
, 0);
1476 rhs
= SET_SRC (set
);
1478 if (!simple_rhs_p (rhs
))
1486 /* Using the data returned by suitable_set_for_replacement, replace DEST
1487 with SRC in *EXPR and return the new expression. Also call
1488 replace_single_def_regs if the replacement changed something. */
1490 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1493 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1496 while (for_each_rtx (expr
, replace_single_def_regs
, expr
) != 0)
1500 /* Checks whether A implies B. */
1503 implies_p (rtx a
, rtx b
)
1505 rtx op0
, op1
, opb0
, opb1
, r
;
1506 enum machine_mode mode
;
1508 if (rtx_equal_p (a
, b
))
1511 if (GET_CODE (a
) == EQ
)
1517 || (GET_CODE (op0
) == SUBREG
1518 && REG_P (SUBREG_REG (op0
))))
1520 r
= simplify_replace_rtx (b
, op0
, op1
);
1521 if (r
== const_true_rtx
)
1526 || (GET_CODE (op1
) == SUBREG
1527 && REG_P (SUBREG_REG (op1
))))
1529 r
= simplify_replace_rtx (b
, op1
, op0
);
1530 if (r
== const_true_rtx
)
1535 if (b
== const_true_rtx
)
1538 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1539 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1540 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1541 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1549 mode
= GET_MODE (op0
);
1550 if (mode
!= GET_MODE (opb0
))
1552 else if (mode
== VOIDmode
)
1554 mode
= GET_MODE (op1
);
1555 if (mode
!= GET_MODE (opb1
))
1559 /* A < B implies A + 1 <= B. */
1560 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1561 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1564 if (GET_CODE (a
) == GT
)
1571 if (GET_CODE (b
) == GE
)
1578 if (SCALAR_INT_MODE_P (mode
)
1579 && rtx_equal_p (op1
, opb1
)
1580 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1585 /* A < B or A > B imply A != B. TODO: Likewise
1586 A + n < B implies A != B + n if neither wraps. */
1587 if (GET_CODE (b
) == NE
1588 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1589 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1591 if (rtx_equal_p (op0
, opb0
)
1592 && rtx_equal_p (op1
, opb1
))
1596 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1597 if (GET_CODE (a
) == NE
1598 && op1
== const0_rtx
)
1600 if ((GET_CODE (b
) == GTU
1601 && opb1
== const0_rtx
)
1602 || (GET_CODE (b
) == GEU
1603 && opb1
== const1_rtx
))
1604 return rtx_equal_p (op0
, opb0
);
1607 /* A != N is equivalent to A - (N + 1) <u -1. */
1608 if (GET_CODE (a
) == NE
1609 && CONST_INT_P (op1
)
1610 && GET_CODE (b
) == LTU
1611 && opb1
== constm1_rtx
1612 && GET_CODE (opb0
) == PLUS
1613 && CONST_INT_P (XEXP (opb0
, 1))
1614 /* Avoid overflows. */
1615 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1616 != ((unsigned HOST_WIDE_INT
)1
1617 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1618 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1619 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1621 /* Likewise, A != N implies A - N > 0. */
1622 if (GET_CODE (a
) == NE
1623 && CONST_INT_P (op1
))
1625 if (GET_CODE (b
) == GTU
1626 && GET_CODE (opb0
) == PLUS
1627 && opb1
== const0_rtx
1628 && CONST_INT_P (XEXP (opb0
, 1))
1629 /* Avoid overflows. */
1630 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1631 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1632 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1633 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1634 if (GET_CODE (b
) == GEU
1635 && GET_CODE (opb0
) == PLUS
1636 && opb1
== const1_rtx
1637 && CONST_INT_P (XEXP (opb0
, 1))
1638 /* Avoid overflows. */
1639 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1640 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1641 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1642 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1645 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1646 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1647 && CONST_INT_P (op1
)
1648 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1649 || INTVAL (op1
) >= 0)
1650 && GET_CODE (b
) == LTU
1651 && CONST_INT_P (opb1
)
1652 && rtx_equal_p (op0
, opb0
))
1653 return INTVAL (opb1
) < 0;
1658 /* Canonicalizes COND so that
1660 (1) Ensure that operands are ordered according to
1661 swap_commutative_operands_p.
