1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
38 o Some pseudos might be spilled to assign hard registers to
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
105 #include "coretypes.h"
112 #include "insn-config.h"
113 #include "insn-codes.h"
116 #include "addresses.h"
124 #include "emit-rtl.h"
129 #include "cfgbuild.h"
131 #include "tree-pass.h"
135 #include "alloc-pool.h"
137 #include "insn-attr.h"
140 /* Dump bitmap SET with TITLE and BB INDEX. */
142 lra_dump_bitmap_with_title (const char *title
, bitmap set
, int index
)
147 static const int max_nums_on_line
= 10;
149 if (bitmap_empty_p (set
))
151 fprintf (lra_dump_file
, " %s %d:", title
, index
);
152 fprintf (lra_dump_file
, "\n");
153 count
= max_nums_on_line
+ 1;
154 EXECUTE_IF_SET_IN_BITMAP (set
, 0, i
, bi
)
156 if (count
> max_nums_on_line
)
158 fprintf (lra_dump_file
, "\n ");
161 fprintf (lra_dump_file
, " %4u", i
);
164 fprintf (lra_dump_file
, "\n");
167 /* Hard registers currently not available for allocation. It can
168 changed after some hard registers become not eliminable. */
169 HARD_REG_SET lra_no_alloc_regs
;
171 static int get_new_reg_value (void);
172 static void expand_reg_info (void);
173 static void invalidate_insn_recog_data (int);
174 static int get_insn_freq (rtx_insn
*);
175 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t
,
178 /* Expand all regno related info needed for LRA. */
180 expand_reg_data (int old
)
184 ira_expand_reg_equiv ();
185 for (int i
= (int) max_reg_num () - 1; i
>= old
; i
--)
186 lra_change_class (i
, ALL_REGS
, " Set", true);
189 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
190 or of VOIDmode, use MD_MODE for the new reg. Initialize its
191 register class to RCLASS. Print message about assigning class
192 RCLASS containing new register name TITLE unless it is NULL. Use
193 attributes of ORIGINAL if it is a register. The created register
194 will have unique held value. */
196 lra_create_new_reg_with_unique_value (machine_mode md_mode
, rtx original
,
197 enum reg_class rclass
, const char *title
)
202 if (original
== NULL_RTX
|| (mode
= GET_MODE (original
)) == VOIDmode
)
204 lra_assert (mode
!= VOIDmode
);
205 new_reg
= gen_reg_rtx (mode
);
206 if (original
== NULL_RTX
|| ! REG_P (original
))
208 if (lra_dump_file
!= NULL
)
209 fprintf (lra_dump_file
, " Creating newreg=%i", REGNO (new_reg
));
213 if (ORIGINAL_REGNO (original
) >= FIRST_PSEUDO_REGISTER
)
214 ORIGINAL_REGNO (new_reg
) = ORIGINAL_REGNO (original
);
215 REG_USERVAR_P (new_reg
) = REG_USERVAR_P (original
);
216 REG_POINTER (new_reg
) = REG_POINTER (original
);
217 REG_ATTRS (new_reg
) = REG_ATTRS (original
);
218 if (lra_dump_file
!= NULL
)
219 fprintf (lra_dump_file
, " Creating newreg=%i from oldreg=%i",
220 REGNO (new_reg
), REGNO (original
));
222 if (lra_dump_file
!= NULL
)
225 fprintf (lra_dump_file
, ", assigning class %s to%s%s r%d",
226 reg_class_names
[rclass
], *title
== '\0' ? "" : " ",
227 title
, REGNO (new_reg
));
228 fprintf (lra_dump_file
, "\n");
230 expand_reg_data (max_reg_num ());
231 setup_reg_classes (REGNO (new_reg
), rclass
, NO_REGS
, rclass
);
235 /* Analogous to the previous function but also inherits value of
238 lra_create_new_reg (machine_mode md_mode
, rtx original
,
239 enum reg_class rclass
, const char *title
)
244 = lra_create_new_reg_with_unique_value (md_mode
, original
, rclass
, title
);
245 if (original
!= NULL_RTX
&& REG_P (original
))
246 lra_assign_reg_val (REGNO (original
), REGNO (new_reg
));
250 /* Set up for REGNO unique hold value. */
252 lra_set_regno_unique_value (int regno
)
254 lra_reg_info
[regno
].val
= get_new_reg_value ();
257 /* Invalidate INSN related info used by LRA. The info should never be
260 lra_invalidate_insn_data (rtx_insn
*insn
)
262 lra_invalidate_insn_regno_info (insn
);
263 invalidate_insn_recog_data (INSN_UID (insn
));
266 /* Mark INSN deleted and invalidate the insn related info used by
269 lra_set_insn_deleted (rtx_insn
*insn
)
271 lra_invalidate_insn_data (insn
);
272 SET_INSN_DELETED (insn
);
275 /* Delete an unneeded INSN and any previous insns who sole purpose is
276 loading data that is dead in INSN. */
278 lra_delete_dead_insn (rtx_insn
*insn
)
280 rtx_insn
*prev
= prev_real_insn (insn
);
283 /* If the previous insn sets a register that dies in our insn,
285 if (prev
&& GET_CODE (PATTERN (prev
)) == SET
286 && (prev_dest
= SET_DEST (PATTERN (prev
)), REG_P (prev_dest
))
287 && reg_mentioned_p (prev_dest
, PATTERN (insn
))
288 && find_regno_note (insn
, REG_DEAD
, REGNO (prev_dest
))
289 && ! side_effects_p (SET_SRC (PATTERN (prev
))))
290 lra_delete_dead_insn (prev
);
292 lra_set_insn_deleted (insn
);
295 /* Emit insn x = y + z. Return NULL if we failed to do it.
296 Otherwise, return the insn. We don't use gen_add3_insn as it might
299 emit_add3_insn (rtx x
, rtx y
, rtx z
)
303 last
= get_last_insn ();
305 if (have_addptr3_insn (x
, y
, z
))
307 rtx_insn
*insn
= gen_addptr3_insn (x
, y
, z
);
309 /* If the target provides an "addptr" pattern it hopefully does
310 for a reason. So falling back to the normal add would be
312 lra_assert (insn
!= NULL_RTX
);
317 rtx_insn
*insn
= emit_insn (gen_rtx_SET (x
, gen_rtx_PLUS (GET_MODE (y
),
319 if (recog_memoized (insn
) < 0)
321 delete_insns_since (last
);
327 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
330 emit_add2_insn (rtx x
, rtx y
)
332 rtx_insn
*insn
= emit_add3_insn (x
, x
, y
);
333 if (insn
== NULL_RTX
)
335 insn
= gen_add2_insn (x
, y
);
336 if (insn
!= NULL_RTX
)
342 /* Target checks operands through operand predicates to recognize an
343 insn. We should have a special precaution to generate add insns
344 which are frequent results of elimination.
