1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "hard-reg-set.h"
30 #include "fold-const.h"
32 #include "tree-pretty-print.h"
34 #include "internal-fn.h"
35 #include "gimple-iterator.h"
36 #include "tree-ssa-live.h"
37 #include "tree-ssa-coalesce.h"
38 #include "diagnostic-core.h"
41 /* This set of routines implements a coalesce_list. This is an object which
42 is used to track pairs of ssa_names which are desirable to coalesce
43 together to avoid copies. Costs are associated with each pair, and when
44 all desired information has been collected, the object can be used to
45 order the pairs for processing. */
47 /* This structure defines a pair entry. */
49 typedef struct coalesce_pair
55 typedef const struct coalesce_pair
*const_coalesce_pair_p
;
57 /* Coalesce pair hashtable helpers. */
59 struct coalesce_pair_hasher
: nofree_ptr_hash
<coalesce_pair
>
61 static inline hashval_t
hash (const coalesce_pair
*);
62 static inline bool equal (const coalesce_pair
*, const coalesce_pair
*);
65 /* Hash function for coalesce list. Calculate hash for PAIR. */
68 coalesce_pair_hasher::hash (const coalesce_pair
*pair
)
70 hashval_t a
= (hashval_t
)(pair
->first_element
);
71 hashval_t b
= (hashval_t
)(pair
->second_element
);
73 return b
* (b
- 1) / 2 + a
;
76 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
77 returning TRUE if the two pairs are equivalent. */
80 coalesce_pair_hasher::equal (const coalesce_pair
*p1
, const coalesce_pair
*p2
)
82 return (p1
->first_element
== p2
->first_element
83 && p1
->second_element
== p2
->second_element
);
86 typedef hash_table
<coalesce_pair_hasher
> coalesce_table_type
;
87 typedef coalesce_table_type::iterator coalesce_iterator_type
;
90 typedef struct cost_one_pair_d
94 struct cost_one_pair_d
*next
;
97 /* This structure maintains the list of coalesce pairs. */
99 typedef struct coalesce_list_d
101 coalesce_table_type
*list
; /* Hash table. */
102 coalesce_pair_p
*sorted
; /* List when sorted. */
103 int num_sorted
; /* Number in the sorted list. */
104 cost_one_pair_p cost_one_list
;/* Single use coalesces with cost 1. */
107 #define NO_BEST_COALESCE -1
108 #define MUST_COALESCE_COST INT_MAX
111 /* Return cost of execution of copy instruction with FREQUENCY. */
114 coalesce_cost (int frequency
, bool optimize_for_size
)
116 /* Base costs on BB frequencies bounded by 1. */
117 int cost
= frequency
;
122 if (optimize_for_size
)
129 /* Return the cost of executing a copy instruction in basic block BB. */
132 coalesce_cost_bb (basic_block bb
)
134 return coalesce_cost (bb
->frequency
, optimize_bb_for_size_p (bb
));
138 /* Return the cost of executing a copy instruction on edge E. */
141 coalesce_cost_edge (edge e
)
145 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
146 if (EDGE_CRITICAL_P (e
))
148 if (e
->flags
& EDGE_ABNORMAL
)
149 return MUST_COALESCE_COST
;
150 if (e
->flags
& EDGE_EH
)
154 FOR_EACH_EDGE (e2
, ei
, e
->dest
->preds
)
157 /* Putting code on EH edge that leads to BB
158 with multiple predecestors imply splitting of
162 /* If there are multiple EH predecestors, we
163 also copy EH regions and produce separate
164 landing pad. This is expensive. */
165 if (e2
->flags
& EDGE_EH
)
173 return coalesce_cost (EDGE_FREQUENCY (e
),
174 optimize_edge_for_size_p (e
)) * mult
;
178 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
179 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
180 NO_BEST_COALESCE is returned if there aren't any. */
183 pop_cost_one_pair (coalesce_list_p cl
, int *p1
, int *p2
)
187 ptr
= cl
->cost_one_list
;
189 return NO_BEST_COALESCE
;
191 *p1
= ptr
->first_element
;
192 *p2
= ptr
->second_element
;
193 cl
->cost_one_list
= ptr
->next
;
200 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
201 2 elements via P1 and P2. Their calculated cost is returned by the function.