1662 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1663 for GE, GEU, and LEU. */
1666 canon_condition (rtx cond
)
1671 enum machine_mode mode
;
1673 code
= GET_CODE (cond
);
1674 op0
= XEXP (cond
, 0);
1675 op1
= XEXP (cond
, 1);
1677 if (swap_commutative_operands_p (op0
, op1
))
1679 code
= swap_condition (code
);
1685 mode
= GET_MODE (op0
);
1686 if (mode
== VOIDmode
)
1687 mode
= GET_MODE (op1
);
1688 gcc_assert (mode
!= VOIDmode
);
1690 if (CONST_INT_P (op1
)
1691 && GET_MODE_CLASS (mode
) != MODE_CC
1692 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1694 HOST_WIDE_INT const_val
= INTVAL (op1
);
1695 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1696 unsigned HOST_WIDE_INT max_val
1697 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1702 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1703 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1706 /* When cross-compiling, const_val might be sign-extended from
1707 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1709 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1710 != (((HOST_WIDE_INT
) 1
1711 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1712 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1716 if (uconst_val
< max_val
)
1717 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1721 if (uconst_val
!= 0)
1722 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1730 if (op0
!= XEXP (cond
, 0)
1731 || op1
!= XEXP (cond
, 1)
1732 || code
!= GET_CODE (cond
)
1733 || GET_MODE (cond
) != SImode
)
1734 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1739 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1740 set of altered regs. */
1743 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1745 rtx rev
, reve
, exp
= *expr
;
1747 /* If some register gets altered later, we do not really speak about its
1748 value at the time of comparison. */
1750 && for_each_rtx (&cond
, altered_reg_used
, altered
))
1753 if (GET_CODE (cond
) == EQ
1754 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1756 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1760 if (!COMPARISON_P (exp
))
1763 rev
= reversed_condition (cond
);
1764 reve
= reversed_condition (exp
);
1766 cond
= canon_condition (cond
);
1767 exp
= canon_condition (exp
);
1769 rev
= canon_condition (rev
);
1771 reve
= canon_condition (reve
);
1773 if (rtx_equal_p (exp
, cond
))
1775 *expr
= const_true_rtx
;
1779 if (rev
&& rtx_equal_p (exp
, rev
))
1785 if (implies_p (cond
, exp
))
1787 *expr
= const_true_rtx
;
1791 if (reve
&& implies_p (cond
, reve
))
1797 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1799 if (rev
&& implies_p (exp
, rev
))
1805 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1806 if (rev
&& reve
&& implies_p (reve
, rev
))
1808 *expr
= const_true_rtx
;
1812 /* We would like to have some other tests here. TODO. */
1817 /* Use relationship between A and *B to eventually eliminate *B.
1818 OP is the operation we consider. */
1821 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1826 /* If A implies *B, we may replace *B by true. */
1827 if (implies_p (a
, *b
))
1828 *b
= const_true_rtx
;
1832 /* If *B implies A, we may replace *B by false. */
1833 if (implies_p (*b
, a
))
1842 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1843 operation we consider. */
1846 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1850 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1851 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1852 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1853 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1856 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1857 is a list, its elements are assumed to be combined using OP. */
1860 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1862 bool expression_valid
;
1863 rtx head
, tail
, insn
, cond_list
, last_valid_expr
;
1865 regset altered
, this_altered
;
1871 if (CONSTANT_P (*expr
))
1874 if (GET_CODE (*expr
) == EXPR_LIST
)
1876 head
= XEXP (*expr
, 0);
1877 tail
= XEXP (*expr
, 1);
1879 eliminate_implied_conditions (op
, &head
, tail
);
1884 neutral
= const_true_rtx
;
1889 neutral
= const0_rtx
;
1890 aggr
= const_true_rtx
;
1897 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1900 XEXP (*expr
, 0) = aggr
;
1901 XEXP (*expr
, 1) = NULL_RTX
;
1904 else if (head
== neutral
)
1907 simplify_using_initial_values (loop
, op
, expr
);
1910 simplify_using_initial_values (loop
, op
, &tail
);
1912 if (tail
&& XEXP (tail
, 0) == aggr
)
1918 XEXP (*expr
, 0) = head
;
1919 XEXP (*expr
, 1) = tail
;
1923 gcc_assert (op
== UNKNOWN
);
1926 if (for_each_rtx (expr
, replace_single_def_regs
, expr
) == 0)
1928 if (CONSTANT_P (*expr
))
1931 e
= loop_preheader_edge (loop
);
1932 if (e
->src
== ENTRY_BLOCK_PTR
)
1935 altered
= ALLOC_REG_SET (®_obstack
);
1936 this_altered
= ALLOC_REG_SET (®_obstack
);
1938 expression_valid
= true;
1939 last_valid_expr
= *expr
;
1940 cond_list
= NULL_RTX
;
1943 insn
= BB_END (e
->src
);
1944 if (any_condjump_p (insn
))
1946 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1948 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1949 cond
= reversed_condition (cond
);
1953 simplify_using_condition (cond
, expr
, altered
);
1957 if (CONSTANT_P (*expr
))
1959 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1961 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1962 if (CONSTANT_P (*expr
