2014-12-12 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / predict.c
blob0cfe4a93a31b67c32cfc5f9be6a12d63bd9e3858
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "predict.h"
40 #include "vec.h"
41 #include "hashtab.h"
42 #include "hash-set.h"
43 #include "machmode.h"
44 #include "input.h"
45 #include "function.h"
46 #include "dominance.h"
47 #include "cfg.h"
48 #include "cfganal.h"
49 #include "basic-block.h"
50 #include "insn-config.h"
51 #include "regs.h"
52 #include "flags.h"
53 #include "profile.h"
54 #include "except.h"
55 #include "diagnostic-core.h"
56 #include "recog.h"
57 #include "expr.h"
58 #include "coverage.h"
59 #include "sreal.h"
60 #include "params.h"
61 #include "target.h"
62 #include "cfgloop.h"
63 #include "hash-map.h"
64 #include "tree-ssa-alias.h"
65 #include "internal-fn.h"
66 #include "gimple-expr.h"
67 #include "is-a.h"
68 #include "gimple.h"
69 #include "gimple-iterator.h"
70 #include "gimple-ssa.h"
71 #include "plugin-api.h"
72 #include "ipa-ref.h"
73 #include "cgraph.h"
74 #include "tree-cfg.h"
75 #include "tree-phinodes.h"
76 #include "ssa-iterators.h"
77 #include "tree-ssa-loop-niter.h"
78 #include "tree-ssa-loop.h"
79 #include "tree-pass.h"
80 #include "tree-scalar-evolution.h"
81 #include "cfgloop.h"
83 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
84 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
85 static sreal real_almost_one, real_br_prob_base,
86 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
88 static void combine_predictions_for_insn (rtx_insn *, basic_block);
89 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
90 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
91 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
92 static bool can_predict_insn_p (const rtx_insn *);
94 /* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
97 struct predictor_info
99 const char *const name; /* Name used in the debugging dumps. */
100 const int hitrate; /* Expected hitrate used by
101 predict_insn_def call. */
102 const int flags;
105 /* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107 #define PRED_FLAG_FIRST_MATCH 1
109 /* Recompute hitrate in percent to our representation. */
111 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
113 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
114 static const struct predictor_info predictor_info[]= {
115 #include "predict.def"
117 /* Upper bound on predictors. */
118 {NULL, 0, 0}
120 #undef DEF_PREDICTOR
122 /* Return TRUE if frequency FREQ is considered to be hot. */
124 static inline bool
125 maybe_hot_frequency_p (struct function *fun, int freq)
127 struct cgraph_node *node = cgraph_node::get (fun->decl);
128 if (!profile_info
129 || !opt_for_fn (fun->decl, flag_branch_probabilities))
131 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
132 return false;
133 if (node->frequency == NODE_FREQUENCY_HOT)
134 return true;
136 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
137 return true;
138 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
139 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
140 return false;
141 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
142 return false;
143 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
144 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
145 return false;
146 return true;
149 static gcov_type min_count = -1;
151 /* Determine the threshold for hot BB counts. */
153 gcov_type
154 get_hot_bb_threshold ()
156 gcov_working_set_t *ws;
157 if (min_count == -1)
159 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
160 gcc_assert (ws);
161 min_count = ws->min_counter;
163 return min_count;
166 /* Set the threshold for hot BB counts. */
168 void
169 set_hot_bb_threshold (gcov_type min)
171 min_count = min;
174 /* Return TRUE if frequency FREQ is considered to be hot. */
176 bool
177 maybe_hot_count_p (struct function *fun, gcov_type count)
179 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
180 return true;
181 /* Code executed at most once is not hot. */
182 if (profile_info->runs >= count)
183 return false;
184 return (count >= get_hot_bb_threshold ());
187 /* Return true in case BB can be CPU intensive and should be optimized
188 for maximal performance. */
190 bool
191 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
193 gcc_checking_assert (fun);
194 if (profile_status_for_fn (fun) == PROFILE_READ)
195 return maybe_hot_count_p (fun, bb->count);
196 return maybe_hot_frequency_p (fun, bb->frequency);
199 /* Return true in case BB can be CPU intensive and should be optimized
200 for maximal performance. */
202 bool
203 maybe_hot_edge_p (edge e)
205 if (profile_status_for_fn (cfun) == PROFILE_READ)
206 return maybe_hot_count_p (cfun, e->count);
207 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
210 /* Return true if profile COUNT and FREQUENCY, or function FUN static
211 node frequency reflects never being executed. */
213 static bool
214 probably_never_executed (struct function *fun,
215 gcov_type count, int frequency)
217 gcc_checking_assert (fun);
218 if (profile_status_for_fn (fun) == PROFILE_READ)
220 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
221 if (count * unlikely_count_fraction >= profile_info->runs)
222 return false;
223 if (!frequency)
224 return true;
225 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
226 return false;
227 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
229 gcov_type computed_count;
230 /* Check for possibility of overflow, in which case entry bb count
231 is large enough to do the division first without losing much
232 precision. */
233 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
234 REG_BR_PROB_BASE)
236 gcov_type scaled_count
237 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
238 unlikely_count_fraction;
239 computed_count = RDIV (scaled_count,
240 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
242 else
244 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
245 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
246 computed_count *= frequency * unlikely_count_fraction;
248 if (computed_count >= profile_info->runs)
249 return false;
251 return true;
253 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
254 && (cgraph_node::get (fun->decl)->frequency
255 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
256 return true;
257 return false;
261 /* Return true in case BB is probably never executed. */
263 bool
264 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
266 return probably_never_executed (fun, bb->count, bb->frequency);
270 /* Return true in case edge E is probably never executed. */
272 bool
273 probably_never_executed_edge_p (struct function *fun, edge e)
275 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
278 /* Return true when current function should always be optimized for size. */
280 bool
281 optimize_function_for_size_p (struct function *fun)
283 if (!fun || !fun->decl)
284 return optimize_size;
285 cgraph_node *n = cgraph_node::get (fun->decl);
286 return n && n->optimize_for_size_p ();
289 /* Return true when current function should always be optimized for speed. */
291 bool
292 optimize_function_for_speed_p (struct function *fun)
294 return !optimize_function_for_size_p (fun);
297 /* Return TRUE when BB should be optimized for size. */
299 bool
300 optimize_bb_for_size_p (const_basic_block bb)
302 return (optimize_function_for_size_p (cfun)
303 || (bb && !maybe_hot_bb_p (cfun, bb)));
306 /* Return TRUE when BB should be optimized for speed. */
308 bool
309 optimize_bb_for_speed_p (const_basic_block bb)
311 return !optimize_bb_for_size_p (bb);
314 /* Return TRUE when BB should be optimized for size. */
316 bool
317 optimize_edge_for_size_p (edge e)
319 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
322 /* Return TRUE when BB should be optimized for speed. */
324 bool
325 optimize_edge_for_speed_p (edge e)
327 return !optimize_edge_for_size_p (e);
330 /* Return TRUE when BB should be optimized for size. */
332 bool
333 optimize_insn_for_size_p (void)
335 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
338 /* Return TRUE when BB should be optimized for speed. */
340 bool
341 optimize_insn_for_speed_p (void)
343 return !optimize_insn_for_size_p ();
346 /* Return TRUE when LOOP should be optimized for size. */
348 bool
349 optimize_loop_for_size_p (struct loop *loop)
351 return optimize_bb_for_size_p (loop->header);
354 /* Return TRUE when LOOP should be optimized for speed. */
356 bool
357 optimize_loop_for_speed_p (struct loop *loop)
359 return optimize_bb_for_speed_p (loop->header);
362 /* Return TRUE when LOOP nest should be optimized for speed. */
364 bool
365 optimize_loop_nest_for_speed_p (struct loop *loop)
367 struct loop *l = loop;
368 if (optimize_loop_for_speed_p (loop))
369 return true;
370 l = loop->inner;
371 while (l && l != loop)
373 if (optimize_loop_for_speed_p (l))
374 return true;
375 if (l->inner)
376 l = l->inner;
377 else if (l->next)
378 l = l->next;
379 else
381 while (l != loop && !l->next)
382 l = loop_outer (l);
383 if (l != loop)
384 l = l->next;
387 return false;
390 /* Return TRUE when LOOP nest should be optimized for size. */
392 bool
393 optimize_loop_nest_for_size_p (struct loop *loop)
395 return !optimize_loop_nest_for_speed_p (loop);
398 /* Return true when edge E is likely to be well predictable by branch
399 predictor. */
401 bool
402 predictable_edge_p (edge e)
404 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
405 return false;
406 if ((e->probability
407 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
408 || (REG_BR_PROB_BASE - e->probability
409 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
410 return true;
411 return false;
415 /* Set RTL expansion for BB profile. */
417 void
418 rtl_profile_for_bb (basic_block bb)
420 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
423 /* Set RTL expansion for edge profile. */
425 void
426 rtl_profile_for_edge (edge e)
428 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
431 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
432 void
433 default_rtl_profile (void)
435 crtl->maybe_hot_insn_p = true;
438 /* Return true if the one of outgoing edges is already predicted by
439 PREDICTOR. */
441 bool
442 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
444 rtx note;
445 if (!INSN_P (BB_END (bb)))
446 return false;
447 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
448 if (REG_NOTE_KIND (note) == REG_BR_PRED
449 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
450 return true;
451 return false;
454 /* Structure representing predictions in tree level. */
456 struct edge_prediction {
457 struct edge_prediction *ep_next;
458 edge ep_edge;
459 enum br_predictor ep_predictor;
460 int ep_probability;
463 /* This map contains for a basic block the list of predictions for the
464 outgoing edges. */
466 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
468 /* Return true if the one of outgoing edges is already predicted by
469 PREDICTOR. */
471 bool
472 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
474 struct edge_prediction *i;
475 edge_prediction **preds = bb_predictions->get (bb);
477 if (!preds)
478 return false;
480 for (i = *preds; i; i = i->ep_next)
481 if (i->ep_predictor == predictor)
482 return true;
483 return false;
486 /* Return true when the probability of edge is reliable.
488 The profile guessing code is good at predicting branch outcome (ie.
489 taken/not taken), that is predicted right slightly over 75% of time.