202 NO_BEST_COALESCE is returned if the coalesce list is empty. */
205 pop_best_coalesce (coalesce_list_p cl
, int *p1
, int *p2
)
207 coalesce_pair_p node
;
210 if (cl
->sorted
== NULL
)
211 return pop_cost_one_pair (cl
, p1
, p2
);
213 if (cl
->num_sorted
== 0)
214 return pop_cost_one_pair (cl
, p1
, p2
);
216 node
= cl
->sorted
[--(cl
->num_sorted
)];
217 *p1
= node
->first_element
;
218 *p2
= node
->second_element
;
226 /* Create a new empty coalesce list object and return it. */
228 static inline coalesce_list_p
229 create_coalesce_list (void)
231 coalesce_list_p list
;
232 unsigned size
= num_ssa_names
* 3;
237 list
= (coalesce_list_p
) xmalloc (sizeof (struct coalesce_list_d
));
238 list
->list
= new coalesce_table_type (size
);
240 list
->num_sorted
= 0;
241 list
->cost_one_list
= NULL
;
246 /* Delete coalesce list CL. */
249 delete_coalesce_list (coalesce_list_p cl
)
251 gcc_assert (cl
->cost_one_list
== NULL
);
255 gcc_assert (cl
->num_sorted
== 0);
260 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
261 one isn't found, return NULL if CREATE is false, otherwise create a new
262 coalesce pair object and return it. */
264 static coalesce_pair_p
265 find_coalesce_pair (coalesce_list_p cl
, int p1
, int p2
, bool create
)
267 struct coalesce_pair p
;
268 coalesce_pair
**slot
;
271 /* Normalize so that p1 is the smaller value. */
274 p
.first_element
= p2
;
275 p
.second_element
= p1
;
279 p
.first_element
= p1
;
280 p
.second_element
= p2
;
283 hash
= coalesce_pair_hasher::hash (&p
);
284 slot
= cl
->list
->find_slot_with_hash (&p
, hash
, create
? INSERT
: NO_INSERT
);
290 struct coalesce_pair
* pair
= XNEW (struct coalesce_pair
);
291 gcc_assert (cl
->sorted
== NULL
);
292 pair
->first_element
= p
.first_element
;
293 pair
->second_element
= p
.second_element
;
298 return (struct coalesce_pair
*) *slot
;
302 add_cost_one_coalesce (coalesce_list_p cl
, int p1
, int p2
)
304 cost_one_pair_p pair
;
306 pair
= XNEW (struct cost_one_pair_d
);
307 pair
->first_element
= p1
;
308 pair
->second_element
= p2
;
309 pair
->next
= cl
->cost_one_list
;
310 cl
->cost_one_list
= pair
;
314 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
317 add_coalesce (coalesce_list_p cl
, int p1
, int p2
, int value
)
319 coalesce_pair_p node
;
321 gcc_assert (cl
->sorted
== NULL
);
325 node
= find_coalesce_pair (cl
, p1
, p2
, true);
327 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
328 if (node
->cost
< MUST_COALESCE_COST
- 1)
330 if (value
< MUST_COALESCE_COST
- 1)
338 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
341 compare_pairs (const void *p1
, const void *p2
)
343 const_coalesce_pair_p
const *const pp1
= (const_coalesce_pair_p
const *) p1
;
344 const_coalesce_pair_p
const *const pp2
= (const_coalesce_pair_p
const *) p2
;
347 result
= (* pp1
)->cost
- (* pp2
)->cost
;
348 /* Since qsort does not guarantee stability we use the elements
349 as a secondary key. This provides us with independence from
350 the host's implementation of the sorting algorithm. */
353 result
= (* pp2
)->first_element
- (* pp1
)->first_element
;
355 result
= (* pp2
)->second_element
- (* pp1
)->second_element
;
362 /* Return the number of unique coalesce pairs in CL. */
365 num_coalesce_pairs (coalesce_list_p cl
)
367 return cl
->list
->elements ();
371 /* Iterate over CL using ITER, returning values in PAIR. */
373 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
374 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
377 /* Prepare CL for removal of preferred pairs. When finished they are sorted
378 in order from most important coalesce to least important. */
381 sort_coalesce_list (coalesce_list_p cl
)
385 coalesce_iterator_type ppi
;
387 gcc_assert (cl
->sorted
== NULL
);
389 num
= num_coalesce_pairs (cl
);
390 cl
->num_sorted
= num
;
394 /* Allocate a vector for the pair pointers. */
395 cl
->sorted
= XNEWVEC (coalesce_pair_p
, num
);
397 /* Populate the vector with pointers to the pairs. */
399 FOR_EACH_PARTITION_PAIR (p
, ppi
, cl
)
401 gcc_assert (x
== num
);
403 /* Already sorted. */
407 /* If there are only 2, just pick swap them if the order isn't correct. */
410 if (cl
->sorted
[0]->cost
> cl
->sorted
[1]->cost
)
411 std::swap (cl
->sorted
[0], cl
->sorted
[1]);
415 /* Only call qsort if there are more than 2 items.
