[ARM] Remove an unused reload hook.
[official-gcc.git] / gcc / config / arm / arm.h
blob8a93b175f48d106d72002f0fa303c211b310ea95
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2015 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
42 #include "config/vxworks-dummy.h"
44 /* The architecture define. */
45 extern char arm_arch_name[];
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() \
49 do \
50 { \
51 if (TARGET_DSP_MULTIPLY) \
52 builtin_define ("__ARM_FEATURE_DSP"); \
53 if (TARGET_ARM_QBIT) \
54 builtin_define ("__ARM_FEATURE_QBIT"); \
55 if (TARGET_ARM_SAT) \
56 builtin_define ("__ARM_FEATURE_SAT"); \
57 if (TARGET_CRYPTO) \
58 builtin_define ("__ARM_FEATURE_CRYPTO"); \
59 if (unaligned_access) \
60 builtin_define ("__ARM_FEATURE_UNALIGNED"); \
61 if (TARGET_CRC32) \
62 builtin_define ("__ARM_FEATURE_CRC32"); \
63 if (TARGET_32BIT) \
64 builtin_define ("__ARM_32BIT_STATE"); \
65 if (TARGET_ARM_FEATURE_LDREX) \
66 builtin_define_with_int_value ( \
67 "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX); \
68 if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB) \
69 || TARGET_ARM_ARCH_ISA_THUMB >=2) \
70 builtin_define ("__ARM_FEATURE_CLZ"); \
71 if (TARGET_INT_SIMD) \
72 builtin_define ("__ARM_FEATURE_SIMD32"); \
74 builtin_define_with_int_value ( \
75 "__ARM_SIZEOF_MINIMAL_ENUM", \
76 flag_short_enums ? 1 : 4); \
77 builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T", \
78 wchar_type_node); \
79 if (TARGET_ARM_ARCH_PROFILE) \
80 builtin_define_with_int_value ( \
81 "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE); \
83 /* Define __arm__ even when in thumb mode, for \
84 consistency with armcc. */ \
85 builtin_define ("__arm__"); \
86 if (TARGET_ARM_ARCH) \
87 builtin_define_with_int_value ( \
88 "__ARM_ARCH", TARGET_ARM_ARCH); \
89 if (arm_arch_notm) \
90 builtin_define ("__ARM_ARCH_ISA_ARM"); \
91 builtin_define ("__APCS_32__"); \
92 if (TARGET_THUMB) \
93 builtin_define ("__thumb__"); \
94 if (TARGET_THUMB2) \
95 builtin_define ("__thumb2__"); \
96 if (TARGET_ARM_ARCH_ISA_THUMB) \
97 builtin_define_with_int_value ( \
98 "__ARM_ARCH_ISA_THUMB", \
99 TARGET_ARM_ARCH_ISA_THUMB); \
101 if (TARGET_BIG_END) \
103 builtin_define ("__ARMEB__"); \
104 builtin_define ("__ARM_BIG_ENDIAN"); \
105 if (TARGET_THUMB) \
106 builtin_define ("__THUMBEB__"); \
108 else \
110 builtin_define ("__ARMEL__"); \
111 if (TARGET_THUMB) \
112 builtin_define ("__THUMBEL__"); \
115 if (TARGET_SOFT_FLOAT) \
116 builtin_define ("__SOFTFP__"); \
118 if (TARGET_VFP) \
119 builtin_define ("__VFP_FP__"); \
121 if (TARGET_ARM_FP) \
122 builtin_define_with_int_value ( \
123 "__ARM_FP", TARGET_ARM_FP); \
124 if (arm_fp16_format == ARM_FP16_FORMAT_IEEE) \
125 builtin_define ("__ARM_FP16_FORMAT_IEEE"); \
126 if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE) \
127 builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE"); \
128 if (TARGET_FMA) \
129 builtin_define ("__ARM_FEATURE_FMA"); \
131 if (TARGET_NEON) \
133 builtin_define ("__ARM_NEON__"); \
134 builtin_define ("__ARM_NEON"); \
136 if (TARGET_NEON_FP) \
137 builtin_define_with_int_value ( \
138 "__ARM_NEON_FP", TARGET_NEON_FP); \
140 /* Add a define for interworking. \
141 Needed when building libgcc.a. */ \
142 if (arm_cpp_interwork) \
143 builtin_define ("__THUMB_INTERWORK__"); \
145 builtin_assert ("cpu=arm"); \
146 builtin_assert ("machine=arm"); \
148 builtin_define (arm_arch_name); \
149 if (arm_arch_xscale) \
150 builtin_define ("__XSCALE__"); \
151 if (arm_arch_iwmmxt) \
153 builtin_define ("__IWMMXT__"); \
154 builtin_define ("__ARM_WMMX"); \
156 if (arm_arch_iwmmxt2) \
157 builtin_define ("__IWMMXT2__"); \
158 if (TARGET_AAPCS_BASED) \
160 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
161 builtin_define ("__ARM_PCS_VFP"); \
162 else if (arm_pcs_default == ARM_PCS_AAPCS) \
163 builtin_define ("__ARM_PCS"); \
164 builtin_define ("__ARM_EABI__"); \
166 if (TARGET_IDIV) \
168 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
169 builtin_define ("__ARM_FEATURE_IDIV"); \
171 if (inline_asm_unified) \
172 builtin_define ("__ARM_ASM_SYNTAX_UNIFIED__");\
173 } while (0)
175 #include "config/arm/arm-opts.h"
177 enum target_cpus
179 #define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
180 TARGET_CPU_##INTERNAL_IDENT,
181 #include "arm-cores.def"
182 #undef ARM_CORE
183 TARGET_CPU_generic
186 /* The processor for which instructions should be scheduled. */
187 extern enum processor_type arm_tune;
189 typedef enum arm_cond_code
191 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
192 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
194 arm_cc;
196 extern arm_cc arm_current_cc;
198 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
200 /* The maximum number of instructions that is beneficial to
201 conditionally execute. */
202 #undef MAX_CONDITIONAL_EXECUTE
203 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
205 extern int arm_target_label;
206 extern int arm_ccfsm_state;
207 extern GTY(()) rtx arm_target_insn;
208 /* The label of the current constant pool. */
209 extern rtx pool_vector_label;
210 /* Set to 1 when a return insn is output, this means that the epilogue
211 is not needed. */
212 extern int return_used_this_function;
213 /* Callback to output language specific object attributes. */
214 extern void (*arm_lang_output_object_attributes_hook)(void);
216 /* Just in case configure has failed to define anything. */
217 #ifndef TARGET_CPU_DEFAULT
218 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
219 #endif
222 #undef CPP_SPEC
223 #define CPP_SPEC "%(subtarget_cpp_spec) \
224 %{mfloat-abi=soft:%{mfloat-abi=hard: \
225 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
226 %{mbig-endian:%{mlittle-endian: \
227 %e-mbig-endian and -mlittle-endian may not be used together}}"
229 #ifndef CC1_SPEC
230 #define CC1_SPEC ""
231 #endif
233 /* This macro defines names of additional specifications to put in the specs
234 that can be used in various specifications like CC1_SPEC. Its definition
235 is an initializer with a subgrouping for each command option.
237 Each subgrouping contains a string constant, that defines the
238 specification name, and a string constant that used by the GCC driver
239 program.
