1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37 #include "pointer-set.h"
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block
, basic_block
,
43 edge
, edge
, gimple
, tree
, tree
);
44 static bool value_replacement (basic_block
, basic_block
,
45 edge
, edge
, gimple
, tree
, tree
);
46 static bool minmax_replacement (basic_block
, basic_block
,
47 edge
, edge
, gimple
, tree
, tree
);
48 static bool abs_replacement (basic_block
, basic_block
,
49 edge
, edge
, gimple
, tree
, tree
);
50 static bool cond_store_replacement (basic_block
, basic_block
, edge
, edge
,
51 struct pointer_set_t
*);
52 static struct pointer_set_t
* get_non_trapping (void);
53 static void replace_phi_edge_with_variable (basic_block
, edge
, gimple
, tree
);
55 /* This pass tries to replaces an if-then-else block with an
56 assignment. We have four kinds of transformations. Some of these
57 transformations are also performed by the ifcvt RTL optimizer.
59 Conditional Replacement
60 -----------------------
62 This transformation, implemented in conditional_replacement,
66 if (cond) goto bb2; else goto bb1;
69 x = PHI <0 (bb1), 1 (bb0), ...>;
77 x = PHI <x' (bb0), ...>;
79 We remove bb1 as it becomes unreachable. This occurs often due to
80 gimplification of conditionals.
85 This transformation, implemented in value_replacement, replaces
88 if (a != b) goto bb2; else goto bb1;
91 x = PHI <a (bb1), b (bb0), ...>;
97 x = PHI <b (bb0), ...>;
99 This opportunity can sometimes occur as a result of other
105 This transformation, implemented in abs_replacement, replaces
108 if (a >= 0) goto bb2; else goto bb1;
112 x = PHI <x (bb1), a (bb0), ...>;
119 x = PHI <x' (bb0), ...>;
124 This transformation, minmax_replacement replaces
127 if (a <= b) goto bb2; else goto bb1;
130 x = PHI <b (bb1), a (bb0), ...>;
137 x = PHI <x' (bb0), ...>;
139 A similar transformation is done for MAX_EXPR. */
142 tree_ssa_phiopt (void)
144 return tree_ssa_phiopt_worker (false);
147 /* This pass tries to transform conditional stores into unconditional
148 ones, enabling further simplifications with the simpler then and else
149 blocks. In particular it replaces this:
152 if (cond) goto bb2; else goto bb1;
160 if (cond) goto bb1; else goto bb2;
164 condtmp = PHI <RHS, condtmp'>
167 This transformation can only be done under several constraints,
171 tree_ssa_cs_elim (void)
173 return tree_ssa_phiopt_worker (true);
176 /* For conditional store replacement we need a temporary to
177 put the old contents of the memory in. */
178 static tree condstoretemp
;
180 /* The core routine of conditional store replacement and normal
181 phi optimizations. Both share much of the infrastructure in how
182 to match applicable basic block patterns. DO_STORE_ELIM is true
183 when we want to do conditional store replacement, false otherwise. */
185 tree_ssa_phiopt_worker (bool do_store_elim
)
188 basic_block
*bb_order
;
190 bool cfgchanged
= false;
191 struct pointer_set_t
*nontrap
= 0;
195 condstoretemp
= NULL_TREE
;
196 /* Calculate the set of non-trapping memory accesses. */
197 nontrap
= get_non_trapping ();
200 /* Search every basic block for COND_EXPR we may be able to optimize.
202 We walk the blocks in order that guarantees that a block with
203 a single predecessor is processed before the predecessor.