416 ??? Maybe std::sort will do better, provided that compare_pairs
419 qsort (cl
->sorted
, num
, sizeof (coalesce_pair_p
), compare_pairs
);
423 /* Send debug info for coalesce list CL to file F. */
426 dump_coalesce_list (FILE *f
, coalesce_list_p cl
)
428 coalesce_pair_p node
;
429 coalesce_iterator_type ppi
;
434 if (cl
->sorted
== NULL
)
436 fprintf (f
, "Coalesce List:\n");
437 FOR_EACH_PARTITION_PAIR (node
, ppi
, cl
)
439 tree var1
= ssa_name (node
->first_element
);
440 tree var2
= ssa_name (node
->second_element
);
441 print_generic_expr (f
, var1
, TDF_SLIM
);
442 fprintf (f
, " <-> ");
443 print_generic_expr (f
, var2
, TDF_SLIM
);
444 fprintf (f
, " (%1d), ", node
->cost
);
450 fprintf (f
, "Sorted Coalesce list:\n");
451 for (x
= cl
->num_sorted
- 1 ; x
>=0; x
--)
453 node
= cl
->sorted
[x
];
454 fprintf (f
, "(%d) ", node
->cost
);
455 var
= ssa_name (node
->first_element
);
456 print_generic_expr (f
, var
, TDF_SLIM
);
457 fprintf (f
, " <-> ");
458 var
= ssa_name (node
->second_element
);
459 print_generic_expr (f
, var
, TDF_SLIM
);
466 /* This represents a conflict graph. Implemented as an array of bitmaps.
467 A full matrix is used for conflicts rather than just upper triangular form.
468 this make sit much simpler and faster to perform conflict merges. */
470 typedef struct ssa_conflicts_d
472 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
473 vec
<bitmap
> conflicts
;
476 /* Return an empty new conflict graph for SIZE elements. */
478 static inline ssa_conflicts_p
479 ssa_conflicts_new (unsigned size
)
483 ptr
= XNEW (struct ssa_conflicts_d
);
484 bitmap_obstack_initialize (&ptr
->obstack
);
485 ptr
->conflicts
.create (size
);
486 ptr
->conflicts
.safe_grow_cleared (size
);
491 /* Free storage for conflict graph PTR. */
494 ssa_conflicts_delete (ssa_conflicts_p ptr
)
496 bitmap_obstack_release (&ptr
->obstack
);
497 ptr
->conflicts
.release ();
502 /* Test if elements X and Y conflict in graph PTR. */
505 ssa_conflicts_test_p (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
507 bitmap bx
= ptr
->conflicts
[x
];
508 bitmap by
= ptr
->conflicts
[y
];
510 gcc_checking_assert (x
!= y
);
513 /* Avoid the lookup if Y has no conflicts. */
514 return by
? bitmap_bit_p (bx
, y
) : false;
520 /* Add a conflict with Y to the bitmap for X in graph PTR. */
523 ssa_conflicts_add_one (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
525 bitmap bx
= ptr
->conflicts
[x
];
526 /* If there are no conflicts yet, allocate the bitmap and set bit. */
528 bx
= ptr
->conflicts
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
529 bitmap_set_bit (bx
, y
);
533 /* Add conflicts between X and Y in graph PTR. */
536 ssa_conflicts_add (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
538 gcc_checking_assert (x
!= y
);
539 ssa_conflicts_add_one (ptr
, x
, y
);
540 ssa_conflicts_add_one (ptr
, y
, x
);
544 /* Merge all Y's conflict into X in graph PTR. */
547 ssa_conflicts_merge (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
551 bitmap bx
= ptr
->conflicts
[x
];
552 bitmap by
= ptr
->conflicts
[y
];
554 gcc_checking_assert (x
!= y
);
558 /* Add a conflict between X and every one Y has. If the bitmap doesn't
559 exist, then it has already been coalesced, and we don't need to add a
561 EXECUTE_IF_SET_IN_BITMAP (by
, 0, z
, bi
)
563 bitmap bz
= ptr
->conflicts
[z
];
565 bitmap_set_bit (bz
, x
);
570 /* If X has conflicts, add Y's to X. */
571 bitmap_ior_into (bx
, by
);
573 ptr
->conflicts
[y
] = NULL
;
577 /* If X has no conflicts, simply use Y's. */
578 ptr
->conflicts
[x
] = by
;
579 ptr
->conflicts
[y
] = NULL
;
584 /* Dump a conflicts graph. */
587 ssa_conflicts_dump (FILE *file
, ssa_conflicts_p ptr
)
592 fprintf (file
, "\nConflict graph:\n");
594 FOR_EACH_VEC_ELT (ptr
->conflicts
, x
, b
)
597 fprintf (file
, "%d: ", x
);
598 dump_bitmap (file
, b
);