))
1966 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1970 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1978 CLEAR_REG_SET (this_altered
);
1979 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
1982 /* Kill all call clobbered registers. */
1984 hard_reg_set_iterator hrsi
;
1985 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
1987 SET_REGNO_REG_SET (this_altered
, i
);
1990 if (suitable_set_for_replacement (insn
, &dest
, &src
))
1992 rtx
*pnote
, *pnote_next
;
1994 replace_in_expr (expr
, dest
, src
);
1995 if (CONSTANT_P (*expr
))
1998 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2001 rtx old_cond
= XEXP (note
, 0);
2003 pnote_next
= &XEXP (note
, 1);
2004 replace_in_expr (&XEXP (note
, 0), dest
, src
);
2006 /* We can no longer use a condition that has been simplified
2007 to a constant, and simplify_using_condition will abort if
2009 if (CONSTANT_P (XEXP (note
, 0)))
2011 *pnote
= *pnote_next
;
2013 free_EXPR_LIST_node (note
);
2015 /* Retry simplifications with this condition if either the
2016 expression or the condition changed. */
2017 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2018 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2023 rtx
*pnote
, *pnote_next
;
2025 /* If we did not use this insn to make a replacement, any overlap
2026 between stores in this insn and our expression will cause the
2027 expression to become invalid. */
2028 if (for_each_rtx (expr
, altered_reg_used
, this_altered
))
2031 /* Likewise for the conditions. */
2032 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2035 rtx old_cond
= XEXP (note
, 0);
2037 pnote_next
= &XEXP (note
, 1);
2038 if (for_each_rtx (&old_cond
, altered_reg_used
, this_altered
))
2040 *pnote
= *pnote_next
;
2042 free_EXPR_LIST_node (note
);
2047 if (CONSTANT_P (*expr
))
2050 IOR_REG_SET (altered
, this_altered
);
2052 /* If the expression now contains regs that have been altered, we
2053 can't return it to the caller. However, it is still valid for
2054 further simplification, so keep searching to see if we can
2055 eventually turn it into a constant. */
2056 if (for_each_rtx (expr
, altered_reg_used
, altered
))
2057 expression_valid
= false;
2058 if (expression_valid
)
2059 last_valid_expr
= *expr
;
2062 if (!single_pred_p (e
->src
)
2063 || single_pred (e
->src
) == ENTRY_BLOCK_PTR
)
2065 e
= single_pred_edge (e
->src
);
2069 free_EXPR_LIST_list (&cond_list
);
2070 if (!CONSTANT_P (*expr
))
2071 *expr
= last_valid_expr
;
2072 FREE_REG_SET (altered
);
2073 FREE_REG_SET (this_altered
);
2076 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2077 that IV occurs as left operands of comparison COND and its signedness
2078 is SIGNED_P to DESC. */
2081 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
2082 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2084 rtx mmin
, mmax
, cond_over
, cond_under
;
2086 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2087 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2089 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2098 if (cond_under
!= const0_rtx
)
2100 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2101 if (cond_over
!= const0_rtx
)
2102 desc
->noloop_assumptions
=
2103 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2110 if (cond_over
!= const0_rtx
)
2112 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2113 if (cond_under
!= const0_rtx
)
2114 desc
->noloop_assumptions
=
2115 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2119 if (cond_over
!= const0_rtx
)
2121 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2122 if (cond_under
!= const0_rtx
)
2124 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2132 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2135 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2136 subregs of the same mode if possible (sometimes it is necessary to add
2137 some assumptions to DESC). */
2140 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2141 enum rtx_code cond
, struct niter_desc
*desc
)
2143 enum machine_mode comp_mode
;
2146 /* If the ivs behave specially in the first iteration, or are
2147 added/multiplied after extending, we ignore them. */
2148 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2150 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2153 /* If there is some extend, it must match signedness of the comparison. */
2158 if (iv0
->extend
== IV_ZERO_EXTEND
2159 || iv1
->extend
== IV_ZERO_EXTEND
)
2166 if (iv0
->extend
== IV_SIGN_EXTEND
2167 || iv1
->extend
== IV_SIGN_EXTEND
)
2173 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2174 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2175 && iv0
->extend
!= iv1
->extend
)
2179 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2180 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2181 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2182 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2189 /* Values of both variables should be computed in the same mode. These
2190 might indeed be different, if we have comparison like
2192 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2194 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2195 in different modes. This does not seem impossible to handle, but
2196 it hardly ever occurs in practice.