241 Do not define this macro if it does not need to do anything. */
242 #define EXTRA_SPECS \
243 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
244 { "asm_cpu_spec", ASM_CPU_SPEC }, \
245 SUBTARGET_EXTRA_SPECS
247 #ifndef SUBTARGET_EXTRA_SPECS
248 #define SUBTARGET_EXTRA_SPECS
249 #endif
251 #ifndef SUBTARGET_CPP_SPEC
252 #define SUBTARGET_CPP_SPEC ""
253 #endif
255 /* Run-time Target Specification. */
256 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
257 /* Use hardware floating point instructions. */
258 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
259 /* Use hardware floating point calling convention. */
260 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
261 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
262 #define TARGET_IWMMXT (arm_arch_iwmmxt)
263 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
264 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
265 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
266 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
267 #define TARGET_ARM (! TARGET_THUMB)
268 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
269 #define TARGET_BACKTRACE (leaf_function_p () \
270 ? TARGET_TPCS_LEAF_FRAME \
271 : TARGET_TPCS_FRAME)
272 #define TARGET_AAPCS_BASED \
273 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
275 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
276 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
277 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
279 /* Only 16-bit thumb code. */
280 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
281 /* Arm or Thumb-2 32-bit code. */
282 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
283 /* 32-bit Thumb-2 code. */
284 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
285 /* Thumb-1 only. */
286 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
288 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
289 && !TARGET_THUMB1)
291 #define TARGET_CRC32 (arm_arch_crc)
293 /* The following two macros concern the ability to execute coprocessor
294 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
295 only ever tested when we know we are generating for VFP hardware; we need
296 to be more careful with TARGET_NEON as noted below. */
298 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
299 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
301 /* FPU supports VFPv3 instructions. */
302 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
304 /* FPU supports FPv5 instructions. */
305 #define TARGET_VFP5 (TARGET_VFP && arm_fpu_desc->rev >= 5)
307 /* FPU only supports VFP single-precision instructions. */
308 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
310 /* FPU supports VFP double-precision instructions. */
311 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
313 /* FPU supports half-precision floating-point with NEON element load/store. */
314 #define TARGET_NEON_FP16 \
315 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
317 /* FPU supports VFP half-precision floating-point. */
318 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
320 /* FPU supports fused-multiply-add operations. */
321 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
323 /* FPU is ARMv8 compatible. */
324 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
326 /* FPU supports Crypto extensions. */
327 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
329 /* FPU supports Neon instructions. The setting of this macro gets
330 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
331 and TARGET_HARD_FLOAT to ensure that NEON instructions are
332 available. */
333 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
334 && TARGET_VFP && arm_fpu_desc->neon)
336 /* Q-bit is present. */
337 #define TARGET_ARM_QBIT \
338 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
339 /* Saturation operation, e.g. SSAT. */
340 #define TARGET_ARM_SAT \
341 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
342 /* "DSP" multiply instructions, eg. SMULxy. */
343 #define TARGET_DSP_MULTIPLY \
344 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
345 /* Integer SIMD instructions, and extend-accumulate instructions. */
346 #define TARGET_INT_SIMD \
347 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
349 /* Should MOVW/MOVT be used in preference to a constant pool. */
350 #define TARGET_USE_MOVT \
351 (arm_arch_thumb2 \
352 && (arm_disable_literal_pool \
353 || (!optimize_size && !current_tune->prefer_constant_pool)))
355 /* We could use unified syntax for arm mode, but for now we just use it
356 for thumb mode. */
357 #define TARGET_UNIFIED_ASM (TARGET_THUMB)
359 /* Nonzero if this chip provides the DMB instruction. */
360 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
362 /* Nonzero if this chip implements a memory barrier via CP15. */
363 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
364 && ! TARGET_THUMB1)
366 /* Nonzero if this chip implements a memory barrier instruction. */
367 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
369 /* Nonzero if this chip supports ldrex and strex */
370 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
372 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
373 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
375 /* Nonzero if this chip supports ldrexd and strexd. */
376 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) || arm_arch7) \
377 && arm_arch_notm)
379 /* Nonzero if this chip supports load-acquire and store-release. */
380 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
382 /* Nonzero if integer division instructions supported. */
383 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
384 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
386 /* Nonzero if disallow volatile memory access in IT block. */
387 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
389 /* Should NEON be used for 64-bits bitops. */
390 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
392 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
393 then TARGET_AAPCS_BASED must be true -- but the converse does not
394 hold. TARGET_BPABI implies the use of the BPABI runtime library,
395 etc., in addition to just the AAPCS calling conventions. */
396 #ifndef TARGET_BPABI
397 #define TARGET_BPABI false
398 #endif
400 /* Support for a compile-time default CPU, et cetera. The rules are:
401 --with-arch is ignored if -march or -mcpu are specified.
402 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
403 by --with-arch.
404 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
405 by -march).
406 --with-float is ignored if -mfloat-abi is specified.
407 --with-fpu is ignored if -mfpu is specified.
408 --with-abi is ignored if -mabi is specified.
409 --with-tls is ignored if -mtls-dialect is specified. */
410 #define OPTION_DEFAULT_SPECS \
411 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
412 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
413 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
414 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
415 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
416 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
417 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
418 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
420 /* Which floating point model to use. */
421 enum arm_fp_model
423 ARM_FP_MODEL_UNKNOWN,
424 /* VFP floating point model. */
425 ARM_FP_MODEL_VFP
428 enum vfp_reg_type
430 VFP_NONE = 0,
431 VFP_REG_D16,
432 VFP_REG_D32,
433 VFP_REG_SINGLE
436 extern const struct arm_fpu_desc
438 const char *name;
439 enum arm_fp_model model;
440 int rev;
441 enum vfp_reg_type regs;
442 int neon;
443 int fp16;
444 int crypto;
445 } *arm_fpu_desc;
447 /* Which floating point hardware to schedule for. */
448 extern int arm_fpu_attr;
450 #ifndef TARGET_DEFAULT_FLOAT_ABI
451 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
452 #endif
454 #ifndef ARM_DEFAULT_ABI
455 #define ARM_DEFAULT_ABI ARM_ABI_APCS
456 #endif
458 /* Map each of the micro-architecture variants to their corresponding
459 major architecture revision. */
461 enum base_architecture
463 BASE_ARCH_0 = 0,
464 BASE_ARCH_2 = 2,
465 BASE_ARCH_3 = 3,
466 BASE_ARCH_3M = 3,
467 BASE_ARCH_4 = 4,
468 BASE_ARCH_4T = 4,
469 BASE_ARCH_5 = 5,
470 BASE_ARCH_5E = 5,
471 BASE_ARCH_5T = 5,
472 BASE_ARCH_5TE = 5,
473 BASE_ARCH_5TEJ = 5,
474 BASE_ARCH_6 = 6,
475 BASE_ARCH_6J = 6,
476 BASE_ARCH_6ZK = 6,
477 BASE_ARCH_6K = 6,
478 BASE_ARCH_6T2 = 6,
479 BASE_ARCH_6M = 6,
480 BASE_ARCH_6Z = 6,
481 BASE_ARCH_7 = 7,
482 BASE_ARCH_7A = 7,
483 BASE_ARCH_7R = 7,
484 BASE_ARCH_7M = 7,
485 BASE_ARCH_7EM = 7,
486 BASE_ARCH_8A = 8
489 /* The major revision number of the ARM Architecture implemented by the target. */
490 extern enum base_architecture arm_base_arch;
492 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
493 extern int arm_arch3m;
495 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
496 extern int arm_arch4;
498 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
499 extern int arm_arch4t;
501 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
502 extern int arm_arch5;
504 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
505 extern int arm_arch5e;
507 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
508 extern int arm_arch6;
510 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
511 extern int arm_arch6k;
513 /* Nonzero if instructions present in ARMv6-M can be used. */
514 extern int arm_arch6m;
516 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
517 extern int arm_arch7;
519 /* Nonzero if instructions not present in the 'M' profile can be used. */
520 extern int arm_arch_notm;
522 /* Nonzero if instructions present in ARMv7E-M can be used. */
523 extern int arm_arch7em;
525 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
526 extern int arm_arch8;
528 /* Nonzero if this chip can benefit from load scheduling. */
529 extern int arm_ld_sched;
531 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
532 extern int thumb_code;
534 /* Nonzero if generating Thumb-1 code. */
535 extern int thumb1_code;
537 /* Nonzero if this chip is a StrongARM. */
538 extern int arm_tune_strongarm;
540 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
541 extern int arm_arch_iwmmxt;
543 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
544 extern int arm_arch_iwmmxt2;
546 /* Nonzero if this chip is an XScale. */
547 extern int arm_arch_xscale;
549 /* Nonzero if tuning for XScale. */
550 extern int arm_tune_xscale;
552 /* Nonzero if tuning for stores via the write buffer. */
553 extern int arm_tune_wbuf;
555 /* Nonzero if tuning for Cortex-A9. */
556 extern int arm_tune_cortex_a9;
558 /* Nonzero if we should define __THUMB_INTERWORK__ in the
559 preprocessor.
560 XXX This is a bit of a hack, it's intended to help work around
561 problems in GLD which doesn't understand that armv5t code is
562 interworking clean. */
563 extern int arm_cpp_interwork;
565 /* Nonzero if chip supports Thumb 2. */
566 extern int arm_arch_thumb2;
568 /* Nonzero if chip supports integer division instruction in ARM mode. */
569 extern int arm_arch_arm_hwdiv;
571 /* Nonzero if chip supports integer division instruction in Thumb mode. */
572 extern int arm_arch_thumb_hwdiv;
574 /* Nonzero if chip disallows volatile memory access in IT block. */
575 extern int arm_arch_no_volatile_ce;
577 /* Nonzero if we should use Neon to handle 64-bits operations rather
578 than core registers. */
579 extern int prefer_neon_for_64bits;
581 /* Nonzero if we shouldn't use literal pools. */
582 #ifndef USED_FOR_TARGET
583 extern bool arm_disable_literal_pool;
584 #endif
586 /* Nonzero if chip supports the ARMv8 CRC instructions. */
587 extern int arm_arch_crc;
589 #ifndef TARGET_DEFAULT
590 #define TARGET_DEFAULT (MASK_APCS_FRAME)
591 #endif
593 /* Nonzero if PIC code requires explicit qualifiers to generate
594 PLT and GOT relocs rather than the assembler doing so implicitly.
595 Subtargets can override these if required. */
596 #ifndef NEED_GOT_RELOC
597 #define NEED_GOT_RELOC 0
598 #endif
599 #ifndef NEED_PLT_RELOC
600 #define NEED_PLT_RELOC 0
601 #endif
603 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
604 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
605 #endif
607 /* Nonzero if we need to refer to the GOT with a PC-relative
608 offset. In other words, generate
610 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
612 rather than
614 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
616 The default is true, which matches NetBSD. Subtargets can
617 override this if required. */
618 #ifndef GOT_PCREL
619 #define GOT_PCREL 1
620 #endif
622 /* Target machine storage Layout. */
625 /* Define this macro if it is advisable to hold scalars in registers
626 in a wider mode than that declared by the program. In such cases,
627 the value is constrained to be within the bounds of the declared
628 type, but kept valid in the wider mode. The signedness of the
629 extension may differ from that of the type. */
631 /* It is far faster to zero extend chars than to sign extend them */
633 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
634 if (GET_MODE_CLASS (MODE) == MODE_INT \
635 && GET_MODE_SIZE (MODE) < 4) \
637 if (MODE == QImode) \
638 UNSIGNEDP = 1; \
639 else if (MODE == HImode) \
640 UNSIGNEDP = 1; \
641 (MODE) = SImode; \
644 /* Define this if most significant bit is lowest numbered
645 in instructions that operate on numbered bit-fields. */
646 #define BITS_BIG_ENDIAN 0
648 /* Define this if most significant byte of a word is the lowest numbered.