603 /* This structure is used to efficiently record the current status of live
604 SSA_NAMES when building a conflict graph.
605 LIVE_BASE_VAR has a bit set for each base variable which has at least one
607 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
608 index, and is used to track what partitions of each base variable are
609 live. This makes it easy to add conflicts between just live partitions
610 with the same base variable.
611 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
612 marked as being live. This delays clearing of these bitmaps until
613 they are actually needed again. */
615 typedef struct live_track_d
617 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
618 bitmap live_base_var
; /* Indicates if a basevar is live. */
619 bitmap
*live_base_partitions
; /* Live partitions for each basevar. */
620 var_map map
; /* Var_map being used for partition mapping. */
624 /* This routine will create a new live track structure based on the partitions
628 new_live_track (var_map map
)
633 /* Make sure there is a partition view in place. */
634 gcc_assert (map
->partition_to_base_index
!= NULL
);
636 ptr
= (live_track_p
) xmalloc (sizeof (struct live_track_d
));
638 lim
= num_basevars (map
);
639 bitmap_obstack_initialize (&ptr
->obstack
);
640 ptr
->live_base_partitions
= (bitmap
*) xmalloc (sizeof (bitmap
*) * lim
);
641 ptr
->live_base_var
= BITMAP_ALLOC (&ptr
->obstack
);
642 for (x
= 0; x
< lim
; x
++)
643 ptr
->live_base_partitions
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
648 /* This routine will free the memory associated with PTR. */
651 delete_live_track (live_track_p ptr
)
653 bitmap_obstack_release (&ptr
->obstack
);
654 free (ptr
->live_base_partitions
);
659 /* This function will remove PARTITION from the live list in PTR. */
662 live_track_remove_partition (live_track_p ptr
, int partition
)
666 root
= basevar_index (ptr
->map
, partition
);
667 bitmap_clear_bit (ptr
->live_base_partitions
[root
], partition
);
668 /* If the element list is empty, make the base variable not live either. */
669 if (bitmap_empty_p (ptr
->live_base_partitions
[root
]))
670 bitmap_clear_bit (ptr
->live_base_var
, root
);
674 /* This function will adds PARTITION to the live list in PTR. */
677 live_track_add_partition (live_track_p ptr
, int partition
)
681 root
= basevar_index (ptr
->map
, partition
);
682 /* If this base var wasn't live before, it is now. Clear the element list
683 since it was delayed until needed. */
684 if (bitmap_set_bit (ptr
->live_base_var
, root
))
685 bitmap_clear (ptr
->live_base_partitions
[root
]);
686 bitmap_set_bit (ptr
->live_base_partitions
[root
], partition
);
691 /* Clear the live bit for VAR in PTR. */
694 live_track_clear_var (live_track_p ptr
, tree var
)
698 p
= var_to_partition (ptr
->map
, var
);
699 if (p
!= NO_PARTITION
)
700 live_track_remove_partition (ptr
, p
);
704 /* Return TRUE if VAR is live in PTR. */
707 live_track_live_p (live_track_p ptr
, tree var
)
711 p
= var_to_partition (ptr
->map
, var
);
712 if (p
!= NO_PARTITION
)
714 root
= basevar_index (ptr
->map
, p
);
715 if (bitmap_bit_p (ptr
->live_base_var
, root
))
716 return bitmap_bit_p (ptr
->live_base_partitions
[root
], p
);
722 /* This routine will add USE to PTR. USE will be marked as live in both the
723 ssa live map and the live bitmap for the root of USE. */