204 This ensures that we collapse inner ifs before visiting the
205 outer ones, and also that we do not try to visit a removed
207 bb_order
= blocks_in_phiopt_order ();
208 n
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
210 for (i
= 0; i
< n
; i
++)
212 gimple cond_stmt
, phi
;
213 basic_block bb1
, bb2
;
219 cond_stmt
= last_stmt (bb
);
220 /* Check to see if the last statement is a GIMPLE_COND. */
222 || gimple_code (cond_stmt
) != GIMPLE_COND
)
225 e1
= EDGE_SUCC (bb
, 0);
227 e2
= EDGE_SUCC (bb
, 1);
230 /* We cannot do the optimization on abnormal edges. */
231 if ((e1
->flags
& EDGE_ABNORMAL
) != 0
232 || (e2
->flags
& EDGE_ABNORMAL
) != 0)
235 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
236 if (EDGE_COUNT (bb1
->succs
) == 0
238 || EDGE_COUNT (bb2
->succs
) == 0)
241 /* Find the bb which is the fall through to the other. */
242 if (EDGE_SUCC (bb1
, 0)->dest
== bb2
)
244 else if (EDGE_SUCC (bb2
, 0)->dest
== bb1
)
246 basic_block bb_tmp
= bb1
;
256 e1
= EDGE_SUCC (bb1
, 0);
258 /* Make sure that bb1 is just a fall through. */
259 if (!single_succ_p (bb1
)
260 || (e1
->flags
& EDGE_FALLTHRU
) == 0)
263 /* Also make sure that bb1 only have one predecessor and that it
265 if (!single_pred_p (bb1
)
266 || single_pred (bb1
) != bb
)
271 /* bb1 is the middle block, bb2 the join block, bb the split block,
272 e1 the fallthrough edge from bb1 to bb2. We can't do the
273 optimization if the join block has more than two predecessors. */
274 if (EDGE_COUNT (bb2
->preds
) > 2)
276 if (cond_store_replacement (bb1
, bb2
, e1
, e2
, nontrap
))
281 gimple_seq phis
= phi_nodes (bb2
);
283 /* Check to make sure that there is only one PHI node.
284 TODO: we could do it with more than one iff the other PHI nodes
285 have the same elements for these two edges. */
286 if (! gimple_seq_singleton_p (phis
))
289 phi
= gsi_stmt (gsi_start (phis
));
290 arg0
= gimple_phi_arg_def (phi
, e1
->dest_idx
);
291 arg1
= gimple_phi_arg_def (phi
, e2
->dest_idx
);
293 /* Something is wrong if we cannot find the arguments in the PHI
295 gcc_assert (arg0
!= NULL
&& arg1
!= NULL
);
297 /* Do the replacement of conditional if it can be done. */
298 if (conditional_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
300 else if (value_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
302 else if (abs_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
304 else if (minmax_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
312 pointer_set_destroy (nontrap
);
313 /* If the CFG has changed, we should cleanup the CFG. */
314 if (cfgchanged
&& do_store_elim
)
316 /* In cond-store replacement we have added some loads on edges
317 and new VOPS (as we moved the store, and created a load). */
318 gsi_commit_edge_inserts ();
319 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
322 return TODO_cleanup_cfg
;
326 /* Returns the list of basic blocks in the function in an order that guarantees
327 that if a block X has just a single predecessor Y, then Y is after X in the
331 blocks_in_phiopt_order (void)
334 basic_block
*order
= XNEWVEC (basic_block
, n_basic_blocks
);
335 unsigned n
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
337 sbitmap visited
= sbitmap_alloc (last_basic_block
);
339 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
340 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
342 sbitmap_zero (visited
);
344 MARK_VISITED (ENTRY_BLOCK_PTR
);
350 /* Walk the predecessors of x as long as they have precisely one
351 predecessor and add them to the list, so that they get stored
354 single_pred_p (y
) && !VISITED_P (single_pred (y
));
357 for (y
= x
, i
= n
- np
;
358 single_pred_p (y
) && !VISITED_P (single_pred (y
));
359 y
= single_pred (y
), i
++)
367 gcc_assert (i
== n
- 1);
371 sbitmap_free (visited
);
380 /* Return TRUE if block BB has no executable statements, otherwise return
384 empty_block_p (basic_block bb
)
386 /* BB must have no executable statements. */
387 return gsi_end_p (gsi_after_labels (bb
));
390 /* Replace PHI node element whose edge is E in block BB with variable NEW.
391 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
392 is known to have two edges, one of which must reach BB). */
395 replace_phi_edge_with_variable (basic_block cond_block
,
396 edge e
, gimple phi
, tree new_tree
)
398 basic_block bb
= gimple_bb (phi
);
399 basic_block block_to_remove
;
400 gimple_stmt_iterator gsi
;
402 /* Change the PHI argument to new. */
403 SET_USE (PHI_ARG_DEF_PTR (phi
, e
->dest_idx
), new_tree
);
405 /* Remove the empty basic block. */
406 if (EDGE_SUCC (cond_block
, 0)->dest
== bb
)
408 EDGE_SUCC (cond_block
, 0)->flags
|= EDGE_FALLTHRU
;
409 EDGE_SUCC (cond_block
, 0)->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
410 EDGE_SUCC (cond_block
, 0)->probability
= REG_BR_PROB_BASE
;
411 EDGE_SUCC (cond_block
, 0)->count
+= EDGE_SUCC (cond_block
, 1)->count
;
413 block_to_remove
= EDGE_SUCC (cond_block
, 1)->dest
;
417 EDGE_SUCC (cond_block
, 1)->flags
|= EDGE_FALLTHRU
;
418 EDGE_SUCC (cond_block
, 1)->flags
419 &= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
420 EDGE_SUCC (cond_block
, 1)->probability
= REG_BR_PROB_BASE
;
421 EDGE_SUCC (cond_block
, 1)->count
+= EDGE_SUCC (cond_block
, 0)->count
;
423 block_to_remove
= EDGE_SUCC (cond_block
, 0)->dest
;
425 delete_basic_block (block_to_remove
);
427 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
428 gsi
= gsi_last_bb (cond_block
);
429 gsi_remove (&gsi
, true);
431 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
433 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
438 /* The function conditional_replacement does the main work of doing the
439 conditional replacement. Return true if the replacement is done.