649 Most ARM processors are run in little endian mode, so that is the default.
650 If you want to have it run-time selectable, change the definition in a
651 cover file to be TARGET_BIG_ENDIAN. */
652 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
654 /* Define this if most significant word of a multiword number is the lowest
655 numbered. */
656 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
658 #define UNITS_PER_WORD 4
660 /* True if natural alignment is used for doubleword types. */
661 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
663 #define DOUBLEWORD_ALIGNMENT 64
665 #define PARM_BOUNDARY 32
667 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
669 #define PREFERRED_STACK_BOUNDARY \
670 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
672 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
674 /* The lowest bit is used to indicate Thumb-mode functions, so the
675 vbit must go into the delta field of pointers to member
676 functions. */
677 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
679 #define EMPTY_FIELD_BOUNDARY 32
681 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
683 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
685 /* XXX Blah -- this macro is used directly by libobjc. Since it
686 supports no vector modes, cut out the complexity and fall back
687 on BIGGEST_FIELD_ALIGNMENT. */
688 #ifdef IN_TARGET_LIBS
689 #define BIGGEST_FIELD_ALIGNMENT 64
690 #endif
692 /* Make strings word-aligned so strcpy from constants will be faster. */
693 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
695 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
696 ((TREE_CODE (EXP) == STRING_CST \
697 && !optimize_size \
698 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
699 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
701 /* Align definitions of arrays, unions and structures so that
702 initializations and copies can be made more efficient. This is not
703 ABI-changing, so it only affects places where we can see the
704 definition. Increasing the alignment tends to introduce padding,
705 so don't do this when optimizing for size/conserving stack space. */
706 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
707 (((COND) && ((ALIGN) < BITS_PER_WORD) \
708 && (TREE_CODE (EXP) == ARRAY_TYPE \
709 || TREE_CODE (EXP) == UNION_TYPE \
710 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
712 /* Align global data. */
713 #define DATA_ALIGNMENT(EXP, ALIGN) \
714 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
716 /* Similarly, make sure that objects on the stack are sensibly aligned. */
717 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
718 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
720 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
721 value set in previous versions of this toolchain was 8, which produces more
722 compact structures. The command line option -mstructure_size_boundary=<n>
723 can be used to change this value. For compatibility with the ARM SDK
724 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
725 0020D) page 2-20 says "Structures are aligned on word boundaries".
726 The AAPCS specifies a value of 8. */
727 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
729 /* This is the value used to initialize arm_structure_size_boundary. If a
730 particular arm target wants to change the default value it should change
731 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
732 for an example of this. */
733 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
734 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
735 #endif
737 /* Nonzero if move instructions will actually fail to work
738 when given unaligned data. */
739 #define STRICT_ALIGNMENT 1
741 /* wchar_t is unsigned under the AAPCS. */
742 #ifndef WCHAR_TYPE
743 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
745 #define WCHAR_TYPE_SIZE BITS_PER_WORD
746 #endif
748 /* Sized for fixed-point types. */
750 #define SHORT_FRACT_TYPE_SIZE 8
751 #define FRACT_TYPE_SIZE 16
752 #define LONG_FRACT_TYPE_SIZE 32
753 #define LONG_LONG_FRACT_TYPE_SIZE 64
755 #define SHORT_ACCUM_TYPE_SIZE 16
756 #define ACCUM_TYPE_SIZE 32
757 #define LONG_ACCUM_TYPE_SIZE 64
758 #define LONG_LONG_ACCUM_TYPE_SIZE 64
760 #define MAX_FIXED_MODE_SIZE 64
762 #ifndef SIZE_TYPE
763 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
764 #endif
766 #ifndef PTRDIFF_TYPE
767 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
768 #endif
770 /* AAPCS requires that structure alignment is affected by bitfields. */
771 #ifndef PCC_BITFIELD_TYPE_MATTERS
772 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
773 #endif
775 /* The maximum size of the sync library functions supported. */
776 #ifndef MAX_SYNC_LIBFUNC_SIZE
777 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
778 #endif
781 /* Standard register usage. */
783 /* Register allocation in ARM Procedure Call Standard
784 (S - saved over call).
786 r0 * argument word/integer result
787 r1-r3 argument word
789 r4-r8 S register variable
790 r9 S (rfp) register variable (real frame pointer)
792 r10 F S (sl) stack limit (used by -mapcs-stack-check)
793 r11 F S (fp) argument pointer
794 r12 (ip) temp workspace
795 r13 F S (sp) lower end of current stack frame
796 r14 (lr) link address/workspace
797 r15 F (pc) program counter
799 cc This is NOT a real register, but is used internally
800 to represent things that use or set the condition
801 codes.
802 sfp This isn't either. It is used during rtl generation
803 since the offset between the frame pointer and the
804 auto's isn't known until after register allocation.
805 afp Nor this, we only need this because of non-local
806 goto. Without it fp appears to be used and the
807 elimination code won't get rid of sfp. It tracks
808 fp exactly at all times.
810 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
812 /* s0-s15 VFP scratch (aka d0-d7).
813 s16-s31 S VFP variable (aka d8-d15).
814 vfpcc Not a real register. Represents the VFP condition
815 code flags. */
817 /* The stack backtrace structure is as follows:
818 fp points to here: | save code pointer | [fp]
819 | return link value | [fp, #-4]
820 | return sp value | [fp, #-8]
821 | return fp value | [fp, #-12]
822 [| saved r10 value |]
823 [| saved r9 value |]
824 [| saved r8 value |]
825 [| saved r7 value |]
826 [| saved r6 value |]
827 [| saved r5 value |]
828 [| saved r4 value |]
829 [| saved r3 value |]
830 [| saved r2 value |]
831 [| saved r1 value |]
832 [| saved r0 value |]
833 r0-r3 are not normally saved in a C function. */
835 /* 1 for registers that have pervasive standard uses
836 and are not available for the register allocator. */
837 #define FIXED_REGISTERS \
839 /* Core regs. */ \
840 0,0,0,0,0,0,0,0, \
841 0,0,0,0,0,1,0,1, \
842 /* VFP regs. */ \
843 1,1,1,1,1,1,1,1, \
844 1,1,1,1,1,1,1,1, \
845 1,1,1,1,1,1,1,1, \
846 1,1,1,1,1,1,1,1, \
847 1,1,1,1,1,1,1,1, \
848 1,1,1,1,1,1,1,1, \
849 1,1,1,1,1,1,1,1, \
850 1,1,1,1,1,1,1,1, \
851 /* IWMMXT regs. */ \
852 1,1,1,1,1,1,1,1, \
853 1,1,1,1,1,1,1,1, \
854 1,1,1,1, \
855 /* Specials. */ \
856 1,1,1,1 \
859 /* 1 for registers not available across function calls.
860 These must include the FIXED_REGISTERS and also any
861 registers that can be used without being saved.
862 The latter must include the registers where values are returned
863 and the register where structure-value addresses are passed.
864 Aside from that, you can include as many other registers as you like.
865 The CC is not preserved over function calls on the ARM 6, so it is
866 easier to assume this for all. SFP is preserved, since FP is. */
867 #define CALL_USED_REGISTERS \
869 /* Core regs. */ \
870 1,1,1,1,0,0,0,0, \
871 0,0,0,0,1,1,1,1, \
872 /* VFP Regs. */ \
873 1,1,1,1,1,1,1,1, \
874 1,1,1,1,1,1,1,1, \
875 1,1,1,1,1,1,1,1, \
876 1,1,1,1,1,1,1,1, \
877 1,1,1,1,1,1,1,1, \
878 1,1,1,1,1,1,1,1, \
879 1,1,1,1,1,1,1,1, \
880 1,1,1,1,1,1,1,1, \
881 /* IWMMXT regs. */ \
882 1,1,1,1,1,1,1,1, \
883 1,1,1,1,1,1,1,1, \
884 1,1,1,1, \
885 /* Specials. */ \
886 1,1,1,1 \
889 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
890 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
891 #endif
893 /* These are a couple of extensions to the formats accepted
894 by asm_fprintf:
895 %@ prints out ASM_COMMENT_START
896 %r prints out REGISTER_PREFIX reg_names[arg] */
897 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
898 case '@': \
899 fputs (ASM_COMMENT_START, FILE); \
900 break; \
902 case 'r': \
903 fputs (REGISTER_PREFIX, FILE); \
904 fputs (reg_names [va_arg (ARGS, int)], FILE); \
905 break;
907 /* Round X up to the nearest word. */
908 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
910 /* Convert fron bytes to ints. */
911 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
913 /* The number of (integer) registers required to hold a quantity of type MODE.