2198 The only exception is the case when one of operands is invariant.
2199 For example pentium 3 generates comparisons like
2200 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2201 definitely do not want this prevent the optimization. */
2202 comp_mode
= iv0
->extend_mode
;
2203 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2204 comp_mode
= iv1
->extend_mode
;
2206 if (iv0
->extend_mode
!= comp_mode
)
2208 if (iv0
->mode
!= iv0
->extend_mode
2209 || iv0
->step
!= const0_rtx
)
2212 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2213 comp_mode
, iv0
->base
, iv0
->mode
);
2214 iv0
->extend_mode
= comp_mode
;
2217 if (iv1
->extend_mode
!= comp_mode
)
2219 if (iv1
->mode
!= iv1
->extend_mode
2220 || iv1
->step
!= const0_rtx
)
2223 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2224 comp_mode
, iv1
->base
, iv1
->mode
);
2225 iv1
->extend_mode
= comp_mode
;
2228 /* Check that both ivs belong to a range of a single mode. If one of the
2229 operands is an invariant, we may need to shorten it into the common
2231 if (iv0
->mode
== iv0
->extend_mode
2232 && iv0
->step
== const0_rtx
2233 && iv0
->mode
!= iv1
->mode
)
2234 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2236 if (iv1
->mode
== iv1
->extend_mode
2237 && iv1
->step
== const0_rtx
2238 && iv0
->mode
!= iv1
->mode
)
2239 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2241 if (iv0
->mode
!= iv1
->mode
)
2244 desc
->mode
= iv0
->mode
;
2245 desc
->signed_p
= signed_p
;
2250 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2251 result. This function is called from iv_number_of_iterations with
2252 a number of fields in DESC already filled in. OLD_NITER is the original
2253 expression for the number of iterations, before we tried to simplify it. */
2255 static unsigned HOST_WIDEST_INT
2256 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2258 rtx niter
= desc
->niter_expr
;
2259 rtx mmin
, mmax
, cmp
;
2260 unsigned HOST_WIDEST_INT nmax
, inc
;
2261 unsigned HOST_WIDEST_INT andmax
= 0;
2263 /* We used to look for constant operand 0 of AND,
2264 but canonicalization should always make this impossible. */
2265 gcc_checking_assert (GET_CODE (niter
) != AND
2266 || !CONST_INT_P (XEXP (niter
, 0)));
2268 if (GET_CODE (niter
) == AND
2269 && CONST_INT_P (XEXP (niter
, 1)))
2271 andmax
= UINTVAL (XEXP (niter
, 1));
2272 niter
= XEXP (niter
, 0);
2275 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2276 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2278 if (GET_CODE (niter
) == UDIV
)
2280 if (!CONST_INT_P (XEXP (niter
, 1)))
2282 inc
= INTVAL (XEXP (niter
, 1));
2283 niter
= XEXP (niter
, 0);
2288 /* We could use a binary search here, but for now improving the upper
2289 bound by just one eliminates one important corner case. */
2290 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2291 desc
->mode
, old_niter
, mmax
);
2292 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2293 if (cmp
== const_true_rtx
)
2298 fprintf (dump_file
, ";; improved upper bound by one.\n");
2302 nmax
= MIN (nmax
, andmax
);
2304 fprintf (dump_file
, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC
".\n",
2309 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2310 the result into DESC. Very similar to determine_number_of_iterations
2311 (basically its rtl version), complicated by things like subregs. */
2314 iv_number_of_iterations (struct loop
*loop
, rtx insn
, rtx condition
,
2315 struct niter_desc
*desc
)
2317 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2318 struct rtx_iv iv0
, iv1
, tmp_iv
;
2319 rtx assumption
, may_not_xform
;
2321 enum machine_mode mode
, comp_mode
;
2322 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2323 unsigned HOST_WIDEST_INT s
, size
, d
, inv
, max
;
2324 HOST_WIDEST_INT up
, down
, inc
, step_val
;
2325 int was_sharp
= false;
2329 /* The meaning of these assumptions is this:
2331 then the rest of information does not have to be valid
2332 if noloop_assumptions then the loop does not roll
2333 if infinite then this exit is never used */
2335 desc
->assumptions
= NULL_RTX
;
2336 desc
->noloop_assumptions
= NULL_RTX
;
2337 desc
->infinite
= NULL_RTX
;
2338 desc
->simple_p
= true;
2340 desc
->const_iter
= false;
2341 desc
->niter_expr
= NULL_RTX
;
2343 cond
= GET_CODE (condition
);
2344 gcc_assert (COMPARISON_P (condition
));
2346 mode
= GET_MODE (XEXP (condition
, 0));
2347 if (mode
== VOIDmode
)
2348 mode
= GET_MODE (XEXP (condition
, 1));
2349 /* The constant comparisons should be folded. */
2350 gcc_assert (mode
!= VOIDmode
);
2352 /* We only handle integers or pointers. */
2353 if (GET_MODE_CLASS (mode
) != MODE_INT
2354 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2357 op0
= XEXP (condition
, 0);
2358 if (!iv_analyze (insn