490 It is however notoriously poor on predicting the probability itself.
491 In general the profile appear a lot flatter (with probabilities closer
492 to 50%) than the reality so it is bad idea to use it to drive optimization
493 such as those disabling dynamic branch prediction for well predictable
494 branches.
496 There are two exceptions - edges leading to noreturn edges and edges
497 predicted by number of iterations heuristics are predicted well. This macro
498 should be able to distinguish those, but at the moment it simply check for
499 noreturn heuristic that is only one giving probability over 99% or bellow
500 1%. In future we might want to propagate reliability information across the
501 CFG if we find this information useful on multiple places. */
502 static bool
503 probability_reliable_p (int prob)
505 return (profile_status_for_fn (cfun) == PROFILE_READ
506 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
507 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
510 /* Same predicate as above, working on edges. */
511 bool
512 edge_probability_reliable_p (const_edge e)
514 return probability_reliable_p (e->probability);
517 /* Same predicate as edge_probability_reliable_p, working on notes. */
518 bool
519 br_prob_note_reliable_p (const_rtx note)
521 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
522 return probability_reliable_p (XINT (note, 0));
525 static void
526 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
528 gcc_assert (any_condjump_p (insn));
529 if (!flag_guess_branch_prob)
530 return;
532 add_reg_note (insn, REG_BR_PRED,
533 gen_rtx_CONCAT (VOIDmode,
534 GEN_INT ((int) predictor),
535 GEN_INT ((int) probability)));
538 /* Predict insn by given predictor. */
540 void
541 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
542 enum prediction taken)
544 int probability = predictor_info[(int) predictor].hitrate;
546 if (taken != TAKEN)
547 probability = REG_BR_PROB_BASE - probability;
549 predict_insn (insn, predictor, probability);
552 /* Predict edge E with given probability if possible. */
554 void
555 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
557 rtx_insn *last_insn;
558 last_insn = BB_END (e->src);
560 /* We can store the branch prediction information only about
561 conditional jumps. */
562 if (!any_condjump_p (last_insn))
563 return;
565 /* We always store probability of branching. */
566 if (e->flags & EDGE_FALLTHRU)
567 probability = REG_BR_PROB_BASE - probability;
569 predict_insn (last_insn, predictor, probability);
572 /* Predict edge E with the given PROBABILITY. */
573 void
574 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
576 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
577 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
579 && flag_guess_branch_prob && optimize)
581 struct edge_prediction *i = XNEW (struct edge_prediction);
582 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
584 i->ep_next = preds;
585 preds = i;
586 i->ep_probability = probability;
587 i->ep_predictor = predictor;
588 i->ep_edge = e;
592 /* Remove all predictions on given basic block that are attached
593 to edge E. */
594 void
595 remove_predictions_associated_with_edge (edge e)
597 if (!bb_predictions)
598 return;
600 edge_prediction **preds = bb_predictions->get (e->src);
602 if (preds)
604 struct edge_prediction **prediction = preds;
605 struct edge_prediction *next;
607 while (*prediction)
609 if ((*prediction)->ep_edge == e)
611 next = (*prediction)->ep_next;
612 free (*prediction);
613 *prediction = next;
615 else
616 prediction = &((*prediction)->ep_next);
621 /* Clears the list of predictions stored for BB. */
623 static void
624 clear_bb_predictions (basic_block bb)
626 edge_prediction **preds = bb_predictions->get (bb);
627 struct edge_prediction *pred, *next;
629 if (!preds)
630 return;
632 for (pred = *preds; pred; pred = next)
634 next = pred->ep_next;
635 free (pred);
637 *preds = NULL;
640 /* Return true when we can store prediction on insn INSN.
641 At the moment we represent predictions only on conditional
642 jumps, not at computed jump or other complicated cases. */
643 static bool
644 can_predict_insn_p (const rtx_insn *insn)
646 return (JUMP_P (insn)
647 && any_condjump_p (insn)
648 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
651 /* Predict edge E by given predictor if possible. */
653 void
654 predict_edge_def (edge e, enum br_predictor predictor,
655 enum prediction taken)
657 int probability = predictor_info[(int) predictor].hitrate;
659 if (taken != TAKEN)
660 probability = REG_BR_PROB_BASE - probability;
662 predict_edge (e, predictor, probability);
665 /* Invert all branch predictions or probability notes in the INSN. This needs
666 to be done each time we invert the condition used by the jump. */
668 void
669 invert_br_probabilities (rtx insn)
671 rtx note;
673 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
674 if (REG_NOTE_KIND (note) == REG_BR_PROB)
675 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
676 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
677 XEXP (XEXP (note, 0), 1)
678 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
681 /* Dump information about the branch prediction to the output file. */
683 static void
684 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
685 basic_block bb, int used)
687 edge e;
688 edge_iterator ei;
690 if (!file)
691 return;
693 FOR_EACH_EDGE (e, ei, bb->succs)
694 if (! (e->flags & EDGE_FALLTHRU))
695 break;
697 fprintf (file, " %s heuristics%s: %.1f%%",
698 predictor_info[predictor].name,
699 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
701 if (bb->count)
703 fprintf (file, " exec %"PRId64, bb->count);
704 if (e)
706 fprintf (file, " hit %"PRId64, e->count);
707 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
711 fprintf (file, "\n");
714 /* We can not predict the probabilities of outgoing edges of bb. Set them
715 evenly and hope for the best. */
716 static void
717 set_even_probabilities (basic_block bb)
719 int nedges = 0;
720 edge e;
721 edge_iterator ei;
723 FOR_EACH_EDGE (e, ei, bb->succs)
724 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
725 nedges ++;
726 FOR_EACH_EDGE (e, ei, bb->succs)
727 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
728 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
729 else
730 e->probability = 0;
733 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
734 note if not already present. Remove now useless REG_BR_PRED notes. */
736 static void
737 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
739 rtx prob_note;
740 rtx *pnote;
741 rtx note;
742 int best_probability = PROB_EVEN;
743 enum br_predictor best_predictor = END_PREDICTORS;
744 int combined_probability = REG_BR_PROB_BASE / 2;
745 int d;
746 bool first_match = false;
747 bool found = false;
749 if (!can_predict_insn_p (insn))
751 set_even_probabilities (bb);
752 return;
755 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
756 pnote = &REG_NOTES (insn);
757 if (dump_file)
758 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
759 bb->index);
761 /* We implement "first match" heuristics and use probability guessed
762 by predictor with smallest index. */
763 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
764 if (REG_NOTE_KIND (note) == REG_BR_PRED)
766 enum br_predictor predictor = ((enum br_predictor)
767 INTVAL (XEXP (XEXP (note, 0), 0)));
768 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
770 found = true;
771 if (best_predictor > predictor)
772 best_probability = probability, best_predictor = predictor;
774 d = (combined_probability * probability
775 + (REG_BR_PROB_BASE - combined_probability)
776 * (REG_BR_PROB_BASE - probability));
778 /* Use FP math to avoid overflows of 32bit integers. */
779 if (d == 0)
780 /* If one probability is 0% and one 100%, avoid division by zero. */
781 combined_probability = REG_BR_PROB_BASE / 2;
782 else
783 combined_probability = (((double) combined_probability) * probability
784 * REG_BR_PROB_BASE / d + 0.5);
787 /* Decide which heuristic to use. In case we didn't match anything,
788 use no_prediction heuristic, in case we did match, use either
789 first match or Dempster-Shaffer theory depending on the flags. */
791 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
792 first_match = true;
794 if (!found)
795 dump_prediction (dump_file, PRED_NO_PREDICTION,
796 combined_probability, bb, true);
797 else
799 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
800 bb, !first_match);
801 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
802 bb, first_match);
805 if (first_match)
806 combined_probability = best_probability;
807 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
809 while (*pnote)
811 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
813 enum br_predictor predictor = ((enum br_predictor)
814 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
815 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
817 dump_prediction (dump_file, predictor, probability, bb,
818 !first_match || best_predictor == predictor);
819 *pnote = XEXP (*pnote, 1);
821 else
822 pnote = &XEXP (*pnote, 1);
825 if (!prob_note)
827 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
829 /* Save the prediction into CFG in case we are seeing non-degenerated
830 conditional jump. */
831 if (!single_succ_p (bb))
833 BRANCH_EDGE (bb)->probability = combined_probability;
834 FALLTHRU_EDGE (bb)->probability
835 = REG_BR_PROB_BASE - combined_probability;
838 else if (!single_succ_p (bb))
840 int prob = XINT (prob_note, 0);
842 BRANCH_EDGE (bb)->probability = prob;
843 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
845 else
846 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
849 /* Combine predictions into single probability and store them into CFG.
850 Remove now useless prediction entries. */
852 static void
853 combine_predictions_for_bb (basic_block bb)
855 int best_probability = PROB_EVEN;
856 enum br_predictor best_predictor = END_PREDICTORS;
857 int combined_probability = REG_BR_PROB_BASE / 2;
858 int d;
859 bool first_match = false;
860 bool found = false;
861 struct edge_prediction *pred;
862 int nedges = 0;
863 edge e, first = NULL, second = NULL;
864 edge_iterator ei;
866 FOR_EACH_EDGE (e, ei, bb->succs)
867 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
869 nedges ++;
870 if (first && !second)
871 second = e;
872 if (!first)
873 first = e;
876 /* When there is no successor or only one choice, prediction is easy.