440 Otherwise return false.
441 BB is the basic block where the replacement is going to be done on. ARG0
442 is argument 0 from PHI. Likewise for ARG1. */
445 conditional_replacement (basic_block cond_bb
, basic_block middle_bb
,
446 edge e0
, edge e1
, gimple phi
,
447 tree arg0
, tree arg1
)
450 gimple stmt
, new_stmt
;
452 gimple_stmt_iterator gsi
;
453 edge true_edge
, false_edge
;
454 tree new_var
, new_var2
;
456 /* FIXME: Gimplification of complex type is too hard for now. */
457 if (TREE_CODE (TREE_TYPE (arg0
)) == COMPLEX_TYPE
458 || TREE_CODE (TREE_TYPE (arg1
)) == COMPLEX_TYPE
)
461 /* The PHI arguments have the constants 0 and 1, then convert
462 it to the conditional. */
463 if ((integer_zerop (arg0
) && integer_onep (arg1
))
464 || (integer_zerop (arg1
) && integer_onep (arg0
)))
469 if (!empty_block_p (middle_bb
))
472 /* At this point we know we have a GIMPLE_COND with two successors.
473 One successor is BB, the other successor is an empty block which
474 falls through into BB.
476 There is a single PHI node at the join point (BB) and its arguments
477 are constants (0, 1).
479 So, given the condition COND, and the two PHI arguments, we can
480 rewrite this PHI into non-branching code:
482 dest = (COND) or dest = COND'
484 We use the condition as-is if the argument associated with the
485 true edge has the value one or the argument associated with the
486 false edge as the value zero. Note that those conditions are not
487 the same since only one of the outgoing edges from the GIMPLE_COND
488 will directly reach BB and thus be associated with an argument. */
490 stmt
= last_stmt (cond_bb
);
491 result
= PHI_RESULT (phi
);
493 /* To handle special cases like floating point comparison, it is easier and
494 less error-prone to build a tree and gimplify it on the fly though it is
496 cond
= fold_build2 (gimple_cond_code (stmt
), boolean_type_node
,
497 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
499 /* We need to know which is the true edge and which is the false
500 edge so that we know when to invert the condition below. */
501 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
502 if ((e0
== true_edge
&& integer_zerop (arg0
))
503 || (e0
== false_edge
&& integer_onep (arg0
))
504 || (e1
== true_edge
&& integer_zerop (arg1
))
505 || (e1
== false_edge
&& integer_onep (arg1
)))
506 cond
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (cond
), cond
);
508 /* Insert our new statements at the end of conditional block before the
510 gsi
= gsi_for_stmt (stmt
);
511 new_var
= force_gimple_operand_gsi (&gsi
, cond
, true, NULL
, true,
514 if (!useless_type_conversion_p (TREE_TYPE (result
), TREE_TYPE (new_var
)))
516 new_var2
= create_tmp_var (TREE_TYPE (result
), NULL
);
517 add_referenced_var (new_var2
);
518 new_stmt
= gimple_build_assign_with_ops (CONVERT_EXPR
, new_var2
,
520 new_var2
= make_ssa_name (new_var2
, new_stmt
);
521 gimple_assign_set_lhs (new_stmt
, new_var2
);
522 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
526 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, new_var
);
528 /* Note that we optimized this PHI. */
532 /* The function value_replacement does the main work of doing the value
533 replacement. Return true if the replacement is done. Otherwise return
535 BB is the basic block where the replacement is going to be done on. ARG0
536 is argument 0 from the PHI. Likewise for ARG1. */
539 value_replacement (basic_block cond_bb
, basic_block middle_bb
,
540 edge e0
, edge e1
, gimple phi
,
541 tree arg0
, tree arg1
)
544 edge true_edge
, false_edge
;
547 /* If the type says honor signed zeros we cannot do this
549 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
552 if (!empty_block_p (middle_bb
))
555 cond
= last_stmt (cond_bb
);
556 code
= gimple_cond_code (cond
);
558 /* This transformation is only valid for equality comparisons. */
559 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
562 /* We need to know which is the true edge and which is the false
563 edge so that we know if have abs or negative abs. */
564 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
566 /* At this point we know we have a COND_EXPR with two successors.
