1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Inline
; use Inline
;
41 with Itypes
; use Itypes
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Namet
; use Namet
;
45 with Nmake
; use Nmake
;
46 with Nlists
; use Nlists
;
48 with Output
; use Output
;
49 with Restrict
; use Restrict
;
50 with Rident
; use Rident
;
51 with Rtsfind
; use Rtsfind
;
53 with Sem_Aux
; use Sem_Aux
;
54 with Sem_Aggr
; use Sem_Aggr
;
55 with Sem_Attr
; use Sem_Attr
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch4
; use Sem_Ch4
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Dim
; use Sem_Dim
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elim
; use Sem_Elim
;
65 with Sem_Elab
; use Sem_Elab
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Intr
; use Sem_Intr
;
68 with Sem_Util
; use Sem_Util
;
69 with Targparm
; use Targparm
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Warn
; use Sem_Warn
;
72 with Sinfo
; use Sinfo
;
73 with Sinfo
.CN
; use Sinfo
.CN
;
74 with Snames
; use Snames
;
75 with Stand
; use Stand
;
76 with Stringt
; use Stringt
;
77 with Style
; use Style
;
78 with Tbuild
; use Tbuild
;
79 with Uintp
; use Uintp
;
80 with Urealp
; use Urealp
;
82 package body Sem_Res
is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 -- Second pass (top-down) type checking and overload resolution procedures
89 -- Typ is the type required by context. These procedures propagate the type
90 -- information recursively to the descendants of N. If the node is not
91 -- overloaded, its Etype is established in the first pass. If overloaded,
92 -- the Resolve routines set the correct type. For arith. operators, the
93 -- Etype is the base type of the context.
95 -- Note that Resolve_Attribute is separated off in Sem_Attr
97 procedure Check_Discriminant_Use
(N
: Node_Id
);
98 -- Enforce the restrictions on the use of discriminants when constraining
99 -- a component of a discriminated type (record or concurrent type).
101 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
102 -- Given a node for an operator associated with type T, check that
103 -- the operator is visible. Operators all of whose operands are
104 -- universal must be checked for visibility during resolution
105 -- because their type is not determinable based on their operands.
107 procedure Check_Fully_Declared_Prefix
110 -- Check that the type of the prefix of a dereference is not incomplete
112 procedure Check_Ghost_Context
(Ghost_Id
: Entity_Id
; Ghost_Ref
: Node_Id
);
113 -- Determine whether node Ghost_Ref appears within a Ghost-friendly context
114 -- where Ghost entity Ghost_Id can safely reside.
116 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
117 -- Given a call node, N, which is known to occur immediately within the
118 -- subprogram being called, determines whether it is a detectable case of
119 -- an infinite recursion, and if so, outputs appropriate messages. Returns
120 -- True if an infinite recursion is detected, and False otherwise.
122 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
123 -- If the type of the object being initialized uses the secondary stack
124 -- directly or indirectly, create a transient scope for the call to the
125 -- init proc. This is because we do not create transient scopes for the
126 -- initialization of individual components within the init proc itself.
127 -- Could be optimized away perhaps?
129 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
130 -- N is the node for a logical operator. If the operator is predefined, and
131 -- the root type of the operands is Standard.Boolean, then a check is made
132 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
133 -- the style check for Style_Check_Boolean_And_Or.
135 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean;
136 -- N is either an indexed component or a selected component. This function
137 -- returns true if the prefix refers to an object that has an address
138 -- clause (the case in which we may want to issue a warning).
140 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
141 -- Determine whether E is an access type declared by an access declaration,
142 -- and not an (anonymous) allocator type.
144 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
145 -- Utility to check whether the entity for an operator is a predefined
146 -- operator, in which case the expression is left as an operator in the
147 -- tree (else it is rewritten into a call). An instance of an intrinsic
148 -- conversion operation may be given an operator name, but is not treated
149 -- like an operator. Note that an operator that is an imported back-end
150 -- builtin has convention Intrinsic, but is expected to be rewritten into
151 -- a call, so such an operator is not treated as predefined by this
154 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
155 -- If a default expression in entry call N depends on the discriminants
156 -- of the task, it must be replaced with a reference to the discriminant
157 -- of the task being called.
159 procedure Resolve_Op_Concat_Arg
164 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
165 -- concatenation operator. The operand is either of the array type or of
166 -- the component type. If the operand is an aggregate, and the component
167 -- type is composite, this is ambiguous if component type has aggregates.
169 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
170 -- Does the first part of the work of Resolve_Op_Concat
172 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
173 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
174 -- has been resolved. See Resolve_Op_Concat for details.
176 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
209 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
210 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
212 function Operator_Kind
214 Is_Binary
: Boolean) return Node_Kind
;
215 -- Utility to map the name of an operator into the corresponding Node. Used
216 -- by other node rewriting procedures.
218 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
219 -- Resolve actuals of call, and add default expressions for missing ones.
220 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
221 -- called subprogram.
223 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
224 -- Called from Resolve_Call, when the prefix denotes an entry or element
225 -- of entry family. Actuals are resolved as for subprograms, and the node
226 -- is rebuilt as an entry call. Also called for protected operations. Typ
227 -- is the context type, which is used when the operation is a protected
228 -- function with no arguments, and the return value is indexed.
230 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
231 -- A call to a user-defined intrinsic operator is rewritten as a call to
232 -- the corresponding predefined operator, with suitable conversions. Note
233 -- that this applies only for intrinsic operators that denote predefined
234 -- operators, not ones that are intrinsic imports of back-end builtins.
236 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
237 -- Ditto, for arithmetic unary operators
239 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
240 -- If an operator node resolves to a call to a user-defined operator,
241 -- rewrite the node as a function call.
243 procedure Make_Call_Into_Operator
247 -- Inverse transformation: if an operator is given in functional notation,
248 -- then after resolving the node, transform into an operator node, so
249 -- that operands are resolved properly. Recall that predefined operators
250 -- do not have a full signature and special resolution rules apply.
252 procedure Rewrite_Renamed_Operator
256 -- An operator can rename another, e.g. in an instantiation. In that
257 -- case, the proper operator node must be constructed and resolved.
259 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
260 -- The String_Literal_Subtype is built for all strings that are not
261 -- operands of a static concatenation operation. If the argument is
262 -- not a N_String_Literal node, then the call has no effect.
264 procedure Set_Slice_Subtype
(N
: Node_Id
);
265 -- Build subtype of array type, with the range specified by the slice
267 procedure Simplify_Type_Conversion
(N
: Node_Id
);
268 -- Called after N has been resolved and evaluated, but before range checks
269 -- have been applied. Currently simplifies a combination of floating-point
270 -- to integer conversion and Rounding or Truncation attribute.
272 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
273 -- A universal_fixed expression in an universal context is unambiguous if
274 -- there is only one applicable fixed point type. Determining whether there
275 -- is only one requires a search over all visible entities, and happens
276 -- only in very pathological cases (see 6115-006).
278 -------------------------
279 -- Ambiguous_Character --
280 -------------------------
282 procedure Ambiguous_Character
(C
: Node_Id
) is
286 if Nkind
(C
) = N_Character_Literal
then
287 Error_Msg_N
("ambiguous character literal", C
);
289 -- First the ones in Standard
291 Error_Msg_N
("\\possible interpretation: Character!", C
);
292 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
294 -- Include Wide_Wide_Character in Ada 2005 mode
296 if Ada_Version
>= Ada_2005
then
297 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
300 -- Now any other types that match
302 E
:= Current_Entity
(C
);
303 while Present
(E
) loop
304 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
308 end Ambiguous_Character
;
310 -------------------------
311 -- Analyze_And_Resolve --
312 -------------------------
314 procedure Analyze_And_Resolve
(N
: Node_Id
) is
318 end Analyze_And_Resolve
;
320 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
324 end Analyze_And_Resolve
;
326 -- Versions with check(s) suppressed
328 procedure Analyze_And_Resolve
333 Scop
: constant Entity_Id
:= Current_Scope
;
336 if Suppress
= All_Checks
then
338 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
340 Scope_Suppress
.Suppress
:= (others => True);
341 Analyze_And_Resolve
(N
, Typ
);
342 Scope_Suppress
.Suppress
:= Sva
;
347 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
349 Scope_Suppress
.Suppress
(Suppress
) := True;
350 Analyze_And_Resolve
(N
, Typ
);
351 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
355 if Current_Scope
/= Scop
356 and then Scope_Is_Transient
358 -- This can only happen if a transient scope was created for an inner
359 -- expression, which will be removed upon completion of the analysis
360 -- of an enclosing construct. The transient scope must have the
361 -- suppress status of the enclosing environment, not of this Analyze
364 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
367 end Analyze_And_Resolve
;
369 procedure Analyze_And_Resolve
373 Scop
: constant Entity_Id
:= Current_Scope
;
376 if Suppress
= All_Checks
then
378 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
380 Scope_Suppress
.Suppress
:= (others => True);
381 Analyze_And_Resolve
(N
);
382 Scope_Suppress
.Suppress
:= Sva
;
387 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
389 Scope_Suppress
.Suppress
(Suppress
) := True;
390 Analyze_And_Resolve
(N
);
391 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
395 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
396 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
399 end Analyze_And_Resolve
;
401 ----------------------------
402 -- Check_Discriminant_Use --
403 ----------------------------
405 procedure Check_Discriminant_Use
(N
: Node_Id
) is
406 PN
: constant Node_Id
:= Parent
(N
);
407 Disc
: constant Entity_Id
:= Entity
(N
);
412 -- Any use in a spec-expression is legal
414 if In_Spec_Expression
then
417 elsif Nkind
(PN
) = N_Range
then
419 -- Discriminant cannot be used to constrain a scalar type
423 if Nkind
(P
) = N_Range_Constraint
424 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
425 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
427 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
429 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
431 -- The following check catches the unusual case where a
432 -- discriminant appears within an index constraint that is part of
433 -- a larger expression within a constraint on a component, e.g. "C
434 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
435 -- of record components, and note that a similar check should also
436 -- apply in the case of discriminant constraints below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
446 if Ekind
(Current_Scope
) = E_Record_Type
447 and then Scope
(Disc
) = Current_Scope
449 (Nkind
(Parent
(P
)) = N_Subtype_Indication
451 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
452 N_Subtype_Declaration
)
453 and then Paren_Count
(N
) = 0)
456 ("discriminant must appear alone in component constraint", N
);
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large
: declare
477 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
493 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
495 Minimum_Size
(T
, Biased
=> True) >=
496 RM_Size
(Standard_Positive
);
497 end Large_Storage_Type
;
499 -- Start of processing for Check_Large
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type
(Etype
(Disc
)) then
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
512 if Is_Limited_Type
(Scope
(Disc
)) then
516 -- Check that it is the high bound
518 if N
/= High_Bound
(PN
)
519 or else No
(Discriminant_Default_Value
(Disc
))
524 -- Check the array allows a large range at this bound. First
529 if Nkind
(SI
) /= N_Subtype_Indication
then
533 T
:= Entity
(Subtype_Mark
(SI
));
535 if not Is_Array_Type
(T
) then
539 -- Next, find the dimension
541 TB
:= First_Index
(T
);
542 CB
:= First
(Constraints
(P
));
544 and then Present
(TB
)
545 and then Present
(CB
)
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type
(Etype
(TB
)) then
562 -- Warn about the danger
565 ("??creation of & object may raise Storage_Error!",
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
577 N_Discriminant_Association
)
579 if Paren_Count
(N
) > 0 then
581 ("discriminant in constraint must appear alone", N
);
583 elsif Nkind
(N
) = N_Expanded_Name
584 and then Comes_From_Source
(N
)
587 ("discriminant must appear alone as a direct name", N
);
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
598 while not Nkind_In
(P
, N_Component_Declaration
,
599 N_Subtype_Indication
,
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind
(P
) = N_Subtype_Indication
613 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
614 N_Derived_Type_Definition
)
615 and then D
= Constraint
(P
))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind
(P
) = N_Subtype_Indication
622 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
623 or else Nkind
(P
) = N_Entry_Declaration
624 or else Nkind
(D
) = N_Defining_Identifier
627 ("discriminant in constraint must appear alone", N
);
630 end Check_Discriminant_Use
;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
638 if Is_Invisible_Operator
(N
, T
) then
639 Error_Msg_NE
-- CODEFIX
640 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
641 Error_Msg_N
-- CODEFIX
642 ("use clause would make operation legal!", N
);
644 end Check_For_Visible_Operator
;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name
(Pref
)
674 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version
>= Ada_2005
683 and then Is_Entity_Name
(Pref
)
684 and then Is_Access_Type
(Etype
(Pref
))
685 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
687 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
691 Check_Fully_Declared
(Typ
, Parent
(Pref
));
693 end Check_Fully_Declared_Prefix
;
695 -------------------------
696 -- Check_Ghost_Context --
697 -------------------------
699 procedure Check_Ghost_Context
(Ghost_Id
: Entity_Id
; Ghost_Ref
: Node_Id
) is
700 procedure Check_Ghost_Policy
(Id
: Entity_Id
; Err_N
: Node_Id
);
701 -- Verify that the Ghost policy at the point of declaration of entity Id
702 -- matches the policy at the point of reference. If this is not the case
703 -- emit an error at Err_N.
705 function Is_OK_Ghost_Context
(Context
: Node_Id
) return Boolean;
706 -- Determine whether node Context denotes a Ghost-friendly context where
707 -- a Ghost entity can safely reside.
709 -------------------------
710 -- Is_OK_Ghost_Context --
711 -------------------------
713 function Is_OK_Ghost_Context
(Context
: Node_Id
) return Boolean is
714 function Is_Ghost_Declaration
(Decl
: Node_Id
) return Boolean;
715 -- Determine whether node Decl is a Ghost declaration or appears
716 -- within a Ghost declaration.
718 --------------------------
719 -- Is_Ghost_Declaration --
720 --------------------------
722 function Is_Ghost_Declaration
(Decl
: Node_Id
) return Boolean is
728 -- Climb the parent chain looking for an object declaration
731 while Present
(Par
) loop
733 when N_Abstract_Subprogram_Declaration |
734 N_Exception_Declaration |
735 N_Exception_Renaming_Declaration |
736 N_Full_Type_Declaration |
737 N_Generic_Function_Renaming_Declaration |
738 N_Generic_Package_Declaration |
739 N_Generic_Package_Renaming_Declaration |
740 N_Generic_Procedure_Renaming_Declaration |
741 N_Generic_Subprogram_Declaration |
742 N_Number_Declaration |
743 N_Object_Declaration |
744 N_Object_Renaming_Declaration |
745 N_Package_Declaration |
746 N_Package_Renaming_Declaration |
747 N_Private_Extension_Declaration |
748 N_Private_Type_Declaration |
749 N_Subprogram_Declaration |
750 N_Subprogram_Renaming_Declaration |
751 N_Subtype_Declaration
=>
752 return Is_Subject_To_Ghost
(Par
);
760 -- A reference to a Ghost entity may appear as the default
761 -- expression of a formal parameter of a subprogram body. This
762 -- context must be treated as suitable because the relation
763 -- between the spec and the body has not been established and
764 -- the body is not marked as Ghost yet. The real check was
765 -- performed on the spec.
767 if Nkind
(Par
) = N_Parameter_Specification
768 and then Nkind
(Parent
(Parent
(Par
))) = N_Subprogram_Body
772 -- References to Ghost entities may be relocated in internally
775 elsif Nkind
(Par
) = N_Subprogram_Body
776 and then not Comes_From_Source
(Par
)
778 Subp_Id
:= Corresponding_Spec
(Par
);
780 -- The original context is an expression function that has
781 -- been split into a spec and a body. The context is OK as
782 -- long as the the initial declaration is Ghost.
784 if Present
(Subp_Id
) then
786 Original_Node
(Unit_Declaration_Node
(Subp_Id
));
788 if Nkind
(Subp_Decl
) = N_Expression_Function
then
789 return Is_Subject_To_Ghost
(Subp_Decl
);
793 -- Otherwise this is either an internal body or an internal
794 -- completion. Both are OK because the real check was done
795 -- before expansion activities.
800 -- Prevent the search from going too far
802 if Is_Body_Or_Package_Declaration
(Par
) then
810 end Is_Ghost_Declaration
;
812 -- Start of processing for Is_OK_Ghost_Context
815 -- The Ghost entity appears within an assertion expression
817 if In_Assertion_Expr
> 0 then
820 -- The Ghost entity is part of a declaration or its completion
822 elsif Is_Ghost_Declaration
(Context
) then
825 -- The Ghost entity is referenced within a Ghost statement
827 elsif Is_Ghost_Statement_Or_Pragma
(Context
) then
833 end Is_OK_Ghost_Context
;
835 ------------------------
836 -- Check_Ghost_Policy --
837 ------------------------
839 procedure Check_Ghost_Policy
(Id
: Entity_Id
; Err_N
: Node_Id
) is
840 Policy
: constant Name_Id
:= Policy_In_Effect
(Name_Ghost
);
843 -- The Ghost policy in effect a the point of declaration and at the
844 -- point of use must match (SPARK RM 6.9(14)).
846 if Is_Checked_Ghost_Entity
(Id
) and then Policy
= Name_Ignore
then
847 Error_Msg_Sloc
:= Sloc
(Err_N
);
849 Error_Msg_N
("incompatible ghost policies in effect", Err_N
);
850 Error_Msg_NE
("\& declared with ghost policy Check", Err_N
, Id
);
851 Error_Msg_NE
("\& used # with ghost policy Ignore", Err_N
, Id
);
853 elsif Is_Ignored_Ghost_Entity
(Id
) and then Policy
= Name_Check
then
854 Error_Msg_Sloc
:= Sloc
(Err_N
);
856 Error_Msg_N
("incompatible ghost policies in effect", Err_N
);
857 Error_Msg_NE
("\& declared with ghost policy Ignore", Err_N
, Id
);
858 Error_Msg_NE
("\& used # with ghost policy Check", Err_N
, Id
);
860 end Check_Ghost_Policy
;
862 -- Start of processing for Check_Ghost_Context
865 -- Once it has been established that the reference to the Ghost entity
866 -- is within a suitable context, ensure that the policy at the point of
867 -- declaration and at the point of use match.
869 if Is_OK_Ghost_Context
(Ghost_Ref
) then
870 Check_Ghost_Policy
(Ghost_Id
, Ghost_Ref
);
872 -- Otherwise the Ghost entity appears in a non-Ghost context and affects
873 -- its behavior or value.
877 ("ghost entity cannot appear in this context (SPARK RM 6.9(12))",
880 end Check_Ghost_Context
;
882 ------------------------------
883 -- Check_Infinite_Recursion --
884 ------------------------------
886 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
890 function Same_Argument_List
return Boolean;
891 -- Check whether list of actuals is identical to list of formals of
892 -- called function (which is also the enclosing scope).
894 ------------------------
895 -- Same_Argument_List --
896 ------------------------
898 function Same_Argument_List
return Boolean is
904 if not Is_Entity_Name
(Name
(N
)) then
907 Subp
:= Entity
(Name
(N
));
910 F
:= First_Formal
(Subp
);
911 A
:= First_Actual
(N
);
912 while Present
(F
) and then Present
(A
) loop
913 if not Is_Entity_Name
(A
)
914 or else Entity
(A
) /= F
924 end Same_Argument_List
;
926 -- Start of processing for Check_Infinite_Recursion
929 -- Special case, if this is a procedure call and is a call to the
930 -- current procedure with the same argument list, then this is for
931 -- sure an infinite recursion and we insert a call to raise SE.
933 if Is_List_Member
(N
)
934 and then List_Length
(List_Containing
(N
)) = 1
935 and then Same_Argument_List
938 P
: constant Node_Id
:= Parent
(N
);
940 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
941 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
942 and then Is_Empty_List
(Declarations
(Parent
(P
)))
944 Error_Msg_Warn
:= SPARK_Mode
/= On
;
945 Error_Msg_N
("!infinite recursion<<", N
);
946 Error_Msg_N
("\!Storage_Error [<<", N
);
948 Make_Raise_Storage_Error
(Sloc
(N
),
949 Reason
=> SE_Infinite_Recursion
));
955 -- If not that special case, search up tree, quitting if we reach a
956 -- construct (e.g. a conditional) that tells us that this is not a
957 -- case for an infinite recursion warning.
963 -- If no parent, then we were not inside a subprogram, this can for
964 -- example happen when processing certain pragmas in a spec. Just
965 -- return False in this case.
971 -- Done if we get to subprogram body, this is definitely an infinite
972 -- recursion case if we did not find anything to stop us.
974 exit when Nkind
(P
) = N_Subprogram_Body
;
976 -- If appearing in conditional, result is false
978 if Nkind_In
(P
, N_Or_Else
,
987 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
988 and then C
/= First
(Statements
(P
))
990 -- If the call is the expression of a return statement and the
991 -- actuals are identical to the formals, it's worth a warning.
992 -- However, we skip this if there is an immediately preceding
993 -- raise statement, since the call is never executed.
995 -- Furthermore, this corresponds to a common idiom:
997 -- function F (L : Thing) return Boolean is
999 -- raise Program_Error;
1003 -- for generating a stub function
1005 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
1006 and then Same_Argument_List
1008 exit when not Is_List_Member
(Parent
(N
));
1010 -- OK, return statement is in a statement list, look for raise
1016 -- Skip past N_Freeze_Entity nodes generated by expansion
1018 Nod
:= Prev
(Parent
(N
));
1020 and then Nkind
(Nod
) = N_Freeze_Entity
1025 -- If no raise statement, give warning. We look at the
1026 -- original node, because in the case of "raise ... with
1027 -- ...", the node has been transformed into a call.
1029 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
1031 (Nkind
(Nod
) not in N_Raise_xxx_Error
1032 or else Present
(Condition
(Nod
)));
1043 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1044 Error_Msg_N
("!possible infinite recursion<<", N
);
1045 Error_Msg_N
("\!??Storage_Error ]<<", N
);
1048 end Check_Infinite_Recursion
;
1050 -------------------------------
1051 -- Check_Initialization_Call --
1052 -------------------------------
1054 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
1055 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
1057 function Uses_SS
(T
: Entity_Id
) return Boolean;
1058 -- Check whether the creation of an object of the type will involve
1059 -- use of the secondary stack. If T is a record type, this is true
1060 -- if the expression for some component uses the secondary stack, e.g.
1061 -- through a call to a function that returns an unconstrained value.
1062 -- False if T is controlled, because cleanups occur elsewhere.
1068 function Uses_SS
(T
: Entity_Id
) return Boolean is
1071 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
1074 -- Normally we want to use the underlying type, but if it's not set
1075 -- then continue with T.
1077 if not Present
(Full_Type
) then
1081 if Is_Controlled
(Full_Type
) then
1084 elsif Is_Array_Type
(Full_Type
) then
1085 return Uses_SS
(Component_Type
(Full_Type
));
1087 elsif Is_Record_Type
(Full_Type
) then
1088 Comp
:= First_Component
(Full_Type
);
1089 while Present
(Comp
) loop
1090 if Ekind
(Comp
) = E_Component
1091 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
1093 -- The expression for a dynamic component may be rewritten
1094 -- as a dereference, so retrieve original node.
1096 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
1098 -- Return True if the expression is a call to a function
1099 -- (including an attribute function such as Image, or a
1100 -- user-defined operator) with a result that requires a
1103 if (Nkind
(Expr
) = N_Function_Call
1104 or else Nkind
(Expr
) in N_Op
1105 or else (Nkind
(Expr
) = N_Attribute_Reference
1106 and then Present
(Expressions
(Expr
))))
1107 and then Requires_Transient_Scope
(Etype
(Expr
))
1111 elsif Uses_SS
(Etype
(Comp
)) then
1116 Next_Component
(Comp
);
1126 -- Start of processing for Check_Initialization_Call
1129 -- Establish a transient scope if the type needs it
1131 if Uses_SS
(Typ
) then
1132 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
1134 end Check_Initialization_Call
;
1136 ---------------------------------------
1137 -- Check_No_Direct_Boolean_Operators --
1138 ---------------------------------------
1140 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
1142 if Scope
(Entity
(N
)) = Standard_Standard
1143 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
1145 -- Restriction only applies to original source code
1147 if Comes_From_Source
(N
) then
1148 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
1152 -- Do style check (but skip if in instance, error is on template)
1155 if not In_Instance
then
1156 Check_Boolean_Operator
(N
);
1159 end Check_No_Direct_Boolean_Operators
;
1161 ------------------------------
1162 -- Check_Parameterless_Call --
1163 ------------------------------
1165 procedure Check_Parameterless_Call
(N
: Node_Id
) is
1168 function Prefix_Is_Access_Subp
return Boolean;
1169 -- If the prefix is of an access_to_subprogram type, the node must be
1170 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1171 -- interpretations are access to subprograms.
1173 ---------------------------
1174 -- Prefix_Is_Access_Subp --
1175 ---------------------------
1177 function Prefix_Is_Access_Subp
return Boolean is
1182 -- If the context is an attribute reference that can apply to
1183 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1185 if Nkind
(Parent
(N
)) = N_Attribute_Reference
1186 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1193 if not Is_Overloaded
(N
) then
1195 Ekind
(Etype
(N
)) = E_Subprogram_Type
1196 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1198 Get_First_Interp
(N
, I
, It
);
1199 while Present
(It
.Typ
) loop
1200 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1201 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1206 Get_Next_Interp
(I
, It
);
1211 end Prefix_Is_Access_Subp
;
1213 -- Start of processing for Check_Parameterless_Call
1216 -- Defend against junk stuff if errors already detected
1218 if Total_Errors_Detected
/= 0 then
1219 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1221 elsif Nkind
(N
) in N_Has_Chars
1222 and then Chars
(N
) in Error_Name_Or_No_Name
1230 -- If the context expects a value, and the name is a procedure, this is
1231 -- most likely a missing 'Access. Don't try to resolve the parameterless
1232 -- call, error will be caught when the outer call is analyzed.
1234 if Is_Entity_Name
(N
)
1235 and then Ekind
(Entity
(N
)) = E_Procedure
1236 and then not Is_Overloaded
(N
)
1238 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1240 N_Procedure_Call_Statement
)
1245 -- Rewrite as call if overloadable entity that is (or could be, in the
1246 -- overloaded case) a function call. If we know for sure that the entity
1247 -- is an enumeration literal, we do not rewrite it.
1249 -- If the entity is the name of an operator, it cannot be a call because
1250 -- operators cannot have default parameters. In this case, this must be
1251 -- a string whose contents coincide with an operator name. Set the kind
1252 -- of the node appropriately.
1254 if (Is_Entity_Name
(N
)
1255 and then Nkind
(N
) /= N_Operator_Symbol
1256 and then Is_Overloadable
(Entity
(N
))
1257 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1258 or else Is_Overloaded
(N
)))
1260 -- Rewrite as call if it is an explicit dereference of an expression of
1261 -- a subprogram access type, and the subprogram type is not that of a
1262 -- procedure or entry.
1265 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1267 -- Rewrite as call if it is a selected component which is a function,
1268 -- this is the case of a call to a protected function (which may be
1269 -- overloaded with other protected operations).
1272 (Nkind
(N
) = N_Selected_Component
1273 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1275 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1277 and then Is_Overloaded
(Selector_Name
(N
)))))
1279 -- If one of the above three conditions is met, rewrite as call. Apply
1280 -- the rewriting only once.
1283 if Nkind
(Parent
(N
)) /= N_Function_Call
1284 or else N
/= Name
(Parent
(N
))
1287 -- This may be a prefixed call that was not fully analyzed, e.g.
1288 -- an actual in an instance.
1290 if Ada_Version
>= Ada_2005
1291 and then Nkind
(N
) = N_Selected_Component
1292 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1294 Analyze_Selected_Component
(N
);
1296 if Nkind
(N
) /= N_Selected_Component
then
1301 -- The node is the name of the parameterless call. Preserve its
1302 -- descendants, which may be complex expressions.
1304 Nam
:= Relocate_Node
(N
);
1306 -- If overloaded, overload set belongs to new copy
1308 Save_Interps
(N
, Nam
);
1310 -- Change node to parameterless function call (note that the
1311 -- Parameter_Associations associations field is left set to Empty,
1312 -- its normal default value since there are no parameters)
1314 Change_Node
(N
, N_Function_Call
);
1316 Set_Sloc
(N
, Sloc
(Nam
));
1320 elsif Nkind
(N
) = N_Parameter_Association
then
1321 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1323 elsif Nkind
(N
) = N_Operator_Symbol
then
1324 Change_Operator_Symbol_To_String_Literal
(N
);
1325 Set_Is_Overloaded
(N
, False);
1326 Set_Etype
(N
, Any_String
);
1328 end Check_Parameterless_Call
;
1330 --------------------------------
1331 -- Is_Atomic_Ref_With_Address --
1332 --------------------------------
1334 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean is
1335 Pref
: constant Node_Id
:= Prefix
(N
);
1338 if not Is_Entity_Name
(Pref
) then
1343 Pent
: constant Entity_Id
:= Entity
(Pref
);
1344 Ptyp
: constant Entity_Id
:= Etype
(Pent
);
1346 return not Is_Access_Type
(Ptyp
)
1347 and then (Is_Atomic
(Ptyp
) or else Is_Atomic
(Pent
))
1348 and then Present
(Address_Clause
(Pent
));
1351 end Is_Atomic_Ref_With_Address
;
1353 -----------------------------
1354 -- Is_Definite_Access_Type --
1355 -----------------------------
1357 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1358 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1360 return Ekind
(Btyp
) = E_Access_Type
1361 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1362 and then Comes_From_Source
(Btyp
));
1363 end Is_Definite_Access_Type
;
1365 ----------------------
1366 -- Is_Predefined_Op --
1367 ----------------------
1369 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1371 -- Predefined operators are intrinsic subprograms
1373 if not Is_Intrinsic_Subprogram
(Nam
) then
1377 -- A call to a back-end builtin is never a predefined operator
1379 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1383 return not Is_Generic_Instance
(Nam
)
1384 and then Chars
(Nam
) in Any_Operator_Name
1385 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1386 end Is_Predefined_Op
;
1388 -----------------------------
1389 -- Make_Call_Into_Operator --
1390 -----------------------------
1392 procedure Make_Call_Into_Operator
1397 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1398 Act1
: Node_Id
:= First_Actual
(N
);
1399 Act2
: Node_Id
:= Next_Actual
(Act1
);
1400 Error
: Boolean := False;
1401 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1402 Is_Binary
: constant Boolean := Present
(Act2
);
1404 Opnd_Type
: Entity_Id
;
1405 Orig_Type
: Entity_Id
:= Empty
;
1408 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1410 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1411 -- If the operand is not universal, and the operator is given by an
1412 -- expanded name, verify that the operand has an interpretation with a
1413 -- type defined in the given scope of the operator.
1415 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1416 -- Find a type of the given class in package Pack that contains the
1419 ---------------------------
1420 -- Operand_Type_In_Scope --
1421 ---------------------------
1423 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1424 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1429 if not Is_Overloaded
(Nod
) then
1430 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1433 Get_First_Interp
(Nod
, I
, It
);
1434 while Present
(It
.Typ
) loop
1435 if Scope
(Base_Type
(It
.Typ
)) = S
then
1439 Get_Next_Interp
(I
, It
);
1444 end Operand_Type_In_Scope
;
1450 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1453 function In_Decl
return Boolean;
1454 -- Verify that node is not part of the type declaration for the
1455 -- candidate type, which would otherwise be invisible.
1461 function In_Decl
return Boolean is
1462 Decl_Node
: constant Node_Id
:= Parent
(E
);
1468 if Etype
(E
) = Any_Type
then
1471 elsif No
(Decl_Node
) then
1476 and then Nkind
(N2
) /= N_Compilation_Unit
1478 if N2
= Decl_Node
then
1489 -- Start of processing for Type_In_P
1492 -- If the context type is declared in the prefix package, this is the
1493 -- desired base type.
1495 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1496 return Base_Type
(Typ
);
1499 E
:= First_Entity
(Pack
);
1500 while Present
(E
) loop
1502 and then not In_Decl
1514 -- Start of processing for Make_Call_Into_Operator
1517 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1522 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1523 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1524 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1525 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1526 Act1
:= Left_Opnd
(Op_Node
);
1527 Act2
:= Right_Opnd
(Op_Node
);
1532 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1533 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1534 Act1
:= Right_Opnd
(Op_Node
);
1537 -- If the operator is denoted by an expanded name, and the prefix is
1538 -- not Standard, but the operator is a predefined one whose scope is
1539 -- Standard, then this is an implicit_operator, inserted as an
1540 -- interpretation by the procedure of the same name. This procedure
1541 -- overestimates the presence of implicit operators, because it does
1542 -- not examine the type of the operands. Verify now that the operand
1543 -- type appears in the given scope. If right operand is universal,
1544 -- check the other operand. In the case of concatenation, either
1545 -- argument can be the component type, so check the type of the result.
1546 -- If both arguments are literals, look for a type of the right kind
1547 -- defined in the given scope. This elaborate nonsense is brought to
1548 -- you courtesy of b33302a. The type itself must be frozen, so we must
1549 -- find the type of the proper class in the given scope.
1551 -- A final wrinkle is the multiplication operator for fixed point types,
1552 -- which is defined in Standard only, and not in the scope of the
1553 -- fixed point type itself.
1555 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1556 Pack
:= Entity
(Prefix
(Name
(N
)));
1558 -- If this is a package renaming, get renamed entity, which will be
1559 -- the scope of the operands if operaton is type-correct.
1561 if Present
(Renamed_Entity
(Pack
)) then
1562 Pack
:= Renamed_Entity
(Pack
);
1565 -- If the entity being called is defined in the given package, it is
1566 -- a renaming of a predefined operator, and known to be legal.
1568 if Scope
(Entity
(Name
(N
))) = Pack
1569 and then Pack
/= Standard_Standard
1573 -- Visibility does not need to be checked in an instance: if the
1574 -- operator was not visible in the generic it has been diagnosed
1575 -- already, else there is an implicit copy of it in the instance.
1577 elsif In_Instance
then
1580 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1581 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1582 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1584 if Pack
/= Standard_Standard
then
1588 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1591 elsif Ada_Version
>= Ada_2005
1592 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1593 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1598 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1600 if Op_Name
= Name_Op_Concat
then
1601 Opnd_Type
:= Base_Type
(Typ
);
1603 elsif (Scope
(Opnd_Type
) = Standard_Standard
1605 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1607 and then not Comes_From_Source
(Opnd_Type
))
1609 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1612 if Scope
(Opnd_Type
) = Standard_Standard
then
1614 -- Verify that the scope contains a type that corresponds to
1615 -- the given literal. Optimize the case where Pack is Standard.
1617 if Pack
/= Standard_Standard
then
1619 if Opnd_Type
= Universal_Integer
then
1620 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1622 elsif Opnd_Type
= Universal_Real
then
1623 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1625 elsif Opnd_Type
= Any_String
then
1626 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1628 elsif Opnd_Type
= Any_Access
then
1629 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1631 elsif Opnd_Type
= Any_Composite
then
1632 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1634 if Present
(Orig_Type
) then
1635 if Has_Private_Component
(Orig_Type
) then
1638 Set_Etype
(Act1
, Orig_Type
);
1641 Set_Etype
(Act2
, Orig_Type
);
1650 Error
:= No
(Orig_Type
);
1653 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1654 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1658 -- If the type is defined elsewhere, and the operator is not
1659 -- defined in the given scope (by a renaming declaration, e.g.)
1660 -- then this is an error as well. If an extension of System is
1661 -- present, and the type may be defined there, Pack must be
1664 elsif Scope
(Opnd_Type
) /= Pack
1665 and then Scope
(Op_Id
) /= Pack
1666 and then (No
(System_Aux_Id
)
1667 or else Scope
(Opnd_Type
) /= System_Aux_Id
1668 or else Pack
/= Scope
(System_Aux_Id
))
1670 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1673 Error
:= not Operand_Type_In_Scope
(Pack
);
1676 elsif Pack
= Standard_Standard
1677 and then not Operand_Type_In_Scope
(Standard_Standard
)
1684 Error_Msg_Node_2
:= Pack
;
1686 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1687 Set_Etype
(N
, Any_Type
);
1690 -- Detect a mismatch between the context type and the result type
1691 -- in the named package, which is otherwise not detected if the
1692 -- operands are universal. Check is only needed if source entity is
1693 -- an operator, not a function that renames an operator.
1695 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1696 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1697 and then Is_Numeric_Type
(Typ
)
1698 and then not Is_Universal_Numeric_Type
(Typ
)
1699 and then Scope
(Base_Type
(Typ
)) /= Pack
1700 and then not In_Instance
1702 if Is_Fixed_Point_Type
(Typ
)
1703 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1705 -- Already checked above
1709 -- Operator may be defined in an extension of System
1711 elsif Present
(System_Aux_Id
)
1712 and then Scope
(Opnd_Type
) = System_Aux_Id
1717 -- Could we use Wrong_Type here??? (this would require setting
1718 -- Etype (N) to the actual type found where Typ was expected).
1720 Error_Msg_NE
("expect }", N
, Typ
);
1725 Set_Chars
(Op_Node
, Op_Name
);
1727 if not Is_Private_Type
(Etype
(N
)) then
1728 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1730 Set_Etype
(Op_Node
, Etype
(N
));
1733 -- If this is a call to a function that renames a predefined equality,
1734 -- the renaming declaration provides a type that must be used to
1735 -- resolve the operands. This must be done now because resolution of
1736 -- the equality node will not resolve any remaining ambiguity, and it
1737 -- assumes that the first operand is not overloaded.
1739 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1740 and then Ekind
(Func
) = E_Function
1741 and then Is_Overloaded
(Act1
)
1743 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1744 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1747 Set_Entity
(Op_Node
, Op_Id
);
1748 Generate_Reference
(Op_Id
, N
, ' ');
1750 -- Do rewrite setting Comes_From_Source on the result if the original
1751 -- call came from source. Although it is not strictly the case that the
1752 -- operator as such comes from the source, logically it corresponds
1753 -- exactly to the function call in the source, so it should be marked
1754 -- this way (e.g. to make sure that validity checks work fine).
1757 CS
: constant Boolean := Comes_From_Source
(N
);
1759 Rewrite
(N
, Op_Node
);
1760 Set_Comes_From_Source
(N
, CS
);
1763 -- If this is an arithmetic operator and the result type is private,
1764 -- the operands and the result must be wrapped in conversion to
1765 -- expose the underlying numeric type and expand the proper checks,
1766 -- e.g. on division.
1768 if Is_Private_Type
(Typ
) then
1770 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1771 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
1772 Resolve_Intrinsic_Operator
(N
, Typ
);
1774 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
1775 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1784 -- If in ASIS_Mode, propagate operand types to original actuals of
1785 -- function call, which would otherwise not be fully resolved. If
1786 -- the call has already been constant-folded, nothing to do. We
1787 -- relocate the operand nodes rather than copy them, to preserve
1788 -- original_node pointers, given that the operands themselves may
1789 -- have been rewritten. If the call was itself a rewriting of an
1790 -- operator node, nothing to do.
1793 and then Nkind
(N
) in N_Op
1794 and then Nkind
(Original_Node
(N
)) = N_Function_Call
1798 R
: constant Node_Id
:= Right_Opnd
(N
);
1800 Old_First
: constant Node_Id
:=
1801 First
(Parameter_Associations
(Original_Node
(N
)));
1807 Old_Sec
:= Next
(Old_First
);
1809 -- If the original call has named associations, replace the
1810 -- explicit actual parameter in the association with the proper
1811 -- resolved operand.
1813 if Nkind
(Old_First
) = N_Parameter_Association
then
1814 if Chars
(Selector_Name
(Old_First
)) =
1815 Chars
(First_Entity
(Op_Id
))
1817 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1820 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1825 Rewrite
(Old_First
, Relocate_Node
(L
));
1828 if Nkind
(Old_Sec
) = N_Parameter_Association
then
1829 if Chars
(Selector_Name
(Old_Sec
)) =
1830 Chars
(First_Entity
(Op_Id
))
1832 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1835 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1840 Rewrite
(Old_Sec
, Relocate_Node
(R
));
1844 if Nkind
(Old_First
) = N_Parameter_Association
then
1845 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1848 Rewrite
(Old_First
, Relocate_Node
(R
));
1853 Set_Parent
(Original_Node
(N
), Parent
(N
));
1855 end Make_Call_Into_Operator
;
1861 function Operator_Kind
1863 Is_Binary
: Boolean) return Node_Kind
1868 -- Use CASE statement or array???
