1 /* Induction variable optimizations.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass tries to find the optimal set of induction variables for the loop.
22 It optimizes just the basic linear induction variables (although adding
23 support for other types should not be too hard). It includes the
24 optimizations commonly known as strength reduction, induction variable
25 coalescing and induction variable elimination. It does it in the
28 1) The interesting uses of induction variables are found. This includes
30 -- uses of induction variables in non-linear expressions
31 -- addresses of arrays
32 -- comparisons of induction variables
34 2) Candidates for the induction variables are found. This includes
36 -- old induction variables
37 -- the variables defined by expressions derived from the "interesting
40 3) The optimal (w.r. to a cost function) set of variables is chosen. The
41 cost function assigns a cost to sets of induction variables and consists
44 -- The use costs. Each of the interesting uses chooses the best induction
45 variable in the set and adds its cost to the sum. The cost reflects
46 the time spent on modifying the induction variables value to be usable
47 for the given purpose (adding base and offset for arrays, etc.).
48 -- The variable costs. Each of the variables has a cost assigned that
49 reflects the costs associated with incrementing the value of the
50 variable. The original variables are somewhat preferred.
51 -- The set cost. Depending on the size of the set, extra cost may be
52 added to reflect register pressure.
54 All the costs are defined in a machine-specific way, using the target
55 hooks and machine descriptions to determine them.
57 4) The trees are transformed to use the new variables, the dead code is
60 All of this is done loop by loop. Doing it globally is theoretically
61 possible, it might give a better performance and it might enable us
62 to decide costs more precisely, but getting all the interactions right
63 would be complicated. */
67 #include "coretypes.h"
72 #include "hard-reg-set.h"
73 #include "basic-block.h"
75 #include "diagnostic.h"
76 #include "tree-flow.h"
77 #include "tree-dump.h"
82 #include "tree-pass.h"
84 #include "insn-config.h"
86 #include "pointer-set.h"
88 #include "tree-chrec.h"
89 #include "tree-scalar-evolution.h"
92 #include "langhooks.h"
93 #include "tree-affine.h"
96 /* The infinite cost. */
97 #define INFTY 10000000
99 /* The expected number of loop iterations. TODO -- use profiling instead of
101 #define AVG_LOOP_NITER(LOOP) 5
104 /* Representation of the induction variable. */
107 tree base
; /* Initial value of the iv. */
108 tree base_object
; /* A memory object to that the induction variable points. */
109 tree step
; /* Step of the iv (constant only). */
110 tree ssa_name
; /* The ssa name with the value. */
111 bool biv_p
; /* Is it a biv? */
112 bool have_use_for
; /* Do we already have a use for it? */
113 unsigned use_id
; /* The identifier in the use if it is the case. */
116 /* Per-ssa version information (induction variable descriptions, etc.). */
119 tree name
; /* The ssa name. */
120 struct iv
*iv
; /* Induction variable description. */
121 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
122 an expression that is not an induction variable. */
123 unsigned inv_id
; /* Id of an invariant. */
124 bool preserve_biv
; /* For the original biv, whether to preserve it. */
130 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
131 USE_ADDRESS
, /* Use in an address. */
132 USE_COMPARE
/* Use is a compare. */
135 /* Cost of a computation. */
138 unsigned cost
; /* The runtime cost. */
139 unsigned complexity
; /* The estimate of the complexity of the code for
140 the computation (in no concrete units --
141 complexity field should be larger for more
142 complex expressions and addressing modes). */
145 static const comp_cost zero_cost
= {0, 0};
146 static const comp_cost infinite_cost
= {INFTY
, INFTY
};
148 /* The candidate - cost pair. */
151 struct iv_cand
*cand
; /* The candidate. */
152 comp_cost cost
; /* The cost. */
153 bitmap depends_on
; /* The list of invariants that have to be
155 tree value
; /* For final value elimination, the expression for
156 the final value of the iv. For iv elimination,
157 the new bound to compare with. */
163 unsigned id
; /* The id of the use. */
164 enum use_type type
; /* Type of the use. */
165 struct iv
*iv
; /* The induction variable it is based on. */
166 gimple stmt
; /* Statement in that it occurs. */
167 tree
*op_p
; /* The place where it occurs. */
168 bitmap related_cands
; /* The set of "related" iv candidates, plus the common
171 unsigned n_map_members
; /* Number of candidates in the cost_map list. */
172 struct cost_pair
*cost_map
;
173 /* The costs wrto the iv candidates. */
175 struct iv_cand
*selected
;
176 /* The selected candidate. */
179 /* The position where the iv is computed. */
182 IP_NORMAL
, /* At the end, just before the exit condition. */
183 IP_END
, /* At the end of the latch block. */
184 IP_ORIGINAL
/* The original biv. */
187 /* The induction variable candidate. */
190 unsigned id
; /* The number of the candidate. */
191 bool important
; /* Whether this is an "important" candidate, i.e. such
192 that it should be considered by all uses. */
193 enum iv_position pos
; /* Where it is computed. */
194 gimple incremented_at
;/* For original biv, the statement where it is
196 tree var_before
; /* The variable used for it before increment. */
197 tree var_after
; /* The variable used for it after increment. */
198 struct iv
*iv
; /* The value of the candidate. NULL for
199 "pseudocandidate" used to indicate the possibility
200 to replace the final value of an iv by direct
201 computation of the value. */
202 unsigned cost
; /* Cost of the candidate. */
203 bitmap depends_on
; /* The list of invariants that are used in step of the
207 /* The data used by the induction variable optimizations. */
209 typedef struct iv_use
*iv_use_p
;
211 DEF_VEC_ALLOC_P(iv_use_p
,heap
);
213 typedef struct iv_cand
*iv_cand_p
;
214 DEF_VEC_P(iv_cand_p
);
215 DEF_VEC_ALLOC_P(iv_cand_p
,heap
);
219 /* The currently optimized loop. */
220 struct loop
*current_loop
;
222 /* Are we optimizing for speed? */
225 /* Number of registers used in it. */
228 /* Numbers of iterations for all exits of the current loop. */
229 struct pointer_map_t
*niters
;
231 /* The size of version_info array allocated. */
232 unsigned version_info_size
;
234 /* The array of information for the ssa names. */
235 struct version_info
*version_info
;
237 /* The bitmap of indices in version_info whose value was changed. */
240 /* The maximum invariant id. */
243 /* The uses of induction variables. */
244 VEC(iv_use_p
,heap
) *iv_uses
;
246 /* The candidates. */
247 VEC(iv_cand_p
,heap
) *iv_candidates
;
249 /* A bitmap of important candidates. */
250 bitmap important_candidates
;
252 /* Whether to consider just related and important candidates when replacing a
254 bool consider_all_candidates
;
257 /* An assignment of iv candidates to uses. */
261 /* The number of uses covered by the assignment. */
264 /* Number of uses that cannot be expressed by the candidates in the set. */
267 /* Candidate assigned to a use, together with the related costs. */
268 struct cost_pair
**cand_for_use
;
270 /* Number of times each candidate is used. */
271 unsigned *n_cand_uses
;
273 /* The candidates used. */
276 /* The number of candidates in the set. */
279 /* Total number of registers needed. */
282 /* Total cost of expressing uses. */
283 comp_cost cand_use_cost
;
285 /* Total cost of candidates. */
288 /* Number of times each invariant is used. */
289 unsigned *n_invariant_uses
;
291 /* Total cost of the assignment. */
295 /* Difference of two iv candidate assignments. */
302 /* An old assignment (for rollback purposes). */
303 struct cost_pair
*old_cp
;
305 /* A new assignment. */
306 struct cost_pair
*new_cp
;
308 /* Next change in the list. */
309 struct iv_ca_delta
*next_change
;
312 /* Bound on number of candidates below that all candidates are considered. */
314 #define CONSIDER_ALL_CANDIDATES_BOUND \
315 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
317 /* If there are more iv occurrences, we just give up (it is quite unlikely that
318 optimizing such a loop would help, and it would take ages). */
320 #define MAX_CONSIDERED_USES \
321 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
323 /* If there are at most this number of ivs in the set, try removing unnecessary
324 ivs from the set always. */
326 #define ALWAYS_PRUNE_CAND_SET_BOUND \
327 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
329 /* The list of trees for that the decl_rtl field must be reset is stored
332 static VEC(tree
,heap
) *decl_rtl_to_reset
;
334 /* Number of uses recorded in DATA. */
336 static inline unsigned
337 n_iv_uses (struct ivopts_data
*data
)
339 return VEC_length (iv_use_p
, data
->iv_uses
);
342 /* Ith use recorded in DATA. */
344 static inline struct iv_use
*
345 iv_use (struct ivopts_data
*data
, unsigned i
)
347 return VEC_index (iv_use_p
, data
->iv_uses
, i
);
350 /* Number of candidates recorded in DATA. */
352 static inline unsigned
353 n_iv_cands (struct ivopts_data
*data
)
355 return VEC_length (iv_cand_p
, data
->iv_candidates
);
358 /* Ith candidate recorded in DATA. */
360 static inline struct iv_cand
*
361 iv_cand (struct ivopts_data
*data
, unsigned i
)
363 return VEC_index (iv_cand_p
, data
->iv_candidates
, i
);
366 /* The single loop exit if it dominates the latch, NULL otherwise. */
369 single_dom_exit (struct loop
*loop
)
371 edge exit
= single_exit (loop
);
376 if (!just_once_each_iteration_p (loop
, exit
->src
))
382 /* Dumps information about the induction variable IV to FILE. */
384 extern void dump_iv (FILE *, struct iv
*);
386 dump_iv (FILE *file
, struct iv
*iv
)
390 fprintf (file
, "ssa name ");
391 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
392 fprintf (file
, "\n");
395 fprintf (file
, " type ");
396 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
397 fprintf (file
, "\n");
401 fprintf (file
, " base ");
402 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
403 fprintf (file
, "\n");
405 fprintf (file
, " step ");
406 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
407 fprintf (file
, "\n");
411 fprintf (file
, " invariant ");
412 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
413 fprintf (file
, "\n");
418 fprintf (file
, " base object ");
419 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
420 fprintf (file
, "\n");
424 fprintf (file
, " is a biv\n");
427 /* Dumps information about the USE to FILE. */
429 extern void dump_use (FILE *, struct iv_use
*);
431 dump_use (FILE *file
, struct iv_use
*use
)
433 fprintf (file
, "use %d\n", use
->id
);
437 case USE_NONLINEAR_EXPR
:
438 fprintf (file
, " generic\n");
442 fprintf (file
, " address\n");
446 fprintf (file
, " compare\n");
453 fprintf (file
, " in statement ");
454 print_gimple_stmt (file
, use
->stmt
, 0, 0);
455 fprintf (file
, "\n");
457 fprintf (file
, " at position ");
459 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
460 fprintf (file
, "\n");
462 dump_iv (file
, use
->iv
);
464 if (use
->related_cands
)
466 fprintf (file
, " related candidates ");
467 dump_bitmap (file
, use
->related_cands
);
471 /* Dumps information about the uses to FILE. */
473 extern void dump_uses (FILE *, struct ivopts_data
*);
475 dump_uses (FILE *file
, struct ivopts_data
*data
)
480 for (i
= 0; i
< n_iv_uses (data
); i
++)
482 use
= iv_use (data
, i
);
484 dump_use (file
, use
);
485 fprintf (file
, "\n");
489 /* Dumps information about induction variable candidate CAND to FILE. */
491 extern void dump_cand (FILE *, struct iv_cand
*);
493 dump_cand (FILE *file
, struct iv_cand
*cand
)
495 struct iv
*iv
= cand
->iv
;
497 fprintf (file
, "candidate %d%s\n",
498 cand
->id
, cand
->important
? " (important)" : "");
500 if (cand
->depends_on
)
502 fprintf (file
, " depends on ");
503 dump_bitmap (file
, cand
->depends_on
);
508 fprintf (file
, " final value replacement\n");
515 fprintf (file
, " incremented before exit test\n");
519 fprintf (file
, " incremented at end\n");
523 fprintf (file
, " original biv\n");
530 /* Returns the info for ssa version VER. */
532 static inline struct version_info
*
533 ver_info (struct ivopts_data
*data
, unsigned ver
)
535 return data
->version_info
+ ver
;
538 /* Returns the info for ssa name NAME. */
540 static inline struct version_info
*
541 name_info (struct ivopts_data
*data
, tree name
)
543 return ver_info (data
, SSA_NAME_VERSION (name
));
546 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
550 stmt_after_ip_normal_pos (struct loop
*loop
, gimple stmt
)
552 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
556 if (sbb
== loop
->latch
)
562 return stmt
== last_stmt (bb
);
565 /* Returns true if STMT if after the place where the original induction
566 variable CAND is incremented. */
569 stmt_after_ip_original_pos (struct iv_cand
*cand
, gimple stmt
)
571 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
572 basic_block stmt_bb
= gimple_bb (stmt
);
573 gimple_stmt_iterator bsi
;
575 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
578 if (stmt_bb
!= cand_bb
)
581 /* Scan the block from the end, since the original ivs are usually
582 incremented at the end of the loop body. */
583 for (bsi
= gsi_last_bb (stmt_bb
); ; gsi_prev (&bsi
))
585 if (gsi_stmt (bsi
) == cand
->incremented_at
)
587 if (gsi_stmt (bsi
) == stmt
)
592 /* Returns true if STMT if after the place where the induction variable
593 CAND is incremented in LOOP. */
596 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
604 return stmt_after_ip_normal_pos (loop
, stmt
);
607 return stmt_after_ip_original_pos (cand
, stmt
);
614 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
617 abnormal_ssa_name_p (tree exp
)
622 if (TREE_CODE (exp
) != SSA_NAME
)
625 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
628 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
629 abnormal phi node. Callback for for_each_index. */
632 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
633 void *data ATTRIBUTE_UNUSED
)
635 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
637 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
639 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
643 return !abnormal_ssa_name_p (*index
);
646 /* Returns true if EXPR contains a ssa name that occurs in an
647 abnormal phi node. */
650 contains_abnormal_ssa_name_p (tree expr
)
653 enum tree_code_class codeclass
;
658 code
= TREE_CODE (expr
);
659 codeclass
= TREE_CODE_CLASS (code
);
661 if (code
== SSA_NAME
)
662 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
664 if (code
== INTEGER_CST
665 || is_gimple_min_invariant (expr
))
668 if (code
== ADDR_EXPR
)
669 return !for_each_index (&TREE_OPERAND (expr
, 0),
670 idx_contains_abnormal_ssa_name_p
,
677 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
682 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
694 /* Returns tree describing number of iterations determined from
695 EXIT of DATA->current_loop, or NULL if something goes wrong. */
698 niter_for_exit (struct ivopts_data
*data
, edge exit
)
700 struct tree_niter_desc desc
;
706 data
->niters
= pointer_map_create ();
710 slot
= pointer_map_contains (data
->niters
, exit
);
714 /* Try to determine number of iterations. We must know it