, op0
, &iv0
))
2360 if (iv0
.extend_mode
== VOIDmode
)
2361 iv0
.mode
= iv0
.extend_mode
= mode
;
2363 op1
= XEXP (condition
, 1);
2364 if (!iv_analyze (insn
, op1
, &iv1
))
2366 if (iv1
.extend_mode
== VOIDmode
)
2367 iv1
.mode
= iv1
.extend_mode
= mode
;
2369 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2370 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2373 /* Check condition and normalize it. */
2381 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2382 cond
= swap_condition (cond
);
2394 /* Handle extends. This is relatively nontrivial, so we only try in some
2395 easy cases, when we can canonicalize the ivs (possibly by adding some
2396 assumptions) to shape subreg (base + i * step). This function also fills
2397 in desc->mode and desc->signed_p. */
2399 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2402 comp_mode
= iv0
.extend_mode
;
2404 size
= GET_MODE_BITSIZE (mode
);
2405 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2406 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2407 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2409 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2412 /* We can take care of the case of two induction variables chasing each other
2413 if the test is NE. I have never seen a loop using it, but still it is
2415 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2420 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2421 iv1
.step
= const0_rtx
;
2424 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2425 iv1
.step
= lowpart_subreg (mode
, iv1
.step
, comp_mode
);
2427 /* This is either infinite loop or the one that ends immediately, depending
2428 on initial values. Unswitching should remove this kind of conditions. */
2429 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2434 if (iv0
.step
== const0_rtx
)
2435 step_val
= -INTVAL (iv1
.step
);
2437 step_val
= INTVAL (iv0
.step
);
2439 /* Ignore loops of while (i-- < 10) type. */
2443 step_is_pow2
= !(step_val
& (step_val
- 1));
2447 /* We do not care about whether the step is power of two in this
2449 step_is_pow2
= false;
2453 /* Some more condition normalization. We must record some assumptions
2454 due to overflows. */
2459 /* We want to take care only of non-sharp relationals; this is easy,
2460 as in cases the overflow would make the transformation unsafe
2461 the loop does not roll. Seemingly it would make more sense to want
2462 to take care of sharp relationals instead, as NE is more similar to
2463 them, but the problem is that here the transformation would be more
2464 difficult due to possibly infinite loops. */
2465 if (iv0
.step
== const0_rtx
)
2467 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2468 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2470 if (assumption
== const_true_rtx
)
2471 goto zero_iter_simplify
;
2472 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2473 iv0
.base
, const1_rtx
);
2477 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2478 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2480 if (assumption
== const_true_rtx
)
2481 goto zero_iter_simplify
;
2482 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2483 iv1
.base
, constm1_rtx
);
2486 if (assumption
!= const0_rtx
)
2487 desc
->noloop_assumptions
=
2488 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2489 cond
= (cond
== LT
) ? LE
: LEU
;
2491 /* It will be useful to be able to tell the difference once more in
2492 LE -> NE reduction. */
2498 /* Take care of trivially infinite loops. */
2501 if (iv0
.step
== const0_rtx
)
2503 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2504 if (rtx_equal_p (tmp
, mode_mmin
))
2507 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2508 /* Fill in the remaining fields somehow. */
2509 goto zero_iter_simplify
;
2514 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2515 if (rtx_equal_p (tmp
, mode_mmax
))
2518 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2519 /* Fill in the remaining fields somehow. */
2520 goto zero_iter_simplify
;
2525 /* If we can we want to take care of NE conditions instead of size
2526 comparisons, as they are much more friendly (most importantly
2527 this takes care of special handling of loops with step 1). We can
2528 do it if we first check that upper bound is greater or equal to
2529 lower bound, their difference is constant c modulo step and that
2530 there is not an overflow. */
2533 if (iv0
.step
== const0_rtx
)
2534 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2537 step
= lowpart_subreg (mode
, step
, comp_mode
);
2538 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2539 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2540 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2541 may_xform