1871 if Op_Name
= Name_Op_And
then
1873 elsif Op_Name
= Name_Op_Or
then
1875 elsif Op_Name
= Name_Op_Xor
then
1877 elsif Op_Name
= Name_Op_Eq
then
1879 elsif Op_Name
= Name_Op_Ne
then
1881 elsif Op_Name
= Name_Op_Lt
then
1883 elsif Op_Name
= Name_Op_Le
then
1885 elsif Op_Name
= Name_Op_Gt
then
1887 elsif Op_Name
= Name_Op_Ge
then
1889 elsif Op_Name
= Name_Op_Add
then
1891 elsif Op_Name
= Name_Op_Subtract
then
1892 Kind
:= N_Op_Subtract
;
1893 elsif Op_Name
= Name_Op_Concat
then
1894 Kind
:= N_Op_Concat
;
1895 elsif Op_Name
= Name_Op_Multiply
then
1896 Kind
:= N_Op_Multiply
;
1897 elsif Op_Name
= Name_Op_Divide
then
1898 Kind
:= N_Op_Divide
;
1899 elsif Op_Name
= Name_Op_Mod
then
1901 elsif Op_Name
= Name_Op_Rem
then
1903 elsif Op_Name
= Name_Op_Expon
then
1906 raise Program_Error
;
1912 if Op_Name
= Name_Op_Add
then
1914 elsif Op_Name
= Name_Op_Subtract
then
1916 elsif Op_Name
= Name_Op_Abs
then
1918 elsif Op_Name
= Name_Op_Not
then
1921 raise Program_Error
;
1928 ----------------------------
1929 -- Preanalyze_And_Resolve --
1930 ----------------------------
1932 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1933 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1936 Full_Analysis
:= False;
1937 Expander_Mode_Save_And_Set
(False);
1939 -- Normally, we suppress all checks for this preanalysis. There is no
1940 -- point in processing them now, since they will be applied properly
1941 -- and in the proper location when the default expressions reanalyzed
1942 -- and reexpanded later on. We will also have more information at that
1943 -- point for possible suppression of individual checks.
1945 -- However, in SPARK mode, most expansion is suppressed, and this
1946 -- later reanalysis and reexpansion may not occur. SPARK mode does
1947 -- require the setting of checking flags for proof purposes, so we
1948 -- do the SPARK preanalysis without suppressing checks.
1950 -- This special handling for SPARK mode is required for example in the
1951 -- case of Ada 2012 constructs such as quantified expressions, which are
1952 -- expanded in two separate steps.
1954 if GNATprove_Mode
then
1955 Analyze_And_Resolve
(N
, T
);
1957 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1960 Expander_Mode_Restore
;
1961 Full_Analysis
:= Save_Full_Analysis
;
1962 end Preanalyze_And_Resolve
;
1964 -- Version without context type
1966 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1967 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1970 Full_Analysis
:= False;
1971 Expander_Mode_Save_And_Set
(False);
1974 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1976 Expander_Mode_Restore
;
1977 Full_Analysis
:= Save_Full_Analysis
;
1978 end Preanalyze_And_Resolve
;
1980 ----------------------------------
1981 -- Replace_Actual_Discriminants --
1982 ----------------------------------
1984 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1985 Loc
: constant Source_Ptr
:= Sloc
(N
);
1986 Tsk
: Node_Id
:= Empty
;
1988 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1989 -- Comment needed???
1995 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1999 if Nkind
(Nod
) = N_Identifier
then
2000 Ent
:= Entity
(Nod
);
2003 and then Ekind
(Ent
) = E_Discriminant
2006 Make_Selected_Component
(Loc
,
2007 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
2008 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
2010 Set_Etype
(Nod
, Etype
(Ent
));
2018 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
2020 -- Start of processing for Replace_Actual_Discriminants
2023 if not Expander_Active
then
2027 if Nkind
(Name
(N
)) = N_Selected_Component
then
2028 Tsk
:= Prefix
(Name
(N
));
2030 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
2031 Tsk
:= Prefix
(Prefix
(Name
(N
)));
2037 Replace_Discrs
(Default
);
2039 end Replace_Actual_Discriminants
;
2045 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
2046 Ambiguous
: Boolean := False;
2047 Ctx_Type
: Entity_Id
:= Typ
;
2048 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
2049 Err_Type
: Entity_Id
:= Empty
;
2050 Found
: Boolean := False;
2053 I1
: Interp_Index
:= 0; -- prevent junk warning
2056 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
2058 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
2059 -- Determine whether a node comes from a predefined library unit or
2062 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
2063 -- Try and fix up a literal so that it matches its expected type. New
2064 -- literals are manufactured if necessary to avoid cascaded errors.
2066 procedure Report_Ambiguous_Argument
;
2067 -- Additional diagnostics when an ambiguous call has an ambiguous
2068 -- argument (typically a controlling actual).
2070 procedure Resolution_Failed
;
2071 -- Called when attempt at resolving current expression fails
2073 ------------------------------------
2074 -- Comes_From_Predefined_Lib_Unit --
2075 -------------------------------------
2077 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
2080 Sloc
(Nod
) = Standard_Location
2081 or else Is_Predefined_File_Name
2082 (Unit_File_Name
(Get_Source_Unit
(Sloc
(Nod
))));
2083 end Comes_From_Predefined_Lib_Unit
;
2085 --------------------
2086 -- Patch_Up_Value --
2087 --------------------
2089 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
2091 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
2093 Make_Real_Literal
(Sloc
(N
),
2094 Realval
=> UR_From_Uint
(Intval
(N
))));
2095 Set_Etype
(N
, Universal_Real
);
2096 Set_Is_Static_Expression
(N
);
2098 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
2100 Make_Integer_Literal
(Sloc
(N
),
2101 Intval
=> UR_To_Uint
(Realval
(N
))));
2102 Set_Etype
(N
, Universal_Integer
);
2103 Set_Is_Static_Expression
(N
);
2105 elsif Nkind
(N
) = N_String_Literal
2106 and then Is_Character_Type
(Typ
)
2108 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
2110 Make_Character_Literal
(Sloc
(N
),
2112 Char_Literal_Value
=>
2113 UI_From_Int
(Character'Pos ('A'))));
2114 Set_Etype
(N
, Any_Character
);
2115 Set_Is_Static_Expression
(N
);
2117 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
2119 Make_String_Literal
(Sloc
(N
),
2120 Strval
=> End_String
));
2122 elsif Nkind
(N
) = N_Range
then
2123 Patch_Up_Value
(Low_Bound
(N
), Typ
);
2124 Patch_Up_Value
(High_Bound
(N
), Typ
);
2128 -------------------------------
2129 -- Report_Ambiguous_Argument --
2130 -------------------------------
2132 procedure Report_Ambiguous_Argument
is
2133 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
2138 if Nkind
(Arg
) = N_Function_Call
2139 and then Is_Entity_Name
(Name
(Arg
))
2140 and then Is_Overloaded
(Name
(Arg
))
2142 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
2144 -- Could use comments on what is going on here???
2146 Get_First_Interp
(Name
(Arg
), I
, It
);
2147 while Present
(It
.Nam
) loop
2148 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2150 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
2151 Error_Msg_N
("interpretation (inherited) #!", Arg
);
2153 Error_Msg_N
("interpretation #!", Arg
);
2156 Get_Next_Interp
(I
, It
);
2159 end Report_Ambiguous_Argument
;
2161 -----------------------
2162 -- Resolution_Failed --
2163 -----------------------
2165 procedure Resolution_Failed
is
2167 Patch_Up_Value
(N
, Typ
);
2169 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
2170 Set_Is_Overloaded
(N
, False);
2172 -- The caller will return without calling the expander, so we need
2173 -- to set the analyzed flag. Note that it is fine to set Analyzed
2174 -- to True even if we are in the middle of a shallow analysis,
2175 -- (see the spec of sem for more details) since this is an error
2176 -- situation anyway, and there is no point in repeating the
2177 -- analysis later (indeed it won't work to repeat it later, since
2178 -- we haven't got a clear resolution of which entity is being
2181 Set_Analyzed
(N
, True);
2183 end Resolution_Failed
;
2185 -- Start of processing for Resolve
2192 -- Access attribute on remote subprogram cannot be used for a non-remote
2193 -- access-to-subprogram type.
2195 if Nkind
(N
) = N_Attribute_Reference
2196 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
2197 Name_Unrestricted_Access
,
2198 Name_Unchecked_Access
)
2199 and then Comes_From_Source
(N
)
2200 and then Is_Entity_Name
(Prefix
(N
))
2201 and then Is_Subprogram
(Entity
(Prefix
(N
)))
2202 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
2203 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
2206 ("prefix must statically denote a non-remote subprogram", N
);
2209 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
2211 -- If the context is a Remote_Access_To_Subprogram, access attributes
2212 -- must be resolved with the corresponding fat pointer. There is no need
2213 -- to check for the attribute name since the return type of an
2214 -- attribute is never a remote type.
2216 if Nkind
(N
) = N_Attribute_Reference
2217 and then Comes_From_Source
(N
)
2218 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
2221 Attr
: constant Attribute_Id
:=
2222 Get_Attribute_Id
(Attribute_Name
(N
));
2223 Pref
: constant Node_Id
:= Prefix
(N
);
2226 Is_Remote
: Boolean := True;
2229 -- Check that Typ is a remote access-to-subprogram type
2231 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2233 -- Prefix (N) must statically denote a remote subprogram
2234 -- declared in a package specification.
2236 if Attr
= Attribute_Access
or else
2237 Attr
= Attribute_Unchecked_Access
or else
2238 Attr
= Attribute_Unrestricted_Access
2240 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2242 if Nkind
(Decl
) = N_Subprogram_Body
then
2243 Spec
:= Corresponding_Spec
(Decl
);
2245 if Present
(Spec
) then
2246 Decl
:= Unit_Declaration_Node
(Spec
);
2250 Spec
:= Parent
(Decl
);
2252 if not Is_Entity_Name
(Prefix
(N
))
2253 or else Nkind
(Spec
) /= N_Package_Specification
2255 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2259 ("prefix must statically denote a remote subprogram ",
2263 -- If we are generating code in distributed mode, perform
2264 -- semantic checks against corresponding remote entities.
2267 and then Get_PCS_Name
/= Name_No_DSA
2269 Check_Subtype_Conformant
2270 (New_Id
=> Entity
(Prefix
(N
)),
2271 Old_Id
=> Designated_Type
2272 (Corresponding_Remote_Type
(Typ
)),
2276 Process_Remote_AST_Attribute
(N
, Typ
);
2284 Debug_A_Entry
("resolving ", N
);
2286 if Debug_Flag_V
then
2287 Write_Overloads
(N
);
2290 if Comes_From_Source
(N
) then
2291 if Is_Fixed_Point_Type
(Typ
) then
2292 Check_Restriction
(No_Fixed_Point
, N
);
2294 elsif Is_Floating_Point_Type
(Typ
)
2295 and then Typ
/= Universal_Real
2296 and then Typ
/= Any_Real
2298 Check_Restriction
(No_Floating_Point
, N
);
2302 -- Return if already analyzed
2304 if Analyzed
(N
) then
2305 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2306 Analyze_Dimension
(N
);
2309 -- Any case of Any_Type as the Etype value means that we had a
2312 elsif Etype
(N
) = Any_Type
then
2313 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2317 Check_Parameterless_Call
(N
);
2319 -- The resolution of an Expression_With_Actions is determined by
2322 if Nkind
(N
) = N_Expression_With_Actions
then
2323 Resolve
(Expression
(N
), Typ
);
2326 Expr_Type
:= Etype
(Expression
(N
));
2328 -- If not overloaded, then we know the type, and all that needs doing
2329 -- is to check that this type is compatible with the context.
2331 elsif not Is_Overloaded
(N
) then
2332 Found
:= Covers
(Typ
, Etype
(N
));
2333 Expr_Type
:= Etype
(N
);
2335 -- In the overloaded case, we must select the interpretation that
2336 -- is compatible with the context (i.e. the type passed to Resolve)
2339 -- Loop through possible interpretations
2341 Get_First_Interp
(N
, I
, It
);
2342 Interp_Loop
: while Present
(It
.Typ
) loop
2344 if Debug_Flag_V
then
2345 Write_Str
("Interp: ");
2349 -- We are only interested in interpretations that are compatible
2350 -- with the expected type, any other interpretations are ignored.
2352 if not Covers
(Typ
, It
.Typ
) then
2353 if Debug_Flag_V
then
2354 Write_Str
(" interpretation incompatible with context");
2359 -- Skip the current interpretation if it is disabled by an
2360 -- abstract operator. This action is performed only when the
2361 -- type against which we are resolving is the same as the
2362 -- type of the interpretation.
2364 if Ada_Version
>= Ada_2005
2365 and then It
.Typ
= Typ
2366 and then Typ
/= Universal_Integer
2367 and then Typ
/= Universal_Real
2368 and then Present
(It
.Abstract_Op
)
2370 if Debug_Flag_V
then
2371 Write_Line
("Skip.");
2377 -- First matching interpretation
2383 Expr_Type
:= It
.Typ
;
2385 -- Matching interpretation that is not the first, maybe an
2386 -- error, but there are some cases where preference rules are
2387 -- used to choose between the two possibilities. These and
2388 -- some more obscure cases are handled in Disambiguate.
2391 -- If the current statement is part of a predefined library
2392 -- unit, then all interpretations which come from user level
2393 -- packages should not be considered. Check previous and
2397 if not Comes_From_Predefined_Lib_Unit
(It
.Nam
) then
2400 elsif not Comes_From_Predefined_Lib_Unit
(Seen
) then
2402 -- Previous interpretation must be discarded
2406 Expr_Type
:= It
.Typ
;
2407 Set_Entity
(N
, Seen
);
2412 -- Otherwise apply further disambiguation steps
2414 Error_Msg_Sloc
:= Sloc
(Seen
);
2415 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2417 -- Disambiguation has succeeded. Skip the remaining
2420 if It1
/= No_Interp
then
2422 Expr_Type
:= It1
.Typ
;
2424 while Present
(It
.Typ
) loop
2425 Get_Next_Interp
(I
, It
);
2429 -- Before we issue an ambiguity complaint, check for
2430 -- the case of a subprogram call where at least one
2431 -- of the arguments is Any_Type, and if so, suppress
2432 -- the message, since it is a cascaded error.
2434 if Nkind
(N
) in N_Subprogram_Call
then
2440 A
:= First_Actual
(N
);
2441 while Present
(A
) loop
2444 if Nkind
(E
) = N_Parameter_Association
then
2445 E
:= Explicit_Actual_Parameter
(E
);
2448 if Etype
(E
) = Any_Type
then
2449 if Debug_Flag_V
then
2450 Write_Str
("Any_Type in call");
2461 elsif Nkind
(N
) in N_Binary_Op
2462 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2463 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2467 elsif Nkind
(N
) in N_Unary_Op
2468 and then Etype
(Right_Opnd
(N
)) = Any_Type
2473 -- Not that special case, so issue message using the
2474 -- flag Ambiguous to control printing of the header
2475 -- message only at the start of an ambiguous set.
2477 if not Ambiguous
then
2478 if Nkind
(N
) = N_Function_Call
2479 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2482 ("ambiguous expression "
2483 & "(cannot resolve indirect call)!", N
);
2485 Error_Msg_NE
-- CODEFIX
2486 ("ambiguous expression (cannot resolve&)!",
2492 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2494 ("\\possible interpretation (inherited)#!", N
);
2496 Error_Msg_N
-- CODEFIX
2497 ("\\possible interpretation#!", N
);
2500 if Nkind
(N
) in N_Subprogram_Call
2501 and then Present
(Parameter_Associations
(N
))
2503 Report_Ambiguous_Argument
;
2507 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2509 -- By default, the error message refers to the candidate
2510 -- interpretation. But if it is a predefined operator, it
2511 -- is implicitly declared at the declaration of the type
2512 -- of the operand. Recover the sloc of that declaration
2513 -- for the error message.
2515 if Nkind
(N
) in N_Op
2516 and then Scope
(It
.Nam
) = Standard_Standard
2517 and then not Is_Overloaded
(Right_Opnd
(N
))
2518 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2521 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2523 if Comes_From_Source
(Err_Type
)
2524 and then Present
(Parent
(Err_Type
))
2526 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2529 elsif Nkind
(N
) in N_Binary_Op
2530 and then Scope
(It
.Nam
) = Standard_Standard
2531 and then not Is_Overloaded
(Left_Opnd
(N
))
2532 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2535 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2537 if Comes_From_Source
(Err_Type
)
2538 and then Present
(Parent
(Err_Type
))
2540 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2543 -- If this is an indirect call, use the subprogram_type
2544 -- in the message, to have a meaningful location. Also
2545 -- indicate if this is an inherited operation, created
2546 -- by a type declaration.
2548 elsif Nkind
(N
) = N_Function_Call
2549 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2550 and then Is_Type
(It
.Nam
)
2554 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2559 if Nkind
(N
) in N_Op
2560 and then Scope
(It
.Nam
) = Standard_Standard
2561 and then Present
(Err_Type
)
2563 -- Special-case the message for universal_fixed
2564 -- operators, which are not declared with the type
2565 -- of the operand, but appear forever in Standard.
2567 if It
.Typ
= Universal_Fixed
2568 and then Scope
(It
.Nam
) = Standard_Standard
2571 ("\\possible interpretation as universal_fixed "
2572 & "operation (RM 4.5.5 (19))", N
);
2575 ("\\possible interpretation (predefined)#!", N
);
2579 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2582 ("\\possible interpretation (inherited)#!", N
);
2584 Error_Msg_N
-- CODEFIX
2585 ("\\possible interpretation#!", N
);
2591 -- We have a matching interpretation, Expr_Type is the type
2592 -- from this interpretation, and Seen is the entity.
2594 -- For an operator, just set the entity name. The type will be
2595 -- set by the specific operator resolution routine.
2597 if Nkind
(N
) in N_Op
then
2598 Set_Entity
(N
, Seen
);
2599 Generate_Reference
(Seen
, N
);
2601 elsif Nkind
(N
) = N_Case_Expression
then
2602 Set_Etype
(N
, Expr_Type
);
2604 elsif Nkind
(N
) = N_Character_Literal
then
2605 Set_Etype
(N
, Expr_Type
);
2607 elsif Nkind
(N
) = N_If_Expression
then
2608 Set_Etype
(N
, Expr_Type
);
2610 -- AI05-0139-2: Expression is overloaded because type has
2611 -- implicit dereference. If type matches context, no implicit
2612 -- dereference is involved.
2614 elsif Has_Implicit_Dereference
(Expr_Type
) then
2615 Set_Etype
(N
, Expr_Type
);
2616 Set_Is_Overloaded
(N
, False);
2619 elsif Is_Overloaded
(N
)
2620 and then Present
(It
.Nam
)
2621 and then Ekind
(It
.Nam
) = E_Discriminant
2622 and then Has_Implicit_Dereference
(It
.Nam
)
2624 -- If the node is a general indexing, the dereference is
2625 -- is inserted when resolving the rewritten form, else
2628 if Nkind
(N
) /= N_Indexed_Component
2629 or else No
(Generalized_Indexing
(N
))
2631 Build_Explicit_Dereference
(N
, It
.Nam
);
2634 -- For an explicit dereference, attribute reference, range,
2635 -- short-circuit form (which is not an operator node), or call
2636 -- with a name that is an explicit dereference, there is
2637 -- nothing to be done at this point.
2639 elsif Nkind_In
(N
, N_Explicit_Dereference
,
2640 N_Attribute_Reference
,
2642 N_Indexed_Component
,
2645 N_Selected_Component
,
2647 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2651 -- For procedure or function calls, set the type of the name,
2652 -- and also the entity pointer for the prefix.
2654 elsif Nkind
(N
) in N_Subprogram_Call
2655 and then Is_Entity_Name
(Name
(N
))
2657 Set_Etype
(Name
(N
), Expr_Type
);
2658 Set_Entity
(Name
(N
), Seen
);
2659 Generate_Reference
(Seen
, Name
(N
));
2661 elsif Nkind
(N
) = N_Function_Call
2662 and then Nkind
(Name
(N
)) = N_Selected_Component
2664 Set_Etype
(Name
(N
), Expr_Type
);
2665 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2666 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2668 -- For all other cases, just set the type of the Name
2671 Set_Etype
(Name
(N
), Expr_Type
);
2678 -- Move to next interpretation
2680 exit Interp_Loop
when No
(It
.Typ
);
2682 Get_Next_Interp
(I
, It
);
2683 end loop Interp_Loop
;
2686 -- At this stage Found indicates whether or not an acceptable
2687 -- interpretation exists. If not, then we have an error, except that if
2688 -- the context is Any_Type as a result of some other error, then we
2689 -- suppress the error report.
2692 if Typ
/= Any_Type
then
2694 -- If type we are looking for is Void, then this is the procedure
2695 -- call case, and the error is simply that what we gave is not a
2696 -- procedure name (we think of procedure calls as expressions with
2697 -- types internally, but the user doesn't think of them this way).
2699 if Typ
= Standard_Void_Type
then
2701 -- Special case message if function used as a procedure
2703 if Nkind
(N
) = N_Procedure_Call_Statement
2704 and then Is_Entity_Name
(Name
(N
))
2705 and then Ekind
(Entity
(Name
(N
))) = E_Function
2708 ("cannot use function & in a procedure call",
2709 Name
(N
), Entity
(Name
(N
)));
2711 -- Otherwise give general message (not clear what cases this
2712 -- covers, but no harm in providing for them).
2715 Error_Msg_N
("expect procedure name in procedure call", N
);
2720 -- Otherwise we do have a subexpression with the wrong type
2722 -- Check for the case of an allocator which uses an access type
2723 -- instead of the designated type. This is a common error and we
2724 -- specialize the message, posting an error on the operand of the
2725 -- allocator, complaining that we expected the designated type of
2728 elsif Nkind
(N
) = N_Allocator
2729 and then Is_Access_Type
(Typ
)
2730 and then Is_Access_Type
(Etype
(N
))
2731 and then Designated_Type
(Etype
(N
)) = Typ
2733 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2736 -- Check for view mismatch on Null in instances, for which the
2737 -- view-swapping mechanism has no identifier.
2739 elsif (In_Instance
or else In_Inlined_Body
)
2740 and then (Nkind
(N
) = N_Null
)
2741 and then Is_Private_Type
(Typ
)
2742 and then Is_Access_Type
(Full_View
(Typ
))
2744 Resolve
(N
, Full_View
(Typ
));
2748 -- Check for an aggregate. Sometimes we can get bogus aggregates
2749 -- from misuse of parentheses, and we are about to complain about
2750 -- the aggregate without even looking inside it.
2752 -- Instead, if we have an aggregate of type Any_Composite, then
2753 -- analyze and resolve the component fields, and then only issue
2754 -- another message if we get no errors doing this (otherwise
2755 -- assume that the errors in the aggregate caused the problem).
2757 elsif Nkind
(N
) = N_Aggregate
2758 and then Etype
(N
) = Any_Composite
2760 -- Disable expansion in any case. If there is a type mismatch
2761 -- it may be fatal to try to expand the aggregate. The flag
2762 -- would otherwise be set to false when the error is posted.
2764 Expander_Active
:= False;
2767 procedure Check_Aggr
(Aggr
: Node_Id
);
2768 -- Check one aggregate, and set Found to True if we have a
2769 -- definite error in any of its elements
2771 procedure Check_Elmt
(Aelmt
: Node_Id
);
2772 -- Check one element of aggregate and set Found to True if
2773 -- we definitely have an error in the element.
2779 procedure Check_Aggr
(Aggr
: Node_Id
) is
2783 if Present
(Expressions
(Aggr
)) then
2784 Elmt
:= First
(Expressions
(Aggr
));
2785 while Present
(Elmt
) loop
2791 if Present
(Component_Associations
(Aggr
)) then
2792 Elmt
:= First
(Component_Associations
(Aggr
));
2793 while Present
(Elmt
) loop
2795 -- If this is a default-initialized component, then
2796 -- there is nothing to check. The box will be
2797 -- replaced by the appropriate call during late
2800 if not Box_Present
(Elmt
) then
2801 Check_Elmt
(Expression
(Elmt
));
2813 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2815 -- If we have a nested aggregate, go inside it (to
2816 -- attempt a naked analyze-resolve of the aggregate can
2817 -- cause undesirable cascaded errors). Do not resolve
2818 -- expression if it needs a type from context, as for
2819 -- integer * fixed expression.
2821 if Nkind
(Aelmt
) = N_Aggregate
then
2827 if not Is_Overloaded
(Aelmt
)
2828 and then Etype
(Aelmt
) /= Any_Fixed
2833 if Etype
(Aelmt
) = Any_Type
then
2844 -- Looks like we have a type error, but check for special case
2845 -- of Address wanted, integer found, with the configuration pragma
2846 -- Allow_Integer_Address active. If we have this case, introduce
2847 -- an unchecked conversion to allow the integer expression to be
2848 -- treated as an Address. The reverse case of integer wanted,
2849 -- Address found, is treated in an analogous manner.
2851 if Address_Integer_Convert_OK
(Typ
, Etype
(N
)) then
2852 Rewrite
(N
, Unchecked_Convert_To
(Typ
, Relocate_Node
(N
)));
2853 Analyze_And_Resolve
(N
, Typ
);
2857 -- That special Allow_Integer_Address check did not appply, so we
2858 -- have a real type error. If an error message was issued already,
2859 -- Found got reset to True, so if it's still False, issue standard
2860 -- Wrong_Type message.
2863 if Is_Overloaded
(N
) and then Nkind
(N
) = N_Function_Call
then
2865 Subp_Name
: Node_Id
;
2868 if Is_Entity_Name
(Name
(N
)) then
2869 Subp_Name
:= Name
(N
);
2871 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2873 -- Protected operation: retrieve operation name
2875 Subp_Name
:= Selector_Name
(Name
(N
));
2878 raise Program_Error
;
2881 Error_Msg_Node_2
:= Typ
;
2883 ("no visible interpretation of& "
2884 & "matches expected type&", N
, Subp_Name
);
2887 if All_Errors_Mode
then
2889 Index
: Interp_Index
;
2893 Error_Msg_N
("\\possible interpretations:", N
);
2895 Get_First_Interp
(Name
(N
), Index
, It
);
2896 while Present
(It
.Nam
) loop
2897 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2898 Error_Msg_Node_2
:= It
.Nam
;
2900 ("\\ type& for & declared#", N
, It
.Typ
);
2901 Get_Next_Interp
(Index
, It
);
2906 Error_Msg_N
("\use -gnatf for details", N
);
2910 Wrong_Type
(N
, Typ
);
2918 -- Test if we have more than one interpretation for the context
2920 elsif Ambiguous
then
2924 -- Only one intepretation
2927 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2928 -- the "+" on T is abstract, and the operands are of universal type,
2929 -- the above code will have (incorrectly) resolved the "+" to the
2930 -- universal one in Standard. Therefore check for this case and give
2931 -- an error. We can't do this earlier, because it would cause legal
2932 -- cases to get errors (when some other type has an abstract "+").
2934 if Ada_Version
>= Ada_2005
2935 and then Nkind
(N
) in N_Op
2936 and then Is_Overloaded
(N
)
2937 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2939 Get_First_Interp
(N
, I
, It
);
2940 while Present
(It
.Typ
) loop
2941 if Present
(It
.Abstract_Op
) and then
2942 Etype
(It
.Abstract_Op
) = Typ
2945 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2949 Get_Next_Interp
(I
, It
);
2953 -- Here we have an acceptable interpretation for the context
2955 -- Propagate type information and normalize tree for various
2956 -- predefined operations. If the context only imposes a class of
2957 -- types, rather than a specific type, propagate the actual type
2960 if Typ
= Any_Integer
or else
2961 Typ
= Any_Boolean
or else
2962 Typ
= Any_Modular
or else
2963 Typ
= Any_Real
or else
2966 Ctx_Type
:= Expr_Type
;
2968 -- Any_Fixed is legal in a real context only if a specific fixed-
2969 -- point type is imposed. If Norman Cohen can be confused by this,
2970 -- it deserves a separate message.
2973 and then Expr_Type
= Any_Fixed
2975 Error_Msg_N
("illegal context for mixed mode operation", N
);
2976 Set_Etype
(N
, Universal_Real
);
2977 Ctx_Type
:= Universal_Real
;
2981 -- A user-defined operator is transformed into a function call at
2982 -- this point, so that further processing knows that operators are
2983 -- really operators (i.e. are predefined operators). User-defined
2984 -- operators that are intrinsic are just renamings of the predefined
2985 -- ones, and need not be turned into calls either, but if they rename
2986 -- a different operator, we must transform the node accordingly.
2987 -- Instantiations of Unchecked_Conversion are intrinsic but are
2988 -- treated as functions, even if given an operator designator.
2990 if Nkind
(N
) in N_Op
2991 and then Present
(Entity
(N
))
2992 and then Ekind
(Entity
(N
)) /= E_Operator
2995 if not Is_Predefined_Op
(Entity
(N
)) then
2996 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2998 elsif Present
(Alias
(Entity
(N
)))
3000 Nkind
(Parent
(Parent
(Entity
(N
)))) =
3001 N_Subprogram_Renaming_Declaration
3003 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
3005 -- If the node is rewritten, it will be fully resolved in
3006 -- Rewrite_Renamed_Operator.
3008 if Analyzed
(N
) then
3014 case N_Subexpr
'(Nkind (N)) is
3016 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
3018 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
3020 when N_Short_Circuit
3021 => Resolve_Short_Circuit (N, Ctx_Type);
3023 when N_Attribute_Reference
3024 => Resolve_Attribute (N, Ctx_Type);
3026 when N_Case_Expression
3027 => Resolve_Case_Expression (N, Ctx_Type);
3029 when N_Character_Literal
3030 => Resolve_Character_Literal (N, Ctx_Type);
3032 when N_Expanded_Name
3033 => Resolve_Entity_Name (N, Ctx_Type);
3035 when N_Explicit_Dereference
3036 => Resolve_Explicit_Dereference (N, Ctx_Type);
3038 when N_Expression_With_Actions
3039 => Resolve_Expression_With_Actions (N, Ctx_Type);
3041 when N_Extension_Aggregate
3042 => Resolve_Extension_Aggregate (N, Ctx_Type);
3044 when N_Function_Call
3045 => Resolve_Call (N, Ctx_Type);
3048 => Resolve_Entity_Name (N, Ctx_Type);
3050 when N_If_Expression
3051 => Resolve_If_Expression (N, Ctx_Type);
3053 when N_Indexed_Component
3054 => Resolve_Indexed_Component (N, Ctx_Type);
3056 when N_Integer_Literal
3057 => Resolve_Integer_Literal (N, Ctx_Type);
3059 when N_Membership_Test
3060 => Resolve_Membership_Op (N, Ctx_Type);
3062 when N_Null => Resolve_Null (N, Ctx_Type);
3064 when N_Op_And | N_Op_Or | N_Op_Xor
3065 => Resolve_Logical_Op (N, Ctx_Type);
3067 when N_Op_Eq | N_Op_Ne
3068 => Resolve_Equality_Op (N, Ctx_Type);
3070 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
3071 => Resolve_Comparison_Op (N, Ctx_Type);
3073 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
3075 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
3076 N_Op_Divide | N_Op_Mod | N_Op_Rem
3078 => Resolve_Arithmetic_Op (N, Ctx_Type);
3080 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
3082 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
3084 when N_Op_Plus | N_Op_Minus | N_Op_Abs
3085 => Resolve_Unary_Op (N, Ctx_Type);
3087 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
3089 when N_Procedure_Call_Statement
3090 => Resolve_Call (N, Ctx_Type);
3092 when N_Operator_Symbol
3093 => Resolve_Operator_Symbol (N, Ctx_Type);
3095 when N_Qualified_Expression
3096 => Resolve_Qualified_Expression (N, Ctx_Type);
3098 -- Why is the following null, needs a comment ???
3100 when N_Quantified_Expression
3103 when N_Raise_Expression
3104 => Resolve_Raise_Expression (N, Ctx_Type);
3106 when N_Raise_xxx_Error
3107 => Set_Etype (N, Ctx_Type);
3109 when N_Range => Resolve_Range (N, Ctx_Type);
3112 => Resolve_Real_Literal (N, Ctx_Type);
3114 when N_Reference => Resolve_Reference (N, Ctx_Type);
3116 when N_Selected_Component
3117 => Resolve_Selected_Component (N, Ctx_Type);
3119 when N_Slice => Resolve_Slice (N, Ctx_Type);
3121 when N_String_Literal
3122 => Resolve_String_Literal (N, Ctx_Type);
3124 when N_Type_Conversion
3125 => Resolve_Type_Conversion (N, Ctx_Type);
3127 when N_Unchecked_Expression =>
3128 Resolve_Unchecked_Expression (N, Ctx_Type);
3130 when N_Unchecked_Type_Conversion =>
3131 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3134 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3135 -- expression of an anonymous access type that occurs in the context
3136 -- of a named general access type, except when the expression is that
3137 -- of a membership test. This ensures proper legality checking in
3138 -- terms of allowed conversions (expressions that would be illegal to
3139 -- convert implicitly are allowed in membership tests).
3141 if Ada_Version >= Ada_2012
3142 and then Ekind (Ctx_Type) = E_General_Access_Type
3143 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3144 and then Nkind (Parent (N)) not in N_Membership_Test
3146 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3147 Analyze_And_Resolve (N, Ctx_Type);
3150 -- If the subexpression was replaced by a non-subexpression, then
3151 -- all we do is to expand it. The only legitimate case we know of
3152 -- is converting procedure call statement to entry call statements,
3153 -- but there may be others, so we are making this test general.
3155 if Nkind (N) not in N_Subexpr then
3156 Debug_A_Exit ("resolving ", N, " (done)");
3161 -- The expression is definitely NOT overloaded at this point, so
3162 -- we reset the Is_Overloaded flag to avoid any confusion when
3163 -- reanalyzing the node.
3165 Set_Is_Overloaded (N, False);
3167 -- Freeze expression type, entity if it is a name, and designated
3168 -- type if it is an allocator (RM 13.14(10,11,13)).
3170 -- Now that the resolution of the type of the node is complete, and
3171 -- we did not detect an error, we can expand this node. We skip the
3172 -- expand call if we are in a default expression, see section
3173 -- "Handling of Default Expressions" in Sem spec.
3175 Debug_A_Exit ("resolving ", N, " (done)");
3177 -- We unconditionally freeze the expression, even if we are in
3178 -- default expression mode (the Freeze_Expression routine tests this
3179 -- flag and only freezes static types if it is set).
3181 -- Ada 2012 (AI05-177): The declaration of an expression function
3182 -- does not cause freezing, but we never reach here in that case.
3183 -- Here we are resolving the corresponding expanded body, so we do
3184 -- need to perform normal freezing.
3186 Freeze_Expression (N);
3188 -- Now we can do the expansion
3198 -- Version with check(s) suppressed
3200 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3202 if Suppress = All_Checks then
3204 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3206 Scope_Suppress.Suppress := (others => True);
3208 Scope_Suppress.Suppress := Sva;
3213 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3215 Scope_Suppress.Suppress (Suppress) := True;
3217 Scope_Suppress.Suppress (Suppress) := Svg;
3226 -- Version with implicit type
3228 procedure Resolve (N : Node_Id) is
3230 Resolve (N, Etype (N));
3233 ---------------------
3234 -- Resolve_Actuals --
3235 ---------------------
3237 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3238 Loc : constant Source_Ptr := Sloc (N);
3244 Prev : Node_Id := Empty;
3247 procedure Check_Aliased_Parameter;
3248 -- Check rules on aliased parameters and related accessibility rules
3249 -- in (RM 3.10.2 (10.2-10.4)).
3251 procedure Check_Argument_Order;
3252 -- Performs a check for the case where the actuals are all simple
3253 -- identifiers that correspond to the formal names, but in the wrong
3254 -- order, which is considered suspicious and cause for a warning.
3256 procedure Check_Prefixed_Call;
3257 -- If the original node is an overloaded call in prefix notation,
3258 -- insert an 'Access or a dereference as needed over the first actual
.
3259 -- Try_Object_Operation has already verified that there is a valid
3260 -- interpretation, but the form of the actual can only be determined
3261 -- once the primitive operation is identified.
3263 procedure Insert_Default
;
3264 -- If the actual is missing in a call, insert in the actuals list
3265 -- an instance of the default expression. The insertion is always
3266 -- a named association.
3268 procedure Property_Error
3271 Prop_Nam
: Name_Id
);
3272 -- Emit an error concerning variable Var with entity Var_Id that has
3273 -- enabled property Prop_Nam when it acts as an actual parameter in a
3274 -- call and the corresponding formal parameter is of mode IN.
3276 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3277 -- Check whether T1 and T2, or their full views, are derived from a
3278 -- common type. Used to enforce the restrictions on array conversions
3281 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3282 -- Predicate to determine whether an actual that is a concatenation
3283 -- will be evaluated statically and does not need a transient scope.
3284 -- This must be determined before the actual is resolved and expanded
3285 -- because if needed the transient scope must be introduced earlier.
3287 ------------------------------
3288 -- Check_Aliased_Parameter --
3289 ------------------------------
3291 procedure Check_Aliased_Parameter
is
3292 Nominal_Subt
: Entity_Id
;
3295 if Is_Aliased
(F
) then
3296 if Is_Tagged_Type
(A_Typ
) then
3299 elsif Is_Aliased_View
(A
) then
3300 if Is_Constr_Subt_For_U_Nominal
(A_Typ
) then
3301 Nominal_Subt
:= Base_Type
(A_Typ
);
3303 Nominal_Subt
:= A_Typ
;
3306 if Subtypes_Statically_Match
(F_Typ
, Nominal_Subt
) then
3309 -- In a generic body assume the worst for generic formals:
3310 -- they can have a constrained partial view (AI05-041).
3312 elsif Has_Discriminants
(F_Typ
)
3313 and then not Is_Constrained
(F_Typ
)
3314 and then not Has_Constrained_Partial_View
(F_Typ
)
3315 and then not Is_Generic_Type
(F_Typ
)
3320 Error_Msg_NE
("untagged actual does not match "
3321 & "aliased formal&", A
, F
);
3325 Error_Msg_NE
("actual for aliased formal& must be "
3326 & "aliased object", A
, F
);
3329 if Ekind
(Nam
) = E_Procedure
then
3332 elsif Ekind
(Etype
(Nam
)) = E_Anonymous_Access_Type
then
3333 if Nkind
(Parent
(N
)) = N_Type_Conversion
3334 and then Type_Access_Level
(Etype
(Parent
(N
))) <
3335 Object_Access_Level
(A
)
3337 Error_Msg_N
("aliased actual has wrong accessibility", A
);
3340 elsif Nkind
(Parent
(N
)) = N_Qualified_Expression
3341 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
3342 and then Type_Access_Level
(Etype
(Parent
(Parent
(N
)))) <
3343 Object_Access_Level
(A
)
3346 ("aliased actual in allocator has wrong accessibility", A
);
3349 end Check_Aliased_Parameter
;
3351 --------------------------
3352 -- Check_Argument_Order --
3353 --------------------------
3355 procedure Check_Argument_Order
is
3357 -- Nothing to do if no parameters, or original node is neither a
3358 -- function call nor a procedure call statement (happens in the
3359 -- operator-transformed-to-function call case), or the call does
3360 -- not come from source, or this warning is off.
3362 if not Warn_On_Parameter_Order
3363 or else No
(Parameter_Associations
(N
))
3364 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3365 or else not Comes_From_Source
(N
)
3371 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3374 -- Nothing to do if only one parameter
3380 -- Here if at least two arguments
3383 Actuals
: array (1 .. Nargs
) of Node_Id
;
3387 Wrong_Order
: Boolean := False;
3388 -- Set True if an out of order case is found
3391 -- Collect identifier names of actuals, fail if any actual is
3392 -- not a simple identifier, and record max length of name.
3394 Actual
:= First
(Parameter_Associations
(N
));
3395 for J
in Actuals
'Range loop
3396 if Nkind
(Actual
) /= N_Identifier
then
3399 Actuals
(J
) := Actual
;
3404 -- If we got this far, all actuals are identifiers and the list
3405 -- of their names is stored in the Actuals array.
3407 Formal
:= First_Formal
(Nam
);
3408 for J
in Actuals
'Range loop
3410 -- If we ran out of formals, that's odd, probably an error
3411 -- which will be detected elsewhere, but abandon the search.
3417 -- If name matches and is in order OK
3419 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3423 -- If no match, see if it is elsewhere in list and if so
3424 -- flag potential wrong order if type is compatible.
3426 for K
in Actuals
'Range loop
3427 if Chars
(Formal
) = Chars
(Actuals
(K
))
3429 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3431 Wrong_Order
:= True;
3441 <<Continue
>> Next_Formal
(Formal
);
3444 -- If Formals left over, also probably an error, skip warning
3446 if Present
(Formal
) then
3450 -- Here we give the warning if something was out of order
3454 ("?P?actuals for this call may be in wrong order", N
);
3458 end Check_Argument_Order
;
3460 -------------------------
3461 -- Check_Prefixed_Call --
3462 -------------------------
3464 procedure Check_Prefixed_Call
is
3465 Act
: constant Node_Id
:= First_Actual
(N
);
3466 A_Type
: constant Entity_Id
:= Etype
(Act
);
3467 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3468 Orig
: constant Node_Id
:= Original_Node
(N
);
3472 -- Check whether the call is a prefixed call, with or without
3473 -- additional actuals.