715 unconditionally (i.e., without possibility of # of iterations
716 being zero). Also, we cannot safely work with ssa names that
717 appear in phi nodes on abnormal edges, so that we do not create
718 overlapping life ranges for them (PR 27283). */
719 if (number_of_iterations_exit (data
->current_loop
,
721 && integer_zerop (desc
.may_be_zero
)
722 && !contains_abnormal_ssa_name_p (desc
.niter
))
727 *pointer_map_insert (data
->niters
, exit
) = niter
;
730 niter
= (tree
) *slot
;
735 /* Returns tree describing number of iterations determined from
736 single dominating exit of DATA->current_loop, or NULL if something
740 niter_for_single_dom_exit (struct ivopts_data
*data
)
742 edge exit
= single_dom_exit (data
->current_loop
);
747 return niter_for_exit (data
, exit
);
750 /* Initializes data structures used by the iv optimization pass, stored
754 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
756 data
->version_info_size
= 2 * num_ssa_names
;
757 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
758 data
->relevant
= BITMAP_ALLOC (NULL
);
759 data
->important_candidates
= BITMAP_ALLOC (NULL
);
760 data
->max_inv_id
= 0;
762 data
->iv_uses
= VEC_alloc (iv_use_p
, heap
, 20);
763 data
->iv_candidates
= VEC_alloc (iv_cand_p
, heap
, 20);
764 decl_rtl_to_reset
= VEC_alloc (tree
, heap
, 20);
767 /* Returns a memory object to that EXPR points. In case we are able to
768 determine that it does not point to any such object, NULL is returned. */
771 determine_base_object (tree expr
)
773 enum tree_code code
= TREE_CODE (expr
);
776 /* If this is a pointer casted to any type, we need to determine
777 the base object for the pointer; so handle conversions before
778 throwing away non-pointer expressions. */
779 if (CONVERT_EXPR_P (expr
))
780 return determine_base_object (TREE_OPERAND (expr
, 0));
782 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
791 obj
= TREE_OPERAND (expr
, 0);
792 base
= get_base_address (obj
);
797 if (TREE_CODE (base
) == INDIRECT_REF
)
798 return determine_base_object (TREE_OPERAND (base
, 0));
800 return fold_convert (ptr_type_node
,
801 build_fold_addr_expr (base
));
803 case POINTER_PLUS_EXPR
:
804 return determine_base_object (TREE_OPERAND (expr
, 0));
808 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
812 return fold_convert (ptr_type_node
, expr
);
816 /* Allocates an induction variable with given initial value BASE and step STEP
820 alloc_iv (tree base
, tree step
)
822 struct iv
*iv
= XCNEW (struct iv
);
823 gcc_assert (step
!= NULL_TREE
);
826 iv
->base_object
= determine_base_object (base
);
829 iv
->have_use_for
= false;
831 iv
->ssa_name
= NULL_TREE
;
836 /* Sets STEP and BASE for induction variable IV. */
839 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
)
841 struct version_info
*info
= name_info (data
, iv
);
843 gcc_assert (!info
->iv
);
845 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
846 info
->iv
= alloc_iv (base
, step
);
847 info
->iv
->ssa_name
= iv
;
850 /* Finds induction variable declaration for VAR. */
853 get_iv (struct ivopts_data
*data
, tree var
)
856 tree type
= TREE_TYPE (var
);
858 if (!POINTER_TYPE_P (type
)
859 && !INTEGRAL_TYPE_P (type
))
862 if (!name_info (data
, var
)->iv
)
864 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
867 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
868 set_iv (data
, var
, var
, build_int_cst (type
, 0));
871 return name_info (data
, var
)->iv
;
874 /* Determines the step of a biv defined in PHI. Returns NULL if PHI does
875 not define a simple affine biv with nonzero step. */
878 determine_biv_step (gimple phi
)
880 struct loop
*loop
= gimple_bb (phi
)->loop_father
;
881 tree name
= PHI_RESULT (phi
);
884 if (!is_gimple_reg (name
))
887 if (!simple_iv (loop
, phi
, name
, &iv
, true))
890 return integer_zerop (iv
.step
) ? NULL_TREE
: iv
.step
;
893 /* Finds basic ivs. */
896 find_bivs (struct ivopts_data
*data
)
899 tree step
, type
, base
;
901 struct loop
*loop
= data
->current_loop
;
902 gimple_stmt_iterator psi
;
904 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
906 phi
= gsi_stmt (psi
);
908 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
911 step
= determine_biv_step (phi
);
915 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
916 base
= expand_simple_operations (base
);
917 if (contains_abnormal_ssa_name_p (base
)
918 || contains_abnormal_ssa_name_p (step
))
921 type
= TREE_TYPE (PHI_RESULT (phi
));
922 base
= fold_convert (type
, base
);
925 if (POINTER_TYPE_P (type
))
926 step
= fold_convert (sizetype
, step
);
928 step
= fold_convert (type
, step
);
931 set_iv (data
, PHI_RESULT (phi
), base
, step
);
938 /* Marks basic ivs. */
941 mark_bivs (struct ivopts_data
*data
)
945 struct iv
*iv
, *incr_iv
;
946 struct loop
*loop
= data
->current_loop
;
948 gimple_stmt_iterator psi
;
950 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
952 phi
= gsi_stmt (psi
);
954 iv
= get_iv (data
, PHI_RESULT (phi
));
958 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
959 incr_iv
= get_iv (data
, var
);
963 /* If the increment is in the subloop, ignore it. */
964 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
965 if (incr_bb
->loop_father
!= data
->current_loop
966 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
970 incr_iv
->biv_p
= true;
974 /* Checks whether STMT defines a linear induction variable and stores its
978 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple stmt
, affine_iv
*iv
)
981 struct loop
*loop
= data
->current_loop
;
983 iv
->base
= NULL_TREE
;
984 iv
->step
= NULL_TREE
;
986 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
989 lhs
= gimple_assign_lhs (stmt
);
990 if (TREE_CODE (lhs
) != SSA_NAME
)
993 if (!simple_iv (loop
, stmt
, lhs
, iv
, true))
995 iv
->base
= expand_simple_operations (iv
->base
);
997 if (contains_abnormal_ssa_name_p (iv
->base
)
998 || contains_abnormal_ssa_name_p (iv
->step
))
1004 /* Finds general ivs in statement STMT. */
1007 find_givs_in_stmt (struct ivopts_data
*data
, gimple stmt
)
1011 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1014 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
);
1017 /* Finds general ivs in basic block BB. */
1020 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1022 gimple_stmt_iterator bsi
;
1024 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1025 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1028 /* Finds general ivs. */
1031 find_givs (struct ivopts_data
*data
)
1033 struct loop
*loop
= data
->current_loop
;
1034 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1037 for (i
= 0; i
< loop
->num_nodes
; i
++)
1038 find_givs_in_bb (data
, body
[i
]);
1042 /* For each ssa name defined in LOOP determines whether it is an induction
1043 variable and if so, its initial value and step. */
1046 find_induction_variables (struct ivopts_data
*data
)
1051 if (!find_bivs (data
))
1057 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1059 tree niter
= niter_for_single_dom_exit (data
);
1063 fprintf (dump_file
, " number of iterations ");
1064 print_generic_expr (dump_file
, niter
, TDF_SLIM
);
1065 fprintf (dump_file
, "\n\n");
1068 fprintf (dump_file
, "Induction variables:\n\n");
1070 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1072 if (ver_info (data
, i
)->iv
)
1073 dump_iv (dump_file
, ver_info (data
, i
)->iv
);
1080 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
1082 static struct iv_use
*
1083 record_use (struct ivopts_data
*data
, tree
*use_p
, struct iv
*iv
,
1084 gimple stmt
, enum use_type use_type
)
1086 struct iv_use
*use
= XCNEW (struct iv_use
);
1088 use
->id
= n_iv_uses (data
);
1089 use
->type
= use_type
;
1093 use
->related_cands
= BITMAP_ALLOC (NULL
);
1095 /* To avoid showing ssa name in the dumps, if it was not reset by the
1097 iv
->ssa_name
= NULL_TREE
;
1099 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1100 dump_use (dump_file
, use
);
1102 VEC_safe_push (iv_use_p
, heap
, data
->iv_uses
, use
);
1107 /* Checks whether OP is a loop-level invariant and if so, records it.
1108 NONLINEAR_USE is true if the invariant is used in a way we do not
1109 handle specially. */
1112 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1115 struct version_info
*info
;
1117 if (TREE_CODE (op
) != SSA_NAME
1118 || !is_gimple_reg (op
))
1121 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1123 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1126 info
= name_info (data
, op
);
1128 info
->has_nonlin_use
|= nonlinear_use
;
1130 info
->inv_id
= ++data
->max_inv_id
;
1131 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1134 /* Checks whether the use OP is interesting and if so, records it. */
1136 static struct iv_use
*
1137 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1144 if (TREE_CODE (op
) != SSA_NAME
)
1147 iv
= get_iv (data
, op
);
1151 if (iv
->have_use_for
)
1153 use
= iv_use (data
, iv
->use_id
);
1155 gcc_assert (use
->type
== USE_NONLINEAR_EXPR
);
1159 if (integer_zerop (iv
->step
))
1161 record_invariant (data
, op
, true);
1164 iv
->have_use_for
= true;
1166 civ
= XNEW (struct iv
);
1169 stmt
= SSA_NAME_DEF_STMT (op
);
1170 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
1171 || is_gimple_assign (stmt
));
1173 use
= record_use (data
, NULL
, civ
, stmt
, USE_NONLINEAR_EXPR
);
1174 iv
->use_id
= use
->id
;
1179 /* Given a condition in statement STMT, checks whether it is a compare
1180 of an induction variable and an invariant. If this is the case,
1181 CONTROL_VAR is set to location of the iv, BOUND to the location of
1182 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1183 induction variable descriptions, and true is returned. If this is not
1184 the case, CONTROL_VAR and BOUND are set to the arguments of the
1185 condition and false is returned. */
1188 extract_cond_operands (struct ivopts_data
*data
, gimple stmt
,
1189 tree
**control_var
, tree
**bound
,
1190 struct iv
**iv_var
, struct iv
**iv_bound
)
1192 /* The objects returned when COND has constant operands. */
1193 static struct iv const_iv
;
1195 tree
*op0
= &zero
, *op1
= &zero
, *tmp_op
;
1196 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
, *tmp_iv
;
1199 if (gimple_code (stmt
) == GIMPLE_COND
)
1201 op0
= gimple_cond_lhs_ptr (stmt
);
1202 op1
= gimple_cond_rhs_ptr (stmt
);
1206 op0
= gimple_assign_rhs1_ptr (stmt
);
1207 op1
= gimple_assign_rhs2_ptr (stmt
);
1210 zero
= integer_zero_node
;
1211 const_iv
.step
= integer_zero_node
;
1213 if (TREE_CODE (*op0
) == SSA_NAME
)
1214 iv0
= get_iv (data
, *op0
);
1215 if (TREE_CODE (*op1
) == SSA_NAME
)
1216 iv1
= get_iv (data
, *op1
);
1218 /* Exactly one of the compared values must be an iv, and the other one must
1223 if (integer_zerop (iv0
->step
))
1225 /* Control variable may be on the other side. */
1226 tmp_op
= op0
; op0
= op1
; op1
= tmp_op
;
1227 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
1229 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1233 *control_var
= op0
;;
1244 /* Checks whether the condition in STMT is interesting and if so,
1248 find_interesting_uses_cond (struct ivopts_data
*data
, gimple stmt
)
1250 tree
*var_p
, *bound_p
;
1251 struct iv
*var_iv
, *civ
;
1253 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1255 find_interesting_uses_op (data
, *var_p
);
1256 find_interesting_uses_op (data
, *bound_p
);
1260 civ
= XNEW (struct iv
);
1262 record_use (data
, NULL
, civ
, stmt
, USE_COMPARE
);
1265 /* Returns true if expression EXPR is obviously invariant in LOOP,
1266 i.e. if all its operands are defined outside of the LOOP. LOOP
1267 should not be the function body. */
1270 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1275 gcc_assert (loop_depth (loop
) > 0);
1277 if (is_gimple_min_invariant (expr
))
1280 if (TREE_CODE (expr
) == SSA_NAME
)
1282 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1284 && flow_bb_inside_loop_p (loop
, def_bb
))
1293 len
= TREE_OPERAND_LENGTH (expr
);
1294 for (i
= 0; i
< len
; i
++)
1295 if (!expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1301 /* Returns true if statement STMT is obviously invariant in LOOP,
1302 i.e. if all its operands on the RHS are defined outside of the LOOP.
1303 LOOP should not be the function body. */
1306 stmt_invariant_in_loop_p (struct loop
*loop
, gimple stmt
)
1311 gcc_assert (loop_depth (loop
) > 0);
1313 lhs
= gimple_get_lhs (stmt
);
1314 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1316 tree op
= gimple_op (stmt
, i
);
1317 if (op
!= lhs
&& !expr_invariant_in_loop_p (loop
, op
))
1324 /* Cumulates the steps of indices into DATA and replaces their values with the
1325 initial ones. Returns false when the value of the index cannot be determined.
1326 Callback for for_each_index. */
1328 struct ifs_ivopts_data
1330 struct ivopts_data
*ivopts_data
;
1336 idx_find_step (tree base
, tree
*idx
, void *data
)
1338 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1340 tree step
, iv_base
, iv_step
, lbound
, off
;
1341 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1343 if (TREE_CODE (base
) == MISALIGNED_INDIRECT_REF
1344 || TREE_CODE (base
) == ALIGN_INDIRECT_REF
)
1347 /* If base is a component ref, require that the offset of the reference
1349 if (TREE_CODE (base
) == COMPONENT_REF
)
1351 off
= component_ref_field_offset (base
);
1352 return expr_invariant_in_loop_p (loop
, off
);
1355 /* If base is array, first check whether we will be able to move the
1356 reference out of the loop (in order to take its address in strength
1357 reduction). In order for this to work we need both lower bound
1358 and step to be loop invariants. */
1359 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1361 /* Moreover, for a range, the size needs to be invariant as well. */
1362 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1363 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1366 step
= array_ref_element_size (base
);
1367 lbound
= array_ref_low_bound (base
);
1369 if (!expr_invariant_in_loop_p (loop
, step
)
1370 || !expr_invariant_in_loop_p (loop
, lbound
))
1374 if (TREE_CODE (*idx
) != SSA_NAME
)
1377 iv
= get_iv (dta
->ivopts_data
, *idx
);
1381 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1382 *&x[0], which is not folded and does not trigger the
1383 ARRAY_REF path below. */
1386 if (integer_zerop (iv
->step
))
1389 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1391 step
= array_ref_element_size (base
);
1393 /* We only handle addresses whose step is an integer constant. */
1394 if (TREE_CODE (step
) != INTEGER_CST
)
1398 /* The step for pointer arithmetics already is 1 byte. */
1399 step
= build_int_cst (sizetype
, 1);
1403 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
1404 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
1407 /* The index might wrap. */
1411 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
1412 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
1417 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1418 object is passed to it in DATA. */
1421 idx_record_use (tree base
, tree
*idx
,
1424 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
1425 find_interesting_uses_op (data
, *idx
);
1426 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1428 find_interesting_uses_op (data
, array_ref_element_size (base
));
1429 find_interesting_uses_op (data
, array_ref_low_bound (base
));
1434 /* If we can prove that TOP = cst * BOT for some constant cst,
1435 store cst to MUL and return true. Otherwise return false.