= const0_rtx
;
2542 may_not_xform
= const_true_rtx
;
2544 if (CONST_INT_P (delta
))
2546 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2548 /* A special case. We have transformed condition of type
2549 for (i = 0; i < 4; i += 4)
2551 for (i = 0; i <= 3; i += 4)
2552 obviously if the test for overflow during that transformation
2553 passed, we cannot overflow here. Most importantly any
2554 loop with sharp end condition and step 1 falls into this
2555 category, so handling this case specially is definitely
2556 worth the troubles. */
2557 may_xform
= const_true_rtx
;
2559 else if (iv0
.step
== const0_rtx
)
2561 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2562 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2563 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2564 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2565 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2567 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2573 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2574 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2575 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2576 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2577 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2579 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2585 if (may_xform
!= const0_rtx
)
2587 /* We perform the transformation always provided that it is not
2588 completely senseless. This is OK, as we would need this assumption
2589 to determine the number of iterations anyway. */
2590 if (may_xform
!= const_true_rtx
)
2592 /* If the step is a power of two and the final value we have
2593 computed overflows, the cycle is infinite. Otherwise it
2594 is nontrivial to compute the number of iterations. */
2596 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2599 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2603 /* We are going to lose some information about upper bound on
2604 number of iterations in this step, so record the information
2606 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2607 if (CONST_INT_P (iv1
.base
))
2608 up
= INTVAL (iv1
.base
);
2610 up
= INTVAL (mode_mmax
) - inc
;
2611 down
= INTVAL (CONST_INT_P (iv0
.base
)
2614 max
= (up
- down
) / inc
+ 1;
2616 && !desc
->assumptions
)
2617 record_niter_bound (loop
, double_int::from_uhwi (max
),
2620 if (iv0
.step
== const0_rtx
)
2622 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2623 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2627 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2628 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2631 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2632 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2633 assumption
= simplify_gen_relational (reverse_condition (cond
),
2634 SImode
, mode
, tmp0
, tmp1
);
2635 if (assumption
== const_true_rtx
)
2636 goto zero_iter_simplify
;
2637 else if (assumption
!= const0_rtx
)
2638 desc
->noloop_assumptions
=
2639 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2644 /* Count the number of iterations. */
2647 /* Everything we do here is just arithmetics modulo size of mode. This
2648 makes us able to do more involved computations of number of iterations
2649 than in other cases. First transform the condition into shape
2650 s * i <> c, with s positive. */
2651 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2652 iv0
.base
= const0_rtx
;
2653 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2654 iv1
.step
= const0_rtx
;
2655 if (INTVAL (iv0
.step
) < 0)
2657 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, mode
);
2658 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, mode
);
2660 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2662 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2663 is infinite. Otherwise, the number of iterations is
2664 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2665 s
= INTVAL (iv0
.step
); d
= 1;
2672 bound
= GEN_INT (((unsigned HOST_WIDEST_INT
) 1 << (size
- 1 ) << 1) - 1);
2674 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2675 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, gen_int_mode (d
, mode
));
2676 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2677 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2679 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, gen_int_mode (d
, mode
));
2680 inv
= inverse (s
, size
);
2681 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2682 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2686 if (iv1
.step
== const0_rtx
)
2687 /* Condition in shape a + s * i <= b
2688 We must know that b + s does not overflow and a <= b + s and then we
2689 can compute number of iterations as (b + s - a) / s. (It might