346 Emit insns for x = y + z. X can be used to store intermediate
347 values and should be not in Y and Z when we use X to store an
348 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
349 + disp] where base and index are registers, disp and scale are
350 constants. Y should contain base if it is present, Z should
351 contain disp if any. index[*scale] can be part of Y or Z. */
353 lra_emit_add (rtx x
, rtx y
, rtx z
)
357 rtx a1
, a2
, base
, index
, disp
, scale
, index_scale
;
360 rtx_insn
*add3_insn
= emit_add3_insn (x
, y
, z
);
361 old
= max_reg_num ();
362 if (add3_insn
!= NULL
)
366 disp
= a2
= NULL_RTX
;
367 if (GET_CODE (y
) == PLUS
)
381 index_scale
= scale
= NULL_RTX
;
382 if (GET_CODE (a1
) == MULT
)
385 index
= XEXP (a1
, 0);
386 scale
= XEXP (a1
, 1);
389 else if (a2
!= NULL_RTX
&& GET_CODE (a2
) == MULT
)
392 index
= XEXP (a2
, 0);
393 scale
= XEXP (a2
, 1);
401 if (! (REG_P (base
) || GET_CODE (base
) == SUBREG
)
402 || (index
!= NULL_RTX
403 && ! (REG_P (index
) || GET_CODE (index
) == SUBREG
))
404 || (disp
!= NULL_RTX
&& ! CONSTANT_P (disp
))
405 || (scale
!= NULL_RTX
&& ! CONSTANT_P (scale
)))
407 /* Probably we have no 3 op add. Last chance is to use 2-op
408 add insn. To succeed, don't move Z to X as an address
409 segment always comes in Y. Otherwise, we might fail when
410 adding the address segment to register. */
411 lra_assert (x
!= y
&& x
!= z
);
412 emit_move_insn (x
, y
);
413 rtx_insn
*insn
= emit_add2_insn (x
, z
);
414 lra_assert (insn
!= NULL_RTX
);
418 if (index_scale
== NULL_RTX
)
420 if (disp
== NULL_RTX
)
422 /* Generate x = index_scale; x = x + base. */
423 lra_assert (index_scale
!= NULL_RTX
&& base
!= NULL_RTX
);
424 emit_move_insn (x
, index_scale
);
425 rtx_insn
*insn
= emit_add2_insn (x
, base
);
426 lra_assert (insn
!= NULL_RTX
);
428 else if (scale
== NULL_RTX
)
430 /* Try x = base + disp. */
431 lra_assert (base
!= NULL_RTX
);
432 last
= get_last_insn ();
433 rtx_insn
*move_insn
=
434 emit_move_insn (x
, gen_rtx_PLUS (GET_MODE (base
), base
, disp
));
435 if (recog_memoized (move_insn
) < 0)
437 delete_insns_since (last
);
438 /* Generate x = disp; x = x + base. */
439 emit_move_insn (x
, disp
);
440 rtx_insn
*add2_insn
= emit_add2_insn (x
, base
);
441 lra_assert (add2_insn
!= NULL_RTX
);
443 /* Generate x = x + index. */
444 if (index
!= NULL_RTX
)
446 rtx_insn
*insn
= emit_add2_insn (x
, index
);
447 lra_assert (insn
!= NULL_RTX
);
452 /* Try x = index_scale; x = x + disp; x = x + base. */
453 last
= get_last_insn ();
454 rtx_insn
*move_insn
= emit_move_insn (x
, index_scale
);
456 if (recog_memoized (move_insn
) >= 0)
458 rtx_insn
*insn
= emit_add2_insn (x
, disp
);
459 if (insn
!= NULL_RTX
)
461 insn
= emit_add2_insn (x
, base
);
462 if (insn
!= NULL_RTX
)
468 delete_insns_since (last
);
469 /* Generate x = disp; x = x + base; x = x + index_scale. */
470 emit_move_insn (x
, disp
);
471 rtx_insn
*insn
= emit_add2_insn (x
, base
);
472 lra_assert (insn
!= NULL_RTX
);
473 insn
= emit_add2_insn (x
, index_scale
);
474 lra_assert (insn
!= NULL_RTX
);
479 /* Functions emit_... can create pseudos -- so expand the pseudo
481 if (old
!= max_reg_num ())
482 expand_reg_data (old
);
485 /* The number of emitted reload insns so far. */
486 int lra_curr_reload_num
;
488 /* Emit x := y, processing special case when y = u + v or y = u + v *
489 scale + w through emit_add (Y can be an address which is base +
490 index reg * scale + displacement in general case). X may be used
491 as intermediate result therefore it should be not in Y. */
493 lra_emit_move (rtx x
, rtx y
)
497 if (GET_CODE (y
) != PLUS
)
499 if (rtx_equal_p (x
, y
))
501 old
= max_reg_num ();
502 emit_move_insn (x
, y
);
504 lra_reg_info
[ORIGINAL_REGNO (x
)].last_reload
= ++lra_curr_reload_num
;
505 /* Function emit_move can create pseudos -- so expand the pseudo
507 if (old
!= max_reg_num ())
508 expand_reg_data (old
);
511 lra_emit_add (x
, XEXP (y
, 0), XEXP (y
, 1));
514 /* Update insn operands which are duplication of operands whose
515 numbers are in array of NOPS (with end marker -1). The insn is
516 represented by its LRA internal representation ID. */
518 lra_update_dups (lra_insn_recog_data_t id
, signed char *nops
)
521 struct lra_static_insn_data
*static_id
= id
->insn_static_data
;
523 for (i
= 0; i
< static_id
->n_dups
; i
++)
524 for (j
= 0; (nop
= nops
[j
]) >= 0; j
++)
525 if (static_id
->dup_num
[i
] == nop
)
526 *id
->dup_loc
[i
] = *id
->operand_loc
[nop
];
531 /* This page contains code dealing with info about registers in the
534 /* Pools for insn reg info. */
535 pool_allocator
<lra_insn_reg
> lra_insn_reg::pool ("insn regs", 100);
537 /* Create LRA insn related info about a reference to REGNO in INSN with
538 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
539 reference through subreg (SUBREG_P), flag that is early clobbered
540 in the insn (EARLY_CLOBBER), and reference to the next insn reg
542 static struct lra_insn_reg
*
543 new_insn_reg (rtx_insn
*insn
, int regno
, enum op_type type
,
545 bool subreg_p
, bool early_clobber
, struct lra_insn_reg
*next
)
547 lra_insn_reg
*ir
= new lra_insn_reg ();
549 ir
->biggest_mode
= mode
;
550 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (lra_reg_info
[regno
].biggest_mode
)
551 && NONDEBUG_INSN_P (insn
))
552 lra_reg_info
[regno
].biggest_mode
= mode
;
553 ir
->subreg_p
= subreg_p
;
554 ir
->early_clobber
= early_clobber
;
560 /* Free insn reg info list IR. */
562 free_insn_regs (struct lra_insn_reg
*ir
)
564 struct lra_insn_reg
*next_ir
;
566 for (; ir
!= NULL
; ir
= next_ir
)
573 /* Finish pool for insn reg info. */
575 finish_insn_regs (void)
577 lra_insn_reg::pool
.release ();
582 /* This page contains code dealing LRA insn info (or in other words
583 LRA internal insn representation). */
585 /* Map INSN_CODE -> the static insn data. This info is valid during
586 all translation unit. */
587 struct lra_static_insn_data
*insn_code_data
[LAST_INSN_CODE
];
589 /* Debug insns are represented as a special insn with one input
590 operand which is RTL expression in var_location. */
592 /* The following data are used as static insn operand data for all
593 debug insns. If structure lra_operand_data is changed, the
594 initializer should be changed too. */
595 static struct lra_operand_data debug_operand_data
=
597 NULL
, /* alternative */
598 VOIDmode
, /* We are not interesting in the operand mode. */
603 /* The following data are used as static insn data for all debug
604 insns. If structure lra_static_insn_data is changed, the
605 initializer should be changed too. */
606 static struct lra_static_insn_data debug_insn_static_data
=
609 0, /* Duplication operands #. */
610 -1, /* Commutative operand #. */
611 1, /* Operands #. There is only one operand which is debug RTL
613 0, /* Duplications #. */
614 0, /* Alternatives #. We are not interesting in alternatives
615 because we does not proceed debug_insns for reloads. */
616 NULL
, /* Hard registers referenced in machine description. */
617 NULL
/* Descriptions of operands in alternatives. */
620 /* Called once per compiler work to initialize some LRA data related
623 init_insn_code_data_once (void)
625 memset (insn_code_data
, 0, sizeof (insn_code_data
));
628 /* Called once per compiler work to finalize some LRA data related to
631 finish_insn_code_data_once (void)
635 for (i
= 0; i
< LAST_INSN_CODE
; i
++)
637 if (insn_code_data
[i
] != NULL
)
638 free (insn_code_data
[i
]);
642 /* Return static insn data, allocate and setup if necessary. Although
643 dup_num is static data (it depends only on icode), to set it up we
644 need to extract insn first. So recog_data should be valid for
645 normal insn (ICODE >= 0) before the call. */
646 static struct lra_static_insn_data
*
647 get_static_insn_data (int icode
, int nop
, int ndup
, int nalt
)
649 struct lra_static_insn_data
*data
;
652 lra_assert (icode
< LAST_INSN_CODE
);
653 if (icode
>= 0 && (data