1436 The returned value is always sign-extended, regardless of the
1437 signedness of TOP and BOT. */
1440 constant_multiple_of (tree top
, tree bot
, double_int
*mul
)
1443 enum tree_code code
;
1444 double_int res
, p0
, p1
;
1445 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
1450 if (operand_equal_p (top
, bot
, 0))
1452 *mul
= double_int_one
;
1456 code
= TREE_CODE (top
);
1460 mby
= TREE_OPERAND (top
, 1);
1461 if (TREE_CODE (mby
) != INTEGER_CST
)
1464 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
1467 *mul
= double_int_sext (double_int_mul (res
, tree_to_double_int (mby
)),
1473 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
1474 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
1477 if (code
== MINUS_EXPR
)
1478 p1
= double_int_neg (p1
);
1479 *mul
= double_int_sext (double_int_add (p0
, p1
), precision
);
1483 if (TREE_CODE (bot
) != INTEGER_CST
)
1486 p0
= double_int_sext (tree_to_double_int (top
), precision
);
1487 p1
= double_int_sext (tree_to_double_int (bot
), precision
);
1488 if (double_int_zero_p (p1
))
1490 *mul
= double_int_sext (double_int_sdivmod (p0
, p1
, FLOOR_DIV_EXPR
, &res
),
1492 return double_int_zero_p (res
);
1499 /* Returns true if memory reference REF with step STEP may be unaligned. */
1502 may_be_unaligned_p (tree ref
, tree step
)
1506 HOST_WIDE_INT bitsize
;
1507 HOST_WIDE_INT bitpos
;
1509 enum machine_mode mode
;
1510 int unsignedp
, volatilep
;
1511 unsigned base_align
;
1513 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1514 thus they are not misaligned. */
1515 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
1518 /* The test below is basically copy of what expr.c:normal_inner_ref
1519 does to check whether the object must be loaded by parts when
1520 STRICT_ALIGNMENT is true. */
1521 base
= get_inner_reference (ref
, &bitsize
, &bitpos
, &toffset
, &mode
,
1522 &unsignedp
, &volatilep
, true);
1523 base_type
= TREE_TYPE (base
);
1524 base_align
= TYPE_ALIGN (base_type
);
1526 if (mode
!= BLKmode
)
1529 tree al
= build_int_cst (TREE_TYPE (step
),
1530 GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
);
1532 if (base_align
< GET_MODE_ALIGNMENT (mode
)
1533 || bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
1534 || bitpos
% BITS_PER_UNIT
!= 0)
1537 if (!constant_multiple_of (step
, al
, &mul
))
1544 /* Return true if EXPR may be non-addressable. */
1547 may_be_nonaddressable_p (tree expr
)
1549 switch (TREE_CODE (expr
))
1551 case TARGET_MEM_REF
:
1552 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1553 target, thus they are always addressable. */
1557 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
1558 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1560 case VIEW_CONVERT_EXPR
:
1561 /* This kind of view-conversions may wrap non-addressable objects
1562 and make them look addressable. After some processing the
1563 non-addressability may be uncovered again, causing ADDR_EXPRs
1564 of inappropriate objects to be built. */
1565 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
1566 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
1569 /* ... fall through ... */
1572 case ARRAY_RANGE_REF
:
1573 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1585 /* Finds addresses in *OP_P inside STMT. */
1588 find_interesting_uses_address (struct ivopts_data
*data
, gimple stmt
, tree
*op_p
)
1590 tree base
= *op_p
, step
= build_int_cst (sizetype
, 0);
1592 struct ifs_ivopts_data ifs_ivopts_data
;
1594 /* Do not play with volatile memory references. A bit too conservative,
1595 perhaps, but safe. */
1596 if (gimple_has_volatile_ops (stmt
))
1599 /* Ignore bitfields for now. Not really something terribly complicated
1601 if (TREE_CODE (base
) == BIT_FIELD_REF
)
1604 base
= unshare_expr (base
);
1606 if (TREE_CODE (base
) == TARGET_MEM_REF
)
1608 tree type
= build_pointer_type (TREE_TYPE (base
));
1612 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
1614 civ
= get_iv (data
, TMR_BASE (base
));
1618 TMR_BASE (base
) = civ
->base
;
1621 if (TMR_INDEX (base
)
1622 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
1624 civ
= get_iv (data
, TMR_INDEX (base
));
1628 TMR_INDEX (base
) = civ
->base
;
1633 if (TMR_STEP (base
))
1634 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
1636 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
1640 if (integer_zerop (step
))
1642 base
= tree_mem_ref_addr (type
, base
);
1646 ifs_ivopts_data
.ivopts_data
= data
;
1647 ifs_ivopts_data
.stmt
= stmt
;
1648 ifs_ivopts_data
.step
= build_int_cst (sizetype
, 0);
1649 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
1650 || integer_zerop (ifs_ivopts_data
.step
))
1652 step
= ifs_ivopts_data
.step
;
1654 gcc_assert (TREE_CODE (base
) != ALIGN_INDIRECT_REF
);
1655 gcc_assert (TREE_CODE (base
) != MISALIGNED_INDIRECT_REF
);
1657 /* Check that the base expression is addressable. This needs
1658 to be done after substituting bases of IVs into it. */
1659 if (may_be_nonaddressable_p (base
))
1662 /* Moreover, on strict alignment platforms, check that it is
1663 sufficiently aligned. */
1664 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
1667 base
= build_fold_addr_expr (base
);
1669 /* Substituting bases of IVs into the base expression might
1670 have caused folding opportunities. */
1671 if (TREE_CODE (base
) == ADDR_EXPR
)
1673 tree
*ref
= &TREE_OPERAND (base
, 0);
1674 while (handled_component_p (*ref
))
1675 ref
= &TREE_OPERAND (*ref
, 0);
1676 if (TREE_CODE (*ref
) == INDIRECT_REF
)
1677 *ref
= fold_indirect_ref (*ref
);
1681 civ
= alloc_iv (base
, step
);
1682 record_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
1686 for_each_index (op_p
, idx_record_use
, data
);
1689 /* Finds and records invariants used in STMT. */
1692 find_invariants_stmt (struct ivopts_data
*data
, gimple stmt
)
1695 use_operand_p use_p
;
1698 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1700 op
= USE_FROM_PTR (use_p
);
1701 record_invariant (data
, op
, false);
1705 /* Finds interesting uses of induction variables in the statement STMT. */
1708 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple stmt
)
1711 tree op
, *lhs
, *rhs
;
1713 use_operand_p use_p
;
1714 enum tree_code code
;
1716 find_invariants_stmt (data
, stmt
);
1718 if (gimple_code (stmt
) == GIMPLE_COND
)
1720 find_interesting_uses_cond (data
, stmt
);
1724 if (is_gimple_assign (stmt
))
1726 lhs
= gimple_assign_lhs_ptr (stmt
);
1727 rhs
= gimple_assign_rhs1_ptr (stmt
);
1729 if (TREE_CODE (*lhs
) == SSA_NAME
)
1731 /* If the statement defines an induction variable, the uses are not
1732 interesting by themselves. */
1734 iv
= get_iv (data
, *lhs
);
1736 if (iv
&& !integer_zerop (iv
->step
))
1740 code
= gimple_assign_rhs_code (stmt
);
1741 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
1742 && (REFERENCE_CLASS_P (*rhs
)
1743 || is_gimple_val (*rhs
)))
1745 if (REFERENCE_CLASS_P (*rhs
))
1746 find_interesting_uses_address (data
, stmt
, rhs
);
1748 find_interesting_uses_op (data
, *rhs
);
1750 if (REFERENCE_CLASS_P (*lhs
))
1751 find_interesting_uses_address (data
, stmt
, lhs
);
1754 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1756 find_interesting_uses_cond (data
, stmt
);
1760 /* TODO -- we should also handle address uses of type
1762 memory = call (whatever);
1769 if (gimple_code (stmt
) == GIMPLE_PHI
1770 && gimple_bb (stmt
) == data
->current_loop
->header
)
1772 iv
= get_iv (data
, PHI_RESULT (stmt
));
1774 if (iv
&& !integer_zerop (iv
->step
))
1778 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1780 op
= USE_FROM_PTR (use_p
);
1782 if (TREE_CODE (op
) != SSA_NAME
)
1785 iv
= get_iv (data
, op
);
1789 find_interesting_uses_op (data
, op
);
1793 /* Finds interesting uses of induction variables outside of loops
1794 on loop exit edge EXIT. */
1797 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
1800 gimple_stmt_iterator psi
;
1803 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
1805 phi
= gsi_stmt (psi
);
1806 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1807 if (is_gimple_reg (def
))
1808 find_interesting_uses_op (data
, def
);
1812 /* Finds uses of the induction variables that are interesting. */
1815 find_interesting_uses (struct ivopts_data
*data
)
1818 gimple_stmt_iterator bsi
;
1819 basic_block
*body
= get_loop_body (data
->current_loop
);
1821 struct version_info
*info
;
1824 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1825 fprintf (dump_file
, "Uses:\n\n");
1827 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
1832 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1833 if (e
->dest
!= EXIT_BLOCK_PTR
1834 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
1835 find_interesting_uses_outside (data
, e
);
1837 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1838 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
1839 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1840 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
1843 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1847 fprintf (dump_file
, "\n");
1849 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1851 info
= ver_info (data
, i
);
1854 fprintf (dump_file
, " ");
1855 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
1856 fprintf (dump_file
, " is invariant (%d)%s\n",
1857 info
->inv_id
, info
->has_nonlin_use
? "" : ", eliminable");
1861 fprintf (dump_file
, "\n");
1867 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
1868 is true, assume we are inside an address. If TOP_COMPREF is true, assume
1869 we are at the top-level of the processed address. */
1872 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
1873 unsigned HOST_WIDE_INT
*offset
)
1875 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
1876 enum tree_code code
;
1877 tree type
, orig_type
= TREE_TYPE (expr
);
1878 unsigned HOST_WIDE_INT off0
, off1
, st
;
1879 tree orig_expr
= expr
;
1883 type
= TREE_TYPE (expr
);
1884 code
= TREE_CODE (expr
);
1890 if (!cst_and_fits_in_hwi (expr
)
1891 || integer_zerop (expr
))
1894 *offset
= int_cst_value (expr
);
1895 return build_int_cst (orig_type
, 0);
1897 case POINTER_PLUS_EXPR
:
1900 op0
= TREE_OPERAND (expr
, 0);
1901 op1
= TREE_OPERAND (expr
, 1);
1903 op0
= strip_offset_1 (op0
, false, false, &off0
);
1904 op1
= strip_offset_1 (op1
, false, false, &off1
);
1906 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
1907 if (op0
== TREE_OPERAND (expr
, 0)
1908 && op1
== TREE_OPERAND (expr
, 1))
1911 if (integer_zerop (op1
))
1913 else if (integer_zerop (op0
))
1915 if (code
== MINUS_EXPR
)
1916 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
1921 expr
= fold_build2 (code
, type
, op0
, op1
);
1923 return fold_convert (orig_type
, expr
);
1926 case ARRAY_RANGE_REF
:
1930 step
= array_ref_element_size (expr
);
1931 if (!cst_and_fits_in_hwi (step
))
1934 st
= int_cst_value (step
);
1935 op1
= TREE_OPERAND (expr
, 1);
1936 op1
= strip_offset_1 (op1
, false, false, &off1
);
1937 *offset
= off1
* st
;
1940 && integer_zerop (op1
))
1942 /* Strip the component reference completely. */
1943 op0
= TREE_OPERAND (expr
, 0);
1944 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
1954 tmp
= component_ref_field_offset (expr
);
1956 && cst_and_fits_in_hwi (tmp
))
1958 /* Strip the component reference completely. */
1959 op0
= TREE_OPERAND (expr
, 0);
1960 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
1961 *offset
= off0
+ int_cst_value (tmp
);
1967 op0
= TREE_OPERAND (expr
, 0);
1968 op0
= strip_offset_1 (op0
, true, true, &off0
);
1971 if (op0
== TREE_OPERAND (expr
, 0))
1974 expr
= build_fold_addr_expr (op0
);
1975 return fold_convert (orig_type
, expr
);
1978 inside_addr
= false;
1985 /* Default handling of expressions for that we want to recurse into
1986 the first operand. */
1987 op0
= TREE_OPERAND (expr
, 0);
1988 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
1991 if (op0
== TREE_OPERAND (expr
, 0)
1992 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
1995 expr
= copy_node (expr
);
1996 TREE_OPERAND (expr
, 0) = op0
;
1998 TREE_OPERAND (expr
, 1) = op1
;
2000 /* Inside address, we might strip the top level component references,
2001 thus changing type of the expression. Handling of ADDR_EXPR
2003 expr
= fold_convert (orig_type
, expr
);
2008 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2011 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2013 return strip_offset_1 (expr
, false, false, offset
);
2016 /* Returns variant of TYPE that can be used as base for different uses.
2017 We return unsigned type with the same precision, which avoids problems
2021 generic_type_for (tree type
)
2023 if (POINTER_TYPE_P (type
))
2024 return unsigned_type_for (type
);
2026 if (TYPE_UNSIGNED (type
))
2029 return unsigned_type_for (type
);
2032 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2033 the bitmap to that we should store it. */
2035 static struct ivopts_data
*fd_ivopts_data
;
2037 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2039 bitmap
*depends_on
= (bitmap
*) data
;
2040 struct version_info
*info
;
2042 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2044 info
= name_info (fd_ivopts_data
, *expr_p
);
2046 if (!info
->inv_id
|| info
->has_nonlin_use
)
2050 *depends_on
= BITMAP_ALLOC (NULL
);
2051 bitmap_set_bit (*depends_on
, info
->inv_id
);
2056 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2057 position to POS. If USE is not NULL, the candidate is set as related to
2058 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2059 replacement of the final value of the iv by a direct computation. */
2061 static struct iv_cand
*
2062 add_candidate_1 (struct ivopts_data
*data
,
2063 tree base
, tree step
, bool important
, enum iv_position pos
,
2064 struct iv_use
*use
, gimple incremented_at
)
2067 struct iv_cand
*cand
= NULL
;
2068 tree type
, orig_type
;
2072 orig_type
= TREE_TYPE (base
);
2073 type
= generic_type_for (orig_type
);
2074 /* Don't convert the base to the generic type for pointers as the generic
2075 type is an integer type with the same size as the pointer type. */
2076 if (type
!= orig_type
&& !POINTER_TYPE_P (orig_type
))
2078 base
= fold_convert (type
, base
);
2079 step
= fold_convert (type
, step
);
2083 for (i
= 0; i
< n_iv_cands (data
); i
++)
2085 cand
= iv_cand (data
, i
);
2087 if (cand
->pos
!= pos
)
2090 if (cand
->incremented_at
!= incremented_at
)
2104 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2105 && operand_equal_p (step
, cand
->iv
->step
, 0))
2109 if (i
== n_iv_cands (data
))
2111 cand
= XCNEW (struct iv_cand
);
2117 cand
->iv
= alloc_iv (base
, step
);
2120 if (pos
!= IP_ORIGINAL
&& cand
->iv
)
2122 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2123 cand
->var_after
= cand
->var_before
;
2125 cand
->important
= important
;
2126 cand
->incremented_at
= incremented_at
;
2127 VEC_safe_push (iv_cand_p
, heap
, data
->iv_candidates
, cand
);
2130 && TREE_CODE (step
) != INTEGER_CST
)
2132 fd_ivopts_data
= data
;
2133 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2136 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2137 dump_cand (dump_file
, cand
);
2140 if (important
&& !cand
->important
)
2142 cand
->important
= true;
2143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2144 fprintf (dump_file
, "Candidate %d is important\n", cand
->id
);
2149 bitmap_set_bit (use
->related_cands
, i
);
2150 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2151 fprintf (dump_file
, "Candidate %d is related to use %d\n",
2158 /* Returns true if incrementing the induction variable at the end of the LOOP
2161 The purpose is to avoid splitting latch edge with a biv increment, thus
2162 creating a jump, possibly confusing other optimization passes and leaving
2163 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2164 is not available (so we do not have a better alternative), or if the latch
2165 edge is already nonempty. */
2168 allow_ip_end_pos_p (struct loop
*loop
)
2170 if (!ip_normal_pos (loop
))
2173 if (!empty_block_p (ip_end_pos (loop
)))
2179 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2180 position to POS. If USE is not NULL, the candidate is set as related to
2181 it. The candidate computation is scheduled on all available positions. */
2184 add_candidate (struct ivopts_data
*data
,
2185 tree base
, tree step
, bool important
, struct iv_use
*use
)
2187 if (ip_normal_pos (data
->current_loop
))
2188 add_candidate_1 (data
, base
, step
, important
, IP_NORMAL
, use
, NULL
);
2189 if (ip_end_pos (data
->current_loop
)
2190 && allow_ip_end_pos_p (data
->current_loop
))
2191 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
);
2194 /* Add a standard "0 + 1 * iteration" iv candidate for a
2195 type with SIZE bits. */
2198 add_standard_iv_candidates_for_size (struct ivopts_data
*data
,
2201 tree type
= lang_hooks
.types
.type_for_size (size
, true);
2202 add_candidate (data
, build_int_cst (type
, 0), build_int_cst (type
, 1),
2206 /* Adds standard iv candidates. */
2209 add_standard_iv_candidates (struct ivopts_data
*data
)
2211 add_standard_iv_candidates_for_size (data
, INT_TYPE_SIZE
);
2213 /* The same for a double-integer type if it is still fast enough. */
2214 if (BITS_PER_WORD
>= INT_TYPE_SIZE
* 2)
2215 add_standard_iv_candidates_for_size (data
, INT_TYPE_SIZE
* 2);
2219 /* Adds candidates bases on the old induction variable IV. */
2222 add_old_iv_candidates (struct ivopts_data
*data
, struct iv
*iv
)
2226 struct iv_cand
*cand
;
2228 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