567 One successor is BB, the other successor is an empty block which
568 falls through into BB.
570 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
572 There is a single PHI node at the join point (BB) with two arguments.
574 We now need to verify that the two arguments in the PHI node match
575 the two arguments to the equality comparison. */
577 if ((operand_equal_for_phi_arg_p (arg0
, gimple_cond_lhs (cond
))
578 && operand_equal_for_phi_arg_p (arg1
, gimple_cond_rhs (cond
)))
579 || (operand_equal_for_phi_arg_p (arg1
, gimple_cond_lhs (cond
))
580 && operand_equal_for_phi_arg_p (arg0
, gimple_cond_rhs (cond
))))
585 /* For NE_EXPR, we want to build an assignment result = arg where
586 arg is the PHI argument associated with the true edge. For
587 EQ_EXPR we want the PHI argument associated with the false edge. */
588 e
= (code
== NE_EXPR
? true_edge
: false_edge
);
590 /* Unfortunately, E may not reach BB (it may instead have gone to
591 OTHER_BLOCK). If that is the case, then we want the single outgoing
592 edge from OTHER_BLOCK which reaches BB and represents the desired
593 path from COND_BLOCK. */
594 if (e
->dest
== middle_bb
)
595 e
= single_succ_edge (e
->dest
);
597 /* Now we know the incoming edge to BB that has the argument for the
598 RHS of our new assignment statement. */
604 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, arg
);
606 /* Note that we optimized this PHI. */
612 /* The function minmax_replacement does the main work of doing the minmax
613 replacement. Return true if the replacement is done. Otherwise return
615 BB is the basic block where the replacement is going to be done on. ARG0
616 is argument 0 from the PHI. Likewise for ARG1. */
619 minmax_replacement (basic_block cond_bb
, basic_block middle_bb
,
620 edge e0
, edge e1
, gimple phi
,
621 tree arg0
, tree arg1
)
624 gimple cond
, new_stmt
;
625 edge true_edge
, false_edge
;
626 enum tree_code cmp
, minmax
, ass_code
;
627 tree smaller
, larger
, arg_true
, arg_false
;
628 gimple_stmt_iterator gsi
, gsi_from
;
630 type
= TREE_TYPE (PHI_RESULT (phi
));
632 /* The optimization may be unsafe due to NaNs. */
633 if (HONOR_NANS (TYPE_MODE (type
)))
636 cond
= last_stmt (cond_bb
);
637 cmp
= gimple_cond_code (cond
);
638 result
= PHI_RESULT (phi
);
640 /* This transformation is only valid for order comparisons. Record which
641 operand is smaller/larger if the result of the comparison is true. */
642 if (cmp
== LT_EXPR
|| cmp
== LE_EXPR
)
644 smaller
= gimple_cond_lhs (cond
);
645 larger
= gimple_cond_rhs (cond
);
647 else if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
649 smaller
= gimple_cond_rhs (cond
);
650 larger
= gimple_cond_lhs (cond
);
655 /* We need to know which is the true edge and which is the false
656 edge so that we know if have abs or negative abs. */
657 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
659 /* Forward the edges over the middle basic block. */
660 if (true_edge
->dest
== middle_bb
)
661 true_edge
= EDGE_SUCC (true_edge
->dest
, 0);
662 if (false_edge
->dest
== middle_bb
)
663 false_edge
= EDGE_SUCC (false_edge
->dest
, 0);
667 gcc_assert (false_edge
== e1
);
673 gcc_assert (false_edge
== e0
);
674 gcc_assert (true_edge
== e1
);
679 if (empty_block_p (middle_bb
))
681 if (operand_equal_for_phi_arg_p (arg_true
, smaller
)
682 && operand_equal_for_phi_arg_p (arg_false
, larger
))
686 if (smaller < larger)
692 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
)
693 && operand_equal_for_phi_arg_p (arg_true
, larger
))
700 /* Recognize the following case, assuming d <= u:
706 This is equivalent to
711 gimple assign
= last_and_only_stmt (middle_bb
);
712 tree lhs
, op0
, op1
, bound
;
715 || gimple_code (assign
) != GIMPLE_ASSIGN
)
718 lhs
= gimple_assign_lhs (assign
);
719 ass_code
= gimple_assign_rhs_code (assign
);
720 if (ass_code
!= MAX_EXPR
&& ass_code
!= MIN_EXPR
)
722 op0
= gimple_assign_rhs1 (assign
);
723 op1
= gimple_assign_rhs2 (assign
);