878 We are lazy for now and predict only basic blocks with two outgoing
879 edges. It is possible to predict generic case too, but we have to
880 ignore first match heuristics and do more involved combining. Implement
881 this later. */
882 if (nedges != 2)
884 if (!bb->count)
885 set_even_probabilities (bb);
886 clear_bb_predictions (bb);
887 if (dump_file)
888 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
889 nedges, bb->index);
890 return;
893 if (dump_file)
894 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
896 edge_prediction **preds = bb_predictions->get (bb);
897 if (preds)
899 /* We implement "first match" heuristics and use probability guessed
900 by predictor with smallest index. */
901 for (pred = *preds; pred; pred = pred->ep_next)
903 enum br_predictor predictor = pred->ep_predictor;
904 int probability = pred->ep_probability;
906 if (pred->ep_edge != first)
907 probability = REG_BR_PROB_BASE - probability;
909 found = true;
910 /* First match heuristics would be widly confused if we predicted
911 both directions. */
912 if (best_predictor > predictor)
914 struct edge_prediction *pred2;
915 int prob = probability;
917 for (pred2 = (struct edge_prediction *) *preds;
918 pred2; pred2 = pred2->ep_next)
919 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
921 int probability2 = pred->ep_probability;
923 if (pred2->ep_edge != first)
924 probability2 = REG_BR_PROB_BASE - probability2;
926 if ((probability < REG_BR_PROB_BASE / 2) !=
927 (probability2 < REG_BR_PROB_BASE / 2))
928 break;
930 /* If the same predictor later gave better result, go for it! */
931 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
932 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
933 prob = probability2;
935 if (!pred2)
936 best_probability = prob, best_predictor = predictor;
939 d = (combined_probability * probability
940 + (REG_BR_PROB_BASE - combined_probability)
941 * (REG_BR_PROB_BASE - probability));
943 /* Use FP math to avoid overflows of 32bit integers. */
944 if (d == 0)
945 /* If one probability is 0% and one 100%, avoid division by zero. */
946 combined_probability = REG_BR_PROB_BASE / 2;
947 else
948 combined_probability = (((double) combined_probability)
949 * probability
950 * REG_BR_PROB_BASE / d + 0.5);
954 /* Decide which heuristic to use. In case we didn't match anything,
955 use no_prediction heuristic, in case we did match, use either
956 first match or Dempster-Shaffer theory depending on the flags. */
958 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
959 first_match = true;
961 if (!found)
962 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
963 else
965 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
966 !first_match);
967 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
968 first_match);
971 if (first_match)
972 combined_probability = best_probability;
973 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
975 if (preds)
977 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
979 enum br_predictor predictor = pred->ep_predictor;
980 int probability = pred->ep_probability;
982 if (pred->ep_edge != EDGE_SUCC (bb, 0))
983 probability = REG_BR_PROB_BASE - probability;
984 dump_prediction (dump_file, predictor, probability, bb,
985 !first_match || best_predictor == predictor);
988 clear_bb_predictions (bb);
990 if (!bb->count)
992 first->probability = combined_probability;
993 second->probability = REG_BR_PROB_BASE - combined_probability;
997 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
998 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1000 T1 and T2 should be one of the following cases:
1001 1. T1 is SSA_NAME, T2 is NULL
1002 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1003 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1005 static tree
1006 strips_small_constant (tree t1, tree t2)
1008 tree ret = NULL;
1009 int value = 0;
1011 if (!t1)
1012 return NULL;
1013 else if (TREE_CODE (t1) == SSA_NAME)
1014 ret = t1;
1015 else if (tree_fits_shwi_p (t1))
1016 value = tree_to_shwi (t1);
1017 else
1018 return NULL;
1020 if (!t2)
1021 return ret;
1022 else if (tree_fits_shwi_p (t2))
1023 value = tree_to_shwi (t2);
1024 else if (TREE_CODE (t2) == SSA_NAME)
1026 if (ret)
1027 return NULL;
1028 else
1029 ret = t2;
1032 if (value <= 4 && value >= -4)
1033 return ret;
1034 else
1035 return NULL;
1038 /* Return the SSA_NAME in T or T's operands.
1039 Return NULL if SSA_NAME cannot be found. */
1041 static tree
1042 get_base_value (tree t)
1044 if (TREE_CODE (t) == SSA_NAME)
1045 return t;
1047 if (!BINARY_CLASS_P (t))
1048 return NULL;
1050 switch (TREE_OPERAND_LENGTH (t))
1052 case 1:
1053 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1054 case 2:
1055 return strips_small_constant (TREE_OPERAND (t, 0),
1056 TREE_OPERAND (t, 1));
1057 default:
1058 return NULL;
1062 /* Check the compare STMT in LOOP. If it compares an induction
1063 variable to a loop invariant, return true, and save
1064 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1065 Otherwise return false and set LOOP_INVAIANT to NULL. */
1067 static bool
1068 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1069 tree *loop_invariant,
1070 enum tree_code *compare_code,
1071 tree *loop_step,
1072 tree *loop_iv_base)
1074 tree op0, op1, bound, base;
1075 affine_iv iv0, iv1;
1076 enum tree_code code;
1077 tree step;
1079 code = gimple_cond_code (stmt);
1080 *loop_invariant = NULL;
1082 switch (code)
1084 case GT_EXPR:
1085 case GE_EXPR:
1086 case NE_EXPR:
1087 case LT_EXPR:
1088 case LE_EXPR:
1089 case EQ_EXPR:
1090 break;
1092 default:
1093 return false;
1096 op0 = gimple_cond_lhs (stmt);
1097 op1 = gimple_cond_rhs (stmt);
1099 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1100 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1101 return false;
1102 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1103 return false;
1104 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1105 return false;
1106 if (TREE_CODE (iv0.step) != INTEGER_CST
1107 || TREE_CODE (iv1.step) != INTEGER_CST)
1108 return false;
1109 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1110 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1111 return false;
1113 if (integer_zerop (iv0.step))
1115 if (code != NE_EXPR && code != EQ_EXPR)
1116 code = invert_tree_comparison (code, false);
1117 bound = iv0.base;
1118 base = iv1.base;
1119 if (tree_fits_shwi_p (iv1.step))
1120 step = iv1.step;
1121 else
1122 return false;
1124 else
1126 bound = iv1.base;
1127 base = iv0.base;
1128 if (tree_fits_shwi_p (iv0.step))
1129 step = iv0.step;
1130 else
1131 return false;
1134 if (TREE_CODE (bound) != INTEGER_CST)
1135 bound = get_base_value (bound);
1136 if (!bound)
1137 return false;
1138 if (TREE_CODE (base) != INTEGER_CST)
1139 base = get_base_value (base);
1140 if (!base)
1141 return false;
1143 *loop_invariant = bound;
1144 *compare_code = code;
1145 *loop_step = step;
1146 *loop_iv_base = base;
1147 return true;
1150 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1152 static bool
1153 expr_coherent_p (tree t1, tree t2)
1155 gimple stmt;
1156 tree ssa_name_1 = NULL;
1157 tree ssa_name_2 = NULL;
1159 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1160 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1162 if (t1 == t2)
1163 return true;
1165 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1166 return true;
1167 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1168 return false;
1170 /* Check to see if t1 is expressed/defined with t2. */
1171 stmt = SSA_NAME_DEF_STMT (t1);
1172 gcc_assert (stmt != NULL);
1173 if (is_gimple_assign (stmt))
1175 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1176 if (ssa_name_1 && ssa_name_1 == t2)
1177 return true;
1180 /* Check to see if t2 is expressed/defined with t1. */
1181 stmt = SSA_NAME_DEF_STMT (t2);
1182 gcc_assert (stmt != NULL);
1183 if (is_gimple_assign (stmt))
1185 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1186 if (ssa_name_2 && ssa_name_2 == t1)
1187 return true;
1190 /* Compare if t1 and t2's def_stmts are identical. */
1191 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1192 return true;
1193 else
1194 return false;
1197 /* Predict branch probability of BB when BB contains a branch that compares
1198 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1199 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1201 E.g.
1202 for (int i = 0; i < bound; i++) {
1203 if (i < bound - 2)
1204 computation_1();
1205 else
1206 computation_2();
1209 In this loop, we will predict the branch inside the loop to be taken. */
1211 static void
1212 predict_iv_comparison (struct loop *loop, basic_block bb,
1213 tree loop_bound_var,
1214 tree loop_iv_base_var,
1215 enum tree_code loop_bound_code,
1216 int loop_bound_step)
1218 gimple stmt;
1219 tree compare_var, compare_base;
1220 enum tree_code compare_code;
1221 tree compare_step_var;
1222 edge then_edge;
1223 edge_iterator ei;
1225 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1226 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1227 || predicted_by_p (bb, PRED_LOOP_EXIT))
1228 return;
1230 stmt = last_stmt (bb);
1231 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1232 return;
1233 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1234 loop, &compare_var,
1235 &compare_code,
1236 &compare_step_var,
1237 &compare_base))
1238 return;
1240 /* Find the taken edge. */
1241 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1242 if (then_edge->flags & EDGE_TRUE_VALUE)
1243 break;
1245 /* When comparing an IV to a loop invariant, NE is more likely to be
1246 taken while EQ is more likely to be not-taken. */
1247 if (compare_code == NE_EXPR)
1249 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1250 return;
1252 else if (compare_code == EQ_EXPR)
1254 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1255 return;
1258 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1259 return;
1261 /* If loop bound, base and compare bound are all constants, we can
1262 calculate the probability directly. */
1263 if (tree_fits_shwi_p (loop_bound_var)
1264 && tree_fits_shwi_p (compare_var)
1265 && tree_fits_shwi_p (compare_base))
1267 int probability;
1268 bool overflow, overall_overflow = false;
1269 widest_int compare_count, tem;
1271 /* (loop_bound - base) / compare_step */
1272 tem = wi::sub (wi::to_widest (loop_bound_var),
1273 wi::to_widest (compare_base), SIGNED, &overflow);
1274 overall_overflow |= overflow;
1275 widest_int loop_count = wi::div_trunc (tem,
1276 wi::to_widest (compare_step_var),
1277 SIGNED, &overflow);
1278 overall_overflow |= overflow;
1280 if (!wi::neg_p (wi::to_widest (compare_step_var))
1281 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1283 /* (loop_bound - compare_bound) / compare_step */
1284 tem = wi::sub (wi::to_widest (loop_bound_var),
1285 wi::to_widest (compare_var), SIGNED, &overflow);
1286 overall_overflow |= overflow;
1287 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1288 SIGNED, &overflow);
1289 overall_overflow |= overflow;
1291 else
1293 /* (compare_bound - base) / compare_step */
1294 tem = wi::sub (wi::to_widest (compare_var),
1295 wi::to_widest (compare_base), SIGNED, &overflow);
1296 overall_overflow |= overflow;
1297 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1298 SIGNED, &overflow);
1299 overall_overflow |= overflow;
1301 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1302 ++compare_count;
1303 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1304 ++loop_count;
1305 if (wi::neg_p (compare_count))
1306 compare_count = 0;
1307 if (wi::neg_p (loop_count))
1308 loop_count = 0;
1309 if (loop_count == 0)
1310 probability = 0;
1311 else if (wi::cmps (compare_count, loop_count) == 1)
1312 probability = REG_BR_PROB_BASE;
1313 else
1315 tem = compare_count * REG_BR_PROB_BASE;
1316 tem = wi::udiv_trunc (tem, loop_count);
1317 probability = tem.to_uhwi ();
1320 if (!overall_overflow)
1321 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1323 return;
1326 if (expr_coherent_p (loop_bound_var, compare_var))
1328 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1329 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1330 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1331 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1332 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1333 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1334 else if (loop_bound_code == NE_EXPR)
1336 /* If the loop backedge condition is "(i != bound)", we do
1337 the comparison based on the step of IV:
1338 * step < 0 : backedge condition is like (i > bound)
1339 * step > 0 : backedge condition is like (i < bound) */
1340 gcc_assert (loop_bound_step != 0);
1341 if (loop_bound_step > 0
1342 && (compare_code == LT_EXPR
1343 || compare_code == LE_EXPR))
1344 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1345 else if (loop_bound_step < 0
1346 && (compare_code == GT_EXPR
1347 || compare_code == GE_EXPR))
1348 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1349 else
1350 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1352 else
1353 /* The branch is predicted not-taken if loop_bound_code is
1354 opposite with compare_code. */
1355 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1357 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1359 /* For cases like:
1360 for (i = s; i < h; i++)
1361 if (i > s + 2) ....