2230 /* The same, but with initial value zero. */
2231 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
2232 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
2234 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
2235 iv
->step
, true, NULL
);
2237 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
2238 if (gimple_code (phi
) == GIMPLE_PHI
)
2240 /* Additionally record the possibility of leaving the original iv
2242 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
2243 cand
= add_candidate_1 (data
,
2244 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
2245 SSA_NAME_DEF_STMT (def
));
2246 cand
->var_before
= iv
->ssa_name
;
2247 cand
->var_after
= def
;
2251 /* Adds candidates based on the old induction variables. */
2254 add_old_ivs_candidates (struct ivopts_data
*data
)
2260 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2262 iv
= ver_info (data
, i
)->iv
;
2263 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
2264 add_old_iv_candidates (data
, iv
);
2268 /* Adds candidates based on the value of the induction variable IV and USE. */
2271 add_iv_value_candidates (struct ivopts_data
*data
,
2272 struct iv
*iv
, struct iv_use
*use
)
2274 unsigned HOST_WIDE_INT offset
;
2278 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
2280 /* The same, but with initial value zero. Make such variable important,
2281 since it is generic enough so that possibly many uses may be based
2283 basetype
= TREE_TYPE (iv
->base
);
2284 if (POINTER_TYPE_P (basetype
))
2285 basetype
= sizetype
;
2286 add_candidate (data
, build_int_cst (basetype
, 0),
2287 iv
->step
, true, use
);
2289 /* Third, try removing the constant offset. Make sure to even
2290 add a candidate for &a[0] vs. (T *)&a. */
2291 base
= strip_offset (iv
->base
, &offset
);
2293 || base
!= iv
->base
)
2294 add_candidate (data
, base
, iv
->step
, false, use
);
2297 /* Adds candidates based on the uses. */
2300 add_derived_ivs_candidates (struct ivopts_data
*data
)
2304 for (i
= 0; i
< n_iv_uses (data
); i
++)
2306 struct iv_use
*use
= iv_use (data
, i
);
2313 case USE_NONLINEAR_EXPR
:
2316 /* Just add the ivs based on the value of the iv used here. */
2317 add_iv_value_candidates (data
, use
->iv
, use
);
2326 /* Record important candidates and add them to related_cands bitmaps
2330 record_important_candidates (struct ivopts_data
*data
)
2335 for (i
= 0; i
< n_iv_cands (data
); i
++)
2337 struct iv_cand
*cand
= iv_cand (data
, i
);
2339 if (cand
->important
)
2340 bitmap_set_bit (data
->important_candidates
, i
);
2343 data
->consider_all_candidates
= (n_iv_cands (data
)
2344 <= CONSIDER_ALL_CANDIDATES_BOUND
);
2346 if (data
->consider_all_candidates
)
2348 /* We will not need "related_cands" bitmaps in this case,
2349 so release them to decrease peak memory consumption. */
2350 for (i
= 0; i
< n_iv_uses (data
); i
++)
2352 use
= iv_use (data
, i
);
2353 BITMAP_FREE (use
->related_cands
);
2358 /* Add important candidates to the related_cands bitmaps. */
2359 for (i
= 0; i
< n_iv_uses (data
); i
++)
2360 bitmap_ior_into (iv_use (data
, i
)->related_cands
,
2361 data
->important_candidates
);
2365 /* Finds the candidates for the induction variables. */
2368 find_iv_candidates (struct ivopts_data
*data
)
2370 /* Add commonly used ivs. */
2371 add_standard_iv_candidates (data
);
2373 /* Add old induction variables. */
2374 add_old_ivs_candidates (data
);
2376 /* Add induction variables derived from uses. */
2377 add_derived_ivs_candidates (data
);
2379 /* Record the important candidates. */
2380 record_important_candidates (data
);
2383 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2384 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2385 we allocate a simple list to every use. */
2388 alloc_use_cost_map (struct ivopts_data
*data
)
2390 unsigned i
, size
, s
, j
;
2392 for (i
= 0; i
< n_iv_uses (data
); i
++)
2394 struct iv_use
*use
= iv_use (data
, i
);
2397 if (data
->consider_all_candidates
)
2398 size
= n_iv_cands (data
);
2402 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
2407 /* Round up to the power of two, so that moduling by it is fast. */
2408 for (size
= 1; size
< s
; size
<<= 1)
2412 use
->n_map_members
= size
;
2413 use
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
2417 /* Returns description of computation cost of expression whose runtime
2418 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
2421 new_cost (unsigned runtime
, unsigned complexity
)
2425 cost
.cost
= runtime
;
2426 cost
.complexity
= complexity
;
2431 /* Adds costs COST1 and COST2. */
2434 add_costs (comp_cost cost1
, comp_cost cost2
)
2436 cost1
.cost
+= cost2
.cost
;
2437 cost1
.complexity
+= cost2
.complexity
;
2441 /* Subtracts costs COST1 and COST2. */
2444 sub_costs (comp_cost cost1
, comp_cost cost2
)
2446 cost1
.cost
-= cost2
.cost
;
2447 cost1
.complexity
-= cost2
.complexity
;
2452 /* Returns a negative number if COST1 < COST2, a positive number if
2453 COST1 > COST2, and 0 if COST1 = COST2. */
2456 compare_costs (comp_cost cost1
, comp_cost cost2
)
2458 if (cost1
.cost
== cost2
.cost
)
2459 return cost1
.complexity
- cost2
.complexity
;
2461 return cost1
.cost
- cost2
.cost
;
2464 /* Returns true if COST is infinite. */
2467 infinite_cost_p (comp_cost cost
)
2469 return cost
.cost
== INFTY
;
2472 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
2473 on invariants DEPENDS_ON and that the value used in expressing it
2477 set_use_iv_cost (struct ivopts_data
*data
,
2478 struct iv_use
*use
, struct iv_cand
*cand
,
2479 comp_cost cost
, bitmap depends_on
, tree value
)
2483 if (infinite_cost_p (cost
))
2485 BITMAP_FREE (depends_on
);
2489 if (data
->consider_all_candidates
)
2491 use
->cost_map
[cand
->id
].cand
= cand
;
2492 use
->cost_map
[cand
->id
].cost
= cost
;
2493 use
->cost_map
[cand
->id
].depends_on
= depends_on
;
2494 use
->cost_map
[cand
->id
].value
= value
;
2498 /* n_map_members is a power of two, so this computes modulo. */
2499 s
= cand
->id
& (use
->n_map_members
- 1);
2500 for (i
= s
; i
< use
->n_map_members
; i
++)
2501 if (!use
->cost_map
[i
].cand
)
2503 for (i
= 0; i
< s
; i
++)
2504 if (!use
->cost_map
[i
].cand
)
2510 use
->cost_map
[i
].cand
= cand
;
2511 use
->cost_map
[i
].cost
= cost
;
2512 use
->cost_map
[i
].depends_on
= depends_on
;
2513 use
->cost_map
[i
].value
= value
;
2516 /* Gets cost of (USE, CANDIDATE) pair. */
2518 static struct cost_pair
*
2519 get_use_iv_cost (struct ivopts_data
*data
, struct iv_use
*use
,
2520 struct iv_cand
*cand
)
2523 struct cost_pair
*ret
;
2528 if (data
->consider_all_candidates
)
2530 ret
= use
->cost_map
+ cand
->id
;
2537 /* n_map_members is a power of two, so this computes modulo. */
2538 s
= cand
->id
& (use
->n_map_members
- 1);
2539 for (i
= s
; i
< use
->n_map_members
; i
++)
2540 if (use
->cost_map
[i
].cand
== cand
)
2541 return use
->cost_map
+ i
;
2543 for (i
= 0; i
< s
; i
++)
2544 if (use
->cost_map
[i
].cand
== cand
)
2545 return use
->cost_map
+ i
;
2550 /* Returns estimate on cost of computing SEQ. */
2553 seq_cost (rtx seq
, bool speed
)
2558 for (; seq
; seq
= NEXT_INSN (seq
))
2560 set
= single_set (seq
);
2562 cost
+= rtx_cost (set
, SET
,speed
);
2570 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
2572 produce_memory_decl_rtl (tree obj
, int *regno
)
2577 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
2579 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
2580 x
= gen_rtx_SYMBOL_REF (Pmode
, name
);
2581 SET_SYMBOL_REF_DECL (x
, obj
);
2582 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2583 targetm
.encode_section_info (obj
, x
, true);
2587 x
= gen_raw_REG (Pmode
, (*regno
)++);
2588 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2594 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
2595 walk_tree. DATA contains the actual fake register number. */
2598 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
2600 tree obj
= NULL_TREE
;
2602 int *regno
= (int *) data
;
2604 switch (TREE_CODE (*expr_p
))
2607 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
2608 handled_component_p (*expr_p
);
2609 expr_p
= &TREE_OPERAND (*expr_p
, 0))
2612 if (DECL_P (obj
) && !DECL_RTL_SET_P (obj
))
2613 x
= produce_memory_decl_rtl (obj
, regno
);
2618 obj
= SSA_NAME_VAR (*expr_p
);
2619 if (!DECL_RTL_SET_P (obj
))
2620 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2629 if (DECL_RTL_SET_P (obj
))
2632 if (DECL_MODE (obj
) == BLKmode
)
2633 x
= produce_memory_decl_rtl (obj
, regno
);
2635 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2645 VEC_safe_push (tree
, heap
, decl_rtl_to_reset
, obj
);
2646 SET_DECL_RTL (obj
, x
);
2652 /* Determines cost of the computation of EXPR. */
2655 computation_cost (tree expr
, bool speed
)
2658 tree type
= TREE_TYPE (expr
);
2660 /* Avoid using hard regs in ways which may be unsupported. */
2661 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
2662 enum function_frequency real_frequency
= cfun
->function_frequency
;
2664 cfun
->function_frequency
= FUNCTION_FREQUENCY_NORMAL
;
2665 crtl
->maybe_hot_insn_p
= speed
;
2666 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
2668 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
2671 default_rtl_profile ();
2672 cfun
->function_frequency
= real_frequency
;
2674 cost
= seq_cost (seq
, speed
);
2676 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
), speed
);
2681 /* Returns variable containing the value of candidate CAND at statement AT. */
2684 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
2686 if (stmt_after_increment (loop
, cand
, stmt
))
2687 return cand
->var_after
;
2689 return cand
->var_before
;
2692 /* Return the most significant (sign) bit of T. Similar to tree_int_cst_msb,
2693 but the bit is determined from TYPE_PRECISION, not MODE_BITSIZE. */
2696 tree_int_cst_sign_bit (const_tree t
)
2698 unsigned bitno
= TYPE_PRECISION (TREE_TYPE (t
)) - 1;
2699 unsigned HOST_WIDE_INT w
;
2701 if (bitno
< HOST_BITS_PER_WIDE_INT
)
2702 w
= TREE_INT_CST_LOW (t
);
2705 w
= TREE_INT_CST_HIGH (t
);
2706 bitno
-= HOST_BITS_PER_WIDE_INT
;
2709 return (w
>> bitno
) & 1;
2712 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
2713 same precision that is at least as wide as the precision of TYPE, stores
2714 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
2718 determine_common_wider_type (tree
*a
, tree
*b
)
2720 tree wider_type
= NULL
;
2722 tree atype
= TREE_TYPE (*a
);
2724 if (CONVERT_EXPR_P (*a
))
2726 suba
= TREE_OPERAND (*a
, 0);
2727 wider_type
= TREE_TYPE (suba
);
2728 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
2734 if (CONVERT_EXPR_P (*b
))
2736 subb
= TREE_OPERAND (*b
, 0);
2737 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
2748 /* Determines the expression by that USE is expressed from induction variable
2749 CAND at statement AT in LOOP. The expression is stored in a decomposed
2750 form into AFF. Returns false if USE cannot be expressed using CAND. */
2753 get_computation_aff (struct loop
*loop
,
2754 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
,
2755 struct affine_tree_combination
*aff
)
2757 tree ubase
= use
->iv
->base
;
2758 tree ustep
= use
->iv
->step
;
2759 tree cbase
= cand
->iv
->base
;
2760 tree cstep
= cand
->iv
->step
, cstep_common
;
2761 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
2762 tree common_type
, var
;
2764 aff_tree cbase_aff
, var_aff
;
2767 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
2769 /* We do not have a precision to express the values of use. */
2773 var
= var_at_stmt (loop
, cand
, at
);
2774 uutype
= unsigned_type_for (utype
);
2776 /* If the conversion is not noop, perform it. */
2777 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
2779 cstep
= fold_convert (uutype
, cstep
);
2780 cbase
= fold_convert (uutype
, cbase
);
2781 var
= fold_convert (uutype
, var
);
2784 if (!constant_multiple_of (ustep
, cstep
, &rat
))
2787 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
2788 type, we achieve better folding by computing their difference in this
2789 wider type, and cast the result to UUTYPE. We do not need to worry about
2790 overflows, as all the arithmetics will in the end be performed in UUTYPE
2792 common_type
= determine_common_wider_type (&ubase
, &cbase
);
2794 /* use = ubase - ratio * cbase + ratio * var. */
2795 tree_to_aff_combination (ubase
, common_type
, aff
);
2796 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
2797 tree_to_aff_combination (var
, uutype
, &var_aff
);
2799 /* We need to shift the value if we are after the increment. */
2800 if (stmt_after_increment (loop
, cand
, at
))
2804 if (common_type
!= uutype
)
2805 cstep_common
= fold_convert (common_type
, cstep
);
2807 cstep_common
= cstep
;
2809 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
2810 aff_combination_add (&cbase_aff
, &cstep_aff
);
2813 aff_combination_scale (&cbase_aff
, double_int_neg (rat
));
2814 aff_combination_add (aff
, &cbase_aff
);
2815 if (common_type
!= uutype
)
2816 aff_combination_convert (aff
, uutype
);
2818 aff_combination_scale (&var_aff
, rat
);
2819 aff_combination_add (aff
, &var_aff
);
2824 /* Determines the expression by that USE is expressed from induction variable
2825 CAND at statement AT in LOOP. The computation is unshared. */
2828 get_computation_at (struct loop
*loop
,
2829 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
)
2832 tree type
= TREE_TYPE (use
->iv
->base
);
2834 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
2836 unshare_aff_combination (&aff
);
2837 return fold_convert (type
, aff_combination_to_tree (&aff
));
2840 /* Determines the expression by that USE is expressed from induction variable
2841 CAND in LOOP. The computation is unshared. */
2844 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
2846 return get_computation_at (loop
, use
, cand
, use
->stmt
);
2849 /* Returns cost of addition in MODE. */
2852 add_cost (enum machine_mode mode
, bool speed
)
2854 static unsigned costs
[NUM_MACHINE_MODES
];
2862 force_operand (gen_rtx_fmt_ee (PLUS
, mode
,
2863 gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1),
2864 gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 2)),
2869 cost
= seq_cost (seq
, speed
);
2875 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2876 fprintf (dump_file
, "Addition in %s costs %d\n",
2877 GET_MODE_NAME (mode
), cost
);
2881 /* Entry in a hashtable of already known costs for multiplication. */
2884 HOST_WIDE_INT cst
; /* The constant to multiply by. */
2885 enum machine_mode mode
; /* In mode. */
2886 unsigned cost
; /* The cost. */
2889 /* Counts hash value for the ENTRY. */
2892 mbc_entry_hash (const void *entry
)
2894 const struct mbc_entry
*e
= (const struct mbc_entry
*) entry
;
2896 return 57 * (hashval_t
) e
->mode
+ (hashval_t
) (e
->cst
% 877);
2899 /* Compares the hash table entries ENTRY1 and ENTRY2. */
2902 mbc_entry_eq (const void *entry1
, const void *entry2
)
2904 const struct mbc_entry
*e1
= (const struct mbc_entry
*) entry1
;
2905 const struct mbc_entry
*e2
= (const struct mbc_entry
*) entry2
;
2907 return (e1
->mode
== e2
->mode
2908 && e1
->cst
== e2
->cst
);
2911 /* Returns cost of multiplication by constant CST in MODE. */
2914 multiply_by_cost (HOST_WIDE_INT cst
, enum machine_mode mode
, bool speed
)
2916 static htab_t costs
;
2917 struct mbc_entry
**cached
, act
;
2922 costs
= htab_create (100, mbc_entry_hash
, mbc_entry_eq
, free
);
2926 cached
= (struct mbc_entry
**) htab_find_slot (costs
, &act
, INSERT
);
2928 return (*cached
)->cost
;
2930 *cached
= XNEW (struct mbc_entry
);
2931 (*cached
)->mode
= mode
;
2932 (*cached
)->cst
= cst
;
2935 expand_mult (mode
, gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1),
2936 gen_int_mode (cst
, mode
), NULL_RTX
, 0);
2940 cost
= seq_cost (seq
, speed
);
2942 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2943 fprintf (dump_file
, "Multiplication by %d in %s costs %d\n",
2944 (int) cst
, GET_MODE_NAME (mode
), cost
);
2946 (*cached
)->cost
= cost
;
2951 /* Returns true if multiplying by RATIO is allowed in an address. Test the
2952 validity for a memory reference accessing memory of mode MODE. */
2955 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, enum machine_mode mode
)
2957 #define MAX_RATIO 128
2958 static sbitmap valid_mult
[MAX_MACHINE_MODE
];
2960 if (!valid_mult
[mode
])
2962 rtx reg1
= gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1);
2966 valid_mult
[mode
] = sbitmap_alloc (2 * MAX_RATIO
+ 1);
2967 sbitmap_zero (valid_mult
[mode
]);
2968 addr
= gen_rtx_fmt_ee (MULT
, Pmode
, reg1
, NULL_RTX
);
2969 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
2971 XEXP (addr
, 1) = gen_int_mode (i
, Pmode
);
2972 if (memory_address_p (mode
, addr
))
2973 SET_BIT (valid_mult
[mode
], i
+ MAX_RATIO
);
2976 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2978 fprintf (dump_file
, " allowed multipliers:");
2979 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
2980 if (TEST_BIT (valid_mult
[mode
], i
+ MAX_RATIO
))
2981 fprintf (dump_file
, " %d", (int) i
);
2982 fprintf (dump_file
, "\n");
2983 fprintf (dump_file
, "\n");
2987 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
2990 return TEST_BIT (valid_mult
[mode
], ratio
+ MAX_RATIO
);
2993 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
2994 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
2995 variable is omitted. Compute the cost for a memory reference that accesses
2996 a memory location of mode MEM_MODE.