725 if (true_edge
->src
== middle_bb
)
727 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
728 if (!operand_equal_for_phi_arg_p (lhs
, arg_true
))
731 if (operand_equal_for_phi_arg_p (arg_false
, larger
))
735 if (smaller < larger)
737 r' = MAX_EXPR (smaller, bound)
739 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
740 if (ass_code
!= MAX_EXPR
)
744 if (operand_equal_for_phi_arg_p (op0
, smaller
))
746 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
751 /* We need BOUND <= LARGER. */
752 if (!integer_nonzerop (fold_build2 (LE_EXPR
, boolean_type_node
,
756 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
))
760 if (smaller < larger)
762 r' = MIN_EXPR (larger, bound)
764 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
765 if (ass_code
!= MIN_EXPR
)
769 if (operand_equal_for_phi_arg_p (op0
, larger
))
771 else if (operand_equal_for_phi_arg_p (op1
, larger
))
776 /* We need BOUND >= SMALLER. */
777 if (!integer_nonzerop (fold_build2 (GE_EXPR
, boolean_type_node
,
786 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
787 if (!operand_equal_for_phi_arg_p (lhs
, arg_false
))
790 if (operand_equal_for_phi_arg_p (arg_true
, larger
))
794 if (smaller > larger)
796 r' = MIN_EXPR (smaller, bound)
798 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
799 if (ass_code
!= MIN_EXPR
)
803 if (operand_equal_for_phi_arg_p (op0
, smaller
))
805 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
810 /* We need BOUND >= LARGER. */
811 if (!integer_nonzerop (fold_build2 (GE_EXPR
, boolean_type_node
,
815 else if (operand_equal_for_phi_arg_p (arg_true
, smaller
))
819 if (smaller > larger)
821 r' = MAX_EXPR (larger, bound)
823 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
824 if (ass_code
!= MAX_EXPR
)
828 if (operand_equal_for_phi_arg_p (op0
, larger
))
830 else if (operand_equal_for_phi_arg_p (op1
, larger
))
835 /* We need BOUND <= SMALLER. */
836 if (!integer_nonzerop (fold_build2 (LE_EXPR
, boolean_type_node
,
844 /* Move the statement from the middle block. */
845 gsi
= gsi_last_bb (cond_bb
);
846 gsi_from
= gsi_last_bb (middle_bb
);
847 gsi_move_before (&gsi_from
, &gsi
);
850 /* Emit the statement to compute min/max. */
851 result
= duplicate_ssa_name (PHI_RESULT (phi
), NULL
);
852 new_stmt
= gimple_build_assign_with_ops (minmax
, result
, arg0
, arg1
);
853 gsi
= gsi_last_bb (cond_bb
);
854 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
856 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
860 /* The function absolute_replacement does the main work of doing the absolute
861 replacement. Return true if the replacement is done. Otherwise return
863 bb is the basic block where the replacement is going to be done on. arg0
864 is argument 0 from the phi. Likewise for arg1. */
867 abs_replacement (basic_block cond_bb
, basic_block middle_bb
,
868 edge e0 ATTRIBUTE_UNUSED
, edge e1
,
869 gimple phi
, tree arg0
, tree arg1
)
872 gimple new_stmt
, cond
;
873 gimple_stmt_iterator gsi
;
874 edge true_edge
, false_edge
;
879 enum tree_code cond_code
;
881 /* If the type says honor signed zeros we cannot do this
883 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
886 /* OTHER_BLOCK must have only one executable statement which must have the
887 form arg0 = -arg1 or arg1 = -arg0. */
889 assign
= last_and_only_stmt (middle_bb
);
890 /* If we did not find the proper negation assignment, then we can not
895 /* If we got here, then we have found the only executable statement
896 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
897 arg1 = -arg0, then we can not optimize. */
898 if (gimple_code (assign
) != GIMPLE_ASSIGN
)
901 lhs
= gimple_assign_lhs (assign
);
903 if (gimple_assign_rhs_code (assign
) != NEGATE_EXPR
)
906 rhs
= gimple_assign_rhs1 (assign
);
908 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
909 if (!(lhs
== arg0
&& rhs
== arg1
)
910 && !(lhs
== arg1
&& rhs
== arg0
))
913 cond
= last_stmt (cond_bb
);
914 result
= PHI_RESULT (phi