1362 The branch should be predicted taken. */
1363 if (loop_bound_step > 0
1364 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1365 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1366 else if (loop_bound_step < 0
1367 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1368 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1369 else
1370 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1374 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1375 exits are resulted from short-circuit conditions that will generate an
1376 if_tmp. E.g.:
1378 if (foo() || global > 10)
1379 break;
1381 This will be translated into:
1383 BB3:
1384 loop header...
1385 BB4:
1386 if foo() goto BB6 else goto BB5
1387 BB5:
1388 if global > 10 goto BB6 else goto BB7
1389 BB6:
1390 goto BB7
1391 BB7:
1392 iftmp = (PHI 0(BB5), 1(BB6))
1393 if iftmp == 1 goto BB8 else goto BB3
1394 BB8:
1395 outside of the loop...
1397 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1398 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1399 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1400 exits to predict them using PRED_LOOP_EXIT. */
1402 static void
1403 predict_extra_loop_exits (edge exit_edge)
1405 unsigned i;
1406 bool check_value_one;
1407 gimple lhs_def_stmt;
1408 gphi *phi_stmt;
1409 tree cmp_rhs, cmp_lhs;
1410 gimple last;
1411 gcond *cmp_stmt;
1413 last = last_stmt (exit_edge->src);
1414 if (!last)
1415 return;
1416 cmp_stmt = dyn_cast <gcond *> (last);
1417 if (!cmp_stmt)
1418 return;
1420 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1421 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1422 if (!TREE_CONSTANT (cmp_rhs)
1423 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1424 return;
1425 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1426 return;
1428 /* If check_value_one is true, only the phi_args with value '1' will lead
1429 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1430 loop exit. */
1431 check_value_one = (((integer_onep (cmp_rhs))
1432 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1433 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1435 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1436 if (!lhs_def_stmt)
1437 return;
1439 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1440 if (!phi_stmt)
1441 return;
1443 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1445 edge e1;
1446 edge_iterator ei;
1447 tree val = gimple_phi_arg_def (phi_stmt, i);
1448 edge e = gimple_phi_arg_edge (phi_stmt, i);
1450 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1451 continue;
1452 if ((check_value_one ^ integer_onep (val)) == 1)
1453 continue;
1454 if (EDGE_COUNT (e->src->succs) != 1)
1456 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1457 continue;
1460 FOR_EACH_EDGE (e1, ei, e->src->preds)
1461 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1465 /* Predict edge probabilities by exploiting loop structure. */
1467 static void
1468 predict_loops (void)
1470 struct loop *loop;
1472 /* Try to predict out blocks in a loop that are not part of a
1473 natural loop. */
1474 FOR_EACH_LOOP (loop, 0)
1476 basic_block bb, *bbs;
1477 unsigned j, n_exits;
1478 vec<edge> exits;
1479 struct tree_niter_desc niter_desc;
1480 edge ex;
1481 struct nb_iter_bound *nb_iter;
1482 enum tree_code loop_bound_code = ERROR_MARK;
1483 tree loop_bound_step = NULL;
1484 tree loop_bound_var = NULL;
1485 tree loop_iv_base = NULL;
1486 gcond *stmt = NULL;
1488 exits = get_loop_exit_edges (loop);
1489 n_exits = exits.length ();
1490 if (!n_exits)
1492 exits.release ();
1493 continue;
1496 FOR_EACH_VEC_ELT (exits, j, ex)
1498 tree niter = NULL;
1499 HOST_WIDE_INT nitercst;
1500 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1501 int probability;
1502 enum br_predictor predictor;
1504 predict_extra_loop_exits (ex);
1506 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1507 niter = niter_desc.niter;
1508 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1509 niter = loop_niter_by_eval (loop, ex);
1511 if (TREE_CODE (niter) == INTEGER_CST)
1513 if (tree_fits_uhwi_p (niter)
1514 && max
1515 && compare_tree_int (niter, max - 1) == -1)
1516 nitercst = tree_to_uhwi (niter) + 1;
1517 else
1518 nitercst = max;
1519 predictor = PRED_LOOP_ITERATIONS;
1521 /* If we have just one exit and we can derive some information about
1522 the number of iterations of the loop from the statements inside
1523 the loop, use it to predict this exit. */
1524 else if (n_exits == 1)
1526 nitercst = estimated_stmt_executions_int (loop);
1527 if (nitercst < 0)
1528 continue;
1529 if (nitercst > max)
1530 nitercst = max;
1532 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1534 else
1535 continue;
1537 /* If the prediction for number of iterations is zero, do not
1538 predict the exit edges. */
1539 if (nitercst == 0)
1540 continue;
1542 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1543 predict_edge (ex, predictor, probability);
1545 exits.release ();
1547 /* Find information about loop bound variables. */
1548 for (nb_iter = loop->bounds; nb_iter;
1549 nb_iter = nb_iter->next)
1550 if (nb_iter->stmt
1551 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1553 stmt = as_a <gcond *> (nb_iter->stmt);
1554 break;
1556 if (!stmt && last_stmt (loop->header)
1557 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1558 stmt = as_a <gcond *> (last_stmt (loop->header));
1559 if (stmt)
1560 is_comparison_with_loop_invariant_p (stmt, loop,
1561 &loop_bound_var,
1562 &loop_bound_code,
1563 &loop_bound_step,
1564 &loop_iv_base);
1566 bbs = get_loop_body (loop);
1568 for (j = 0; j < loop->num_nodes; j++)
1570 int header_found = 0;
1571 edge e;
1572 edge_iterator ei;
1574 bb = bbs[j];
1576 /* Bypass loop heuristics on continue statement. These
1577 statements construct loops via "non-loop" constructs
1578 in the source language and are better to be handled
1579 separately. */
1580 if (predicted_by_p (bb, PRED_CONTINUE))
1581 continue;
1583 /* Loop branch heuristics - predict an edge back to a
1584 loop's head as taken. */
1585 if (bb == loop->latch)
1587 e = find_edge (loop->latch, loop->header);
1588 if (e)
1590 header_found = 1;
1591 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1595 /* Loop exit heuristics - predict an edge exiting the loop if the
1596 conditional has no loop header successors as not taken. */
1597 if (!header_found
1598 /* If we already used more reliable loop exit predictors, do not
1599 bother with PRED_LOOP_EXIT. */
1600 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1601 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1603 /* For loop with many exits we don't want to predict all exits
1604 with the pretty large probability, because if all exits are
1605 considered in row, the loop would be predicted to iterate
1606 almost never. The code to divide probability by number of
1607 exits is very rough. It should compute the number of exits
1608 taken in each patch through function (not the overall number
1609 of exits that might be a lot higher for loops with wide switch
1610 statements in them) and compute n-th square root.
1612 We limit the minimal probability by 2% to avoid
1613 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1614 as this was causing regression in perl benchmark containing such
1615 a wide loop. */
1617 int probability = ((REG_BR_PROB_BASE
1618 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1619 / n_exits);
1620 if (probability < HITRATE (2))
1621 probability = HITRATE (2);
1622 FOR_EACH_EDGE (e, ei, bb->succs)
1623 if (e->dest->index < NUM_FIXED_BLOCKS
1624 || !flow_bb_inside_loop_p (loop, e->dest))
1625 predict_edge (e, PRED_LOOP_EXIT, probability);
1627 if (loop_bound_var)
1628 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1629 loop_bound_code,
1630 tree_to_shwi (loop_bound_step));
1633 /* Free basic blocks from get_loop_body. */
1634 free (bbs);
1638 /* Attempt to predict probabilities of BB outgoing edges using local
1639 properties. */
1640 static void
1641 bb_estimate_probability_locally (basic_block bb)
1643 rtx_insn *last_insn = BB_END (bb);
1644 rtx cond;
1646 if (! can_predict_insn_p (last_insn))
1647 return;
1648 cond = get_condition (last_insn, NULL, false, false);
1649 if (! cond)
1650 return;
1652 /* Try "pointer heuristic."
1653 A comparison ptr == 0 is predicted as false.
1654 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1655 if (COMPARISON_P (cond)
1656 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1657 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1659 if (GET_CODE (cond) == EQ)
1660 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1661 else if (GET_CODE (cond) == NE)
1662 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1664 else
1666 /* Try "opcode heuristic."