2998 TODO -- there must be some better way. This all is quite crude. */
3001 get_address_cost (bool symbol_present
, bool var_present
,
3002 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3003 enum machine_mode mem_mode
,
3006 static bool initialized
[MAX_MACHINE_MODE
];
3007 static HOST_WIDE_INT rat
[MAX_MACHINE_MODE
], off
[MAX_MACHINE_MODE
];
3008 static HOST_WIDE_INT min_offset
[MAX_MACHINE_MODE
], max_offset
[MAX_MACHINE_MODE
];
3009 static unsigned costs
[MAX_MACHINE_MODE
][2][2][2][2];
3010 unsigned cost
, acost
, complexity
;
3011 bool offset_p
, ratio_p
;
3012 HOST_WIDE_INT s_offset
;
3013 unsigned HOST_WIDE_INT mask
;
3016 if (!initialized
[mem_mode
])
3019 HOST_WIDE_INT start
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
3020 int old_cse_not_expected
;
3021 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3022 rtx seq
, addr
, base
;
3025 initialized
[mem_mode
] = true;
3027 reg1
= gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1);
3029 addr
= gen_rtx_fmt_ee (PLUS
, Pmode
, reg1
, NULL_RTX
);
3030 for (i
= start
; i
<= 1 << 20; i
<<= 1)
3032 XEXP (addr
, 1) = gen_int_mode (i
, Pmode
);
3033 if (!memory_address_p (mem_mode
, addr
))
3036 max_offset
[mem_mode
] = i
== start
? 0 : i
>> 1;
3037 off
[mem_mode
] = max_offset
[mem_mode
];
3039 for (i
= start
; i
<= 1 << 20; i
<<= 1)
3041 XEXP (addr
, 1) = gen_int_mode (-i
, Pmode
);
3042 if (!memory_address_p (mem_mode
, addr
))
3045 min_offset
[mem_mode
] = i
== start
? 0 : -(i
>> 1);
3047 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3049 fprintf (dump_file
, "get_address_cost:\n");
3050 fprintf (dump_file
, " min offset %s %d\n",
3051 GET_MODE_NAME (mem_mode
),
3052 (int) min_offset
[mem_mode
]);
3053 fprintf (dump_file
, " max offset %s %d\n",
3054 GET_MODE_NAME (mem_mode
),
3055 (int) max_offset
[mem_mode
]);
3059 for (i
= 2; i
<= MAX_RATIO
; i
++)
3060 if (multiplier_allowed_in_address_p (i
, mem_mode
))
3066 /* Compute the cost of various addressing modes. */
3068 reg0
= gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1);
3069 reg1
= gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 2);
3071 for (i
= 0; i
< 16; i
++)
3074 var_p
= (i
>> 1) & 1;
3075 off_p
= (i
>> 2) & 1;
3076 rat_p
= (i
>> 3) & 1;
3080 addr
= gen_rtx_fmt_ee (MULT
, Pmode
, addr
,
3081 gen_int_mode (rat
[mem_mode
], Pmode
));
3084 addr
= gen_rtx_fmt_ee (PLUS
, Pmode
, addr
, reg1
);
3088 base
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (""));
3089 /* ??? We can run into trouble with some backends by presenting
3090 it with symbols which haven't been properly passed through
3091 targetm.encode_section_info. By setting the local bit, we
3092 enhance the probability of things working. */
3093 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
3096 base
= gen_rtx_fmt_e (CONST
, Pmode
,
3097 gen_rtx_fmt_ee (PLUS
, Pmode
,
3099 gen_int_mode (off
[mem_mode
],
3103 base
= gen_int_mode (off
[mem_mode
], Pmode
);
3108 addr
= gen_rtx_fmt_ee (PLUS
, Pmode
, addr
, base
);
3111 /* To avoid splitting addressing modes, pretend that no cse will
3113 old_cse_not_expected
= cse_not_expected
;
3114 cse_not_expected
= true;
3115 addr
= memory_address (mem_mode
, addr
);
3116 cse_not_expected
= old_cse_not_expected
;
3120 acost
= seq_cost (seq
, speed
);
3121 acost
+= address_cost (addr
, mem_mode
, speed
);
3125 costs
[mem_mode
][sym_p
][var_p
][off_p
][rat_p
] = acost
;
3128 /* On some targets, it is quite expensive to load symbol to a register,
3129 which makes addresses that contain symbols look much more expensive.
3130 However, the symbol will have to be loaded in any case before the
3131 loop (and quite likely we have it in register already), so it does not
3132 make much sense to penalize them too heavily. So make some final
3133 tweaks for the SYMBOL_PRESENT modes:
3135 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3136 var is cheaper, use this mode with small penalty.
3137 If VAR_PRESENT is true, try whether the mode with
3138 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3139 if this is the case, use it. */
3140 add_c
= add_cost (Pmode
, speed
);
3141 for (i
= 0; i
< 8; i
++)
3144 off_p
= (i
>> 1) & 1;
3145 rat_p
= (i
>> 2) & 1;
3147 acost
= costs
[mem_mode
][0][1][off_p
][rat_p
] + 1;
3151 if (acost
< costs
[mem_mode
][1][var_p
][off_p
][rat_p
])
3152 costs
[mem_mode
][1][var_p
][off_p
][rat_p
] = acost
;
3155 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3157 fprintf (dump_file
, "Address costs:\n");
3159 for (i
= 0; i
< 16; i
++)
3162 var_p
= (i
>> 1) & 1;
3163 off_p
= (i
>> 2) & 1;
3164 rat_p
= (i
>> 3) & 1;
3166 fprintf (dump_file
, " ");
3168 fprintf (dump_file
, "sym + ");
3170 fprintf (dump_file
, "var + ");
3172 fprintf (dump_file
, "cst + ");
3174 fprintf (dump_file
, "rat * ");
3176 acost
= costs
[mem_mode
][sym_p
][var_p
][off_p
][rat_p
];
3177 fprintf (dump_file
, "index costs %d\n", acost
);
3179 fprintf (dump_file
, "\n");
3183 bits
= GET_MODE_BITSIZE (Pmode
);
3184 mask
= ~(~(unsigned HOST_WIDE_INT
) 0 << (bits
- 1) << 1);
3186 if ((offset
>> (bits
- 1) & 1))
3191 offset_p
= (s_offset
!= 0
3192 && min_offset
[mem_mode
] <= s_offset
3193 && s_offset
<= max_offset
[mem_mode
]);
3194 ratio_p
= (ratio
!= 1
3195 && multiplier_allowed_in_address_p (ratio
, mem_mode
));
3197 if (ratio
!= 1 && !ratio_p
)
3198 cost
+= multiply_by_cost (ratio
, Pmode
, speed
);
3200 if (s_offset
&& !offset_p
&& !symbol_present
)
3201 cost
+= add_cost (Pmode
, speed
);
3203 acost
= costs
[mem_mode
][symbol_present
][var_present
][offset_p
][ratio_p
];
3204 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
3205 return new_cost (cost
+ acost
, complexity
);
3208 /* Estimates cost of forcing expression EXPR into a variable. */
3211 force_expr_to_var_cost (tree expr
, bool speed
)
3213 static bool costs_initialized
= false;
3214 static unsigned integer_cost
[2];
3215 static unsigned symbol_cost
[2];
3216 static unsigned address_cost
[2];
3218 comp_cost cost0
, cost1
, cost
;
3219 enum machine_mode mode
;
3221 if (!costs_initialized
)
3223 tree type
= build_pointer_type (integer_type_node
);
3228 var
= create_tmp_var_raw (integer_type_node
, "test_var");
3229 TREE_STATIC (var
) = 1;
3230 x
= produce_memory_decl_rtl (var
, NULL
);
3231 SET_DECL_RTL (var
, x
);
3233 addr
= build1 (ADDR_EXPR
, type
, var
);
3236 for (i
= 0; i
< 2; i
++)
3238 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
3241 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
3244 = computation_cost (build2 (POINTER_PLUS_EXPR
, type
,
3246 build_int_cst (sizetype
, 2000)), i
) + 1;
3247 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3249 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
3250 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
3251 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
3252 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
3253 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
3254 fprintf (dump_file
, "\n");
3258 costs_initialized
= true;
3263 if (SSA_VAR_P (expr
))
3266 if (is_gimple_min_invariant (expr
))
3268 if (TREE_CODE (expr
) == INTEGER_CST
)
3269 return new_cost (integer_cost
[speed
], 0);
3271 if (TREE_CODE (expr
) == ADDR_EXPR
)
3273 tree obj
= TREE_OPERAND (expr
, 0);
3275 if (TREE_CODE (obj
) == VAR_DECL
3276 || TREE_CODE (obj
) == PARM_DECL
3277 || TREE_CODE (obj
) == RESULT_DECL
)
3278 return new_cost (symbol_cost
[speed
], 0);
3281 return new_cost (address_cost
[speed
], 0);
3284 switch (TREE_CODE (expr
))
3286 case POINTER_PLUS_EXPR
:
3290 op0
= TREE_OPERAND (expr
, 0);
3291 op1
= TREE_OPERAND (expr
, 1);
3295 if (is_gimple_val (op0
))
3298 cost0
= force_expr_to_var_cost (op0
, speed
);
3300 if (is_gimple_val (op1
))
3303 cost1
= force_expr_to_var_cost (op1
, speed
);
3308 /* Just an arbitrary value, FIXME. */
3309 return new_cost (target_spill_cost
[speed
], 0);
3312 mode
= TYPE_MODE (TREE_TYPE (expr
));
3313 switch (TREE_CODE (expr
))
3315 case POINTER_PLUS_EXPR
:
3318 cost
= new_cost (add_cost (mode
, speed
), 0);
3322 if (cst_and_fits_in_hwi (op0
))
3323 cost
= new_cost (multiply_by_cost (int_cst_value (op0
), mode
, speed
), 0);
3324 else if (cst_and_fits_in_hwi (op1
))
3325 cost
= new_cost (multiply_by_cost (int_cst_value (op1
), mode
, speed
), 0);
3327 return new_cost (target_spill_cost
[speed
], 0);
3334 cost
= add_costs (cost
, cost0
);
3335 cost
= add_costs (cost
, cost1
);
3337 /* Bound the cost by target_spill_cost. The parts of complicated
3338 computations often are either loop invariant or at least can
3339 be shared between several iv uses, so letting this grow without
3340 limits would not give reasonable results. */
3341 if (cost
.cost
> target_spill_cost
[speed
])
3342 cost
.cost
= target_spill_cost
[speed
];
3347 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
3348 invariants the computation depends on. */
3351 force_var_cost (struct ivopts_data
*data
,
3352 tree expr
, bitmap
*depends_on
)
3356 fd_ivopts_data
= data
;
3357 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
3360 return force_expr_to_var_cost (expr
, data
->speed
);
3363 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
3364 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
3365 to false if the corresponding part is missing. DEPENDS_ON is a set of the
3366 invariants the computation depends on. */
3369 split_address_cost (struct ivopts_data
*data
,
3370 tree addr
, bool *symbol_present
, bool *var_present
,
3371 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3374 HOST_WIDE_INT bitsize
;
3375 HOST_WIDE_INT bitpos
;
3377 enum machine_mode mode
;
3378 int unsignedp
, volatilep
;
3380 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
3381 &unsignedp
, &volatilep
, false);
3384 || bitpos
% BITS_PER_UNIT
!= 0
3385 || TREE_CODE (core
) != VAR_DECL
)
3387 *symbol_present
= false;
3388 *var_present
= true;
3389 fd_ivopts_data
= data
;
3390 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
3391 return new_cost (target_spill_cost
[data
->speed
], 0);
3394 *offset
+= bitpos
/ BITS_PER_UNIT
;
3395 if (TREE_STATIC (core
)
3396 || DECL_EXTERNAL (core
))
3398 *symbol_present
= true;
3399 *var_present
= false;
3403 *symbol_present
= false;
3404 *var_present
= true;
3408 /* Estimates cost of expressing difference of addresses E1 - E2 as
3409 var + symbol + offset. The value of offset is added to OFFSET,
3410 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3411 part is missing. DEPENDS_ON is a set of the invariants the computation
3415 ptr_difference_cost (struct ivopts_data
*data
,
3416 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3417 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3419 HOST_WIDE_INT diff
= 0;
3421 bool speed
= optimize_loop_for_speed_p (data
->current_loop
);
3423 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
3425 if (ptr_difference_const (e1
, e2
, &diff
))
3428 *symbol_present
= false;
3429 *var_present
= false;
3433 if (integer_zerop (e2
))
3434 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
3435 symbol_present
, var_present
, offset
, depends_on
);
3437 *symbol_present
= false;
3438 *var_present
= true;
3440 cost
= force_var_cost (data
, e1
, depends_on
);
3441 cost
= add_costs (cost
, force_var_cost (data
, e2
, depends_on
));
3442 cost
.cost
+= add_cost (Pmode
, speed
);
3447 /* Estimates cost of expressing difference E1 - E2 as
3448 var + symbol + offset. The value of offset is added to OFFSET,
3449 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3450 part is missing. DEPENDS_ON is a set of the invariants the computation
3454 difference_cost (struct ivopts_data
*data
,
3455 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3456 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3459 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
3460 unsigned HOST_WIDE_INT off1
, off2
;
3462 e1
= strip_offset (e1
, &off1
);
3463 e2
= strip_offset (e2
, &off2
);
3464 *offset
+= off1
- off2
;
3469 if (TREE_CODE (e1
) == ADDR_EXPR
)
3470 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
, offset
,
3472 *symbol_present
= false;
3474 if (operand_equal_p (e1
, e2
, 0))
3476 *var_present
= false;
3479 *var_present
= true;
3480 if (integer_zerop (e2
))
3481 return force_var_cost (data
, e1
, depends_on
);
3483 if (integer_zerop (e1
))
3485 cost
= force_var_cost (data
, e2
, depends_on
);
3486 cost
.cost
+= multiply_by_cost (-1, mode
, data
->speed
);
3491 cost
= force_var_cost (data
, e1
, depends_on
);
3492 cost
= add_costs (cost
, force_var_cost (data
, e2
, depends_on
));
3493 cost
.cost
+= add_cost (mode
, data
->speed
);
3498 /* Determines the cost of the computation by that USE is expressed
3499 from induction variable CAND. If ADDRESS_P is true, we just need
3500 to create an address from it, otherwise we want to get it into
3501 register. A set of invariants we depend on is stored in
3502 DEPENDS_ON. AT is the statement at that the value is computed. */
3505 get_computation_cost_at (struct ivopts_data
*data
,
3506 struct iv_use
*use
, struct iv_cand
*cand
,
3507 bool address_p
, bitmap
*depends_on
, gimple at
)
3509 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
3511 tree utype
= TREE_TYPE (ubase
), ctype
;
3512 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
3513 HOST_WIDE_INT ratio
, aratio
;
3514 bool var_present
, symbol_present
;
3518 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
3522 /* Only consider real candidates. */
3524 return infinite_cost
;
3526 cbase
= cand
->iv
->base
;
3527 cstep
= cand
->iv
->step
;
3528 ctype
= TREE_TYPE (cbase
);
3530 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3532 /* We do not have a precision to express the values of use. */
3533 return infinite_cost
;
3538 /* Do not try to express address of an object with computation based
3539 on address of a different object. This may cause problems in rtl
3540 level alias analysis (that does not expect this to be happening,
3541 as this is illegal in C), and would be unlikely to be useful
3543 if (use
->iv
->base_object
3544 && cand
->iv
->base_object
3545 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
3546 return infinite_cost
;
3549 if (TYPE_PRECISION (utype
) != TYPE_PRECISION (ctype
))
3551 /* TODO -- add direct handling of this case. */
3555 /* CSTEPI is removed from the offset in case statement is after the
3556 increment. If the step is not constant, we use zero instead.