914 Also used for VFP registers. */
915 #define ARM_NUM_REGS(MODE) \
916 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
918 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
919 #define ARM_NUM_REGS2(MODE, TYPE) \
920 ARM_NUM_INTS ((MODE) == BLKmode ? \
921 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
923 /* The number of (integer) argument register available. */
924 #define NUM_ARG_REGS 4
926 /* And similarly for the VFP. */
927 #define NUM_VFP_ARG_REGS 16
929 /* Return the register number of the N'th (integer) argument. */
930 #define ARG_REGISTER(N) (N - 1)
932 /* Specify the registers used for certain standard purposes.
933 The values of these macros are register numbers. */
935 /* The number of the last argument register. */
936 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
938 /* The numbers of the Thumb register ranges. */
939 #define FIRST_LO_REGNUM 0
940 #define LAST_LO_REGNUM 7
941 #define FIRST_HI_REGNUM 8
942 #define LAST_HI_REGNUM 11
944 /* Overridden by config/arm/bpabi.h. */
945 #ifndef ARM_UNWIND_INFO
946 #define ARM_UNWIND_INFO 0
947 #endif
949 /* Use r0 and r1 to pass exception handling information. */
950 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
952 /* The register that holds the return address in exception handlers. */
953 #define ARM_EH_STACKADJ_REGNUM 2
954 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
956 #ifndef ARM_TARGET2_DWARF_FORMAT
957 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
958 #endif
960 /* ttype entries (the only interesting data references used)
961 use TARGET2 relocations. */
962 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
963 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
964 : DW_EH_PE_absptr)
966 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
967 as an invisible last argument (possible since varargs don't exist in
968 Pascal), so the following is not true. */
969 #define STATIC_CHAIN_REGNUM 12
971 /* Define this to be where the real frame pointer is if it is not possible to
972 work out the offset between the frame pointer and the automatic variables
973 until after register allocation has taken place. FRAME_POINTER_REGNUM
974 should point to a special register that we will make sure is eliminated.
976 For the Thumb we have another problem. The TPCS defines the frame pointer
977 as r11, and GCC believes that it is always possible to use the frame pointer
978 as base register for addressing purposes. (See comments in
979 find_reloads_address()). But - the Thumb does not allow high registers,
980 including r11, to be used as base address registers. Hence our problem.
982 The solution used here, and in the old thumb port is to use r7 instead of
983 r11 as the hard frame pointer and to have special code to generate
984 backtrace structures on the stack (if required to do so via a command line
985 option) using r11. This is the only 'user visible' use of r11 as a frame
986 pointer. */
987 #define ARM_HARD_FRAME_POINTER_REGNUM 11
988 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
990 #define HARD_FRAME_POINTER_REGNUM \
991 (TARGET_ARM \
992 ? ARM_HARD_FRAME_POINTER_REGNUM \
993 : THUMB_HARD_FRAME_POINTER_REGNUM)
995 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
996 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
998 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
1000 /* Register to use for pushing function arguments. */
1001 #define STACK_POINTER_REGNUM SP_REGNUM
1003 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
1004 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
1006 /* Need to sync with WCGR in iwmmxt.md. */
1007 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
1008 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
1010 #define IS_IWMMXT_REGNUM(REGNUM) \
1011 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1012 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1013 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1015 /* Base register for access to local variables of the function. */
1016 #define FRAME_POINTER_REGNUM 102
1018 /* Base register for access to arguments of the function. */
1019 #define ARG_POINTER_REGNUM 103
1021 #define FIRST_VFP_REGNUM 16
1022 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
1023 #define LAST_VFP_REGNUM \
1024 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1026 #define IS_VFP_REGNUM(REGNUM) \
1027 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1029 /* VFP registers are split into two types: those defined by VFP versions < 3
1030 have D registers overlaid on consecutive pairs of S registers. VFP version 3
1031 defines 16 new D registers (d16-d31) which, for simplicity and correctness
1032 in various parts of the backend, we implement as "fake" single-precision
1033 registers (which would be S32-S63, but cannot be used in that way). The
1034 following macros define these ranges of registers. */
1035 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
1036 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
1037 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
1039 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1040 ((REGNUM) <= LAST_LO_VFP_REGNUM)
1042 /* DFmode values are only valid in even register pairs. */
1043 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1044 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1046 /* Neon Quad values must start at a multiple of four registers. */
1047 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1048 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1050 /* Neon structures of vectors must be in even register pairs and there
1051 must be enough registers available. Because of various patterns
1052 requiring quad registers, we require them to start at a multiple of
1053 four. */
1054 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1055 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1056 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1058 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
1059 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1060 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
1061 #define FIRST_PSEUDO_REGISTER 104
1063 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1065 /* Value should be nonzero if functions must have frame pointers.
1066 Zero means the frame pointer need not be set up (and parms may be accessed
1067 via the stack pointer) in functions that seem suitable.
1068 If we have to have a frame pointer we might as well make use of it.
1069 APCS says that the frame pointer does not need to be pushed in leaf
1070 functions, or simple tail call functions. */
1072 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1073 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1074 #endif
1076 /* Return number of consecutive hard regs needed starting at reg REGNO
1077 to hold something of mode MODE.
1078 This is ordinarily the length in words of a value of mode MODE
1079 but can be less for certain modes in special long registers.
1081 On the ARM core regs are UNITS_PER_WORD bits wide. */
1082 #define HARD_REGNO_NREGS(REGNO, MODE) \
1083 ((TARGET_32BIT \
1084 && REGNO > PC_REGNUM \
1085 && REGNO != FRAME_POINTER_REGNUM \
1086 && REGNO != ARG_POINTER_REGNUM) \
1087 && !IS_VFP_REGNUM (REGNO) \
1088 ? 1 : ARM_NUM_REGS (MODE))
1090 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
1091 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1092 arm_hard_regno_mode_ok ((REGNO), (MODE))
1094 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1096 #define VALID_IWMMXT_REG_MODE(MODE) \
1097 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1099 /* Modes valid for Neon D registers. */
1100 #define VALID_NEON_DREG_MODE(MODE) \
1101 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1102 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1104 /* Modes valid for Neon Q registers. */
1105 #define VALID_NEON_QREG_MODE(MODE) \
1106 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1107 || (MODE) == V4SFmode || (MODE) == V2DImode)
1109 /* Structure modes valid for Neon registers. */
1110 #define VALID_NEON_STRUCT_MODE(MODE) \
1111 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1112 || (MODE) == CImode || (MODE) == XImode)
1114 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1115 extern int arm_regs_in_sequence[];
1117 /* The order in which register should be allocated. It is good to use ip
1118 since no saving is required (though calls clobber it) and it never contains
1119 function parameters. It is quite good to use lr since other calls may
1120 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1121 least likely to contain a function parameter; in addition results are
1122 returned in r0.
1123 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1124 then D8-D15. The reason for doing this is to attempt to reduce register
1125 pressure when both single- and double-precision registers are used in a
1126 function. */
1128 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1129 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1130 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1132 #define REG_ALLOC_ORDER \
1134 /* General registers. */ \
1135 3, 2, 1, 0, 12, 14, 4, 5, \
1136 6, 7, 8, 9, 10, 11, \
1137 /* High VFP registers. */ \
1138 VREG(32), VREG(33), VREG(34), VREG(35), \
1139 VREG(36), VREG(37), VREG(38), VREG(39), \
1140 VREG(40), VREG(41), VREG(42), VREG(43), \
1141 VREG(44), VREG(45), VREG(46), VREG(47), \
1142 VREG(48), VREG(49), VREG(50), VREG(51), \
1143 VREG(52), VREG(53), VREG(54), VREG(55), \
1144 VREG(56), VREG(57), VREG(58), VREG(59), \
1145 VREG(60), VREG(61), VREG(62), VREG(63), \
1146 /* VFP argument registers. */ \
1147 VREG(15), VREG(14), VREG(13), VREG(12), \
1148 VREG(11), VREG(10), VREG(9), VREG(8), \
1149 VREG(7), VREG(6), VREG(5), VREG(4), \
1150 VREG(3), VREG(2), VREG(1), VREG(0), \
1151 /* VFP call-saved registers. */ \
1152 VREG(16), VREG(17), VREG(18), VREG(19), \
1153 VREG(20), VREG(21), VREG(22), VREG(23), \
1154 VREG(24), VREG(25), VREG(26), VREG(27), \
1155 VREG(28), VREG(29), VREG(30), VREG(31), \
1156 /* IWMMX registers. */ \
1157 WREG(0), WREG(1), WREG(2), WREG(3), \
1158 WREG(4), WREG(5), WREG(6), WREG(7), \
1159 WREG(8), WREG(9), WREG(10), WREG(11), \
1160 WREG(12), WREG(13), WREG(14), WREG(15), \
1161 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1162 /* Registers not for general use. */ \
1163 CC_REGNUM, VFPCC_REGNUM, \
1164 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1165 SP_REGNUM, PC_REGNUM \
1168 /* Use different register alloc ordering for Thumb. */
1169 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1171 /* Tell IRA to use the order we define rather than messing it up with its
1172 own cost calculations. */
1173 #define HONOR_REG_ALLOC_ORDER 1
1175 /* Interrupt functions can only use registers that have already been
1176 saved by the prologue, even if they would normally be
1177 call-clobbered. */
1178 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1179 (! IS_INTERRUPT (cfun->machine->func_type) || \
1180 df_regs_ever_live_p (DST))
1182 /* Register and constant classes. */
1184 /* Register classes. */
1185 enum reg_class
1187 NO_REGS,
1188 LO_REGS,
1189 STACK_REG,
1190 BASE_REGS,
1191 HI_REGS,
1192 CALLER_SAVE_REGS,
1193 GENERAL_REGS,
1194 CORE_REGS,
1195 VFP_D0_D7_REGS,
1196 VFP_LO_REGS,
1197 VFP_HI_REGS,
1198 VFP_REGS,
1199 IWMMXT_REGS,
1200 IWMMXT_GR_REGS,
1201 CC_REG,
1202 VFPCC_REG,
1203 SFP_REG,
1204 AFP_REG,
1205 ALL_REGS,
1206 LIM_REG_CLASSES
1209 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1211 /* Give names of register classes as strings for dump file. */
1212 #define REG_CLASS_NAMES \
1214 "NO_REGS", \
1215 "LO_REGS", \
1216 "STACK_REG", \
1217 "BASE_REGS", \
1218 "HI_REGS", \
1219 "CALLER_SAVE_REGS", \
1220 "GENERAL_REGS", \
1221 "CORE_REGS", \
1222 "VFP_D0_D7_REGS", \
1223 "VFP_LO_REGS", \
1224 "VFP_HI_REGS", \
1225 "VFP_REGS", \
1226 "IWMMXT_REGS", \
1227 "IWMMXT_GR_REGS", \
1228 "CC_REG", \
1229 "VFPCC_REG", \
1230 "SFP_REG", \
1231 "AFP_REG", \
1232 "ALL_REGS" \
1235 /* Define which registers fit in which classes.
