2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "basic-block.h"
35 #include "diagnostic.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
41 #include "tree-pass.h"
42 #include "tree-ssa-propagate.h"
43 #include "langhooks.h"
46 /* To avoid code explosion due to jump threading, we limit the
47 number of statements we are going to copy. This variable
48 holds the number of statements currently seen that we'll have
49 to copy as part of the jump threading process. */
50 static int stmt_count
;
52 /* Return TRUE if we may be able to thread an incoming edge into
53 BB to an outgoing edge from BB. Return FALSE otherwise. */
56 potentially_threadable_block (basic_block bb
)
58 gimple_stmt_iterator gsi
;
60 /* If BB has a single successor or a single predecessor, then
61 there is no threading opportunity. */
62 if (single_succ_p (bb
) || single_pred_p (bb
))
65 /* If BB does not end with a conditional, switch or computed goto,
66 then there is no threading opportunity. */
67 gsi
= gsi_last_bb (bb
);
70 || (gimple_code (gsi_stmt (gsi
)) != GIMPLE_COND
71 && gimple_code (gsi_stmt (gsi
)) != GIMPLE_GOTO
72 && gimple_code (gsi_stmt (gsi
)) != GIMPLE_SWITCH
))
78 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
79 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
80 BB. If no such ASSERT_EXPR is found, return OP. */
83 lhs_of_dominating_assert (tree op
, basic_block bb
, gimple stmt
)
85 imm_use_iterator imm_iter
;
89 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, op
)
91 use_stmt
= USE_STMT (use_p
);
93 && gimple_assign_single_p (use_stmt
)
94 && TREE_CODE (gimple_assign_rhs1 (use_stmt
)) == ASSERT_EXPR
95 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt
), 0) == op
96 && dominated_by_p (CDI_DOMINATORS
, bb
, gimple_bb (use_stmt
)))
98 return gimple_assign_lhs (use_stmt
);
104 /* We record temporary equivalences created by PHI nodes or
105 statements within the target block. Doing so allows us to
106 identify more jump threading opportunities, even in blocks
109 We keep track of those temporary equivalences in a stack
110 structure so that we can unwind them when we're done processing
111 a particular edge. This routine handles unwinding the data
115 remove_temporary_equivalences (VEC(tree
, heap
) **stack
)
117 while (VEC_length (tree
, *stack
) > 0)
119 tree prev_value
, dest
;
121 dest
= VEC_pop (tree
, *stack
);
123 /* A NULL value indicates we should stop unwinding, otherwise
124 pop off the next entry as they're recorded in pairs. */
128 prev_value
= VEC_pop (tree
, *stack
);
129 SSA_NAME_VALUE (dest
) = prev_value
;
133 /* Record a temporary equivalence, saving enough information so that
134 we can restore the state of recorded equivalences when we're
135 done processing the current edge. */
138 record_temporary_equivalence (tree x
, tree y
, VEC(tree
, heap
) **stack
)
140 tree prev_x
= SSA_NAME_VALUE (x
);
142 if (TREE_CODE (y
) == SSA_NAME
)
144 tree tmp
= SSA_NAME_VALUE (y
);
148 SSA_NAME_VALUE (x
) = y
;
149 VEC_reserve (tree
, heap
, *stack
, 2);
150 VEC_quick_push (tree
, *stack
, prev_x
);
151 VEC_quick_push (tree
, *stack
, x
);
154 /* Record temporary equivalences created by PHIs at the target of the
155 edge E. Record unwind information for the equivalences onto STACK.
157 If a PHI which prevents threading is encountered, then return FALSE
158 indicating we should not thread this edge, else return TRUE. */
161 record_temporary_equivalences_from_phis (edge e
, VEC(tree
, heap
) **stack
)
163 gimple_stmt_iterator gsi
;
165 /* Each PHI creates a temporary equivalence, record them.
166 These are context sensitive equivalences and will be removed
168 for (gsi
= gsi_start_phis (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
170 gimple phi
= gsi_stmt (gsi
);
171 tree src
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
172 tree dst
= gimple_phi_result (phi
);
174 /* If the desired argument is not the same as this PHI's result
175 and it is set by a PHI in E->dest, then we can not thread
178 && TREE_CODE (src
) == SSA_NAME
179 && gimple_code (SSA_NAME_DEF_STMT (src
)) == GIMPLE_PHI
180 && gimple_bb (SSA_NAME_DEF_STMT (src
)) == e
->dest
)
183 /* We consider any non-virtual PHI as a statement since it
184 count result in a constant assignment or copy operation. */
185 if (is_gimple_reg (dst
))
188 record_temporary_equivalence (dst
, src
, stack
);
193 /* Fold the RHS of an assignment statement and return it as a tree.