3475 if Nkind
(Orig
) = N_Selected_Component
3477 (Nkind
(Orig
) = N_Indexed_Component
3478 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3479 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3480 and then Is_Entity_Name
(Act
)
3481 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3483 if Is_Access_Type
(A_Type
)
3484 and then not Is_Access_Type
(F_Type
)
3486 -- Introduce dereference on object in prefix
3489 Make_Explicit_Dereference
(Sloc
(Act
),
3490 Prefix
=> Relocate_Node
(Act
));
3491 Rewrite
(Act
, New_A
);
3494 elsif Is_Access_Type
(F_Type
)
3495 and then not Is_Access_Type
(A_Type
)
3497 -- Introduce an implicit 'Access in prefix
3499 if not Is_Aliased_View
(Act
) then
3501 ("object in prefixed call to& must be aliased "
3502 & "(RM 4.1.3 (13 1/2))",
3507 Make_Attribute_Reference
(Loc
,
3508 Attribute_Name
=> Name_Access
,
3509 Prefix
=> Relocate_Node
(Act
)));
3514 end Check_Prefixed_Call
;
3516 --------------------
3517 -- Insert_Default --
3518 --------------------
3520 procedure Insert_Default
is
3525 -- Missing argument in call, nothing to insert
3527 if No
(Default_Value
(F
)) then
3531 -- Note that we do a full New_Copy_Tree, so that any associated
3532 -- Itypes are properly copied. This may not be needed any more,
3533 -- but it does no harm as a safety measure. Defaults of a generic
3534 -- formal may be out of bounds of the corresponding actual (see
3535 -- cc1311b) and an additional check may be required.
3540 New_Scope
=> Current_Scope
,
3543 if Is_Concurrent_Type
(Scope
(Nam
))
3544 and then Has_Discriminants
(Scope
(Nam
))
3546 Replace_Actual_Discriminants
(N
, Actval
);
3549 if Is_Overloadable
(Nam
)
3550 and then Present
(Alias
(Nam
))
3552 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3553 and then not Is_Tagged_Type
(Etype
(F
))
3555 -- If default is a real literal, do not introduce a
3556 -- conversion whose effect may depend on the run-time
3557 -- size of universal real.
3559 if Nkind
(Actval
) = N_Real_Literal
then
3560 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3562 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3566 if Is_Scalar_Type
(Etype
(F
)) then
3567 Enable_Range_Check
(Actval
);
3570 Set_Parent
(Actval
, N
);
3572 -- Resolve aggregates with their base type, to avoid scope
3573 -- anomalies: the subtype was first built in the subprogram
3574 -- declaration, and the current call may be nested.
3576 if Nkind
(Actval
) = N_Aggregate
then
3577 Analyze_And_Resolve
(Actval
, Etype
(F
));
3579 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3583 Set_Parent
(Actval
, N
);
3585 -- See note above concerning aggregates
3587 if Nkind
(Actval
) = N_Aggregate
3588 and then Has_Discriminants
(Etype
(Actval
))
3590 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3592 -- Resolve entities with their own type, which may differ from
3593 -- the type of a reference in a generic context (the view
3594 -- swapping mechanism did not anticipate the re-analysis of
3595 -- default values in calls).
3597 elsif Is_Entity_Name
(Actval
) then
3598 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3601 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3605 -- If default is a tag indeterminate function call, propagate tag
3606 -- to obtain proper dispatching.
3608 if Is_Controlling_Formal
(F
)
3609 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3611 Set_Is_Controlling_Actual
(Actval
);
3616 -- If the default expression raises constraint error, then just
3617 -- silently replace it with an N_Raise_Constraint_Error node, since
3618 -- we already gave the warning on the subprogram spec. If node is
3619 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3620 -- the warnings removal machinery.
3622 if Raises_Constraint_Error
(Actval
)
3623 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3626 Make_Raise_Constraint_Error
(Loc
,
3627 Reason
=> CE_Range_Check_Failed
));
3628 Set_Raises_Constraint_Error
(Actval
);
3629 Set_Etype
(Actval
, Etype
(F
));
3633 Make_Parameter_Association
(Loc
,
3634 Explicit_Actual_Parameter
=> Actval
,
3635 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3637 -- Case of insertion is first named actual
3639 if No
(Prev
) or else
3640 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3642 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3643 Set_First_Named_Actual
(N
, Actval
);
3646 if No
(Parameter_Associations
(N
)) then
3647 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3649 Append
(Assoc
, Parameter_Associations
(N
));
3653 Insert_After
(Prev
, Assoc
);
3656 -- Case of insertion is not first named actual
3659 Set_Next_Named_Actual
3660 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3661 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3662 Append
(Assoc
, Parameter_Associations
(N
));
3665 Mark_Rewrite_Insertion
(Assoc
);
3666 Mark_Rewrite_Insertion
(Actval
);
3671 --------------------
3672 -- Property_Error --
3673 --------------------
3675 procedure Property_Error
3681 Error_Msg_Name_1
:= Prop_Nam
;
3683 ("external variable & with enabled property % cannot appear as "
3684 & "actual in procedure call (SPARK RM 7.1.3(11))", Var
, Var_Id
);
3685 Error_Msg_N
("\\corresponding formal parameter has mode In", Var
);
3692 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3693 FT1
: Entity_Id
:= T1
;
3694 FT2
: Entity_Id
:= T2
;
3697 if Is_Private_Type
(T1
)
3698 and then Present
(Full_View
(T1
))
3700 FT1
:= Full_View
(T1
);
3703 if Is_Private_Type
(T2
)
3704 and then Present
(Full_View
(T2
))
3706 FT2
:= Full_View
(T2
);
3709 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3712 --------------------------
3713 -- Static_Concatenation --
3714 --------------------------
3716 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3719 when N_String_Literal
=>
3724 -- Concatenation is static when both operands are static and
3725 -- the concatenation operator is a predefined one.
3727 return Scope
(Entity
(N
)) = Standard_Standard
3729 Static_Concatenation
(Left_Opnd
(N
))
3731 Static_Concatenation
(Right_Opnd
(N
));
3734 if Is_Entity_Name
(N
) then
3736 Ent
: constant Entity_Id
:= Entity
(N
);
3738 return Ekind
(Ent
) = E_Constant
3739 and then Present
(Constant_Value
(Ent
))
3741 Is_OK_Static_Expression
(Constant_Value
(Ent
));
3748 end Static_Concatenation
;
3750 -- Start of processing for Resolve_Actuals
3753 Check_Argument_Order
;
3754 Check_Function_Writable_Actuals
(N
);
3756 if Present
(First_Actual
(N
)) then
3757 Check_Prefixed_Call
;
3760 A
:= First_Actual
(N
);
3761 F
:= First_Formal
(Nam
);
3762 while Present
(F
) loop
3763 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3766 -- If we have an error in any actual or formal, indicated by a type
3767 -- of Any_Type, then abandon resolution attempt, and set result type
3768 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3769 -- type is imposed from context.
3771 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3772 or else Etype
(F
) = Any_Type
3774 if Nkind
(A
) /= N_Raise_Expression
then
3775 Set_Etype
(N
, Any_Type
);
3780 -- Case where actual is present
3782 -- If the actual is an entity, generate a reference to it now. We
3783 -- do this before the actual is resolved, because a formal of some
3784 -- protected subprogram, or a task discriminant, will be rewritten
3785 -- during expansion, and the source entity reference may be lost.
3788 and then Is_Entity_Name
(A
)
3789 and then Comes_From_Source
(N
)
3791 Orig_A
:= Entity
(A
);
3793 if Present
(Orig_A
) then
3794 if Is_Formal
(Orig_A
)
3795 and then Ekind
(F
) /= E_In_Parameter
3797 Generate_Reference
(Orig_A
, A
, 'm');
3799 elsif not Is_Overloaded
(A
) then
3800 if Ekind
(F
) /= E_Out_Parameter
then
3801 Generate_Reference
(Orig_A
, A
);
3803 -- RM 6.4.1(12): For an out parameter that is passed by
3804 -- copy, the formal parameter object is created, and:
3806 -- * For an access type, the formal parameter is initialized
3807 -- from the value of the actual, without checking that the
3808 -- value satisfies any constraint, any predicate, or any
3809 -- exclusion of the null value.
3811 -- * For a scalar type that has the Default_Value aspect
3812 -- specified, the formal parameter is initialized from the
3813 -- value of the actual, without checking that the value
3814 -- satisfies any constraint or any predicate.
3815 -- I do not understand why this case is included??? this is
3816 -- not a case where an OUT parameter is treated as IN OUT.
3818 -- * For a composite type with discriminants or that has
3819 -- implicit initial values for any subcomponents, the
3820 -- behavior is as for an in out parameter passed by copy.
3822 -- Hence for these cases we generate the read reference now
3823 -- (the write reference will be generated later by
3824 -- Note_Possible_Modification).
3826 elsif Is_By_Copy_Type
(Etype
(F
))
3828 (Is_Access_Type
(Etype
(F
))
3830 (Is_Scalar_Type
(Etype
(F
))
3832 Present
(Default_Aspect_Value
(Etype
(F
))))
3834 (Is_Composite_Type
(Etype
(F
))
3835 and then (Has_Discriminants
(Etype
(F
))
3836 or else Is_Partially_Initialized_Type
3839 Generate_Reference
(Orig_A
, A
);
3846 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3847 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3849 -- If style checking mode on, check match of formal name
3852 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3853 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3857 -- If the formal is Out or In_Out, do not resolve and expand the
3858 -- conversion, because it is subsequently expanded into explicit
3859 -- temporaries and assignments. However, the object of the
3860 -- conversion can be resolved. An exception is the case of tagged
3861 -- type conversion with a class-wide actual. In that case we want
3862 -- the tag check to occur and no temporary will be needed (no
3863 -- representation change can occur) and the parameter is passed by
3864 -- reference, so we go ahead and resolve the type conversion.
3865 -- Another exception is the case of reference to component or
3866 -- subcomponent of a bit-packed array, in which case we want to
3867 -- defer expansion to the point the in and out assignments are
3870 if Ekind
(F
) /= E_In_Parameter
3871 and then Nkind
(A
) = N_Type_Conversion
3872 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3874 if Ekind
(F
) = E_In_Out_Parameter
3875 and then Is_Array_Type
(Etype
(F
))
3877 -- In a view conversion, the conversion must be legal in
3878 -- both directions, and thus both component types must be
3879 -- aliased, or neither (4.6 (8)).
3881 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3882 -- the privacy requirement should not apply to generic
3883 -- types, and should be checked in an instance. ARG query
3886 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3887 Has_Aliased_Components
(Etype
(F
))
3890 ("both component types in a view conversion must be"
3891 & " aliased, or neither", A
);
3893 -- Comment here??? what set of cases???
3896 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3898 -- Check view conv between unrelated by ref array types
3900 if Is_By_Reference_Type
(Etype
(F
))
3901 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3904 ("view conversion between unrelated by reference "
3905 & "array types not allowed (\'A'I-00246)", A
);
3907 -- In Ada 2005 mode, check view conversion component
3908 -- type cannot be private, tagged, or volatile. Note
3909 -- that we only apply this to source conversions. The
3910 -- generated code can contain conversions which are
3911 -- not subject to this test, and we cannot extract the
3912 -- component type in such cases since it is not present.
3914 elsif Comes_From_Source
(A
)
3915 and then Ada_Version
>= Ada_2005
3918 Comp_Type
: constant Entity_Id
:=
3920 (Etype
(Expression
(A
)));
3922 if (Is_Private_Type
(Comp_Type
)
3923 and then not Is_Generic_Type
(Comp_Type
))
3924 or else Is_Tagged_Type
(Comp_Type
)
3925 or else Is_Volatile
(Comp_Type
)
3928 ("component type of a view conversion cannot"
3929 & " be private, tagged, or volatile"
3938 -- Resolve expression if conversion is all OK
3940 if (Conversion_OK
(A
)
3941 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3942 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3944 Resolve
(Expression
(A
));
3947 -- If the actual is a function call that returns a limited
3948 -- unconstrained object that needs finalization, create a
3949 -- transient scope for it, so that it can receive the proper
3950 -- finalization list.
3952 elsif Nkind
(A
) = N_Function_Call
3953 and then Is_Limited_Record
(Etype
(F
))
3954 and then not Is_Constrained
(Etype
(F
))
3955 and then Expander_Active
3956 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3958 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3959 Resolve
(A
, Etype
(F
));
3961 -- A small optimization: if one of the actuals is a concatenation
3962 -- create a block around a procedure call to recover stack space.
3963 -- This alleviates stack usage when several procedure calls in
3964 -- the same statement list use concatenation. We do not perform
3965 -- this wrapping for code statements, where the argument is a
3966 -- static string, and we want to preserve warnings involving
3967 -- sequences of such statements.
3969 elsif Nkind
(A
) = N_Op_Concat
3970 and then Nkind
(N
) = N_Procedure_Call_Statement
3971 and then Expander_Active
3973 not (Is_Intrinsic_Subprogram
(Nam
)
3974 and then Chars
(Nam
) = Name_Asm
)
3975 and then not Static_Concatenation
(A
)
3977 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3978 Resolve
(A
, Etype
(F
));
3981 if Nkind
(A
) = N_Type_Conversion
3982 and then Is_Array_Type
(Etype
(F
))
3983 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3985 (Is_Limited_Type
(Etype
(F
))
3986 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3989 ("conversion between unrelated limited array types "
3990 & "not allowed ('A'I-00246)", A
);
3992 if Is_Limited_Type
(Etype
(F
)) then
3993 Explain_Limited_Type
(Etype
(F
), A
);
3996 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3997 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
4001 -- (Ada 2005: AI-251): If the actual is an allocator whose
4002 -- directly designated type is a class-wide interface, we build
4003 -- an anonymous access type to use it as the type of the
4004 -- allocator. Later, when the subprogram call is expanded, if
4005 -- the interface has a secondary dispatch table the expander
4006 -- will add a type conversion to force the correct displacement
4009 if Nkind
(A
) = N_Allocator
then
4011 DDT
: constant Entity_Id
:=
4012 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
4014 New_Itype
: Entity_Id
;
4017 if Is_Class_Wide_Type
(DDT
)
4018 and then Is_Interface
(DDT
)
4020 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
4021 Set_Etype
(New_Itype
, Etype
(A
));
4022 Set_Directly_Designated_Type
4023 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
4024 Set_Etype
(A
, New_Itype
);
4027 -- Ada 2005, AI-162:If the actual is an allocator, the
4028 -- innermost enclosing statement is the master of the
4029 -- created object. This needs to be done with expansion
4030 -- enabled only, otherwise the transient scope will not
4031 -- be removed in the expansion of the wrapped construct.
4033 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
4034 and then Expander_Active
4036 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
4040 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4041 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
4045 -- (Ada 2005): The call may be to a primitive operation of a
4046 -- tagged synchronized type, declared outside of the type. In
4047 -- this case the controlling actual must be converted to its
4048 -- corresponding record type, which is the formal type. The
4049 -- actual may be a subtype, either because of a constraint or
4050 -- because it is a generic actual, so use base type to locate
4053 F_Typ
:= Base_Type
(Etype
(F
));
4055 if Is_Tagged_Type
(F_Typ
)
4056 and then (Is_Concurrent_Type
(F_Typ
)
4057 or else Is_Concurrent_Record_Type
(F_Typ
))
4059 -- If the actual is overloaded, look for an interpretation
4060 -- that has a synchronized type.
4062 if not Is_Overloaded
(A
) then
4063 A_Typ
:= Base_Type
(Etype
(A
));
4067 Index
: Interp_Index
;
4071 Get_First_Interp
(A
, Index
, It
);
4072 while Present
(It
.Typ
) loop
4073 if Is_Concurrent_Type
(It
.Typ
)
4074 or else Is_Concurrent_Record_Type
(It
.Typ
)
4076 A_Typ
:= Base_Type
(It
.Typ
);
4080 Get_Next_Interp
(Index
, It
);
4086 Full_A_Typ
: Entity_Id
;
4089 if Present
(Full_View
(A_Typ
)) then
4090 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
4092 Full_A_Typ
:= A_Typ
;
4095 -- Tagged synchronized type (case 1): the actual is a
4098 if Is_Concurrent_Type
(A_Typ
)
4099 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
4102 Unchecked_Convert_To
4103 (Corresponding_Record_Type
(A_Typ
), A
));
4104 Resolve
(A
, Etype
(F
));
4106 -- Tagged synchronized type (case 2): the formal is a
4109 elsif Ekind
(Full_A_Typ
) = E_Record_Type
4111 (Corresponding_Concurrent_Type
(Full_A_Typ
))
4112 and then Is_Concurrent_Type
(F_Typ
)
4113 and then Present
(Corresponding_Record_Type
(F_Typ
))
4114 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
4116 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
4121 Resolve
(A
, Etype
(F
));
4125 -- Not a synchronized operation
4128 Resolve
(A
, Etype
(F
));
4135 -- An actual cannot be an untagged formal incomplete type
4137 if Ekind
(A_Typ
) = E_Incomplete_Type
4138 and then not Is_Tagged_Type
(A_Typ
)
4139 and then Is_Generic_Type
(A_Typ
)
4142 ("invalid use of untagged formal incomplete type", A
);
4145 if Comes_From_Source
(Original_Node
(N
))
4146 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
4147 N_Procedure_Call_Statement
)
4149 -- In formal mode, check that actual parameters matching
4150 -- formals of tagged types are objects (or ancestor type
4151 -- conversions of objects), not general expressions.
4153 if Is_Actual_Tagged_Parameter
(A
) then
4154 if Is_SPARK_05_Object_Reference
(A
) then
4157 elsif Nkind
(A
) = N_Type_Conversion
then
4159 Operand
: constant Node_Id
:= Expression
(A
);
4160 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
4161 Target_Typ
: constant Entity_Id
:= A_Typ
;
4164 if not Is_SPARK_05_Object_Reference
(Operand
) then
4165 Check_SPARK_05_Restriction
4166 ("object required", Operand
);
4168 -- In formal mode, the only view conversions are those
4169 -- involving ancestor conversion of an extended type.
4172 (Is_Tagged_Type
(Target_Typ
)
4173 and then not Is_Class_Wide_Type
(Target_Typ
)
4174 and then Is_Tagged_Type
(Operand_Typ
)
4175 and then not Is_Class_Wide_Type
(Operand_Typ
)
4176 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
4179 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
4181 Check_SPARK_05_Restriction
4182 ("ancestor conversion is the only permitted "
4183 & "view conversion", A
);
4185 Check_SPARK_05_Restriction
4186 ("ancestor conversion required", A
);
4195 Check_SPARK_05_Restriction
("object required", A
);
4198 -- In formal mode, the only view conversions are those
4199 -- involving ancestor conversion of an extended type.
4201 elsif Nkind
(A
) = N_Type_Conversion
4202 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
4204 Check_SPARK_05_Restriction
4205 ("ancestor conversion is the only permitted view "
4210 -- has warnings suppressed, then we reset Never_Set_In_Source for
4211 -- the calling entity. The reason for this is to catch cases like
4212 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4213 -- uses trickery to modify an IN parameter.
4215 if Ekind
(F
) = E_In_Parameter
4216 and then Is_Entity_Name
(A
)
4217 and then Present
(Entity
(A
))
4218 and then Ekind
(Entity
(A
)) = E_Variable
4219 and then Has_Warnings_Off
(F_Typ
)
4221 Set_Never_Set_In_Source
(Entity
(A
), False);
4224 -- Perform error checks for IN and IN OUT parameters
4226 if Ekind
(F
) /= E_Out_Parameter
then
4228 -- Check unset reference. For scalar parameters, it is clearly
4229 -- wrong to pass an uninitialized value as either an IN or
4230 -- IN-OUT parameter. For composites, it is also clearly an
4231 -- error to pass a completely uninitialized value as an IN
4232 -- parameter, but the case of IN OUT is trickier. We prefer
4233 -- not to give a warning here. For example, suppose there is
4234 -- a routine that sets some component of a record to False.
4235 -- It is perfectly reasonable to make this IN-OUT and allow
4236 -- either initialized or uninitialized records to be passed
4239 -- For partially initialized composite values, we also avoid
4240 -- warnings, since it is quite likely that we are passing a
4241 -- partially initialized value and only the initialized fields
4242 -- will in fact be read in the subprogram.
4244 if Is_Scalar_Type
(A_Typ
)
4245 or else (Ekind
(F
) = E_In_Parameter
4246 and then not Is_Partially_Initialized_Type
(A_Typ
))
4248 Check_Unset_Reference
(A
);
4251 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4252 -- actual to a nested call, since this is case of reading an
4253 -- out parameter, which is not allowed.
4255 if Ada_Version
= Ada_83
4256 and then Is_Entity_Name
(A
)
4257 and then Ekind
(Entity
(A
)) = E_Out_Parameter
4259 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
4263 -- Case of OUT or IN OUT parameter
4265 if Ekind
(F
) /= E_In_Parameter
then
4267 -- For an Out parameter, check for useless assignment. Note
4268 -- that we can't set Last_Assignment this early, because we may
4269 -- kill current values in Resolve_Call, and that call would
4270 -- clobber the Last_Assignment field.
4272 -- Note: call Warn_On_Useless_Assignment before doing the check
4273 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4274 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4275 -- reflects the last assignment, not this one.
4277 if Ekind
(F
) = E_Out_Parameter
then
4278 if Warn_On_Modified_As_Out_Parameter
(F
)
4279 and then Is_Entity_Name
(A
)
4280 and then Present
(Entity
(A
))
4281 and then Comes_From_Source
(N
)
4283 Warn_On_Useless_Assignment
(Entity
(A
), A
);
4287 -- Validate the form of the actual. Note that the call to
4288 -- Is_OK_Variable_For_Out_Formal generates the required
4289 -- reference in this case.
4291 -- A call to an initialization procedure for an aggregate
4292 -- component may initialize a nested component of a constant
4293 -- designated object. In this context the object is variable.
4295 if not Is_OK_Variable_For_Out_Formal
(A
)
4296 and then not Is_Init_Proc
(Nam
)
4298 Error_Msg_NE
("actual for& must be a variable", A
, F
);
4300 if Is_Subprogram
(Current_Scope
)
4302 (Is_Invariant_Procedure
(Current_Scope
)
4303 or else Is_Predicate_Function
(Current_Scope
))
4306 ("function used in predicate cannot "
4307 & "modify its argument", F
);
4311 -- What's the following about???
4313 if Is_Entity_Name
(A
) then
4314 Kill_Checks
(Entity
(A
));
4320 if Etype
(A
) = Any_Type
then
4321 Set_Etype
(N
, Any_Type
);
4325 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4327 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
4329 -- Apply predicate tests except in certain special cases. Note
4330 -- that it might be more consistent to apply these only when
4331 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4332 -- for the outbound predicate tests ???
4334 if Predicate_Tests_On_Arguments
(Nam
) then
4335 Apply_Predicate_Check
(A
, F_Typ
);
4338 -- Apply required constraint checks
4340 -- Gigi looks at the check flag and uses the appropriate types.
4341 -- For now since one flag is used there is an optimization
4342 -- which might not be done in the IN OUT case since Gigi does
4343 -- not do any analysis. More thought required about this ???
4345 -- In fact is this comment obsolete??? doesn't the expander now
4346 -- generate all these tests anyway???
4348 if Is_Scalar_Type
(Etype
(A
)) then
4349 Apply_Scalar_Range_Check
(A
, F_Typ
);
4351 elsif Is_Array_Type
(Etype
(A
)) then
4352 Apply_Length_Check
(A
, F_Typ
);
4354 elsif Is_Record_Type
(F_Typ
)
4355 and then Has_Discriminants
(F_Typ
)
4356 and then Is_Constrained
(F_Typ
)
4357 and then (not Is_Derived_Type
(F_Typ
)
4358 or else Comes_From_Source
(Nam
))
4360 Apply_Discriminant_Check
(A
, F_Typ
);
4362 -- For view conversions of a discriminated object, apply
4363 -- check to object itself, the conversion alreay has the
4366 if Nkind
(A
) = N_Type_Conversion
4367 and then Is_Constrained
(Etype
(Expression
(A
)))
4369 Apply_Discriminant_Check
(Expression
(A
), F_Typ
);
4372 elsif Is_Access_Type
(F_Typ
)
4373 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4374 and then Is_Constrained
(Designated_Type
(F_Typ
))
4376 Apply_Length_Check
(A
, F_Typ
);
4378 elsif Is_Access_Type
(F_Typ
)
4379 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4380 and then Is_Constrained
(Designated_Type
(F_Typ
))
4382 Apply_Discriminant_Check
(A
, F_Typ
);
4385 Apply_Range_Check
(A
, F_Typ
);
4388 -- Ada 2005 (AI-231): Note that the controlling parameter case
4389 -- already existed in Ada 95, which is partially checked
4390 -- elsewhere (see Checks), and we don't want the warning
4391 -- message to differ.
4393 if Is_Access_Type
(F_Typ
)
4394 and then Can_Never_Be_Null
(F_Typ
)
4395 and then Known_Null
(A
)
4397 if Is_Controlling_Formal
(F
) then
4398 Apply_Compile_Time_Constraint_Error
4400 Msg
=> "null value not allowed here??",
4401 Reason
=> CE_Access_Check_Failed
);
4403 elsif Ada_Version
>= Ada_2005
then
4404 Apply_Compile_Time_Constraint_Error
4406 Msg
=> "(Ada 2005) null not allowed in "
4407 & "null-excluding formal??",
4408 Reason
=> CE_Null_Not_Allowed
);
4413 -- Checks for OUT parameters and IN OUT parameters
4415 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4417 -- If there is a type conversion, to make sure the return value
4418 -- meets the constraints of the variable before the conversion.
4420 if Nkind
(A
) = N_Type_Conversion
then
4421 if Is_Scalar_Type
(A_Typ
) then
4422 Apply_Scalar_Range_Check
4423 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4426 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4429 -- If no conversion apply scalar range checks and length checks
4430 -- base on the subtype of the actual (NOT that of the formal).
4433 if Is_Scalar_Type
(F_Typ
) then
4434 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4435 elsif Is_Array_Type
(F_Typ
)
4436 and then Ekind
(F
) = E_Out_Parameter
4438 Apply_Length_Check
(A
, F_Typ
);
4440 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4444 -- Note: we do not apply the predicate checks for the case of
4445 -- OUT and IN OUT parameters. They are instead applied in the
4446 -- Expand_Actuals routine in Exp_Ch6.
4449 -- An actual associated with an access parameter is implicitly
4450 -- converted to the anonymous access type of the formal and must
4451 -- satisfy the legality checks for access conversions.
4453 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4454 if not Valid_Conversion
(A
, F_Typ
, A
) then
4456 ("invalid implicit conversion for access parameter", A
);
4459 -- If the actual is an access selected component of a variable,
4460 -- the call may modify its designated object. It is reasonable
4461 -- to treat this as a potential modification of the enclosing
4462 -- record, to prevent spurious warnings that it should be
4463 -- declared as a constant, because intuitively programmers
4464 -- regard the designated subcomponent as part of the record.
4466 if Nkind
(A
) = N_Selected_Component
4467 and then Is_Entity_Name
(Prefix
(A
))
4468 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4470 Note_Possible_Modification
(A
, Sure
=> False);
4474 -- Check bad case of atomic/volatile argument (RM C.6(12))
4476 if Is_By_Reference_Type
(Etype
(F
))
4477 and then Comes_From_Source
(N
)
4479 if Is_Atomic_Object
(A
)
4480 and then not Is_Atomic
(Etype
(F
))
4483 ("cannot pass atomic argument to non-atomic formal&",
4486 elsif Is_Volatile_Object
(A
)
4487 and then not Is_Volatile
(Etype
(F
))
4490 ("cannot pass volatile argument to non-volatile formal&",
4495 -- Check that subprograms don't have improper controlling
4496 -- arguments (RM 3.9.2 (9)).
4498 -- A primitive operation may have an access parameter of an
4499 -- incomplete tagged type, but a dispatching call is illegal
4500 -- if the type is still incomplete.
4502 if Is_Controlling_Formal
(F
) then
4503 Set_Is_Controlling_Actual
(A
);
4505 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4507 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4509 if Ekind
(Desig
) = E_Incomplete_Type
4510 and then No
(Full_View
(Desig
))
4511 and then No
(Non_Limited_View
(Desig
))
4514 ("premature use of incomplete type& "
4515 & "in dispatching call", A
, Desig
);
4520 elsif Nkind
(A
) = N_Explicit_Dereference
then
4521 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4524 -- Apply legality rule 3.9.2 (9/1)
4526 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4527 and then not Is_Class_Wide_Type
(F_Typ
)
4528 and then not Is_Controlling_Formal
(F
)
4529 and then not In_Instance
4531 Error_Msg_N
("class-wide argument not allowed here!", A
);
4533 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4534 Error_Msg_Node_2
:= F_Typ
;
4536 ("& is not a dispatching operation of &!", A
, Nam
);
4539 -- Apply the checks described in 3.10.2(27): if the context is a
4540 -- specific access-to-object, the actual cannot be class-wide.
4541 -- Use base type to exclude access_to_subprogram cases.
4543 elsif Is_Access_Type
(A_Typ
)
4544 and then Is_Access_Type
(F_Typ
)
4545 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4546 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4547 or else (Nkind
(A
) = N_Attribute_Reference
4549 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4550 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4551 and then not Is_Controlling_Formal
(F
)
4553 -- Disable these checks for call to imported C++ subprograms
4556 (Is_Entity_Name
(Name
(N
))
4557 and then Is_Imported
(Entity
(Name
(N
)))
4558 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4561 ("access to class-wide argument not allowed here!", A
);
4563 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4564 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4566 ("& is not a dispatching operation of &!", A
, Nam
);
4570 Check_Aliased_Parameter
;
4574 -- If it is a named association, treat the selector_name as a
4575 -- proper identifier, and mark the corresponding entity.
4577 if Nkind
(Parent
(A
)) = N_Parameter_Association
4579 -- Ignore reference in SPARK mode, as it refers to an entity not
4580 -- in scope at the point of reference, so the reference should
4581 -- be ignored for computing effects of subprograms.
4583 and then not GNATprove_Mode
4585 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4586 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4587 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4588 Generate_Reference
(F_Typ
, N
, ' ');
4593 if Ekind
(F
) /= E_Out_Parameter
then
4594 Check_Unset_Reference
(A
);
4597 -- The following checks are only relevant when SPARK_Mode is on as
4598 -- they are not standard Ada legality rule. Internally generated
4599 -- temporaries are ignored.
4602 and then Is_Effectively_Volatile_Object
(A
)
4603 and then Comes_From_Source
(A
)
4605 -- An effectively volatile object may act as an actual
4606 -- parameter when the corresponding formal is of a non-scalar
4609 if Is_Volatile
(Etype
(F
))
4610 and then not Is_Scalar_Type
(Etype
(F
))
4614 -- An effectively volatile object may act as an actual
4615 -- parameter in a call to an instance of Unchecked_Conversion.
4617 elsif Is_Unchecked_Conversion_Instance
(Nam
) then
4622 ("volatile object cannot act as actual in a call (SPARK "
4623 & "RM 7.1.3(12))", A
);
4626 -- Detect an external variable with an enabled property that
4627 -- does not match the mode of the corresponding formal in a
4628 -- procedure call. Functions are not considered because they
4629 -- cannot have effectively volatile formal parameters in the
4632 if Ekind
(Nam
) = E_Procedure
4633 and then Is_Entity_Name
(A
)
4634 and then Present
(Entity
(A
))
4635 and then Ekind
(Entity
(A
)) = E_Variable
4639 if Ekind
(F
) = E_In_Parameter
then
4640 if Async_Readers_Enabled
(A_Id
) then
4641 Property_Error
(A
, A_Id
, Name_Async_Readers
);
4642 elsif Effective_Reads_Enabled
(A_Id
) then
4643 Property_Error
(A
, A_Id
, Name_Effective_Reads
);
4644 elsif Effective_Writes_Enabled
(A_Id
) then
4645 Property_Error
(A
, A_Id
, Name_Effective_Writes
);
4648 elsif Ekind
(F
) = E_Out_Parameter
4649 and then Async_Writers_Enabled
(A_Id
)
4651 Error_Msg_Name_1
:= Name_Async_Writers
;
4653 ("external variable & with enabled property % cannot "
4654 & "appear as actual in procedure call "
4655 & "(SPARK RM 7.1.3(11))", A
, A_Id
);
4657 ("\\corresponding formal parameter has mode Out", A
);
4662 -- A formal parameter of a specific tagged type whose related
4663 -- subprogram is subject to pragma Extensions_Visible with value
4664 -- "False" cannot act as an actual in a subprogram with value
4665 -- "True" (SPARK RM 6.1.7(3)).
4667 if Is_EVF_Expression
(A
)
4668 and then Extensions_Visible_Status
(Nam
) =
4669 Extensions_Visible_True
4672 ("formal parameter with Extensions_Visible False cannot act "
4673 & "as actual parameter", A
);
4675 ("\subprogram & has Extensions_Visible True", A
, Nam
);
4678 -- The actual parameter of a Ghost subprogram whose formal is of
4679 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4681 if Is_Ghost_Entity
(Nam
)
4682 and then Ekind_In
(F
, E_In_Out_Parameter
, E_Out_Parameter
)
4683 and then Is_Entity_Name
(A
)
4684 and then Present
(Entity
(A
))
4685 and then not Is_Ghost_Entity
(Entity
(A
))
4688 ("non-ghost variable & cannot appear as actual in call to "
4689 & "ghost procedure", A
, Entity
(A
));
4691 if Ekind
(F
) = E_In_Out_Parameter
then
4692 Error_Msg_N
("\corresponding formal has mode `IN OUT`", A
);
4694 Error_Msg_N
("\corresponding formal has mode OUT", A
);
4700 -- Case where actual is not present
4708 end Resolve_Actuals
;
4710 -----------------------
4711 -- Resolve_Allocator --
4712 -----------------------
4714 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4715 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4716 E
: constant Node_Id
:= Expression
(N
);
4718 Discrim
: Entity_Id
;
4721 Assoc
: Node_Id
:= Empty
;
4724 procedure Check_Allocator_Discrim_Accessibility
4725 (Disc_Exp
: Node_Id
;
4726 Alloc_Typ
: Entity_Id
);
4727 -- Check that accessibility level associated with an access discriminant
4728 -- initialized in an allocator by the expression Disc_Exp is not deeper
4729 -- than the level of the allocator type Alloc_Typ. An error message is
4730 -- issued if this condition is violated. Specialized checks are done for
4731 -- the cases of a constraint expression which is an access attribute or
4732 -- an access discriminant.
4734 function In_Dispatching_Context
return Boolean;
4735 -- If the allocator is an actual in a call, it is allowed to be class-
4736 -- wide when the context is not because it is a controlling actual.
4738 -------------------------------------------
4739 -- Check_Allocator_Discrim_Accessibility --
4740 -------------------------------------------
4742 procedure Check_Allocator_Discrim_Accessibility
4743 (Disc_Exp
: Node_Id
;
4744 Alloc_Typ
: Entity_Id
)
4747 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4748 Deepest_Type_Access_Level
(Alloc_Typ
)
4751 ("operand type has deeper level than allocator type", Disc_Exp
);
4753 -- When the expression is an Access attribute the level of the prefix
4754 -- object must not be deeper than that of the allocator's type.
4756 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4757 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4759 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4760 Deepest_Type_Access_Level
(Alloc_Typ
)
4763 ("prefix of attribute has deeper level than allocator type",
4766 -- When the expression is an access discriminant the check is against
4767 -- the level of the prefix object.
4769 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4770 and then Nkind
(Disc_Exp
) = N_Selected_Component
4771 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4772 Deepest_Type_Access_Level
(Alloc_Typ
)
4775 ("access discriminant has deeper level than allocator type",
4778 -- All other cases are legal
4783 end Check_Allocator_Discrim_Accessibility
;
4785 ----------------------------
4786 -- In_Dispatching_Context --
4787 ----------------------------
4789 function In_Dispatching_Context
return Boolean is
4790 Par
: constant Node_Id
:= Parent
(N
);
4793 return Nkind
(Par
) in N_Subprogram_Call
4794 and then Is_Entity_Name
(Name
(Par
))
4795 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4796 end In_Dispatching_Context
;
4798 -- Start of processing for Resolve_Allocator
4801 -- Replace general access with specific type
4803 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4804 Set_Etype
(N
, Base_Type
(Typ
));
4807 if Is_Abstract_Type
(Typ
) then
4808 Error_Msg_N
("type of allocator cannot be abstract", N
);
4811 -- For qualified expression, resolve the expression using the given
4812 -- subtype (nothing to do for type mark, subtype indication)
4814 if Nkind
(E
) = N_Qualified_Expression
then
4815 if Is_Class_Wide_Type
(Etype
(E
))
4816 and then not Is_Class_Wide_Type
(Desig_T
)
4817 and then not In_Dispatching_Context
4820 ("class-wide allocator not allowed for this access type", N
);
4823 Resolve
(Expression
(E
), Etype
(E
));
4824 Check_Non_Static_Context
(Expression
(E
));
4825 Check_Unset_Reference
(Expression
(E
));
4827 -- A qualified expression requires an exact match of the type.
4828 -- Class-wide matching is not allowed.
4830 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4831 or else Is_Class_Wide_Type
(Etype
(E
)))
4832 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4834 Wrong_Type
(Expression
(E
), Etype
(E
));
4837 -- Calls to build-in-place functions are not currently supported in
4838 -- allocators for access types associated with a simple storage pool.
4839 -- Supporting such allocators may require passing additional implicit
4840 -- parameters to build-in-place functions (or a significant revision
4841 -- of the current b-i-p implementation to unify the handling for
4842 -- multiple kinds of storage pools). ???
4844 if Is_Limited_View
(Desig_T
)
4845 and then Nkind
(Expression
(E
)) = N_Function_Call
4848 Pool
: constant Entity_Id
:=
4849 Associated_Storage_Pool
(Root_Type
(Typ
));
4853 Present
(Get_Rep_Pragma
4854 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4857 ("limited function calls not yet supported in simple "
4858 & "storage pool allocators", Expression
(E
));
4863 -- A special accessibility check is needed for allocators that
4864 -- constrain access discriminants. The level of the type of the
4865 -- expression used to constrain an access discriminant cannot be
4866 -- deeper than the type of the allocator (in contrast to access
4867 -- parameters, where the level of the actual can be arbitrary).
4869 -- We can't use Valid_Conversion to perform this check because in
4870 -- general the type of the allocator is unrelated to the type of
4871 -- the access discriminant.
4873 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4874 or else Is_Local_Anonymous_Access
(Typ
)
4876 Subtyp
:= Entity
(Subtype_Mark
(E
));
4878 Aggr
:= Original_Node
(Expression
(E
));
4880 if Has_Discriminants
(Subtyp
)
4881 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4883 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4885 -- Get the first component expression of the aggregate
4887 if Present
(Expressions
(Aggr
)) then
4888 Disc_Exp
:= First
(Expressions
(Aggr
));
4890 elsif Present
(Component_Associations
(Aggr
)) then
4891 Assoc
:= First
(Component_Associations
(Aggr
));
4893 if Present
(Assoc
) then
4894 Disc_Exp
:= Expression
(Assoc
);
4903 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4904 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4905 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4908 Next_Discriminant
(Discrim
);
4910 if Present
(Discrim
) then
4911 if Present
(Assoc
) then
4913 Disc_Exp
:= Expression
(Assoc
);
4915 elsif Present
(Next
(Disc_Exp
)) then
4919 Assoc
:= First
(Component_Associations
(Aggr
));
4921 if Present
(Assoc
) then
4922 Disc_Exp
:= Expression
(Assoc
);
4932 -- For a subtype mark or subtype indication, freeze the subtype
4935 Freeze_Expression
(E
);
4937 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4939 ("initialization required for access-to-constant allocator", N
);
4942 -- A special accessibility check is needed for allocators that
4943 -- constrain access discriminants. The level of the type of the
4944 -- expression used to constrain an access discriminant cannot be
4945 -- deeper than the type of the allocator (in contrast to access
4946 -- parameters, where the level of the actual can be arbitrary).
4947 -- We can't use Valid_Conversion to perform this check because
4948 -- in general the type of the allocator is unrelated to the type
4949 -- of the access discriminant.