1236 This is an initializer for a vector of HARD_REG_SET
1237 of length N_REG_CLASSES. */
1238 #define REG_CLASS_CONTENTS \
1240 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1241 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1242 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1243 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1244 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1245 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1246 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1247 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1248 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1249 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1250 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1251 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1252 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1253 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1254 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1255 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1256 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1257 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1258 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1261 /* Any of the VFP register classes. */
1262 #define IS_VFP_CLASS(X) \
1263 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1264 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1266 /* The same information, inverted:
1267 Return the class number of the smallest class containing
1268 reg number REGNO. This could be a conditional expression
1269 or could index an array. */
1270 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1272 /* In VFPv1, VFP registers could only be accessed in the mode they
1273 were set, so subregs would be invalid there. However, we don't
1274 support VFPv1 at the moment, and the restriction was lifted in
1275 VFPv2.
1276 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1277 VFP registers in little-endian order. We can't describe that accurately to
1278 GCC, so avoid taking subregs of such values.
1279 The only exception is going from a 128-bit to a 64-bit type. In that case
1280 the data layout happens to be consistent for big-endian, so we explicitly allow
1281 that case. */
1282 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1283 (TARGET_VFP && TARGET_BIG_END \
1284 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1285 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1286 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1287 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1289 /* The class value for index registers, and the one for base regs. */
1290 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1291 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1293 /* For the Thumb the high registers cannot be used as base registers
1294 when addressing quantities in QI or HI mode; if we don't know the
1295 mode, then we must be conservative. */
1296 #define MODE_BASE_REG_CLASS(MODE) \
1297 (TARGET_32BIT ? CORE_REGS \
1298 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1299 : LO_REGS)
1301 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1302 instead of BASE_REGS. */
1303 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1305 /* When this hook returns true for MODE, the compiler allows
1306 registers explicitly used in the rtl to be used as spill registers
1307 but prevents the compiler from extending the lifetime of these
1308 registers. */
1309 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1310 arm_small_register_classes_for_mode_p
1312 /* Must leave BASE_REGS reloads alone */
1313 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1314 (lra_in_progress ? NO_REGS \
1315 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1316 ? ((true_regnum (X) == -1 ? LO_REGS \
1317 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1318 : NO_REGS)) \
1319 : NO_REGS))
1321 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1322 (lra_in_progress ? NO_REGS \
1323 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1324 ? ((true_regnum (X) == -1 ? LO_REGS \
1325 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1326 : NO_REGS)) \
1327 : NO_REGS)
1329 /* Return the register class of a scratch register needed to copy IN into
1330 or out of a register in CLASS in MODE. If it can be done directly,
1331 NO_REGS is returned. */
1332 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1333 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1334 ((TARGET_VFP && TARGET_HARD_FLOAT \
1335 && IS_VFP_CLASS (CLASS)) \
1336 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1337 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1338 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1339 : TARGET_32BIT \
1340 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1341 ? GENERAL_REGS : NO_REGS) \
1342 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1344 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1345 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1346 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1347 ((TARGET_VFP && TARGET_HARD_FLOAT \
1348 && IS_VFP_CLASS (CLASS)) \
1349 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1350 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1351 coproc_secondary_reload_class (MODE, X, TRUE) : \
1352 (TARGET_32BIT ? \
1353 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1354 && CONSTANT_P (X)) \
1355 ? GENERAL_REGS : \
1356 (((MODE) == HImode && ! arm_arch4 \
1357 && (MEM_P (X) \
1358 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1359 && true_regnum (X) == -1))) \
1360 ? GENERAL_REGS : NO_REGS) \
1361 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1363 /* Return the maximum number of consecutive registers
1364 needed to represent mode MODE in a register of class CLASS.
1365 ARM regs are UNITS_PER_WORD bits.
1366 FIXME: Is this true for iWMMX? */
1367 #define CLASS_MAX_NREGS(CLASS, MODE) \
1368 (ARM_NUM_REGS (MODE))
1370 /* If defined, gives a class of registers that cannot be used as the
1371 operand of a SUBREG that changes the mode of the object illegally. */
1373 /* Stack layout; function entry, exit and calling. */
1375 /* Define this if pushing a word on the stack
1376 makes the stack pointer a smaller address. */
1377 #define STACK_GROWS_DOWNWARD 1
1379 /* Define this to nonzero if the nominal address of the stack frame
1380 is at the high-address end of the local variables;
1381 that is, each additional local variable allocated
1382 goes at a more negative offset in the frame. */
1383 #define FRAME_GROWS_DOWNWARD 1
1385 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1386 When present, it is one word in size, and sits at the top of the frame,
1387 between the soft frame pointer and either r7 or r11.
1389 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1390 and only then if some outgoing arguments are passed on the stack. It would
1391 be tempting to also check whether the stack arguments are passed by indirect
1392 calls, but there seems to be no reason in principle why a post-reload pass
1393 couldn't convert a direct call into an indirect one. */
1394 #define CALLER_INTERWORKING_SLOT_SIZE \
1395 (TARGET_CALLER_INTERWORKING \
1396 && crtl->outgoing_args_size != 0 \
1397 ? UNITS_PER_WORD : 0)
1399 /* Offset within stack frame to start allocating local variables at.
1400 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1401 first local allocated. Otherwise, it is the offset to the BEGINNING
1402 of the first local allocated. */
1403 #define STARTING_FRAME_OFFSET 0
1405 /* If we generate an insn to push BYTES bytes,
1406 this says how many the stack pointer really advances by. */
1407 /* The push insns do not do this rounding implicitly.
1408 So don't define this. */
1409 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1411 /* Define this if the maximum size of all the outgoing args is to be
1412 accumulated and pushed during the prologue. The amount can be
1413 found in the variable crtl->outgoing_args_size. */
1414 #define ACCUMULATE_OUTGOING_ARGS 1
1416 /* Offset of first parameter from the argument pointer register value. */
1417 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1419 /* Amount of memory needed for an untyped call to save all possible return
1420 registers. */
1421 #define APPLY_RESULT_SIZE arm_apply_result_size()
1423 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1424 values must be in memory. On the ARM, they need only do so if larger
1425 than a word, or if they contain elements offset from zero in the struct. */
1426 #define DEFAULT_PCC_STRUCT_RETURN 0
1428 /* These bits describe the different types of function supported
1429 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1430 normal function and an interworked function, for example. Knowing the
1431 type of a function is important for determining its prologue and
1432 epilogue sequences.
1433 Note value 7 is currently unassigned. Also note that the interrupt
1434 function types all have bit 2 set, so that they can be tested for easily.
1435 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1436 machine_function structure is initialized (to zero) func_type will
1437 default to unknown. This will force the first use of arm_current_func_type
1438 to call arm_compute_func_type. */
1439 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1440 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1441 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1442 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1443 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1444 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1446 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1448 /* In addition functions can have several type modifiers,
1449 outlined by these bit masks: */
1450 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1451 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1452 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1453 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1454 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1456 /* Some macros to test these flags. */
1457 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1458 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1459 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1460 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1461 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1462 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1465 /* Structure used to hold the function stack frame layout. Offsets are
1466 relative to the stack pointer on function entry. Positive offsets are
1467 in the direction of stack growth.
1468 Only soft_frame is used in thumb mode. */
1470 typedef struct GTY(()) arm_stack_offsets
1472 int saved_args; /* ARG_POINTER_REGNUM. */
1473 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1474 int saved_regs;
1475 int soft_frame; /* FRAME_POINTER_REGNUM. */
1476 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1477 int outgoing_args; /* STACK_POINTER_REGNUM. */
1478 unsigned int saved_regs_mask;
1480 arm_stack_offsets;
1482 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1483 /* A C structure for machine-specific, per-function data.