194 May return NULL_TREE if no simplification is possible. */
197 fold_assignment_stmt (gimple stmt
)
199 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
201 switch (get_gimple_rhs_class (subcode
))
203 case GIMPLE_SINGLE_RHS
:
205 tree rhs
= gimple_assign_rhs1 (stmt
);
207 if (TREE_CODE (rhs
) == COND_EXPR
)
209 /* Sadly, we have to handle conditional assignments specially
210 here, because fold expects all the operands of an expression
211 to be folded before the expression itself is folded, but we
212 can't just substitute the folded condition here. */
213 tree cond
= fold (COND_EXPR_COND (rhs
));
214 if (cond
== boolean_true_node
)
215 rhs
= COND_EXPR_THEN (rhs
);
216 else if (cond
== boolean_false_node
)
217 rhs
= COND_EXPR_ELSE (rhs
);
223 case GIMPLE_UNARY_RHS
:
225 tree lhs
= gimple_assign_lhs (stmt
);
226 tree op0
= gimple_assign_rhs1 (stmt
);
227 return fold_unary (subcode
, TREE_TYPE (lhs
), op0
);
230 case GIMPLE_BINARY_RHS
:
232 tree lhs
= gimple_assign_lhs (stmt
);
233 tree op0
= gimple_assign_rhs1 (stmt
);
234 tree op1
= gimple_assign_rhs2 (stmt
);
235 return fold_binary (subcode
, TREE_TYPE (lhs
), op0
, op1
);
243 /* Try to simplify each statement in E->dest, ultimately leading to
244 a simplification of the COND_EXPR at the end of E->dest.
246 Record unwind information for temporary equivalences onto STACK.
248 Use SIMPLIFY (a pointer to a callback function) to further simplify
249 statements using pass specific information.
251 We might consider marking just those statements which ultimately
252 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
253 would be recovered by trying to simplify fewer statements.
255 If we are able to simplify a statement into the form
256 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
257 a context sensitive equivalence which may help us simplify
258 later statements in E->dest. */
261 record_temporary_equivalences_from_stmts_at_dest (edge e
,
262 VEC(tree
, heap
) **stack
,
263 tree (*simplify
) (gimple
,
267 gimple_stmt_iterator gsi
;
270 max_stmt_count
= PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS
);
272 /* Walk through each statement in the block recording equivalences
273 we discover. Note any equivalences we discover are context
274 sensitive (ie, are dependent on traversing E) and must be unwound
275 when we're finished processing E. */
276 for (gsi
= gsi_start_bb (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
278 tree cached_lhs
= NULL
;
280 stmt
= gsi_stmt (gsi
);
282 /* Ignore empty statements and labels. */
283 if (gimple_code (stmt
) == GIMPLE_NOP
|| gimple_code (stmt
) == GIMPLE_LABEL
)
286 /* If the statement has volatile operands, then we assume we
287 can not thread through this block. This is overly
288 conservative in some ways. */
289 if (gimple_code (stmt
) == GIMPLE_ASM
&& gimple_asm_volatile_p (stmt
))
292 /* If duplicating this block is going to cause too much code
293 expansion, then do not thread through this block. */
295 if (stmt_count
> max_stmt_count
)
298 /* If this is not a statement that sets an SSA_NAME to a new
299 value, then do not try to simplify this statement as it will
300 not simplify in any way that is helpful for jump threading. */
301 if ((gimple_code (stmt
) != GIMPLE_ASSIGN
302 || TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
303 && (gimple_code (stmt
) != GIMPLE_CALL
304 || gimple_call_lhs (stmt
) == NULL_TREE
305 || TREE_CODE (gimple_call_lhs (stmt
)) != SSA_NAME
))
308 /* The result of __builtin_object_size depends on all the arguments
309 of a phi node. Temporarily using only one edge produces invalid
318 r = PHI <&w[2].a[1](2), &a.a[6](3)>
319 __builtin_object_size (r, 0)
321 The result of __builtin_object_size is defined to be the maximum of
322 remaining bytes. If we use only one edge on the phi, the result will
323 change to be the remaining bytes for the corresponding phi argument.
325 Similarly for __builtin_constant_p:
328 __builtin_constant_p (r)
330 Both PHI arguments are constant, but x ? 1 : 2 is still not
333 if (is_gimple_call (stmt
))
335 tree fndecl
= gimple_call_fndecl (stmt
);
337 && (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_OBJECT_SIZE
338 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_CONSTANT_P
))
342 /* At this point we have a statement which assigns an RHS to an
343 SSA_VAR on the LHS. We want to try and simplify this statement
344 to expose more context sensitive equivalences which in turn may
345 allow us to simplify the condition at the end of the loop.