1667 EQ tests are usually false and NE tests are usually true. Also,
1668 most quantities are positive, so we can make the appropriate guesses
1669 about signed comparisons against zero. */
1670 switch (GET_CODE (cond))
1672 case CONST_INT:
1673 /* Unconditional branch. */
1674 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1675 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1676 break;
1678 case EQ:
1679 case UNEQ:
1680 /* Floating point comparisons appears to behave in a very
1681 unpredictable way because of special role of = tests in
1682 FP code. */
1683 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1685 /* Comparisons with 0 are often used for booleans and there is
1686 nothing useful to predict about them. */
1687 else if (XEXP (cond, 1) == const0_rtx
1688 || XEXP (cond, 0) == const0_rtx)
1690 else
1691 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1692 break;
1694 case NE:
1695 case LTGT:
1696 /* Floating point comparisons appears to behave in a very
1697 unpredictable way because of special role of = tests in
1698 FP code. */
1699 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1701 /* Comparisons with 0 are often used for booleans and there is
1702 nothing useful to predict about them. */
1703 else if (XEXP (cond, 1) == const0_rtx
1704 || XEXP (cond, 0) == const0_rtx)
1706 else
1707 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1708 break;
1710 case ORDERED:
1711 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1712 break;
1714 case UNORDERED:
1715 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1716 break;
1718 case LE:
1719 case LT:
1720 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1721 || XEXP (cond, 1) == constm1_rtx)
1722 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1723 break;
1725 case GE:
1726 case GT:
1727 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1728 || XEXP (cond, 1) == constm1_rtx)
1729 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1730 break;
1732 default:
1733 break;
1737 /* Set edge->probability for each successor edge of BB. */
1738 void
1739 guess_outgoing_edge_probabilities (basic_block bb)
1741 bb_estimate_probability_locally (bb);
1742 combine_predictions_for_insn (BB_END (bb), bb);
1745 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1747 /* Helper function for expr_expected_value. */
1749 static tree
1750 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1751 tree op1, bitmap visited, enum br_predictor *predictor)
1753 gimple def;
1755 if (predictor)
1756 *predictor = PRED_UNCONDITIONAL;
1758 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1760 if (TREE_CONSTANT (op0))
1761 return op0;
1763 if (code != SSA_NAME)
1764 return NULL_TREE;
1766 def = SSA_NAME_DEF_STMT (op0);
1768 /* If we were already here, break the infinite cycle. */
1769 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1770 return NULL;
1772 if (gimple_code (def) == GIMPLE_PHI)
1774 /* All the arguments of the PHI node must have the same constant
1775 length. */
1776 int i, n = gimple_phi_num_args (def);
1777 tree val = NULL, new_val;
1779 for (i = 0; i < n; i++)
1781 tree arg = PHI_ARG_DEF (def, i);
1782 enum br_predictor predictor2;
1784 /* If this PHI has itself as an argument, we cannot
1785 determine the string length of this argument. However,
1786 if we can find an expected constant value for the other
1787 PHI args then we can still be sure that this is
1788 likely a constant. So be optimistic and just
1789 continue with the next argument. */
1790 if (arg == PHI_RESULT (def))
1791 continue;
1793 new_val = expr_expected_value (arg, visited, &predictor2);
1795 /* It is difficult to combine value predictors. Simply assume
1796 that later predictor is weaker and take its prediction. */
1797 if (predictor && *predictor < predictor2)
1798 *predictor = predictor2;
1799 if (!new_val)
1800 return NULL;
1801 if (!val)
1802 val = new_val;
1803 else if (!operand_equal_p (val, new_val, false))
1804 return NULL;
1806 return val;
1808 if (is_gimple_assign (def))
1810 if (gimple_assign_lhs (def) != op0)
1811 return NULL;
1813 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1814 gimple_assign_rhs1 (def),
1815 gimple_assign_rhs_code (def),
1816 gimple_assign_rhs2 (def),
1817 visited, predictor);
1820 if (is_gimple_call (def))
1822 tree decl = gimple_call_fndecl (def);
1823 if (!decl)
1825 if (gimple_call_internal_p (def)
1826 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1828 gcc_assert (gimple_call_num_args (def) == 3);
1829 tree val = gimple_call_arg (def, 0);
1830 if (TREE_CONSTANT (val))
1831 return val;
1832 if (predictor)
1834 tree val2 = gimple_call_arg (def, 2);
1835 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1836 && tree_fits_uhwi_p (val2)
1837 && tree_to_uhwi (val2) < END_PREDICTORS);
1838 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1840 return gimple_call_arg (def, 1);
1842 return NULL;
1844 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1845 switch (DECL_FUNCTION_CODE (decl))
1847 case BUILT_IN_EXPECT:
1849 tree val;
1850 if (gimple_call_num_args (def) != 2)
1851 return NULL;
1852 val = gimple_call_arg (def, 0);
1853 if (TREE_CONSTANT (val))
1854 return val;
1855 if (predictor)
1856 *predictor = PRED_BUILTIN_EXPECT;
1857 return gimple_call_arg (def, 1);
1860 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1861 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1862 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1863 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1864 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1865 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1866 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1867 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1868 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1869 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1870 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1871 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1872 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1873 /* Assume that any given atomic operation has low contention,
1874 and thus the compare-and-swap operation succeeds. */
1875 if (predictor)
1876 *predictor = PRED_COMPARE_AND_SWAP;
1877 return boolean_true_node;
1878 default:
1879 break;
1883 return NULL;
1886 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1888 tree res;
1889 enum br_predictor predictor2;
1890 op0 = expr_expected_value (op0, visited, predictor);
1891 if (!op0)
1892 return NULL;
1893 op1 = expr_expected_value (op1, visited, &predictor2);
1894 if (predictor && *predictor < predictor2)
1895 *predictor = predictor2;
1896 if (!op1)
1897 return NULL;
1898 res = fold_build2 (code, type, op0, op1);
1899 if (TREE_CONSTANT (res))
1900 return res;
1901 return NULL;
1903 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1905 tree res;
1906 op0 = expr_expected_value (op0, visited, predictor);
1907 if (!op0)
1908 return NULL;
1909 res = fold_build1 (code, type, op0);
1910 if (TREE_CONSTANT (res))
1911 return res;
1912 return NULL;
1914 return NULL;
1917 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1918 The function is used by builtin_expect branch predictor so the evidence
1919 must come from this construct and additional possible constant folding.
1921 We may want to implement more involved value guess (such as value range
1922 propagation based prediction), but such tricks shall go to new
1923 implementation. */
1925 static tree
1926 expr_expected_value (tree expr, bitmap visited,
1927 enum br_predictor *predictor)
1929 enum tree_code code;
1930 tree op0, op1;
1932 if (TREE_CONSTANT (expr))
1934 if (predictor)
1935 *predictor = PRED_UNCONDITIONAL;
1936 return expr;
1939 extract_ops_from_tree (expr, &code, &op0, &op1);
1940 return expr_expected_value_1 (TREE_TYPE (expr),
1941 op0, code, op1, visited, predictor);
1944 /* Predict using opcode of the last statement in basic block. */
1945 static void
1946 tree_predict_by_opcode (basic_block bb)
1948 gimple stmt = last_stmt (bb);
1949 edge then_edge;
1950 tree op0, op1;
1951 tree type;
1952 tree val;
1953 enum tree_code cmp;
1954 bitmap visited;
1955 edge_iterator ei;
1956 enum br_predictor predictor;
1958 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1959 return;
1960 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1961 if (then_edge->flags & EDGE_TRUE_VALUE)
1962 break;
1963 op0 = gimple_cond_lhs (stmt);
1964 op1 = gimple_cond_rhs (stmt);
1965 cmp = gimple_cond_code (stmt);
1966 type = TREE_TYPE (op0);
1967 visited = BITMAP_ALLOC (NULL);
1968 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1969 &predictor);
1970 BITMAP_FREE (visited);
1971 if (val && TREE_CODE (val) == INTEGER_CST)
1973 if (predictor == PRED_BUILTIN_EXPECT)
1975 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
1977 gcc_assert (percent >= 0 && percent <= 100);
1978 if (integer_zerop (val))
1979 percent = 100 - percent;
1980 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
1982 else
1983 predict_edge (then_edge, predictor,
1984 integer_zerop (val) ? NOT_TAKEN : TAKEN);
1986 /* Try "pointer heuristic."
1987 A comparison ptr == 0 is predicted as false.
1988 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1989 if (POINTER_TYPE_P (type))
1991 if (cmp == EQ_EXPR)
1992 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1993 else if (cmp == NE_EXPR)
1994 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1996 else
1998 /* Try "opcode heuristic."
1999 EQ tests are usually false and NE tests are usually true. Also,
2000 most quantities are positive, so we can make the appropriate guesses
2001 about signed comparisons against zero. */
2002 switch (cmp)
2004 case EQ_EXPR:
2005 case UNEQ_EXPR:
2006 /* Floating point comparisons appears to behave in a very
2007 unpredictable way because of special role of = tests in
2008 FP code. */
2009 if (FLOAT_TYPE_P (type))
2011 /* Comparisons with 0 are often used for booleans and there is
2012 nothing useful to predict about them. */
2013 else if (integer_zerop (op0) || integer_zerop (op1))
2015 else
2016 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2017 break;
2019 case NE_EXPR:
2020 case LTGT_EXPR:
2021 /* Floating point comparisons appears to behave in a very
2022 unpredictable way because of special role of = tests in
2023 FP code. */
2024 if (FLOAT_TYPE_P (type))
2026 /* Comparisons with 0 are often used for booleans and there is
2027 nothing useful to predict about them. */
2028 else if (integer_zerop (op0)
2029 || integer_zerop (op1))
2031 else
2032 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2033 break;
2035 case ORDERED_EXPR:
2036 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2037 break;
2039 case UNORDERED_EXPR:
2040 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2041 break;
2043 case LE_EXPR:
2044 case LT_EXPR:
2045 if (integer_zerop (op1)
2046 || integer_onep (op1)
2047 || integer_all_onesp (op1)
2048 || real_zerop (op1)
2049 || real_onep (op1)
2050 || real_minus_onep (op1))
2051 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2052 break;
2054 case GE_EXPR:
2055 case GT_EXPR:
2056 if (integer_zerop (op1)
2057 || integer_onep (op1)
2058 || integer_all_onesp (op1)
2059 || real_zerop (op1)
2060 || real_onep (op1)
2061 || real_minus_onep (op1))
2062 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2063 break;
2065 default:
2066 break;
2070 /* Try to guess whether the value of return means error code. */
2072 static enum br_predictor
2073 return_prediction (tree val, enum prediction *prediction)
2075 /* VOID. */
2076 if (!val)
2077 return PRED_NO_PREDICTION;
2078 /* Different heuristics for pointers and scalars. */
2079 if (POINTER_TYPE_P (TREE_TYPE (val)))
2081 /* NULL is usually not returned. */
2082 if (integer_zerop (val))
2084 *prediction = NOT_TAKEN;
2085 return PRED_NULL_RETURN;
2088 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2090 /* Negative return values are often used to indicate
2091 errors. */
2092 if (TREE_CODE (val) == INTEGER_CST
2093 && tree_int_cst_sgn (val) < 0)
2095 *prediction = NOT_TAKEN;
2096 return PRED_NEGATIVE_RETURN;
2098 /* Constant return values seems to be commonly taken.