3557 This is a bit imprecise (there is the extra addition), but
3558 redundancy elimination is likely to transform the code so that
3559 it uses value of the variable before increment anyway,
3560 so it is not that much unrealistic. */
3561 if (cst_and_fits_in_hwi (cstep
))
3562 cstepi
= int_cst_value (cstep
);
3566 if (!constant_multiple_of (ustep
, cstep
, &rat
))
3567 return infinite_cost
;
3569 if (double_int_fits_in_shwi_p (rat
))
3570 ratio
= double_int_to_shwi (rat
);
3572 return infinite_cost
;
3574 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
3575 or ratio == 1, it is better to handle this like
3577 ubase - ratio * cbase + ratio * var
3579 (also holds in the case ratio == -1, TODO. */
3581 if (cst_and_fits_in_hwi (cbase
))
3583 offset
= - ratio
* int_cst_value (cbase
);
3584 cost
= difference_cost (data
,
3585 ubase
, build_int_cst (utype
, 0),
3586 &symbol_present
, &var_present
, &offset
,
3589 else if (ratio
== 1)
3591 cost
= difference_cost (data
,
3593 &symbol_present
, &var_present
, &offset
,
3598 cost
= force_var_cost (data
, cbase
, depends_on
);
3599 cost
.cost
+= add_cost (TYPE_MODE (ctype
), data
->speed
);
3600 cost
= add_costs (cost
,
3601 difference_cost (data
,
3602 ubase
, build_int_cst (utype
, 0),
3603 &symbol_present
, &var_present
,
3604 &offset
, depends_on
));
3607 /* If we are after the increment, the value of the candidate is higher by
3609 if (stmt_after_increment (data
->current_loop
, cand
, at
))
3610 offset
-= ratio
* cstepi
;
3612 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
3613 (symbol/var/const parts may be omitted). If we are looking for an address,
3614 find the cost of addressing this. */
3616 return add_costs (cost
, get_address_cost (symbol_present
, var_present
,
3618 TYPE_MODE (TREE_TYPE (*use
->op_p
)), speed
));
3620 /* Otherwise estimate the costs for computing the expression. */
3621 aratio
= ratio
> 0 ? ratio
: -ratio
;
3622 if (!symbol_present
&& !var_present
&& !offset
)
3625 cost
.cost
+= multiply_by_cost (ratio
, TYPE_MODE (ctype
), speed
);
3631 cost
.cost
+= multiply_by_cost (aratio
, TYPE_MODE (ctype
), speed
);
3635 /* Symbol + offset should be compile-time computable. */
3636 && (symbol_present
|| offset
))
3639 /* Having offset does not affect runtime cost in case it is added to
3640 symbol, but it increases complexity. */
3644 cost
.cost
+= n_sums
* add_cost (TYPE_MODE (ctype
), speed
);
3649 /* Just get the expression, expand it and measure the cost. */
3650 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
3653 return infinite_cost
;
3656 comp
= build1 (INDIRECT_REF
, TREE_TYPE (TREE_TYPE (comp
)), comp
);
3658 return new_cost (computation_cost (comp
, speed
), 0);
3662 /* Determines the cost of the computation by that USE is expressed
3663 from induction variable CAND. If ADDRESS_P is true, we just need
3664 to create an address from it, otherwise we want to get it into
3665 register. A set of invariants we depend on is stored in
3669 get_computation_cost (struct ivopts_data
*data
,
3670 struct iv_use
*use
, struct iv_cand
*cand
,
3671 bool address_p
, bitmap
*depends_on
)
3673 return get_computation_cost_at (data
,
3674 use
, cand
, address_p
, depends_on
, use
->stmt
);
3677 /* Determines cost of basing replacement of USE on CAND in a generic
3681 determine_use_iv_cost_generic (struct ivopts_data
*data
,
3682 struct iv_use
*use
, struct iv_cand
*cand
)
3687 /* The simple case first -- if we need to express value of the preserved
3688 original biv, the cost is 0. This also prevents us from counting the
3689 cost of increment twice -- once at this use and once in the cost of
3691 if (cand
->pos
== IP_ORIGINAL
3692 && cand
->incremented_at
== use
->stmt
)
3694 set_use_iv_cost (data
, use
, cand
, zero_cost
, NULL
, NULL_TREE
);
3698 cost
= get_computation_cost (data
, use
, cand
, false, &depends_on
);
3699 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
);
3701 return !infinite_cost_p (cost
);
3704 /* Determines cost of basing replacement of USE on CAND in an address. */
3707 determine_use_iv_cost_address (struct ivopts_data
*data
,
3708 struct iv_use
*use
, struct iv_cand
*cand
)
3711 comp_cost cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
);
3713 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
);
3715 return !infinite_cost_p (cost
);
3718 /* Computes value of candidate CAND at position AT in iteration NITER, and
3719 stores it to VAL. */
3722 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple at
, tree niter
,
3725 aff_tree step
, delta
, nit
;
3726 struct iv
*iv
= cand
->iv
;
3727 tree type
= TREE_TYPE (iv
->base
);
3728 tree steptype
= type
;
3729 if (POINTER_TYPE_P (type
))
3730 steptype
= sizetype
;
3732 tree_to_aff_combination (iv
->step
, steptype
, &step
);
3733 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
3734 aff_combination_convert (&nit
, steptype
);
3735 aff_combination_mult (&nit
, &step
, &delta
);
3736 if (stmt_after_increment (loop
, cand
, at
))
3737 aff_combination_add (&delta
, &step
);
3739 tree_to_aff_combination (iv
->base
, type
, val
);
3740 aff_combination_add (val
, &delta
);
3743 /* Returns period of induction variable iv. */
3746 iv_period (struct iv
*iv
)
3748 tree step
= iv
->step
, period
, type
;
3751 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
3753 /* Period of the iv is gcd (step, type range). Since type range is power
3754 of two, it suffices to determine the maximum power of two that divides
3756 pow2div
= num_ending_zeros (step
);
3757 type
= unsigned_type_for (TREE_TYPE (step
));
3759 period
= build_low_bits_mask (type
,
3760 (TYPE_PRECISION (type
)
3761 - tree_low_cst (pow2div
, 1)));
3766 /* Returns the comparison operator used when eliminating the iv USE. */
3768 static enum tree_code
3769 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
3771 struct loop
*loop
= data
->current_loop
;
3775 ex_bb
= gimple_bb (use
->stmt
);
3776 exit
= EDGE_SUCC (ex_bb
, 0);
3777 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
3778 exit
= EDGE_SUCC (ex_bb
, 1);
3780 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
3783 /* Check whether it is possible to express the condition in USE by comparison
3784 of candidate CAND. If so, store the value compared with to BOUND. */
3787 may_eliminate_iv (struct ivopts_data
*data
,
3788 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
)
3793 struct loop
*loop
= data
->current_loop
;
3796 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
3799 /* For now works only for exits that dominate the loop latch.
3800 TODO: extend to other conditions inside loop body. */
3801 ex_bb
= gimple_bb (use
->stmt
);
3802 if (use
->stmt
!= last_stmt (ex_bb
)
3803 || gimple_code (use
->stmt
) != GIMPLE_COND
3804 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
3807 exit
= EDGE_SUCC (ex_bb
, 0);
3808 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
3809 exit
= EDGE_SUCC (ex_bb
, 1);
3810 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
3813 nit
= niter_for_exit (data
, exit
);
3817 /* Determine whether we can use the variable to test the exit condition.
3818 This is the case iff the period of the induction variable is greater
3819 than the number of iterations for which the exit condition is true. */
3820 period
= iv_period (cand
->iv
);
3822 /* If the number of iterations is constant, compare against it directly. */
3823 if (TREE_CODE (nit
) == INTEGER_CST
)
3825 if (!tree_int_cst_lt (nit
, period
))
3829 /* If not, and if this is the only possible exit of the loop, see whether
3830 we can get a conservative estimate on the number of iterations of the
3831 entire loop and compare against that instead. */
3832 else if (loop_only_exit_p (loop
, exit
))
3834 double_int period_value
, max_niter
;
3835 if (!estimated_loop_iterations (loop
, true, &max_niter
))
3837 period_value
= tree_to_double_int (period
);
3838 if (double_int_ucmp (max_niter
, period_value
) >= 0)
3842 /* Otherwise, punt. */
3846 cand_value_at (loop
, cand
, use
->stmt
, nit
, &bnd
);
3848 *bound
= aff_combination_to_tree (&bnd
);
3849 /* It is unlikely that computing the number of iterations using division
3850 would be more profitable than keeping the original induction variable. */
3851 if (expression_expensive_p (*bound
))
3856 /* Determines cost of basing replacement of USE on CAND in a condition. */
3859 determine_use_iv_cost_condition (struct ivopts_data
*data
,
3860 struct iv_use
*use
, struct iv_cand
*cand
)
3862 tree bound
= NULL_TREE
;
3864 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
3865 comp_cost elim_cost
, express_cost
, cost
;
3868 /* Only consider real candidates. */
3871 set_use_iv_cost (data
, use
, cand
, infinite_cost
, NULL
, NULL_TREE
);
3875 /* Try iv elimination. */
3876 if (may_eliminate_iv (data
, use
, cand
, &bound
))
3878 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
3879 /* The bound is a loop invariant, so it will be only computed
3881 elim_cost
.cost
/= AVG_LOOP_NITER (data
->current_loop
);
3884 elim_cost
= infinite_cost
;
3886 /* Try expressing the original giv. If it is compared with an invariant,
3887 note that we cannot get rid of it. */
3888 ok
= extract_cond_operands (data
, use
->stmt
, NULL
, NULL
, NULL
, &cmp_iv
);
3891 express_cost
= get_computation_cost (data
, use
, cand
, false,
3892 &depends_on_express
);
3893 fd_ivopts_data
= data
;
3894 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
3896 /* Choose the better approach, preferring the eliminated IV. */
3897 if (compare_costs (elim_cost
, express_cost
) <= 0)
3900 depends_on
= depends_on_elim
;
3901 depends_on_elim
= NULL
;
3905 cost
= express_cost
;
3906 depends_on
= depends_on_express
;
3907 depends_on_express
= NULL
;
3911 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, bound
);
3913 if (depends_on_elim
)
3914 BITMAP_FREE (depends_on_elim
);
3915 if (depends_on_express
)
3916 BITMAP_FREE (depends_on_express
);
3918 return !infinite_cost_p (cost
);
3921 /* Determines cost of basing replacement of USE on CAND. Returns false
3922 if USE cannot be based on CAND. */
3925 determine_use_iv_cost (struct ivopts_data
*data
,
3926 struct iv_use
*use
, struct iv_cand
*cand
)
3930 case USE_NONLINEAR_EXPR
:
3931 return determine_use_iv_cost_generic (data
, use
, cand
);
3934 return determine_use_iv_cost_address (data
, use
, cand
);
3937 return determine_use_iv_cost_condition (data
, use
, cand
);
3944 /* Determines costs of basing the use of the iv on an iv candidate. */
3947 determine_use_iv_costs (struct ivopts_data
*data
)
3951 struct iv_cand
*cand
;
3952 bitmap to_clear
= BITMAP_ALLOC (NULL
);
3954 alloc_use_cost_map (data
);
3956 for (i
= 0; i
< n_iv_uses (data
); i
++)
3958 use
= iv_use (data
, i
);
3960 if (data
->consider_all_candidates
)
3962 for (j
= 0; j
< n_iv_cands (data
); j
++)
3964 cand
= iv_cand (data
, j
);
3965 determine_use_iv_cost (data
, use
, cand
);
3972 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
3974 cand
= iv_cand (data
, j
);
3975 if (!determine_use_iv_cost (data
, use
, cand
))
3976 bitmap_set_bit (to_clear
, j
);
3979 /* Remove the candidates for that the cost is infinite from
3980 the list of related candidates. */
3981 bitmap_and_compl_into (use
->related_cands
, to_clear
);
3982 bitmap_clear (to_clear
);
3986 BITMAP_FREE (to_clear
);
3988 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3990 fprintf (dump_file
, "Use-candidate costs:\n");
3992 for (i
= 0; i
< n_iv_uses (data
); i
++)
3994 use
= iv_use (data
, i
);
3996 fprintf (dump_file
, "Use %d:\n", i
);
3997 fprintf (dump_file
, " cand\tcost\tcompl.\tdepends on\n");
3998 for (j
= 0; j
< use
->n_map_members
; j
++)
4000 if (!use
->cost_map
[j
].cand
4001 || infinite_cost_p (use
->cost_map
[j
].cost
))
4004 fprintf (dump_file
, " %d\t%d\t%d\t",
4005 use
->cost_map
[j
].cand
->id
,
4006 use
->cost_map
[j
].cost
.cost
,
4007 use
->cost_map
[j
].cost
.complexity
);
4008 if (use
->cost_map
[j
].depends_on
)
4009 bitmap_print (dump_file
,
4010 use
->cost_map
[j
].depends_on
, "","");
4011 fprintf (dump_file
, "\n");
4014 fprintf (dump_file
, "\n");
4016 fprintf (dump_file
, "\n");
4020 /* Determines cost of the candidate CAND. */
4023 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
4025 comp_cost cost_base
;
4026 unsigned cost
, cost_step
;
4035 /* There are two costs associated with the candidate -- its increment
4036 and its initialization. The second is almost negligible for any loop
4037 that rolls enough, so we take it just very little into account. */
4039 base
= cand
->iv
->base
;
4040 cost_base
= force_var_cost (data
, base
, NULL
);
4041 cost_step
= add_cost (TYPE_MODE (TREE_TYPE (base
)), data
->speed
);
4043 cost
= cost_step
+ cost_base
.cost
/ AVG_LOOP_NITER (current_loop
);
4045 /* Prefer the original ivs unless we may gain something by replacing it.
4046 The reason is to make debugging simpler; so this is not relevant for
4047 artificial ivs created by other optimization passes. */
4048 if (cand
->pos
!= IP_ORIGINAL
4049 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
4052 /* Prefer not to insert statements into latch unless there are some
4053 already (so that we do not create unnecessary jumps). */
4054 if (cand
->pos
== IP_END
4055 && empty_block_p (ip_end_pos (data
->current_loop
)))
4061 /* Determines costs of computation of the candidates. */
4064 determine_iv_costs (struct ivopts_data
*data
)
4068 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4070 fprintf (dump_file
, "Candidate costs:\n");
4071 fprintf (dump_file
, " cand\tcost\n");
4074 for (i
= 0; i
< n_iv_cands (data
); i
++)
4076 struct iv_cand
*cand
= iv_cand (data
, i
);
4078 determine_iv_cost (data
, cand
);
4080 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4081 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
4084 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4085 fprintf (dump_file
, "\n");
4088 /* Calculates cost for having SIZE induction variables. */
4091 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
4093 /* We add size to the cost, so that we prefer eliminating ivs
4095 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
);
4098 /* For each size of the induction variable set determine the penalty. */
4101 determine_set_costs (struct ivopts_data
*data
)
4105 gimple_stmt_iterator psi
;
4107 struct loop
*loop
= data
->current_loop
;
4110 /* We use the following model (definitely improvable, especially the
4111 cost function -- TODO):
4113 We estimate the number of registers available (using MD data), name it A.
4115 We estimate the number of registers used by the loop, name it U. This
4116 number is obtained as the number of loop phi nodes (not counting virtual
4117 registers and bivs) + the number of variables from outside of the loop.
4119 We set a reserve R (free regs that are used for temporary computations,
4120 etc.). For now the reserve is a constant 3.
4122 Let I be the number of induction variables.
4124 -- if U + I + R <= A, the cost is I * SMALL_COST (just not to encourage
4125 make a lot of ivs without a reason).