726 live_track_process_use (live_track_p ptr
, tree use
)
730 p
= var_to_partition (ptr
->map
, use
);
731 if (p
== NO_PARTITION
)
734 /* Mark as live in the appropriate live list. */
735 live_track_add_partition (ptr
, p
);
739 /* This routine will process a DEF in PTR. DEF will be removed from the live
740 lists, and if there are any other live partitions with the same base
741 variable, conflicts will be added to GRAPH. */
744 live_track_process_def (live_track_p ptr
, tree def
, ssa_conflicts_p graph
)
751 p
= var_to_partition (ptr
->map
, def
);
752 if (p
== NO_PARTITION
)
755 /* Clear the liveness bit. */
756 live_track_remove_partition (ptr
, p
);
758 /* If the bitmap isn't empty now, conflicts need to be added. */
759 root
= basevar_index (ptr
->map
, p
);
760 if (bitmap_bit_p (ptr
->live_base_var
, root
))
762 b
= ptr
->live_base_partitions
[root
];
763 EXECUTE_IF_SET_IN_BITMAP (b
, 0, x
, bi
)
764 ssa_conflicts_add (graph
, p
, x
);
769 /* Initialize PTR with the partitions set in INIT. */
772 live_track_init (live_track_p ptr
, bitmap init
)
777 /* Mark all live on exit partitions. */
778 EXECUTE_IF_SET_IN_BITMAP (init
, 0, p
, bi
)
779 live_track_add_partition (ptr
, p
);
783 /* This routine will clear all live partitions in PTR. */
786 live_track_clear_base_vars (live_track_p ptr
)
788 /* Simply clear the live base list. Anything marked as live in the element
789 lists will be cleared later if/when the base variable ever comes alive
791 bitmap_clear (ptr
->live_base_var
);
795 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
796 partition view of the var_map liveinfo is based on get entries in the
797 conflict graph. Only conflicts between ssa_name partitions with the same
798 base variable are added. */
800 static ssa_conflicts_p
801 build_ssa_conflict_graph (tree_live_info_p liveinfo
)
803 ssa_conflicts_p graph
;
809 map
= live_var_map (liveinfo
);
810 graph
= ssa_conflicts_new (num_var_partitions (map
));
812 live
= new_live_track (map
);
814 FOR_EACH_BB_FN (bb
, cfun
)
816 /* Start with live on exit temporaries. */
817 live_track_init (live
, live_on_exit (liveinfo
, bb
));
819 for (gimple_stmt_iterator gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);
823 gimple stmt
= gsi_stmt (gsi
);
825 /* A copy between 2 partitions does not introduce an interference
826 by itself. If they did, you would never be able to coalesce
827 two things which are copied. If the two variables really do
828 conflict, they will conflict elsewhere in the program.
830 This is handled by simply removing the SRC of the copy from the
831 live list, and processing the stmt normally. */
832 if (is_gimple_assign (stmt
))
834 tree lhs
= gimple_assign_lhs (stmt
);
835 tree rhs1
= gimple_assign_rhs1 (stmt
);
836 if (gimple_assign_copy_p (stmt
)
837 && TREE_CODE (lhs
) == SSA_NAME
838 && TREE_CODE (rhs1
) == SSA_NAME
)
839 live_track_clear_var (live
, rhs1
);
841 else if (is_gimple_debug (stmt
))
844 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_DEF
)
845 live_track_process_def (live
, var
, graph
);
847 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
848 live_track_process_use (live
, var
);
851 /* If result of a PHI is unused, looping over the statements will not
852 record any conflicts since the def was never live. Since the PHI node
853 is going to be translated out of SSA form, it will insert a copy.