4951 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4952 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4953 or else Is_Local_Anonymous_Access
(Typ
))
4955 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4957 if Has_Discriminants
(Subtyp
) then
4958 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4959 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4960 while Present
(Discrim
) and then Present
(Constr
) loop
4961 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4962 if Nkind
(Constr
) = N_Discriminant_Association
then
4963 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4965 Disc_Exp
:= Original_Node
(Constr
);
4968 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4971 Next_Discriminant
(Discrim
);
4978 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4979 -- check that the level of the type of the created object is not deeper
4980 -- than the level of the allocator's access type, since extensions can
4981 -- now occur at deeper levels than their ancestor types. This is a
4982 -- static accessibility level check; a run-time check is also needed in
4983 -- the case of an initialized allocator with a class-wide argument (see
4984 -- Expand_Allocator_Expression).
4986 if Ada_Version
>= Ada_2005
4987 and then Is_Class_Wide_Type
(Desig_T
)
4990 Exp_Typ
: Entity_Id
;
4993 if Nkind
(E
) = N_Qualified_Expression
then
4994 Exp_Typ
:= Etype
(E
);
4995 elsif Nkind
(E
) = N_Subtype_Indication
then
4996 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4998 Exp_Typ
:= Entity
(E
);
5001 if Type_Access_Level
(Exp_Typ
) >
5002 Deepest_Type_Access_Level
(Typ
)
5004 if In_Instance_Body
then
5005 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5007 ("type in allocator has deeper level than "
5008 & "designated class-wide type<<", E
);
5009 Error_Msg_N
("\Program_Error [<<", E
);
5011 Make_Raise_Program_Error
(Sloc
(N
),
5012 Reason
=> PE_Accessibility_Check_Failed
));
5015 -- Do not apply Ada 2005 accessibility checks on a class-wide
5016 -- allocator if the type given in the allocator is a formal
5017 -- type. A run-time check will be performed in the instance.
5019 elsif not Is_Generic_Type
(Exp_Typ
) then
5020 Error_Msg_N
("type in allocator has deeper level than "
5021 & "designated class-wide type", E
);
5027 -- Check for allocation from an empty storage pool
5029 if No_Pool_Assigned
(Typ
) then
5030 Error_Msg_N
("allocation from empty storage pool!", N
);
5032 -- If the context is an unchecked conversion, as may happen within an
5033 -- inlined subprogram, the allocator is being resolved with its own
5034 -- anonymous type. In that case, if the target type has a specific
5035 -- storage pool, it must be inherited explicitly by the allocator type.
5037 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
5038 and then No
(Associated_Storage_Pool
(Typ
))
5040 Set_Associated_Storage_Pool
5041 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
5044 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
5045 Check_Restriction
(No_Anonymous_Allocators
, N
);
5048 -- Check that an allocator with task parts isn't for a nested access
5049 -- type when restriction No_Task_Hierarchy applies.
5051 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
5052 and then Has_Task
(Base_Type
(Desig_T
))
5054 Check_Restriction
(No_Task_Hierarchy
, N
);
5057 -- An illegal allocator may be rewritten as a raise Program_Error
5060 if Nkind
(N
) = N_Allocator
then
5062 -- An anonymous access discriminant is the definition of a
5065 if Ekind
(Typ
) = E_Anonymous_Access_Type
5066 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
5067 N_Discriminant_Specification
5070 Discr
: constant Entity_Id
:=
5071 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
5074 Check_Restriction
(No_Coextensions
, N
);
5076 -- Ada 2012 AI05-0052: If the designated type of the allocator
5077 -- is limited, then the allocator shall not be used to define
5078 -- the value of an access discriminant unless the discriminated
5079 -- type is immutably limited.
5081 if Ada_Version
>= Ada_2012
5082 and then Is_Limited_Type
(Desig_T
)
5083 and then not Is_Limited_View
(Scope
(Discr
))
5086 ("only immutably limited types can have anonymous "
5087 & "access discriminants designating a limited type", N
);
5091 -- Avoid marking an allocator as a dynamic coextension if it is
5092 -- within a static construct.
5094 if not Is_Static_Coextension
(N
) then
5095 Set_Is_Dynamic_Coextension
(N
);
5098 -- Cleanup for potential static coextensions
5101 Set_Is_Dynamic_Coextension
(N
, False);
5102 Set_Is_Static_Coextension
(N
, False);
5106 -- Report a simple error: if the designated object is a local task,
5107 -- its body has not been seen yet, and its activation will fail an
5108 -- elaboration check.
5110 if Is_Task_Type
(Desig_T
)
5111 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
5112 and then Is_Compilation_Unit
(Current_Scope
)
5113 and then Ekind
(Current_Scope
) = E_Package
5114 and then not In_Package_Body
(Current_Scope
)
5116 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5117 Error_Msg_N
("cannot activate task before body seen<<", N
);
5118 Error_Msg_N
("\Program_Error [<<", N
);
5121 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5122 -- type with a task component on a subpool. This action must raise
5123 -- Program_Error at runtime.
5125 if Ada_Version
>= Ada_2012
5126 and then Nkind
(N
) = N_Allocator
5127 and then Present
(Subpool_Handle_Name
(N
))
5128 and then Has_Task
(Desig_T
)
5130 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5131 Error_Msg_N
("cannot allocate task on subpool<<", N
);
5132 Error_Msg_N
("\Program_Error [<<", N
);
5135 Make_Raise_Program_Error
(Sloc
(N
),
5136 Reason
=> PE_Explicit_Raise
));
5139 end Resolve_Allocator
;
5141 ---------------------------
5142 -- Resolve_Arithmetic_Op --
5143 ---------------------------
5145 -- Used for resolving all arithmetic operators except exponentiation
5147 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
5148 L
: constant Node_Id
:= Left_Opnd
(N
);
5149 R
: constant Node_Id
:= Right_Opnd
(N
);
5150 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
5151 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
5155 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5156 -- We do the resolution using the base type, because intermediate values
5157 -- in expressions always are of the base type, not a subtype of it.
5159 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
5160 -- Returns True if N is in a context that expects "any real type"
5162 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
5163 -- Return True iff given type is Integer or universal real/integer
5165 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
5166 -- Choose type of integer literal in fixed-point operation to conform
5167 -- to available fixed-point type. T is the type of the other operand,
5168 -- which is needed to determine the expected type of N.
5170 procedure Set_Operand_Type
(N
: Node_Id
);
5171 -- Set operand type to T if universal
5173 -------------------------------
5174 -- Expected_Type_Is_Any_Real --
5175 -------------------------------
5177 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
5179 -- N is the expression after "delta" in a fixed_point_definition;
5182 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
5183 N_Decimal_Fixed_Point_Definition
,
5185 -- N is one of the bounds in a real_range_specification;
5188 N_Real_Range_Specification
,
5190 -- N is the expression of a delta_constraint;
5193 N_Delta_Constraint
);
5194 end Expected_Type_Is_Any_Real
;
5196 -----------------------------
5197 -- Is_Integer_Or_Universal --
5198 -----------------------------
5200 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
5202 Index
: Interp_Index
;
5206 if not Is_Overloaded
(N
) then
5208 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
5209 or else T
= Universal_Integer
5210 or else T
= Universal_Real
;
5212 Get_First_Interp
(N
, Index
, It
);
5213 while Present
(It
.Typ
) loop
5214 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
5215 or else It
.Typ
= Universal_Integer
5216 or else It
.Typ
= Universal_Real
5221 Get_Next_Interp
(Index
, It
);
5226 end Is_Integer_Or_Universal
;
5228 ----------------------------
5229 -- Set_Mixed_Mode_Operand --
5230 ----------------------------
5232 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
5233 Index
: Interp_Index
;
5237 if Universal_Interpretation
(N
) = Universal_Integer
then
5239 -- A universal integer literal is resolved as standard integer
5240 -- except in the case of a fixed-point result, where we leave it
5241 -- as universal (to be handled by Exp_Fixd later on)
5243 if Is_Fixed_Point_Type
(T
) then
5244 Resolve
(N
, Universal_Integer
);
5246 Resolve
(N
, Standard_Integer
);
5249 elsif Universal_Interpretation
(N
) = Universal_Real
5250 and then (T
= Base_Type
(Standard_Integer
)
5251 or else T
= Universal_Integer
5252 or else T
= Universal_Real
)
5254 -- A universal real can appear in a fixed-type context. We resolve
5255 -- the literal with that context, even though this might raise an
5256 -- exception prematurely (the other operand may be zero).
5260 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
5261 and then T
= Universal_Real
5262 and then Is_Overloaded
(N
)
5264 -- Integer arg in mixed-mode operation. Resolve with universal
5265 -- type, in case preference rule must be applied.
5267 Resolve
(N
, Universal_Integer
);
5270 and then B_Typ
/= Universal_Fixed
5272 -- Not a mixed-mode operation, resolve with context
5276 elsif Etype
(N
) = Any_Fixed
then
5278 -- N may itself be a mixed-mode operation, so use context type
5282 elsif Is_Fixed_Point_Type
(T
)
5283 and then B_Typ
= Universal_Fixed
5284 and then Is_Overloaded
(N
)
5286 -- Must be (fixed * fixed) operation, operand must have one
5287 -- compatible interpretation.
5289 Resolve
(N
, Any_Fixed
);
5291 elsif Is_Fixed_Point_Type
(B_Typ
)
5292 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
5293 and then Is_Overloaded
(N
)
5295 -- C * F(X) in a fixed context, where C is a real literal or a
5296 -- fixed-point expression. F must have either a fixed type
5297 -- interpretation or an integer interpretation, but not both.
5299 Get_First_Interp
(N
, Index
, It
);
5300 while Present
(It
.Typ
) loop
5301 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
5302 if Analyzed
(N
) then
5303 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5305 Resolve
(N
, Standard_Integer
);
5308 elsif Is_Fixed_Point_Type
(It
.Typ
) then
5309 if Analyzed
(N
) then
5310 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5312 Resolve
(N
, It
.Typ
);
5316 Get_Next_Interp
(Index
, It
);
5319 -- Reanalyze the literal with the fixed type of the context. If
5320 -- context is Universal_Fixed, we are within a conversion, leave
5321 -- the literal as a universal real because there is no usable
5322 -- fixed type, and the target of the conversion plays no role in
5336 if B_Typ
= Universal_Fixed
5337 and then Nkind
(Op2
) = N_Real_Literal
5339 T2
:= Universal_Real
;
5344 Set_Analyzed
(Op2
, False);
5351 end Set_Mixed_Mode_Operand
;
5353 ----------------------
5354 -- Set_Operand_Type --
5355 ----------------------
5357 procedure Set_Operand_Type
(N
: Node_Id
) is
5359 if Etype
(N
) = Universal_Integer
5360 or else Etype
(N
) = Universal_Real
5364 end Set_Operand_Type
;
5366 -- Start of processing for Resolve_Arithmetic_Op
5369 if Comes_From_Source
(N
)
5370 and then Ekind
(Entity
(N
)) = E_Function
5371 and then Is_Imported
(Entity
(N
))
5372 and then Is_Intrinsic_Subprogram
(Entity
(N
))
5374 Resolve_Intrinsic_Operator
(N
, Typ
);
5377 -- Special-case for mixed-mode universal expressions or fixed point type
5378 -- operation: each argument is resolved separately. The same treatment
5379 -- is required if one of the operands of a fixed point operation is
5380 -- universal real, since in this case we don't do a conversion to a
5381 -- specific fixed-point type (instead the expander handles the case).
5383 -- Set the type of the node to its universal interpretation because
5384 -- legality checks on an exponentiation operand need the context.
5386 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
5387 and then Present
(Universal_Interpretation
(L
))
5388 and then Present
(Universal_Interpretation
(R
))
5390 Set_Etype
(N
, B_Typ
);
5391 Resolve
(L
, Universal_Interpretation
(L
));
5392 Resolve
(R
, Universal_Interpretation
(R
));
5394 elsif (B_Typ
= Universal_Real
5395 or else Etype
(N
) = Universal_Fixed
5396 or else (Etype
(N
) = Any_Fixed
5397 and then Is_Fixed_Point_Type
(B_Typ
))
5398 or else (Is_Fixed_Point_Type
(B_Typ
)
5399 and then (Is_Integer_Or_Universal
(L
)
5401 Is_Integer_Or_Universal
(R
))))
5402 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5404 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
5405 Check_For_Visible_Operator
(N
, B_Typ
);
5408 -- If context is a fixed type and one operand is integer, the other
5409 -- is resolved with the type of the context.
5411 if Is_Fixed_Point_Type
(B_Typ
)
5412 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
5413 or else TL
= Universal_Integer
)
5418 elsif Is_Fixed_Point_Type
(B_Typ
)
5419 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
5420 or else TR
= Universal_Integer
)
5426 Set_Mixed_Mode_Operand
(L
, TR
);
5427 Set_Mixed_Mode_Operand
(R
, TL
);
5430 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5431 -- multiplying operators from being used when the expected type is
5432 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5433 -- some cases where the expected type is actually Any_Real;
5434 -- Expected_Type_Is_Any_Real takes care of that case.
5436 if Etype
(N
) = Universal_Fixed
5437 or else Etype
(N
) = Any_Fixed
5439 if B_Typ
= Universal_Fixed
5440 and then not Expected_Type_Is_Any_Real
(N
)
5441 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
5442 N_Unchecked_Type_Conversion
)
5444 Error_Msg_N
("type cannot be determined from context!", N
);
5445 Error_Msg_N
("\explicit conversion to result type required", N
);
5447 Set_Etype
(L
, Any_Type
);
5448 Set_Etype
(R
, Any_Type
);
5451 if Ada_Version
= Ada_83
5452 and then Etype
(N
) = Universal_Fixed
5454 Nkind_In
(Parent
(N
), N_Type_Conversion
,
5455 N_Unchecked_Type_Conversion
)
5458 ("(Ada 83) fixed-point operation "
5459 & "needs explicit conversion", N
);
5462 -- The expected type is "any real type" in contexts like
5464 -- type T is delta <universal_fixed-expression> ...
5466 -- in which case we need to set the type to Universal_Real
5467 -- so that static expression evaluation will work properly.
5469 if Expected_Type_Is_Any_Real
(N
) then
5470 Set_Etype
(N
, Universal_Real
);
5472 Set_Etype
(N
, B_Typ
);
5476 elsif Is_Fixed_Point_Type
(B_Typ
)
5477 and then (Is_Integer_Or_Universal
(L
)
5478 or else Nkind
(L
) = N_Real_Literal
5479 or else Nkind
(R
) = N_Real_Literal
5480 or else Is_Integer_Or_Universal
(R
))
5482 Set_Etype
(N
, B_Typ
);
5484 elsif Etype
(N
) = Any_Fixed
then
5486 -- If no previous errors, this is only possible if one operand is
5487 -- overloaded and the context is universal. Resolve as such.
5489 Set_Etype
(N
, B_Typ
);
5493 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5495 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5497 Check_For_Visible_Operator
(N
, B_Typ
);
5500 -- If the context is Universal_Fixed and the operands are also
5501 -- universal fixed, this is an error, unless there is only one
5502 -- applicable fixed_point type (usually Duration).
5504 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5505 T
:= Unique_Fixed_Point_Type
(N
);
5507 if T
= Any_Type
then
5520 -- If one of the arguments was resolved to a non-universal type.
5521 -- label the result of the operation itself with the same type.
5522 -- Do the same for the universal argument, if any.
5524 T
:= Intersect_Types
(L
, R
);
5525 Set_Etype
(N
, Base_Type
(T
));
5526 Set_Operand_Type
(L
);
5527 Set_Operand_Type
(R
);
5530 Generate_Operator_Reference
(N
, Typ
);
5531 Analyze_Dimension
(N
);
5532 Eval_Arithmetic_Op
(N
);
5534 -- In SPARK, a multiplication or division with operands of fixed point
5535 -- types must be qualified or explicitly converted to identify the
5538 if (Is_Fixed_Point_Type
(Etype
(L
))
5539 or else Is_Fixed_Point_Type
(Etype
(R
)))
5540 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5542 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5544 Check_SPARK_05_Restriction
5545 ("operation should be qualified or explicitly converted", N
);
5548 -- Set overflow and division checking bit
5550 if Nkind
(N
) in N_Op
then
5551 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5552 Enable_Overflow_Check
(N
);
5555 -- Give warning if explicit division by zero
5557 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5558 and then not Division_Checks_Suppressed
(Etype
(N
))
5560 Rop
:= Right_Opnd
(N
);
5562 if Compile_Time_Known_Value
(Rop
)
5563 and then ((Is_Integer_Type
(Etype
(Rop
))
5564 and then Expr_Value
(Rop
) = Uint_0
)
5566 (Is_Real_Type
(Etype
(Rop
))
5567 and then Expr_Value_R
(Rop
) = Ureal_0
))
5569 -- Specialize the warning message according to the operation.
5570 -- The following warnings are for the case
5575 -- For division, we have two cases, for float division
5576 -- of an unconstrained float type, on a machine where
5577 -- Machine_Overflows is false, we don't get an exception
5578 -- at run-time, but rather an infinity or Nan. The Nan
5579 -- case is pretty obscure, so just warn about infinities.
5581 if Is_Floating_Point_Type
(Typ
)
5582 and then not Is_Constrained
(Typ
)
5583 and then not Machine_Overflows_On_Target
5586 ("float division by zero, may generate "
5587 & "'+'/'- infinity??", Right_Opnd
(N
));
5589 -- For all other cases, we get a Constraint_Error
5592 Apply_Compile_Time_Constraint_Error
5593 (N
, "division by zero??", CE_Divide_By_Zero
,
5594 Loc
=> Sloc
(Right_Opnd
(N
)));
5598 Apply_Compile_Time_Constraint_Error
5599 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5600 Loc
=> Sloc
(Right_Opnd
(N
)));
5603 Apply_Compile_Time_Constraint_Error
5604 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5605 Loc
=> Sloc
(Right_Opnd
(N
)));
5607 -- Division by zero can only happen with division, rem,
5608 -- and mod operations.
5611 raise Program_Error
;
5614 -- Otherwise just set the flag to check at run time
5617 Activate_Division_Check
(N
);
5621 -- If Restriction No_Implicit_Conditionals is active, then it is
5622 -- violated if either operand can be negative for mod, or for rem
5623 -- if both operands can be negative.
5625 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5626 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5635 -- Set if corresponding operand might be negative
5639 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5640 LNeg
:= (not OK
) or else Lo
< 0;
5643 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5644 RNeg
:= (not OK
) or else Lo
< 0;
5646 -- Check if we will be generating conditionals. There are two
5647 -- cases where that can happen, first for REM, the only case
5648 -- is largest negative integer mod -1, where the division can
5649 -- overflow, but we still have to give the right result. The
5650 -- front end generates a test for this annoying case. Here we
5651 -- just test if both operands can be negative (that's what the
5652 -- expander does, so we match its logic here).
5654 -- The second case is mod where either operand can be negative.
5655 -- In this case, the back end has to generate additional tests.
5657 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5659 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5661 Check_Restriction
(No_Implicit_Conditionals
, N
);
5667 Check_Unset_Reference
(L
);
5668 Check_Unset_Reference
(R
);
5669 Check_Function_Writable_Actuals
(N
);
5670 end Resolve_Arithmetic_Op
;
5676 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5677 function Same_Or_Aliased_Subprograms
5679 E
: Entity_Id
) return Boolean;
5680 -- Returns True if the subprogram entity S is the same as E or else
5681 -- S is an alias of E.
5683 ---------------------------------
5684 -- Same_Or_Aliased_Subprograms --
5685 ---------------------------------
5687 function Same_Or_Aliased_Subprograms
5689 E
: Entity_Id
) return Boolean
5691 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5693 return S
= E
or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5694 end Same_Or_Aliased_Subprograms
;
5698 Loc
: constant Source_Ptr
:= Sloc
(N
);
5699 Subp
: constant Node_Id
:= Name
(N
);
5700 Body_Id
: Entity_Id
;
5710 -- Start of processing for Resolve_Call
5713 -- The context imposes a unique interpretation with type Typ on a
5714 -- procedure or function call. Find the entity of the subprogram that
5715 -- yields the expected type, and propagate the corresponding formal
5716 -- constraints on the actuals. The caller has established that an
5717 -- interpretation exists, and emitted an error if not unique.
5719 -- First deal with the case of a call to an access-to-subprogram,
5720 -- dereference made explicit in Analyze_Call.
5722 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5723 if not Is_Overloaded
(Subp
) then
5724 Nam
:= Etype
(Subp
);
5727 -- Find the interpretation whose type (a subprogram type) has a
5728 -- return type that is compatible with the context. Analysis of
5729 -- the node has established that one exists.
5733 Get_First_Interp
(Subp
, I
, It
);
5734 while Present
(It
.Typ
) loop
5735 if Covers
(Typ
, Etype
(It
.Typ
)) then
5740 Get_Next_Interp
(I
, It
);
5744 raise Program_Error
;
5748 -- If the prefix is not an entity, then resolve it
5750 if not Is_Entity_Name
(Subp
) then
5751 Resolve
(Subp
, Nam
);
5754 -- For an indirect call, we always invalidate checks, since we do not
5755 -- know whether the subprogram is local or global. Yes we could do
5756 -- better here, e.g. by knowing that there are no local subprograms,
5757 -- but it does not seem worth the effort. Similarly, we kill all
5758 -- knowledge of current constant values.
5760 Kill_Current_Values
;
5762 -- If this is a procedure call which is really an entry call, do
5763 -- the conversion of the procedure call to an entry call. Protected
5764 -- operations use the same circuitry because the name in the call
5765 -- can be an arbitrary expression with special resolution rules.
5767 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5768 or else (Is_Entity_Name
(Subp
)
5769 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5771 Resolve_Entry_Call
(N
, Typ
);
5772 Check_Elab_Call
(N
);
5774 -- Kill checks and constant values, as above for indirect case
5775 -- Who knows what happens when another task is activated?
5777 Kill_Current_Values
;
5780 -- Normal subprogram call with name established in Resolve
5782 elsif not (Is_Type
(Entity
(Subp
))) then
5783 Nam
:= Entity
(Subp
);
5784 Set_Entity_With_Checks
(Subp
, Nam
);
5786 -- Otherwise we must have the case of an overloaded call
5789 pragma Assert
(Is_Overloaded
(Subp
));
5791 -- Initialize Nam to prevent warning (we know it will be assigned
5792 -- in the loop below, but the compiler does not know that).
5796 Get_First_Interp
(Subp
, I
, It
);
5797 while Present
(It
.Typ
) loop
5798 if Covers
(Typ
, It
.Typ
) then
5800 Set_Entity_With_Checks
(Subp
, Nam
);
5804 Get_Next_Interp
(I
, It
);
5808 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5809 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5810 and then Nkind
(Subp
) /= N_Explicit_Dereference
5811 and then Present
(Parameter_Associations
(N
))
5813 -- The prefix is a parameterless function call that returns an access
5814 -- to subprogram. If parameters are present in the current call, add
5815 -- add an explicit dereference. We use the base type here because
5816 -- within an instance these may be subtypes.
5818 -- The dereference is added either in Analyze_Call or here. Should
5819 -- be consolidated ???
5821 Set_Is_Overloaded
(Subp
, False);
5822 Set_Etype
(Subp
, Etype
(Nam
));
5823 Insert_Explicit_Dereference
(Subp
);
5824 Nam
:= Designated_Type
(Etype
(Nam
));
5825 Resolve
(Subp
, Nam
);
5828 -- Check that a call to Current_Task does not occur in an entry body
5830 if Is_RTE
(Nam
, RE_Current_Task
) then
5839 -- Exclude calls that occur within the default of a formal
5840 -- parameter of the entry, since those are evaluated outside
5843 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5845 if Nkind
(P
) = N_Entry_Body
5846 or else (Nkind
(P
) = N_Subprogram_Body
5847 and then Is_Entry_Barrier_Function
(P
))
5850 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5852 ("& should not be used in entry body (RM C.7(17))<<",
5854 Error_Msg_NE
("\Program_Error [<<", N
, Nam
);
5856 Make_Raise_Program_Error
(Loc
,
5857 Reason
=> PE_Current_Task_In_Entry_Body
));
5858 Set_Etype
(N
, Rtype
);
5865 -- Check that a procedure call does not occur in the context of the
5866 -- entry call statement of a conditional or timed entry call. Note that
5867 -- the case of a call to a subprogram renaming of an entry will also be
5868 -- rejected. The test for N not being an N_Entry_Call_Statement is
5869 -- defensive, covering the possibility that the processing of entry
5870 -- calls might reach this point due to later modifications of the code
5873 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5874 and then Nkind
(N
) /= N_Entry_Call_Statement
5875 and then Entry_Call_Statement
(Parent
(N
)) = N
5877 if Ada_Version
< Ada_2005
then
5878 Error_Msg_N
("entry call required in select statement", N
);
5880 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5881 -- for a procedure_or_entry_call, the procedure_name or
5882 -- procedure_prefix of the procedure_call_statement shall denote
5883 -- an entry renamed by a procedure, or (a view of) a primitive
5884 -- subprogram of a limited interface whose first parameter is
5885 -- a controlling parameter.
5887 elsif Nkind
(N
) = N_Procedure_Call_Statement
5888 and then not Is_Renamed_Entry
(Nam
)
5889 and then not Is_Controlling_Limited_Procedure
(Nam
)
5892 ("entry call or dispatching primitive of interface required", N
);
5896 -- If the SPARK_05 restriction is active, we are not allowed
5897 -- to have a call to a subprogram before we see its completion.
5899 if not Has_Completion
(Nam
)
5900 and then Restriction_Check_Required
(SPARK_05
)
5902 -- Don't flag strange internal calls
5904 and then Comes_From_Source
(N
)
5905 and then Comes_From_Source
(Nam
)
5907 -- Only flag calls in extended main source
5909 and then In_Extended_Main_Source_Unit
(Nam
)
5910 and then In_Extended_Main_Source_Unit
(N
)
5912 -- Exclude enumeration literals from this processing
5914 and then Ekind
(Nam
) /= E_Enumeration_Literal
5916 Check_SPARK_05_Restriction
5917 ("call to subprogram cannot appear before its body", N
);
5920 -- Check that this is not a call to a protected procedure or entry from
5921 -- within a protected function.
5923 Check_Internal_Protected_Use
(N
, Nam
);
5925 -- Freeze the subprogram name if not in a spec-expression. Note that
5926 -- we freeze procedure calls as well as function calls. Procedure calls
5927 -- are not frozen according to the rules (RM 13.14(14)) because it is
5928 -- impossible to have a procedure call to a non-frozen procedure in
5929 -- pure Ada, but in the code that we generate in the expander, this
5930 -- rule needs extending because we can generate procedure calls that
5933 -- In Ada 2012, expression functions may be called within pre/post
5934 -- conditions of subsequent functions or expression functions. Such
5935 -- calls do not freeze when they appear within generated bodies,
5936 -- (including the body of another expression function) which would
5937 -- place the freeze node in the wrong scope. An expression function
5938 -- is frozen in the usual fashion, by the appearance of a real body,
5939 -- or at the end of a declarative part.
5941 if Is_Entity_Name
(Subp
) and then not In_Spec_Expression
5942 and then not Is_Expression_Function
(Current_Scope
)
5944 (not Is_Expression_Function
(Entity
(Subp
))
5945 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5947 Freeze_Expression
(Subp
);
5950 -- For a predefined operator, the type of the result is the type imposed
5951 -- by context, except for a predefined operation on universal fixed.
5952 -- Otherwise The type of the call is the type returned by the subprogram
5955 if Is_Predefined_Op
(Nam
) then
5956 if Etype
(N
) /= Universal_Fixed
then
5960 -- If the subprogram returns an array type, and the context requires the
5961 -- component type of that array type, the node is really an indexing of
5962 -- the parameterless call. Resolve as such. A pathological case occurs
5963 -- when the type of the component is an access to the array type. In
5964 -- this case the call is truly ambiguous.
5966 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
5968 ((Is_Array_Type
(Etype
(Nam
))
5969 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
5971 (Is_Access_Type
(Etype
(Nam
))
5972 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
5974 Covers
(Typ
, Component_Type
(Designated_Type
(Etype
(Nam
))))))
5977 Index_Node
: Node_Id
;
5979 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
5982 if Is_Access_Type
(Ret_Type
)
5983 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
5986 ("cannot disambiguate function call and indexing", N
);
5988 New_Subp
:= Relocate_Node
(Subp
);
5990 -- The called entity may be an explicit dereference, in which
5991 -- case there is no entity to set.
5993 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
5994 Set_Entity
(Subp
, Nam
);
5997 if (Is_Array_Type
(Ret_Type
)
5998 and then Component_Type
(Ret_Type
) /= Any_Type
)
6000 (Is_Access_Type
(Ret_Type
)
6002 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
6004 if Needs_No_Actuals
(Nam
) then
6006 -- Indexed call to a parameterless function
6009 Make_Indexed_Component
(Loc
,
6011 Make_Function_Call
(Loc
, Name
=> New_Subp
),
6012 Expressions
=> Parameter_Associations
(N
));
6014 -- An Ada 2005 prefixed call to a primitive operation
6015 -- whose first parameter is the prefix. This prefix was
6016 -- prepended to the parameter list, which is actually a
6017 -- list of indexes. Remove the prefix in order to build
6018 -- the proper indexed component.
6021 Make_Indexed_Component
(Loc
,
6023 Make_Function_Call
(Loc
,
6025 Parameter_Associations
=>
6027 (Remove_Head
(Parameter_Associations
(N
)))),
6028 Expressions
=> Parameter_Associations
(N
));
6031 -- Preserve the parenthesis count of the node
6033 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
6035 -- Since we are correcting a node classification error made
6036 -- by the parser, we call Replace rather than Rewrite.
6038 Replace
(N
, Index_Node
);
6040 Set_Etype
(Prefix
(N
), Ret_Type
);
6042 Resolve_Indexed_Component
(N
, Typ
);
6043 Check_Elab_Call
(Prefix
(N
));
6051 Set_Etype
(N
, Etype
(Nam
));
6054 -- In the case where the call is to an overloaded subprogram, Analyze
6055 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6056 -- such a case Normalize_Actuals needs to be called once more to order
6057 -- the actuals correctly. Otherwise the call will have the ordering
6058 -- given by the last overloaded subprogram whether this is the correct
6059 -- one being called or not.
6061 if Is_Overloaded
(Subp
) then
6062 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6063 pragma Assert
(Norm_OK
);
6066 -- In any case, call is fully resolved now. Reset Overload flag, to
6067 -- prevent subsequent overload resolution if node is analyzed again
6069 Set_Is_Overloaded
(Subp
, False);
6070 Set_Is_Overloaded
(N
, False);
6072 -- A Ghost entity must appear in a specific context
6074 if Is_Ghost_Entity
(Nam
) and then Comes_From_Source
(N
) then
6075 Check_Ghost_Context
(Nam
, N
);
6078 -- If we are calling the current subprogram from immediately within its
6079 -- body, then that is the case where we can sometimes detect cases of
6080 -- infinite recursion statically. Do not try this in case restriction
6081 -- No_Recursion is in effect anyway, and do it only for source calls.
6083 if Comes_From_Source
(N
) then
6084 Scop
:= Current_Scope
;
6086 -- Check violation of SPARK_05 restriction which does not permit
6087 -- a subprogram body to contain a call to the subprogram directly.
6089 if Restriction_Check_Required
(SPARK_05
)
6090 and then Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6092 Check_SPARK_05_Restriction
6093 ("subprogram may not contain direct call to itself", N
);
6096 -- Issue warning for possible infinite recursion in the absence
6097 -- of the No_Recursion restriction.
6099 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6100 and then not Restriction_Active
(No_Recursion
)
6101 and then Check_Infinite_Recursion
(N
)
6103 -- Here we detected and flagged an infinite recursion, so we do
6104 -- not need to test the case below for further warnings. Also we
6105 -- are all done if we now have a raise SE node.
6107 if Nkind
(N
) = N_Raise_Storage_Error
then
6111 -- If call is to immediately containing subprogram, then check for
6112 -- the case of a possible run-time detectable infinite recursion.
6115 Scope_Loop
: while Scop
/= Standard_Standard
loop
6116 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
6118 -- Although in general case, recursion is not statically
6119 -- checkable, the case of calling an immediately containing
6120 -- subprogram is easy to catch.
6122 Check_Restriction
(No_Recursion
, N
);
6124 -- If the recursive call is to a parameterless subprogram,
6125 -- then even if we can't statically detect infinite
6126 -- recursion, this is pretty suspicious, and we output a
6127 -- warning. Furthermore, we will try later to detect some
6128 -- cases here at run time by expanding checking code (see
6129 -- Detect_Infinite_Recursion in package Exp_Ch6).
6131 -- If the recursive call is within a handler, do not emit a
6132 -- warning, because this is a common idiom: loop until input
6133 -- is correct, catch illegal input in handler and restart.
6135 if No
(First_Formal
(Nam
))
6136 and then Etype
(Nam
) = Standard_Void_Type
6137 and then not Error_Posted
(N
)
6138 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
6140 -- For the case of a procedure call. We give the message
6141 -- only if the call is the first statement in a sequence
6142 -- of statements, or if all previous statements are
6143 -- simple assignments. This is simply a heuristic to
6144 -- decrease false positives, without losing too many good
6145 -- warnings. The idea is that these previous statements
6146 -- may affect global variables the procedure depends on.
6147 -- We also exclude raise statements, that may arise from
6148 -- constraint checks and are probably unrelated to the
6149 -- intended control flow.
6151 if Nkind
(N
) = N_Procedure_Call_Statement
6152 and then Is_List_Member
(N
)
6158 while Present
(P
) loop
6159 if not Nkind_In
(P
, N_Assignment_Statement
,
6160 N_Raise_Constraint_Error
)
6170 -- Do not give warning if we are in a conditional context
6173 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6175 if (K
= N_Loop_Statement
6176 and then Present
(Iteration_Scheme
(Parent
(N
))))
6177 or else K
= N_If_Statement
6178 or else K
= N_Elsif_Part
6179 or else K
= N_Case_Statement_Alternative
6185 -- Here warning is to be issued
6187 Set_Has_Recursive_Call
(Nam
);
6188 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6189 Error_Msg_N
("possible infinite recursion<<!", N
);
6190 Error_Msg_N
("\Storage_Error ]<<!", N
);
6196 Scop
:= Scope
(Scop
);
6197 end loop Scope_Loop
;
6201 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6203 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
6205 -- If subprogram name is a predefined operator, it was given in
6206 -- functional notation. Replace call node with operator node, so
6207 -- that actuals can be resolved appropriately.
6209 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
6210 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
6213 elsif Present
(Alias
(Nam
))
6214 and then Is_Predefined_Op
(Alias
(Nam
))
6216 Resolve_Actuals
(N
, Nam
);
6217 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
6221 -- Create a transient scope if the resulting type requires it
6223 -- There are several notable exceptions:
6225 -- a) In init procs, the transient scope overhead is not needed, and is
6226 -- even incorrect when the call is a nested initialization call for a
6227 -- component whose expansion may generate adjust calls. However, if the
6228 -- call is some other procedure call within an initialization procedure
6229 -- (for example a call to Create_Task in the init_proc of the task
6230 -- run-time record) a transient scope must be created around this call.
6232 -- b) Enumeration literal pseudo-calls need no transient scope
6234 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6235 -- functions) do not use the secondary stack even though the return
6236 -- type may be unconstrained.
6238 -- d) Calls to a build-in-place function, since such functions may
6239 -- allocate their result directly in a target object, and cases where
6240 -- the result does get allocated in the secondary stack are checked for
6241 -- within the specialized Exp_Ch6 procedures for expanding those
6242 -- build-in-place calls.
6244 -- e) If the subprogram is marked Inline_Always, then even if it returns
6245 -- an unconstrained type the call does not require use of the secondary
6246 -- stack. However, inlining will only take place if the body to inline
6247 -- is already present. It may not be available if e.g. the subprogram is
6248 -- declared in a child instance.
6250 -- If this is an initialization call for a type whose construction
6251 -- uses the secondary stack, and it is not a nested call to initialize
6252 -- a component, we do need to create a transient scope for it. We
6253 -- check for this by traversing the type in Check_Initialization_Call.
6256 and then Has_Pragma_Inline
(Nam
)
6257 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
6258 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
6262 elsif Ekind
(Nam
) = E_Enumeration_Literal
6263 or else Is_Build_In_Place_Function
(Nam
)
6264 or else Is_Intrinsic_Subprogram
(Nam
)
6268 elsif Expander_Active
6269 and then Is_Type
(Etype
(Nam
))
6270 and then Requires_Transient_Scope
(Etype
(Nam
))
6272 (not Within_Init_Proc
6274 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
6276 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6278 -- If the call appears within the bounds of a loop, it will
6279 -- be rewritten and reanalyzed, nothing left to do here.
6281 if Nkind
(N
) /= N_Function_Call
then
6285 elsif Is_Init_Proc
(Nam
)
6286 and then not Within_Init_Proc
6288 Check_Initialization_Call
(N
, Nam
);
6291 -- A protected function cannot be called within the definition of the
6292 -- enclosing protected type, unless it is part of a pre/postcondition
6293 -- on another protected operation.
6295 if Is_Protected_Type
(Scope
(Nam
))
6296 and then In_Open_Scopes
(Scope
(Nam
))
6297 and then not Has_Completion
(Scope
(Nam
))
6298 and then not In_Spec_Expression
6301 ("& cannot be called before end of protected definition", N
, Nam
);
6304 -- Propagate interpretation to actuals, and add default expressions
6307 if Present
(First_Formal
(Nam
)) then
6308 Resolve_Actuals
(N
, Nam
);
6310 -- Overloaded literals are rewritten as function calls, for purpose of
6311 -- resolution. After resolution, we can replace the call with the
6314 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
6315 Copy_Node
(Subp
, N
);
6316 Resolve_Entity_Name
(N
, Typ
);
6318 -- Avoid validation, since it is a static function call
6320 Generate_Reference
(Nam
, Subp
);
6324 -- If the subprogram is not global, then kill all saved values and
6325 -- checks. This is a bit conservative, since in many cases we could do
6326 -- better, but it is not worth the effort. Similarly, we kill constant
6327 -- values. However we do not need to do this for internal entities
6328 -- (unless they are inherited user-defined subprograms), since they
6329 -- are not in the business of molesting local values.
6331 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6332 -- kill all checks and values for calls to global subprograms. This
6333 -- takes care of the case where an access to a local subprogram is
6334 -- taken, and could be passed directly or indirectly and then called
6335 -- from almost any context.
6337 -- Note: we do not do this step till after resolving the actuals. That
6338 -- way we still take advantage of the current value information while
6339 -- scanning the actuals.
6341 -- We suppress killing values if we are processing the nodes associated
6342 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6343 -- type kills all the values as part of analyzing the code that
6344 -- initializes the dispatch tables.
6346 if Inside_Freezing_Actions
= 0
6347 and then (not Is_Library_Level_Entity
(Nam
)
6348 or else Suppress_Value_Tracking_On_Call
6349 (Nearest_Dynamic_Scope
(Current_Scope
)))
6350 and then (Comes_From_Source
(Nam
)
6351 or else (Present
(Alias
(Nam
))
6352 and then Comes_From_Source
(Alias
(Nam
))))
6354 Kill_Current_Values
;
6357 -- If we are warning about unread OUT parameters, this is the place to
6358 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6359 -- after the above call to Kill_Current_Values (since that call clears
6360 -- the Last_Assignment field of all local variables).
6362 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
6363 and then Comes_From_Source
(N
)
6364 and then In_Extended_Main_Source_Unit
(N
)
6371 F
:= First_Formal
(Nam
);
6372 A
:= First_Actual
(N
);
6373 while Present
(F
) and then Present
(A
) loop
6374 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
6375 and then Warn_On_Modified_As_Out_Parameter
(F
)
6376 and then Is_Entity_Name
(A
)
6377 and then Present
(Entity
(A
))
6378 and then Comes_From_Source
(N
)
6379 and then Safe_To_Capture_Value
(N
, Entity
(A
))
6381 Set_Last_Assignment
(Entity
(A
), A
);
6390 -- If the subprogram is a primitive operation, check whether or not
6391 -- it is a correct dispatching call.
6393 if Is_Overloadable
(Nam
)
6394 and then Is_Dispatching_Operation
(Nam
)
6396 Check_Dispatching_Call
(N
);
6398 elsif Ekind
(Nam
) /= E_Subprogram_Type
6399 and then Is_Abstract_Subprogram
(Nam
)
6400 and then not In_Instance
6402 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
6405 -- If this is a dispatching call, generate the appropriate reference,
6406 -- for better source navigation in GPS.