= insn_code_data
[icode
]) != NULL
)
655 lra_assert (nop
>= 0 && ndup
>= 0 && nalt
>= 0);
656 n_bytes
= sizeof (struct lra_static_insn_data
)
657 + sizeof (struct lra_operand_data
) * nop
658 + sizeof (int) * ndup
;
659 data
= XNEWVAR (struct lra_static_insn_data
, n_bytes
);
660 data
->operand_alternative
= NULL
;
661 data
->n_operands
= nop
;
663 data
->n_alternatives
= nalt
;
664 data
->operand
= ((struct lra_operand_data
*)
665 ((char *) data
+ sizeof (struct lra_static_insn_data
)));
666 data
->dup_num
= ((int *) ((char *) data
->operand
667 + sizeof (struct lra_operand_data
) * nop
));
672 insn_code_data
[icode
] = data
;
673 for (i
= 0; i
< nop
; i
++)
675 data
->operand
[i
].constraint
676 = insn_data
[icode
].operand
[i
].constraint
;
677 data
->operand
[i
].mode
= insn_data
[icode
].operand
[i
].mode
;
678 data
->operand
[i
].strict_low
= insn_data
[icode
].operand
[i
].strict_low
;
679 data
->operand
[i
].is_operator
680 = insn_data
[icode
].operand
[i
].is_operator
;
681 data
->operand
[i
].type
682 = (data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
683 : data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
685 data
->operand
[i
].is_address
= false;
687 for (i
= 0; i
< ndup
; i
++)
688 data
->dup_num
[i
] = recog_data
.dup_num
[i
];
693 /* The current length of the following array. */
694 int lra_insn_recog_data_len
;
696 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
697 lra_insn_recog_data_t
*lra_insn_recog_data
;
699 /* Initialize LRA data about insns. */
701 init_insn_recog_data (void)
703 lra_insn_recog_data_len
= 0;
704 lra_insn_recog_data
= NULL
;
707 /* Expand, if necessary, LRA data about insns. */
709 check_and_expand_insn_recog_data (int index
)
713 if (lra_insn_recog_data_len
> index
)
715 old
= lra_insn_recog_data_len
;
716 lra_insn_recog_data_len
= index
* 3 / 2 + 1;
717 lra_insn_recog_data
= XRESIZEVEC (lra_insn_recog_data_t
,
719 lra_insn_recog_data_len
);
720 for (i
= old
; i
< lra_insn_recog_data_len
; i
++)
721 lra_insn_recog_data
[i
] = NULL
;
724 /* Finish LRA DATA about insn. */
726 free_insn_recog_data (lra_insn_recog_data_t data
)
728 if (data
->operand_loc
!= NULL
)
729 free (data
->operand_loc
);
730 if (data
->dup_loc
!= NULL
)
731 free (data
->dup_loc
);
732 if (data
->arg_hard_regs
!= NULL
)
733 free (data
->arg_hard_regs
);
734 if (data
->icode
< 0 && NONDEBUG_INSN_P (data
->insn
))
736 if (data
->insn_static_data
->operand_alternative
!= NULL
)
737 free (const_cast <operand_alternative
*>
738 (data
->insn_static_data
->operand_alternative
));
739 free_insn_regs (data
->insn_static_data
->hard_regs
);
740 free (data
->insn_static_data
);
742 free_insn_regs (data
->regs
);
747 /* Finish LRA data about all insns. */
749 finish_insn_recog_data (void)
752 lra_insn_recog_data_t data
;
754 for (i
= 0; i
< lra_insn_recog_data_len
; i
++)
755 if ((data
= lra_insn_recog_data
[i
]) != NULL
)
756 free_insn_recog_data (data
);
758 lra_copy::pool
.release ();
759 lra_insn_reg::pool
.release ();
760 free (lra_insn_recog_data
);
763 /* Setup info about operands in alternatives of LRA DATA of insn. */
765 setup_operand_alternative (lra_insn_recog_data_t data
,
766 const operand_alternative
*op_alt
)
769 int icode
= data
->icode
;
770 struct lra_static_insn_data
*static_data
= data
->insn_static_data
;
772 static_data
->commutative
= -1;
773 nop
= static_data
->n_operands
;
774 nalt
= static_data
->n_alternatives
;
775 static_data
->operand_alternative
= op_alt
;
776 for (i
= 0; i
< nop
; i
++)
778 static_data
->operand
[i
].early_clobber
= false;
779 static_data
->operand
[i
].is_address
= false;
780 if (static_data
->operand
[i
].constraint
[0] == '%')
782 /* We currently only support one commutative pair of operands. */
783 if (static_data
->commutative
< 0)
784 static_data
->commutative
= i
;
786 lra_assert (icode
< 0); /* Asm */
787 /* The last operand should not be marked commutative. */
788 lra_assert (i
!= nop
- 1);
791 for (j
= 0; j
< nalt
; j
++)
792 for (i
= 0; i
< nop
; i
++, op_alt
++)
794 static_data
->operand
[i
].early_clobber
|= op_alt
->earlyclobber
;
795 static_data
->operand
[i
].is_address
|= op_alt
->is_address
;
799 /* Recursively process X and collect info about registers, which are
800 not the insn operands, in X with TYPE (in/out/inout) and flag that
801 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
802 to LIST. X is a part of insn given by DATA. Return the result
804 static struct lra_insn_reg
*
805 collect_non_operand_hard_regs (rtx
*x
, lra_insn_recog_data_t data
,
806 struct lra_insn_reg
*list
,
807 enum op_type type
, bool early_clobber
)
809 int i
, j
, regno
, last
;
812 struct lra_insn_reg
*curr
;
814 enum rtx_code code
= GET_CODE (op
);
815 const char *fmt
= GET_RTX_FORMAT (code
);
817 for (i
= 0; i
< data
->insn_static_data
->n_operands
; i
++)
818 if (x
== data
->operand_loc
[i
])
819 /* It is an operand loc. Stop here. */
821 for (i
= 0; i
< data
->insn_static_data
->n_dups
; i
++)
822 if (x
== data
->dup_loc
[i
])
823 /* It is a dup loc. Stop here. */
825 mode
= GET_MODE (op
);
829 op
= SUBREG_REG (op
);
830 code
= GET_CODE (op
);
831 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (op
)))
833 mode
= GET_MODE (op
);
834 if (GET_MODE_SIZE (mode
) > REGMODE_NATURAL_SIZE (mode
))
840 if ((regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
)
842 /* Process all regs even unallocatable ones as we need info
843 about all regs for rematerialization pass. */
844 for (last
= regno
+ hard_regno_nregs
[regno
][mode
];
848 for (curr
= list
; curr
!= NULL
; curr
= curr
->next
)
849 if (curr
->regno
== regno
&& curr
->subreg_p
== subreg_p
850 && curr
->biggest_mode
== mode
)
852 if (curr
->type
!= type
)
853 curr
->type
= OP_INOUT
;
854 if (curr
->early_clobber
!= early_clobber
)
855 curr
->early_clobber
= true;
860 /* This is a new hard regno or the info can not be
861 integrated into the found structure. */
865 /* This clobber is to inform popping floating
867 && ! (FIRST_STACK_REG
<= regno
868 && regno
<= LAST_STACK_REG
));
870 list
= new_insn_reg (data
->insn
, regno
, type
, mode
, subreg_p
,
871 early_clobber
, list
);
879 list
= collect_non_operand_hard_regs (&SET_DEST (op
), data
,
880 list
, OP_OUT
, false);
881 list
= collect_non_operand_hard_regs (&SET_SRC (op
), data
,
885 /* We treat clobber of non-operand hard registers as early
886 clobber (the behavior is expected from asm). */
887 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
890 case PRE_INC
: case PRE_DEC
: case POST_INC
: case POST_DEC
:
891 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
892 list
, OP_INOUT
, false);
894 case PRE_MODIFY
: case POST_MODIFY
:
895 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
896 list
, OP_INOUT
, false);
897 list
= collect_non_operand_hard_regs (&XEXP (op
, 1), data
,
901 fmt
= GET_RTX_FORMAT (code
);
902 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
905 list
= collect_non_operand_hard_regs (&XEXP (op
, i
), data
,
907 else if (fmt
[i
] == 'E')
908 for (j
= XVECLEN (op
, i
) - 1; j
>= 0; j
--)
909 list
= collect_non_operand_hard_regs (&XVECEXP (op
, i
, j
), data
,
916 /* Set up and return info about INSN. Set up the info if it is not set up
918 lra_insn_recog_data_t
919 lra_set_insn_recog_data (rtx_insn
*insn
)
921 lra_insn_recog_data_t data
;
924 unsigned int uid
= INSN_UID (insn
);
925 struct lra_static_insn_data
*insn_static_data
;
927 check_and_expand_insn_recog_data (uid
);
928 if (DEBUG_INSN_P (insn
))
932 icode
= INSN_CODE (insn
);
934 /* It might be a new simple insn which is not recognized yet. */
935 INSN_CODE (insn
) = icode
= recog_memoized (insn
);
937 data
= XNEW (struct lra_insn_recog_data
);
938 lra_insn_recog_data
[uid
] = data
;
940 data
->used_insn_alternative
= -1;
943 if (DEBUG_INSN_P (insn
))
945 data
->insn_static_data
= &debug_insn_static_data
;
946 data
->dup_loc
= NULL
;
947 data
->arg_hard_regs
= NULL
;
948 data
->preferred_alternatives
