(store_constructor, ARRAY_TYPE): Use code for non-integer INDEX for
[official-gcc.git] / gcc / genrecog.c
blobc0d31d26973bb534c542c781bfe1ff152d9b2906
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This program is used to produce insn-recog.c, which contains
22 a function called `recog' plus its subroutines.
23 These functions contain a decision tree
24 that recognizes whether an rtx, the argument given to recog,
25 is a valid instruction.
27 recog returns -1 if the rtx is not valid.
28 If the rtx is valid, recog returns a nonnegative number
29 which is the insn code number for the pattern that matched.
30 This is the same as the order in the machine description of the
31 entry that matched. This number can be used as an index into various
32 insn_* tables, such as insn_template, insn_outfun, and insn_n_operands
33 (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int.
36 If present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and call
42 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns',
45 which returns 0 if the rtl could not be split, or
46 it returns the split rtl in a SEQUENCE. */
48 #include <stdio.h>
49 #include "hconfig.h"
50 #include "rtl.h"
51 #include "obstack.h"
53 static struct obstack obstack;
54 struct obstack *rtl_obstack = &obstack;
56 #define obstack_chunk_alloc xmalloc
57 #define obstack_chunk_free free
59 extern void free ();
60 extern rtx read_rtx ();
62 /* Data structure for a listhead of decision trees. The alternatives
63 to a node are kept in a doublely-linked list so we can easily add nodes
64 to the proper place when merging. */
66 struct decision_head { struct decision *first, *last; };
68 /* Data structure for decision tree for recognizing
69 legitimate instructions. */
71 struct decision
73 int number; /* Node number, used for labels */
74 char *position; /* String denoting position in pattern */
75 RTX_CODE code; /* Code to test for or UNKNOWN to suppress */
76 char ignore_code; /* If non-zero, need not test code */
77 char ignore_mode; /* If non-zero, need not test mode */
78 int veclen; /* Length of vector, if nonzero */
79 enum machine_mode mode; /* Machine mode of node */
80 char enforce_mode; /* If non-zero, test `mode' */
81 char retest_code, retest_mode; /* See write_tree_1 */
82 int test_elt_zero_int; /* Nonzero if should test XINT (rtl, 0) */
83 int elt_zero_int; /* Required value for XINT (rtl, 0) */
84 int test_elt_one_int; /* Nonzero if should test XINT (rtl, 1) */
85 int elt_one_int; /* Required value for XINT (rtl, 1) */
86 int test_elt_zero_wide; /* Nonzero if should test XWINT (rtl, 0) */
87 HOST_WIDE_INT elt_zero_wide; /* Required value for XWINT (rtl, 0) */
88 char *tests; /* If nonzero predicate to call */
89 int pred; /* `preds' index of predicate or -1 */
90 char *c_test; /* Additional test to perform */
91 struct decision_head success; /* Nodes to test on success */
92 int insn_code_number; /* Insn number matched, if success */
93 int num_clobbers_to_add; /* Number of CLOBBERs to be added to pattern */
94 struct decision *next; /* Node to test on failure */
95 struct decision *prev; /* Node whose failure tests us */
96 struct decision *afterward; /* Node to test on success, but failure of
97 successor nodes */
98 int opno; /* Operand number, if >= 0 */
99 int dupno; /* Number of operand to compare against */
100 int label_needed; /* Nonzero if label needed when writing tree */
101 int subroutine_number; /* Number of subroutine this node starts */
104 #define SUBROUTINE_THRESHOLD 50
106 static int next_subroutine_number;
108 /* We can write two types of subroutines: One for insn recognition and
109 one to split insns. This defines which type is being written. */
111 enum routine_type {RECOG, SPLIT};
113 /* Next available node number for tree nodes. */
115 static int next_number;
117 /* Next number to use as an insn_code. */
119 static int next_insn_code;
121 /* Similar, but counts all expressions in the MD file; used for
122 error messages. */
124 static int next_index;
126 /* Record the highest depth we ever have so we know how many variables to
127 allocate in each subroutine we make. */
129 static int max_depth;
131 /* This table contains a list of the rtl codes that can possibly match a
132 predicate defined in recog.c. The function `not_both_true' uses it to
133 deduce that there are no expressions that can be matches by certain pairs
134 of tree nodes. Also, if a predicate can match only one code, we can
135 hardwire that code into the node testing the predicate. */
137 static struct pred_table
139 char *name;
140 RTX_CODE codes[NUM_RTX_CODE];
141 } preds[]
142 = {{"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
143 LABEL_REF, SUBREG, REG, MEM}},