4126 -- if A - R < U + I <= A, the cost is I * PRES_COST
4127 -- if U + I > A, the cost is I * PRES_COST and
4128 number of uses * SPILL_COST * (U + I - A) / (U + I) is added. */
4130 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4132 fprintf (dump_file
, "Global costs:\n");
4133 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
4134 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
4135 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
4139 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
4141 phi
= gsi_stmt (psi
);
4142 op
= PHI_RESULT (phi
);
4144 if (!is_gimple_reg (op
))
4147 if (get_iv (data
, op
))
4153 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
4155 struct version_info
*info
= ver_info (data
, j
);
4157 if (info
->inv_id
&& info
->has_nonlin_use
)
4161 data
->regs_used
= n
;
4162 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4163 fprintf (dump_file
, " regs_used %d\n", n
);
4165 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4167 fprintf (dump_file
, " cost for size:\n");
4168 fprintf (dump_file
, " ivs\tcost\n");
4169 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
4170 fprintf (dump_file
, " %d\t%d\n", j
,
4171 ivopts_global_cost_for_size (data
, j
));
4172 fprintf (dump_file
, "\n");
4176 /* Returns true if A is a cheaper cost pair than B. */
4179 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
4189 cmp
= compare_costs (a
->cost
, b
->cost
);
4196 /* In case the costs are the same, prefer the cheaper candidate. */
4197 if (a
->cand
->cost
< b
->cand
->cost
)
4203 /* Computes the cost field of IVS structure. */
4206 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
4208 comp_cost cost
= ivs
->cand_use_cost
;
4209 cost
.cost
+= ivs
->cand_cost
;
4210 cost
.cost
+= ivopts_global_cost_for_size (data
, ivs
->n_regs
);
4215 /* Remove invariants in set INVS to set IVS. */
4218 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
4226 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
4228 ivs
->n_invariant_uses
[iid
]--;
4229 if (ivs
->n_invariant_uses
[iid
] == 0)
4234 /* Set USE not to be expressed by any candidate in IVS. */
4237 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4240 unsigned uid
= use
->id
, cid
;
4241 struct cost_pair
*cp
;
4243 cp
= ivs
->cand_for_use
[uid
];
4249 ivs
->cand_for_use
[uid
] = NULL
;
4250 ivs
->n_cand_uses
[cid
]--;
4252 if (ivs
->n_cand_uses
[cid
] == 0)
4254 bitmap_clear_bit (ivs
->cands
, cid
);
4255 /* Do not count the pseudocandidates. */
4259 ivs
->cand_cost
-= cp
->cand
->cost
;
4261 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
4264 ivs
->cand_use_cost
= sub_costs (ivs
->cand_use_cost
, cp
->cost
);
4266 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
4267 iv_ca_recount_cost (data
, ivs
);
4270 /* Add invariants in set INVS to set IVS. */
4273 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
4281 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
4283 ivs
->n_invariant_uses
[iid
]++;
4284 if (ivs
->n_invariant_uses
[iid
] == 1)
4289 /* Set cost pair for USE in set IVS to CP. */
4292 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4293 struct iv_use
*use
, struct cost_pair
*cp
)
4295 unsigned uid
= use
->id
, cid
;
4297 if (ivs
->cand_for_use
[uid
] == cp
)
4300 if (ivs
->cand_for_use
[uid
])
4301 iv_ca_set_no_cp (data
, ivs
, use
);
4308 ivs
->cand_for_use
[uid
] = cp
;
4309 ivs
->n_cand_uses
[cid
]++;
4310 if (ivs
->n_cand_uses
[cid
] == 1)
4312 bitmap_set_bit (ivs
->cands
, cid
);
4313 /* Do not count the pseudocandidates. */
4317 ivs
->cand_cost
+= cp
->cand
->cost
;
4319 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
4322 ivs
->cand_use_cost
= add_costs (ivs
->cand_use_cost
, cp
->cost
);
4323 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
4324 iv_ca_recount_cost (data
, ivs
);
4328 /* Extend set IVS by expressing USE by some of the candidates in it
4332 iv_ca_add_use (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4335 struct cost_pair
*best_cp
= NULL
, *cp
;
4339 gcc_assert (ivs
->upto
>= use
->id
);
4341 if (ivs
->upto
== use
->id
)
4347 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
4349 cp
= get_use_iv_cost (data
, use
, iv_cand (data
, i
));
4351 if (cheaper_cost_pair (cp
, best_cp
))
4355 iv_ca_set_cp (data
, ivs
, use
, best_cp
);
4358 /* Get cost for assignment IVS. */
4361 iv_ca_cost (struct iv_ca
*ivs
)
4363 /* This was a conditional expression but it triggered a bug in
4366 return infinite_cost
;
4371 /* Returns true if all dependences of CP are among invariants in IVS. */
4374 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
4379 if (!cp
->depends_on
)
4382 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
4384 if (ivs
->n_invariant_uses
[i
] == 0)
4391 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
4392 it before NEXT_CHANGE. */
4394 static struct iv_ca_delta
*
4395 iv_ca_delta_add (struct iv_use
*use
, struct cost_pair
*old_cp
,
4396 struct cost_pair
*new_cp
, struct iv_ca_delta
*next_change
)
4398 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
4401 change
->old_cp
= old_cp
;
4402 change
->new_cp
= new_cp
;
4403 change
->next_change
= next_change
;
4408 /* Joins two lists of changes L1 and L2. Destructive -- old lists
4411 static struct iv_ca_delta
*
4412 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
4414 struct iv_ca_delta
*last
;
4422 for (last
= l1
; last
->next_change
; last
= last
->next_change
)
4424 last
->next_change
= l2
;
4429 /* Returns candidate by that USE is expressed in IVS. */
4431 static struct cost_pair
*
4432 iv_ca_cand_for_use (struct iv_ca
*ivs
, struct iv_use
*use
)
4434 return ivs
->cand_for_use
[use
->id
];
4437 /* Reverse the list of changes DELTA, forming the inverse to it. */
4439 static struct iv_ca_delta
*
4440 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
4442 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
4443 struct cost_pair
*tmp
;
4445 for (act
= delta
; act
; act
= next
)
4447 next
= act
->next_change
;
4448 act
->next_change
= prev
;
4452 act
->old_cp
= act
->new_cp
;
4459 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
4460 reverted instead. */
4463 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4464 struct iv_ca_delta
*delta
, bool forward
)
4466 struct cost_pair
*from
, *to
;
4467 struct iv_ca_delta
*act
;
4470 delta
= iv_ca_delta_reverse (delta
);
4472 for (act
= delta
; act
; act
= act
->next_change
)
4476 gcc_assert (iv_ca_cand_for_use (ivs
, act
->use
) == from
);
4477 iv_ca_set_cp (data
, ivs
, act
->use
, to
);
4481 iv_ca_delta_reverse (delta
);
4484 /* Returns true if CAND is used in IVS. */
4487 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
4489 return ivs
->n_cand_uses
[cand
->id
] > 0;
4492 /* Returns number of induction variable candidates in the set IVS. */
4495 iv_ca_n_cands (struct iv_ca
*ivs
)
4497 return ivs
->n_cands
;
4500 /* Free the list of changes DELTA. */
4503 iv_ca_delta_free (struct iv_ca_delta
**delta
)
4505 struct iv_ca_delta
*act
, *next
;
4507 for (act
= *delta
; act
; act
= next
)
4509 next
= act
->next_change
;
4516 /* Allocates new iv candidates assignment. */
4518 static struct iv_ca
*
4519 iv_ca_new (struct ivopts_data
*data
)
4521 struct iv_ca
*nw
= XNEW (struct iv_ca
);
4525 nw
->cand_for_use
= XCNEWVEC (struct cost_pair
*, n_iv_uses (data
));
4526 nw
->n_cand_uses
= XCNEWVEC (unsigned, n_iv_cands (data
));
4527 nw
->cands
= BITMAP_ALLOC (NULL
);
4530 nw
->cand_use_cost
= zero_cost
;
4532 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
4533 nw
->cost
= zero_cost
;
4538 /* Free memory occupied by the set IVS. */
4541 iv_ca_free (struct iv_ca
**ivs
)
4543 free ((*ivs
)->cand_for_use
);
4544 free ((*ivs
)->n_cand_uses
);
4545 BITMAP_FREE ((*ivs
)->cands
);
4546 free ((*ivs
)->n_invariant_uses
);
4551 /* Dumps IVS to FILE. */
4554 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
4556 const char *pref
= " invariants ";
4558 comp_cost cost
= iv_ca_cost (ivs
);
4560 fprintf (file
, " cost %d (complexity %d)\n", cost
.cost
, cost
.complexity
);
4561 bitmap_print (file
, ivs
->cands
, " candidates ","\n");
4563 for (i
= 1; i
<= data
->max_inv_id
; i
++)
4564 if (ivs
->n_invariant_uses
[i
])
4566 fprintf (file
, "%s%d", pref
, i
);
4569 fprintf (file
, "\n");
4572 /* Try changing candidate in IVS to CAND for each use. Return cost of the
4573 new set, and store differences in DELTA. Number of induction variables
4574 in the new set is stored to N_IVS. */
4577 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4578 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
4584 struct cost_pair
*old_cp
, *new_cp
;
4587 for (i
= 0; i
< ivs
->upto
; i
++)
4589 use
= iv_use (data
, i
);
4590 old_cp
= iv_ca_cand_for_use (ivs
, use
);
4593 && old_cp
->cand
== cand
)
4596 new_cp
= get_use_iv_cost (data
, use
, cand
);
4600 if (!iv_ca_has_deps (ivs
, new_cp
))
4603 if (!cheaper_cost_pair (new_cp
, old_cp
))
4606 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
4609 iv_ca_delta_commit (data
, ivs
, *delta
, true);
4610 cost
= iv_ca_cost (ivs
);
4612 *n_ivs
= iv_ca_n_cands (ivs
);
4613 iv_ca_delta_commit (data
, ivs
, *delta
, false);
4618 /* Try narrowing set IVS by removing CAND. Return the cost of
4619 the new set and store the differences in DELTA. */
4622 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4623 struct iv_cand
*cand
, struct iv_ca_delta
**delta
)
4627 struct cost_pair
*old_cp
, *new_cp
, *cp
;
4629 struct iv_cand
*cnd
;
4633 for (i
= 0; i
< n_iv_uses (data
); i
++)
4635 use
= iv_use (data
, i
);
4637 old_cp
= iv_ca_cand_for_use (ivs
, use
);
4638 if (old_cp
->cand
!= cand
)
4643 if (data
->consider_all_candidates
)
4645 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
4650 cnd
= iv_cand (data
, ci
);
4652 cp
= get_use_iv_cost (data
, use
, cnd
);
4655 if (!iv_ca_has_deps (ivs
, cp
))
4658 if (!cheaper_cost_pair (cp
, new_cp
))
4666 EXECUTE_IF_AND_IN_BITMAP (use
->related_cands
, ivs
->cands
, 0, ci
, bi
)
4671 cnd
= iv_cand (data
, ci
);
4673 cp
= get_use_iv_cost (data
, use
, cnd
);
4676 if (!iv_ca_has_deps (ivs
, cp
))
4679 if (!cheaper_cost_pair (cp
, new_cp
))
4688 iv_ca_delta_free (delta
);
4689 return infinite_cost
;
4692 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
4695 iv_ca_delta_commit (data
, ivs
, *delta
, true);
4696 cost
= iv_ca_cost (ivs
);
4697 iv_ca_delta_commit (data
, ivs
, *delta
, false);
4702 /* Try optimizing the set of candidates IVS by removing candidates different
4703 from to EXCEPT_CAND from it. Return cost of the new set, and store
4704 differences in DELTA. */
4707 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4708 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
4711 struct iv_ca_delta
*act_delta
, *best_delta
;
4713 comp_cost best_cost
, acost
;
4714 struct iv_cand
*cand
;
4717 best_cost
= iv_ca_cost (ivs
);
4719 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
4721 cand
= iv_cand (data
, i
);
4723 if (cand
== except_cand
)
4726 acost
= iv_ca_narrow (data
, ivs
, cand
, &act_delta
);
4728 if (compare_costs (acost
, best_cost
) < 0)
4731 iv_ca_delta_free (&best_delta
);
4732 best_delta
= act_delta
;
4735 iv_ca_delta_free (&act_delta
);
4744 /* Recurse to possibly remove other unnecessary ivs. */
4745 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
4746 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
4747 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
4748 *delta
= iv_ca_delta_join (best_delta
, *delta
);
4752 /* Tries to extend the sets IVS in the best possible way in order
4753 to express the USE. */
4756 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
4759 comp_cost best_cost
, act_cost
;
4762 struct iv_cand
*cand
;
4763 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
4764 struct cost_pair
*cp
;
4766 iv_ca_add_use (data
, ivs
, use
);
4767 best_cost
= iv_ca_cost (ivs
);
4769 cp
= iv_ca_cand_for_use (ivs
, use
);
4772 best_delta
= iv_ca_delta_add (use
, NULL
, cp
, NULL
);
4773 iv_ca_set_no_cp (data
, ivs
, use
);
4776 /* First try important candidates not based on any memory object. Only if
4777 this fails, try the specific ones. Rationale -- in loops with many
4778 variables the best choice often is to use just one generic biv. If we
4779 added here many ivs specific to the uses, the optimization algorithm later
4780 would be likely to get stuck in a local minimum, thus causing us to create
4781 too many ivs. The approach from few ivs to more seems more likely to be
4782 successful -- starting from few ivs, replacing an expensive use by a
4783 specific iv should always be a win. */
4784 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
4786 cand
= iv_cand (data
, i
);
4788 if (cand
->iv
->base_object
!= NULL_TREE
)
4791 if (iv_ca_cand_used_p (ivs
, cand
))
4794 cp
= get_use_iv_cost (data
, use
, cand
);
4798 iv_ca_set_cp (data
, ivs
, use
, cp
);
4799 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
);
4800 iv_ca_set_no_cp (data
, ivs
, use
);
4801 act_delta
= iv_ca_delta_add (use
, NULL
, cp
, act_delta
);
4803 if (compare_costs (act_cost
, best_cost
) < 0)
4805 best_cost
= act_cost
;
4807 iv_ca_delta_free (&best_delta
);
4808 best_delta
= act_delta
;
4811 iv_ca_delta_free (&act_delta
);
4814 if (infinite_cost_p (best_cost
))
4816 for (i
= 0; i
< use
->n_map_members
; i
++)
4818 cp
= use
->cost_map
+ i
;
4823 /* Already tried this. */
4824 if (cand
->important
&& cand
->iv
->base_object
== NULL_TREE
)
4827 if (iv_ca_cand_used_p (ivs
, cand
))
4831 iv_ca_set_cp (data
, ivs
, use
, cp
);
4832 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
);
4833 iv_ca_set_no_cp (data
, ivs
, use
);
4834 act_delta
= iv_ca_delta_add (use
, iv_ca_cand_for_use (ivs
, use
),
4837 if (compare_costs (act_cost
, best_cost
) < 0)
4839 best_cost
= act_cost
;
4842 iv_ca_delta_free (&best_delta
);
4843 best_delta
= act_delta
;
4846 iv_ca_delta_free (&act_delta
);
4850 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
4851 iv_ca_delta_free (&best_delta
);
4853 return !infinite_cost_p (best_cost
);
4856 /* Finds an initial assignment of candidates to uses. */
4858 static struct iv_ca
*
4859 get_initial_solution (struct ivopts_data
*data
)
4861 struct iv_ca
*ivs
= iv_ca_new (data
);
4864 for (i
= 0; i
< n_iv_uses (data
); i
++)
4865 if (!try_add_cand_for (data
, ivs
, iv_use (data
, i
)))
4874 /* Tries to improve set of induction variables IVS. */
4877 try_improve_iv_set (struct ivopts_data
*data
, struct iv_ca
*ivs
)
4880 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
4881 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
4882 struct iv_cand
*cand
;
4884 /* Try extending the set of induction variables by one. */
4885 for (i
= 0; i
< n_iv_cands (data
); i
++)
4887 cand
= iv_cand (data
, i
);
4889 if (iv_ca_cand_used_p (ivs
, cand
))
4892 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
);
4896 /* If we successfully added the candidate and the set is small enough,
4897 try optimizing it by removing other candidates. */
4898 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
4900 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
4901 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
4902 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
4903 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
4906 if (compare_costs (acost
, best_cost
) < 0)
4909 iv_ca_delta_free (&best_delta
);
4910 best_delta
= act_delta
;
4913 iv_ca_delta_free (&act_delta
);
4918 /* Try removing the candidates from the set instead. */
4919 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
4921 /* Nothing more we can do. */
4926 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
4927 gcc_assert (compare_costs (best_cost
, iv_ca_cost (ivs
)) == 0);
4928 iv_ca_delta_free (&best_delta
);
4932 /* Attempts to find the optimal set of induction variables. We do simple
4933 greedy heuristic -- we try to replace at most one candidate in the selected
4934 solution and remove the unused ivs while this improves the cost. */
4936 static struct iv_ca
*
4937 find_optimal_iv_set (struct ivopts_data
*data
)
4943 /* Get the initial solution. */
4944 set
= get_initial_solution (data
);
4947 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4948 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
4952 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4954 fprintf (dump_file
, "Initial set of candidates:\n");
4955 iv_ca_dump (data
, dump_file
, set
);
4958 while (try_improve_iv_set (data
, set
))
4960 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4962 fprintf (dump_file
, "Improved to:\n");
4963 iv_ca_dump (data
, dump_file
, set
);
4967 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4969 comp_cost cost
= iv_ca_cost (set
);
4970 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n", cost
.cost
, cost
.complexity
);
4973 for (i
= 0; i
< n_iv_uses (data
); i
++)
4975 use
= iv_use (data
, i
);
4976 use
->selected
= iv_ca_cand_for_use (set
, use
)->cand
;
4982 /* Creates a new induction variable corresponding to CAND. */
4985 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
4987 gimple_stmt_iterator incr_pos
;
4997 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
5001 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
5006 /* Mark that the iv is preserved. */
5007 name_info (data
, cand
->var_before
)->preserve_biv
= true;
5008 name_info (data
, cand
->var_after
)->preserve_biv
= true;
5010 /* Rewrite the increment so that it uses var_before directly. */
5011 find_interesting_uses_op (data
, cand
->var_after
)->selected
= cand
;
5016 gimple_add_tmp_var (cand
->var_before
);
5017 add_referenced_var (cand
->var_before
);
5019 base
= unshare_expr (cand
->iv
->base
);
5021 create_iv (base
, unshare_expr (cand
->iv
->step
),
5022 cand
->var_before
, data
->current_loop
,
5023 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
5026 /* Creates new induction variables described in SET. */
5029 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
5032 struct iv_cand
*cand
;
5035 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
5037 cand
= iv_cand (data
, i
);
5038 create_new_iv (data
, cand
);
5042 /* Returns the phi-node in BB with result RESULT. */
5045 get_phi_with_result (basic_block bb
, tree result
)
5047 gimple_stmt_iterator i
= gsi_start_phis (bb
);
5049 for (; !gsi_end_p (i
); gsi_next (&i
))
5050 if (gimple_phi_result (gsi_stmt (i
)) == result
)
5051 return gsi_stmt (i
);
5058 /* Removes statement STMT (real or a phi node). If INCLUDING_DEFINED_NAME
5059 is true, remove also the ssa name defined by the statement. */
5062 remove_statement (gimple stmt
, bool including_defined_name
)
5064 if (gimple_code (stmt
) == GIMPLE_PHI
)
5066 gimple bb_phi
= get_phi_with_result (gimple_bb (stmt
),
5067 gimple_phi_result (stmt
));
5068 gimple_stmt_iterator bsi
= gsi_for_stmt (bb_phi
);
5069 remove_phi_node (&bsi
, including_defined_name
);
5073 gimple_stmt_iterator bsi
= gsi_for_stmt (stmt
);
5074 gsi_remove (&bsi
, true);
5075 release_defs (stmt
);
5079 /* Rewrites USE (definition of iv used in a nonlinear expression)
5080 using candidate CAND. */
5083 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
5084 struct iv_use
*use
, struct iv_cand
*cand
)
5089 gimple_stmt_iterator bsi
;
5091 /* An important special case -- if we are asked to express value of
5092 the original iv by itself, just exit; there is no need to
5093 introduce a new computation (that might also need casting the
5094 variable to unsigned and back). */
5095 if (cand
->pos
== IP_ORIGINAL
5096 && cand
->incremented_at
== use
->stmt
)
5098 tree step
, ctype
, utype
;
5099 enum tree_code incr_code
= PLUS_EXPR
, old_code
;
5101 gcc_assert (is_gimple_assign (use
->stmt
));
5102 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
5104 step
= cand
->iv
->step
;
5105 ctype
= TREE_TYPE (step
);
5106 utype
= TREE_TYPE (cand
->var_after
);
5107 if (TREE_CODE (step
) == NEGATE_EXPR
)
5109 incr_code
= MINUS_EXPR
;
5110 step
= TREE_OPERAND (step
, 0);
5113 /* Check whether we may leave the computation unchanged.