1484 This is added to the cfun structure. */
1485 typedef struct GTY(()) machine_function
1487 /* Additional stack adjustment in __builtin_eh_throw. */
1488 rtx eh_epilogue_sp_ofs;
1489 /* Records if LR has to be saved for far jumps. */
1490 int far_jump_used;
1491 /* Records if ARG_POINTER was ever live. */
1492 int arg_pointer_live;
1493 /* Records if the save of LR has been eliminated. */
1494 int lr_save_eliminated;
1495 /* The size of the stack frame. Only valid after reload. */
1496 arm_stack_offsets stack_offsets;
1497 /* Records the type of the current function. */
1498 unsigned long func_type;
1499 /* Record if the function has a variable argument list. */
1500 int uses_anonymous_args;
1501 /* Records if sibcalls are blocked because an argument
1502 register is needed to preserve stack alignment. */
1503 int sibcall_blocked;
1504 /* The PIC register for this function. This might be a pseudo. */
1505 rtx pic_reg;
1506 /* Labels for per-function Thumb call-via stubs. One per potential calling
1507 register. We can never call via LR or PC. We can call via SP if a
1508 trampoline happens to be on the top of the stack. */
1509 rtx call_via[14];
1510 /* Set to 1 when a return insn is output, this means that the epilogue
1511 is not needed. */
1512 int return_used_this_function;
1513 /* When outputting Thumb-1 code, record the last insn that provides
1514 information about condition codes, and the comparison operands. */
1515 rtx thumb1_cc_insn;
1516 rtx thumb1_cc_op0;
1517 rtx thumb1_cc_op1;
1518 /* Also record the CC mode that is supported. */
1519 machine_mode thumb1_cc_mode;
1520 /* Set to 1 after arm_reorg has started. */
1521 int after_arm_reorg;
1523 machine_function;
1524 #endif
1526 /* As in the machine_function, a global set of call-via labels, for code
1527 that is in text_section. */
1528 extern GTY(()) rtx thumb_call_via_label[14];
1530 /* The number of potential ways of assigning to a co-processor. */
1531 #define ARM_NUM_COPROC_SLOTS 1
1533 /* Enumeration of procedure calling standard variants. We don't really
1534 support all of these yet. */
1535 enum arm_pcs
1537 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1538 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1539 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1540 /* This must be the last AAPCS variant. */
1541 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1542 ARM_PCS_ATPCS, /* ATPCS. */
1543 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1544 ARM_PCS_UNKNOWN
1547 /* Default procedure calling standard of current compilation unit. */
1548 extern enum arm_pcs arm_pcs_default;
1550 #if !defined (USED_FOR_TARGET)
1551 /* A C type for declaring a variable that is used as the first argument of
1552 `FUNCTION_ARG' and other related values. */
1553 typedef struct
1555 /* This is the number of registers of arguments scanned so far. */
1556 int nregs;
1557 /* This is the number of iWMMXt register arguments scanned so far. */
1558 int iwmmxt_nregs;
1559 int named_count;
1560 int nargs;
1561 /* Which procedure call variant to use for this call. */
1562 enum arm_pcs pcs_variant;
1564 /* AAPCS related state tracking. */
1565 int aapcs_arg_processed; /* No need to lay out this argument again. */
1566 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1567 this argument, or -1 if using core
1568 registers. */
1569 int aapcs_ncrn;
1570 int aapcs_next_ncrn;
1571 rtx aapcs_reg; /* Register assigned to this argument. */
1572 int aapcs_partial; /* How many bytes are passed in regs (if
1573 split between core regs and stack.
1574 Zero otherwise. */
1575 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1576 int can_split; /* Argument can be split between core regs
1577 and the stack. */
1578 /* Private data for tracking VFP register allocation */
1579 unsigned aapcs_vfp_regs_free;
1580 unsigned aapcs_vfp_reg_alloc;
1581 int aapcs_vfp_rcount;
1582 MACHMODE aapcs_vfp_rmode;
1583 } CUMULATIVE_ARGS;
1584 #endif
1586 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1587 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1589 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1590 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1592 /* For AAPCS, padding should never be below the argument. For other ABIs,
1593 * mimic the default. */
1594 #define PAD_VARARGS_DOWN \
1595 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1597 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1598 for a call to a function whose data type is FNTYPE.
1599 For a library call, FNTYPE is 0.
1600 On the ARM, the offset starts at 0. */
1601 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1602 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1604 /* 1 if N is a possible register number for function argument passing.
1605 On the ARM, r0-r3 are used to pass args. */
1606 #define FUNCTION_ARG_REGNO_P(REGNO) \
1607 (IN_RANGE ((REGNO), 0, 3) \
1608 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1609 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1610 || (TARGET_IWMMXT_ABI \
1611 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1614 /* If your target environment doesn't prefix user functions with an
1615 underscore, you may wish to re-define this to prevent any conflicts. */
1616 #ifndef ARM_MCOUNT_NAME
1617 #define ARM_MCOUNT_NAME "*mcount"
1618 #endif
1620 /* Call the function profiler with a given profile label. The Acorn
1621 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1622 On the ARM the full profile code will look like:
1623 .data
1625 .word 0
1626 .text
1627 mov ip, lr
1628 bl mcount
1629 .word LP1
1631 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1632 will output the .text section.
1634 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1635 ``prof'' doesn't seem to mind about this!
1637 Note - this version of the code is designed to work in both ARM and
1638 Thumb modes. */
1639 #ifndef ARM_FUNCTION_PROFILER
1640 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1642 char temp[20]; \
1643 rtx sym; \
1645 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1646 IP_REGNUM, LR_REGNUM); \
1647 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1648 fputc ('\n', STREAM); \
1649 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1650 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1651 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1653 #endif
1655 #ifdef THUMB_FUNCTION_PROFILER
1656 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1657 if (TARGET_ARM) \
1658 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1659 else \
1660 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1661 #else
1662 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1663 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1664 #endif
1666 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1667 the stack pointer does not matter. The value is tested only in
1668 functions that have frame pointers.
1669 No definition is equivalent to always zero.
1671 On the ARM, the function epilogue recovers the stack pointer from the
1672 frame. */
1673 #define EXIT_IGNORE_STACK 1
1675 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1677 /* Determine if the epilogue should be output as RTL.
1678 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1679 #define USE_RETURN_INSN(ISCOND) \
1680 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1682 /* Definitions for register eliminations.
1684 This is an array of structures. Each structure initializes one pair
1685 of eliminable registers. The "from" register number is given first,
1686 followed by "to". Eliminations of the same "from" register are listed
1687 in order of preference.
1689 We have two registers that can be eliminated on the ARM. First, the
1690 arg pointer register can often be eliminated in favor of the stack
1691 pointer register. Secondly, the pseudo frame pointer register can always
1692 be eliminated; it is replaced with either the stack or the real frame
1693 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1694 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1696 #define ELIMINABLE_REGS \
1697 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1698 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1699 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1700 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1701 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1702 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1703 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1705 /* Define the offset between two registers, one to be eliminated, and the
1706 other its replacement, at the start of a routine. */
1707 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1708 if (TARGET_ARM) \
1709 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1710 else \
1711 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1713 /* Special case handling of the location of arguments passed on the stack. */
1714 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1716 /* Initialize data used by insn expanders. This is called from insn_emit,
1717 once for every function before code is generated. */
1718 #define INIT_EXPANDERS arm_init_expanders ()
1720 /* Length in units of the trampoline for entering a nested function. */
1721 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1723 /* Alignment required for a trampoline in bits. */
1724 #define TRAMPOLINE_ALIGNMENT 32
1726 /* Addressing modes, and classification of registers for them. */
1727 #define HAVE_POST_INCREMENT 1
1728 #define HAVE_PRE_INCREMENT TARGET_32BIT
1729 #define HAVE_POST_DECREMENT TARGET_32BIT
1730 #define HAVE_PRE_DECREMENT TARGET_32BIT
1731 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1732 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1733 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1734 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1736 enum arm_auto_incmodes
1738 ARM_POST_INC,
1739 ARM_PRE_INC,
1740 ARM_POST_DEC,
1741 ARM_PRE_DEC
1744 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1745 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1746 #define USE_LOAD_POST_INCREMENT(mode) \
1747 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1748 #define USE_LOAD_PRE_INCREMENT(mode) \
1749 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1750 #define USE_LOAD_POST_DECREMENT(mode) \
1751 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1752 #define USE_LOAD_PRE_DECREMENT(mode) \
1753 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1755 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1756 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1757 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1758 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1760 /* Macros to check register numbers against specific register classes. */
1762 /* These assume that REGNO is a hard or pseudo reg number.
1763 They give nonzero only if REGNO is a hard reg of the suitable class
1764 or a pseudo reg currently allocated to a suitable hard reg.
1765 Since they use reg_renumber, they are safe only once reg_renumber
1766 has been allocated, which happens in reginfo.c during register
1767 allocation. */
1768 #define TEST_REGNO(R, TEST, VALUE) \
1769 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1771 /* Don't allow the pc to be used. */
1772 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1773 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1774 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1775 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1777 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1778 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1779 || (GET_MODE_SIZE (MODE) >= 4 \
1780 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1782 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1783 (TARGET_THUMB1 \
1784 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1785 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1787 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1788 For Thumb, we can not use SP + reg, so reject SP. */
1789 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1790 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1792 /* For ARM code, we don't care about the mode, but for Thumb, the index
1793 must be suitable for use in a QImode load. */
1794 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1795 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1796 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1798 /* Maximum number of registers that can appear in a valid memory address.