= ALL_ALTERNATIVES
;
949 data
->operand_loc
= XNEWVEC (rtx
*, 1);
950 data
->operand_loc
[0] = &INSN_VAR_LOCATION_LOC (insn
);
956 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
957 const char *constraints
[MAX_RECOG_OPERANDS
];
959 nop
= asm_noperands (PATTERN (insn
));
960 data
->operand_loc
= data
->dup_loc
= NULL
;
964 /* It is a special insn like USE or CLOBBER. We should
965 recognize any regular insn otherwise LRA can do nothing
967 gcc_assert (GET_CODE (PATTERN (insn
)) == USE
968 || GET_CODE (PATTERN (insn
)) == CLOBBER
969 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
970 data
->insn_static_data
= insn_static_data
971 = get_static_insn_data (-1, 0, 0, nalt
);
975 /* expand_asm_operands makes sure there aren't too many
977 lra_assert (nop
<= MAX_RECOG_OPERANDS
);
979 data
->operand_loc
= XNEWVEC (rtx
*, nop
);
980 /* Now get the operand values and constraints out of the
982 decode_asm_operands (PATTERN (insn
), NULL
,
984 constraints
, operand_mode
, NULL
);
987 const char *p
= recog_data
.constraints
[0];
989 for (p
= constraints
[0]; *p
; p
++)
992 data
->insn_static_data
= insn_static_data
993 = get_static_insn_data (-1, nop
, 0, nalt
);
994 for (i
= 0; i
< nop
; i
++)
996 insn_static_data
->operand
[i
].mode
= operand_mode
[i
];
997 insn_static_data
->operand
[i
].constraint
= constraints
[i
];
998 insn_static_data
->operand
[i
].strict_low
= false;
999 insn_static_data
->operand
[i
].is_operator
= false;
1000 insn_static_data
->operand
[i
].is_address
= false;
1003 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1004 insn_static_data
->operand
[i
].type
1005 = (insn_static_data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
1006 : insn_static_data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
1008 data
->preferred_alternatives
= ALL_ALTERNATIVES
;
1011 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
,
1013 preprocess_constraints (nop
, nalt
, constraints
, op_alt
);
1014 setup_operand_alternative (data
, op_alt
);
1019 insn_extract (insn
);
1020 data
->insn_static_data
= insn_static_data
1021 = get_static_insn_data (icode
, insn_data
[icode
].n_operands
,
1022 insn_data
[icode
].n_dups
,
1023 insn_data
[icode
].n_alternatives
);
1024 n
= insn_static_data
->n_operands
;
1029 locs
= XNEWVEC (rtx
*, n
);
1030 memcpy (locs
, recog_data
.operand_loc
, n
* sizeof (rtx
*));
1032 data
->operand_loc
= locs
;
1033 n
= insn_static_data
->n_dups
;
1038 locs
= XNEWVEC (rtx
*, n
);
1039 memcpy (locs
, recog_data
.dup_loc
, n
* sizeof (rtx
*));
1041 data
->dup_loc
= locs
;
1042 data
->preferred_alternatives
= get_preferred_alternatives (insn
);
1043 const operand_alternative
*op_alt
= preprocess_insn_constraints (icode
);
1044 if (!insn_static_data
->operand_alternative
)
1045 setup_operand_alternative (data
, op_alt
);
1046 else if (op_alt
!= insn_static_data
->operand_alternative
)
1047 insn_static_data
->operand_alternative
= op_alt
;
1049 if (GET_CODE (PATTERN (insn
)) == CLOBBER
|| GET_CODE (PATTERN (insn
)) == USE
)
1050 insn_static_data
->hard_regs
= NULL
;
1052 insn_static_data
->hard_regs
1053 = collect_non_operand_hard_regs (&PATTERN (insn
), data
,
1054 NULL
, OP_IN
, false);
1055 data
->arg_hard_regs
= NULL
;
1059 int n_hard_regs
, regno
, arg_hard_regs
[FIRST_PSEUDO_REGISTER
];
1062 /* Finding implicit hard register usage. We believe it will be
1063 not changed whatever transformations are used. Call insns
1064 are such example. */
1065 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1067 link
= XEXP (link
, 1))
1068 if (GET_CODE (XEXP (link
, 0)) == USE
1069 && REG_P (XEXP (XEXP (link
, 0), 0)))
1071 regno
= REGNO (XEXP (XEXP (link
, 0), 0));
1072 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
1073 /* It is an argument register. */
1074 for (i
= REG_NREGS (XEXP (XEXP (link
, 0), 0)) - 1; i
>= 0; i
--)
1075 arg_hard_regs
[n_hard_regs
++] = regno
+ i
;
1077 if (n_hard_regs
!= 0)
1079 arg_hard_regs
[n_hard_regs
++] = -1;
1080 data
->arg_hard_regs
= XNEWVEC (int, n_hard_regs
);
1081 memcpy (data
->arg_hard_regs
, arg_hard_regs
,
1082 sizeof (int) * n_hard_regs
);
1085 /* Some output operand can be recognized only from the context not
1086 from the constraints which are empty in this case. Call insn may
1087 contain a hard register in set destination with empty constraint
1088 and extract_insn treats them as an input. */
1089 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1093 struct lra_operand_data
*operand
= &insn_static_data
->operand
[i
];
1095 /* ??? Should we treat 'X' the same way. It looks to me that
1096 'X' means anything and empty constraint means we do not
1098 if (operand
->type
!= OP_IN
|| *operand
->constraint
!= '\0'
1099 || operand
->is_operator
)
1101 pat
= PATTERN (insn
);
1102 if (GET_CODE (pat
) == SET
)
1104 if (data
->operand_loc
[i
] != &SET_DEST (pat
))
1107 else if (GET_CODE (pat
) == PARALLEL
)
1109 for (j
= XVECLEN (pat
, 0) - 1; j
>= 0; j
--)
1111 set
= XVECEXP (PATTERN (insn
), 0, j
);
1112 if (GET_CODE (set
) == SET
1113 && &SET_DEST (set
) == data
->operand_loc
[i
])
1121 operand
->type
= OP_OUT
;
1126 /* Return info about insn give by UID. The info should be already set
1128 static lra_insn_recog_data_t
1129 get_insn_recog_data_by_uid (int uid
)
1131 lra_insn_recog_data_t data
;
1133 data
= lra_insn_recog_data
[uid
];
1134 lra_assert (data
!= NULL
);
1138 /* Invalidate all info about insn given by its UID. */
1140 invalidate_insn_recog_data (int uid
)
1142 lra_insn_recog_data_t data
;
1144 data
= lra_insn_recog_data
[uid
];
1145 lra_assert (data
!= NULL
);
1146 free_insn_recog_data (data
);
1147 lra_insn_recog_data
[uid
] = NULL
;
1150 /* Update all the insn info about INSN. It is usually called when
1151 something in the insn was changed. Return the updated info. */
1152 lra_insn_recog_data_t
1153 lra_update_insn_recog_data (rtx_insn
*insn
)
1155 lra_insn_recog_data_t data
;
1157 unsigned int uid
= INSN_UID (insn
);
1158 struct lra_static_insn_data
*insn_static_data
;
1159 HOST_WIDE_INT sp_offset
= 0;
1161 check_and_expand_insn_recog_data (uid
);
1162 if ((data
= lra_insn_recog_data
[uid
]) != NULL
1163 && data
->icode
!= INSN_CODE (insn
))
1165 sp_offset
= data
->sp_offset
;
1166 invalidate_insn_data_regno_info (data
, insn
, get_insn_freq (insn
));
1167 invalidate_insn_recog_data (uid
);
1172 data
= lra_get_insn_recog_data (insn
);
1173 /* Initiate or restore SP offset. */
1174 data
->sp_offset
= sp_offset
;
1177 insn_static_data
= data
->insn_static_data
;
1178 data
->used_insn_alternative
= -1;
1179 if (DEBUG_INSN_P (insn
))
1181 if (data
->icode
< 0)
1184 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
1185 const char *constraints
[MAX_RECOG_OPERANDS
];
1187 nop
= asm_noperands (PATTERN (insn
));
1190 lra_assert (nop
== data
->insn_static_data
->n_operands
);
1191 /* Now get the operand values and constraints out of the
1193 decode_asm_operands (PATTERN (insn
), NULL
,
1195 constraints
, operand_mode
, NULL
);
1196 #ifdef ENABLE_CHECKING
1200 for (i
= 0; i
< nop
; i
++)
1202 (insn_static_data
->operand
[i
].mode
== operand_mode
[i
]
1203 && insn_static_data
->operand
[i
].constraint
== constraints
[i
]
1204 && ! insn_static_data
->operand
[i
].is_operator
);
1208 #ifdef ENABLE_CHECKING
1212 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1214 (insn_static_data
->operand
[i
].type
1215 == (insn_static_data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
1216 : insn_static_data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
1223 insn_extract (insn
);
1224 n
= insn_static_data
->n_operands
;
1226 memcpy (data
->operand_loc
, recog_data
.operand_loc
, n
* sizeof (rtx
*));
1227 n
= insn_static_data
->n_dups
;
1229 memcpy (data
->dup_loc
, recog_data
.dup_loc
, n
* sizeof (rtx
*));
1230 lra_assert (check_bool_attrs (insn
));
1235 /* Set up that INSN is using alternative ALT now. */
1237 lra_set_used_insn_alternative (rtx_insn
*insn
, int alt
)
1239 lra_insn_recog_data_t data