6408 if Is_Overloadable
(Nam
)
6409 and then Present
(Controlling_Argument
(N
))
6411 Generate_Reference
(Nam
, Subp
, 'R');
6413 -- Normal case, not a dispatching call: generate a call reference
6416 Generate_Reference
(Nam
, Subp
, 's');
6419 if Is_Intrinsic_Subprogram
(Nam
) then
6420 Check_Intrinsic_Call
(N
);
6423 -- Check for violation of restriction No_Specific_Termination_Handlers
6424 -- and warn on a potentially blocking call to Abort_Task.
6426 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
6427 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
6429 Is_RTE
(Nam
, RE_Specific_Handler
))
6431 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
6433 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
6434 Check_Potentially_Blocking_Operation
(N
);
6437 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6438 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6439 -- need to check the second argument to determine whether it is an
6440 -- absolute or relative timing event.
6442 if Restriction_Check_Required
(No_Relative_Delay
)
6443 and then Is_RTE
(Nam
, RE_Set_Handler
)
6444 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
6446 Check_Restriction
(No_Relative_Delay
, N
);
6449 -- Issue an error for a call to an eliminated subprogram. This routine
6450 -- will not perform the check if the call appears within a default
6453 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
6455 -- In formal mode, the primitive operations of a tagged type or type
6456 -- extension do not include functions that return the tagged type.
6458 if Nkind
(N
) = N_Function_Call
6459 and then Is_Tagged_Type
(Etype
(N
))
6460 and then Is_Entity_Name
(Name
(N
))
6461 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
6463 Check_SPARK_05_Restriction
("function not inherited", N
);
6466 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6467 -- class-wide and the call dispatches on result in a context that does
6468 -- not provide a tag, the call raises Program_Error.
6470 if Nkind
(N
) = N_Function_Call
6471 and then In_Instance
6472 and then Is_Generic_Actual_Type
(Typ
)
6473 and then Is_Class_Wide_Type
(Typ
)
6474 and then Has_Controlling_Result
(Nam
)
6475 and then Nkind
(Parent
(N
)) = N_Object_Declaration
6477 -- Verify that none of the formals are controlling
6480 Call_OK
: Boolean := False;
6484 F
:= First_Formal
(Nam
);
6485 while Present
(F
) loop
6486 if Is_Controlling_Formal
(F
) then
6495 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6496 Error_Msg_N
("!cannot determine tag of result<<", N
);
6497 Error_Msg_N
("\Program_Error [<<!", N
);
6499 Make_Raise_Program_Error
(Sloc
(N
),
6500 Reason
=> PE_Explicit_Raise
));
6505 -- Check for calling a function with OUT or IN OUT parameter when the
6506 -- calling context (us right now) is not Ada 2012, so does not allow
6507 -- OUT or IN OUT parameters in function calls.
6509 if Ada_Version
< Ada_2012
6510 and then Ekind
(Nam
) = E_Function
6511 and then Has_Out_Or_In_Out_Parameter
(Nam
)
6513 Error_Msg_NE
("& has at least one OUT or `IN OUT` parameter", N
, Nam
);
6514 Error_Msg_N
("\call to this function only allowed in Ada 2012", N
);
6517 -- Check the dimensions of the actuals in the call. For function calls,
6518 -- propagate the dimensions from the returned type to N.
6520 Analyze_Dimension_Call
(N
, Nam
);
6522 -- All done, evaluate call and deal with elaboration issues
6525 Check_Elab_Call
(N
);
6527 -- In GNATprove mode, expansion is disabled, but we want to inline some
6528 -- subprograms to facilitate formal verification. Indirect calls through
6529 -- a subprogram type or within a generic cannot be inlined. Inlining is
6530 -- performed only for calls subject to SPARK_Mode on.
6533 and then SPARK_Mode
= On
6534 and then Is_Overloadable
(Nam
)
6535 and then not Inside_A_Generic
6537 Nam_UA
:= Ultimate_Alias
(Nam
);
6538 Nam_Decl
:= Unit_Declaration_Node
(Nam_UA
);
6540 if Nkind
(Nam_Decl
) = N_Subprogram_Declaration
then
6541 Body_Id
:= Corresponding_Body
(Nam_Decl
);
6543 -- Nothing to do if the subprogram is not eligible for inlining in
6546 if not Is_Inlined_Always
(Nam_UA
)
6547 or else not Can_Be_Inlined_In_GNATprove_Mode
(Nam_UA
, Body_Id
)
6551 -- Calls cannot be inlined inside assertions, as GNATprove treats
6552 -- assertions as logic expressions.
6554 elsif In_Assertion_Expr
/= 0 then
6555 Error_Msg_NE
("?no contextual analysis of &", N
, Nam
);
6556 Error_Msg_N
("\call appears in assertion expression", N
);
6557 Set_Is_Inlined_Always
(Nam_UA
, False);
6559 -- Calls cannot be inlined inside default expressions
6561 elsif In_Default_Expr
then
6562 Error_Msg_NE
("?no contextual analysis of &", N
, Nam
);
6563 Error_Msg_N
("\call appears in default expression", N
);
6564 Set_Is_Inlined_Always
(Nam_UA
, False);
6566 -- Inlining should not be performed during pre-analysis
6568 elsif Full_Analysis
then
6570 -- With the one-pass inlining technique, a call cannot be
6571 -- inlined if the corresponding body has not been seen yet.
6573 if No
(Body_Id
) then
6575 ("?no contextual analysis of & (body not seen yet)",
6577 Set_Is_Inlined_Always
(Nam_UA
, False);
6579 -- Nothing to do if there is no body to inline, indicating that
6580 -- the subprogram is not suitable for inlining in GNATprove
6583 elsif No
(Body_To_Inline
(Nam_Decl
)) then
6586 -- Calls cannot be inlined inside potentially unevaluated
6587 -- expressions, as this would create complex actions inside
6588 -- expressions, that are not handled by GNATprove.
6590 elsif Is_Potentially_Unevaluated
(N
) then
6591 Error_Msg_NE
("?no contextual analysis of &", N
, Nam
);
6593 ("\call appears in potentially unevaluated context", N
);
6594 Set_Is_Inlined_Always
(Nam_UA
, False);
6596 -- Otherwise, inline the call
6599 Expand_Inlined_Call
(N
, Nam_UA
, Nam
);
6605 Warn_On_Overlapping_Actuals
(Nam
, N
);
6608 -----------------------------
6609 -- Resolve_Case_Expression --
6610 -----------------------------
6612 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6616 Alt
:= First
(Alternatives
(N
));
6617 while Present
(Alt
) loop
6618 Resolve
(Expression
(Alt
), Typ
);
6623 Eval_Case_Expression
(N
);
6624 end Resolve_Case_Expression
;
6626 -------------------------------
6627 -- Resolve_Character_Literal --
6628 -------------------------------
6630 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6631 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6635 -- Verify that the character does belong to the type of the context
6637 Set_Etype
(N
, B_Typ
);
6638 Eval_Character_Literal
(N
);
6640 -- Wide_Wide_Character literals must always be defined, since the set
6641 -- of wide wide character literals is complete, i.e. if a character
6642 -- literal is accepted by the parser, then it is OK for wide wide
6643 -- character (out of range character literals are rejected).
6645 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6648 -- Always accept character literal for type Any_Character, which
6649 -- occurs in error situations and in comparisons of literals, both
6650 -- of which should accept all literals.
6652 elsif B_Typ
= Any_Character
then
6655 -- For Standard.Character or a type derived from it, check that the
6656 -- literal is in range.
6658 elsif Root_Type
(B_Typ
) = Standard_Character
then
6659 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6663 -- For Standard.Wide_Character or a type derived from it, check that the
6664 -- literal is in range.
6666 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6667 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6671 -- For Standard.Wide_Wide_Character or a type derived from it, we
6672 -- know the literal is in range, since the parser checked.
6674 elsif Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6677 -- If the entity is already set, this has already been resolved in a
6678 -- generic context, or comes from expansion. Nothing else to do.
6680 elsif Present
(Entity
(N
)) then
6683 -- Otherwise we have a user defined character type, and we can use the
6684 -- standard visibility mechanisms to locate the referenced entity.
6687 C
:= Current_Entity
(N
);
6688 while Present
(C
) loop
6689 if Etype
(C
) = B_Typ
then
6690 Set_Entity_With_Checks
(N
, C
);
6691 Generate_Reference
(C
, N
);
6699 -- If we fall through, then the literal does not match any of the
6700 -- entries of the enumeration type. This isn't just a constraint error
6701 -- situation, it is an illegality (see RM 4.2).
6704 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6705 end Resolve_Character_Literal
;
6707 ---------------------------
6708 -- Resolve_Comparison_Op --
6709 ---------------------------
6711 -- Context requires a boolean type, and plays no role in resolution.
6712 -- Processing identical to that for equality operators. The result type is
6713 -- the base type, which matters when pathological subtypes of booleans with
6714 -- limited ranges are used.
6716 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6717 L
: constant Node_Id
:= Left_Opnd
(N
);
6718 R
: constant Node_Id
:= Right_Opnd
(N
);
6722 -- If this is an intrinsic operation which is not predefined, use the
6723 -- types of its declared arguments to resolve the possibly overloaded
6724 -- operands. Otherwise the operands are unambiguous and specify the
6727 if Scope
(Entity
(N
)) /= Standard_Standard
then
6728 T
:= Etype
(First_Entity
(Entity
(N
)));
6731 T
:= Find_Unique_Type
(L
, R
);
6733 if T
= Any_Fixed
then
6734 T
:= Unique_Fixed_Point_Type
(L
);
6738 Set_Etype
(N
, Base_Type
(Typ
));
6739 Generate_Reference
(T
, N
, ' ');
6741 -- Skip remaining processing if already set to Any_Type
6743 if T
= Any_Type
then
6747 -- Deal with other error cases
6749 if T
= Any_String
or else
6750 T
= Any_Composite
or else
6753 if T
= Any_Character
then
6754 Ambiguous_Character
(L
);
6756 Error_Msg_N
("ambiguous operands for comparison", N
);
6759 Set_Etype
(N
, Any_Type
);
6763 -- Resolve the operands if types OK
6767 Check_Unset_Reference
(L
);
6768 Check_Unset_Reference
(R
);
6769 Generate_Operator_Reference
(N
, T
);
6770 Check_Low_Bound_Tested
(N
);
6772 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6773 -- types or array types except String.
6775 if Is_Boolean_Type
(T
) then
6776 Check_SPARK_05_Restriction
6777 ("comparison is not defined on Boolean type", N
);
6779 elsif Is_Array_Type
(T
)
6780 and then Base_Type
(T
) /= Standard_String
6782 Check_SPARK_05_Restriction
6783 ("comparison is not defined on array types other than String", N
);
6786 -- Check comparison on unordered enumeration
6788 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6789 Error_Msg_Sloc
:= Sloc
(Etype
(L
));
6791 ("comparison on unordered enumeration type& declared#?U?",
6795 -- Evaluate the relation (note we do this after the above check since
6796 -- this Eval call may change N to True/False.
6798 Analyze_Dimension
(N
);
6799 Eval_Relational_Op
(N
);
6800 end Resolve_Comparison_Op
;
6802 -----------------------------------------
6803 -- Resolve_Discrete_Subtype_Indication --
6804 -----------------------------------------
6806 procedure Resolve_Discrete_Subtype_Indication
6814 Analyze
(Subtype_Mark
(N
));
6815 S
:= Entity
(Subtype_Mark
(N
));
6817 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6818 Error_Msg_N
("expect range constraint for discrete type", N
);
6819 Set_Etype
(N
, Any_Type
);
6822 R
:= Range_Expression
(Constraint
(N
));
6830 if Base_Type
(S
) /= Base_Type
(Typ
) then
6832 ("expect subtype of }", N
, First_Subtype
(Typ
));
6834 -- Rewrite the constraint as a range of Typ
6835 -- to allow compilation to proceed further.
6838 Rewrite
(Low_Bound
(R
),
6839 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6840 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6841 Attribute_Name
=> Name_First
));
6842 Rewrite
(High_Bound
(R
),
6843 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6844 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6845 Attribute_Name
=> Name_First
));
6849 Set_Etype
(N
, Etype
(R
));
6851 -- Additionally, we must check that the bounds are compatible
6852 -- with the given subtype, which might be different from the
6853 -- type of the context.
6855 Apply_Range_Check
(R
, S
);
6857 -- ??? If the above check statically detects a Constraint_Error
6858 -- it replaces the offending bound(s) of the range R with a
6859 -- Constraint_Error node. When the itype which uses these bounds
6860 -- is frozen the resulting call to Duplicate_Subexpr generates
6861 -- a new temporary for the bounds.
6863 -- Unfortunately there are other itypes that are also made depend
6864 -- on these bounds, so when Duplicate_Subexpr is called they get
6865 -- a forward reference to the newly created temporaries and Gigi
6866 -- aborts on such forward references. This is probably sign of a
6867 -- more fundamental problem somewhere else in either the order of
6868 -- itype freezing or the way certain itypes are constructed.
6870 -- To get around this problem we call Remove_Side_Effects right
6871 -- away if either bounds of R are a Constraint_Error.
6874 L
: constant Node_Id
:= Low_Bound
(R
);
6875 H
: constant Node_Id
:= High_Bound
(R
);
6878 if Nkind
(L
) = N_Raise_Constraint_Error
then
6879 Remove_Side_Effects
(L
);
6882 if Nkind
(H
) = N_Raise_Constraint_Error
then
6883 Remove_Side_Effects
(H
);
6887 Check_Unset_Reference
(Low_Bound
(R
));
6888 Check_Unset_Reference
(High_Bound
(R
));
6891 end Resolve_Discrete_Subtype_Indication
;
6893 -------------------------
6894 -- Resolve_Entity_Name --
6895 -------------------------
6897 -- Used to resolve identifiers and expanded names
6899 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
6900 function Is_OK_Volatile_Context
6902 Obj_Ref
: Node_Id
) return Boolean;
6903 -- Determine whether node Context denotes a "non-interfering context"
6904 -- (as defined in SPARK RM 7.1.3(13)) where volatile reference Obj_Ref
6905 -- can safely reside.
6907 ----------------------------
6908 -- Is_OK_Volatile_Context --
6909 ----------------------------
6911 function Is_OK_Volatile_Context
6913 Obj_Ref
: Node_Id
) return Boolean
6915 function Within_Check
(Nod
: Node_Id
) return Boolean;
6916 -- Determine whether an arbitrary node appears in a check node
6918 function Within_Procedure_Call
(Nod
: Node_Id
) return Boolean;
6919 -- Determine whether an arbitrary node appears in a procedure call
6925 function Within_Check
(Nod
: Node_Id
) return Boolean is
6929 -- Climb the parent chain looking for a check node
6932 while Present
(Par
) loop
6933 if Nkind
(Par
) in N_Raise_xxx_Error
then
6936 -- Prevent the search from going too far
6938 elsif Is_Body_Or_Package_Declaration
(Par
) then
6942 Par
:= Parent
(Par
);
6948 ---------------------------
6949 -- Within_Procedure_Call --
6950 ---------------------------
6952 function Within_Procedure_Call
(Nod
: Node_Id
) return Boolean is
6956 -- Climb the parent chain looking for a procedure call
6959 while Present
(Par
) loop
6960 if Nkind
(Par
) = N_Procedure_Call_Statement
then
6963 -- Prevent the search from going too far
6965 elsif Is_Body_Or_Package_Declaration
(Par
) then
6969 Par
:= Parent
(Par
);
6973 end Within_Procedure_Call
;
6975 -- Start of processing for Is_OK_Volatile_Context
6978 -- The volatile object appears on either side of an assignment
6980 if Nkind
(Context
) = N_Assignment_Statement
then
6983 -- The volatile object is part of the initialization expression of
6984 -- another object. Ensure that the climb of the parent chain came
6985 -- from the expression side and not from the name side.
6987 elsif Nkind
(Context
) = N_Object_Declaration
6988 and then Present
(Expression
(Context
))
6989 and then Expression
(Context
) = Obj_Ref
6993 -- The volatile object appears as an actual parameter in a call to an
6994 -- instance of Unchecked_Conversion whose result is renamed.
6996 elsif Nkind
(Context
) = N_Function_Call
6997 and then Is_Unchecked_Conversion_Instance
(Entity
(Name
(Context
)))
6998 and then Nkind
(Parent
(Context
)) = N_Object_Renaming_Declaration
7002 -- The volatile object appears as the prefix of a name occurring
7003 -- in a non-interfering context.
7005 elsif Nkind_In
(Context
, N_Attribute_Reference
,
7006 N_Indexed_Component
,
7007 N_Selected_Component
,
7009 and then Prefix
(Context
) = Obj_Ref
7010 and then Is_OK_Volatile_Context
7011 (Context
=> Parent
(Context
),
7016 -- The volatile object appears as the expression of a type conversion
7017 -- occurring in a non-interfering context.
7019 elsif Nkind_In
(Context
, N_Type_Conversion
,
7020 N_Unchecked_Type_Conversion
)
7021 and then Expression
(Context
) = Obj_Ref
7022 and then Is_OK_Volatile_Context
7023 (Context
=> Parent
(Context
),
7028 -- Allow references to volatile objects in various checks. This is
7029 -- not a direct SPARK 2014 requirement.
7031 elsif Within_Check
(Context
) then
7034 -- Assume that references to effectively volatile objects that appear
7035 -- as actual parameters in a procedure call are always legal. A full
7036 -- legality check is done when the actuals are resolved.
7038 elsif Within_Procedure_Call
(Context
) then
7041 -- Otherwise the context is not suitable for an effectively volatile
7047 end Is_OK_Volatile_Context
;
7051 E
: constant Entity_Id
:= Entity
(N
);
7054 -- Start of processing for Resolve_Entity_Name
7057 -- If garbage from errors, set to Any_Type and return
7059 if No
(E
) and then Total_Errors_Detected
/= 0 then
7060 Set_Etype
(N
, Any_Type
);
7064 -- Replace named numbers by corresponding literals. Note that this is
7065 -- the one case where Resolve_Entity_Name must reset the Etype, since
7066 -- it is currently marked as universal.
7068 if Ekind
(E
) = E_Named_Integer
then
7070 Eval_Named_Integer
(N
);
7072 elsif Ekind
(E
) = E_Named_Real
then
7074 Eval_Named_Real
(N
);
7076 -- For enumeration literals, we need to make sure that a proper style
7077 -- check is done, since such literals are overloaded, and thus we did
7078 -- not do a style check during the first phase of analysis.
7080 elsif Ekind
(E
) = E_Enumeration_Literal
then
7081 Set_Entity_With_Checks
(N
, E
);
7082 Eval_Entity_Name
(N
);
7084 -- Case of subtype name appearing as an operand in expression
7086 elsif Is_Type
(E
) then
7088 -- Allow use of subtype if it is a concurrent type where we are
7089 -- currently inside the body. This will eventually be expanded into a
7090 -- call to Self (for tasks) or _object (for protected objects). Any
7091 -- other use of a subtype is invalid.
7093 if Is_Concurrent_Type
(E
)
7094 and then In_Open_Scopes
(E
)
7098 -- Any other use is an error
7102 ("invalid use of subtype mark in expression or call", N
);
7105 -- Check discriminant use if entity is discriminant in current scope,
7106 -- i.e. discriminant of record or concurrent type currently being
7107 -- analyzed. Uses in corresponding body are unrestricted.
7109 elsif Ekind
(E
) = E_Discriminant
7110 and then Scope
(E
) = Current_Scope
7111 and then not Has_Completion
(Current_Scope
)
7113 Check_Discriminant_Use
(N
);
7115 -- A parameterless generic function cannot appear in a context that
7116 -- requires resolution.
7118 elsif Ekind
(E
) = E_Generic_Function
then
7119 Error_Msg_N
("illegal use of generic function", N
);
7121 elsif Ekind
(E
) = E_Out_Parameter
7122 and then Ada_Version
= Ada_83
7123 and then (Nkind
(Parent
(N
)) in N_Op
7124 or else (Nkind
(Parent
(N
)) = N_Assignment_Statement
7125 and then N
= Expression
(Parent
(N
)))
7126 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
)
7128 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
7130 -- In all other cases, just do the possible static evaluation
7133 -- A deferred constant that appears in an expression must have a
7134 -- completion, unless it has been removed by in-place expansion of
7137 if Ekind
(E
) = E_Constant
7138 and then Comes_From_Source
(E
)
7139 and then No
(Constant_Value
(E
))
7140 and then Is_Frozen
(Etype
(E
))
7141 and then not In_Spec_Expression
7142 and then not Is_Imported
(E
)
7144 if No_Initialization
(Parent
(E
))
7145 or else (Present
(Full_View
(E
))
7146 and then No_Initialization
(Parent
(Full_View
(E
))))
7151 "deferred constant is frozen before completion", N
);
7155 Eval_Entity_Name
(N
);
7160 -- When the entity appears in a parameter association, retrieve the
7161 -- related subprogram call.
7163 if Nkind
(Par
) = N_Parameter_Association
then
7164 Par
:= Parent
(Par
);
7167 -- The following checks are only relevant when SPARK_Mode is on as they
7168 -- are not standard Ada legality rules. An effectively volatile object
7169 -- subject to enabled properties Async_Writers or Effective_Reads must
7170 -- appear in a specific context.
7173 and then Is_Object
(E
)
7174 and then Is_Effectively_Volatile
(E
)
7175 and then (Async_Writers_Enabled
(E
)
7176 or else Effective_Reads_Enabled
(E
))
7177 and then Comes_From_Source
(N
)
7179 -- The effectively volatile objects appears in a "non-interfering
7180 -- context" as defined in SPARK RM 7.1.3(13).
7182 if Is_OK_Volatile_Context
(Par
, N
) then
7185 -- Otherwise the context causes a side effect with respect to the
7186 -- effectively volatile object.
7190 ("volatile object cannot appear in this context "
7191 & "(SPARK RM 7.1.3(13))", N
);
7195 -- A Ghost entity must appear in a specific context
7197 if Is_Ghost_Entity
(E
) and then Comes_From_Source
(N
) then
7198 Check_Ghost_Context
(E
, N
);
7201 -- In SPARK mode, need to check possible elaboration issues
7203 if SPARK_Mode
= On
and then Ekind
(E
) = E_Variable
then
7204 Check_Elab_Call
(N
);
7206 end Resolve_Entity_Name
;
7212 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
7213 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7221 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
7222 -- If the bounds of the entry family being called depend on task
7223 -- discriminants, build a new index subtype where a discriminant is
7224 -- replaced with the value of the discriminant of the target task.
7225 -- The target task is the prefix of the entry name in the call.
7227 -----------------------
7228 -- Actual_Index_Type --
7229 -----------------------
7231 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
7232 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
7233 Tsk
: constant Entity_Id
:= Scope
(E
);
7234 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
7235 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
7238 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
7239 -- If the bound is given by a discriminant, replace with a reference
7240 -- to the discriminant of the same name in the target task. If the
7241 -- entry name is the target of a requeue statement and the entry is
7242 -- in the current protected object, the bound to be used is the
7243 -- discriminal of the object (see Apply_Range_Checks for details of
7244 -- the transformation).
7246 -----------------------------
7247 -- Actual_Discriminant_Ref --
7248 -----------------------------
7250 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
7251 Typ
: constant Entity_Id
:= Etype
(Bound
);
7255 Remove_Side_Effects
(Bound
);
7257 if not Is_Entity_Name
(Bound
)
7258 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
7262 elsif Is_Protected_Type
(Tsk
)
7263 and then In_Open_Scopes
(Tsk
)
7264 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
7266 -- Note: here Bound denotes a discriminant of the corresponding
7267 -- record type tskV, whose discriminal is a formal of the
7268 -- init-proc tskVIP. What we want is the body discriminal,
7269 -- which is associated to the discriminant of the original
7270 -- concurrent type tsk.
7272 return New_Occurrence_Of
7273 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
7277 Make_Selected_Component
(Loc
,
7278 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
7279 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
7284 end Actual_Discriminant_Ref
;
7286 -- Start of processing for Actual_Index_Type
7289 if not Has_Discriminants
(Tsk
)
7290 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
7292 return Entry_Index_Type
(E
);
7295 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
7296 Set_Etype
(New_T
, Base_Type
(Typ
));
7297 Set_Size_Info
(New_T
, Typ
);
7298 Set_RM_Size
(New_T
, RM_Size
(Typ
));
7299 Set_Scalar_Range
(New_T
,
7300 Make_Range
(Sloc
(Entry_Name
),
7301 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
7302 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
7306 end Actual_Index_Type
;
7308 -- Start of processing of Resolve_Entry
7311 -- Find name of entry being called, and resolve prefix of name with its
7312 -- own type. The prefix can be overloaded, and the name and signature of
7313 -- the entry must be taken into account.
7315 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7317 -- Case of dealing with entry family within the current tasks
7319 E_Name
:= Prefix
(Entry_Name
);
7322 E_Name
:= Entry_Name
;
7325 if Is_Entity_Name
(E_Name
) then
7327 -- Entry call to an entry (or entry family) in the current task. This
7328 -- is legal even though the task will deadlock. Rewrite as call to
7331 -- This can also be a call to an entry in an enclosing task. If this
7332 -- is a single task, we have to retrieve its name, because the scope
7333 -- of the entry is the task type, not the object. If the enclosing
7334 -- task is a task type, the identity of the task is given by its own
7337 -- Finally this can be a requeue on an entry of the same task or
7338 -- protected object.
7340 S
:= Scope
(Entity
(E_Name
));
7342 for J
in reverse 0 .. Scope_Stack
.Last
loop
7343 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
7344 and then not Comes_From_Source
(S
)
7346 -- S is an enclosing task or protected object. The concurrent
7347 -- declaration has been converted into a type declaration, and
7348 -- the object itself has an object declaration that follows
7349 -- the type in the same declarative part.
7351 Tsk
:= Next_Entity
(S
);
7352 while Etype
(Tsk
) /= S
loop
7359 elsif S
= Scope_Stack
.Table
(J
).Entity
then
7361 -- Call to current task. Will be transformed into call to Self
7369 Make_Selected_Component
(Loc
,
7370 Prefix
=> New_Occurrence_Of
(S
, Loc
),
7372 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
7373 Rewrite
(E_Name
, New_N
);
7376 elsif Nkind
(Entry_Name
) = N_Selected_Component
7377 and then Is_Overloaded
(Prefix
(Entry_Name
))
7379 -- Use the entry name (which must be unique at this point) to find
7380 -- the prefix that returns the corresponding task/protected type.
7383 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
7384 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
7389 Get_First_Interp
(Pref
, I
, It
);
7390 while Present
(It
.Typ
) loop
7391 if Scope
(Ent
) = It
.Typ
then
7392 Set_Etype
(Pref
, It
.Typ
);
7396 Get_Next_Interp
(I
, It
);
7401 if Nkind
(Entry_Name
) = N_Selected_Component
then
7402 Resolve
(Prefix
(Entry_Name
));
7404 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7405 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7406 Resolve
(Prefix
(Prefix
(Entry_Name
)));
7407 Index
:= First
(Expressions
(Entry_Name
));
7408 Resolve
(Index
, Entry_Index_Type
(Nam
));
7410 -- Up to this point the expression could have been the actual in a
7411 -- simple entry call, and be given by a named association.
7413 if Nkind
(Index
) = N_Parameter_Association
then
7414 Error_Msg_N
("expect expression for entry index", Index
);
7416 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
7421 ------------------------
7422 -- Resolve_Entry_Call --
7423 ------------------------
7425 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
7426 Entry_Name
: constant Node_Id
:= Name
(N
);
7427 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7429 First_Named
: Node_Id
;
7436 -- We kill all checks here, because it does not seem worth the effort to
7437 -- do anything better, an entry call is a big operation.
7441 -- Processing of the name is similar for entry calls and protected
7442 -- operation calls. Once the entity is determined, we can complete
7443 -- the resolution of the actuals.
7445 -- The selector may be overloaded, in the case of a protected object
7446 -- with overloaded functions. The type of the context is used for
7449 if Nkind
(Entry_Name
) = N_Selected_Component
7450 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
7451 and then Typ
/= Standard_Void_Type
7458 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
7459 while Present
(It
.Typ
) loop
7460 if Covers
(Typ
, It
.Typ
) then
7461 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
7462 Set_Etype
(Entry_Name
, It
.Typ
);
7464 Generate_Reference
(It
.Typ
, N
, ' ');
7467 Get_Next_Interp
(I
, It
);
7472 Resolve_Entry
(Entry_Name
);
7474 if Nkind
(Entry_Name
) = N_Selected_Component
then
7476 -- Simple entry call
7478 Nam
:= Entity
(Selector_Name
(Entry_Name
));
7479 Obj
:= Prefix
(Entry_Name
);
7480 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
7482 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7484 -- Call to member of entry family
7486 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7487 Obj
:= Prefix
(Prefix
(Entry_Name
));
7488 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
7491 -- We cannot in general check the maximum depth of protected entry calls
7492 -- at compile time. But we can tell that any protected entry call at all
7493 -- violates a specified nesting depth of zero.
7495 if Is_Protected_Type
(Scope
(Nam
)) then
7496 Check_Restriction
(Max_Entry_Queue_Length
, N
);
7499 -- Use context type to disambiguate a protected function that can be
7500 -- called without actuals and that returns an array type, and where the
7501 -- argument list may be an indexing of the returned value.
7503 if Ekind
(Nam
) = E_Function
7504 and then Needs_No_Actuals
(Nam
)
7505 and then Present
(Parameter_Associations
(N
))
7507 ((Is_Array_Type
(Etype
(Nam
))
7508 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
7510 or else (Is_Access_Type
(Etype
(Nam
))
7511 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
7515 Component_Type
(Designated_Type
(Etype
(Nam
))))))
7518 Index_Node
: Node_Id
;
7522 Make_Indexed_Component
(Loc
,
7524 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
7525 Expressions
=> Parameter_Associations
(N
));
7527 -- Since we are correcting a node classification error made by the
7528 -- parser, we call Replace rather than Rewrite.
7530 Replace
(N
, Index_Node
);
7531 Set_Etype
(Prefix
(N
), Etype
(Nam
));
7533 Resolve_Indexed_Component
(N
, Typ
);
7538 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
7539 and then Present
(PPC_Wrapper
(Nam
))
7540 and then Current_Scope
/= PPC_Wrapper
(Nam
)
7542 -- Rewrite as call to the precondition wrapper, adding the task
7543 -- object to the list of actuals. If the call is to a member of an
7544 -- entry family, include the index as well.
7548 New_Actuals
: List_Id
;
7551 New_Actuals
:= New_List
(Obj
);
7553 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7554 Append_To
(New_Actuals
,
7555 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
7558 Append_List
(Parameter_Associations
(N
), New_Actuals
);
7560 Make_Procedure_Call_Statement
(Loc
,
7562 New_Occurrence_Of
(PPC_Wrapper
(Nam
), Loc
),
7563 Parameter_Associations
=> New_Actuals
);
7564 Rewrite
(N
, New_Call
);
7566 -- Preanalyze and resolve new call. Current procedure is called
7567 -- from Resolve_Call, after which expansion will take place.
7569 Preanalyze_And_Resolve
(N
);
7574 -- The operation name may have been overloaded. Order the actuals
7575 -- according to the formals of the resolved entity, and set the return
7576 -- type to that of the operation.
7579 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
7580 pragma Assert
(Norm_OK
);
7581 Set_Etype
(N
, Etype
(Nam
));
7584 Resolve_Actuals
(N
, Nam
);
7585 Check_Internal_Protected_Use
(N
, Nam
);
7587 -- Create a call reference to the entry
7589 Generate_Reference
(Nam
, Entry_Name
, 's');
7591 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
7592 Check_Potentially_Blocking_Operation
(N
);
7595 -- Verify that a procedure call cannot masquerade as an entry
7596 -- call where an entry call is expected.
7598 if Ekind
(Nam
) = E_Procedure
then
7599 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
7600 and then N
= Entry_Call_Statement
(Parent
(N
))
7602 Error_Msg_N
("entry call required in select statement", N
);
7604 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
7605 and then N
= Triggering_Statement
(Parent
(N
))
7607 Error_Msg_N
("triggering statement cannot be procedure call", N
);
7609 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
7610 and then not In_Open_Scopes
(Scope
(Nam
))
7612 Error_Msg_N
("task has no entry with this name", Entry_Name
);
7616 -- After resolution, entry calls and protected procedure calls are
7617 -- changed into entry calls, for expansion. The structure of the node
7618 -- does not change, so it can safely be done in place. Protected
7619 -- function calls must keep their structure because they are
7622 if Ekind
(Nam
) /= E_Function
then
7624 -- A protected operation that is not a function may modify the
7625 -- corresponding object, and cannot apply to a constant. If this
7626 -- is an internal call, the prefix is the type itself.
7628 if Is_Protected_Type
(Scope
(Nam
))
7629 and then not Is_Variable
(Obj
)
7630 and then (not Is_Entity_Name
(Obj
)
7631 or else not Is_Type
(Entity
(Obj
)))
7634 ("prefix of protected procedure or entry call must be variable",
7638 Actuals
:= Parameter_Associations
(N
);
7639 First_Named
:= First_Named_Actual
(N
);
7642 Make_Entry_Call_Statement
(Loc
,
7644 Parameter_Associations
=> Actuals
));
7646 Set_First_Named_Actual
(N
, First_Named
);
7647 Set_Analyzed
(N
, True);
7649 -- Protected functions can return on the secondary stack, in which
7650 -- case we must trigger the transient scope mechanism.
7652 elsif Expander_Active
7653 and then Requires_Transient_Scope
(Etype
(Nam
))
7655 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
7657 end Resolve_Entry_Call
;
7659 -------------------------
7660 -- Resolve_Equality_Op --
7661 -------------------------
7663 -- Both arguments must have the same type, and the boolean context does
7664 -- not participate in the resolution. The first pass verifies that the
7665 -- interpretation is not ambiguous, and the type of the left argument is
7666 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7667 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7668 -- though they carry a single (universal) type. Diagnose this case here.
7670 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7671 L
: constant Node_Id
:= Left_Opnd
(N
);
7672 R
: constant Node_Id
:= Right_Opnd
(N
);
7673 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
7675 procedure Check_If_Expression
(Cond
: Node_Id
);
7676 -- The resolution rule for if expressions requires that each such must
7677 -- have a unique type. This means that if several dependent expressions
7678 -- are of a non-null anonymous access type, and the context does not
7679 -- impose an expected type (as can be the case in an equality operation)
7680 -- the expression must be rejected.
7682 procedure Explain_Redundancy
(N
: Node_Id
);
7683 -- Attempt to explain the nature of a redundant comparison with True. If
7684 -- the expression N is too complex, this routine issues a general error
7687 function Find_Unique_Access_Type
return Entity_Id
;
7688 -- In the case of allocators and access attributes, the context must
7689 -- provide an indication of the specific access type to be used. If
7690 -- one operand is of such a "generic" access type, check whether there
7691 -- is a specific visible access type that has the same designated type.
7692 -- This is semantically dubious, and of no interest to any real code,
7693 -- but c48008a makes it all worthwhile.
7695 -------------------------
7696 -- Check_If_Expression --
7697 -------------------------
7699 procedure Check_If_Expression
(Cond
: Node_Id
) is
7700 Then_Expr
: Node_Id
;
7701 Else_Expr
: Node_Id
;
7704 if Nkind
(Cond
) = N_If_Expression
then
7705 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
7706 Else_Expr
:= Next
(Then_Expr
);
7708 if Nkind
(Then_Expr
) /= N_Null
7709 and then Nkind
(Else_Expr
) /= N_Null
7711 Error_Msg_N
("cannot determine type of if expression", Cond
);
7714 end Check_If_Expression
;
7716 ------------------------
7717 -- Explain_Redundancy --
7718 ------------------------
7720 procedure Explain_Redundancy
(N
: Node_Id
) is
7728 -- Strip the operand down to an entity
7731 if Nkind
(Val
) = N_Selected_Component
then
7732 Val
:= Selector_Name
(Val
);
7738 -- The construct denotes an entity
7740 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
7741 Val_Id
:= Entity
(Val
);
7743 -- Do not generate an error message when the comparison is done
7744 -- against the enumeration literal Standard.True.
7746 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
7748 -- Build a customized error message
7751 Add_Str_To_Name_Buffer
("?r?");
7753 if Ekind
(Val_Id
) = E_Component
then
7754 Add_Str_To_Name_Buffer
("component ");
7756 elsif Ekind
(Val_Id
) = E_Constant
then
7757 Add_Str_To_Name_Buffer
("constant ");
7759 elsif Ekind
(Val_Id
) = E_Discriminant
then
7760 Add_Str_To_Name_Buffer
("discriminant ");
7762 elsif Is_Formal
(Val_Id
) then
7763 Add_Str_To_Name_Buffer
("parameter ");
7765 elsif Ekind
(Val_Id
) = E_Variable
then
7766 Add_Str_To_Name_Buffer
("variable ");
7769 Add_Str_To_Name_Buffer
("& is always True!");
7772 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
7775 -- The construct is too complex to disect, issue a general message
7778 Error_Msg_N
("?r?expression is always True!", Val
);
7780 end Explain_Redundancy
;
7782 -----------------------------
7783 -- Find_Unique_Access_Type --
7784 -----------------------------
7786 function Find_Unique_Access_Type
return Entity_Id
is
7792 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
7793 E_Access_Attribute_Type
)
7795 Acc
:= Designated_Type
(Etype
(R
));
7797 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
7798 E_Access_Attribute_Type
)
7800 Acc
:= Designated_Type
(Etype
(L
));
7806 while S
/= Standard_Standard
loop
7807 E
:= First_Entity
(S
);
7808 while Present
(E
) loop
7810 and then Is_Access_Type
(E
)
7811 and then Ekind
(E
) /= E_Allocator_Type
7812 and then Designated_Type
(E
) = Base_Type
(Acc
)
7824 end Find_Unique_Access_Type
;
7826 -- Start of processing for Resolve_Equality_Op
7829 Set_Etype
(N
, Base_Type
(Typ
));
7830 Generate_Reference
(T
, N
, ' ');
7832 if T
= Any_Fixed
then
7833 T
:= Unique_Fixed_Point_Type
(L
);
7836 if T
/= Any_Type
then
7837 if T
= Any_String
or else
7838 T
= Any_Composite
or else
7841 if T
= Any_Character
then
7842 Ambiguous_Character
(L
);
7844 Error_Msg_N
("ambiguous operands for equality", N
);
7847 Set_Etype
(N
, Any_Type
);
7850 elsif T
= Any_Access
7851 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7853 T
:= Find_Unique_Access_Type
;
7856 Error_Msg_N
("ambiguous operands for equality", N
);
7857 Set_Etype
(N
, Any_Type
);
7861 -- If expressions must have a single type, and if the context does
7862 -- not impose one the dependent expressions cannot be anonymous
7865 -- Why no similar processing for case expressions???
7867 elsif Ada_Version
>= Ada_2012
7868 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
7869 E_Anonymous_Access_Subprogram_Type
)
7870 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
7871 E_Anonymous_Access_Subprogram_Type
)
7873 Check_If_Expression
(L
);
7874 Check_If_Expression
(R
);
7880 -- In SPARK, equality operators = and /= for array types other than
7881 -- String are only defined when, for each index position, the
7882 -- operands have equal static bounds.
7884 if Is_Array_Type
(T
) then
7886 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7887 -- operation if not needed.
7889 if Restriction_Check_Required
(SPARK_05
)
7890 and then Base_Type
(T
) /= Standard_String
7891 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7892 and then Etype
(L
) /= Any_Composite
-- or else L in error
7893 and then Etype
(R
) /= Any_Composite
-- or else R in error
7894 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
7896 Check_SPARK_05_Restriction
7897 ("array types should have matching static bounds", N
);
7901 -- If the unique type is a class-wide type then it will be expanded
7902 -- into a dispatching call to the predefined primitive. Therefore we
7903 -- check here for potential violation of such restriction.
7905 if Is_Class_Wide_Type
(T
) then
7906 Check_Restriction
(No_Dispatching_Calls
, N
);
7909 if Warn_On_Redundant_Constructs
7910 and then Comes_From_Source
(N
)
7911 and then Comes_From_Source
(R
)
7912 and then Is_Entity_Name
(R
)
7913 and then Entity
(R
) = Standard_True
7915 Error_Msg_N
-- CODEFIX
7916 ("?r?comparison with True is redundant!", N
);
7917 Explain_Redundancy
(Original_Node
(R
));
7920 Check_Unset_Reference
(L
);
7921 Check_Unset_Reference
(R
);
7922 Generate_Operator_Reference
(N
, T
);
7923 Check_Low_Bound_Tested
(N
);
7925 -- If this is an inequality, it may be the implicit inequality
7926 -- created for a user-defined operation, in which case the corres-
7927 -- ponding equality operation is not intrinsic, and the operation
7928 -- cannot be constant-folded. Else fold.