347 Handle simple copy operations as well as implied copies from
349 if (gimple_assign_single_p (stmt
)
350 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
351 cached_lhs
= gimple_assign_rhs1 (stmt
);
352 else if (gimple_assign_single_p (stmt
)
353 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == ASSERT_EXPR
)
354 cached_lhs
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
357 /* A statement that is not a trivial copy or ASSERT_EXPR.
358 We're going to temporarily copy propagate the operands
359 and see if that allows us to simplify this statement. */
363 unsigned int num
, i
= 0;
365 num
= NUM_SSA_OPERANDS (stmt
, (SSA_OP_USE
| SSA_OP_VUSE
));
366 copy
= XCNEWVEC (tree
, num
);
368 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
370 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_USE
| SSA_OP_VUSE
)
373 tree use
= USE_FROM_PTR (use_p
);
376 if (TREE_CODE (use
) == SSA_NAME
)
377 tmp
= SSA_NAME_VALUE (use
);
379 SET_USE (use_p
, tmp
);
382 /* Try to fold/lookup the new expression. Inserting the
383 expression into the hash table is unlikely to help. */
384 if (is_gimple_call (stmt
))
385 cached_lhs
= fold_call_stmt (stmt
, false);
387 cached_lhs
= fold_assignment_stmt (stmt
);
390 || (TREE_CODE (cached_lhs
) != SSA_NAME
391 && !is_gimple_min_invariant (cached_lhs
)))
392 cached_lhs
= (*simplify
) (stmt
, stmt
);
394 /* Restore the statement's original uses/defs. */
396 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_USE
| SSA_OP_VUSE
)
397 SET_USE (use_p
, copy
[i
++]);
402 /* Record the context sensitive equivalence if we were able
403 to simplify this statement. */
405 && (TREE_CODE (cached_lhs
) == SSA_NAME
406 || is_gimple_min_invariant (cached_lhs
)))
407 record_temporary_equivalence (gimple_get_lhs (stmt
), cached_lhs
, stack
);
412 /* Simplify the control statement at the end of the block E->dest.
414 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
415 is available to use/clobber in DUMMY_COND.
417 Use SIMPLIFY (a pointer to a callback function) to further simplify
418 a condition using pass specific information.
420 Return the simplified condition or NULL if simplification could
424 simplify_control_stmt_condition (edge e
,
427 tree (*simplify
) (gimple
, gimple
),
428 bool handle_dominating_asserts
)
430 tree cond
, cached_lhs
;
431 enum gimple_code code
= gimple_code (stmt
);
433 /* For comparisons, we have to update both operands, then try
434 to simplify the comparison. */
435 if (code
== GIMPLE_COND
)
438 enum tree_code cond_code
;
440 op0
= gimple_cond_lhs (stmt
);
441 op1
= gimple_cond_rhs (stmt
);
442 cond_code
= gimple_cond_code (stmt
);
444 /* Get the current value of both operands. */
445 if (TREE_CODE (op0
) == SSA_NAME
)
447 tree tmp
= SSA_NAME_VALUE (op0
);
452 if (TREE_CODE (op1
) == SSA_NAME
)
454 tree tmp
= SSA_NAME_VALUE (op1
);
459 if (handle_dominating_asserts
)
461 /* Now see if the operand was consumed by an ASSERT_EXPR
462 which dominates E->src. If so, we want to replace the
463 operand with the LHS of the ASSERT_EXPR. */
464 if (TREE_CODE (op0
) == SSA_NAME
)
465 op0
= lhs_of_dominating_assert (op0
, e
->src
, stmt
);
467 if (TREE_CODE (op1
) == SSA_NAME
)
468 op1
= lhs_of_dominating_assert (op1
, e
->src
, stmt
);
471 /* We may need to canonicalize the comparison. For
472 example, op0 might be a constant while op1 is an
473 SSA_NAME. Failure to canonicalize will cause us to
474 miss threading opportunities. */
475 if (tree_swap_operands_p (op0
, op1
, false))
478 cond_code
= swap_tree_comparison (cond_code
);
484 /* Stuff the operator and operands into our dummy conditional
486 gimple_cond_set_code (dummy_cond
, cond_code
);
487 gimple_cond_set_lhs (dummy_cond
, op0
);
488 gimple_cond_set_rhs (dummy_cond
, op1
);
490 /* We absolutely do not care about any type conversions
491 we only care about a zero/nonzero value. */
492 fold_defer_overflow_warnings ();
494 cached_lhs
= fold_binary (cond_code
, boolean_type_node
, op0
, op1
);
496 while (CONVERT_EXPR_P (cached_lhs
))
497 cached_lhs
= TREE_OPERAND (cached_lhs
, 0);
499 fold_undefer_overflow_warnings ((cached_lhs
500 && is_gimple_min_invariant (cached_lhs
)),
501 stmt
, WARN_STRICT_OVERFLOW_CONDITIONAL
);
503 /* If we have not simplified the condition down to an invariant,
504 then use the pass specific callback to simplify the condition. */
506 || !is_gimple_min_invariant (cached_lhs
))
507 cached_lhs
= (*simplify
) (dummy_cond
, stmt
);
512 if (code
== GIMPLE_SWITCH
)
513 cond
= gimple_switch_index (stmt
);
514 else if (code
== GIMPLE_GOTO
)
515 cond
= gimple_goto_dest (stmt
);
519 /* We can have conditionals which just test the state of a variable
520 rather than use a relational operator. These are simpler to handle. */
521 if (TREE_CODE (cond
) == SSA_NAME
)
525 /* Get the variable's current value from the equivalence chains.