854 There must be a conflict recorded between the result of the PHI and
855 any variables that are live. Otherwise the out-of-ssa translation
856 may create incorrect code. */
857 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
860 gphi
*phi
= gsi
.phi ();
861 tree result
= PHI_RESULT (phi
);
862 if (live_track_live_p (live
, result
))
863 live_track_process_def (live
, result
, graph
);
866 live_track_clear_base_vars (live
);
869 delete_live_track (live
);
874 /* Shortcut routine to print messages to file F of the form:
875 "STR1 EXPR1 STR2 EXPR2 STR3." */
878 print_exprs (FILE *f
, const char *str1
, tree expr1
, const char *str2
,
879 tree expr2
, const char *str3
)
881 fprintf (f
, "%s", str1
);
882 print_generic_expr (f
, expr1
, TDF_SLIM
);
883 fprintf (f
, "%s", str2
);
884 print_generic_expr (f
, expr2
, TDF_SLIM
);
885 fprintf (f
, "%s", str3
);
889 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
892 fail_abnormal_edge_coalesce (int x
, int y
)
894 fprintf (stderr
, "\nUnable to coalesce ssa_names %d and %d",x
, y
);
895 fprintf (stderr
, " which are marked as MUST COALESCE.\n");
896 print_generic_expr (stderr
, ssa_name (x
), TDF_SLIM
);
897 fprintf (stderr
, " and ");
898 print_generic_stmt (stderr
, ssa_name (y
), TDF_SLIM
);
900 internal_error ("SSA corruption");
904 /* This function creates a var_map for the current function as well as creating
905 a coalesce list for use later in the out of ssa process. */
908 create_outofssa_var_map (coalesce_list_p cl
, bitmap used_in_copy
)
910 gimple_stmt_iterator gsi
;
920 map
= init_var_map (num_ssa_names
);
922 FOR_EACH_BB_FN (bb
, cfun
)
926 for (gphi_iterator gpi
= gsi_start_phis (bb
);
930 gphi
*phi
= gpi
.phi ();
934 bool saw_copy
= false;
936 res
= gimple_phi_result (phi
);
937 ver
= SSA_NAME_VERSION (res
);
938 register_ssa_partition (map
, res
);
940 /* Register ssa_names and coalesces between the args and the result
942 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
944 edge e
= gimple_phi_arg_edge (phi
, i
);
945 arg
= PHI_ARG_DEF (phi
, i
);
946 if (TREE_CODE (arg
) != SSA_NAME
)
949 register_ssa_partition (map
, arg
);
950 if (gimple_can_coalesce_p (arg
, res
)
951 || (e
->flags
& EDGE_ABNORMAL
))
954 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (arg
));
955 if ((e
->flags
& EDGE_ABNORMAL
) == 0)
957 int cost
= coalesce_cost_edge (e
);
958 if (cost
== 1 && has_single_use (arg
))
959 add_cost_one_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
));
961 add_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
), cost
);
966 bitmap_set_bit (used_in_copy
, ver
);
969 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
971 stmt
= gsi_stmt (gsi
);
973 if (is_gimple_debug (stmt
))
976 /* Register USE and DEF operands in each statement. */
977 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, (SSA_OP_DEF
|SSA_OP_USE
))
978 register_ssa_partition (map
, var
);
980 /* Check for copy coalesces. */
981 switch (gimple_code (stmt
))
985 tree lhs
= gimple_assign_lhs (stmt
);
986 tree rhs1
= gimple_assign_rhs1 (stmt
);
987 if (gimple_assign_ssa_name_copy_p (stmt
)
988 && gimple_can_coalesce_p (lhs
, rhs1
))
990 v1
= SSA_NAME_VERSION (lhs
);
991 v2
= SSA_NAME_VERSION (rhs1
);
992 cost
= coalesce_cost_bb (bb
);
993 add_coalesce (cl
, v1
, v2
, cost
);
994 bitmap_set_bit (used_in_copy
, v1
);
995 bitmap_set_bit (used_in_copy
, v2
);
1002 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1003 unsigned long noutputs
, i
;
1004 unsigned long ninputs
;
1005 tree
*outputs
, link
;
1006 noutputs
= gimple_asm_noutputs (asm_stmt
);
1007 ninputs
= gimple_asm_ninputs (asm_stmt
);
1008 outputs
= (tree
*) alloca (noutputs
* sizeof (tree
));
1009 for (i
= 0; i
< noutputs
; ++i
)
1011 link
= gimple_asm_output_op (asm_stmt
, i
);
1012 outputs
[i
] = TREE_VALUE (link
);
1015 for (i
= 0; i
< ninputs
; ++i
)
1017 const char *constraint
;
1020 unsigned long match
;
1022 link
= gimple_asm_input_op (asm_stmt
, i
);