1799 Shifts in addresses can't be by a register. */
1800 #define MAX_REGS_PER_ADDRESS 2
1802 /* Recognize any constant value that is a valid address. */
1803 /* XXX We can address any constant, eventually... */
1804 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1805 #define CONSTANT_ADDRESS_P(X) \
1806 (GET_CODE (X) == SYMBOL_REF \
1807 && (CONSTANT_POOL_ADDRESS_P (X) \
1808 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1810 /* True if SYMBOL + OFFSET constants must refer to something within
1811 SYMBOL's section. */
1812 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1814 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1815 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1816 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1817 #endif
1819 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1820 #define SUBTARGET_NAME_ENCODING_LENGTHS
1821 #endif
1823 /* This is a C fragment for the inside of a switch statement.
1824 Each case label should return the number of characters to
1825 be stripped from the start of a function's name, if that
1826 name starts with the indicated character. */
1827 #define ARM_NAME_ENCODING_LENGTHS \
1828 case '*': return 1; \
1829 SUBTARGET_NAME_ENCODING_LENGTHS
1831 /* This is how to output a reference to a user-level label named NAME.
1832 `assemble_name' uses this. */
1833 #undef ASM_OUTPUT_LABELREF
1834 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1835 arm_asm_output_labelref (FILE, NAME)
1837 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1838 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1839 if (TARGET_THUMB2) \
1840 thumb2_asm_output_opcode (STREAM);
1842 /* The EABI specifies that constructors should go in .init_array.
1843 Other targets use .ctors for compatibility. */
1844 #ifndef ARM_EABI_CTORS_SECTION_OP
1845 #define ARM_EABI_CTORS_SECTION_OP \
1846 "\t.section\t.init_array,\"aw\",%init_array"
1847 #endif
1848 #ifndef ARM_EABI_DTORS_SECTION_OP
1849 #define ARM_EABI_DTORS_SECTION_OP \
1850 "\t.section\t.fini_array,\"aw\",%fini_array"
1851 #endif
1852 #define ARM_CTORS_SECTION_OP \
1853 "\t.section\t.ctors,\"aw\",%progbits"
1854 #define ARM_DTORS_SECTION_OP \
1855 "\t.section\t.dtors,\"aw\",%progbits"
1857 /* Define CTORS_SECTION_ASM_OP. */
1858 #undef CTORS_SECTION_ASM_OP
1859 #undef DTORS_SECTION_ASM_OP
1860 #ifndef IN_LIBGCC2
1861 # define CTORS_SECTION_ASM_OP \
1862 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1863 # define DTORS_SECTION_ASM_OP \
1864 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1865 #else /* !defined (IN_LIBGCC2) */
1866 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1867 so we cannot use the definition above. */
1868 # ifdef __ARM_EABI__
1869 /* The .ctors section is not part of the EABI, so we do not define
1870 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1871 from trying to use it. We do define it when doing normal
1872 compilation, as .init_array can be used instead of .ctors. */
1873 /* There is no need to emit begin or end markers when using
1874 init_array; the dynamic linker will compute the size of the
1875 array itself based on special symbols created by the static
1876 linker. However, we do need to arrange to set up
1877 exception-handling here. */
1878 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1879 # define CTOR_LIST_END /* empty */
1880 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1881 # define DTOR_LIST_END /* empty */
1882 # else /* !defined (__ARM_EABI__) */
1883 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1884 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1885 # endif /* !defined (__ARM_EABI__) */
1886 #endif /* !defined (IN_LIBCC2) */
1888 /* True if the operating system can merge entities with vague linkage
1889 (e.g., symbols in COMDAT group) during dynamic linking. */
1890 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1891 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1892 #endif
1894 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1896 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1897 and check its validity for a certain class.
1898 We have two alternate definitions for each of them.
1899 The usual definition accepts all pseudo regs; the other rejects
1900 them unless they have been allocated suitable hard regs.
1901 The symbol REG_OK_STRICT causes the latter definition to be used.
1902 Thumb-2 has the same restrictions as arm. */
1903 #ifndef REG_OK_STRICT
1905 #define ARM_REG_OK_FOR_BASE_P(X) \
1906 (REGNO (X) <= LAST_ARM_REGNUM \
1907 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1908 || REGNO (X) == FRAME_POINTER_REGNUM \
1909 || REGNO (X) == ARG_POINTER_REGNUM)
1911 #define ARM_REG_OK_FOR_INDEX_P(X) \
1912 ((REGNO (X) <= LAST_ARM_REGNUM \
1913 && REGNO (X) != STACK_POINTER_REGNUM) \
1914 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1915 || REGNO (X) == FRAME_POINTER_REGNUM \
1916 || REGNO (X) == ARG_POINTER_REGNUM)
1918 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1919 (REGNO (X) <= LAST_LO_REGNUM \
1920 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1921 || (GET_MODE_SIZE (MODE) >= 4 \
1922 && (REGNO (X) == STACK_POINTER_REGNUM \
1923 || (X) == hard_frame_pointer_rtx \
1924 || (X) == arg_pointer_rtx)))
1926 #define REG_STRICT_P 0
1928 #else /* REG_OK_STRICT */
1930 #define ARM_REG_OK_FOR_BASE_P(X) \
1931 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1933 #define ARM_REG_OK_FOR_INDEX_P(X) \
1934 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1936 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1937 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1939 #define REG_STRICT_P 1
1941 #endif /* REG_OK_STRICT */
1943 /* Now define some helpers in terms of the above. */
1945 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1946 (TARGET_THUMB1 \
1947 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1948 : ARM_REG_OK_FOR_BASE_P (X))
1950 /* For 16-bit Thumb, a valid index register is anything that can be used in
1951 a byte load instruction. */
1952 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1953 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1955 /* Nonzero if X is a hard reg that can be used as an index
1956 or if it is a pseudo reg. On the Thumb, the stack pointer
1957 is not suitable. */
1958 #define REG_OK_FOR_INDEX_P(X) \
1959 (TARGET_THUMB1 \
1960 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1961 : ARM_REG_OK_FOR_INDEX_P (X))
1963 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1964 For Thumb, we can not use SP + reg, so reject SP. */
1965 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1966 REG_OK_FOR_INDEX_P (X)
1968 #define ARM_BASE_REGISTER_RTX_P(X) \
1969 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1971 #define ARM_INDEX_REGISTER_RTX_P(X) \
1972 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1974 /* Specify the machine mode that this machine uses
1975 for the index in the tablejump instruction. */
1976 #define CASE_VECTOR_MODE Pmode
1978 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1979 || (TARGET_THUMB1 \
1980 && (optimize_size || flag_pic)))
1982 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1983 (TARGET_THUMB1 \
1984 ? (min >= 0 && max < 512 \
1985 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1986 : min >= -256 && max < 256 \
1987 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1988 : min >= 0 && max < 8192 \
1989 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1990 : min >= -4096 && max < 4096 \
1991 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1992 : SImode) \
1993 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1994 : (max >= 0x200) ? HImode \
1995 : QImode))
1997 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1998 unsigned is probably best, but may break some code. */
1999 #ifndef DEFAULT_SIGNED_CHAR
2000 #define DEFAULT_SIGNED_CHAR 0
2001 #endif
2003 /* Max number of bytes we can move from memory to memory
2004 in one reasonably fast instruction. */
2005 #define MOVE_MAX 4
2007 #undef MOVE_RATIO
2008 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2010 /* Define if operations between registers always perform the operation
2011 on the full register even if a narrower mode is specified. */
2012 #define WORD_REGISTER_OPERATIONS
2014 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2015 will either zero-extend or sign-extend. The value of this macro should
2016 be the code that says which one of the two operations is implicitly
2017 done, UNKNOWN if none. */
2018 #define LOAD_EXTEND_OP(MODE) \
2019 (TARGET_THUMB ? ZERO_EXTEND : \
2020 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2021 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2023 /* Nonzero if access to memory by bytes is slow and undesirable. */
2024 #define SLOW_BYTE_ACCESS 0
2026 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2028 /* Immediate shift counts are truncated by the output routines (or was it
2029 the assembler?). Shift counts in a register are truncated by ARM. Note
2030 that the native compiler puts too large (> 32) immediate shift counts
2031 into a register and shifts by the register, letting the ARM decide what
2032 to do instead of doing that itself. */
2033 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2034 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2035 On the arm, Y in a register is used modulo 256 for the shift. Only for
2036 rotates is modulo 32 used. */
2037 /* #define SHIFT_COUNT_TRUNCATED 1 */
2039 /* All integers have the same format so truncation is easy. */
2040 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2042 /* Calling from registers is a massive pain. */
2043 #define NO_FUNCTION_CSE 1
2045 /* The machine modes of pointers and functions */
2046 #define Pmode SImode
2047 #define FUNCTION_MODE Pmode
2049 #define ARM_FRAME_RTX(X) \
2050 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2051 || (X) == arg_pointer_rtx)
2053 /* Try to generate sequences that don't involve branches, we can then use
2054 conditional instructions. */
2055 #define BRANCH_COST(speed_p, predictable_p) \
2056 (current_tune->branch_cost (speed_p, predictable_p))
2058 /* False if short circuit operation is preferred. */
2059 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
2060 ((optimize_size) \
2061 ? (TARGET_THUMB ? false : true) \
2062 : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2065 /* Position Independent Code. */
2066 /* We decide which register to use based on the compilation options and
2067 the assembler in use; this is more general than the APCS restriction of
2068 using sb (r9) all the time. */
2069 extern unsigned arm_pic_register;
2071 /* The register number of the register used to address a table of static
2072 data addresses in memory. */
2073 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2075 /* We can't directly access anything that contains a symbol,
2076 nor can we indirect via the constant pool. One exception is
2077 UNSPEC_TLS, which is always PIC. */
2078 #define LEGITIMATE_PIC_OPERAND_P(X) \
2079 (!(symbol_mentioned_p (X) \
2080 || label_mentioned_p (X) \
2081 || (GET_CODE (X) == SYMBOL_REF \
2082 && CONSTANT_POOL_ADDRESS_P (X) \
2083 && (symbol_mentioned_p (get_pool_constant (X)) \
2084 || label_mentioned_p (get_pool_constant (X))))) \
2085 || tls_mentioned_p (X))
2087 /* We need to know when we are making a constant pool; this determines
2088 whether data needs to be in the GOT or can be referenced via a GOT
2089 offset. */
2090 extern int making_const_table;
2092 /* Handle pragmas for compatibility with Intel's compilers. */
2093 /* Also abuse this to register additional C specific EABI attributes. */
2094 #define REGISTER_TARGET_PRAGMAS() do { \
2095 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2096 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2097 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2098 arm_lang_object_attributes_init(); \
2099 } while (0)
2101 /* Condition code information. */
2102 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2103 return the mode to be used for the comparison. */
2105 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2107 #define REVERSIBLE_CC_MODE(MODE) 1
2109 #define REVERSE_CONDITION(CODE,MODE) \
2110 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2111 ? reverse_condition_maybe_unordered (code) \
2112 : reverse_condition (code))
2114 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2115 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2116 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2117 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2119 #define CC_STATUS_INIT \
2120 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2122 #undef ASM_APP_ON
2123 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2124 "\t.syntax divided\n")
2126 #undef ASM_APP_OFF
2127 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax divided\n" : \
2128 "\t.thumb\n\t.syntax unified\n")
2130 /* Output a push or a pop instruction (only used when profiling).