);
916 /* Only relationals comparing arg[01] against zero are interesting. */
917 cond_code
= gimple_cond_code (cond
);
918 if (cond_code
!= GT_EXPR
&& cond_code
!= GE_EXPR
919 && cond_code
!= LT_EXPR
&& cond_code
!= LE_EXPR
)
922 /* Make sure the conditional is arg[01] OP y. */
923 if (gimple_cond_lhs (cond
) != rhs
)
926 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond
)))
927 ? real_zerop (gimple_cond_rhs (cond
))
928 : integer_zerop (gimple_cond_rhs (cond
)))
933 /* We need to know which is the true edge and which is the false
934 edge so that we know if have abs or negative abs. */
935 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
937 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
938 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
939 the false edge goes to OTHER_BLOCK. */
940 if (cond_code
== GT_EXPR
|| cond_code
== GE_EXPR
)
945 if (e
->dest
== middle_bb
)
950 result
= duplicate_ssa_name (result
, NULL
);
954 tree tmp
= create_tmp_var (TREE_TYPE (result
), NULL
);
955 add_referenced_var (tmp
);
956 lhs
= make_ssa_name (tmp
, NULL
);
961 /* Build the modify expression with abs expression. */
962 new_stmt
= gimple_build_assign_with_ops (ABS_EXPR
, lhs
, rhs
, NULL
);
964 gsi
= gsi_last_bb (cond_bb
);
965 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
969 /* Get the right GSI. We want to insert after the recently
970 added ABS_EXPR statement (which we know is the first statement
972 new_stmt
= gimple_build_assign_with_ops (NEGATE_EXPR
, result
, lhs
, NULL
);
974 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
977 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
979 /* Note that we optimized this PHI. */
983 /* Auxiliary functions to determine the set of memory accesses which
984 can't trap because they are preceded by accesses to the same memory
985 portion. We do that for INDIRECT_REFs, so we only need to track
986 the SSA_NAME of the pointer indirectly referenced. The algorithm
987 simply is a walk over all instructions in dominator order. When
988 we see an INDIRECT_REF we determine if we've already seen a same
989 ref anywhere up to the root of the dominator tree. If we do the
990 current access can't trap. If we don't see any dominating access
991 the current access might trap, but might also make later accesses
992 non-trapping, so we remember it. We need to be careful with loads
993 or stores, for instance a load might not trap, while a store would,
994 so if we see a dominating read access this doesn't mean that a later
995 write access would not trap. Hence we also need to differentiate the
996 type of access(es) seen.
998 ??? We currently are very conservative and assume that a load might
999 trap even if a store doesn't (write-only memory). This probably is
1000 overly conservative. */
1002 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
1003 through it was seen, which would constitute a no-trap region for
1012 /* The hash table for remembering what we've seen. */
1013 static htab_t seen_ssa_names
;
1015 /* The set of INDIRECT_REFs which can't trap. */
1016 static struct pointer_set_t
*nontrap_set
;
1018 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1020 name_to_bb_hash (const void *p
)
1022 const_tree n
= ((const struct name_to_bb
*)p
)->ssa_name
;
1023 return htab_hash_pointer (n
) ^ ((const struct name_to_bb
*)p
)->store
;
1026 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1027 it's enough to simply compare them for equality. */
1029 name_to_bb_eq (const void *p1
, const void *p2
)
1031 const struct name_to_bb
*n1
= (const struct name_to_bb
*)p1
;
1032 const struct name_to_bb
*n2
= (const struct name_to_bb
*)p2
;
1034 return n1
->ssa_name
== n2
->ssa_name
&& n1
->store
== n2
->store
;
1037 /* We see the expression EXP in basic block BB. If it's an interesting
1038 expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
1039 expression into the set NONTRAP or the hash table of seen expressions.