1024 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1025 input
= TREE_VALUE (link
);
1027 if (TREE_CODE (input
) != SSA_NAME
)
1030 match
= strtoul (constraint
, &end
, 10);
1031 if (match
>= noutputs
|| end
== constraint
)
1034 if (TREE_CODE (outputs
[match
]) != SSA_NAME
)
1037 v1
= SSA_NAME_VERSION (outputs
[match
]);
1038 v2
= SSA_NAME_VERSION (input
);
1040 if (gimple_can_coalesce_p (outputs
[match
], input
))
1042 cost
= coalesce_cost (REG_BR_PROB_BASE
,
1043 optimize_bb_for_size_p (bb
));
1044 add_coalesce (cl
, v1
, v2
, cost
);
1045 bitmap_set_bit (used_in_copy
, v1
);
1046 bitmap_set_bit (used_in_copy
, v2
);
1058 /* Now process result decls and live on entry variables for entry into
1059 the coalesce list. */
1061 for (i
= 1; i
< num_ssa_names
; i
++)
1064 if (var
!= NULL_TREE
&& !virtual_operand_p (var
))
1066 /* Add coalesces between all the result decls. */
1067 if (SSA_NAME_VAR (var
)
1068 && TREE_CODE (SSA_NAME_VAR (var
)) == RESULT_DECL
)
1070 if (first
== NULL_TREE
)
1074 gcc_assert (gimple_can_coalesce_p (var
, first
));
1075 v1
= SSA_NAME_VERSION (first
);
1076 v2
= SSA_NAME_VERSION (var
);
1077 bitmap_set_bit (used_in_copy
, v1
);
1078 bitmap_set_bit (used_in_copy
, v2
);
1079 cost
= coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
1080 add_coalesce (cl
, v1
, v2
, cost
);
1083 /* Mark any default_def variables as being in the coalesce list
1084 since they will have to be coalesced with the base variable. If
1085 not marked as present, they won't be in the coalesce view. */
1086 if (SSA_NAME_IS_DEFAULT_DEF (var
)
1087 && !has_zero_uses (var
))
1088 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (var
));
1096 /* Attempt to coalesce ssa versions X and Y together using the partition
1097 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1098 DEBUG, if it is nun-NULL. */
1101 attempt_coalesce (var_map map
, ssa_conflicts_p graph
, int x
, int y
,
1108 p1
= var_to_partition (map
, ssa_name (x
));
1109 p2
= var_to_partition (map
, ssa_name (y
));
1113 fprintf (debug
, "(%d)", x
);
1114 print_generic_expr (debug
, partition_to_var (map
, p1
), TDF_SLIM
);
1115 fprintf (debug
, " & (%d)", y
);
1116 print_generic_expr (debug
, partition_to_var (map
, p2
), TDF_SLIM
);
1122 fprintf (debug
, ": Already Coalesced.\n");
1127 fprintf (debug
, " [map: %d, %d] ", p1
, p2
);
1130 if (!ssa_conflicts_test_p (graph
, p1
, p2
))
1132 var1
= partition_to_var (map
, p1
);
1133 var2
= partition_to_var (map
, p2
);
1134 z
= var_union (map
, var1
, var2
);
1135 if (z
== NO_PARTITION
)
1138 fprintf (debug
, ": Unable to perform partition union.\n");
1142 /* z is the new combined partition. Remove the other partition from
1143 the list, and merge the conflicts. */
1145 ssa_conflicts_merge (graph
, p1
, p2
);
1147 ssa_conflicts_merge (graph
, p2
, p1
);
1150 fprintf (debug
, ": Success -> %d\n", z
);
1155 fprintf (debug
, ": Fail due to conflict\n");
1161 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1162 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1165 coalesce_partitions (var_map map
, ssa_conflicts_p graph
, coalesce_list_p cl
,
1175 /* First, coalesce all the copies across abnormal edges. These are not placed
1176 in the coalesce list because they do not need to be sorted, and simply
1177 consume extra memory/compilation time in large programs. */
1179 FOR_EACH_BB_FN (bb
, cfun
)
1181 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1182 if (e
->flags
& EDGE_ABNORMAL
)
1185 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1188 gphi
*phi
= gsi
.phi ();
1189 tree arg
= PHI_ARG_DEF (phi
, e
->dest_idx
);
1190 if (SSA_NAME_IS_DEFAULT_DEF (arg
)
1191 && (!SSA_NAME_VAR (arg
)
1192 || TREE_CODE (SSA_NAME_VAR (arg
)) != PARM_DECL
))
1195 tree res
= PHI_RESULT (phi
);
1196 int v1
= SSA_NAME_VERSION (res
);
1197 int v2
= SSA_NAME_VERSION (arg
);
1200 fprintf (debug
, "Abnormal coalesce: ");
1202 if (!attempt_coalesce (map
, graph
, v1
, v2
, debug
))