2690 seem that we in fact could be more clever about testing the b + s
2691 overflow condition using some information about b - a mod s,
2692 but it was already taken into account during LE -> NE transform). */
2695 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2696 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2698 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2699 lowpart_subreg (mode
, step
,
2705 /* If s is power of 2, we know that the loop is infinite if
2706 a % s <= b % s and b + s overflows. */
2707 assumption
= simplify_gen_relational (reverse_condition (cond
),
2711 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2712 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2713 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2714 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2716 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2720 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2723 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2726 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2727 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2728 assumption
= simplify_gen_relational (reverse_condition (cond
),
2729 SImode
, mode
, tmp0
, tmp
);
2731 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2732 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2736 /* Condition in shape a <= b - s * i
2737 We must know that a - s does not overflow and a - s <= b and then
2738 we can again compute number of iterations as (b - (a - s)) / s. */
2739 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2740 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2741 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2743 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2744 lowpart_subreg (mode
, step
, comp_mode
));
2749 /* If s is power of 2, we know that the loop is infinite if
2750 a % s <= b % s and a - s overflows. */
2751 assumption
= simplify_gen_relational (reverse_condition (cond
),
2755 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2756 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2757 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2758 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2760 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2764 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2767 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2770 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2771 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2772 assumption
= simplify_gen_relational (reverse_condition (cond
),
2775 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2776 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2778 if (assumption
== const_true_rtx
)
2779 goto zero_iter_simplify
;
2780 else if (assumption
!= const0_rtx
)
2781 desc
->noloop_assumptions
=
2782 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2783 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2784 desc
->niter_expr
= delta
;
2787 old_niter
= desc
->niter_expr
;
2789 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2790 if (desc
->assumptions
2791 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2793 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2794 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2795 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2797 /* Rerun the simplification. Consider code (created by copying loop headers)
2809 The first pass determines that i = 0, the second pass uses it to eliminate
2810 noloop assumption. */
2812 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2813 if (desc
->assumptions
2814 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2816 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2817 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2818 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2820 if (desc
->noloop_assumptions
2821 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2824 if (CONST_INT_P (desc
->niter_expr
))
2826 unsigned HOST_WIDEST_INT val
= INTVAL (desc
->niter_expr
);
2828 desc
->const_iter
= true;
2829 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2831 && !desc
->assumptions
)
2832 record_niter_bound (loop
, double_int::from_uhwi (desc
->niter
),
2837 max
= determine_max_iter (loop
, desc
, old_niter
);
2839 goto zero_iter_simplify
;
2841 && !desc
->assumptions
)
2842 record_niter_bound (loop
, double_int::from_uhwi (max
),
2845 /* simplify_using_initial_values does a copy propagation on the registers
2846 in the expression for the number of iterations. This prolongs life
2847 ranges of registers and increases register pressure, and usually
2848 brings no gain (and if it happens to do, the cse pass will take care
2849 of it anyway). So prevent this behavior, unless it enabled us to