1040 STORE is true if this expression is on the LHS, otherwise it's on
1043 add_or_mark_expr (basic_block bb
, tree exp
,
1044 struct pointer_set_t
*nontrap
, bool store
)
1046 if (INDIRECT_REF_P (exp
)
1047 && TREE_CODE (TREE_OPERAND (exp
, 0)) == SSA_NAME
)
1049 tree name
= TREE_OPERAND (exp
, 0);
1050 struct name_to_bb map
;
1052 struct name_to_bb
*n2bb
;
1053 basic_block found_bb
= 0;
1055 /* Try to find the last seen INDIRECT_REF through the same
1056 SSA_NAME, which can trap. */
1057 map
.ssa_name
= name
;
1060 slot
= htab_find_slot (seen_ssa_names
, &map
, INSERT
);
1061 n2bb
= (struct name_to_bb
*) *slot
;
1063 found_bb
= n2bb
->bb
;
1065 /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
1066 (it's in a basic block on the path from us to the dominator root)
1067 then we can't trap. */
1068 if (found_bb
&& found_bb
->aux
== (void *)1)
1070 pointer_set_insert (nontrap
, exp
);
1074 /* EXP might trap, so insert it into the hash table. */
1081 n2bb
= XNEW (struct name_to_bb
);
1082 n2bb
->ssa_name
= name
;
1084 n2bb
->store
= store
;
1091 /* Called by walk_dominator_tree, when entering the block BB. */
1093 nt_init_block (struct dom_walk_data
*data ATTRIBUTE_UNUSED
, basic_block bb
)
1095 gimple_stmt_iterator gsi
;
1096 /* Mark this BB as being on the path to dominator root. */
1099 /* And walk the statements in order. */
1100 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1102 gimple stmt
= gsi_stmt (gsi
);
1104 if (is_gimple_assign (stmt
))
1106 add_or_mark_expr (bb
, gimple_assign_lhs (stmt
), nontrap_set
, true);
1107 add_or_mark_expr (bb
, gimple_assign_rhs1 (stmt
), nontrap_set
, false);
1108 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt
)) > 1)
1109 add_or_mark_expr (bb
, gimple_assign_rhs2 (stmt
), nontrap_set
,
1115 /* Called by walk_dominator_tree, when basic block BB is exited. */
1117 nt_fini_block (struct dom_walk_data
*data ATTRIBUTE_UNUSED
, basic_block bb
)
1119 /* This BB isn't on the path to dominator root anymore. */
1123 /* This is the entry point of gathering non trapping memory accesses.
1124 It will do a dominator walk over the whole function, and it will
1125 make use of the bb->aux pointers. It returns a set of trees
1126 (the INDIRECT_REFs itself) which can't trap. */
1127 static struct pointer_set_t
*
1128 get_non_trapping (void)
1130 struct pointer_set_t
*nontrap
;
1131 struct dom_walk_data walk_data
;
1133 nontrap
= pointer_set_create ();
1134 seen_ssa_names
= htab_create (128, name_to_bb_hash
, name_to_bb_eq
,
1136 /* We're going to do a dominator walk, so ensure that we have
1137 dominance information. */
1138 calculate_dominance_info (CDI_DOMINATORS
);
1140 /* Setup callbacks for the generic dominator tree walker. */
1141 nontrap_set
= nontrap
;
1142 walk_data
.walk_stmts_backward
= false;
1143 walk_data
.dom_direction
= CDI_DOMINATORS
;
1144 walk_data
.initialize_block_local_data
= NULL
;
1145 walk_data
.before_dom_children_before_stmts
= nt_init_block
;
1146 walk_data
.before_dom_children_walk_stmts
= NULL
;
1147 walk_data
.before_dom_children_after_stmts
= NULL
;
1148 walk_data
.after_dom_children_before_stmts
= NULL
;
1149 walk_data
.after_dom_children_walk_stmts
= NULL
;
1150 walk_data
.after_dom_children_after_stmts
= nt_fini_block
;
1151 walk_data
.global_data
= NULL
;
1152 walk_data
.block_local_data_size
= 0;
1153 walk_data
.interesting_blocks
= NULL
;
1155 init_walk_dominator_tree (&walk_data
);
1156 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1157 fini_walk_dominator_tree (&walk_data
);
1158 htab_delete (seen_ssa_names
);
1163 /* Do the main work of conditional store replacement. We already know
1164 that the recognized pattern looks like so:
1167 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1170 fallthrough (edge E0)
1174 We check that MIDDLE_BB contains only one store, that that store