1203 fail_abnormal_edge_coalesce (v1
, v2
);
1208 /* Now process the items in the coalesce list. */
1210 while ((cost
= pop_best_coalesce (cl
, &x
, &y
)) != NO_BEST_COALESCE
)
1212 var1
= ssa_name (x
);
1213 var2
= ssa_name (y
);
1215 /* Assert the coalesces have the same base variable. */
1216 gcc_assert (gimple_can_coalesce_p (var1
, var2
));
1219 fprintf (debug
, "Coalesce list: ");
1220 attempt_coalesce (map
, graph
, x
, y
, debug
);
1225 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1227 struct ssa_name_var_hash
: nofree_ptr_hash
<tree_node
>
1229 static inline hashval_t
hash (const tree_node
*);
1230 static inline int equal (const tree_node
*, const tree_node
*);
1234 ssa_name_var_hash::hash (const_tree n
)
1236 return DECL_UID (SSA_NAME_VAR (n
));
1240 ssa_name_var_hash::equal (const tree_node
*n1
, const tree_node
*n2
)
1242 return SSA_NAME_VAR (n1
) == SSA_NAME_VAR (n2
);
1246 /* Reduce the number of copies by coalescing variables in the function. Return
1247 a partition map with the resulting coalesces. */
1250 coalesce_ssa_name (void)
1252 tree_live_info_p liveinfo
;
1253 ssa_conflicts_p graph
;
1255 bitmap used_in_copies
= BITMAP_ALLOC (NULL
);
1259 cl
= create_coalesce_list ();
1260 map
= create_outofssa_var_map (cl
, used_in_copies
);
1262 /* If optimization is disabled, we need to coalesce all the names originating
1263 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1266 hash_table
<ssa_name_var_hash
> ssa_name_hash (10);
1268 for (i
= 1; i
< num_ssa_names
; i
++)
1270 tree a
= ssa_name (i
);
1274 && !DECL_IGNORED_P (SSA_NAME_VAR (a
))
1275 && (!has_zero_uses (a
) || !SSA_NAME_IS_DEFAULT_DEF (a
)))
1277 tree
*slot
= ssa_name_hash
.find_slot (a
, INSERT
);
1283 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1284 _require_ that all the names originating from it be
1285 coalesced, because there must be a single partition
1286 containing all the names so that it can be assigned
1287 the canonical RTL location of the DECL safely.
1288 If in_lto_p, a function could have been compiled
1289 originally with optimizations and only the link
1290 performed at -O0, so we can't actually require it. */
1292 = (TREE_CODE (SSA_NAME_VAR (a
)) == VAR_DECL
|| in_lto_p
)
1293 ? MUST_COALESCE_COST
- 1 : MUST_COALESCE_COST
;
1294 add_coalesce (cl
, SSA_NAME_VERSION (a
),
1295 SSA_NAME_VERSION (*slot
), cost
);
1296 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (a
));
1297 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (*slot
));
1302 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1303 dump_var_map (dump_file
, map
);
1305 /* Don't calculate live ranges for variables not in the coalesce list. */
1306 partition_view_bitmap (map
, used_in_copies
, true);
1307 BITMAP_FREE (used_in_copies
);
1309 if (num_var_partitions (map
) < 1)
1311 delete_coalesce_list (cl
);
1315 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1316 dump_var_map (dump_file
, map
);
1318 liveinfo
= calculate_live_ranges (map
, false);
1320 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1321 dump_live_info (dump_file
, liveinfo
, LIVEDUMP_ENTRY
);
1323 /* Build a conflict graph. */
1324 graph
= build_ssa_conflict_graph (liveinfo
);
1325 delete_tree_live_info (liveinfo
);
1326 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1327 ssa_conflicts_dump (dump_file
, graph
);
1329 sort_coalesce_list (cl
);
1331 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1333 fprintf (dump_file
, "\nAfter sorting:\n");
1334 dump_coalesce_list (dump_file
, cl
);
1337 /* First, coalesce all live on entry variables to their base variable.
1338 This will ensure the first use is coming from the correct location. */
1340 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1341 dump_var_map (dump_file
, map
);
1343 /* Now coalesce everything in the list. */
1344 coalesce_partitions (map
, graph
, cl
,
1345 ((dump_flags
& TDF_DETAILS
) ? dump_file
1348 delete_coalesce_list (cl
);
1349 ssa_conflicts_delete (graph
);