144 #ifdef PREDICATE_CODES
145 PREDICATE_CODES
146 #endif
147 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
148 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
149 {"register_operand", {SUBREG, REG}},
150 {"scratch_operand", {SCRATCH, REG}},
151 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
152 LABEL_REF}},
153 {"const_int_operand", {CONST_INT}},
154 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
155 {"nonimmediate_operand", {SUBREG, REG, MEM}},
156 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
157 LABEL_REF, SUBREG, REG}},
158 {"push_operand", {MEM}},
159 {"memory_operand", {SUBREG, MEM}},
160 {"indirect_operand", {SUBREG, MEM}},
161 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
162 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
163 LABEL_REF, SUBREG, REG, MEM}}};
165 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
167 static struct decision_head make_insn_sequence PROTO((rtx, enum routine_type));
168 static struct decision *add_to_sequence PROTO((rtx, struct decision_head *,
169 char *));
170 static int not_both_true PROTO((struct decision *, struct decision *,
171 int));
172 static int position_merit PROTO((struct decision *, enum machine_mode,
173 enum rtx_code));
174 static struct decision_head merge_trees PROTO((struct decision_head,
175 struct decision_head));
176 static int break_out_subroutines PROTO((struct decision_head,
177 enum routine_type, int));
178 static void write_subroutine PROTO((struct decision *, enum routine_type));
179 static void write_tree_1 PROTO((struct decision *, char *,
180 struct decision *, enum routine_type));
181 static void print_code PROTO((enum rtx_code));
182 static int same_codes PROTO((struct decision *, enum rtx_code));
183 static void clear_codes PROTO((struct decision *));
184 static int same_modes PROTO((struct decision *, enum machine_mode));
185 static void clear_modes PROTO((struct decision *));
186 static void write_tree PROTO((struct decision *, char *,
187 struct decision *, int,
188 enum routine_type));
189 static void change_state PROTO((char *, char *, int));
190 static char *copystr PROTO((char *));
191 static void mybzero PROTO((char *, unsigned));
192 static void mybcopy PROTO((char *, char *, unsigned));
193 static char *concat PROTO((char *, char *));
194 static void fatal PROTO((char *));
195 char *xrealloc PROTO((char *, unsigned));
196 char *xmalloc PROTO((unsigned));
197 void fancy_abort PROTO((void));
199 /* Construct and return a sequence of decisions
200 that will recognize INSN.
202 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
204 static struct decision_head
205 make_insn_sequence (insn, type)
206 rtx insn;
207 enum routine_type type;
209 rtx x;
210 char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
211 struct decision *last;
212 struct decision_head head;
214 if (XVECLEN (insn, type == RECOG) == 1)
215 x = XVECEXP (insn, type == RECOG, 0);
216 else
218 x = rtx_alloc (PARALLEL);
219 XVEC (x, 0) = XVEC (insn, type == RECOG);
220 PUT_MODE (x, VOIDmode);
223 last = add_to_sequence (x, &head, "");
225 if (c_test[0])
226 last->c_test = c_test;
227 last->insn_code_number = next_insn_code;
228 last->num_clobbers_to_add = 0;
230 /* If this is not a DEFINE_SPLIT and X is a PARALLEL, see if it ends with a
231 group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, set up
232 to recognize the pattern without these CLOBBERs. */
234 if (type == RECOG && GET_CODE (x) == PARALLEL)
236 int i;
238 for (i = XVECLEN (x, 0); i > 0; i--)
239 if (GET_CODE (XVECEXP (x, 0, i - 1)) != CLOBBER
240 || (GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != REG
241 && GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != MATCH_SCRATCH))
242 break;
244 if (i != XVECLEN (x, 0))
246 rtx new;
247 struct decision_head clobber_head;
249 if (i == 1)
250 new = XVECEXP (x, 0, 0);
251 else
253 int j;
255 new = rtx_alloc (PARALLEL);
256 XVEC (new, 0) = rtvec_alloc (i);
257 for (j = i - 1; j >= 0; j--)
258 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
261 last = add_to_sequence (new, &clobber_head, "");
263 if (c_test[0])
264 last->c_test = c_test;
265 last->insn_code_number = next_insn_code;
266 last->num_clobbers_to_add = XVECLEN (x, 0) - i;
268 head = merge_trees (head, clobber_head);
272 next_insn_code++;
274 if (type == SPLIT)
275 /* Define the subroutine we will call below and emit in genemit. */
276 printf ("extern rtx gen_split_%d ();\n", last->insn_code_number);
278 return head;
281 /* Create a chain of nodes to verify that an rtl expression matches
282 PATTERN.
284 LAST is a pointer to the listhead in the previous node in the chain (or
285 in the calling function, for the first node).