2099 Zero/one often represent booleans so exclude them from the
2100 heuristics. */
2101 if (TREE_CONSTANT (val)
2102 && (!integer_zerop (val) && !integer_onep (val)))
2104 *prediction = TAKEN;
2105 return PRED_CONST_RETURN;
2108 return PRED_NO_PREDICTION;
2111 /* Find the basic block with return expression and look up for possible
2112 return value trying to apply RETURN_PREDICTION heuristics. */
2113 static void
2114 apply_return_prediction (void)
2116 greturn *return_stmt = NULL;
2117 tree return_val;
2118 edge e;
2119 gphi *phi;
2120 int phi_num_args, i;
2121 enum br_predictor pred;
2122 enum prediction direction;
2123 edge_iterator ei;
2125 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2127 gimple last = last_stmt (e->src);
2128 if (last
2129 && gimple_code (last) == GIMPLE_RETURN)
2131 return_stmt = as_a <greturn *> (last);
2132 break;
2135 if (!e)
2136 return;
2137 return_val = gimple_return_retval (return_stmt);
2138 if (!return_val)
2139 return;
2140 if (TREE_CODE (return_val) != SSA_NAME
2141 || !SSA_NAME_DEF_STMT (return_val)
2142 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2143 return;
2144 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2145 phi_num_args = gimple_phi_num_args (phi);
2146 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2148 /* Avoid the degenerate case where all return values form the function
2149 belongs to same category (ie they are all positive constants)
2150 so we can hardly say something about them. */
2151 for (i = 1; i < phi_num_args; i++)
2152 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2153 break;
2154 if (i != phi_num_args)
2155 for (i = 0; i < phi_num_args; i++)
2157 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2158 if (pred != PRED_NO_PREDICTION)
2159 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2160 direction);
2164 /* Look for basic block that contains unlikely to happen events
2165 (such as noreturn calls) and mark all paths leading to execution
2166 of this basic blocks as unlikely. */
2168 static void
2169 tree_bb_level_predictions (void)
2171 basic_block bb;
2172 bool has_return_edges = false;
2173 edge e;
2174 edge_iterator ei;
2176 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2177 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2179 has_return_edges = true;
2180 break;
2183 apply_return_prediction ();
2185 FOR_EACH_BB_FN (bb, cfun)
2187 gimple_stmt_iterator gsi;
2189 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2191 gimple stmt = gsi_stmt (gsi);
2192 tree decl;
2194 if (is_gimple_call (stmt))
2196 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2197 && has_return_edges)
2198 predict_paths_leading_to (bb, PRED_NORETURN,
2199 NOT_TAKEN);
2200 decl = gimple_call_fndecl (stmt);
2201 if (decl
2202 && lookup_attribute ("cold",
2203 DECL_ATTRIBUTES (decl)))
2204 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2205 NOT_TAKEN);
2207 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2209 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2210 gimple_predict_outcome (stmt));
2211 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2212 hints to callers. */
2218 #ifdef ENABLE_CHECKING
2220 /* Callback for hash_map::traverse, asserts that the pointer map is
2221 empty. */
2223 bool
2224 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2225 void *)
2227 gcc_assert (!value);
2228 return false;
2230 #endif
2232 /* Predict branch probabilities and estimate profile for basic block BB. */
2234 static void
2235 tree_estimate_probability_bb (basic_block bb)
2237 edge e;
2238 edge_iterator ei;
2239 gimple last;
2241 FOR_EACH_EDGE (e, ei, bb->succs)
2243 /* Predict edges to user labels with attributes. */
2244 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2246 gimple_stmt_iterator gi;
2247 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2249 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2250 tree decl;
2252 if (!label_stmt)
2253 break;
2254 decl = gimple_label_label (label_stmt);
2255 if (DECL_ARTIFICIAL (decl))
2256 continue;
2258 /* Finally, we have a user-defined label. */
2259 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2260 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2261 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2262 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2266 /* Predict early returns to be probable, as we've already taken
2267 care for error returns and other cases are often used for
2268 fast paths through function.
2270 Since we've already removed the return statements, we are
2271 looking for CFG like:
2273 if (conditional)
2276 goto return_block
2278 some other blocks
2279 return_block:
2280 return_stmt. */
2281 if (e->dest != bb->next_bb
2282 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2283 && single_succ_p (e->dest)
2284 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2285 && (last = last_stmt (e->dest)) != NULL
2286 && gimple_code (last) == GIMPLE_RETURN)
2288 edge e1;
2289 edge_iterator ei1;
2291 if (single_succ_p (bb))
2293 FOR_EACH_EDGE (e1, ei1, bb->preds)
2294 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2295 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2296 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2297 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2299 else
2300 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2301 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2302 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2303 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2306 /* Look for block we are guarding (ie we dominate it,
2307 but it doesn't postdominate us). */
2308 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2309 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2310 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2312 gimple_stmt_iterator bi;
2314 /* The call heuristic claims that a guarded function call
2315 is improbable. This is because such calls are often used
2316 to signal exceptional situations such as printing error
2317 messages. */
2318 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2319 gsi_next (&bi))
2321 gimple stmt = gsi_stmt (bi);
2322 if (is_gimple_call (stmt)
2323 /* Constant and pure calls are hardly used to signalize
2324 something exceptional. */
2325 && gimple_has_side_effects (stmt))
2327 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2328 break;
2333 tree_predict_by_opcode (bb);
2336 /* Predict branch probabilities and estimate profile of the tree CFG.
2337 This function can be called from the loop optimizers to recompute
2338 the profile information. */
2340 void
2341 tree_estimate_probability (void)
2343 basic_block bb;
2345 add_noreturn_fake_exit_edges ();
2346 connect_infinite_loops_to_exit ();
2347 /* We use loop_niter_by_eval, which requires that the loops have
2348 preheaders. */
2349 create_preheaders (CP_SIMPLE_PREHEADERS);
2350 calculate_dominance_info (CDI_POST_DOMINATORS);
2352 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2353 tree_bb_level_predictions ();
2354 record_loop_exits ();
2356 if (number_of_loops (cfun) > 1)
2357 predict_loops ();
2359 FOR_EACH_BB_FN (bb, cfun)
2360 tree_estimate_probability_bb (bb);
2362 FOR_EACH_BB_FN (bb, cfun)
2363 combine_predictions_for_bb (bb);
2365 #ifdef ENABLE_CHECKING
2366 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2367 #endif
2368 delete bb_predictions;
2369 bb_predictions = NULL;
2371 estimate_bb_frequencies (false);
2372 free_dominance_info (CDI_POST_DOMINATORS);
2373 remove_fake_exit_edges ();
2376 /* Predict edges to successors of CUR whose sources are not postdominated by
2377 BB by PRED and recurse to all postdominators. */
2379 static void
2380 predict_paths_for_bb (basic_block cur, basic_block bb,
2381 enum br_predictor pred,
2382 enum prediction taken,
2383 bitmap visited)
2385 edge e;
2386 edge_iterator ei;
2387 basic_block son;
2389 /* We are looking for all edges forming edge cut induced by
2390 set of all blocks postdominated by BB. */
2391 FOR_EACH_EDGE (e, ei, cur->preds)
2392 if (e->src->index >= NUM_FIXED_BLOCKS
2393 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2395 edge e2;
2396 edge_iterator ei2;
2397 bool found = false;
2399 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2400 if (e->flags & (EDGE_EH | EDGE_FAKE))
2401 continue;
2402 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2404 /* See if there is an edge from e->src that is not abnormal
2405 and does not lead to BB. */
2406 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2407 if (e2 != e
2408 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2409 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2411 found = true;
2412 break;
2415 /* If there is non-abnormal path leaving e->src, predict edge
2416 using predictor. Otherwise we need to look for paths
2417 leading to e->src.
2419 The second may lead to infinite loop in the case we are predicitng
2420 regions that are only reachable by abnormal edges. We simply
2421 prevent visiting given BB twice. */
2422 if (found)
2423 predict_edge_def (e, pred, taken);
2424 else if (bitmap_set_bit (visited, e->src->index))
2425 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2427 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2428 son;
2429 son = next_dom_son (CDI_POST_DOMINATORS, son))
2430 predict_paths_for_bb (son, bb, pred, taken, visited);
2433 /* Sets branch probabilities according to PREDiction and
2434 FLAGS. */
2436 static void
2437 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2438 enum prediction taken)
2440 bitmap visited = BITMAP_ALLOC (NULL);
2441 predict_paths_for_bb (bb, bb, pred, taken, visited);
2442 BITMAP_FREE (visited);
2445 /* Like predict_paths_leading_to but take edge instead of basic block. */
2447 static void
2448 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2449 enum prediction taken)
2451 bool has_nonloop_edge = false;
2452 edge_iterator ei;
2453 edge e2;
2455 basic_block bb = e->src;
2456 FOR_EACH_EDGE (e2, ei, bb->succs)
2457 if (e2->dest != e->src && e2->dest != e->dest
2458 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2459 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2461 has_nonloop_edge = true;
2462 break;
2464 if (!has_nonloop_edge)
2466 bitmap visited = BITMAP_ALLOC (NULL);
2467 predict_paths_for_bb (bb, bb, pred, taken, visited);
2468 BITMAP_FREE (visited);
2470 else
2471 predict_edge_def (e, pred, taken);
2474 /* This is used to carry information about basic blocks. It is
2475 attached to the AUX field of the standard CFG block. */
2477 struct block_info
2479 /* Estimated frequency of execution of basic_block. */
2480 sreal frequency;
2482 /* To keep queue of basic blocks to process. */
2483 basic_block next;
2485 /* Number of predecessors we need to visit first. */
2486 int npredecessors;
2489 /* Similar information for edges. */
2490 struct edge_prob_info
2492 /* In case edge is a loopback edge, the probability edge will be reached
2493 in case header is. Estimated number of iterations of the loop can be
2494 then computed as 1 / (1 - back_edge_prob). */
2495 sreal back_edge_prob;
2496 /* True if the edge is a loopback edge in the natural loop. */
2497 unsigned int back_edge:1;
2500 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2501 #undef EDGE_INFO
2502 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2504 /* Helper function for estimate_bb_frequencies.