;
1241 data
= lra_get_insn_recog_data (insn
);
1242 data
->used_insn_alternative
= alt
;
1245 /* Set up that insn with UID is using alternative ALT now. The insn
1246 info should be already set up. */
1248 lra_set_used_insn_alternative_by_uid (int uid
, int alt
)
1250 lra_insn_recog_data_t data
;
1252 check_and_expand_insn_recog_data (uid
);
1253 data
= lra_insn_recog_data
[uid
];
1254 lra_assert (data
!= NULL
);
1255 data
->used_insn_alternative
= alt
;
1260 /* This page contains code dealing with common register info and
1263 /* The size of the following array. */
1264 static int reg_info_size
;
1265 /* Common info about each register. */
1266 struct lra_reg
*lra_reg_info
;
1268 /* Last register value. */
1269 static int last_reg_value
;
1271 /* Return new register value. */
1273 get_new_reg_value (void)
1275 return ++last_reg_value
;
1278 /* Pools for copies. */
1279 pool_allocator
<lra_copy
> lra_copy::pool ("lra copies", 100);
1281 /* Vec referring to pseudo copies. */
1282 static vec
<lra_copy_t
> copy_vec
;
1284 /* Initialize I-th element of lra_reg_info. */
1286 initialize_lra_reg_info_element (int i
)
1288 bitmap_initialize (&lra_reg_info
[i
].insn_bitmap
, ®_obstack
);
1290 lra_reg_info
[i
].no_stack_p
= false;
1292 CLEAR_HARD_REG_SET (lra_reg_info
[i
].conflict_hard_regs
);
1293 CLEAR_HARD_REG_SET (lra_reg_info
[i
].actual_call_used_reg_set
);
1294 lra_reg_info
[i
].preferred_hard_regno1
= -1;
1295 lra_reg_info
[i
].preferred_hard_regno2
= -1;
1296 lra_reg_info
[i
].preferred_hard_regno_profit1
= 0;
1297 lra_reg_info
[i
].preferred_hard_regno_profit2
= 0;
1298 lra_reg_info
[i
].biggest_mode
= VOIDmode
;
1299 lra_reg_info
[i
].live_ranges
= NULL
;
1300 lra_reg_info
[i
].nrefs
= lra_reg_info
[i
].freq
= 0;
1301 lra_reg_info
[i
].last_reload
= 0;
1302 lra_reg_info
[i
].restore_regno
= -1;
1303 lra_reg_info
[i
].val
= get_new_reg_value ();
1304 lra_reg_info
[i
].offset
= 0;
1305 lra_reg_info
[i
].copies
= NULL
;
1308 /* Initialize common reg info and copies. */
1310 init_reg_info (void)
1315 reg_info_size
= max_reg_num () * 3 / 2 + 1;
1316 lra_reg_info
= XNEWVEC (struct lra_reg
, reg_info_size
);
1317 for (i
= 0; i
< reg_info_size
; i
++)
1318 initialize_lra_reg_info_element (i
);
1319 copy_vec
.create (100);
1323 /* Finish common reg info and copies. */
1325 finish_reg_info (void)
1329 for (i
= 0; i
< reg_info_size
; i
++)
1330 bitmap_clear (&lra_reg_info
[i
].insn_bitmap
);
1331 free (lra_reg_info
);
1335 /* Expand common reg info if it is necessary. */
1337 expand_reg_info (void)
1339 int i
, old
= reg_info_size
;
1341 if (reg_info_size
> max_reg_num ())
1343 reg_info_size
= max_reg_num () * 3 / 2 + 1;
1344 lra_reg_info
= XRESIZEVEC (struct lra_reg
, lra_reg_info
, reg_info_size
);
1345 for (i
= old
; i
< reg_info_size
; i
++)
1346 initialize_lra_reg_info_element (i
);
1349 /* Free all copies. */
1351 lra_free_copies (void)
1355 while (copy_vec
.length () != 0)
1357 cp
= copy_vec
.pop ();
1358 lra_reg_info
[cp
->regno1
].copies
= lra_reg_info
[cp
->regno2
].copies
= NULL
;
1363 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1364 frequency is FREQ. */
1366 lra_create_copy (int regno1
, int regno2
, int freq
)
1371 lra_assert (regno1
!= regno2
);
1372 regno1_dest_p
= true;
1373 if (regno1
> regno2
)
1375 std::swap (regno1
, regno2
);
1376 regno1_dest_p
= false;
1378 cp
= new lra_copy ();
1379 copy_vec
.safe_push (cp
);
1380 cp
->regno1_dest_p
= regno1_dest_p
;
1382 cp
->regno1
= regno1
;
1383 cp
->regno2
= regno2
;
1384 cp
->regno1_next
= lra_reg_info
[regno1
].copies
;
1385 lra_reg_info
[regno1
].copies
= cp
;
1386 cp
->regno2_next
= lra_reg_info
[regno2
].copies
;
1387 lra_reg_info
[regno2
].copies
= cp
;
1388 if (lra_dump_file
!= NULL
)
1389 fprintf (lra_dump_file
, " Creating copy r%d%sr%d@%d\n",
1390 regno1
, regno1_dest_p
? "<-" : "->", regno2
, freq
);
1393 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1396 lra_get_copy (int n
)
1398 if (n
>= (int) copy_vec
.length ())
1405 /* This page contains code dealing with info about registers in
1408 /* Process X of insn UID recursively and add info (operand type is
1409 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1410 about registers in X to the insn DATA. */
1412 add_regs_to_insn_regno_info (lra_insn_recog_data_t data
, rtx x
, int uid
,
1413 enum op_type type
, bool early_clobber
)
1420 struct lra_insn_reg
*curr
;
1422 code
= GET_CODE (x
);
1423 mode
= GET_MODE (x
);
1425 if (GET_CODE (x
) == SUBREG
)
1428 code
= GET_CODE (x
);
1429 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
1431 mode
= GET_MODE (x
);
1432 if (GET_MODE_SIZE (mode
) > REGMODE_NATURAL_SIZE (mode
))
1439 /* Process all regs even unallocatable ones as we need info about
1440 all regs for rematerialization pass. */
1442 if (bitmap_set_bit (&lra_reg_info
[regno
].insn_bitmap
, uid
))
1444 data
->regs
= new_insn_reg (data
->insn
, regno
, type
, mode
, subreg_p
,
1445 early_clobber
, data
->regs
);
1450 for (curr
= data
->regs
; curr
!= NULL
; curr
= curr
->next
)
1451 if (curr
->regno
== regno
)
1453 if (curr
->subreg_p
!= subreg_p
|| curr
->biggest_mode
!= mode
)
1454 /* The info can not be integrated into the found
1456 data
->regs
= new_insn_reg (data
->insn
, regno
, type
, mode
,
1457 subreg_p
, early_clobber
,
1461 if (curr
->type
!= type
)
1462 curr
->type
= OP_INOUT
;
1463 if (curr
->early_clobber
!= early_clobber
)
1464 curr
->early_clobber
= true;
1475 add_regs_to_insn_regno_info (data
, SET_DEST (x
), uid
, OP_OUT
, false);
1476 add_regs_to_insn_regno_info (data
, SET_SRC (x
), uid
, OP_IN
, false);
1479 /* We treat clobber of non-operand hard registers as early
1480 clobber (the behavior is expected from asm). */
1481 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_OUT
, true);
1483 case PRE_INC
: case PRE_DEC
: case POST_INC
: case POST_DEC
:
1484 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_INOUT
, false);
1486 case PRE_MODIFY
: case POST_MODIFY
:
1487 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_INOUT
, false);
1488 add_regs_to_insn_regno_info (data
, XEXP (x
, 1), uid
, OP_IN
, false);
1491 if ((code
!= PARALLEL
&& code
!= EXPR_LIST
) || type
!= OP_OUT
)
1492 /* Some targets place small structures in registers for return
1493 values of functions, and those registers are wrapped in
1494 PARALLEL that we may see as the destination of a SET. Here
1497 (call_insn 13 12 14 2 (set (parallel:BLK [
1498 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1500 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1501 (const_int 8 [0x8]))
1503 (call (mem:QI (symbol_ref:DI (... */
1505 fmt
= GET_RTX_FORMAT (code
);
1506 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1509 add_regs_to_insn_regno_info (data
, XEXP (x
, i
), uid
, type
, false);
1510 else if (fmt
[i
] == 'E')
1512 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1513 add_regs_to_insn_regno_info (data
, XVECEXP (x
, i
, j
), uid
,
1520 /* Return execution frequency of INSN. */
1522 get_insn_freq (rtx_insn
*insn
)
1524 basic_block bb
= BLOCK_FOR_INSN (insn
);
1526 gcc_checking_assert (bb
!= NULL
);
1527 return REG_FREQ_FROM_BB (bb
);
1530 /* Invalidate all reg info of INSN with DATA and execution frequency
1531 FREQ. Update common info about the invalidated registers. */
1533 invalidate_insn_data_regno_info (lra_insn_recog_data_t data
, rtx_insn
*insn
,
1539 struct lra_insn_reg
*ir
, *next_ir
;
1541 uid
= INSN_UID (insn
);
1542 debug_p
= DEBUG_INSN_P (insn
);
1543 for (ir
= data
->regs
; ir
!= NULL
; ir
= next_ir
)
1548 bitmap_clear_bit (&lra_reg_info
[i
].insn_bitmap
, uid
);
1549 if (i
>= FIRST_PSEUDO_REGISTER
&& ! debug_p
)
1551 lra_reg_info
[i
].nrefs
--;
1552 lra_reg_info
[i
].freq
-= freq
;
1553 lra_assert (lra_reg_info
[i
].nrefs
>= 0 && lra_reg_info
[i
].freq
>= 0);
1559 /* Invalidate all reg info of INSN. Update common info about the
1560 invalidated registers. */
1562 lra_invalidate_insn_regno_info (rtx_insn