287 POSITION is the string representing the current position in the insn.
289 A pointer to the final node in the chain is returned. */
291 static struct decision *
292 add_to_sequence (pattern, last, position)
293 rtx pattern;
294 struct decision_head *last;
295 char *position;
297 register RTX_CODE code;
298 register struct decision *new
299 = (struct decision *) xmalloc (sizeof (struct decision));
300 struct decision *this;
301 char *newpos;
302 register char *fmt;
303 register int i;
304 int depth = strlen (position);
305 int len;
307 if (depth > max_depth)
308 max_depth = depth;
310 new->number = next_number++;
311 new->position = copystr (position);
312 new->ignore_code = 0;
313 new->ignore_mode = 0;
314 new->enforce_mode = 1;
315 new->retest_code = new->retest_mode = 0;
316 new->veclen = 0;
317 new->test_elt_zero_int = 0;
318 new->test_elt_one_int = 0;
319 new->test_elt_zero_wide = 0;
320 new->elt_zero_int = 0;
321 new->elt_one_int = 0;
322 new->elt_zero_wide = 0;
323 new->tests = 0;
324 new->pred = -1;
325 new->c_test = 0;
326 new->success.first = new->success.last = 0;
327 new->insn_code_number = -1;
328 new->num_clobbers_to_add = 0;
329 new->next = 0;
330 new->prev = 0;
331 new->afterward = 0;
332 new->opno = -1;
333 new->dupno = -1;
334 new->label_needed = 0;
335 new->subroutine_number = 0;
337 this = new;
339 last->first = last->last = new;
341 newpos = (char *) alloca (depth + 2);
342 strcpy (newpos, position);
343 newpos[depth + 1] = 0;
345 restart:
347 new->mode = GET_MODE (pattern);
348 new->code = code = GET_CODE (pattern);
350 switch (code)
352 case MATCH_OPERAND:
353 case MATCH_SCRATCH:
354 case MATCH_OPERATOR:
355 case MATCH_PARALLEL:
356 new->opno = XINT (pattern, 0);
357 new->code = (code == MATCH_PARALLEL ? PARALLEL : UNKNOWN);
358 new->enforce_mode = 0;
360 if (code == MATCH_SCRATCH)
361 new->tests = "scratch_operand";
362 else
363 new->tests = XSTR (pattern, 1);
365 if (*new->tests == 0)
366 new->tests = 0;
368 /* See if we know about this predicate and save its number. If we do,
369 and it only accepts one code, note that fact. The predicate
370 `const_int_operand' only tests for a CONST_INT, so if we do so we
371 can avoid calling it at all.
373 Finally, if we know that the predicate does not allow CONST_INT, we
374 know that the only way the predicate can match is if the modes match
375 (here we use the kluge of relying on the fact that "address_operand"
376 accepts CONST_INT; otherwise, it would have to be a special case),
377 so we can test the mode (but we need not). This fact should
378 considerably simplify the generated code. */
380 if (new->tests)
382 for (i = 0; i < NUM_KNOWN_PREDS; i++)
383 if (! strcmp (preds[i].name, new->tests))
385 int j;
386 int allows_const_int = 0;
388 new->pred = i;
390 if (preds[i].codes[1] == 0 && new->code == UNKNOWN)
392 new->code = preds[i].codes[0];
393 if (! strcmp ("const_int_operand", new->tests))
394 new->tests = 0, new->pred = -1;
397 for (j = 0; j < NUM_RTX_CODE && preds[i].codes[j] != 0; j++)
398 if (preds[i].codes[j] == CONST_INT)
399 allows_const_int = 1;
401 if (! allows_const_int)
402 new->enforce_mode = new->ignore_mode= 1;
404 break;
407 #ifdef PREDICATE_CODES
408 /* If the port has a list of the predicates it uses but omits
409 one, warn. */
410 if (i == NUM_KNOWN_PREDS)
411 fprintf (stderr, "Warning: `%s' not in PREDICATE_CODES\n",
412 new->tests);
413 #endif
416 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
418 for (i = 0; i < XVECLEN (pattern, 2); i++)
420 newpos[depth] = i + (code == MATCH_OPERATOR ? '0': 'a');
421 new = add_to_sequence (XVECEXP (pattern, 2, i),
422 &new->success, newpos);
426 return new;
428 case MATCH_OP_DUP:
429 new->opno = XINT (pattern, 0);
430 new->dupno = XINT (pattern, 0);
431 new->code = UNKNOWN;
432 new->tests = 0;
433 for (i = 0; i < XVECLEN (pattern, 1); i++)
435 newpos[depth] = i + '0';
436 new = add_to_sequence (XVECEXP (pattern, 1, i),
437 &new->success, newpos);
439 return new;
441 case MATCH_DUP:
442 case MATCH_PAR_DUP:
443 new->dupno = XINT (pattern, 0);
444 new->code = UNKNOWN;