2505 Propagate the frequencies in blocks marked in
2506 TOVISIT, starting in HEAD. */
2508 static void
2509 propagate_freq (basic_block head, bitmap tovisit)
2511 basic_block bb;
2512 basic_block last;
2513 unsigned i;
2514 edge e;
2515 basic_block nextbb;
2516 bitmap_iterator bi;
2518 /* For each basic block we need to visit count number of his predecessors
2519 we need to visit first. */
2520 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2522 edge_iterator ei;
2523 int count = 0;
2525 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2527 FOR_EACH_EDGE (e, ei, bb->preds)
2529 bool visit = bitmap_bit_p (tovisit, e->src->index);
2531 if (visit && !(e->flags & EDGE_DFS_BACK))
2532 count++;
2533 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2534 fprintf (dump_file,
2535 "Irreducible region hit, ignoring edge to %i->%i\n",
2536 e->src->index, bb->index);
2538 BLOCK_INFO (bb)->npredecessors = count;
2539 /* When function never returns, we will never process exit block. */
2540 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2541 bb->count = bb->frequency = 0;
2544 BLOCK_INFO (head)->frequency = 1;
2545 last = head;
2546 for (bb = head; bb; bb = nextbb)
2548 edge_iterator ei;
2549 sreal cyclic_probability = 0;
2550 sreal frequency = 0;
2552 nextbb = BLOCK_INFO (bb)->next;
2553 BLOCK_INFO (bb)->next = NULL;
2555 /* Compute frequency of basic block. */
2556 if (bb != head)
2558 #ifdef ENABLE_CHECKING
2559 FOR_EACH_EDGE (e, ei, bb->preds)
2560 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2561 || (e->flags & EDGE_DFS_BACK));
2562 #endif
2564 FOR_EACH_EDGE (e, ei, bb->preds)
2565 if (EDGE_INFO (e)->back_edge)
2567 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2569 else if (!(e->flags & EDGE_DFS_BACK))
2571 /* frequency += (e->probability
2572 * BLOCK_INFO (e->src)->frequency /
2573 REG_BR_PROB_BASE); */
2575 sreal tmp = e->probability;
2576 tmp *= BLOCK_INFO (e->src)->frequency;
2577 tmp *= real_inv_br_prob_base;
2578 frequency += tmp;
2581 if (cyclic_probability == 0)
2583 BLOCK_INFO (bb)->frequency = frequency;
2585 else
2587 if (cyclic_probability > real_almost_one)
2588 cyclic_probability = real_almost_one;
2590 /* BLOCK_INFO (bb)->frequency = frequency
2591 / (1 - cyclic_probability) */
2593 cyclic_probability = sreal (1) - cyclic_probability;
2594 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2598 bitmap_clear_bit (tovisit, bb->index);
2600 e = find_edge (bb, head);
2601 if (e)
2603 /* EDGE_INFO (e)->back_edge_prob
2604 = ((e->probability * BLOCK_INFO (bb)->frequency)
2605 / REG_BR_PROB_BASE); */
2607 sreal tmp = e->probability;
2608 tmp *= BLOCK_INFO (bb)->frequency;
2609 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2612 /* Propagate to successor blocks. */
2613 FOR_EACH_EDGE (e, ei, bb->succs)
2614 if (!(e->flags & EDGE_DFS_BACK)
2615 && BLOCK_INFO (e->dest)->npredecessors)
2617 BLOCK_INFO (e->dest)->npredecessors--;
2618 if (!BLOCK_INFO (e->dest)->npredecessors)
2620 if (!nextbb)
2621 nextbb = e->dest;
2622 else
2623 BLOCK_INFO (last)->next = e->dest;
2625 last = e->dest;
2631 /* Estimate frequencies in loops at same nest level. */
2633 static void
2634 estimate_loops_at_level (struct loop *first_loop)
2636 struct loop *loop;
2638 for (loop = first_loop; loop; loop = loop->next)
2640 edge e;
2641 basic_block *bbs;
2642 unsigned i;
2643 bitmap tovisit = BITMAP_ALLOC (NULL);
2645 estimate_loops_at_level (loop->inner);
2647 /* Find current loop back edge and mark it. */
2648 e = loop_latch_edge (loop);
2649 EDGE_INFO (e)->back_edge = 1;
2651 bbs = get_loop_body (loop);
2652 for (i = 0; i < loop->num_nodes; i++)
2653 bitmap_set_bit (tovisit, bbs[i]->index);
2654 free (bbs);
2655 propagate_freq (loop->header, tovisit);
2656 BITMAP_FREE (tovisit);
2660 /* Propagates frequencies through structure of loops. */
2662 static void
2663 estimate_loops (void)
2665 bitmap tovisit = BITMAP_ALLOC (NULL);
2666 basic_block bb;
2668 /* Start by estimating the frequencies in the loops. */
2669 if (number_of_loops (cfun) > 1)
2670 estimate_loops_at_level (current_loops->tree_root->inner);
2672 /* Now propagate the frequencies through all the blocks. */
2673 FOR_ALL_BB_FN (bb, cfun)
2675 bitmap_set_bit (tovisit, bb->index);
2677 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2678 BITMAP_FREE (tovisit);
2681 /* Drop the profile for NODE to guessed, and update its frequency based on
2682 whether it is expected to be hot given the CALL_COUNT. */
2684 static void
2685 drop_profile (struct cgraph_node *node, gcov_type call_count)
2687 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2688 /* In the case where this was called by another function with a
2689 dropped profile, call_count will be 0. Since there are no
2690 non-zero call counts to this function, we don't know for sure
2691 whether it is hot, and therefore it will be marked normal below. */
2692 bool hot = maybe_hot_count_p (NULL, call_count);
2694 if (dump_file)
2695 fprintf (dump_file,
2696 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2697 node->name (), node->order,
2698 hot ? "Function is hot" : "Function is normal");
2699 /* We only expect to miss profiles for functions that are reached
2700 via non-zero call edges in cases where the function may have
2701 been linked from another module or library (COMDATs and extern
2702 templates). See the comments below for handle_missing_profiles.
2703 Also, only warn in cases where the missing counts exceed the
2704 number of training runs. In certain cases with an execv followed
2705 by a no-return call the profile for the no-return call is not
2706 dumped and there can be a mismatch. */
2707 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2708 && call_count > profile_info->runs)
2710 if (flag_profile_correction)
2712 if (dump_file)
2713 fprintf (dump_file,
2714 "Missing counts for called function %s/%i\n",
2715 node->name (), node->order);
2717 else
2718 warning (0, "Missing counts for called function %s/%i",
2719 node->name (), node->order);
2722 profile_status_for_fn (fn)
2723 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2724 node->frequency
2725 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2728 /* In the case of COMDAT routines, multiple object files will contain the same
2729 function and the linker will select one for the binary. In that case
2730 all the other copies from the profile instrument binary will be missing
2731 profile counts. Look for cases where this happened, due to non-zero
2732 call counts going to 0-count functions, and drop the profile to guessed
2733 so that we can use the estimated probabilities and avoid optimizing only
2734 for size.
2736 The other case where the profile may be missing is when the routine
2737 is not going to be emitted to the object file, e.g. for "extern template"
2738 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2739 all other cases of non-zero calls to 0-count functions. */
2741 void
2742 handle_missing_profiles (void)
2744 struct cgraph_node *node;
2745 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2746 vec<struct cgraph_node *> worklist;
2747 worklist.create (64);
2749 /* See if 0 count function has non-0 count callers. In this case we
2750 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2751 FOR_EACH_DEFINED_FUNCTION (node)
2753 struct cgraph_edge *e;
2754 gcov_type call_count = 0;
2755 gcov_type max_tp_first_run = 0;
2756 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2758 if (node->count)
2759 continue;
2760 for (e = node->callers; e; e = e->next_caller)
2762 call_count += e->count;
2764 if (e->caller->tp_first_run > max_tp_first_run)
2765 max_tp_first_run = e->caller->tp_first_run;
2768 /* If time profile is missing, let assign the maximum that comes from
2769 caller functions. */
2770 if (!node->tp_first_run && max_tp_first_run)
2771 node->tp_first_run = max_tp_first_run + 1;
2773 if (call_count
2774 && fn && fn->cfg
2775 && (call_count * unlikely_count_fraction >= profile_info->runs))
2777 drop_profile (node, call_count);
2778 worklist.safe_push (node);
2782 /* Propagate the profile dropping to other 0-count COMDATs that are
2783 potentially called by COMDATs we already dropped the profile on. */
2784 while (worklist.length () > 0)
2786 struct cgraph_edge *e;
2788 node = worklist.pop ();
2789 for (e = node->callees; e; e = e->next_caller)
2791 struct cgraph_node *callee = e->callee;
2792 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2794 if (callee->count > 0)
2795 continue;
2796 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2797 && profile_status_for_fn (fn) == PROFILE_READ)
2799 drop_profile (node, 0);
2800 worklist.safe_push (callee);
2804 worklist.release ();
2807 /* Convert counts measured by profile driven feedback to frequencies.