7930 if Nkind
(N
) = N_Op_Eq
7931 or else Comes_From_Source
(Entity
(N
))
7932 or else Ekind
(Entity
(N
)) = E_Operator
7933 or else Is_Intrinsic_Subprogram
7934 (Corresponding_Equality
(Entity
(N
)))
7936 Analyze_Dimension
(N
);
7937 Eval_Relational_Op
(N
);
7939 elsif Nkind
(N
) = N_Op_Ne
7940 and then Is_Abstract_Subprogram
(Entity
(N
))
7942 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
7945 -- Ada 2005: If one operand is an anonymous access type, convert the
7946 -- other operand to it, to ensure that the underlying types match in
7947 -- the back-end. Same for access_to_subprogram, and the conversion
7948 -- verifies that the types are subtype conformant.
7950 -- We apply the same conversion in the case one of the operands is a
7951 -- private subtype of the type of the other.
7953 -- Why the Expander_Active test here ???
7957 (Ekind_In
(T
, E_Anonymous_Access_Type
,
7958 E_Anonymous_Access_Subprogram_Type
)
7959 or else Is_Private_Type
(T
))
7961 if Etype
(L
) /= T
then
7963 Make_Unchecked_Type_Conversion
(Sloc
(L
),
7964 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
7965 Expression
=> Relocate_Node
(L
)));
7966 Analyze_And_Resolve
(L
, T
);
7969 if (Etype
(R
)) /= T
then
7971 Make_Unchecked_Type_Conversion
(Sloc
(R
),
7972 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
7973 Expression
=> Relocate_Node
(R
)));
7974 Analyze_And_Resolve
(R
, T
);
7978 end Resolve_Equality_Op
;
7980 ----------------------------------
7981 -- Resolve_Explicit_Dereference --
7982 ----------------------------------
7984 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
7985 Loc
: constant Source_Ptr
:= Sloc
(N
);
7987 P
: constant Node_Id
:= Prefix
(N
);
7990 -- The candidate prefix type, if overloaded
7996 Check_Fully_Declared_Prefix
(Typ
, P
);
7999 -- A useful optimization: check whether the dereference denotes an
8000 -- element of a container, and if so rewrite it as a call to the
8001 -- corresponding Element function.
8003 -- Disabled for now, on advice of ARG. A more restricted form of the
8004 -- predicate might be acceptable ???
8006 -- if Is_Container_Element (N) then
8010 if Is_Overloaded
(P
) then
8012 -- Use the context type to select the prefix that has the correct
8013 -- designated type. Keep the first match, which will be the inner-
8016 Get_First_Interp
(P
, I
, It
);
8018 while Present
(It
.Typ
) loop
8019 if Is_Access_Type
(It
.Typ
)
8020 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
8026 -- Remove access types that do not match, but preserve access
8027 -- to subprogram interpretations, in case a further dereference
8028 -- is needed (see below).
8030 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8034 Get_Next_Interp
(I
, It
);
8037 if Present
(P_Typ
) then
8039 Set_Etype
(N
, Designated_Type
(P_Typ
));
8042 -- If no interpretation covers the designated type of the prefix,
8043 -- this is the pathological case where not all implementations of
8044 -- the prefix allow the interpretation of the node as a call. Now
8045 -- that the expected type is known, Remove other interpretations
8046 -- from prefix, rewrite it as a call, and resolve again, so that
8047 -- the proper call node is generated.
8049 Get_First_Interp
(P
, I
, It
);
8050 while Present
(It
.Typ
) loop
8051 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8055 Get_Next_Interp
(I
, It
);
8059 Make_Function_Call
(Loc
,
8061 Make_Explicit_Dereference
(Loc
,
8063 Parameter_Associations
=> New_List
);
8065 Save_Interps
(N
, New_N
);
8067 Analyze_And_Resolve
(N
, Typ
);
8071 -- If not overloaded, resolve P with its own type
8077 if Is_Access_Type
(Etype
(P
)) then
8078 Apply_Access_Check
(N
);
8081 -- If the designated type is a packed unconstrained array type, and the
8082 -- explicit dereference is not in the context of an attribute reference,
8083 -- then we must compute and set the actual subtype, since it is needed
8084 -- by Gigi. The reason we exclude the attribute case is that this is
8085 -- handled fine by Gigi, and in fact we use such attributes to build the
8086 -- actual subtype. We also exclude generated code (which builds actual
8087 -- subtypes directly if they are needed).
8089 if Is_Array_Type
(Etype
(N
))
8090 and then Is_Packed
(Etype
(N
))
8091 and then not Is_Constrained
(Etype
(N
))
8092 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
8093 and then Comes_From_Source
(N
)
8095 Set_Etype
(N
, Get_Actual_Subtype
(N
));
8098 -- Note: No Eval processing is required for an explicit dereference,
8099 -- because such a name can never be static.
8101 end Resolve_Explicit_Dereference
;
8103 -------------------------------------
8104 -- Resolve_Expression_With_Actions --
8105 -------------------------------------
8107 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
8111 -- If N has no actions, and its expression has been constant folded,
8112 -- then rewrite N as just its expression. Note, we can't do this in
8113 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8114 -- Expression (N) to be expanded again.
8116 if Is_Empty_List
(Actions
(N
))
8117 and then Compile_Time_Known_Value
(Expression
(N
))
8119 Rewrite
(N
, Expression
(N
));
8121 end Resolve_Expression_With_Actions
;
8123 ----------------------------------
8124 -- Resolve_Generalized_Indexing --
8125 ----------------------------------
8127 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
) is
8128 Indexing
: constant Node_Id
:= Generalized_Indexing
(N
);
8134 -- In ASIS mode, propagate the information about the indices back to
8135 -- to the original indexing node. The generalized indexing is either
8136 -- a function call, or a dereference of one. The actuals include the
8137 -- prefix of the original node, which is the container expression.
8140 Resolve
(Indexing
, Typ
);
8141 Set_Etype
(N
, Etype
(Indexing
));
8142 Set_Is_Overloaded
(N
, False);
8145 while Nkind_In
(Call
, N_Explicit_Dereference
, N_Selected_Component
)
8147 Call
:= Prefix
(Call
);
8150 if Nkind
(Call
) = N_Function_Call
then
8151 Indices
:= Parameter_Associations
(Call
);
8152 Pref
:= Remove_Head
(Indices
);
8153 Set_Expressions
(N
, Indices
);
8154 Set_Prefix
(N
, Pref
);
8158 Rewrite
(N
, Indexing
);
8161 end Resolve_Generalized_Indexing
;
8163 ---------------------------
8164 -- Resolve_If_Expression --
8165 ---------------------------
8167 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8168 Condition
: constant Node_Id
:= First
(Expressions
(N
));
8169 Then_Expr
: constant Node_Id
:= Next
(Condition
);
8170 Else_Expr
: Node_Id
:= Next
(Then_Expr
);
8171 Else_Typ
: Entity_Id
;
8172 Then_Typ
: Entity_Id
;
8175 Resolve
(Condition
, Any_Boolean
);
8176 Resolve
(Then_Expr
, Typ
);
8177 Then_Typ
:= Etype
(Then_Expr
);
8179 -- When the "then" expression is of a scalar subtype different from the
8180 -- result subtype, then insert a conversion to ensure the generation of
8181 -- a constraint check. The same is done for the else part below, again
8182 -- comparing subtypes rather than base types.
8184 if Is_Scalar_Type
(Then_Typ
)
8185 and then Then_Typ
/= Typ
8187 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
8188 Analyze_And_Resolve
(Then_Expr
, Typ
);
8191 -- If ELSE expression present, just resolve using the determined type
8193 if Present
(Else_Expr
) then
8194 Resolve
(Else_Expr
, Typ
);
8195 Else_Typ
:= Etype
(Else_Expr
);
8197 if Is_Scalar_Type
(Else_Typ
)
8198 and then Else_Typ
/= Typ
8200 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
8201 Analyze_And_Resolve
(Else_Expr
, Typ
);
8204 -- If no ELSE expression is present, root type must be Standard.Boolean
8205 -- and we provide a Standard.True result converted to the appropriate
8206 -- Boolean type (in case it is a derived boolean type).
8208 elsif Root_Type
(Typ
) = Standard_Boolean
then
8210 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
8211 Analyze_And_Resolve
(Else_Expr
, Typ
);
8212 Append_To
(Expressions
(N
), Else_Expr
);
8215 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
8216 Append_To
(Expressions
(N
), Error
);
8220 Eval_If_Expression
(N
);
8221 end Resolve_If_Expression
;
8223 -------------------------------
8224 -- Resolve_Indexed_Component --
8225 -------------------------------
8227 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8228 Name
: constant Node_Id
:= Prefix
(N
);
8230 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
8234 if Present
(Generalized_Indexing
(N
)) then
8235 Resolve_Generalized_Indexing
(N
, Typ
);
8239 if Is_Overloaded
(Name
) then
8241 -- Use the context type to select the prefix that yields the correct
8247 I1
: Interp_Index
:= 0;
8248 P
: constant Node_Id
:= Prefix
(N
);
8249 Found
: Boolean := False;
8252 Get_First_Interp
(P
, I
, It
);
8253 while Present
(It
.Typ
) loop
8254 if (Is_Array_Type
(It
.Typ
)
8255 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
8256 or else (Is_Access_Type
(It
.Typ
)
8257 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8261 Component_Type
(Designated_Type
(It
.Typ
))))
8264 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8266 if It
= No_Interp
then
8267 Error_Msg_N
("ambiguous prefix for indexing", N
);
8273 Array_Type
:= It
.Typ
;
8279 Array_Type
:= It
.Typ
;
8284 Get_Next_Interp
(I
, It
);
8289 Array_Type
:= Etype
(Name
);
8292 Resolve
(Name
, Array_Type
);
8293 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
8295 -- If prefix is access type, dereference to get real array type.
8296 -- Note: we do not apply an access check because the expander always
8297 -- introduces an explicit dereference, and the check will happen there.
8299 if Is_Access_Type
(Array_Type
) then
8300 Array_Type
:= Designated_Type
(Array_Type
);
8303 -- If name was overloaded, set component type correctly now
8304 -- If a misplaced call to an entry family (which has no index types)
8305 -- return. Error will be diagnosed from calling context.
8307 if Is_Array_Type
(Array_Type
) then
8308 Set_Etype
(N
, Component_Type
(Array_Type
));
8313 Index
:= First_Index
(Array_Type
);
8314 Expr
:= First
(Expressions
(N
));
8316 -- The prefix may have resolved to a string literal, in which case its
8317 -- etype has a special representation. This is only possible currently
8318 -- if the prefix is a static concatenation, written in functional
8321 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
8322 Resolve
(Expr
, Standard_Positive
);
8325 while Present
(Index
) and Present
(Expr
) loop
8326 Resolve
(Expr
, Etype
(Index
));
8327 Check_Unset_Reference
(Expr
);
8329 if Is_Scalar_Type
(Etype
(Expr
)) then
8330 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
8332 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
8340 Analyze_Dimension
(N
);
8342 -- Do not generate the warning on suspicious index if we are analyzing
8343 -- package Ada.Tags; otherwise we will report the warning with the
8344 -- Prims_Ptr field of the dispatch table.
8346 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
8348 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
8351 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
8352 Eval_Indexed_Component
(N
);
8355 -- If the array type is atomic, and the component is not atomic, then
8356 -- this is worth a warning, since we have a situation where the access
8357 -- to the component may cause extra read/writes of the atomic array
8358 -- object, or partial word accesses, which could be unexpected.
8360 if Nkind
(N
) = N_Indexed_Component
8361 and then Is_Atomic_Ref_With_Address
(N
)
8362 and then not (Has_Atomic_Components
(Array_Type
)
8363 or else (Is_Entity_Name
(Prefix
(N
))
8364 and then Has_Atomic_Components
8365 (Entity
(Prefix
(N
)))))
8366 and then not Is_Atomic
(Component_Type
(Array_Type
))
8368 Error_Msg_N
("??access to non-atomic component of atomic array",
8370 Error_Msg_N
("??\may cause unexpected accesses to atomic object",
8373 end Resolve_Indexed_Component
;
8375 -----------------------------
8376 -- Resolve_Integer_Literal --
8377 -----------------------------
8379 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8382 Eval_Integer_Literal
(N
);
8383 end Resolve_Integer_Literal
;
8385 --------------------------------
8386 -- Resolve_Intrinsic_Operator --
8387 --------------------------------
8389 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
8390 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8395 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
8396 -- If the operand is a literal, it cannot be the expression in a
8397 -- conversion. Use a qualified expression instead.
8399 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
8400 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
8403 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
8405 Make_Qualified_Expression
(Loc
,
8406 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
8407 Expression
=> Relocate_Node
(Opnd
));
8411 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
8415 end Convert_Operand
;
8417 -- Start of processing for Resolve_Intrinsic_Operator
8420 -- We must preserve the original entity in a generic setting, so that
8421 -- the legality of the operation can be verified in an instance.
8423 if not Expander_Active
then
8428 while Scope
(Op
) /= Standard_Standard
loop
8430 pragma Assert
(Present
(Op
));
8434 Set_Is_Overloaded
(N
, False);
8436 -- If the result or operand types are private, rewrite with unchecked
8437 -- conversions on the operands and the result, to expose the proper
8438 -- underlying numeric type.
8440 if Is_Private_Type
(Typ
)
8441 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
8442 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
8444 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
8445 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
8446 -- What on earth is this commented out fragment of code???
8448 if Nkind
(N
) = N_Op_Expon
then
8449 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
8451 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
8454 if Nkind
(Arg1
) = N_Type_Conversion
then
8455 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8458 if Nkind
(Arg2
) = N_Type_Conversion
then
8459 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8462 Set_Left_Opnd
(N
, Arg1
);
8463 Set_Right_Opnd
(N
, Arg2
);
8465 Set_Etype
(N
, Btyp
);
8466 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8469 elsif Typ
/= Etype
(Left_Opnd
(N
))
8470 or else Typ
/= Etype
(Right_Opnd
(N
))
8472 -- Add explicit conversion where needed, and save interpretations in
8473 -- case operands are overloaded.
8475 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
8476 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
8478 if Nkind
(Arg1
) = N_Type_Conversion
then
8479 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8481 Save_Interps
(Left_Opnd
(N
), Arg1
);
8484 if Nkind
(Arg2
) = N_Type_Conversion
then
8485 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8487 Save_Interps
(Right_Opnd
(N
), Arg2
);
8490 Rewrite
(Left_Opnd
(N
), Arg1
);
8491 Rewrite
(Right_Opnd
(N
), Arg2
);
8494 Resolve_Arithmetic_Op
(N
, Typ
);
8497 Resolve_Arithmetic_Op
(N
, Typ
);
8499 end Resolve_Intrinsic_Operator
;
8501 --------------------------------------
8502 -- Resolve_Intrinsic_Unary_Operator --
8503 --------------------------------------
8505 procedure Resolve_Intrinsic_Unary_Operator
8509 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8515 while Scope
(Op
) /= Standard_Standard
loop
8517 pragma Assert
(Present
(Op
));
8522 if Is_Private_Type
(Typ
) then
8523 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
8524 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8526 Set_Right_Opnd
(N
, Arg2
);
8528 Set_Etype
(N
, Btyp
);
8529 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8533 Resolve_Unary_Op
(N
, Typ
);
8535 end Resolve_Intrinsic_Unary_Operator
;
8537 ------------------------
8538 -- Resolve_Logical_Op --
8539 ------------------------
8541 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8545 Check_No_Direct_Boolean_Operators
(N
);
8547 -- Predefined operations on scalar types yield the base type. On the
8548 -- other hand, logical operations on arrays yield the type of the
8549 -- arguments (and the context).
8551 if Is_Array_Type
(Typ
) then
8554 B_Typ
:= Base_Type
(Typ
);
8557 -- The following test is required because the operands of the operation
8558 -- may be literals, in which case the resulting type appears to be
8559 -- compatible with a signed integer type, when in fact it is compatible
8560 -- only with modular types. If the context itself is universal, the
8561 -- operation is illegal.
8563 if not Valid_Boolean_Arg
(Typ
) then
8564 Error_Msg_N
("invalid context for logical operation", N
);
8565 Set_Etype
(N
, Any_Type
);
8568 elsif Typ
= Any_Modular
then
8570 ("no modular type available in this context", N
);
8571 Set_Etype
(N
, Any_Type
);
8574 elsif Is_Modular_Integer_Type
(Typ
)
8575 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
8576 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
8578 Check_For_Visible_Operator
(N
, B_Typ
);
8581 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8582 -- is active and the result type is standard Boolean (do not mess with
8583 -- ops that return a nonstandard Boolean type, because something strange
8586 -- Note: you might expect this replacement to be done during expansion,
8587 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8588 -- is used, no part of the right operand of an "and" or "or" operator
8589 -- should be executed if the left operand would short-circuit the
8590 -- evaluation of the corresponding "and then" or "or else". If we left
8591 -- the replacement to expansion time, then run-time checks associated
8592 -- with such operands would be evaluated unconditionally, due to being
8593 -- before the condition prior to the rewriting as short-circuit forms
8594 -- during expansion.
8596 if Short_Circuit_And_Or
8597 and then B_Typ
= Standard_Boolean
8598 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
8600 if Nkind
(N
) = N_Op_And
then
8602 Make_And_Then
(Sloc
(N
),
8603 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8604 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8605 Analyze_And_Resolve
(N
, B_Typ
);
8607 -- Case of OR changed to OR ELSE
8611 Make_Or_Else
(Sloc
(N
),
8612 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8613 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8614 Analyze_And_Resolve
(N
, B_Typ
);
8617 -- Return now, since analysis of the rewritten ops will take care of
8618 -- other reference bookkeeping and expression folding.
8623 Resolve
(Left_Opnd
(N
), B_Typ
);
8624 Resolve
(Right_Opnd
(N
), B_Typ
);
8626 Check_Unset_Reference
(Left_Opnd
(N
));
8627 Check_Unset_Reference
(Right_Opnd
(N
));
8629 Set_Etype
(N
, B_Typ
);
8630 Generate_Operator_Reference
(N
, B_Typ
);
8631 Eval_Logical_Op
(N
);
8633 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8634 -- only when both operands have same static lower and higher bounds. Of
8635 -- course the types have to match, so only check if operands are
8636 -- compatible and the node itself has no errors.
8638 if Is_Array_Type
(B_Typ
)
8639 and then Nkind
(N
) in N_Binary_Op
8642 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
8643 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
8646 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8647 -- operation if not needed.
8649 if Restriction_Check_Required
(SPARK_05
)
8650 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
8651 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
8652 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
8653 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
8655 Check_SPARK_05_Restriction
8656 ("array types should have matching static bounds", N
);
8661 Check_Function_Writable_Actuals
(N
);
8662 end Resolve_Logical_Op
;
8664 ---------------------------
8665 -- Resolve_Membership_Op --
8666 ---------------------------
8668 -- The context can only be a boolean type, and does not determine the
8669 -- arguments. Arguments should be unambiguous, but the preference rule for
8670 -- universal types applies.
8672 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8673 pragma Warnings
(Off
, Typ
);
8675 L
: constant Node_Id
:= Left_Opnd
(N
);
8676 R
: constant Node_Id
:= Right_Opnd
(N
);
8679 procedure Resolve_Set_Membership
;
8680 -- Analysis has determined a unique type for the left operand. Use it to
8681 -- resolve the disjuncts.
8683 ----------------------------
8684 -- Resolve_Set_Membership --
8685 ----------------------------
8687 procedure Resolve_Set_Membership
is
8689 Ltyp
: constant Entity_Id
:= Etype
(L
);
8694 Alt
:= First
(Alternatives
(N
));
8695 while Present
(Alt
) loop
8697 -- Alternative is an expression, a range
8698 -- or a subtype mark.
8700 if not Is_Entity_Name
(Alt
)
8701 or else not Is_Type
(Entity
(Alt
))
8703 Resolve
(Alt
, Ltyp
);
8709 -- Check for duplicates for discrete case
8711 if Is_Discrete_Type
(Ltyp
) then
8718 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
8722 -- Loop checking duplicates. This is quadratic, but giant sets
8723 -- are unlikely in this context so it's a reasonable choice.
8726 Alt
:= First
(Alternatives
(N
));
8727 while Present
(Alt
) loop
8728 if Is_OK_Static_Expression
(Alt
)
8729 and then (Nkind_In
(Alt
, N_Integer_Literal
,
8730 N_Character_Literal
)
8731 or else Nkind
(Alt
) in N_Has_Entity
)
8734 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
8736 for J
in 1 .. Nalts
- 1 loop
8737 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
8738 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
8739 Error_Msg_N
("duplicate of value given#??", Alt
);
8748 end Resolve_Set_Membership
;
8750 -- Start of processing for Resolve_Membership_Op
8753 if L
= Error
or else R
= Error
then
8757 if Present
(Alternatives
(N
)) then
8758 Resolve_Set_Membership
;
8761 elsif not Is_Overloaded
(R
)
8763 (Etype
(R
) = Universal_Integer
8765 Etype
(R
) = Universal_Real
)
8766 and then Is_Overloaded
(L
)
8770 -- Ada 2005 (AI-251): Support the following case:
8772 -- type I is interface;
8773 -- type T is tagged ...
8775 -- function Test (O : I'Class) is
8777 -- return O in T'Class.
8780 -- In this case we have nothing else to do. The membership test will be
8781 -- done at run time.
8783 elsif Ada_Version
>= Ada_2005
8784 and then Is_Class_Wide_Type
(Etype
(L
))
8785 and then Is_Interface
(Etype
(L
))
8786 and then Is_Class_Wide_Type
(Etype
(R
))
8787 and then not Is_Interface
(Etype
(R
))
8791 T
:= Intersect_Types
(L
, R
);
8794 -- If mixed-mode operations are present and operands are all literal,
8795 -- the only interpretation involves Duration, which is probably not
8796 -- the intention of the programmer.
8798 if T
= Any_Fixed
then
8799 T
:= Unique_Fixed_Point_Type
(N
);
8801 if T
= Any_Type
then
8807 Check_Unset_Reference
(L
);
8809 if Nkind
(R
) = N_Range
8810 and then not Is_Scalar_Type
(T
)
8812 Error_Msg_N
("scalar type required for range", R
);
8815 if Is_Entity_Name
(R
) then
8816 Freeze_Expression
(R
);
8819 Check_Unset_Reference
(R
);
8822 -- Here after resolving membership operation
8826 Eval_Membership_Op
(N
);
8827 Check_Function_Writable_Actuals
(N
);
8828 end Resolve_Membership_Op
;
8834 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
8835 Loc
: constant Source_Ptr
:= Sloc
(N
);
8838 -- Handle restriction against anonymous null access values This
8839 -- restriction can be turned off using -gnatdj.
8841 -- Ada 2005 (AI-231): Remove restriction
8843 if Ada_Version
< Ada_2005
8844 and then not Debug_Flag_J
8845 and then Ekind
(Typ
) = E_Anonymous_Access_Type
8846 and then Comes_From_Source
(N
)
8848 -- In the common case of a call which uses an explicitly null value
8849 -- for an access parameter, give specialized error message.
8851 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
8853 ("null is not allowed as argument for an access parameter", N
);
8855 -- Standard message for all other cases (are there any?)
8859 ("null cannot be of an anonymous access type", N
);
8863 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8864 -- assignment to a null-excluding object
8866 if Ada_Version
>= Ada_2005
8867 and then Can_Never_Be_Null
(Typ
)
8868 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
8870 if not Inside_Init_Proc
then
8872 (Compile_Time_Constraint_Error
(N
,
8873 "(Ada 2005) null not allowed in null-excluding objects??"),
8874 Make_Raise_Constraint_Error
(Loc
,
8875 Reason
=> CE_Access_Check_Failed
));
8878 Make_Raise_Constraint_Error
(Loc
,
8879 Reason
=> CE_Access_Check_Failed
));
8883 -- In a distributed context, null for a remote access to subprogram may
8884 -- need to be replaced with a special record aggregate. In this case,
8885 -- return after having done the transformation.
8887 if (Ekind
(Typ
) = E_Record_Type
8888 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
8889 and then Remote_AST_Null_Value
(N
, Typ
)
8894 -- The null literal takes its type from the context
8899 -----------------------
8900 -- Resolve_Op_Concat --
8901 -----------------------
8903 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
8905 -- We wish to avoid deep recursion, because concatenations are often
8906 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8907 -- operands nonrecursively until we find something that is not a simple
8908 -- concatenation (A in this case). We resolve that, and then walk back
8909 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8910 -- to do the rest of the work at each level. The Parent pointers allow
8911 -- us to avoid recursion, and thus avoid running out of memory. See also
8912 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8918 -- The following code is equivalent to:
8920 -- Resolve_Op_Concat_First (NN, Typ);
8921 -- Resolve_Op_Concat_Arg (N, ...);
8922 -- Resolve_Op_Concat_Rest (N, Typ);
8924 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8925 -- operand is a concatenation.
8927 -- Walk down left operands
8930 Resolve_Op_Concat_First
(NN
, Typ
);
8931 Op1
:= Left_Opnd
(NN
);
8932 exit when not (Nkind
(Op1
) = N_Op_Concat
8933 and then not Is_Array_Type
(Component_Type
(Typ
))
8934 and then Entity
(Op1
) = Entity
(NN
));
8938 -- Now (given the above example) NN is A&B and Op1 is A
8940 -- First resolve Op1 ...
8942 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
8944 -- ... then walk NN back up until we reach N (where we started), calling
8945 -- Resolve_Op_Concat_Rest along the way.
8948 Resolve_Op_Concat_Rest
(NN
, Typ
);
8953 if Base_Type
(Etype
(N
)) /= Standard_String
then
8954 Check_SPARK_05_Restriction
8955 ("result of concatenation should have type String", N
);
8957 end Resolve_Op_Concat
;
8959 ---------------------------
8960 -- Resolve_Op_Concat_Arg --
8961 ---------------------------
8963 procedure Resolve_Op_Concat_Arg
8969 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
8970 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
8975 or else (not Is_Overloaded
(Arg
)
8976 and then Etype
(Arg
) /= Any_Composite
8977 and then Covers
(Ctyp
, Etype
(Arg
)))
8979 Resolve
(Arg
, Ctyp
);
8981 Resolve
(Arg
, Btyp
);
8984 -- If both Array & Array and Array & Component are visible, there is a
8985 -- potential ambiguity that must be reported.
8987 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
8988 if Nkind
(Arg
) = N_Aggregate
8989 and then Is_Composite_Type
(Ctyp
)
8991 if Is_Private_Type
(Ctyp
) then
8992 Resolve
(Arg
, Btyp
);
8994 -- If the operation is user-defined and not overloaded use its
8995 -- profile. The operation may be a renaming, in which case it has
8996 -- been rewritten, and we want the original profile.
8998 elsif not Is_Overloaded
(N
)
8999 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
9000 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
9004 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
9007 -- Otherwise an aggregate may match both the array type and the
9011 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
9012 Set_Etype
(Arg
, Any_Type
);
9016 if Is_Overloaded
(Arg
)
9017 and then Has_Compatible_Type
(Arg
, Typ
)
9018 and then Etype
(Arg
) /= Any_Type
9026 Get_First_Interp
(Arg
, I
, It
);
9028 Get_Next_Interp
(I
, It
);
9030 -- Special-case the error message when the overloading is
9031 -- caused by a function that yields an array and can be
9032 -- called without parameters.
9034 if It
.Nam
= Func
then
9035 Error_Msg_Sloc
:= Sloc
(Func
);
9036 Error_Msg_N
("ambiguous call to function#", Arg
);
9038 ("\\interpretation as call yields&", Arg
, Typ
);
9040 ("\\interpretation as indexing of call yields&",
9041 Arg
, Component_Type
(Typ
));
9044 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
9046 Get_First_Interp
(Arg
, I
, It
);
9047 while Present
(It
.Nam
) loop
9048 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
9050 if Base_Type
(It
.Typ
) = Btyp
9052 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
9054 Error_Msg_N
-- CODEFIX
9055 ("\\possible interpretation#", Arg
);
9058 Get_Next_Interp
(I
, It
);
9064 Resolve
(Arg
, Component_Type
(Typ
));
9066 if Nkind
(Arg
) = N_String_Literal
then
9067 Set_Etype
(Arg
, Component_Type
(Typ
));
9070 if Arg
= Left_Opnd
(N
) then
9071 Set_Is_Component_Left_Opnd
(N
);
9073 Set_Is_Component_Right_Opnd
(N
);
9078 Resolve
(Arg
, Btyp
);
9081 -- Concatenation is restricted in SPARK: each operand must be either a
9082 -- string literal, the name of a string constant, a static character or
9083 -- string expression, or another concatenation. Arg cannot be a
9084 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9085 -- separately on each final operand, past concatenation operations.
9087 if Is_Character_Type
(Etype
(Arg
)) then
9088 if not Is_OK_Static_Expression
(Arg
) then
9089 Check_SPARK_05_Restriction
9090 ("character operand for concatenation should be static", Arg
);
9093 elsif Is_String_Type
(Etype
(Arg
)) then
9094 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
9095 and then Is_Constant_Object
(Entity
(Arg
)))
9096 and then not Is_OK_Static_Expression
(Arg
)
9098 Check_SPARK_05_Restriction
9099 ("string operand for concatenation should be static", Arg
);
9102 -- Do not issue error on an operand that is neither a character nor a
9103 -- string, as the error is issued in Resolve_Op_Concat.
9109 Check_Unset_Reference
(Arg
);
9110 end Resolve_Op_Concat_Arg
;
9112 -----------------------------
9113 -- Resolve_Op_Concat_First --
9114 -----------------------------
9116 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
9117 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9118 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9119 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9122 -- The parser folds an enormous sequence of concatenations of string
9123 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9124 -- in the right operand. If the expression resolves to a predefined "&"
9125 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9126 -- we give an error. See P_Simple_Expression in Par.Ch4.
9128 if Nkind
(Op2
) = N_String_Literal
9129 and then Is_Folded_In_Parser
(Op2
)
9130 and then Ekind
(Entity
(N
)) = E_Function
9132 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
9133 and then String_Length
(Strval
(Op1
)) = 0);
9134 Error_Msg_N
("too many user-defined concatenations", N
);
9138 Set_Etype
(N
, Btyp
);
9140 if Is_Limited_Composite
(Btyp
) then
9141 Error_Msg_N
("concatenation not available for limited array", N
);
9142 Explain_Limited_Type
(Btyp
, N
);
9144 end Resolve_Op_Concat_First
;
9146 ----------------------------
9147 -- Resolve_Op_Concat_Rest --
9148 ----------------------------
9150 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
9151 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9152 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9155 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
9157 Generate_Operator_Reference
(N
, Typ
);
9159 if Is_String_Type
(Typ
) then
9160 Eval_Concatenation
(N
);
9163 -- If this is not a static concatenation, but the result is a string
9164 -- type (and not an array of strings) ensure that static string operands
9165 -- have their subtypes properly constructed.
9167 if Nkind
(N
) /= N_String_Literal
9168 and then Is_Character_Type
(Component_Type
(Typ
))
9170 Set_String_Literal_Subtype
(Op1
, Typ
);
9171 Set_String_Literal_Subtype
(Op2
, Typ
);
9173 end Resolve_Op_Concat_Rest
;
9175 ----------------------
9176 -- Resolve_Op_Expon --
9177 ----------------------
9179 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
9180 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9183 -- Catch attempts to do fixed-point exponentiation with universal
9184 -- operands, which is a case where the illegality is not caught during
9185 -- normal operator analysis. This is not done in preanalysis mode
9186 -- since the tree is not fully decorated during preanalysis.
9188 if Full_Analysis
then
9189 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
9190 Error_Msg_N
("exponentiation not available for fixed point", N
);
9193 elsif Nkind
(Parent
(N
)) in N_Op
9194 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
9195 and then Etype
(N
) = Universal_Real
9196 and then Comes_From_Source
(N
)
9198 Error_Msg_N
("exponentiation not available for fixed point", N
);
9203 if Comes_From_Source
(N
)
9204 and then Ekind
(Entity
(N
)) = E_Function
9205 and then Is_Imported
(Entity
(N
))
9206 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9208 Resolve_Intrinsic_Operator
(N
, Typ
);
9212 if Etype
(Left_Opnd
(N
)) = Universal_Integer
9213 or else Etype
(Left_Opnd
(N
)) = Universal_Real
9215 Check_For_Visible_Operator
(N
, B_Typ
);
9218 -- We do the resolution using the base type, because intermediate values
9219 -- in expressions are always of the base type, not a subtype of it.
9221 Resolve
(Left_Opnd
(N
), B_Typ
);
9222 Resolve
(Right_Opnd
(N
), Standard_Integer
);
9224 -- For integer types, right argument must be in Natural range
9226 if Is_Integer_Type
(Typ
) then
9227 Apply_Scalar_Range_Check
(Right_Opnd
(N
), Standard_Natural
);
9230 Check_Unset_Reference
(Left_Opnd
(N
));
9231 Check_Unset_Reference
(Right_Opnd
(N
));
9233 Set_Etype
(N
, B_Typ
);
9234 Generate_Operator_Reference
(N
, B_Typ
);
9236 Analyze_Dimension
(N
);
9238 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
9239 -- Evaluate the exponentiation operator for dimensioned type
9241 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
9246 -- Set overflow checking bit. Much cleverer code needed here eventually
9247 -- and perhaps the Resolve routines should be separated for the various
9248 -- arithmetic operations, since they will need different processing. ???
9250 if Nkind
(N
) in N_Op
then
9251 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9252 Enable_Overflow_Check
(N
);
9255 end Resolve_Op_Expon
;
9257 --------------------
9258 -- Resolve_Op_Not --
9259 --------------------
9261 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
9264 function Parent_Is_Boolean
return Boolean;
9265 -- This function determines if the parent node is a boolean operator or
9266 -- operation (comparison op, membership test, or short circuit form) and
9267 -- the not in question is the left operand of this operation. Note that
9268 -- if the not is in parens, then false is returned.
9270 -----------------------
9271 -- Parent_Is_Boolean --
9272 -----------------------
9274 function Parent_Is_Boolean
return Boolean is
9276 if Paren_Count
(N
) /= 0 then
9280 case Nkind
(Parent
(N
)) is
9295 return Left_Opnd
(Parent
(N
)) = N
;
9301 end Parent_Is_Boolean
;
9303 -- Start of processing for Resolve_Op_Not
9306 -- Predefined operations on scalar types yield the base type. On the
9307 -- other hand, logical operations on arrays yield the type of the
9308 -- arguments (and the context).
9310 if Is_Array_Type
(Typ
) then
9313 B_Typ
:= Base_Type
(Typ
);
9316 -- Straightforward case of incorrect arguments
9318 if not Valid_Boolean_Arg
(Typ
) then
9319 Error_Msg_N
("invalid operand type for operator&", N
);
9320 Set_Etype
(N
, Any_Type
);
9323 -- Special case of probable missing parens
9325 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
9326 if Parent_Is_Boolean
then
9328 ("operand of not must be enclosed in parentheses",
9332 ("no modular type available in this context", N
);
9335 Set_Etype
(N
, Any_Type
);
9338 -- OK resolution of NOT
9341 -- Warn if non-boolean types involved. This is a case like not a < b
9342 -- where a and b are modular, where we will get (not a) < b and most
9343 -- likely not (a < b) was intended.
9345 if Warn_On_Questionable_Missing_Parens
9346 and then not Is_Boolean_Type
(Typ
)
9347 and then Parent_Is_Boolean
9349 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
9352 -- Warn on double negation if checking redundant constructs
9354 if Warn_On_Redundant_Constructs
9355 and then Comes_From_Source
(N
)
9356 and then Comes_From_Source
(Right_Opnd
(N
))
9357 and then Root_Type
(Typ
) = Standard_Boolean
9358 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
9360 Error_Msg_N
("redundant double negation?r?", N
);
9363 -- Complete resolution and evaluation of NOT
9365 Resolve
(Right_Opnd
(N
), B_Typ
);
9366 Check_Unset_Reference
(Right_Opnd
(N
));
9367 Set_Etype
(N
, B_Typ
);
9368 Generate_Operator_Reference
(N
, B_Typ
);
9373 -----------------------------
9374 -- Resolve_Operator_Symbol --
9375 -----------------------------
9377 -- Nothing to be done, all resolved already
9379 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
9380 pragma Warnings
(Off
, N
);
9381 pragma Warnings
(Off
, Typ
);
9385 end Resolve_Operator_Symbol
;
9387 ----------------------------------
9388 -- Resolve_Qualified_Expression --
9389 ----------------------------------
9391 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9392 pragma Warnings
(Off
, Typ
);
9394 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9395 Expr
: constant Node_Id
:= Expression
(N
);
9398 Resolve
(Expr
, Target_Typ
);
9400 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9401 -- operation if not needed.
9403 if Restriction_Check_Required
(SPARK_05
)
9404 and then Is_Array_Type
(Target_Typ
)
9405 and then Is_Array_Type
(Etype
(Expr
))
9406 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
9407 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
9409 Check_SPARK_05_Restriction
9410 ("array types should have matching static bounds", N
);
9413 -- A qualified expression requires an exact match of the type, class-
9414 -- wide matching is not allowed. However, if the qualifying type is
9415 -- specific and the expression has a class-wide type, it may still be
9416 -- okay, since it can be the result of the expansion of a call to a
9417 -- dispatching function, so we also have to check class-wideness of the
9418 -- type of the expression's original node.
9420 if (Is_Class_Wide_Type
(Target_Typ
)
9422 (Is_Class_Wide_Type
(Etype
(Expr
))
9423 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
9424 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
9426 Wrong_Type
(Expr
, Target_Typ
);
9429 -- If the target type is unconstrained, then we reset the type of the
9430 -- result from the type of the expression. For other cases, the actual
9431 -- subtype of the expression is the target type.
9433 if Is_Composite_Type
(Target_Typ
)
9434 and then not Is_Constrained
(Target_Typ
)
9436 Set_Etype
(N
, Etype
(Expr
));
9439 Analyze_Dimension
(N
);
9440 Eval_Qualified_Expression
(N
);
9442 -- If we still have a qualified expression after the static evaluation,
9443 -- then apply a scalar range check if needed. The reason that we do this
9444 -- after the Eval call is that otherwise, the application of the range
9445 -- check may convert an illegal static expression and result in warning
9446 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9448 if Nkind
(N
) = N_Qualified_Expression
and then Is_Scalar_Type
(Typ
) then
9449 Apply_Scalar_Range_Check
(Expr
, Typ
);
9451 end Resolve_Qualified_Expression
;
9453 ------------------------------
9454 -- Resolve_Raise_Expression --
9455 ------------------------------
9457 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9459 if Typ
= Raise_Type
then
9460 Error_Msg_N
("cannot find unique type for raise expression", N
);
9461 Set_Etype
(N
, Any_Type
);
9465 end Resolve_Raise_Expression
;
9471 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
9472 L
: constant Node_Id
:= Low_Bound
(N
);
9473 H
: constant Node_Id
:= High_Bound
(N
);
9475 function First_Last_Ref
return Boolean;
9476 -- Returns True if N is of the form X'First .. X'Last where X is the
9477 -- same entity for both attributes.
9479 --------------------
9480 -- First_Last_Ref --
9481 --------------------
9483 function First_Last_Ref
return Boolean is
9484 Lorig
: constant Node_Id
:= Original_Node
(L
);
9485 Horig
: constant Node_Id
:= Original_Node
(H
);
9488 if Nkind
(Lorig
) = N_Attribute_Reference
9489 and then Nkind
(Horig
) = N_Attribute_Reference
9490 and then Attribute_Name
(Lorig
) = Name_First
9491 and then Attribute_Name
(Horig
) = Name_Last
9494 PL
: constant Node_Id
:= Prefix
(Lorig
);
9495 PH
: constant Node_Id
:= Prefix
(Horig
);
9497 if Is_Entity_Name
(PL
)
9498 and then Is_Entity_Name
(PH
)
9499 and then Entity
(PL
) = Entity
(PH
)
9509 -- Start of processing for Resolve_Range
9516 -- Check for inappropriate range on unordered enumeration type
9518 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
9520 -- Exclude X'First .. X'Last if X is the same entity for both
9522 and then not First_Last_Ref
9524 Error_Msg_Sloc
:= Sloc
(Typ
);
9526 ("subrange of unordered enumeration type& declared#?U?", N
, Typ
);
9529 Check_Unset_Reference
(L
);
9530 Check_Unset_Reference
(H
);
9532 -- We have to check the bounds for being within the base range as
9533 -- required for a non-static context. Normally this is automatic and
9534 -- done as part of evaluating expressions, but the N_Range node is an
9535 -- exception, since in GNAT we consider this node to be a subexpression,
9536 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9537 -- this, but that would put the test on the main evaluation path for
9540 Check_Non_Static_Context
(L
);
9541 Check_Non_Static_Context
(H
);
9543 -- Check for an ambiguous range over character literals. This will
9544 -- happen with a membership test involving only literals.
