Add support for MODE_VECTOR_BOOL
[official-gcc.git] / libgfortran / generated / sum_c10.c
blob3603eb02ec1aa2fdb40e0d4e9c1a941c5e3f494e
1 /* Implementation of the SUM intrinsic
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
29 #if defined (HAVE_GFC_COMPLEX_10) && defined (HAVE_GFC_COMPLEX_10)
32 extern void sum_c10 (gfc_array_c10 * const restrict,
33 gfc_array_c10 * const restrict, const index_type * const restrict);
34 export_proto(sum_c10);
36 void
37 sum_c10 (gfc_array_c10 * const restrict retarray,
38 gfc_array_c10 * const restrict array,
39 const index_type * const restrict pdim)
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_COMPLEX_10 * restrict base;
46 GFC_COMPLEX_10 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
54 /* Make dim zero based to avoid confusion. */
55 rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 dim = (*pdim) - 1;
58 if (unlikely (dim < 0 || dim > rank))
60 runtime_error ("Dim argument incorrect in SUM intrinsic: "
61 "is %ld, should be between 1 and %ld",
62 (long int) dim + 1, (long int) rank + 1);
65 len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 if (len < 0)
67 len = 0;
68 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
70 for (n = 0; n < dim; n++)
72 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
75 if (extent[n] < 0)
76 extent[n] = 0;
78 for (n = dim; n < rank; n++)
80 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
83 if (extent[n] < 0)
84 extent[n] = 0;
87 if (retarray->base_addr == NULL)
89 size_t alloc_size, str;
91 for (n = 0; n < rank; n++)
93 if (n == 0)
94 str = 1;
95 else
96 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
98 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
102 retarray->offset = 0;
103 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
105 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
107 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
108 if (alloc_size == 0)
110 /* Make sure we have a zero-sized array. */
111 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112 return;
116 else
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect in"
120 " SUM intrinsic: is %ld, should be %ld",
121 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
122 (long int) rank);
124 if (unlikely (compile_options.bounds_check))
125 bounds_ifunction_return ((array_t *) retarray, extent,
126 "return value", "SUM");
129 for (n = 0; n < rank; n++)
131 count[n] = 0;
132 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133 if (extent[n] <= 0)
134 return;
137 base = array->base_addr;
138 dest = retarray->base_addr;
140 continue_loop = 1;
141 while (continue_loop)
143 const GFC_COMPLEX_10 * restrict src;
144 GFC_COMPLEX_10 result;
145 src = base;
148 result = 0;
149 if (len <= 0)
150 *dest = 0;
151 else
153 for (n = 0; n < len; n++, src += delta)
156 result += *src;
159 *dest = result;
162 /* Advance to the next element. */
163 count[0]++;
164 base += sstride[0];
165 dest += dstride[0];
166 n = 0;
167 while (count[n] == extent[n])
169 /* When we get to the end of a dimension, reset it and increment
170 the next dimension. */
171 count[n] = 0;
172 /* We could precalculate these products, but this is a less
173 frequently used path so probably not worth it. */
174 base -= sstride[n] * extent[n];
175 dest -= dstride[n] * extent[n];
176 n++;
177 if (n >= rank)
179 /* Break out of the loop. */
180 continue_loop = 0;
181 break;
183 else
185 count[n]++;
186 base += sstride[n];
187 dest += dstride[n];
194 extern void msum_c10 (gfc_array_c10 * const restrict,
195 gfc_array_c10 * const restrict, const index_type * const restrict,
196 gfc_array_l1 * const restrict);
197 export_proto(msum_c10);
199 void
200 msum_c10 (gfc_array_c10 * const restrict retarray,
201 gfc_array_c10 * const restrict array,
202 const index_type * const restrict pdim,
203 gfc_array_l1 * const restrict mask)
205 index_type count[GFC_MAX_DIMENSIONS];
206 index_type extent[GFC_MAX_DIMENSIONS];
207 index_type sstride[GFC_MAX_DIMENSIONS];
208 index_type dstride[GFC_MAX_DIMENSIONS];
209 index_type mstride[GFC_MAX_DIMENSIONS];
210 GFC_COMPLEX_10 * restrict dest;
211 const GFC_COMPLEX_10 * restrict base;
212 const GFC_LOGICAL_1 * restrict mbase;
213 index_type rank;
214 index_type dim;
215 index_type n;
216 index_type len;
217 index_type delta;
218 index_type mdelta;
219 int mask_kind;
221 dim = (*pdim) - 1;
222 rank = GFC_DESCRIPTOR_RANK (array) - 1;
225 if (unlikely (dim < 0 || dim > rank))
227 runtime_error ("Dim argument incorrect in SUM intrinsic: "
228 "is %ld, should be between 1 and %ld",
229 (long int) dim + 1, (long int) rank + 1);
232 len = GFC_DESCRIPTOR_EXTENT(array,dim);
233 if (len <= 0)
234 return;
236 mbase = mask->base_addr;
238 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
240 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
241 #ifdef HAVE_GFC_LOGICAL_16
242 || mask_kind == 16
243 #endif
245 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
246 else
247 runtime_error ("Funny sized logical array");
249 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
250 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
252 for (n = 0; n < dim; n++)
254 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
255 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
256 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
258 if (extent[n] < 0)
259 extent[n] = 0;
262 for (n = dim; n < rank; n++)