1175 doesn't trap (not via NOTRAP, but via checking if an access to the same
1176 memory location dominates us) and that the store has a "simple" RHS. */
1179 cond_store_replacement (basic_block middle_bb
, basic_block join_bb
,
1180 edge e0
, edge e1
, struct pointer_set_t
*nontrap
)
1182 gimple assign
= last_and_only_stmt (middle_bb
);
1183 tree lhs
, rhs
, name
;
1184 gimple newphi
, new_stmt
;
1185 gimple_stmt_iterator gsi
;
1186 enum tree_code code
;
1188 /* Check if middle_bb contains of only one store. */
1190 || gimple_code (assign
) != GIMPLE_ASSIGN
)
1193 lhs
= gimple_assign_lhs (assign
);
1194 rhs
= gimple_assign_rhs1 (assign
);
1195 if (!INDIRECT_REF_P (lhs
))
1198 /* RHS is either a single SSA_NAME or a constant. */
1199 code
= gimple_assign_rhs_code (assign
);
1200 if (get_gimple_rhs_class (code
) != GIMPLE_SINGLE_RHS
1201 || (code
!= SSA_NAME
&& !is_gimple_min_invariant (rhs
)))
1203 /* Prove that we can move the store down. We could also check
1204 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1205 whose value is not available readily, which we want to avoid. */
1206 if (!pointer_set_contains (nontrap
, lhs
))
1209 /* Now we've checked the constraints, so do the transformation:
1210 1) Remove the single store. */
1211 mark_symbols_for_renaming (assign
);
1212 gsi
= gsi_for_stmt (assign
);
1213 gsi_remove (&gsi
, true);
1215 /* 2) Create a temporary where we can store the old content
1216 of the memory touched by the store, if we need to. */
1217 if (!condstoretemp
|| TREE_TYPE (lhs
) != TREE_TYPE (condstoretemp
))
1219 condstoretemp
= create_tmp_var (TREE_TYPE (lhs
), "cstore");
1220 get_var_ann (condstoretemp
);
1221 if (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
1222 || TREE_CODE (TREE_TYPE (lhs
)) == VECTOR_TYPE
)
1223 DECL_GIMPLE_REG_P (condstoretemp
) = 1;
1225 add_referenced_var (condstoretemp
);
1227 /* 3) Insert a load from the memory of the store to the temporary
1228 on the edge which did not contain the store. */
1229 lhs
= unshare_expr (lhs
);
1230 new_stmt
= gimple_build_assign (condstoretemp
, lhs
);
1231 name
= make_ssa_name (condstoretemp
, new_stmt
);
1232 gimple_assign_set_lhs (new_stmt
, name
);
1233 mark_symbols_for_renaming (new_stmt
);
1234 gsi_insert_on_edge (e1
, new_stmt
);
1236 /* 4) Create a PHI node at the join block, with one argument
1237 holding the old RHS, and the other holding the temporary
1238 where we stored the old memory contents. */
1239 newphi
= create_phi_node (condstoretemp
, join_bb
);
1240 add_phi_arg (newphi
, rhs
, e0
);
1241 add_phi_arg (newphi
, name
, e1
);
1243 lhs
= unshare_expr (lhs
);
1244 new_stmt
= gimple_build_assign (lhs
, PHI_RESULT (newphi
));
1245 mark_symbols_for_renaming (new_stmt
);
1247 /* 5) Insert that PHI node. */
1248 gsi
= gsi_after_labels (join_bb
);
1249 if (gsi_end_p (gsi
))
1251 gsi
= gsi_last_bb (join_bb
);
1252 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1255 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1260 /* Always do these optimizations if we have SSA
1261 trees to work on. */
1268 struct gimple_opt_pass pass_phiopt
=
1272 "phiopt", /* name */
1273 gate_phiopt
, /* gate */
1274 tree_ssa_phiopt
, /* execute */
1277 0, /* static_pass_number */
1278 TV_TREE_PHIOPT
, /* tv_id */
1279 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
1280 0, /* properties_provided */
1281 0, /* properties_destroyed */
1282 0, /* todo_flags_start */
1287 | TODO_verify_stmts
/* todo_flags_finish */
1294 return flag_tree_cselim
;
1297 struct gimple_opt_pass pass_cselim
=
1301 "cselim", /* name */
1302 gate_cselim
, /* gate */
1303 tree_ssa_cs_elim
, /* execute */
1306 0, /* static_pass_number */
1307 TV_TREE_PHIOPT
, /* tv_id */
1308 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
1309 0, /* properties_provided */
1310 0, /* properties_destroyed */
1311 0, /* todo_flags_start */
1316 | TODO_verify_stmts
/* todo_flags_finish */