9546 if Typ
= Any_Character
then
9547 Ambiguous_Character
(L
);
9548 Set_Etype
(N
, Any_Type
);
9552 -- If bounds are static, constant-fold them, so size computations are
9553 -- identical between front-end and back-end. Do not perform this
9554 -- transformation while analyzing generic units, as type information
9555 -- would be lost when reanalyzing the constant node in the instance.
9557 if Is_Discrete_Type
(Typ
) and then Expander_Active
then
9558 if Is_OK_Static_Expression
(L
) then
9559 Fold_Uint
(L
, Expr_Value
(L
), Is_OK_Static_Expression
(L
));
9562 if Is_OK_Static_Expression
(H
) then
9563 Fold_Uint
(H
, Expr_Value
(H
), Is_OK_Static_Expression
(H
));
9568 --------------------------
9569 -- Resolve_Real_Literal --
9570 --------------------------
9572 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9573 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
9576 -- Special processing for fixed-point literals to make sure that the
9577 -- value is an exact multiple of small where this is required. We skip
9578 -- this for the universal real case, and also for generic types.
9580 if Is_Fixed_Point_Type
(Typ
)
9581 and then Typ
/= Universal_Fixed
9582 and then Typ
/= Any_Fixed
9583 and then not Is_Generic_Type
(Typ
)
9586 Val
: constant Ureal
:= Realval
(N
);
9587 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
9588 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
9589 Den
: constant Uint
:= Norm_Den
(Cintr
);
9593 -- Case of literal is not an exact multiple of the Small
9597 -- For a source program literal for a decimal fixed-point type,
9598 -- this is statically illegal (RM 4.9(36)).
9600 if Is_Decimal_Fixed_Point_Type
(Typ
)
9601 and then Actual_Typ
= Universal_Real
9602 and then Comes_From_Source
(N
)
9604 Error_Msg_N
("value has extraneous low order digits", N
);
9607 -- Generate a warning if literal from source
9609 if Is_OK_Static_Expression
(N
)
9610 and then Warn_On_Bad_Fixed_Value
9613 ("?b?static fixed-point value is not a multiple of Small!",
9617 -- Replace literal by a value that is the exact representation
9618 -- of a value of the type, i.e. a multiple of the small value,
9619 -- by truncation, since Machine_Rounds is false for all GNAT
9620 -- fixed-point types (RM 4.9(38)).
9622 Stat
:= Is_OK_Static_Expression
(N
);
9624 Make_Real_Literal
(Sloc
(N
),
9625 Realval
=> Small_Value
(Typ
) * Cint
));
9627 Set_Is_Static_Expression
(N
, Stat
);
9630 -- In all cases, set the corresponding integer field
9632 Set_Corresponding_Integer_Value
(N
, Cint
);
9636 -- Now replace the actual type by the expected type as usual
9639 Eval_Real_Literal
(N
);
9640 end Resolve_Real_Literal
;
9642 -----------------------
9643 -- Resolve_Reference --
9644 -----------------------
9646 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
9647 P
: constant Node_Id
:= Prefix
(N
);
9650 -- Replace general access with specific type
9652 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
9653 Set_Etype
(N
, Base_Type
(Typ
));
9656 Resolve
(P
, Designated_Type
(Etype
(N
)));
9658 -- If we are taking the reference of a volatile entity, then treat it as
9659 -- a potential modification of this entity. This is too conservative,
9660 -- but necessary because remove side effects can cause transformations
9661 -- of normal assignments into reference sequences that otherwise fail to
9662 -- notice the modification.
9664 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
9665 Note_Possible_Modification
(P
, Sure
=> False);
9667 end Resolve_Reference
;
9669 --------------------------------
9670 -- Resolve_Selected_Component --
9671 --------------------------------
9673 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
9675 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
9676 P
: constant Node_Id
:= Prefix
(N
);
9677 S
: constant Node_Id
:= Selector_Name
(N
);
9678 T
: Entity_Id
:= Etype
(P
);
9680 I1
: Interp_Index
:= 0; -- prevent junk warning
9685 function Init_Component
return Boolean;
9686 -- Check whether this is the initialization of a component within an
9687 -- init proc (by assignment or call to another init proc). If true,
9688 -- there is no need for a discriminant check.
9690 --------------------
9691 -- Init_Component --
9692 --------------------
9694 function Init_Component
return Boolean is
9696 return Inside_Init_Proc
9697 and then Nkind
(Prefix
(N
)) = N_Identifier
9698 and then Chars
(Prefix
(N
)) = Name_uInit
9699 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
9702 -- Start of processing for Resolve_Selected_Component
9705 if Is_Overloaded
(P
) then
9707 -- Use the context type to select the prefix that has a selector
9708 -- of the correct name and type.
9711 Get_First_Interp
(P
, I
, It
);
9713 Search
: while Present
(It
.Typ
) loop
9714 if Is_Access_Type
(It
.Typ
) then
9715 T
:= Designated_Type
(It
.Typ
);
9720 -- Locate selected component. For a private prefix the selector
9721 -- can denote a discriminant.
9723 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
9725 -- The visible components of a class-wide type are those of
9728 if Is_Class_Wide_Type
(T
) then
9732 Comp
:= First_Entity
(T
);
9733 while Present
(Comp
) loop
9734 if Chars
(Comp
) = Chars
(S
)
9735 and then Covers
(Typ
, Etype
(Comp
))
9744 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9746 if It
= No_Interp
then
9748 ("ambiguous prefix for selected component", N
);
9755 -- There may be an implicit dereference. Retrieve
9756 -- designated record type.
9758 if Is_Access_Type
(It1
.Typ
) then
9759 T
:= Designated_Type
(It1
.Typ
);
9764 if Scope
(Comp1
) /= T
then
9766 -- Resolution chooses the new interpretation.
9767 -- Find the component with the right name.
9769 Comp1
:= First_Entity
(T
);
9770 while Present
(Comp1
)
9771 and then Chars
(Comp1
) /= Chars
(S
)
9773 Comp1
:= Next_Entity
(Comp1
);
9782 Comp
:= Next_Entity
(Comp
);
9786 Get_Next_Interp
(I
, It
);
9789 -- There must be a legal interpretation at this point
9791 pragma Assert
(Found
);
9792 Resolve
(P
, It1
.Typ
);
9794 Set_Entity_With_Checks
(S
, Comp1
);
9797 -- Resolve prefix with its type
9802 -- Generate cross-reference. We needed to wait until full overloading
9803 -- resolution was complete to do this, since otherwise we can't tell if
9804 -- we are an lvalue or not.
9806 if May_Be_Lvalue
(N
) then
9807 Generate_Reference
(Entity
(S
), S
, 'm');
9809 Generate_Reference
(Entity
(S
), S
, 'r');
9812 -- If prefix is an access type, the node will be transformed into an
9813 -- explicit dereference during expansion. The type of the node is the
9814 -- designated type of that of the prefix.
9816 if Is_Access_Type
(Etype
(P
)) then
9817 T
:= Designated_Type
(Etype
(P
));
9818 Check_Fully_Declared_Prefix
(T
, P
);
9823 -- Set flag for expander if discriminant check required
9825 if Has_Discriminants
(T
)
9826 and then Ekind_In
(Entity
(S
), E_Component
, E_Discriminant
)
9827 and then Present
(Original_Record_Component
(Entity
(S
)))
9828 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
9829 and then not Discriminant_Checks_Suppressed
(T
)
9830 and then not Init_Component
9832 Set_Do_Discriminant_Check
(N
);
9835 if Ekind
(Entity
(S
)) = E_Void
then
9836 Error_Msg_N
("premature use of component", S
);
9839 -- If the prefix is a record conversion, this may be a renamed
9840 -- discriminant whose bounds differ from those of the original
9841 -- one, so we must ensure that a range check is performed.
9843 if Nkind
(P
) = N_Type_Conversion
9844 and then Ekind
(Entity
(S
)) = E_Discriminant
9845 and then Is_Discrete_Type
(Typ
)
9847 Set_Etype
(N
, Base_Type
(Typ
));
9850 -- Note: No Eval processing is required, because the prefix is of a
9851 -- record type, or protected type, and neither can possibly be static.
9853 -- If the record type is atomic, and the component is non-atomic, then
9854 -- this is worth a warning, since we have a situation where the access
9855 -- to the component may cause extra read/writes of the atomic array
9856 -- object, or partial word accesses, both of which may be unexpected.
9858 if Nkind
(N
) = N_Selected_Component
9859 and then Is_Atomic_Ref_With_Address
(N
)
9860 and then not Is_Atomic
(Entity
(S
))
9861 and then not Is_Atomic
(Etype
(Entity
(S
)))
9864 ("??access to non-atomic component of atomic record",
9867 ("\??may cause unexpected accesses to atomic object",
9871 Analyze_Dimension
(N
);
9872 end Resolve_Selected_Component
;
9878 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
9879 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9880 L
: constant Node_Id
:= Left_Opnd
(N
);
9881 R
: constant Node_Id
:= Right_Opnd
(N
);
9884 -- We do the resolution using the base type, because intermediate values
9885 -- in expressions always are of the base type, not a subtype of it.
9888 Resolve
(R
, Standard_Natural
);
9890 Check_Unset_Reference
(L
);
9891 Check_Unset_Reference
(R
);
9893 Set_Etype
(N
, B_Typ
);
9894 Generate_Operator_Reference
(N
, B_Typ
);
9898 ---------------------------
9899 -- Resolve_Short_Circuit --
9900 ---------------------------
9902 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
9903 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9904 L
: constant Node_Id
:= Left_Opnd
(N
);
9905 R
: constant Node_Id
:= Right_Opnd
(N
);
9908 -- Ensure all actions associated with the left operand (e.g.
9909 -- finalization of transient controlled objects) are fully evaluated
9910 -- locally within an expression with actions. This is particularly
9911 -- helpful for coverage analysis. However this should not happen in
9914 if Expander_Active
then
9916 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
9918 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
9921 Make_Expression_With_Actions
(Sloc
(L
),
9922 Actions
=> New_List
,
9923 Expression
=> Reloc_L
));
9925 -- Set Comes_From_Source on L to preserve warnings for unset
9928 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
9935 -- Check for issuing warning for always False assert/check, this happens
9936 -- when assertions are turned off, in which case the pragma Assert/Check
9937 -- was transformed into:
9939 -- if False and then <condition> then ...
9941 -- and we detect this pattern
9943 if Warn_On_Assertion_Failure
9944 and then Is_Entity_Name
(R
)
9945 and then Entity
(R
) = Standard_False
9946 and then Nkind
(Parent
(N
)) = N_If_Statement
9947 and then Nkind
(N
) = N_And_Then
9948 and then Is_Entity_Name
(L
)
9949 and then Entity
(L
) = Standard_False
9952 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
9955 -- Special handling of Asssert pragma
9957 if Nkind
(Orig
) = N_Pragma
9958 and then Pragma_Name
(Orig
) = Name_Assert
9961 Expr
: constant Node_Id
:=
9964 (First
(Pragma_Argument_Associations
(Orig
))));
9967 -- Don't warn if original condition is explicit False,
9968 -- since obviously the failure is expected in this case.
9970 if Is_Entity_Name
(Expr
)
9971 and then Entity
(Expr
) = Standard_False
9975 -- Issue warning. We do not want the deletion of the
9976 -- IF/AND-THEN to take this message with it. We achieve this
9977 -- by making sure that the expanded code points to the Sloc
9978 -- of the expression, not the original pragma.
9981 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9982 -- The source location of the expression is not usually
9983 -- the best choice here. For example, it gets located on
9984 -- the last AND keyword in a chain of boolean expressiond
9985 -- AND'ed together. It is best to put the message on the
9986 -- first character of the assertion, which is the effect
9987 -- of the First_Node call here.
9990 ("?A?assertion would fail at run time!",
9992 (First
(Pragma_Argument_Associations
(Orig
))));
9996 -- Similar processing for Check pragma
9998 elsif Nkind
(Orig
) = N_Pragma
9999 and then Pragma_Name
(Orig
) = Name_Check
10001 -- Don't want to warn if original condition is explicit False
10004 Expr
: constant Node_Id
:=
10007 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
10009 if Is_Entity_Name
(Expr
)
10010 and then Entity
(Expr
) = Standard_False
10017 -- Again use Error_Msg_F rather than Error_Msg_N, see
10018 -- comment above for an explanation of why we do this.
10021 ("?A?check would fail at run time!",
10023 (Last
(Pragma_Argument_Associations
(Orig
))));
10030 -- Continue with processing of short circuit
10032 Check_Unset_Reference
(L
);
10033 Check_Unset_Reference
(R
);
10035 Set_Etype
(N
, B_Typ
);
10036 Eval_Short_Circuit
(N
);
10037 end Resolve_Short_Circuit
;
10039 -------------------
10040 -- Resolve_Slice --
10041 -------------------
10043 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
10044 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10045 Name
: constant Node_Id
:= Prefix
(N
);
10046 Array_Type
: Entity_Id
:= Empty
;
10047 Dexpr
: Node_Id
:= Empty
;
10048 Index_Type
: Entity_Id
;
10051 if Is_Overloaded
(Name
) then
10053 -- Use the context type to select the prefix that yields the correct
10058 I1
: Interp_Index
:= 0;
10060 P
: constant Node_Id
:= Prefix
(N
);
10061 Found
: Boolean := False;
10064 Get_First_Interp
(P
, I
, It
);
10065 while Present
(It
.Typ
) loop
10066 if (Is_Array_Type
(It
.Typ
)
10067 and then Covers
(Typ
, It
.Typ
))
10068 or else (Is_Access_Type
(It
.Typ
)
10069 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
10070 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
10073 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10075 if It
= No_Interp
then
10076 Error_Msg_N
("ambiguous prefix for slicing", N
);
10077 Set_Etype
(N
, Typ
);
10081 Array_Type
:= It
.Typ
;
10086 Array_Type
:= It
.Typ
;
10091 Get_Next_Interp
(I
, It
);
10096 Array_Type
:= Etype
(Name
);
10099 Resolve
(Name
, Array_Type
);
10101 if Is_Access_Type
(Array_Type
) then
10102 Apply_Access_Check
(N
);
10103 Array_Type
:= Designated_Type
(Array_Type
);
10105 -- If the prefix is an access to an unconstrained array, we must use
10106 -- the actual subtype of the object to perform the index checks. The
10107 -- object denoted by the prefix is implicit in the node, so we build
10108 -- an explicit representation for it in order to compute the actual
10111 if not Is_Constrained
(Array_Type
) then
10112 Remove_Side_Effects
(Prefix
(N
));
10115 Obj
: constant Node_Id
:=
10116 Make_Explicit_Dereference
(Sloc
(N
),
10117 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
10119 Set_Etype
(Obj
, Array_Type
);
10120 Set_Parent
(Obj
, Parent
(N
));
10121 Array_Type
:= Get_Actual_Subtype
(Obj
);
10125 elsif Is_Entity_Name
(Name
)
10126 or else Nkind
(Name
) = N_Explicit_Dereference
10127 or else (Nkind
(Name
) = N_Function_Call
10128 and then not Is_Constrained
(Etype
(Name
)))
10130 Array_Type
:= Get_Actual_Subtype
(Name
);
10132 -- If the name is a selected component that depends on discriminants,
10133 -- build an actual subtype for it. This can happen only when the name
10134 -- itself is overloaded; otherwise the actual subtype is created when
10135 -- the selected component is analyzed.
10137 elsif Nkind
(Name
) = N_Selected_Component
10138 and then Full_Analysis
10139 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
10142 Act_Decl
: constant Node_Id
:=
10143 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
10145 Insert_Action
(N
, Act_Decl
);
10146 Array_Type
:= Defining_Identifier
(Act_Decl
);
10149 -- Maybe this should just be "else", instead of checking for the
10150 -- specific case of slice??? This is needed for the case where the
10151 -- prefix is an Image attribute, which gets expanded to a slice, and so
10152 -- has a constrained subtype which we want to use for the slice range
10153 -- check applied below (the range check won't get done if the
10154 -- unconstrained subtype of the 'Image is used).
10156 elsif Nkind
(Name
) = N_Slice
then
10157 Array_Type
:= Etype
(Name
);
10160 -- Obtain the type of the array index
10162 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
10163 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
10165 Index_Type
:= Etype
(First_Index
(Array_Type
));
10168 -- If name was overloaded, set slice type correctly now
10170 Set_Etype
(N
, Array_Type
);
10172 -- Handle the generation of a range check that compares the array index
10173 -- against the discrete_range. The check is not applied to internally
10174 -- built nodes associated with the expansion of dispatch tables. Check
10175 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10178 if Tagged_Type_Expansion
10179 and then RTU_Loaded
(Ada_Tags
)
10180 and then Nkind
(Prefix
(N
)) = N_Selected_Component
10181 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
10182 and then Entity
(Selector_Name
(Prefix
(N
))) =
10183 RTE_Record_Component
(RE_Prims_Ptr
)
10187 -- The discrete_range is specified by a subtype indication. Create a
10188 -- shallow copy and inherit the type, parent and source location from
10189 -- the discrete_range. This ensures that the range check is inserted
10190 -- relative to the slice and that the runtime exception points to the
10191 -- proper construct.
10193 elsif Is_Entity_Name
(Drange
) then
10194 Dexpr
:= New_Copy
(Scalar_Range
(Entity
(Drange
)));
10196 Set_Etype
(Dexpr
, Etype
(Drange
));
10197 Set_Parent
(Dexpr
, Parent
(Drange
));
10198 Set_Sloc
(Dexpr
, Sloc
(Drange
));
10200 -- The discrete_range is a regular range. Resolve the bounds and remove
10201 -- their side effects.
10204 Resolve
(Drange
, Base_Type
(Index_Type
));
10206 if Nkind
(Drange
) = N_Range
then
10207 Force_Evaluation
(Low_Bound
(Drange
));
10208 Force_Evaluation
(High_Bound
(Drange
));
10214 if Present
(Dexpr
) then
10215 Apply_Range_Check
(Dexpr
, Index_Type
);
10218 Set_Slice_Subtype
(N
);
10220 -- Check bad use of type with predicates
10226 if Nkind
(Drange
) = N_Subtype_Indication
10227 and then Has_Predicates
(Entity
(Subtype_Mark
(Drange
)))
10229 Subt
:= Entity
(Subtype_Mark
(Drange
));
10231 Subt
:= Etype
(Drange
);
10234 if Has_Predicates
(Subt
) then
10235 Bad_Predicated_Subtype_Use
10236 ("subtype& has predicate, not allowed in slice", Drange
, Subt
);
10240 -- Otherwise here is where we check suspicious indexes
10242 if Nkind
(Drange
) = N_Range
then
10243 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
10244 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
10247 Analyze_Dimension
(N
);
10251 ----------------------------
10252 -- Resolve_String_Literal --
10253 ----------------------------
10255 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
10256 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
10257 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
10258 Loc
: constant Source_Ptr
:= Sloc
(N
);
10259 Str
: constant String_Id
:= Strval
(N
);
10260 Strlen
: constant Nat
:= String_Length
(Str
);
10261 Subtype_Id
: Entity_Id
;
10262 Need_Check
: Boolean;
10265 -- For a string appearing in a concatenation, defer creation of the
10266 -- string_literal_subtype until the end of the resolution of the
10267 -- concatenation, because the literal may be constant-folded away. This
10268 -- is a useful optimization for long concatenation expressions.
10270 -- If the string is an aggregate built for a single character (which
10271 -- happens in a non-static context) or a is null string to which special
10272 -- checks may apply, we build the subtype. Wide strings must also get a
10273 -- string subtype if they come from a one character aggregate. Strings
10274 -- generated by attributes might be static, but it is often hard to
10275 -- determine whether the enclosing context is static, so we generate
10276 -- subtypes for them as well, thus losing some rarer optimizations ???
10277 -- Same for strings that come from a static conversion.
10280 (Strlen
= 0 and then Typ
/= Standard_String
)
10281 or else Nkind
(Parent
(N
)) /= N_Op_Concat
10282 or else (N
/= Left_Opnd
(Parent
(N
))
10283 and then N
/= Right_Opnd
(Parent
(N
)))
10284 or else ((Typ
= Standard_Wide_String
10285 or else Typ
= Standard_Wide_Wide_String
)
10286 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
10288 -- If the resolving type is itself a string literal subtype, we can just
10289 -- reuse it, since there is no point in creating another.
10291 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10294 elsif Nkind
(Parent
(N
)) = N_Op_Concat
10295 and then not Need_Check
10296 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
10297 N_Attribute_Reference
,
10298 N_Qualified_Expression
,
10303 -- Do not generate a string literal subtype for the default expression
10304 -- of a formal parameter in GNATprove mode. This is because the string
10305 -- subtype is associated with the freezing actions of the subprogram,
10306 -- however freezing is disabled in GNATprove mode and as a result the
10307 -- subtype is unavailable.
10309 elsif GNATprove_Mode
10310 and then Nkind
(Parent
(N
)) = N_Parameter_Specification
10314 -- Otherwise we must create a string literal subtype. Note that the
10315 -- whole idea of string literal subtypes is simply to avoid the need
10316 -- for building a full fledged array subtype for each literal.
10319 Set_String_Literal_Subtype
(N
, Typ
);
10320 Subtype_Id
:= Etype
(N
);
10323 if Nkind
(Parent
(N
)) /= N_Op_Concat
10326 Set_Etype
(N
, Subtype_Id
);
10327 Eval_String_Literal
(N
);
10330 if Is_Limited_Composite
(Typ
)
10331 or else Is_Private_Composite
(Typ
)
10333 Error_Msg_N
("string literal not available for private array", N
);
10334 Set_Etype
(N
, Any_Type
);
10338 -- The validity of a null string has been checked in the call to
10339 -- Eval_String_Literal.
10344 -- Always accept string literal with component type Any_Character, which
10345 -- occurs in error situations and in comparisons of literals, both of
10346 -- which should accept all literals.
10348 elsif R_Typ
= Any_Character
then
10351 -- If the type is bit-packed, then we always transform the string
10352 -- literal into a full fledged aggregate.
10354 elsif Is_Bit_Packed_Array
(Typ
) then
10357 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10360 -- For Standard.Wide_Wide_String, or any other type whose component
10361 -- type is Standard.Wide_Wide_Character, we know that all the
10362 -- characters in the string must be acceptable, since the parser
10363 -- accepted the characters as valid character literals.
10365 if R_Typ
= Standard_Wide_Wide_Character
then
10368 -- For the case of Standard.String, or any other type whose component
10369 -- type is Standard.Character, we must make sure that there are no
10370 -- wide characters in the string, i.e. that it is entirely composed
10371 -- of characters in range of type Character.
10373 -- If the string literal is the result of a static concatenation, the
10374 -- test has already been performed on the components, and need not be
10377 elsif R_Typ
= Standard_Character
10378 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10380 for J
in 1 .. Strlen
loop
10381 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
10383 -- If we are out of range, post error. This is one of the
10384 -- very few places that we place the flag in the middle of
10385 -- a token, right under the offending wide character. Not
10386 -- quite clear if this is right wrt wide character encoding
10387 -- sequences, but it's only an error message.
10390 ("literal out of range of type Standard.Character",
10391 Source_Ptr
(Int
(Loc
) + J
));
10396 -- For the case of Standard.Wide_String, or any other type whose
10397 -- component type is Standard.Wide_Character, we must make sure that
10398 -- there are no wide characters in the string, i.e. that it is
10399 -- entirely composed of characters in range of type Wide_Character.
10401 -- If the string literal is the result of a static concatenation,
10402 -- the test has already been performed on the components, and need
10403 -- not be repeated.
10405 elsif R_Typ
= Standard_Wide_Character
10406 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10408 for J
in 1 .. Strlen
loop
10409 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
10411 -- If we are out of range, post error. This is one of the
10412 -- very few places that we place the flag in the middle of
10413 -- a token, right under the offending wide character.
10415 -- This is not quite right, because characters in general
10416 -- will take more than one character position ???
10419 ("literal out of range of type Standard.Wide_Character",
10420 Source_Ptr
(Int
(Loc
) + J
));
10425 -- If the root type is not a standard character, then we will convert
10426 -- the string into an aggregate and will let the aggregate code do
10427 -- the checking. Standard Wide_Wide_Character is also OK here.
10433 -- See if the component type of the array corresponding to the string
10434 -- has compile time known bounds. If yes we can directly check
10435 -- whether the evaluation of the string will raise constraint error.
10436 -- Otherwise we need to transform the string literal into the
10437 -- corresponding character aggregate and let the aggregate code do
10440 if Is_Standard_Character_Type
(R_Typ
) then
10442 -- Check for the case of full range, where we are definitely OK
10444 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
10448 -- Here the range is not the complete base type range, so check
10451 Comp_Typ_Lo
: constant Node_Id
:=
10452 Type_Low_Bound
(Component_Type
(Typ
));
10453 Comp_Typ_Hi
: constant Node_Id
:=
10454 Type_High_Bound
(Component_Type
(Typ
));
10459 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
10460 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
10462 for J
in 1 .. Strlen
loop
10463 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
10465 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
10466 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
10468 Apply_Compile_Time_Constraint_Error
10469 (N
, "character out of range??",
10470 CE_Range_Check_Failed
,
10471 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
10481 -- If we got here we meed to transform the string literal into the
10482 -- equivalent qualified positional array aggregate. This is rather
10483 -- heavy artillery for this situation, but it is hard work to avoid.
10486 Lits
: constant List_Id
:= New_List
;
10487 P
: Source_Ptr
:= Loc
+ 1;
10491 -- Build the character literals, we give them source locations that
10492 -- correspond to the string positions, which is a bit tricky given
10493 -- the possible presence of wide character escape sequences.
10495 for J
in 1 .. Strlen
loop
10496 C
:= Get_String_Char
(Str
, J
);
10497 Set_Character_Literal_Name
(C
);
10500 Make_Character_Literal
(P
,
10501 Chars
=> Name_Find
,
10502 Char_Literal_Value
=> UI_From_CC
(C
)));
10504 if In_Character_Range
(C
) then
10507 -- Should we have a call to Skip_Wide here ???
10516 Make_Qualified_Expression
(Loc
,
10517 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
10519 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
10521 Analyze_And_Resolve
(N
, Typ
);
10523 end Resolve_String_Literal
;
10525 -----------------------------
10526 -- Resolve_Type_Conversion --
10527 -----------------------------
10529 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
10530 Conv_OK
: constant Boolean := Conversion_OK
(N
);
10531 Operand
: constant Node_Id
:= Expression
(N
);
10532 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
10533 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10538 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
10539 -- Set to False to suppress cases where we want to suppress the test
10540 -- for redundancy to avoid possible false positives on this warning.
10544 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
10549 -- If the Operand Etype is Universal_Fixed, then the conversion is
10550 -- never redundant. We need this check because by the time we have
10551 -- finished the rather complex transformation, the conversion looks
10552 -- redundant when it is not.
10554 if Operand_Typ
= Universal_Fixed
then
10555 Test_Redundant
:= False;
10557 -- If the operand is marked as Any_Fixed, then special processing is
10558 -- required. This is also a case where we suppress the test for a
10559 -- redundant conversion, since most certainly it is not redundant.
10561 elsif Operand_Typ
= Any_Fixed
then
10562 Test_Redundant
:= False;
10564 -- Mixed-mode operation involving a literal. Context must be a fixed
10565 -- type which is applied to the literal subsequently.
10567 if Is_Fixed_Point_Type
(Typ
) then
10568 Set_Etype
(Operand
, Universal_Real
);
10570 elsif Is_Numeric_Type
(Typ
)
10571 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
10572 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
10574 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
10576 -- Return if expression is ambiguous
10578 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
10581 -- If nothing else, the available fixed type is Duration
10584 Set_Etype
(Operand
, Standard_Duration
);
10587 -- Resolve the real operand with largest available precision
10589 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
10590 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
10592 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
10595 Resolve
(Rop
, Universal_Real
);
10597 -- If the operand is a literal (it could be a non-static and
10598 -- illegal exponentiation) check whether the use of Duration
10599 -- is potentially inaccurate.
10601 if Nkind
(Rop
) = N_Real_Literal
10602 and then Realval
(Rop
) /= Ureal_0
10603 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
10606 ("??universal real operand can only "
10607 & "be interpreted as Duration!", Rop
);
10609 ("\??precision will be lost in the conversion!", Rop
);
10612 elsif Is_Numeric_Type
(Typ
)
10613 and then Nkind
(Operand
) in N_Op
10614 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
10616 Set_Etype
(Operand
, Standard_Duration
);
10619 Error_Msg_N
("invalid context for mixed mode operation", N
);
10620 Set_Etype
(Operand
, Any_Type
);
10627 -- In SPARK, a type conversion between array types should be restricted
10628 -- to types which have matching static bounds.
10630 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10631 -- operation if not needed.
10633 if Restriction_Check_Required
(SPARK_05
)
10634 and then Is_Array_Type
(Target_Typ
)
10635 and then Is_Array_Type
(Operand_Typ
)
10636 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
10637 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
10639 Check_SPARK_05_Restriction
10640 ("array types should have matching static bounds", N
);
10643 -- In formal mode, the operand of an ancestor type conversion must be an
10644 -- object (not an expression).
10646 if Is_Tagged_Type
(Target_Typ
)
10647 and then not Is_Class_Wide_Type
(Target_Typ
)
10648 and then Is_Tagged_Type
(Operand_Typ
)
10649 and then not Is_Class_Wide_Type
(Operand_Typ
)
10650 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
10651 and then not Is_SPARK_05_Object_Reference
(Operand
)
10653 Check_SPARK_05_Restriction
("object required", Operand
);
10656 Analyze_Dimension
(N
);
10658 -- Note: we do the Eval_Type_Conversion call before applying the
10659 -- required checks for a subtype conversion. This is important, since
10660 -- both are prepared under certain circumstances to change the type
10661 -- conversion to a constraint error node, but in the case of
10662 -- Eval_Type_Conversion this may reflect an illegality in the static
10663 -- case, and we would miss the illegality (getting only a warning
10664 -- message), if we applied the type conversion checks first.
10666 Eval_Type_Conversion
(N
);
10668 -- Even when evaluation is not possible, we may be able to simplify the
10669 -- conversion or its expression. This needs to be done before applying
10670 -- checks, since otherwise the checks may use the original expression
10671 -- and defeat the simplifications. This is specifically the case for
10672 -- elimination of the floating-point Truncation attribute in
10673 -- float-to-int conversions.
10675 Simplify_Type_Conversion
(N
);
10677 -- If after evaluation we still have a type conversion, then we may need
10678 -- to apply checks required for a subtype conversion.
10680 -- Skip these type conversion checks if universal fixed operands
10681 -- operands involved, since range checks are handled separately for
10682 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10684 if Nkind
(N
) = N_Type_Conversion
10685 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
10686 and then Target_Typ
/= Universal_Fixed
10687 and then Operand_Typ
/= Universal_Fixed
10689 Apply_Type_Conversion_Checks
(N
);
10692 -- Issue warning for conversion of simple object to its own type. We
10693 -- have to test the original nodes, since they may have been rewritten
10694 -- by various optimizations.
10696 Orig_N
:= Original_Node
(N
);
10698 -- Here we test for a redundant conversion if the warning mode is
10699 -- active (and was not locally reset), and we have a type conversion
10700 -- from source not appearing in a generic instance.
10703 and then Nkind
(Orig_N
) = N_Type_Conversion
10704 and then Comes_From_Source
(Orig_N
)
10705 and then not In_Instance
10707 Orig_N
:= Original_Node
(Expression
(Orig_N
));
10708 Orig_T
:= Target_Typ
;
10710 -- If the node is part of a larger expression, the Target_Type
10711 -- may not be the original type of the node if the context is a
10712 -- condition. Recover original type to see if conversion is needed.
10714 if Is_Boolean_Type
(Orig_T
)
10715 and then Nkind
(Parent
(N
)) in N_Op
10717 Orig_T
:= Etype
(Parent
(N
));
10720 -- If we have an entity name, then give the warning if the entity
10721 -- is the right type, or if it is a loop parameter covered by the
10722 -- original type (that's needed because loop parameters have an
10723 -- odd subtype coming from the bounds).
10725 if (Is_Entity_Name
(Orig_N
)
10727 (Etype
(Entity
(Orig_N
)) = Orig_T
10729 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
10730 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
10732 -- If not an entity, then type of expression must match
10734 or else Etype
(Orig_N
) = Orig_T
10736 -- One more check, do not give warning if the analyzed conversion
10737 -- has an expression with non-static bounds, and the bounds of the
10738 -- target are static. This avoids junk warnings in cases where the
10739 -- conversion is necessary to establish staticness, for example in
10740 -- a case statement.
10742 if not Is_OK_Static_Subtype
(Operand_Typ
)
10743 and then Is_OK_Static_Subtype
(Target_Typ
)
10747 -- Finally, if this type conversion occurs in a context requiring
10748 -- a prefix, and the expression is a qualified expression then the
10749 -- type conversion is not redundant, since a qualified expression
10750 -- is not a prefix, whereas a type conversion is. For example, "X
10751 -- := T'(Funx(...)).Y;" is illegal because a selected component
10752 -- requires a prefix, but a type conversion makes it legal: "X :=
10753 -- T(T'(Funx(...))).Y;"
10755 -- In Ada 2012, a qualified expression is a name, so this idiom is
10756 -- no longer needed, but we still suppress the warning because it
10757 -- seems unfriendly for warnings to pop up when you switch to the
10758 -- newer language version.
10760 elsif Nkind
(Orig_N
) = N_Qualified_Expression
10761 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
10762 N_Indexed_Component
,
10763 N_Selected_Component
,
10765 N_Explicit_Dereference
)
10769 -- Never warn on conversion to Long_Long_Integer'Base since
10770 -- that is most likely an artifact of the extended overflow
10771 -- checking and comes from complex expanded code.
10773 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
10776 -- Here we give the redundant conversion warning. If it is an
10777 -- entity, give the name of the entity in the message. If not,
10778 -- just mention the expression.
10780 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10783 if Is_Entity_Name
(Orig_N
) then
10784 Error_Msg_Node_2
:= Orig_T
;
10785 Error_Msg_NE
-- CODEFIX
10786 ("??redundant conversion, & is of type &!",
10787 N
, Entity
(Orig_N
));
10790 ("??redundant conversion, expression is of type&!",
10797 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10798 -- No need to perform any interface conversion if the type of the
10799 -- expression coincides with the target type.
10801 if Ada_Version
>= Ada_2005
10802 and then Expander_Active
10803 and then Operand_Typ
/= Target_Typ
10806 Opnd
: Entity_Id
:= Operand_Typ
;
10807 Target
: Entity_Id
:= Target_Typ
;
10810 -- If the type of the operand is a limited view, use the non-
10811 -- limited view when available.
10813 if From_Limited_With
(Opnd
)
10814 and then Ekind
(Opnd
) in Incomplete_Kind
10815 and then Present
(Non_Limited_View
(Opnd
))
10817 Opnd
:= Non_Limited_View
(Opnd
);
10818 Set_Etype
(Expression
(N
), Opnd
);
10821 if Is_Access_Type
(Opnd
) then
10822 Opnd
:= Designated_Type
(Opnd
);
10825 if Is_Access_Type
(Target_Typ
) then
10826 Target
:= Designated_Type
(Target
);
10829 if Opnd
= Target
then
10832 -- Conversion from interface type
10834 elsif Is_Interface
(Opnd
) then
10836 -- Ada 2005 (AI-217): Handle entities from limited views
10838 if From_Limited_With
(Opnd
) then
10839 Error_Msg_Qual_Level
:= 99;
10840 Error_Msg_NE
-- CODEFIX
10841 ("missing WITH clause on package &", N
,
10842 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
10844 ("type conversions require visibility of the full view",
10847 elsif From_Limited_With
(Target
)
10849 (Is_Access_Type
(Target_Typ
)
10850 and then Present
(Non_Limited_View
(Etype
(Target
))))
10852 Error_Msg_Qual_Level
:= 99;
10853 Error_Msg_NE
-- CODEFIX
10854 ("missing WITH clause on package &", N
,
10855 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
10857 ("type conversions require visibility of the full view",
10861 Expand_Interface_Conversion
(N
);
10864 -- Conversion to interface type
10866 elsif Is_Interface
(Target
) then
10870 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
10871 Opnd
:= Etype
(Opnd
);
10874 if Is_Class_Wide_Type
(Opnd
)
10875 or else Interface_Present_In_Ancestor
10879 Expand_Interface_Conversion
(N
);
10881 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
10882 Error_Msg_Name_2
:= Chars
(Opnd
);
10884 ("wrong interface conversion (% is not a progenitor "
10891 -- Ada 2012: if target type has predicates, the result requires a
10892 -- predicate check. If the context is a call to another predicate
10893 -- check we must prevent infinite recursion.
10895 if Has_Predicates
(Target_Typ
) then
10896 if Nkind
(Parent
(N
)) = N_Function_Call
10897 and then Present
(Name
(Parent
(N
)))
10898 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
10900 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
10905 Apply_Predicate_Check
(N
, Target_Typ
);
10909 -- If at this stage we have a real to integer conversion, make sure
10910 -- that the Do_Range_Check flag is set, because such conversions in
10911 -- general need a range check. We only need this if expansion is off
10912 -- or we are in GNATProve mode.
10914 if Nkind
(N
) = N_Type_Conversion
10915 and then (GNATprove_Mode
or not Expander_Active
)
10916 and then Is_Integer_Type
(Target_Typ
)
10917 and then Is_Real_Type
(Operand_Typ
)
10919 Set_Do_Range_Check
(Operand
);
10921 end Resolve_Type_Conversion
;
10923 ----------------------
10924 -- Resolve_Unary_Op --
10925 ----------------------
10927 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
10928 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10929 R
: constant Node_Id
:= Right_Opnd
(N
);
10935 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
10936 Error_Msg_Name_1
:= Chars
(Typ
);
10937 Check_SPARK_05_Restriction
10938 ("unary operator not defined for modular type%", N
);
10941 -- Deal with intrinsic unary operators
10943 if Comes_From_Source
(N
)
10944 and then Ekind
(Entity
(N
)) = E_Function
10945 and then Is_Imported
(Entity
(N
))
10946 and then Is_Intrinsic_Subprogram
(Entity
(N
))
10948 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
10952 -- Deal with universal cases
10954 if Etype
(R
) = Universal_Integer
10956 Etype
(R
) = Universal_Real
10958 Check_For_Visible_Operator
(N
, B_Typ
);
10961 Set_Etype
(N
, B_Typ
);
10962 Resolve
(R
, B_Typ
);
10964 -- Generate warning for expressions like abs (x mod 2)
10966 if Warn_On_Redundant_Constructs
10967 and then Nkind
(N
) = N_Op_Abs
10969 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
10971 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
10972 Error_Msg_N
-- CODEFIX
10973 ("?r?abs applied to known non-negative value has no effect", N
);
10977 -- Deal with reference generation
10979 Check_Unset_Reference
(R
);
10980 Generate_Operator_Reference
(N
, B_Typ
);
10981 Analyze_Dimension
(N
);
10984 -- Set overflow checking bit. Much cleverer code needed here eventually
10985 -- and perhaps the Resolve routines should be separated for the various
10986 -- arithmetic operations, since they will need different processing ???
10988 if Nkind
(N
) in N_Op
then
10989 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
10990 Enable_Overflow_Check
(N
);
10994 -- Generate warning for expressions like -5 mod 3 for integers. No need
10995 -- to worry in the floating-point case, since parens do not affect the
10996 -- result so there is no point in giving in a warning.
10999 Norig
: constant Node_Id
:= Original_Node
(N
);
11008 if Warn_On_Questionable_Missing_Parens
11009 and then Comes_From_Source
(Norig
)
11010 and then Is_Integer_Type
(Typ
)
11011 and then Nkind
(Norig
) = N_Op_Minus
11013 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
11015 -- We are looking for cases where the right operand is not
11016 -- parenthesized, and is a binary operator, multiply, divide, or
11017 -- mod. These are the cases where the grouping can affect results.
11019 if Paren_Count
(Rorig
) = 0
11020 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
11022 -- For mod, we always give the warning, since the value is
11023 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11024 -- -(5 mod 315)). But for the other cases, the only concern is
11025 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11026 -- overflows, but (-2) * 64 does not). So we try to give the
11027 -- message only when overflow is possible.
11029 if Nkind
(Rorig
) /= N_Op_Mod
11030 and then Compile_Time_Known_Value
(R
)
11032 Val
:= Expr_Value
(R
);
11034 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
11035 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
11037 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
11040 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
11041 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
11043 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
11046 -- Note that the test below is deliberately excluding the
11047 -- largest negative number, since that is a potentially
11048 -- troublesome case (e.g. -2 * x, where the result is the
11049 -- largest negative integer has an overflow with 2 * x).