2131 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2132 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2133 that r7 isn't used by the function profiler, so we can use it as a
2134 scratch reg. WARNING: This isn't safe in the general case! It may be
2135 sensitive to future changes in final.c:profile_function. */
2136 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2137 do \
2139 if (TARGET_ARM) \
2140 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2141 STACK_POINTER_REGNUM, REGNO); \
2142 else if (TARGET_THUMB1 \
2143 && (REGNO) == STATIC_CHAIN_REGNUM) \
2145 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2146 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2147 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2149 else \
2150 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2151 } while (0)
2154 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2155 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2156 do \
2158 if (TARGET_ARM) \
2159 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2160 STACK_POINTER_REGNUM, REGNO); \
2161 else if (TARGET_THUMB1 \
2162 && (REGNO) == STATIC_CHAIN_REGNUM) \
2164 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2165 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2166 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2168 else \
2169 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2170 } while (0)
2172 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2173 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2175 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2176 default alignment from elfos.h. */
2177 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2178 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2180 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2181 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2182 ? 1 : 0)
2184 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2185 do \
2187 if (TARGET_THUMB) \
2189 if (is_called_in_ARM_mode (DECL) \
2190 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2191 && cfun->is_thunk)) \
2192 fprintf (STREAM, "\t.code 32\n") ; \
2193 else if (TARGET_THUMB1) \
2194 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2195 else \
2196 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2198 if (TARGET_POKE_FUNCTION_NAME) \
2199 arm_poke_function_name (STREAM, (const char *) NAME); \
2201 while (0)
2203 /* For aliases of functions we use .thumb_set instead. */
2204 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2205 do \
2207 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2208 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2210 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2212 fprintf (FILE, "\t.thumb_set "); \
2213 assemble_name (FILE, LABEL1); \
2214 fprintf (FILE, ","); \
2215 assemble_name (FILE, LABEL2); \
2216 fprintf (FILE, "\n"); \
2218 else \
2219 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2221 while (0)
2223 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2224 /* To support -falign-* switches we need to use .p2align so
2225 that alignment directives in code sections will be padded
2226 with no-op instructions, rather than zeroes. */
2227 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2228 if ((LOG) != 0) \
2230 if ((MAX_SKIP) == 0) \
2231 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2232 else \
2233 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2234 (int) (LOG), (int) (MAX_SKIP)); \
2236 #endif
2238 /* Add two bytes to the length of conditionally executed Thumb-2
2239 instructions for the IT instruction. */
2240 #define ADJUST_INSN_LENGTH(insn, length) \
2241 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2242 length += 2;
2244 /* Only perform branch elimination (by making instructions conditional) if
2245 we're optimizing. For Thumb-2 check if any IT instructions need
2246 outputting. */
2247 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2248 if (TARGET_ARM && optimize) \
2249 arm_final_prescan_insn (INSN); \
2250 else if (TARGET_THUMB2) \
2251 thumb2_final_prescan_insn (INSN); \
2252 else if (TARGET_THUMB1) \
2253 thumb1_final_prescan_insn (INSN)
2255 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2256 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2257 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2258 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2259 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2260 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2261 : 0))))
2263 /* A C expression whose value is RTL representing the value of the return
2264 address for the frame COUNT steps up from the current frame. */
2266 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2267 arm_return_addr (COUNT, FRAME)
2269 /* Mask of the bits in the PC that contain the real return address
2270 when running in 26-bit mode. */
2271 #define RETURN_ADDR_MASK26 (0x03fffffc)
2273 /* Pick up the return address upon entry to a procedure. Used for
2274 dwarf2 unwind information. This also enables the table driven
2275 mechanism. */
2276 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2277 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2279 /* Used to mask out junk bits from the return address, such as
2280 processor state, interrupt status, condition codes and the like. */
2281 #define MASK_RETURN_ADDR \
2282 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2283 in 26 bit mode, the condition codes must be masked out of the \
2284 return address. This does not apply to ARM6 and later processors \
2285 when running in 32 bit mode. */ \
2286 ((arm_arch4 || TARGET_THUMB) \
2287 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2288 : arm_gen_return_addr_mask ())
2291 /* Do not emit .note.GNU-stack by default. */
2292 #ifndef NEED_INDICATE_EXEC_STACK
2293 #define NEED_INDICATE_EXEC_STACK 0
2294 #endif
2296 #define TARGET_ARM_ARCH \
2297 (arm_base_arch) \
2299 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2300 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2302 /* The highest Thumb instruction set version supported by the chip. */
2303 #define TARGET_ARM_ARCH_ISA_THUMB \
2304 (arm_arch_thumb2 ? 2 \
2305 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2307 /* Expands to an upper-case char of the target's architectural
2308 profile. */
2309 #define TARGET_ARM_ARCH_PROFILE \
2310 (!arm_arch_notm \
2311 ? 'M' \
2312 : (arm_arch7 \
2313 ? (strlen (arm_arch_name) >=3 \
2314 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2315 : 0) \
2316 : 0))
2318 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2319 Bit 0 for bytes, up to bit 3 for double-words. */
2320 #define TARGET_ARM_FEATURE_LDREX \
2321 ((TARGET_HAVE_LDREX ? 4 : 0) \
2322 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2323 | (TARGET_HAVE_LDREXD ? 8 : 0))
2325 /* Set as a bit mask indicating the available widths of hardware floating
2326 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2327 32-bit support, bit 3 indicates 64-bit support. */
2328 #define TARGET_ARM_FP \
2329 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2330 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2331 : 0)
2334 /* Set as a bit mask indicating the available widths of floating point
2335 types for hardware NEON floating point. This is the same as
2336 TARGET_ARM_FP without the 64-bit bit set. */
2337 #define TARGET_NEON_FP \
2338 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2339 : 0)
2341 /* The maximum number of parallel loads or stores we support in an ldm/stm
2342 instruction. */
2343 #define MAX_LDM_STM_OPS 4
2345 #define BIG_LITTLE_SPEC \
2346 " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2348 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2349 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2350 { "rewrite_mcpu", arm_rewrite_mcpu },
2352 #define ASM_CPU_SPEC \
2353 " %{mcpu=generic-*:-march=%*;" \
2354 " :%{march=*:-march=%*}}" \
2355 BIG_LITTLE_SPEC
2357 /* -mcpu=native handling only makes sense with compiler running on
2358 an ARM chip. */
2359 #if defined(__arm__)
2360 extern const char *host_detect_local_cpu (int argc, const char **argv);
2361 # define EXTRA_SPEC_FUNCTIONS \
2362 { "local_cpu_detect", host_detect_local_cpu }, \
2363 BIG_LITTLE_CPU_SPEC_FUNCTIONS
2365 # define MCPU_MTUNE_NATIVE_SPECS \
2366 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2367 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2368 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2369 #else
2370 # define MCPU_MTUNE_NATIVE_SPECS ""
2371 # define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2372 #endif
2374 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2375 #define TARGET_SUPPORTS_WIDE_INT 1
2376 #endif /* ! GCC_ARM_H */