5114 This is the case only if it does not rely on other
5115 computations in the loop -- otherwise, the computation
5116 we rely upon may be removed in remove_unused_ivs,
5117 thus leading to ICE. */
5118 old_code
= gimple_assign_rhs_code (use
->stmt
);
5119 if (old_code
== PLUS_EXPR
5120 || old_code
== MINUS_EXPR
5121 || old_code
== POINTER_PLUS_EXPR
)
5123 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
5124 op
= gimple_assign_rhs2 (use
->stmt
);
5125 else if (old_code
!= MINUS_EXPR
5126 && gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
5127 op
= gimple_assign_rhs1 (use
->stmt
);
5135 && (TREE_CODE (op
) == INTEGER_CST
5136 || operand_equal_p (op
, step
, 0)))
5139 /* Otherwise, add the necessary computations to express
5141 op
= fold_convert (ctype
, cand
->var_before
);
5142 comp
= fold_convert (utype
,
5143 build2 (incr_code
, ctype
, op
,
5144 unshare_expr (step
)));
5148 comp
= get_computation (data
->current_loop
, use
, cand
);
5149 gcc_assert (comp
!= NULL_TREE
);
5152 switch (gimple_code (use
->stmt
))
5155 tgt
= PHI_RESULT (use
->stmt
);
5157 /* If we should keep the biv, do not replace it. */
5158 if (name_info (data
, tgt
)->preserve_biv
)
5161 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
5165 tgt
= gimple_assign_lhs (use
->stmt
);
5166 bsi
= gsi_for_stmt (use
->stmt
);
5173 op
= force_gimple_operand_gsi (&bsi
, comp
, false, SSA_NAME_VAR (tgt
),
5174 true, GSI_SAME_STMT
);
5176 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
5178 ass
= gimple_build_assign (tgt
, op
);
5179 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
5180 remove_statement (use
->stmt
, false);
5184 gimple_assign_set_rhs_from_tree (&bsi
, op
);
5185 use
->stmt
= gsi_stmt (bsi
);
5189 /* Replaces ssa name in index IDX by its basic variable. Callback for
5193 idx_remove_ssa_names (tree base
, tree
*idx
,
5194 void *data ATTRIBUTE_UNUSED
)
5198 if (TREE_CODE (*idx
) == SSA_NAME
)
5199 *idx
= SSA_NAME_VAR (*idx
);
5201 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
5203 op
= &TREE_OPERAND (base
, 2);
5205 && TREE_CODE (*op
) == SSA_NAME
)
5206 *op
= SSA_NAME_VAR (*op
);
5207 op
= &TREE_OPERAND (base
, 3);
5209 && TREE_CODE (*op
) == SSA_NAME
)
5210 *op
= SSA_NAME_VAR (*op
);
5216 /* Unshares REF and replaces ssa names inside it by their basic variables. */
5219 unshare_and_remove_ssa_names (tree ref
)
5221 ref
= unshare_expr (ref
);
5222 for_each_index (&ref
, idx_remove_ssa_names
, NULL
);
5227 /* Extract the alias analysis info for the memory reference REF. There are
5228 several ways how this information may be stored and what precisely is
5229 its semantics depending on the type of the reference, but there always is
5230 somewhere hidden one _DECL node that is used to determine the set of
5231 virtual operands for the reference. The code below deciphers this jungle
5232 and extracts this single useful piece of information. */
5235 get_ref_tag (tree ref
, tree orig
)
5237 tree var
= get_base_address (ref
);
5238 tree aref
= NULL_TREE
, tag
, sv
;
5239 HOST_WIDE_INT offset
, size
, maxsize
;
5241 for (sv
= orig
; handled_component_p (sv
); sv
= TREE_OPERAND (sv
, 0))
5243 aref
= get_ref_base_and_extent (sv
, &offset
, &size
, &maxsize
);
5251 if (TREE_CODE (var
) == INDIRECT_REF
)
5253 /* If the base is a dereference of a pointer, first check its name memory
5254 tag. If it does not have one, use its symbol memory tag. */
5255 var
= TREE_OPERAND (var
, 0);
5256 if (TREE_CODE (var
) != SSA_NAME
)
5259 if (SSA_NAME_PTR_INFO (var
))
5261 tag
= SSA_NAME_PTR_INFO (var
)->name_mem_tag
;
5266 var
= SSA_NAME_VAR (var
);
5267 tag
= symbol_mem_tag (var
);
5268 gcc_assert (tag
!= NULL_TREE
);
5276 tag
= symbol_mem_tag (var
);
5284 /* Copies the reference information from OLD_REF to NEW_REF. */
5287 copy_ref_info (tree new_ref
, tree old_ref
)
5289 if (TREE_CODE (old_ref
) == TARGET_MEM_REF
)
5290 copy_mem_ref_info (new_ref
, old_ref
);
5293 TMR_ORIGINAL (new_ref
) = unshare_and_remove_ssa_names (old_ref
);
5294 TMR_TAG (new_ref
) = get_ref_tag (old_ref
, TMR_ORIGINAL (new_ref
));
5298 /* Rewrites USE (address that is an iv) using candidate CAND. */
5301 rewrite_use_address (struct ivopts_data
*data
,
5302 struct iv_use
*use
, struct iv_cand
*cand
)
5305 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
5309 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
5311 unshare_aff_combination (&aff
);
5313 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
, data
->speed
);
5314 copy_ref_info (ref
, *use
->op_p
);
5318 /* Rewrites USE (the condition such that one of the arguments is an iv) using
5322 rewrite_use_compare (struct ivopts_data
*data
,
5323 struct iv_use
*use
, struct iv_cand
*cand
)
5325 tree comp
, *var_p
, op
, bound
;
5326 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
5327 enum tree_code compare
;
5328 struct cost_pair
*cp
= get_use_iv_cost (data
, use
, cand
);
5334 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
5335 tree var_type
= TREE_TYPE (var
);
5338 compare
= iv_elimination_compare (data
, use
);
5339 bound
= unshare_expr (fold_convert (var_type
, bound
));
5340 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
5342 gsi_insert_seq_on_edge_immediate (
5343 loop_preheader_edge (data
->current_loop
),
5346 gimple_cond_set_lhs (use
->stmt
, var
);
5347 gimple_cond_set_code (use
->stmt
, compare
);
5348 gimple_cond_set_rhs (use
->stmt
, op
);
5352 /* The induction variable elimination failed; just express the original
5354 comp
= get_computation (data
->current_loop
, use
, cand
);
5355 gcc_assert (comp
!= NULL_TREE
);
5357 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
5360 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
5361 true, GSI_SAME_STMT
);
5364 /* Rewrites USE using candidate CAND. */
5367 rewrite_use (struct ivopts_data
*data
, struct iv_use
*use
, struct iv_cand
*cand
)
5369 push_stmt_changes (&use
->stmt
);
5373 case USE_NONLINEAR_EXPR
:
5374 rewrite_use_nonlinear_expr (data
, use
, cand
);
5378 rewrite_use_address (data
, use
, cand
);
5382 rewrite_use_compare (data
, use
, cand
);
5389 pop_stmt_changes (&use
->stmt
);
5392 /* Rewrite the uses using the selected induction variables. */
5395 rewrite_uses (struct ivopts_data
*data
)
5398 struct iv_cand
*cand
;
5401 for (i
= 0; i
< n_iv_uses (data
); i
++)
5403 use
= iv_use (data
, i
);
5404 cand
= use
->selected
;
5407 rewrite_use (data
, use
, cand
);
5411 /* Removes the ivs that are not used after rewriting. */
5414 remove_unused_ivs (struct ivopts_data
*data
)
5419 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5421 struct version_info
*info
;
5423 info
= ver_info (data
, j
);
5425 && !integer_zerop (info
->iv
->step
)
5427 && !info
->iv
->have_use_for
5428 && !info
->preserve_biv
)
5429 remove_statement (SSA_NAME_DEF_STMT (info
->iv
->ssa_name
), true);
5433 /* Frees data allocated by the optimization of a single loop. */
5436 free_loop_data (struct ivopts_data
*data
)
5444 pointer_map_destroy (data
->niters
);
5445 data
->niters
= NULL
;
5448 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
5450 struct version_info
*info
;
5452 info
= ver_info (data
, i
);
5456 info
->has_nonlin_use
= false;
5457 info
->preserve_biv
= false;
5460 bitmap_clear (data
->relevant
);
5461 bitmap_clear (data
->important_candidates
);
5463 for (i
= 0; i
< n_iv_uses (data
); i
++)
5465 struct iv_use
*use
= iv_use (data
, i
);
5468 BITMAP_FREE (use
->related_cands
);
5469 for (j
= 0; j
< use
->n_map_members
; j
++)
5470 if (use
->cost_map
[j
].depends_on
)
5471 BITMAP_FREE (use
->cost_map
[j
].depends_on
);
5472 free (use
->cost_map
);
5475 VEC_truncate (iv_use_p
, data
->iv_uses
, 0);
5477 for (i
= 0; i
< n_iv_cands (data
); i
++)
5479 struct iv_cand
*cand
= iv_cand (data
, i
);
5483 if (cand
->depends_on
)
5484 BITMAP_FREE (cand
->depends_on
);
5487 VEC_truncate (iv_cand_p
, data
->iv_candidates
, 0);
5489 if (data
->version_info_size
< num_ssa_names
)
5491 data
->version_info_size
= 2 * num_ssa_names
;
5492 free (data
->version_info
);
5493 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
5496 data
->max_inv_id
= 0;
5498 for (i
= 0; VEC_iterate (tree
, decl_rtl_to_reset
, i
, obj
); i
++)
5499 SET_DECL_RTL (obj
, NULL_RTX
);
5501 VEC_truncate (tree
, decl_rtl_to_reset
, 0);
5504 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
5508 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
5510 free_loop_data (data
);
5511 free (data
->version_info
);
5512 BITMAP_FREE (data
->relevant
);
5513 BITMAP_FREE (data
->important_candidates
);
5515 VEC_free (tree
, heap
, decl_rtl_to_reset
);
5516 VEC_free (iv_use_p
, heap
, data
->iv_uses
);
5517 VEC_free (iv_cand_p
, heap
, data
->iv_candidates
);
5520 /* Optimizes the LOOP. Returns true if anything changed. */
5523 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
5525 bool changed
= false;
5526 struct iv_ca
*iv_ca
;
5529 gcc_assert (!data
->niters
);
5530 data
->current_loop
= loop
;
5531 data
->speed
= optimize_loop_for_speed_p (loop
);
5533 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5535 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
5537 exit
= single_dom_exit (loop
);
5540 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
5541 exit
->src
->index
, exit
->dest
->index
);
5542 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
5543 fprintf (dump_file
, "\n");
5546 fprintf (dump_file
, "\n");
5549 /* For each ssa name determines whether it behaves as an induction variable
5551 if (!find_induction_variables (data
))
5554 /* Finds interesting uses (item 1). */
5555 find_interesting_uses (data
);
5556 if (n_iv_uses (data
) > MAX_CONSIDERED_USES
)
5559 /* Finds candidates for the induction variables (item 2). */
5560 find_iv_candidates (data
);
5562 /* Calculates the costs (item 3, part 1). */
5563 determine_use_iv_costs (data
);
5564 determine_iv_costs (data
);
5565 determine_set_costs (data
);
5567 /* Find the optimal set of induction variables (item 3, part 2). */
5568 iv_ca
= find_optimal_iv_set (data
);
5573 /* Create the new induction variables (item 4, part 1). */
5574 create_new_ivs (data
, iv_ca
);
5575 iv_ca_free (&iv_ca
);
5577 /* Rewrite the uses (item 4, part 2). */
5578 rewrite_uses (data
);
5580 /* Remove the ivs that are unused after rewriting. */
5581 remove_unused_ivs (data
);
5583 /* We have changed the structure of induction variables; it might happen
5584 that definitions in the scev database refer to some of them that were
5589 free_loop_data (data
);
5594 /* Main entry point. Optimizes induction variables in loops. */
5597 tree_ssa_iv_optimize (void)
5600 struct ivopts_data data
;
5603 tree_ssa_iv_optimize_init (&data
);
5605 /* Optimize the loops starting with the innermost ones. */
5606 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
5608 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5609 flow_loop_dump (loop
, dump_file
, NULL
, 1);
5611 tree_ssa_iv_optimize_loop (&data
, loop
);
5614 tree_ssa_iv_optimize_finalize (&data
);