11051 if Val
> LB
and then Val
<= HB
then
11056 -- For the multiplication case, the only case we have to worry
11057 -- about is when (-a)*b is exactly the largest negative number
11058 -- so that -(a*b) can cause overflow. This can only happen if
11059 -- a is a power of 2, and more generally if any operand is a
11060 -- constant that is not a power of 2, then the parentheses
11061 -- cannot affect whether overflow occurs. We only bother to
11062 -- test the left most operand
11064 -- Loop looking at left operands for one that has known value
11067 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
11068 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
11069 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
11071 -- Operand value of 0 or 1 skips warning
11076 -- Otherwise check power of 2, if power of 2, warn, if
11077 -- anything else, skip warning.
11080 while Lval
/= 2 loop
11081 if Lval
mod 2 = 1 then
11092 -- Keep looking at left operands
11094 Opnd
:= Left_Opnd
(Opnd
);
11095 end loop Opnd_Loop
;
11097 -- For rem or "/" we can only have a problematic situation
11098 -- if the divisor has a value of minus one or one. Otherwise
11099 -- overflow is impossible (divisor > 1) or we have a case of
11100 -- division by zero in any case.
11102 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
11103 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
11104 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
11109 -- If we fall through warning should be issued
11111 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11114 ("??unary minus expression should be parenthesized here!", N
);
11118 end Resolve_Unary_Op
;
11120 ----------------------------------
11121 -- Resolve_Unchecked_Expression --
11122 ----------------------------------
11124 procedure Resolve_Unchecked_Expression
11129 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
11130 Set_Etype
(N
, Typ
);
11131 end Resolve_Unchecked_Expression
;
11133 ---------------------------------------
11134 -- Resolve_Unchecked_Type_Conversion --
11135 ---------------------------------------
11137 procedure Resolve_Unchecked_Type_Conversion
11141 pragma Warnings
(Off
, Typ
);
11143 Operand
: constant Node_Id
:= Expression
(N
);
11144 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
11147 -- Resolve operand using its own type
11149 Resolve
(Operand
, Opnd_Type
);
11151 -- In an inlined context, the unchecked conversion may be applied
11152 -- to a literal, in which case its type is the type of the context.
11153 -- (In other contexts conversions cannot apply to literals).
11156 and then (Opnd_Type
= Any_Character
or else
11157 Opnd_Type
= Any_Integer
or else
11158 Opnd_Type
= Any_Real
)
11160 Set_Etype
(Operand
, Typ
);
11163 Analyze_Dimension
(N
);
11164 Eval_Unchecked_Conversion
(N
);
11165 end Resolve_Unchecked_Type_Conversion
;
11167 ------------------------------
11168 -- Rewrite_Operator_As_Call --
11169 ------------------------------
11171 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
11172 Loc
: constant Source_Ptr
:= Sloc
(N
);
11173 Actuals
: constant List_Id
:= New_List
;
11177 if Nkind
(N
) in N_Binary_Op
then
11178 Append
(Left_Opnd
(N
), Actuals
);
11181 Append
(Right_Opnd
(N
), Actuals
);
11184 Make_Function_Call
(Sloc
=> Loc
,
11185 Name
=> New_Occurrence_Of
(Nam
, Loc
),
11186 Parameter_Associations
=> Actuals
);
11188 Preserve_Comes_From_Source
(New_N
, N
);
11189 Preserve_Comes_From_Source
(Name
(New_N
), N
);
11190 Rewrite
(N
, New_N
);
11191 Set_Etype
(N
, Etype
(Nam
));
11192 end Rewrite_Operator_As_Call
;
11194 ------------------------------
11195 -- Rewrite_Renamed_Operator --
11196 ------------------------------
11198 procedure Rewrite_Renamed_Operator
11203 Nam
: constant Name_Id
:= Chars
(Op
);
11204 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
11208 -- Do not perform this transformation within a pre/postcondition,
11209 -- because the expression will be re-analyzed, and the transformation
11210 -- might affect the visibility of the operator, e.g. in an instance.
11212 if In_Assertion_Expr
> 0 then
11216 -- Rewrite the operator node using the real operator, not its renaming.
11217 -- Exclude user-defined intrinsic operations of the same name, which are
11218 -- treated separately and rewritten as calls.
11220 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
11221 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
11222 Set_Chars
(Op_Node
, Nam
);
11223 Set_Etype
(Op_Node
, Etype
(N
));
11224 Set_Entity
(Op_Node
, Op
);
11225 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
11227 -- Indicate that both the original entity and its renaming are
11228 -- referenced at this point.
11230 Generate_Reference
(Entity
(N
), N
);
11231 Generate_Reference
(Op
, N
);
11234 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
11237 Rewrite
(N
, Op_Node
);
11239 -- If the context type is private, add the appropriate conversions so
11240 -- that the operator is applied to the full view. This is done in the
11241 -- routines that resolve intrinsic operators.
11243 if Is_Intrinsic_Subprogram
(Op
)
11244 and then Is_Private_Type
(Typ
)
11247 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11248 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
11249 Resolve_Intrinsic_Operator
(N
, Typ
);
11251 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
11252 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11259 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
11261 -- Operator renames a user-defined operator of the same name. Use the
11262 -- original operator in the node, which is the one Gigi knows about.
11264 Set_Entity
(N
, Op
);
11265 Set_Is_Overloaded
(N
, False);
11267 end Rewrite_Renamed_Operator
;
11269 -----------------------
11270 -- Set_Slice_Subtype --
11271 -----------------------
11273 -- Build an implicit subtype declaration to represent the type delivered by
11274 -- the slice. This is an abbreviated version of an array subtype. We define
11275 -- an index subtype for the slice, using either the subtype name or the
11276 -- discrete range of the slice. To be consistent with index usage elsewhere
11277 -- we create a list header to hold the single index. This list is not
11278 -- otherwise attached to the syntax tree.
11280 procedure Set_Slice_Subtype
(N
: Node_Id
) is
11281 Loc
: constant Source_Ptr
:= Sloc
(N
);
11282 Index_List
: constant List_Id
:= New_List
;
11284 Index_Subtype
: Entity_Id
;
11285 Index_Type
: Entity_Id
;
11286 Slice_Subtype
: Entity_Id
;
11287 Drange
: constant Node_Id
:= Discrete_Range
(N
);
11290 Index_Type
:= Base_Type
(Etype
(Drange
));
11292 if Is_Entity_Name
(Drange
) then
11293 Index_Subtype
:= Entity
(Drange
);
11296 -- We force the evaluation of a range. This is definitely needed in
11297 -- the renamed case, and seems safer to do unconditionally. Note in
11298 -- any case that since we will create and insert an Itype referring
11299 -- to this range, we must make sure any side effect removal actions
11300 -- are inserted before the Itype definition.
11302 if Nkind
(Drange
) = N_Range
then
11303 Force_Evaluation
(Low_Bound
(Drange
));
11304 Force_Evaluation
(High_Bound
(Drange
));
11306 -- If the discrete range is given by a subtype indication, the
11307 -- type of the slice is the base of the subtype mark.
11309 elsif Nkind
(Drange
) = N_Subtype_Indication
then
11311 R
: constant Node_Id
:= Range_Expression
(Constraint
(Drange
));
11313 Index_Type
:= Base_Type
(Entity
(Subtype_Mark
(Drange
)));
11314 Force_Evaluation
(Low_Bound
(R
));
11315 Force_Evaluation
(High_Bound
(R
));
11319 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11321 -- Take a new copy of Drange (where bounds have been rewritten to
11322 -- reference side-effect-free names). Using a separate tree ensures
11323 -- that further expansion (e.g. while rewriting a slice assignment
11324 -- into a FOR loop) does not attempt to remove side effects on the
11325 -- bounds again (which would cause the bounds in the index subtype
11326 -- definition to refer to temporaries before they are defined) (the
11327 -- reason is that some names are considered side effect free here
11328 -- for the subtype, but not in the context of a loop iteration
11331 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
11332 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
11333 Set_Etype
(Index_Subtype
, Index_Type
);
11334 Set_Size_Info
(Index_Subtype
, Index_Type
);
11335 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11338 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11340 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11341 Set_Etype
(Index
, Index_Subtype
);
11342 Append
(Index
, Index_List
);
11344 Set_First_Index
(Slice_Subtype
, Index
);
11345 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
11346 Set_Is_Constrained
(Slice_Subtype
, True);
11348 Check_Compile_Time_Size
(Slice_Subtype
);
11350 -- The Etype of the existing Slice node is reset to this slice subtype.
11351 -- Its bounds are obtained from its first index.
11353 Set_Etype
(N
, Slice_Subtype
);
11355 -- For packed slice subtypes, freeze immediately (except in the case of
11356 -- being in a "spec expression" where we never freeze when we first see
11357 -- the expression).
11359 if Is_Packed
(Slice_Subtype
) and not In_Spec_Expression
then
11360 Freeze_Itype
(Slice_Subtype
, N
);
11362 -- For all other cases insert an itype reference in the slice's actions
11363 -- so that the itype is frozen at the proper place in the tree (i.e. at
11364 -- the point where actions for the slice are analyzed). Note that this
11365 -- is different from freezing the itype immediately, which might be
11366 -- premature (e.g. if the slice is within a transient scope). This needs
11367 -- to be done only if expansion is enabled.
11369 elsif Expander_Active
then
11370 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
11372 end Set_Slice_Subtype
;
11374 --------------------------------
11375 -- Set_String_Literal_Subtype --
11376 --------------------------------
11378 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
11379 Loc
: constant Source_Ptr
:= Sloc
(N
);
11380 Low_Bound
: constant Node_Id
:=
11381 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
11382 Subtype_Id
: Entity_Id
;
11385 if Nkind
(N
) /= N_String_Literal
then
11389 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
11390 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
11391 (String_Length
(Strval
(N
))));
11392 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
11393 Set_Is_Constrained
(Subtype_Id
);
11394 Set_Etype
(N
, Subtype_Id
);
11396 -- The low bound is set from the low bound of the corresponding index
11397 -- type. Note that we do not store the high bound in the string literal
11398 -- subtype, but it can be deduced if necessary from the length and the
11401 if Is_OK_Static_Expression
(Low_Bound
) then
11402 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
11404 -- If the lower bound is not static we create a range for the string
11405 -- literal, using the index type and the known length of the literal.
11406 -- The index type is not necessarily Positive, so the upper bound is
11407 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11411 Index_List
: constant List_Id
:= New_List
;
11412 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
11413 High_Bound
: constant Node_Id
:=
11414 Make_Attribute_Reference
(Loc
,
11415 Attribute_Name
=> Name_Val
,
11417 New_Occurrence_Of
(Index_Type
, Loc
),
11418 Expressions
=> New_List
(
11421 Make_Attribute_Reference
(Loc
,
11422 Attribute_Name
=> Name_Pos
,
11424 New_Occurrence_Of
(Index_Type
, Loc
),
11426 New_List
(New_Copy_Tree
(Low_Bound
))),
11428 Make_Integer_Literal
(Loc
,
11429 String_Length
(Strval
(N
)) - 1))));
11431 Array_Subtype
: Entity_Id
;
11434 Index_Subtype
: Entity_Id
;
11437 if Is_Integer_Type
(Index_Type
) then
11438 Set_String_Literal_Low_Bound
11439 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
11442 -- If the index type is an enumeration type, build bounds
11443 -- expression with attributes.
11445 Set_String_Literal_Low_Bound
11447 Make_Attribute_Reference
(Loc
,
11448 Attribute_Name
=> Name_First
,
11450 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
11451 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
11454 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
11456 -- Build bona fide subtype for the string, and wrap it in an
11457 -- unchecked conversion, because the backend expects the
11458 -- String_Literal_Subtype to have a static lower bound.
11461 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11462 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
11463 Set_Scalar_Range
(Index_Subtype
, Drange
);
11464 Set_Parent
(Drange
, N
);
11465 Analyze_And_Resolve
(Drange
, Index_Type
);
11467 -- In the context, the Index_Type may already have a constraint,
11468 -- so use common base type on string subtype. The base type may
11469 -- be used when generating attributes of the string, for example
11470 -- in the context of a slice assignment.
11472 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
11473 Set_Size_Info
(Index_Subtype
, Index_Type
);
11474 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11476 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11478 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11479 Set_Etype
(Index
, Index_Subtype
);
11480 Append
(Index
, Index_List
);
11482 Set_First_Index
(Array_Subtype
, Index
);
11483 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
11484 Set_Is_Constrained
(Array_Subtype
, True);
11487 Make_Unchecked_Type_Conversion
(Loc
,
11488 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
11489 Expression
=> Relocate_Node
(N
)));
11490 Set_Etype
(N
, Array_Subtype
);
11493 end Set_String_Literal_Subtype
;
11495 ------------------------------
11496 -- Simplify_Type_Conversion --
11497 ------------------------------
11499 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
11501 if Nkind
(N
) = N_Type_Conversion
then
11503 Operand
: constant Node_Id
:= Expression
(N
);
11504 Target_Typ
: constant Entity_Id
:= Etype
(N
);
11505 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
11508 -- Special processing if the conversion is the expression of a
11509 -- Rounding or Truncation attribute reference. In this case we
11512 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11518 -- with the Float_Truncate flag set to False or True respectively,
11519 -- which is more efficient.
11521 if Is_Floating_Point_Type
(Opnd_Typ
)
11523 (Is_Integer_Type
(Target_Typ
)
11524 or else (Is_Fixed_Point_Type
(Target_Typ
)
11525 and then Conversion_OK
(N
)))
11526 and then Nkind
(Operand
) = N_Attribute_Reference
11527 and then Nam_In
(Attribute_Name
(Operand
), Name_Rounding
,
11531 Truncate
: constant Boolean :=
11532 Attribute_Name
(Operand
) = Name_Truncation
;
11535 Relocate_Node
(First
(Expressions
(Operand
))));
11536 Set_Float_Truncate
(N
, Truncate
);
11541 end Simplify_Type_Conversion
;
11543 -----------------------------
11544 -- Unique_Fixed_Point_Type --
11545 -----------------------------
11547 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
11548 T1
: Entity_Id
:= Empty
;
11553 procedure Fixed_Point_Error
;
11554 -- Give error messages for true ambiguity. Messages are posted on node
11555 -- N, and entities T1, T2 are the possible interpretations.
11557 -----------------------
11558 -- Fixed_Point_Error --
11559 -----------------------
11561 procedure Fixed_Point_Error
is
11563 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
11564 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
11565 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
11566 end Fixed_Point_Error
;
11568 -- Start of processing for Unique_Fixed_Point_Type
11571 -- The operations on Duration are visible, so Duration is always a
11572 -- possible interpretation.
11574 T1
:= Standard_Duration
;
11576 -- Look for fixed-point types in enclosing scopes
11578 Scop
:= Current_Scope
;
11579 while Scop
/= Standard_Standard
loop
11580 T2
:= First_Entity
(Scop
);
11581 while Present
(T2
) loop
11582 if Is_Fixed_Point_Type
(T2
)
11583 and then Current_Entity
(T2
) = T2
11584 and then Scope
(Base_Type
(T2
)) = Scop
11586 if Present
(T1
) then
11597 Scop
:= Scope
(Scop
);
11600 -- Look for visible fixed type declarations in the context
11602 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
11603 while Present
(Item
) loop
11604 if Nkind
(Item
) = N_With_Clause
then
11605 Scop
:= Entity
(Name
(Item
));
11606 T2
:= First_Entity
(Scop
);
11607 while Present
(T2
) loop
11608 if Is_Fixed_Point_Type
(T2
)
11609 and then Scope
(Base_Type
(T2
)) = Scop
11610 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
11612 if Present
(T1
) then
11627 if Nkind
(N
) = N_Real_Literal
then
11629 ("??real literal interpreted as }!", N
, T1
);
11632 ("??universal_fixed expression interpreted as }!", N
, T1
);
11636 end Unique_Fixed_Point_Type
;
11638 ----------------------
11639 -- Valid_Conversion --
11640 ----------------------
11642 function Valid_Conversion
11644 Target
: Entity_Id
;
11646 Report_Errs
: Boolean := True) return Boolean
11648 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
11649 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
11650 Inc_Ancestor
: Entity_Id
;
11652 function Conversion_Check
11654 Msg
: String) return Boolean;
11655 -- Little routine to post Msg if Valid is False, returns Valid value
11657 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
11658 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11660 procedure Conversion_Error_NE
11662 N
: Node_Or_Entity_Id
;
11663 E
: Node_Or_Entity_Id
);
11664 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11666 function Valid_Tagged_Conversion
11667 (Target_Type
: Entity_Id
;
11668 Opnd_Type
: Entity_Id
) return Boolean;
11669 -- Specifically test for validity of tagged conversions
11671 function Valid_Array_Conversion
return Boolean;
11672 -- Check index and component conformance, and accessibility levels if
11673 -- the component types are anonymous access types (Ada 2005).
11675 ----------------------
11676 -- Conversion_Check --
11677 ----------------------
11679 function Conversion_Check
11681 Msg
: String) return Boolean
11686 -- A generic unit has already been analyzed and we have verified
11687 -- that a particular conversion is OK in that context. Since the
11688 -- instance is reanalyzed without relying on the relationships
11689 -- established during the analysis of the generic, it is possible
11690 -- to end up with inconsistent views of private types. Do not emit
11691 -- the error message in such cases. The rest of the machinery in
11692 -- Valid_Conversion still ensures the proper compatibility of
11693 -- target and operand types.
11695 and then not In_Instance
11697 Conversion_Error_N
(Msg
, Operand
);
11701 end Conversion_Check
;
11703 ------------------------
11704 -- Conversion_Error_N --
11705 ------------------------
11707 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
11709 if Report_Errs
then
11710 Error_Msg_N
(Msg
, N
);
11712 end Conversion_Error_N
;
11714 -------------------------
11715 -- Conversion_Error_NE --
11716 -------------------------
11718 procedure Conversion_Error_NE
11720 N
: Node_Or_Entity_Id
;
11721 E
: Node_Or_Entity_Id
)
11724 if Report_Errs
then
11725 Error_Msg_NE
(Msg
, N
, E
);
11727 end Conversion_Error_NE
;
11729 ----------------------------
11730 -- Valid_Array_Conversion --
11731 ----------------------------
11733 function Valid_Array_Conversion
return Boolean
11735 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
11736 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
11738 Opnd_Index
: Node_Id
;
11739 Opnd_Index_Type
: Entity_Id
;
11741 Target_Comp_Type
: constant Entity_Id
:=
11742 Component_Type
(Target_Type
);
11743 Target_Comp_Base
: constant Entity_Id
:=
11744 Base_Type
(Target_Comp_Type
);
11746 Target_Index
: Node_Id
;
11747 Target_Index_Type
: Entity_Id
;
11750 -- Error if wrong number of dimensions
11753 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
11756 ("incompatible number of dimensions for conversion", Operand
);
11759 -- Number of dimensions matches
11762 -- Loop through indexes of the two arrays
11764 Target_Index
:= First_Index
(Target_Type
);
11765 Opnd_Index
:= First_Index
(Opnd_Type
);
11766 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
11767 Target_Index_Type
:= Etype
(Target_Index
);
11768 Opnd_Index_Type
:= Etype
(Opnd_Index
);
11770 -- Error if index types are incompatible
11772 if not (Is_Integer_Type
(Target_Index_Type
)
11773 and then Is_Integer_Type
(Opnd_Index_Type
))
11774 and then (Root_Type
(Target_Index_Type
)
11775 /= Root_Type
(Opnd_Index_Type
))
11778 ("incompatible index types for array conversion",
11783 Next_Index
(Target_Index
);
11784 Next_Index
(Opnd_Index
);
11787 -- If component types have same base type, all set
11789 if Target_Comp_Base
= Opnd_Comp_Base
then
11792 -- Here if base types of components are not the same. The only
11793 -- time this is allowed is if we have anonymous access types.
11795 -- The conversion of arrays of anonymous access types can lead
11796 -- to dangling pointers. AI-392 formalizes the accessibility
11797 -- checks that must be applied to such conversions to prevent
11798 -- out-of-scope references.
11801 (Target_Comp_Base
, E_Anonymous_Access_Type
,
11802 E_Anonymous_Access_Subprogram_Type
)
11803 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
11805 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
11807 if Type_Access_Level
(Target_Type
) <
11808 Deepest_Type_Access_Level
(Opnd_Type
)
11810 if In_Instance_Body
then
11811 Error_Msg_Warn
:= SPARK_Mode
/= On
;
11813 ("source array type has deeper accessibility "
11814 & "level than target<<", Operand
);
11815 Conversion_Error_N
("\Program_Error [<<", Operand
);
11817 Make_Raise_Program_Error
(Sloc
(N
),
11818 Reason
=> PE_Accessibility_Check_Failed
));
11819 Set_Etype
(N
, Target_Type
);
11822 -- Conversion not allowed because of accessibility levels
11826 ("source array type has deeper accessibility "
11827 & "level than target", Operand
);
11835 -- All other cases where component base types do not match
11839 ("incompatible component types for array conversion",
11844 -- Check that component subtypes statically match. For numeric
11845 -- types this means that both must be either constrained or
11846 -- unconstrained. For enumeration types the bounds must match.
11847 -- All of this is checked in Subtypes_Statically_Match.
11849 if not Subtypes_Statically_Match
11850 (Target_Comp_Type
, Opnd_Comp_Type
)
11853 ("component subtypes must statically match", Operand
);
11859 end Valid_Array_Conversion
;
11861 -----------------------------
11862 -- Valid_Tagged_Conversion --
11863 -----------------------------
11865 function Valid_Tagged_Conversion
11866 (Target_Type
: Entity_Id
;
11867 Opnd_Type
: Entity_Id
) return Boolean
11870 -- Upward conversions are allowed (RM 4.6(22))
11872 if Covers
(Target_Type
, Opnd_Type
)
11873 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
11877 -- Downward conversion are allowed if the operand is class-wide
11880 elsif Is_Class_Wide_Type
(Opnd_Type
)
11881 and then Covers
(Opnd_Type
, Target_Type
)
11885 elsif Covers
(Opnd_Type
, Target_Type
)
11886 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
11889 Conversion_Check
(False,
11890 "downward conversion of tagged objects not allowed");
11892 -- Ada 2005 (AI-251): The conversion to/from interface types is
11895 elsif Is_Interface
(Target_Type
) or else Is_Interface
(Opnd_Type
) then
11898 -- If the operand is a class-wide type obtained through a limited_
11899 -- with clause, and the context includes the non-limited view, use
11900 -- it to determine whether the conversion is legal.
11902 elsif Is_Class_Wide_Type
(Opnd_Type
)
11903 and then From_Limited_With
(Opnd_Type
)
11904 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
11905 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
11909 elsif Is_Access_Type
(Opnd_Type
)
11910 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
11915 Conversion_Error_NE
11916 ("invalid tagged conversion, not compatible with}",
11917 N
, First_Subtype
(Opnd_Type
));
11920 end Valid_Tagged_Conversion
;
11922 -- Start of processing for Valid_Conversion
11925 Check_Parameterless_Call
(Operand
);
11927 if Is_Overloaded
(Operand
) then
11937 -- Remove procedure calls, which syntactically cannot appear in
11938 -- this context, but which cannot be removed by type checking,
11939 -- because the context does not impose a type.
11941 -- The node may be labelled overloaded, but still contain only one
11942 -- interpretation because others were discarded earlier. If this
11943 -- is the case, retain the single interpretation if legal.
11945 Get_First_Interp
(Operand
, I
, It
);
11946 Opnd_Type
:= It
.Typ
;
11947 Get_Next_Interp
(I
, It
);
11949 if Present
(It
.Typ
)
11950 and then Opnd_Type
/= Standard_Void_Type
11952 -- More than one candidate interpretation is available
11954 Get_First_Interp
(Operand
, I
, It
);
11955 while Present
(It
.Typ
) loop
11956 if It
.Typ
= Standard_Void_Type
then
11960 -- When compiling for a system where Address is of a visible
11961 -- integer type, spurious ambiguities can be produced when
11962 -- arithmetic operations have a literal operand and return
11963 -- System.Address or a descendant of it. These ambiguities
11964 -- are usually resolved by the context, but for conversions
11965 -- there is no context type and the removal of the spurious
11966 -- operations must be done explicitly here.
11968 if not Address_Is_Private
11969 and then Is_Descendent_Of_Address
(It
.Typ
)
11974 Get_Next_Interp
(I
, It
);
11978 Get_First_Interp
(Operand
, I
, It
);
11982 if No
(It
.Typ
) then
11983 Conversion_Error_N
("illegal operand in conversion", Operand
);
11987 Get_Next_Interp
(I
, It
);
11989 if Present
(It
.Typ
) then
11992 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
11994 if It1
= No_Interp
then
11996 ("ambiguous operand in conversion", Operand
);
11998 -- If the interpretation involves a standard operator, use
11999 -- the location of the type, which may be user-defined.
12001 if Sloc
(It
.Nam
) = Standard_Location
then
12002 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
12004 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
12007 Conversion_Error_N
-- CODEFIX
12008 ("\\possible interpretation#!", Operand
);
12010 if Sloc
(N1
) = Standard_Location
then
12011 Error_Msg_Sloc
:= Sloc
(T1
);
12013 Error_Msg_Sloc
:= Sloc
(N1
);
12016 Conversion_Error_N
-- CODEFIX
12017 ("\\possible interpretation#!", Operand
);
12023 Set_Etype
(Operand
, It1
.Typ
);
12024 Opnd_Type
:= It1
.Typ
;
12028 -- Deal with conversion of integer type to address if the pragma
12029 -- Allow_Integer_Address is in effect. We convert the conversion to
12030 -- an unchecked conversion in this case and we are all done.
12032 if Address_Integer_Convert_OK
(Opnd_Type
, Target_Type
) then
12033 Rewrite
(N
, Unchecked_Convert_To
(Target_Type
, Expression
(N
)));
12034 Analyze_And_Resolve
(N
, Target_Type
);
12038 -- If we are within a child unit, check whether the type of the
12039 -- expression has an ancestor in a parent unit, in which case it
12040 -- belongs to its derivation class even if the ancestor is private.
12041 -- See RM 7.3.1 (5.2/3).
12043 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
12047 if Is_Numeric_Type
(Target_Type
) then
12049 -- A universal fixed expression can be converted to any numeric type
12051 if Opnd_Type
= Universal_Fixed
then
12054 -- Also no need to check when in an instance or inlined body, because
12055 -- the legality has been established when the template was analyzed.
12056 -- Furthermore, numeric conversions may occur where only a private
12057 -- view of the operand type is visible at the instantiation point.
12058 -- This results in a spurious error if we check that the operand type
12059 -- is a numeric type.
12061 -- Note: in a previous version of this unit, the following tests were
12062 -- applied only for generated code (Comes_From_Source set to False),
12063 -- but in fact the test is required for source code as well, since
12064 -- this situation can arise in source code.
12066 elsif In_Instance
or else In_Inlined_Body
then
12069 -- Otherwise we need the conversion check
12072 return Conversion_Check
12073 (Is_Numeric_Type
(Opnd_Type
)
12075 (Present
(Inc_Ancestor
)
12076 and then Is_Numeric_Type
(Inc_Ancestor
)),
12077 "illegal operand for numeric conversion");
12082 elsif Is_Array_Type
(Target_Type
) then
12083 if not Is_Array_Type
(Opnd_Type
)
12084 or else Opnd_Type
= Any_Composite
12085 or else Opnd_Type
= Any_String
12088 ("illegal operand for array conversion", Operand
);
12092 return Valid_Array_Conversion
;
12095 -- Ada 2005 (AI-251): Internally generated conversions of access to
12096 -- interface types added to force the displacement of the pointer to
12097 -- reference the corresponding dispatch table.
12099 elsif not Comes_From_Source
(N
)
12100 and then Is_Access_Type
(Target_Type
)
12101 and then Is_Interface
(Designated_Type
(Target_Type
))
12105 -- Ada 2005 (AI-251): Anonymous access types where target references an
12108 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12109 E_Anonymous_Access_Type
)
12110 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
12112 -- Check the static accessibility rule of 4.6(17). Note that the
12113 -- check is not enforced when within an instance body, since the
12114 -- RM requires such cases to be caught at run time.
12116 -- If the operand is a rewriting of an allocator no check is needed
12117 -- because there are no accessibility issues.
12119 if Nkind
(Original_Node
(N
)) = N_Allocator
then
12122 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
12123 if Type_Access_Level
(Opnd_Type
) >
12124 Deepest_Type_Access_Level
(Target_Type
)
12126 -- In an instance, this is a run-time check, but one we know
12127 -- will fail, so generate an appropriate warning. The raise
12128 -- will be generated by Expand_N_Type_Conversion.
12130 if In_Instance_Body
then
12131 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12133 ("cannot convert local pointer to non-local access type<<",
12135 Conversion_Error_N
("\Program_Error [<<", Operand
);
12139 ("cannot convert local pointer to non-local access type",
12144 -- Special accessibility checks are needed in the case of access
12145 -- discriminants declared for a limited type.
12147 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12148 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12150 -- When the operand is a selected access discriminant the check
12151 -- needs to be made against the level of the object denoted by
12152 -- the prefix of the selected name (Object_Access_Level handles
12153 -- checking the prefix of the operand for this case).
12155 if Nkind
(Operand
) = N_Selected_Component
12156 and then Object_Access_Level
(Operand
) >
12157 Deepest_Type_Access_Level
(Target_Type
)
12159 -- In an instance, this is a run-time check, but one we know
12160 -- will fail, so generate an appropriate warning. The raise
12161 -- will be generated by Expand_N_Type_Conversion.
12163 if In_Instance_Body
then
12164 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12166 ("cannot convert access discriminant to non-local "
12167 & "access type<<", Operand
);
12168 Conversion_Error_N
("\Program_Error [<<", Operand
);
12170 -- Real error if not in instance body
12174 ("cannot convert access discriminant to non-local "
12175 & "access type", Operand
);
12180 -- The case of a reference to an access discriminant from
12181 -- within a limited type declaration (which will appear as
12182 -- a discriminal) is always illegal because the level of the
12183 -- discriminant is considered to be deeper than any (nameable)
12186 if Is_Entity_Name
(Operand
)
12187 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12189 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12190 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12193 ("discriminant has deeper accessibility level than target",
12202 -- General and anonymous access types
12204 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12205 E_Anonymous_Access_Type
)
12208 (Is_Access_Type
(Opnd_Type
)
12210 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
12211 E_Access_Protected_Subprogram_Type
),
12212 "must be an access-to-object type")
12214 if Is_Access_Constant
(Opnd_Type
)
12215 and then not Is_Access_Constant
(Target_Type
)
12218 ("access-to-constant operand type not allowed", Operand
);
12222 -- Check the static accessibility rule of 4.6(17). Note that the
12223 -- check is not enforced when within an instance body, since the RM
12224 -- requires such cases to be caught at run time.
12226 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
12227 or else Is_Local_Anonymous_Access
(Target_Type
)
12228 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
12229 N_Object_Declaration
12231 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12232 -- conversions from an anonymous access type to a named general
12233 -- access type. Such conversions are not allowed in the case of
12234 -- access parameters and stand-alone objects of an anonymous
12235 -- access type. The implicit conversion case is recognized by
12236 -- testing that Comes_From_Source is False and that it's been
12237 -- rewritten. The Comes_From_Source test isn't sufficient because
12238 -- nodes in inlined calls to predefined library routines can have
12239 -- Comes_From_Source set to False. (Is there a better way to test
12240 -- for implicit conversions???)
12242 if Ada_Version
>= Ada_2012
12243 and then not Comes_From_Source
(N
)
12244 and then N
/= Original_Node
(N
)
12245 and then Ekind
(Target_Type
) = E_General_Access_Type
12246 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12248 if Is_Itype
(Opnd_Type
) then
12250 -- Implicit conversions aren't allowed for objects of an
12251 -- anonymous access type, since such objects have nonstatic
12252 -- levels in Ada 2012.
12254 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
12255 N_Object_Declaration
12258 ("implicit conversion of stand-alone anonymous "
12259 & "access object not allowed", Operand
);
12262 -- Implicit conversions aren't allowed for anonymous access
12263 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12264 -- is done to exclude anonymous access results.
12266 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
12267 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
12268 N_Function_Specification
,
12269 N_Procedure_Specification
)
12272 ("implicit conversion of anonymous access formal "
12273 & "not allowed", Operand
);
12276 -- This is a case where there's an enclosing object whose
12277 -- to which the "statically deeper than" relationship does
12278 -- not apply (such as an access discriminant selected from
12279 -- a dereference of an access parameter).
12281 elsif Object_Access_Level
(Operand
)
12282 = Scope_Depth
(Standard_Standard
)
12285 ("implicit conversion of anonymous access value "
12286 & "not allowed", Operand
);
12289 -- In other cases, the level of the operand's type must be
12290 -- statically less deep than that of the target type, else
12291 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12293 elsif Type_Access_Level
(Opnd_Type
) >
12294 Deepest_Type_Access_Level
(Target_Type
)
12297 ("implicit conversion of anonymous access value "
12298 & "violates accessibility", Operand
);
12303 elsif Type_Access_Level
(Opnd_Type
) >
12304 Deepest_Type_Access_Level
(Target_Type
)
12306 -- In an instance, this is a run-time check, but one we know
12307 -- will fail, so generate an appropriate warning. The raise
12308 -- will be generated by Expand_N_Type_Conversion.
12310 if In_Instance_Body
then
12311 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12313 ("cannot convert local pointer to non-local access type<<",
12315 Conversion_Error_N
("\Program_Error [<<", Operand
);
12317 -- If not in an instance body, this is a real error
12320 -- Avoid generation of spurious error message
12322 if not Error_Posted
(N
) then
12324 ("cannot convert local pointer to non-local access type",
12331 -- Special accessibility checks are needed in the case of access
12332 -- discriminants declared for a limited type.
12334 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12335 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12337 -- When the operand is a selected access discriminant the check
12338 -- needs to be made against the level of the object denoted by
12339 -- the prefix of the selected name (Object_Access_Level handles
12340 -- checking the prefix of the operand for this case).
12342 if Nkind
(Operand
) = N_Selected_Component
12343 and then Object_Access_Level
(Operand
) >
12344 Deepest_Type_Access_Level
(Target_Type
)
12346 -- In an instance, this is a run-time check, but one we know
12347 -- will fail, so generate an appropriate warning. The raise
12348 -- will be generated by Expand_N_Type_Conversion.
12350 if In_Instance_Body
then
12351 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12353 ("cannot convert access discriminant to non-local "
12354 & "access type<<", Operand
);
12355 Conversion_Error_N
("\Program_Error [<<", Operand
);
12357 -- If not in an instance body, this is a real error
12361 ("cannot convert access discriminant to non-local "
12362 & "access type", Operand
);
12367 -- The case of a reference to an access discriminant from
12368 -- within a limited type declaration (which will appear as
12369 -- a discriminal) is always illegal because the level of the
12370 -- discriminant is considered to be deeper than any (nameable)
12373 if Is_Entity_Name
(Operand
)
12375 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12376 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12379 ("discriminant has deeper accessibility level than target",
12386 -- In the presence of limited_with clauses we have to use non-limited
12387 -- views, if available.
12389 Check_Limited
: declare
12390 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
12391 -- Helper function to handle limited views
12393 --------------------------
12394 -- Full_Designated_Type --
12395 --------------------------
12397 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
12398 Desig
: constant Entity_Id
:= Designated_Type
(T
);
12401 -- Handle the limited view of a type
12403 if Is_Incomplete_Type
(Desig
)
12404 and then From_Limited_With
(Desig
)
12405 and then Present
(Non_Limited_View
(Desig
))
12407 return Available_View
(Desig
);
12411 end Full_Designated_Type
;
12413 -- Local Declarations
12415 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
12416 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
12418 Same_Base
: constant Boolean :=
12419 Base_Type
(Target
) = Base_Type
(Opnd
);
12421 -- Start of processing for Check_Limited
12424 if Is_Tagged_Type
(Target
) then
12425 return Valid_Tagged_Conversion
(Target
, Opnd
);
12428 if not Same_Base
then
12429 Conversion_Error_NE
12430 ("target designated type not compatible with }",
12431 N
, Base_Type
(Opnd
));
12434 -- Ada 2005 AI-384: legality rule is symmetric in both
12435 -- designated types. The conversion is legal (with possible
12436 -- constraint check) if either designated type is
12439 elsif Subtypes_Statically_Match
(Target
, Opnd
)
12441 (Has_Discriminants
(Target
)
12443 (not Is_Constrained
(Opnd
)
12444 or else not Is_Constrained
(Target
)))
12446 -- Special case, if Value_Size has been used to make the
12447 -- sizes different, the conversion is not allowed even
12448 -- though the subtypes statically match.
12450 if Known_Static_RM_Size
(Target
)
12451 and then Known_Static_RM_Size
(Opnd
)
12452 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
12454 Conversion_Error_NE
12455 ("target designated subtype not compatible with }",
12457 Conversion_Error_NE
12458 ("\because sizes of the two designated subtypes differ",
12462 -- Normal case where conversion is allowed
12470 ("target designated subtype not compatible with }",
12477 -- Access to subprogram types. If the operand is an access parameter,
12478 -- the type has a deeper accessibility that any master, and cannot be
12479 -- assigned. We must make an exception if the conversion is part of an
12480 -- assignment and the target is the return object of an extended return
12481 -- statement, because in that case the accessibility check takes place
12482 -- after the return.
12484 elsif Is_Access_Subprogram_Type
(Target_Type
)
12486 -- Note: this test of Opnd_Type is there to prevent entering this
12487 -- branch in the case of a remote access to subprogram type, which
12488 -- is internally represented as an E_Record_Type.
12490 and then Is_Access_Type
(Opnd_Type
)
12492 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
12493 and then Is_Entity_Name
(Operand
)
12494 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
12496 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
12497 or else not Is_Entity_Name
(Name
(Parent
(N
)))
12498 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
12501 ("illegal attempt to store anonymous access to subprogram",
12504 ("\value has deeper accessibility than any master "
12505 & "(RM 3.10.2 (13))",
12509 ("\use named access type for& instead of access parameter",
12510 Operand
, Entity
(Operand
));
12513 -- Check that the designated types are subtype conformant
12515 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
12516 Old_Id
=> Designated_Type
(Opnd_Type
),
12519 -- Check the static accessibility rule of 4.6(20)
12521 if Type_Access_Level
(Opnd_Type
) >
12522 Deepest_Type_Access_Level
(Target_Type
)
12525 ("operand type has deeper accessibility level than target",
12528 -- Check that if the operand type is declared in a generic body,
12529 -- then the target type must be declared within that same body
12530 -- (enforces last sentence of 4.6(20)).
12532 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
12534 O_Gen
: constant Node_Id
:=
12535 Enclosing_Generic_Body
(Opnd_Type
);
12540 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
12541 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
12542 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
12545 if T_Gen
/= O_Gen
then
12547 ("target type must be declared in same generic body "
12548 & "as operand type", N
);
12555 -- Remote access to subprogram types
12557 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
12558 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
12560 -- It is valid to convert from one RAS type to another provided
12561 -- that their specification statically match.
12563 -- Note: at this point, remote access to subprogram types have been
12564 -- expanded to their E_Record_Type representation, and we need to
12565 -- go back to the original access type definition using the
12566 -- Corresponding_Remote_Type attribute in order to check that the
12567 -- designated profiles match.
12569 pragma Assert
(Ekind
(Target_Type
) = E_Record_Type
);
12570 pragma Assert
(Ekind
(Opnd_Type
) = E_Record_Type
);
12572 Check_Subtype_Conformant
12574 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
12576 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
12581 -- If it was legal in the generic, it's legal in the instance
12583 elsif In_Instance_Body
then
12586 -- If both are tagged types, check legality of view conversions
12588 elsif Is_Tagged_Type
(Target_Type
)
12590 Is_Tagged_Type
(Opnd_Type
)
12592 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
12594 -- Types derived from the same root type are convertible
12596 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
12599 -- In an instance or an inlined body, there may be inconsistent views of
12600 -- the same type, or of types derived from a common root.
12602 elsif (In_Instance
or In_Inlined_Body
)
12604 Root_Type
(Underlying_Type
(Target_Type
)) =
12605 Root_Type
(Underlying_Type
(Opnd_Type
))
12609 -- Special check for common access type error case
12611 elsif Ekind
(Target_Type
) = E_Access_Type
12612 and then Is_Access_Type
(Opnd_Type
)
12614 Conversion_Error_N
("target type must be general access type!", N
);
12615 Conversion_Error_NE
-- CODEFIX
12616 ("add ALL to }!", N
, Target_Type
);
12619 -- Here we have a real conversion error
12622 Conversion_Error_NE
12623 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
12626 end Valid_Conversion
;