527 It is possible to get loops in the SSA_NAME_VALUE chains
528 (consider threading the backedge of a loop where we have
529 a loop invariant SSA_NAME used in the condition. */
531 && TREE_CODE (cached_lhs
) == SSA_NAME
532 && SSA_NAME_VALUE (cached_lhs
))
533 cached_lhs
= SSA_NAME_VALUE (cached_lhs
);
535 /* If we're dominated by a suitable ASSERT_EXPR, then
536 update CACHED_LHS appropriately. */
537 if (handle_dominating_asserts
&& TREE_CODE (cached_lhs
) == SSA_NAME
)
538 cached_lhs
= lhs_of_dominating_assert (cached_lhs
, e
->src
, stmt
);
540 /* If we haven't simplified to an invariant yet, then use the
541 pass specific callback to try and simplify it further. */
542 if (cached_lhs
&& ! is_gimple_min_invariant (cached_lhs
))
543 cached_lhs
= (*simplify
) (stmt
, stmt
);
551 /* We are exiting E->src, see if E->dest ends with a conditional
552 jump which has a known value when reached via E.
554 Special care is necessary if E is a back edge in the CFG as we
555 may have already recorded equivalences for E->dest into our
556 various tables, including the result of the conditional at
557 the end of E->dest. Threading opportunities are severely
558 limited in that case to avoid short-circuiting the loop
561 Note it is quite common for the first block inside a loop to
562 end with a conditional which is either always true or always
563 false when reached via the loop backedge. Thus we do not want
564 to blindly disable threading across a loop backedge.
566 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
567 to avoid allocating memory.
569 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
570 the simplified condition with left-hand sides of ASSERT_EXPRs they are
573 STACK is used to undo temporary equivalences created during the walk of
576 SIMPLIFY is a pass-specific function used to simplify statements. */
579 thread_across_edge (gimple dummy_cond
,
581 bool handle_dominating_asserts
,
582 VEC(tree
, heap
) **stack
,
583 tree (*simplify
) (gimple
, gimple
))
587 /* If E is a backedge, then we want to verify that the COND_EXPR,
588 SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
589 by any statements in e->dest. If it is affected, then it is not
590 safe to thread this edge. */
591 if (e
->flags
& EDGE_DFS_BACK
)
595 gimple last
= gsi_stmt (gsi_last_bb (e
->dest
));
597 FOR_EACH_SSA_USE_OPERAND (use_p
, last
, iter
, SSA_OP_USE
| SSA_OP_VUSE
)
599 tree use
= USE_FROM_PTR (use_p
);
601 if (TREE_CODE (use
) == SSA_NAME
602 && gimple_code (SSA_NAME_DEF_STMT (use
)) != GIMPLE_PHI
603 && gimple_bb (SSA_NAME_DEF_STMT (use
)) == e
->dest
)
610 /* PHIs create temporary equivalences. */
611 if (!record_temporary_equivalences_from_phis (e
, stack
))
614 /* Now walk each statement recording any context sensitive
615 temporary equivalences we can detect. */
616 stmt
= record_temporary_equivalences_from_stmts_at_dest (e
, stack
, simplify
);
620 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
622 if (gimple_code (stmt
) == GIMPLE_COND
623 || gimple_code (stmt
) == GIMPLE_GOTO
624 || gimple_code (stmt
) == GIMPLE_SWITCH
)
628 /* Extract and simplify the condition. */
629 cond
= simplify_control_stmt_condition (e
, stmt
, dummy_cond
, simplify
, handle_dominating_asserts
);
631 if (cond
&& is_gimple_min_invariant (cond
))
633 edge taken_edge
= find_taken_edge (e
->dest
, cond
);
634 basic_block dest
= (taken_edge
? taken_edge
->dest
: NULL
);
639 remove_temporary_equivalences (stack
);
640 register_jump_thread (e
, taken_edge
);
645 remove_temporary_equivalences (stack
);