264 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
265 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
266 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
268 if (extent[n] < 0)
269 extent[n] = 0;
272 if (retarray->base_addr == NULL)
274 size_t alloc_size, str;
276 for (n = 0; n < rank; n++)
278 if (n == 0)
279 str = 1;
280 else
281 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
283 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
287 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
289 retarray->offset = 0;
290 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
292 if (alloc_size == 0)
294 /* Make sure we have a zero-sized array. */
295 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
296 return;
298 else
299 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
302 else
304 if (rank != GFC_DESCRIPTOR_RANK (retarray))
305 runtime_error ("rank of return array incorrect in SUM intrinsic");
307 if (unlikely (compile_options.bounds_check))
309 bounds_ifunction_return ((array_t *) retarray, extent,
310 "return value", "SUM");
311 bounds_equal_extents ((array_t *) mask, (array_t *) array,
312 "MASK argument", "SUM");
316 for (n = 0; n < rank; n++)
318 count[n] = 0;
319 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
320 if (extent[n] <= 0)
321 return;
324 dest = retarray->base_addr;
325 base = array->base_addr;
327 while (base)
329 const GFC_COMPLEX_10 * restrict src;
330 const GFC_LOGICAL_1 * restrict msrc;
331 GFC_COMPLEX_10 result;
332 src = base;
333 msrc = mbase;
336 result = 0;
337 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
340 if (*msrc)
341 result += *src;
343 *dest = result;
345 /* Advance to the next element. */
346 count[0]++;
347 base += sstride[0];
348 mbase += mstride[0];
349 dest += dstride[0];
350 n = 0;
351 while (count[n] == extent[n])
353 /* When we get to the end of a dimension, reset it and increment
354 the next dimension. */
355 count[n] = 0;
356 /* We could precalculate these products, but this is a less
357 frequently used path so probably not worth it. */
358 base -= sstride[n] * extent[n];
359 mbase -= mstride[n] * extent[n];
360 dest -= dstride[n] * extent[n];
361 n++;
362 if (n >= rank)
364 /* Break out of the loop. */
365 base = NULL;
366 break;
368 else
370 count[n]++;
371 base += sstride[n];
372 mbase += mstride[n];
373 dest += dstride[n];
380 extern void ssum_c10 (gfc_array_c10 * const restrict,
381 gfc_array_c10 * const restrict, const index_type * const restrict,
382 GFC_LOGICAL_4 *);
383 export_proto(ssum_c10);
385 void
386 ssum_c10 (gfc_array_c10 * const restrict retarray,
387 gfc_array_c10 * const restrict array,
388 const index_type * const restrict pdim,
389 GFC_LOGICAL_4 * mask)
391 index_type count[GFC_MAX_DIMENSIONS];
392 index_type extent[GFC_MAX_DIMENSIONS];
393 index_type dstride[GFC_MAX_DIMENSIONS];
394 GFC_COMPLEX_10 * restrict dest;
395 index_type rank;
396 index_type n;
397 index_type dim;
400 if (*mask)
402 sum_c10 (retarray, array, pdim);
403 return;
405 /* Make dim zero based to avoid confusion. */
406 dim = (*pdim) - 1;
407 rank = GFC_DESCRIPTOR_RANK (array) - 1;
409 if (unlikely (dim < 0 || dim > rank))
411 runtime_error ("Dim argument incorrect in SUM intrinsic: "
412 "is %ld, should be between 1 and %ld",
413 (long int) dim + 1, (long int) rank + 1);
416 for (n = 0; n < dim; n++)
418 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
420 if (extent[n] <= 0)
421 extent[n] = 0;
424 for (n = dim; n < rank; n++)
426 extent[n] =
427 GFC_DESCRIPTOR_EXTENT(array,n + 1);
429 if (extent[n] <= 0)
430 extent[n] = 0;
433 if (retarray->base_addr == NULL)
435 size_t alloc_size, str;
437 for (n = 0; n < rank; n++)
439 if (n == 0)
440 str = 1;
441 else
442 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
444 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
448 retarray->offset = 0;
449 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
451 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
453 if (alloc_size == 0)
455 /* Make sure we have a zero-sized array. */
456 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
457 return;
459 else
460 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
462 else
464 if (rank != GFC_DESCRIPTOR_RANK (retarray))
465 runtime_error ("rank of return array incorrect in"
466 " SUM intrinsic: is %ld, should be %ld",
467 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
468 (long int) rank);
470 if (unlikely (compile_options.bounds_check))
472 for (n=0; n < rank; n++)
474 index_type ret_extent;
476 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
477 if (extent[n] != ret_extent)
478 runtime_error ("Incorrect extent in return value of"
479 " SUM intrinsic in dimension %ld:"
480 " is %ld, should be %ld", (long int) n + 1,
481 (long int) ret_extent, (long int) extent[n]);
486 for (n = 0; n < rank; n++)
488 count[n] = 0;
489 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
492 dest = retarray->base_addr;
494 while(1)
496 *dest = 0;
497 count[0]++;
498 dest += dstride[0];
499 n = 0;
500 while (count[n] == extent[n])
502 /* When we get to the end of a dimension, reset it and increment
503 the next dimension. */
504 count[n] = 0;
505 /* We could precalculate these products, but this is a less
506 frequently used path so probably not worth it. */
507 dest -= dstride[n] * extent[n];
508 n++;
509 if (n >= rank)
510 return;
511 else
513 count[n]++;
514 dest += dstride[n];
520 #endif