2850 derive that the number of iterations is a constant. */
2851 desc
->niter_expr
= old_niter
;
2857 /* Simplify the assumptions. */
2858 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2859 if (desc
->assumptions
2860 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2862 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2866 desc
->const_iter
= true;
2868 record_niter_bound (loop
, double_int_zero
,
2870 desc
->noloop_assumptions
= NULL_RTX
;
2871 desc
->niter_expr
= const0_rtx
;
2875 desc
->simple_p
= false;
2879 /* Checks whether E is a simple exit from LOOP and stores its description
2883 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2885 basic_block exit_bb
;
2890 desc
->simple_p
= false;
2892 /* It must belong directly to the loop. */
2893 if (exit_bb
->loop_father
!= loop
)
2896 /* It must be tested (at least) once during any iteration. */
2897 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2900 /* It must end in a simple conditional jump. */
2901 if (!any_condjump_p (BB_END (exit_bb
)))
2904 ein
= EDGE_SUCC (exit_bb
, 0);
2906 ein
= EDGE_SUCC (exit_bb
, 1);
2909 desc
->in_edge
= ein
;
2911 /* Test whether the condition is suitable. */
2912 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2915 if (ein
->flags
& EDGE_FALLTHRU
)
2917 condition
= reversed_condition (condition
);
2922 /* Check that we are able to determine number of iterations and fill
2923 in information about it. */
2924 iv_number_of_iterations (loop
, at
, condition
, desc
);
2927 /* Finds a simple exit of LOOP and stores its description into DESC. */
2930 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2935 struct niter_desc act
;
2939 desc
->simple_p
= false;
2940 body
= get_loop_body (loop
);
2942 for (i
= 0; i
< loop
->num_nodes
; i
++)
2944 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2946 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2949 check_simple_exit (loop
, e
, &act
);
2957 /* Prefer constant iterations; the less the better. */
2959 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2962 /* Also if the actual exit may be infinite, while the old one
2963 not, prefer the old one. */
2964 if (act
.infinite
&& !desc
->infinite
)
2976 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2977 fprintf (dump_file
, " simple exit %d -> %d\n",
2978 desc
->out_edge
->src
->index
,
2979 desc
->out_edge
->dest
->index
);
2980 if (desc
->assumptions
)
2982 fprintf (dump_file
, " assumptions: ");
2983 print_rtl (dump_file
, desc
->assumptions
);
2984 fprintf (dump_file
, "\n");
2986 if (desc
->noloop_assumptions
)
2988 fprintf (dump_file
, " does not roll if: ");
2989 print_rtl (dump_file
, desc
->noloop_assumptions
);
2990 fprintf (dump_file
, "\n");
2994 fprintf (dump_file
, " infinite if: ");
2995 print_rtl (dump_file
, desc
->infinite
);
2996 fprintf (dump_file
, "\n");
2999 fprintf (dump_file
, " number of iterations: ");
3000 print_rtl (dump_file
, desc
->niter_expr
);
3001 fprintf (dump_file
, "\n");
3003 fprintf (dump_file
, " upper bound: %li\n",
3004 (long)get_max_loop_iterations_int (loop
));
3005 fprintf (dump_file
, " realistic bound: %li\n",
3006 (long)get_estimated_loop_iterations_int (loop
));
3009 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
3015 /* Creates a simple loop description of LOOP if it was not computed
3019 get_simple_loop_desc (struct loop
*loop
)
3021 struct niter_desc
*desc
= simple_loop_desc (loop
);
3026 /* At least desc->infinite is not always initialized by
3027 find_simple_loop_exit. */
3028 desc
= ggc_alloc_cleared_niter_desc ();
3029 iv_analysis_loop_init (loop
);
3030 find_simple_exit (loop
, desc
);
3031 loop
->simple_loop_desc
= desc
;
3033 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
3035 const char *wording
;
3037 /* Assume that no overflow happens and that the loop is finite.
3038 We already warned at the tree level if we ran optimizations there. */
3039 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
3044 flag_unsafe_loop_optimizations
3045 ? N_("assuming that the loop is not infinite")
3046 : N_("cannot optimize possibly infinite loops");
3047 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3050 if (desc
->assumptions
)
3053 flag_unsafe_loop_optimizations
3054 ? N_("assuming that the loop counter does not overflow")
3055 : N_("cannot optimize loop, the loop counter may overflow");
3056 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3061 if (flag_unsafe_loop_optimizations
)
3063 desc
->assumptions
= NULL_RTX
;
3064 desc
->infinite
= NULL_RTX
;
3071 /* Releases simple loop description for LOOP. */
3074 free_simple_loop_desc (struct loop
*loop
)
3076 struct niter_desc
*desc
= simple_loop_desc (loop
);
3082 loop
->simple_loop_desc
= NULL
;