*insn
)
1564 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn
), insn
,
1565 get_insn_freq (insn
));
1568 /* Update common reg info from reg info of insn given by its DATA and
1569 execution frequency FREQ. */
1571 setup_insn_reg_info (lra_insn_recog_data_t data
, int freq
)
1574 struct lra_insn_reg
*ir
;
1576 for (ir
= data
->regs
; ir
!= NULL
; ir
= ir
->next
)
1577 if ((i
= ir
->regno
) >= FIRST_PSEUDO_REGISTER
)
1579 lra_reg_info
[i
].nrefs
++;
1580 lra_reg_info
[i
].freq
+= freq
;
1584 /* Set up insn reg info of INSN. Update common reg info from reg info
1587 lra_update_insn_regno_info (rtx_insn
*insn
)
1590 lra_insn_recog_data_t data
;
1591 struct lra_static_insn_data
*static_data
;
1595 if (! INSN_P (insn
))
1597 data
= lra_get_insn_recog_data (insn
);
1598 static_data
= data
->insn_static_data
;
1599 freq
= get_insn_freq (insn
);
1600 invalidate_insn_data_regno_info (data
, insn
, freq
);
1601 uid
= INSN_UID (insn
);
1602 for (i
= static_data
->n_operands
- 1; i
>= 0; i
--)
1603 add_regs_to_insn_regno_info (data
, *data
->operand_loc
[i
], uid
,
1604 static_data
->operand
[i
].type
,
1605 static_data
->operand
[i
].early_clobber
);
1606 if ((code
= GET_CODE (PATTERN (insn
))) == CLOBBER
|| code
== USE
)
1607 add_regs_to_insn_regno_info (data
, XEXP (PATTERN (insn
), 0), uid
,
1608 code
== USE
? OP_IN
: OP_OUT
, false);
1610 /* On some targets call insns can refer to pseudos in memory in
1611 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1612 consider their occurrences in calls for different
1613 transformations (e.g. inheritance) with given pseudos. */
1614 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1616 link
= XEXP (link
, 1))
1617 if (((code
= GET_CODE (XEXP (link
, 0))) == USE
|| code
== CLOBBER
)
1618 && MEM_P (XEXP (XEXP (link
, 0), 0)))
1619 add_regs_to_insn_regno_info (data
, XEXP (XEXP (link
, 0), 0), uid
,
1620 code
== USE
? OP_IN
: OP_OUT
, false);
1621 if (NONDEBUG_INSN_P (insn
))
1622 setup_insn_reg_info (data
, freq
);
1625 /* Return reg info of insn given by it UID. */
1626 struct lra_insn_reg
*
1627 lra_get_insn_regs (int uid
)
1629 lra_insn_recog_data_t data
;
1631 data
= get_insn_recog_data_by_uid (uid
);
1637 /* This page contains code dealing with stack of the insns which
1638 should be processed by the next constraint pass. */
1640 /* Bitmap used to put an insn on the stack only in one exemplar. */
1641 static sbitmap lra_constraint_insn_stack_bitmap
;
1643 /* The stack itself. */
1644 vec
<rtx_insn
*> lra_constraint_insn_stack
;
1646 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1647 info for INSN, otherwise only update it if INSN is not already on the
1650 lra_push_insn_1 (rtx_insn
*insn
, bool always_update
)
1652 unsigned int uid
= INSN_UID (insn
);
1654 lra_update_insn_regno_info (insn
);
1655 if (uid
>= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap
))
1656 lra_constraint_insn_stack_bitmap
=
1657 sbitmap_resize (lra_constraint_insn_stack_bitmap
, 3 * uid
/ 2, 0);
1658 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap
, uid
))
1660 bitmap_set_bit (lra_constraint_insn_stack_bitmap
, uid
);
1661 if (! always_update
)
1662 lra_update_insn_regno_info (insn
);
1663 lra_constraint_insn_stack
.safe_push (insn
);
1666 /* Put INSN on the stack. */
1668 lra_push_insn (rtx_insn
*insn
)
1670 lra_push_insn_1 (insn
, false);
1673 /* Put INSN on the stack and update its reg info. */
1675 lra_push_insn_and_update_insn_regno_info (rtx_insn
*insn
)
1677 lra_push_insn_1 (insn
, true);
1680 /* Put insn with UID on the stack. */
1682 lra_push_insn_by_uid (unsigned int uid
)
1684 lra_push_insn (lra_insn_recog_data
[uid
]->insn
);
1687 /* Take the last-inserted insns off the stack and return it. */
1691 rtx_insn
*insn
= lra_constraint_insn_stack
.pop ();
1692 bitmap_clear_bit (lra_constraint_insn_stack_bitmap
, INSN_UID (insn
));
1696 /* Return the current size of the insn stack. */
1698 lra_insn_stack_length (void)
1700 return lra_constraint_insn_stack
.length ();
1703 /* Push insns FROM to TO (excluding it) going in reverse order. */
1705 push_insns (rtx_insn
*from
, rtx_insn
*to
)
1709 if (from
== NULL_RTX
)
1711 for (insn
= from
; insn
!= to
; insn
= PREV_INSN (insn
))
1713 lra_push_insn (insn
);
1716 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1717 taken from the next BB insn after LAST or zero if there in such
1720 setup_sp_offset (rtx_insn
*from
, rtx_insn
*last
)
1722 rtx_insn
*before
= next_nonnote_insn_bb (last
);
1723 HOST_WIDE_INT offset
= (before
== NULL_RTX
|| ! INSN_P (before
)
1724 ? 0 : lra_get_insn_recog_data (before
)->sp_offset
);
1726 for (rtx_insn
*insn
= from
; insn
!= NEXT_INSN (last
); insn
= NEXT_INSN (insn
))
1727 lra_get_insn_recog_data (insn
)->sp_offset
= offset
;
1730 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1731 insns onto the stack. Print about emitting the insns with
1734 lra_process_new_insns (rtx_insn
*insn
, rtx_insn
*before
, rtx_insn
*after
,
1739 if (before
== NULL_RTX
&& after
== NULL_RTX
)
1741 if (lra_dump_file
!= NULL
)
1743 dump_insn_slim (lra_dump_file
, insn
);
1744 if (before
!= NULL_RTX
)
1746 fprintf (lra_dump_file
," %s before:\n", title
);
1747 dump_rtl_slim (lra_dump_file
, before
, NULL
, -1, 0);
1749 if (after
!= NULL_RTX
)
1751 fprintf (lra_dump_file
, " %s after:\n", title
);
1752 dump_rtl_slim (lra_dump_file
, after
, NULL
, -1, 0);
1754 fprintf (lra_dump_file
, "\n");
1756 if (before
!= NULL_RTX
)
1758 emit_insn_before (before
, insn
);
1759 push_insns (PREV_INSN (insn
), PREV_INSN (before
));
1760 setup_sp_offset (before
, PREV_INSN (insn
));
1762 if (after
!= NULL_RTX
)
1764 for (last
= after
; NEXT_INSN (last
) != NULL_RTX
; last
= NEXT_INSN (last
))
1766 emit_insn_after (after
, insn
);
1767 push_insns (last
, insn
);
1768 setup_sp_offset (after
, last
);
1774 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1775 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1776 Return true if any change was made. */
1778 lra_substitute_pseudo (rtx
*loc
, int old_regno
, rtx new_reg
, bool subreg_p
)
1781 bool result
= false;
1789 code
= GET_CODE (x
);
1790 if (code
== SUBREG
&& subreg_p
)
1792 rtx subst
, inner
= SUBREG_REG (x
);
1793 /* Transform subreg of constant while we still have inner mode
1794 of the subreg. The subreg internal should not be an insn
1796 if (REG_P (inner
) && (int) REGNO (inner
) == old_regno
1797 && CONSTANT_P (new_reg
)
1798 && (subst
= simplify_subreg (GET_MODE (x
), new_reg
, GET_MODE (inner
),
1799 SUBREG_BYTE (x
))) != NULL_RTX
)
1806 else if (code
== REG
&& (int) REGNO (x
) == old_regno
)
1808 machine_mode mode
= GET_MODE (x
);
1809 machine_mode inner_mode
= GET_MODE (new_reg
);
1811 if (mode
!= inner_mode
1812 && ! (CONST_INT_P (new_reg
) && SCALAR_INT_MODE_P (mode
)))
1814 if (GET_MODE_SIZE (mode
) >= GET_MODE_SIZE (inner_mode
)
1815 || ! SCALAR_INT_MODE_P (inner_mode
))
1816 new_reg
= gen_rtx_SUBREG (mode
, new_reg
, 0);
1818 new_reg
= gen_lowpart_SUBREG (mode
, new_reg
);
1824 /* Scan all the operand sub-expressions. */
1825 fmt
= GET_RTX_FORMAT (code
);
1826 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1830 if (lra_substitute_pseudo (&XEXP (x
, i
), old_regno
,
1834 else if (fmt
[i
] == 'E')
1836 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1837 if (lra_substitute_pseudo (&XVECEXP (x
, i
, j
), old_regno
,
1845 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1846 of constant if SUBREG_P. This won't update the insn ptr, just the
1847 contents of the insn. */
1849 lra_substitute_pseudo_within_insn (rtx_insn
*insn
, int old_regno
,
1850 rtx new_reg
, bool subreg_p
)
1853 return lra_substitute_pseudo (&loc
, old_regno
, new_reg
, subreg_p
);
1858 /* This page contains code dealing with scratches (changing them onto
1859 pseudos and restoring them from the pseudos).
1861 We change scratches into pseudos at the beginning of LRA to
1862 simplify dealing with them (conflicts, hard register assignments).