2808 Return nonzero iff there was any nonzero execution count. */
2811 counts_to_freqs (void)
2813 gcov_type count_max, true_count_max = 0;
2814 basic_block bb;
2816 /* Don't overwrite the estimated frequencies when the profile for
2817 the function is missing. We may drop this function PROFILE_GUESSED
2818 later in drop_profile (). */
2819 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2820 return 0;
2822 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2823 true_count_max = MAX (bb->count, true_count_max);
2825 count_max = MAX (true_count_max, 1);
2826 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2827 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2829 return true_count_max;
2832 /* Return true if function is likely to be expensive, so there is no point to
2833 optimize performance of prologue, epilogue or do inlining at the expense
2834 of code size growth. THRESHOLD is the limit of number of instructions
2835 function can execute at average to be still considered not expensive. */
2837 bool
2838 expensive_function_p (int threshold)
2840 unsigned int sum = 0;
2841 basic_block bb;
2842 unsigned int limit;
2844 /* We can not compute accurately for large thresholds due to scaled
2845 frequencies. */
2846 gcc_assert (threshold <= BB_FREQ_MAX);
2848 /* Frequencies are out of range. This either means that function contains
2849 internal loop executing more than BB_FREQ_MAX times or profile feedback
2850 is available and function has not been executed at all. */
2851 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2852 return true;
2854 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2855 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2856 FOR_EACH_BB_FN (bb, cfun)
2858 rtx_insn *insn;
2860 FOR_BB_INSNS (bb, insn)
2861 if (active_insn_p (insn))
2863 sum += bb->frequency;
2864 if (sum > limit)
2865 return true;
2869 return false;
2872 /* Estimate and propagate basic block frequencies using the given branch
2873 probabilities. If FORCE is true, the frequencies are used to estimate
2874 the counts even when there are already non-zero profile counts. */
2876 void
2877 estimate_bb_frequencies (bool force)
2879 basic_block bb;
2880 sreal freq_max;
2882 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2884 static int real_values_initialized = 0;
2886 if (!real_values_initialized)
2888 real_values_initialized = 1;
2889 real_br_prob_base = REG_BR_PROB_BASE;
2890 real_bb_freq_max = BB_FREQ_MAX;
2891 real_one_half = sreal (1, -1);
2892 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
2893 real_almost_one = sreal (1) - real_inv_br_prob_base;
2896 mark_dfs_back_edges ();
2898 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2899 REG_BR_PROB_BASE;
2901 /* Set up block info for each basic block. */
2902 alloc_aux_for_blocks (sizeof (block_info));
2903 alloc_aux_for_edges (sizeof (edge_prob_info));
2904 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2906 edge e;
2907 edge_iterator ei;
2909 FOR_EACH_EDGE (e, ei, bb->succs)
2911 EDGE_INFO (e)->back_edge_prob = e->probability;
2912 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2916 /* First compute frequencies locally for each loop from innermost
2917 to outermost to examine frequencies for back edges. */
2918 estimate_loops ();
2920 freq_max = 0;
2921 FOR_EACH_BB_FN (bb, cfun)
2922 if (freq_max < BLOCK_INFO (bb)->frequency)
2923 freq_max = BLOCK_INFO (bb)->frequency;
2925 freq_max = real_bb_freq_max / freq_max;
2926 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2928 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2929 bb->frequency = tmp.to_int ();
2932 free_aux_for_blocks ();
2933 free_aux_for_edges ();
2935 compute_function_frequency ();
2938 /* Decide whether function is hot, cold or unlikely executed. */
2939 void
2940 compute_function_frequency (void)
2942 basic_block bb;
2943 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2945 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2946 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2947 node->only_called_at_startup = true;
2948 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2949 node->only_called_at_exit = true;
2951 if (profile_status_for_fn (cfun) != PROFILE_READ)
2953 int flags = flags_from_decl_or_type (current_function_decl);
2954 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2955 != NULL)
2956 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2957 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2958 != NULL)
2959 node->frequency = NODE_FREQUENCY_HOT;
2960 else if (flags & ECF_NORETURN)
2961 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2962 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2963 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2964 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2965 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2966 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2967 return;
2970 /* Only first time try to drop function into unlikely executed.
2971 After inlining the roundoff errors may confuse us.
2972 Ipa-profile pass will drop functions only called from unlikely
2973 functions to unlikely and that is most of what we care about. */
2974 if (!cfun->after_inlining)
2975 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2976 FOR_EACH_BB_FN (bb, cfun)
2978 if (maybe_hot_bb_p (cfun, bb))
2980 node->frequency = NODE_FREQUENCY_HOT;
2981 return;
2983 if (!probably_never_executed_bb_p (cfun, bb))
2984 node->frequency = NODE_FREQUENCY_NORMAL;
2988 /* Build PREDICT_EXPR. */
2989 tree
2990 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2992 tree t = build1 (PREDICT_EXPR, void_type_node,
2993 build_int_cst (integer_type_node, predictor));
2994 SET_PREDICT_EXPR_OUTCOME (t, taken);
2995 return t;
2998 const char *
2999 predictor_name (enum br_predictor predictor)
3001 return predictor_info[predictor].name;
3004 /* Predict branch probabilities and estimate profile of the tree CFG. */
3006 namespace {
3008 const pass_data pass_data_profile =
3010 GIMPLE_PASS, /* type */
3011 "profile_estimate", /* name */
3012 OPTGROUP_NONE, /* optinfo_flags */
3013 TV_BRANCH_PROB, /* tv_id */
3014 PROP_cfg, /* properties_required */
3015 0, /* properties_provided */
3016 0, /* properties_destroyed */
3017 0, /* todo_flags_start */
3018 0, /* todo_flags_finish */
3021 class pass_profile : public gimple_opt_pass
3023 public:
3024 pass_profile (gcc::context *ctxt)
3025 : gimple_opt_pass (pass_data_profile, ctxt)
3028 /* opt_pass methods: */
3029 virtual bool gate (function *) { return flag_guess_branch_prob; }
3030 virtual unsigned int execute (function *);
3032 }; // class pass_profile
3034 unsigned int
3035 pass_profile::execute (function *fun)
3037 unsigned nb_loops;
3039 loop_optimizer_init (LOOPS_NORMAL);
3040 if (dump_file && (dump_flags & TDF_DETAILS))
3041 flow_loops_dump (dump_file, NULL, 0);
3043 mark_irreducible_loops ();
3045 nb_loops = number_of_loops (fun);
3046 if (nb_loops > 1)
3047 scev_initialize ();
3049 tree_estimate_probability ();
3051 if (nb_loops > 1)
3052 scev_finalize ();
3054 loop_optimizer_finalize ();
3055 if (dump_file && (dump_flags & TDF_DETAILS))
3056 gimple_dump_cfg (dump_file, dump_flags);
3057 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3058 profile_status_for_fn (fun) = PROFILE_GUESSED;
3059 return 0;
3062 } // anon namespace
3064 gimple_opt_pass *
3065 make_pass_profile (gcc::context *ctxt)
3067 return new pass_profile (ctxt);
3070 namespace {
3072 const pass_data pass_data_strip_predict_hints =
3074 GIMPLE_PASS, /* type */
3075 "*strip_predict_hints", /* name */
3076 OPTGROUP_NONE, /* optinfo_flags */
3077 TV_BRANCH_PROB, /* tv_id */
3078 PROP_cfg, /* properties_required */
3079 0, /* properties_provided */
3080 0, /* properties_destroyed */
3081 0, /* todo_flags_start */
3082 0, /* todo_flags_finish */
3085 class pass_strip_predict_hints : public gimple_opt_pass
3087 public:
3088 pass_strip_predict_hints (gcc::context *ctxt)
3089 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3092 /* opt_pass methods: */
3093 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3094 virtual unsigned int execute (function *);
3096 }; // class pass_strip_predict_hints
3098 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3099 we no longer need. */
3100 unsigned int
3101 pass_strip_predict_hints::execute (function *fun)
3103 basic_block bb;
3104 gimple ass_stmt;
3105 tree var;
3107 FOR_EACH_BB_FN (bb, fun)
3109 gimple_stmt_iterator bi;
3110 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3112 gimple stmt = gsi_stmt (bi);
3114 if (gimple_code (stmt) == GIMPLE_PREDICT)
3116 gsi_remove (&bi, true);
3117 continue;
3119 else if (is_gimple_call (stmt))
3121 tree fndecl = gimple_call_fndecl (stmt);
3123 if ((fndecl
3124 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3125 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3126 && gimple_call_num_args (stmt) == 2)
3127 || (gimple_call_internal_p (stmt)
3128 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3130 var = gimple_call_lhs (stmt);
3131 if (var)
3133 ass_stmt
3134 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3135 gsi_replace (&bi, ass_stmt, true);
3137 else
3139 gsi_remove (&bi, true);
3140 continue;
3144 gsi_next (&bi);
3147 return 0;
3150 } // anon namespace
3152 gimple_opt_pass *
3153 make_pass_strip_predict_hints (gcc::context *ctxt)
3155 return new pass_strip_predict_hints (ctxt);
3158 /* Rebuild function frequencies. Passes are in general expected to
3159 maintain profile by hand, however in some cases this is not possible:
3160 for example when inlining several functions with loops freuqencies might run
3161 out of scale and thus needs to be recomputed. */
3163 void
3164 rebuild_frequencies (void)
3166 timevar_push (TV_REBUILD_FREQUENCIES);
3168 /* When the max bb count in the function is small, there is a higher
3169 chance that there were truncation errors in the integer scaling
3170 of counts by inlining and other optimizations. This could lead
3171 to incorrect classification of code as being cold when it isn't.
3172 In that case, force the estimation of bb counts/frequencies from the
3173 branch probabilities, rather than computing frequencies from counts,
3174 which may also lead to frequencies incorrectly reduced to 0. There
3175 is less precision in the probabilities, so we only do this for small
3176 max counts. */
3177 gcov_type count_max = 0;
3178 basic_block bb;
3179 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3180 count_max = MAX (bb->count, count_max);
3182 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3183 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3184 && count_max < REG_BR_PROB_BASE/10))
3186 loop_optimizer_init (0);
3187 add_noreturn_fake_exit_edges ();
3188 mark_irreducible_loops ();
3189 connect_infinite_loops_to_exit ();
3190 estimate_bb_frequencies (true);
3191 remove_fake_exit_edges ();
3192 loop_optimizer_finalize ();
3194 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3195 counts_to_freqs ();
3196 else
3197 gcc_unreachable ();
3198 timevar_pop (TV_REBUILD_FREQUENCIES);