1864 If the pseudo denoting scratch was spilled it means that we do need
1865 a hard register for it. Such pseudos are transformed back to
1866 scratches at the end of LRA. */
1868 /* Description of location of a former scratch operand. */
1871 rtx_insn
*insn
; /* Insn where the scratch was. */
1872 int nop
; /* Number of the operand which was a scratch. */
1875 typedef struct sloc
*sloc_t
;
1877 /* Locations of the former scratches. */
1878 static vec
<sloc_t
> scratches
;
1880 /* Bitmap of scratch regnos. */
1881 static bitmap_head scratch_bitmap
;
1883 /* Bitmap of scratch operands. */
1884 static bitmap_head scratch_operand_bitmap
;
1886 /* Return true if pseudo REGNO is made of SCRATCH. */
1888 lra_former_scratch_p (int regno
)
1890 return bitmap_bit_p (&scratch_bitmap
, regno
);
1893 /* Return true if the operand NOP of INSN is a former scratch. */
1895 lra_former_scratch_operand_p (rtx_insn
*insn
, int nop
)
1897 return bitmap_bit_p (&scratch_operand_bitmap
,
1898 INSN_UID (insn
) * MAX_RECOG_OPERANDS
+ nop
) != 0;
1901 /* Register operand NOP in INSN as a former scratch. It will be
1902 changed to scratch back, if it is necessary, at the LRA end. */
1904 lra_register_new_scratch_op (rtx_insn
*insn
, int nop
)
1906 lra_insn_recog_data_t id
= lra_get_insn_recog_data (insn
);
1907 rtx op
= *id
->operand_loc
[nop
];
1908 sloc_t loc
= XNEW (struct sloc
);
1909 lra_assert (REG_P (op
));
1912 scratches
.safe_push (loc
);
1913 bitmap_set_bit (&scratch_bitmap
, REGNO (op
));
1914 bitmap_set_bit (&scratch_operand_bitmap
,
1915 INSN_UID (insn
) * MAX_RECOG_OPERANDS
+ nop
);
1916 add_reg_note (insn
, REG_UNUSED
, op
);
1919 /* Change scratches onto pseudos and save their location. */
1921 remove_scratches (void)
1924 bool insn_changed_p
;
1928 lra_insn_recog_data_t id
;
1929 struct lra_static_insn_data
*static_id
;
1931 scratches
.create (get_max_uid ());
1932 bitmap_initialize (&scratch_bitmap
, ®_obstack
);
1933 bitmap_initialize (&scratch_operand_bitmap
, ®_obstack
);
1934 FOR_EACH_BB_FN (bb
, cfun
)
1935 FOR_BB_INSNS (bb
, insn
)
1938 id
= lra_get_insn_recog_data (insn
);
1939 static_id
= id
->insn_static_data
;
1940 insn_changed_p
= false;
1941 for (i
= 0; i
< static_id
->n_operands
; i
++)
1942 if (GET_CODE (*id
->operand_loc
[i
]) == SCRATCH
1943 && GET_MODE (*id
->operand_loc
[i
]) != VOIDmode
)
1945 insn_changed_p
= true;
1946 *id
->operand_loc
[i
] = reg
1947 = lra_create_new_reg (static_id
->operand
[i
].mode
,
1948 *id
->operand_loc
[i
], ALL_REGS
, NULL
);
1949 lra_register_new_scratch_op (insn
, i
);
1950 if (lra_dump_file
!= NULL
)
1951 fprintf (lra_dump_file
,
1952 "Removing SCRATCH in insn #%u (nop %d)\n",
1953 INSN_UID (insn
), i
);
1956 /* Because we might use DF right after caller-saves sub-pass
1957 we need to keep DF info up to date. */
1958 df_insn_rescan (insn
);
1962 /* Changes pseudos created by function remove_scratches onto scratches. */
1964 restore_scratches (void)
1969 rtx_insn
*last
= NULL
;
1970 lra_insn_recog_data_t id
= NULL
;
1972 for (i
= 0; scratches
.iterate (i
, &loc
); i
++)
1974 if (last
!= loc
->insn
)
1977 id
= lra_get_insn_recog_data (last
);
1979 if (REG_P (*id
->operand_loc
[loc
->nop
])
1980 && ((regno
= REGNO (*id
->operand_loc
[loc
->nop
]))
1981 >= FIRST_PSEUDO_REGISTER
)
1982 && lra_get_regno_hard_regno (regno
) < 0)
1984 /* It should be only case when scratch register with chosen
1985 constraint 'X' did not get memory or hard register. */
1986 lra_assert (lra_former_scratch_p (regno
));
1987 *id
->operand_loc
[loc
->nop
]
1988 = gen_rtx_SCRATCH (GET_MODE (*id
->operand_loc
[loc
->nop
]));
1989 lra_update_dup (id
, loc
->nop
);
1990 if (lra_dump_file
!= NULL
)
1991 fprintf (lra_dump_file
, "Restoring SCRATCH in insn #%u(nop %d)\n",
1992 INSN_UID (loc
->insn
), loc
->nop
);
1995 for (i
= 0; scratches
.iterate (i
, &loc
); i
++)
1997 scratches
.release ();
1998 bitmap_clear (&scratch_bitmap
);
1999 bitmap_clear (&scratch_operand_bitmap
);
2004 #ifdef ENABLE_CHECKING
2006 /* Function checks RTL for correctness. If FINAL_P is true, it is
2007 done at the end of LRA and the check is more rigorous. */
2009 check_rtl (bool final_p
)
2014 lra_assert (! final_p
|| reload_completed
);
2015 FOR_EACH_BB_FN (bb
, cfun
)
2016 FOR_BB_INSNS (bb
, insn
)
2017 if (NONDEBUG_INSN_P (insn
)
2018 && GET_CODE (PATTERN (insn
)) != USE
2019 && GET_CODE (PATTERN (insn
)) != CLOBBER
2020 && GET_CODE (PATTERN (insn
)) != ASM_INPUT
)
2024 #ifdef ENABLED_CHECKING
2025 extract_constrain_insn (insn
);
2029 /* LRA code is based on assumption that all addresses can be
2030 correctly decomposed. LRA can generate reloads for
2031 decomposable addresses. The decomposition code checks the
2032 correctness of the addresses. So we don't need to check
2033 the addresses here. Don't call insn_invalid_p here, it can
2034 change the code at this stage. */
2035 if (recog_memoized (insn
) < 0 && asm_noperands (PATTERN (insn
)) < 0)
2036 fatal_insn_not_found (insn
);
2039 #endif /* #ifdef ENABLE_CHECKING */
2041 /* Determine if the current function has an exception receiver block
2042 that reaches the exit block via non-exceptional edges */
2044 has_nonexceptional_receiver (void)
2048 basic_block
*tos
, *worklist
, bb
;
2050 /* If we're not optimizing, then just err on the safe side. */
2054 /* First determine which blocks can reach exit via normal paths. */
2055 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) + 1);
2057 FOR_EACH_BB_FN (bb
, cfun
)
2058 bb
->flags
&= ~BB_REACHABLE
;
2060 /* Place the exit block on our worklist. */
2061 EXIT_BLOCK_PTR_FOR_FN (cfun
)->flags
|= BB_REACHABLE
;
2062 *tos
++ = EXIT_BLOCK_PTR_FOR_FN (cfun
);
2064 /* Iterate: find everything reachable from what we've already seen. */
2065 while (tos
!= worklist
)
2069 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2070 if (e
->flags
& EDGE_ABNORMAL
)
2077 basic_block src
= e
->src
;
2079 if (!(src
->flags
& BB_REACHABLE
))
2081 src
->flags
|= BB_REACHABLE
;
2087 /* No exceptional block reached exit unexceptionally. */
2092 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2094 add_auto_inc_notes (rtx_insn
*insn
, rtx x
)
2096 enum rtx_code code
= GET_CODE (x
);
2100 if (code
== MEM
&& auto_inc_p (XEXP (x
, 0)))
2102 add_reg_note (insn
, REG_INC
, XEXP (XEXP (x
, 0), 0));
2106 /* Scan all X sub-expressions. */
2107 fmt
= GET_RTX_FORMAT (code
);
2108 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2111 add_auto_inc_notes (insn
, XEXP (x
, i
));
2112 else if (fmt
[i
] == 'E')
2113 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2114 add_auto_inc_notes (insn
, XVECEXP (x
, i
, j
));
2119 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2120 We change pseudos by hard registers without notification of DF and
2121 that can make the notes obsolete. DF-infrastructure does not deal
2122 with REG_INC notes -- so we should regenerate them here. */
2124 update_inc_notes (void)
2130 FOR_EACH_BB_FN (bb
, cfun
)
2131 FOR_BB_INSNS (bb
, insn
)
2132 if (NONDEBUG_INSN_P (insn
))
2134 pnote
= ®_NOTES (insn
);
2137 if (REG_NOTE_KIND (*pnote
) == REG_DEAD
2138 || REG_NOTE_KIND (*pnote
) == REG_UNUSED
2139 || REG_NOTE_KIND (*pnote
) == REG_INC
)
2140 *pnote
= XEXP (*pnote
, 1);
2142 pnote
= &XEXP (*pnote
, 1);
2146 add_auto_inc_notes (insn
, PATTERN (insn
));
2150 /* Set to 1 while in lra. */
2151 int lra_in_progress
;
2153 /* Start of pseudo regnos before the LRA. */
2154 int lra_new_regno_start
;
2156 /* Start of reload pseudo regnos before the new spill pass. */
2157 int lra_constraint_new_regno_start
;
2159 /* Avoid spilling pseudos with regno more than the following value if
2161 int lra_bad_spill_regno_start
;
2163 /* Inheritance pseudo regnos before the new spill pass. */
2164 bitmap_head lra_inheritance_pseudos
;
2166 /* Split regnos before the new spill pass. */
2167 bitmap_head lra_split_regs
;
2169 /* Reload pseudo regnos before the new assignmnet pass which still can
2170 be spilled after the assinment pass as memory is also accepted in
2171 insns for the reload pseudos. */
2172 bitmap_head lra_optional_reload_pseudos
;
2174 /* Pseudo regnos used for subreg reloads before the new assignment
2175 pass. Such pseudos still can be spilled after the assinment
2177 bitmap_head lra_subreg_reload_pseudos
;
2179 /* File used for output of LRA debug information. */
2180 FILE *lra_dump_file
;
2182 /* True if we should try spill into registers of different classes
2183 instead of memory. */
2184 bool lra_reg_spill_p
;
2186 /* Set up value LRA_REG_SPILL_P. */
2188 setup_reg_spill_flag (void)
2192 if (targetm
.spill_class
!= NULL
)
2193 for (cl
= 0; cl
< (int) LIM_REG_CLASSES
; cl
++)
2194 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
2195 if (targetm
.spill_class ((enum reg_class
) cl
,
2196 (machine_mode
) mode
) != NO_REGS
)
2198 lra_reg_spill_p
= true;
2201 lra_reg_spill_p
= false;
2204 /* True if the current function is too big to use regular algorithms
2205 in LRA. In other words, we should use simpler and faster algorithms
2206 in LRA. It also means we should not worry about generation code
2207 for caller saves. The value is set up in IRA. */
2210 /* Major LRA entry function. F is a file should be used to dump LRA
2216 bool live_p
, scratch_p
, inserted_p
;
2220 timevar_push (TV_LRA
);
2222 /* Make sure that the last insn is a note. Some subsequent passes
2224 emit_note (NOTE_INSN_DELETED
);
2226 COPY_HARD_REG_SET (lra_no_alloc_regs
, ira_no_alloc_regs
);
2231 init_insn_recog_data ();
2233 #ifdef ENABLE_CHECKING
2234 /* Some quick check on RTL generated by previous passes. */
2238 lra_in_progress
= 1;
2240 lra_live_range_iter
= lra_coalesce_iter
= lra_constraint_iter
= 0;
2241 lra_assignment_iter
= lra_assignment_iter_after_spill
= 0;
2242 lra_inheritance_iter
= lra_undo_inheritance_iter
= 0;
2243 lra_rematerialization_iter
= 0;
2245 setup_reg_spill_flag ();
2247 /* Function remove_scratches can creates new pseudos for clobbers --
2248 so set up lra_constraint_new_regno_start before its call to
2249 permit changing reg classes for pseudos created by this
2251 lra_constraint_new_regno_start
= lra_new_regno_start
= max_reg_num ();
2252 lra_bad_spill_regno_start
= INT_MAX
;
2253 remove_scratches ();
2254 scratch_p
= lra_constraint_new_regno_start
!= max_reg_num ();
2256 /* A function that has a non-local label that can reach the exit
2257 block via non-exceptional paths must save all call-saved
2259 if (cfun
->has_nonlocal_label
&& has_nonexceptional_receiver ())
2260 crtl
->saves_all_registers
= 1;
2262 if (crtl
->saves_all_registers
)
2263 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2264 if (! call_used_regs
[i
] && ! fixed_regs
[i
] && ! LOCAL_REGNO (i
))
2265 df_set_regs_ever_live (i
, true);
2267 /* We don't DF from now and avoid its using because it is to
2268 expensive when a lot of RTL changes are made. */
2269 df_set_flags (DF_NO_INSN_RESCAN
);
2270 lra_constraint_insn_stack
.create (get_max_uid ());
2271 lra_constraint_insn_stack_bitmap
= sbitmap_alloc (get_max_uid ());
2272 bitmap_clear (lra_constraint_insn_stack_bitmap
);
2273 lra_live_ranges_init ();
2274 lra_constraints_init ();
2275 lra_curr_reload_num
= 0;
2276 push_insns (get_last_insn (), NULL
);
2277 /* It is needed for the 1st coalescing. */
2278 bitmap_initialize (&lra_inheritance_pseudos
, ®_obstack
);
2279 bitmap_initialize (&lra_split_regs
, ®_obstack
);
2280 bitmap_initialize (&lra_optional_reload_pseudos
, ®_obstack
);
2281 bitmap_initialize (&lra_subreg_reload_pseudos
, ®_obstack
);
2283 if (get_frame_size () != 0 && crtl
->stack_alignment_needed
)
2284 /* If we have a stack frame, we must align it now. The stack size
2285 may be a part of the offset computation for register
2287 assign_stack_local (BLKmode
, 0, crtl
->stack_alignment_needed
);
2293 /* We should try to assign hard registers to scratches even
2294 if there were no RTL transformations in
2296 if (! lra_constraints (lra_constraint_iter
== 0)
2297 && (lra_constraint_iter
> 1
2298 || (! scratch_p
&& ! caller_save_needed
)))
2300 /* Constraint transformations may result in that eliminable
2301 hard regs become uneliminable and pseudos which use them
2302 should be spilled. It is better to do it before pseudo
2305 For example, rs6000 can make
2306 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2307 to use a constant pool. */
2308 lra_eliminate (false, false);
2309 /* Do inheritance only for regular algorithms. */
2315 lra_clear_live_ranges ();
2316 /* As a side-effect of lra_create_live_ranges, we calculate
2317 actual_call_used_reg_set, which is needed during
2319 lra_create_live_ranges (true, true);
2325 lra_clear_live_ranges ();
2326 /* We need live ranges for lra_assign -- so build them. But
2327 don't remove dead insns or change global live info as we
2328 can undo inheritance transformations after inheritance
2329 pseudo assigning. */
2330 lra_create_live_ranges (true, false);
2332 /* If we don't spill non-reload and non-inheritance pseudos,
2333 there is no sense to run memory-memory move coalescing.
2334 If inheritance pseudos were spilled, the memory-memory
2335 moves involving them will be removed by pass undoing
2341 bool spill_p
= !lra_assign ();
2343 if (lra_undo_inheritance ())
2349 lra_create_live_ranges (true, true);
2352 if (lra_coalesce ())
2356 lra_clear_live_ranges ();
2359 /* Don't clear optional reloads bitmap until all constraints are
2360 satisfied as we need to differ them from regular reloads. */
2361 bitmap_clear (&lra_optional_reload_pseudos
);
2362 bitmap_clear (&lra_subreg_reload_pseudos
);
2363 bitmap_clear (&lra_inheritance_pseudos
);
2364 bitmap_clear (&lra_split_regs
);
2367 /* We need full live info for spilling pseudos into
2368 registers instead of memory. */
2369 lra_create_live_ranges (lra_reg_spill_p
, true);
2372 /* We should check necessity for spilling here as the above live
2373 range pass can remove spilled pseudos. */
2374 if (! lra_need_for_spills_p ())
2376 /* Now we know what pseudos should be spilled. Try to
2377 rematerialize them first. */
2380 /* We need full live info -- see the comment above. */
2381 lra_create_live_ranges (lra_reg_spill_p
, true);
2383 if (! lra_need_for_spills_p ())
2387 /* Assignment of stack slots changes elimination offsets for
2388 some eliminations. So update the offsets here. */
2389 lra_eliminate (false, false);
2390 lra_constraint_new_regno_start
= max_reg_num ();
2391 if (lra_bad_spill_regno_start
== INT_MAX
2392 && lra_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
2393 && lra_rematerialization_iter
> LRA_MAX_REMATERIALIZATION_PASSES
)
2394 /* After switching off inheritance and rematerialization
2395 passes, avoid spilling reload pseudos will be created to
2396 prevent LRA cycling in some complicated cases. */
2397 lra_bad_spill_regno_start
= lra_constraint_new_regno_start
;
2398 lra_assignment_iter_after_spill
= 0;
2400 restore_scratches ();
2401 lra_eliminate (true, false);
2402 lra_final_code_change ();
2403 lra_in_progress
= 0;
2405 lra_clear_live_ranges ();
2406 lra_live_ranges_finish ();
2407 lra_constraints_finish ();
2409 sbitmap_free (lra_constraint_insn_stack_bitmap
);
2410 lra_constraint_insn_stack
.release ();
2411 finish_insn_recog_data ();
2412 regstat_free_n_sets_and_refs ();
2414 reload_completed
= 1;
2415 update_inc_notes ();
2417 inserted_p
= fixup_abnormal_edges ();
2419 /* We've possibly turned single trapping insn into multiple ones. */
2420 if (cfun
->can_throw_non_call_exceptions
)
2423 blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
2424 bitmap_ones (blocks
);
2425 find_many_sub_basic_blocks (blocks
);
2426 sbitmap_free (blocks
);
2430 commit_edge_insertions ();
2432 /* Replacing pseudos with their memory equivalents might have
2433 created shared rtx. Subsequent passes would get confused
2434 by this, so unshare everything here. */
2435 unshare_all_rtl_again (get_insns ());
2437 #ifdef ENABLE_CHECKING
2441 timevar_pop (TV_LRA
);
2444 /* Called once per compiler to initialize LRA data once. */
2446 lra_init_once (void)
2448 init_insn_code_data_once ();
2451 /* Called once per compiler to finish LRA data which are initialize
2454 lra_finish_once (void)
2456 finish_insn_code_data_once ();