445 new->enforce_mode = 0;
446 return new;
448 case ADDRESS:
449 pattern = XEXP (pattern, 0);
450 goto restart;
452 case SET:
453 newpos[depth] = '0';
454 new = add_to_sequence (SET_DEST (pattern), &new->success, newpos);
455 this->success.first->enforce_mode = 1;
456 newpos[depth] = '1';
457 new = add_to_sequence (SET_SRC (pattern), &new->success, newpos);
459 /* If set are setting CC0 from anything other than a COMPARE, we
460 must enforce the mode so that we do not produce ambiguous insns. */
461 if (GET_CODE (SET_DEST (pattern)) == CC0
462 && GET_CODE (SET_SRC (pattern)) != COMPARE)
463 this->success.first->enforce_mode = 1;
464 return new;
466 case SIGN_EXTEND:
467 case ZERO_EXTEND:
468 case STRICT_LOW_PART:
469 newpos[depth] = '0';
470 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
471 this->success.first->enforce_mode = 1;
472 return new;
474 case SUBREG:
475 this->test_elt_one_int = 1;
476 this->elt_one_int = XINT (pattern, 1);
477 newpos[depth] = '0';
478 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
479 this->success.first->enforce_mode = 1;
480 return new;
482 case ZERO_EXTRACT:
483 case SIGN_EXTRACT:
484 newpos[depth] = '0';
485 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
486 this->success.first->enforce_mode = 1;
487 newpos[depth] = '1';
488 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
489 newpos[depth] = '2';
490 new = add_to_sequence (XEXP (pattern, 2), &new->success, newpos);
491 return new;
493 case EQ: case NE: case LE: case LT: case GE: case GT:
494 case LEU: case LTU: case GEU: case GTU:
495 /* If the first operand is (cc0), we don't have to do anything
496 special. */
497 if (GET_CODE (XEXP (pattern, 0)) == CC0)
498 break;
500 /* ... fall through ... */
502 case COMPARE:
503 /* Enforce the mode on the first operand to avoid ambiguous insns. */
504 newpos[depth] = '0';
505 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
506 this->success.first->enforce_mode = 1;
507 newpos[depth] = '1';
508 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
509 return new;
512 fmt = GET_RTX_FORMAT (code);
513 len = GET_RTX_LENGTH (code);
514 for (i = 0; i < len; i++)
516 newpos[depth] = '0' + i;
517 if (fmt[i] == 'e' || fmt[i] == 'u')
518 new = add_to_sequence (XEXP (pattern, i), &new->success, newpos);
519 else if (fmt[i] == 'i' && i == 0)
521 this->test_elt_zero_int = 1;
522 this->elt_zero_int = XINT (pattern, i);
524 else if (fmt[i] == 'i' && i == 1)
526 this->test_elt_one_int = 1;
527 this->elt_one_int = XINT (pattern, i);
529 else if (fmt[i] == 'w' && i == 0)
531 this->test_elt_zero_wide = 1;
532 this->elt_zero_wide = XWINT (pattern, i);
534 else if (fmt[i] == 'E')
536 register int j;
537 /* We do not handle a vector appearing as other than
538 the first item, just because nothing uses them
539 and by handling only the special case
540 we can use one element in newpos for either
541 the item number of a subexpression
542 or the element number in a vector. */
543 if (i != 0)
544 abort ();
545 this->veclen = XVECLEN (pattern, i);
546 for (j = 0; j < XVECLEN (pattern, i); j++)
548 newpos[depth] = 'a' + j;
549 new = add_to_sequence (XVECEXP (pattern, i, j),
550 &new->success, newpos);
553 else if (fmt[i] != '0')
554 abort ();
556 return new;
559 /* Return 1 if we can prove that there is no RTL that can match both
560 D1 and D2. Otherwise, return 0 (it may be that there is an RTL that
561 can match both or just that we couldn't prove there wasn't such an RTL).
563 TOPLEVEL is non-zero if we are to only look at the top level and not
564 recursively descend. */
566 static int
567 not_both_true (d1, d2, toplevel)
568 struct decision *d1, *d2;
569 int toplevel;
571 struct decision *p1, *p2;
573 /* If they are both to test modes and the modes are different, they aren't
574 both true. Similarly for codes, integer elements, and vector lengths. */
576 if ((d1->enforce_mode && d2->enforce_mode
577 && d1->mode != VOIDmode && d2->mode != VOIDmode && d1->mode != d2->mode)
578 || (d1->code != UNKNOWN && d2->code != UNKNOWN && d1->code != d2->code)
579 || (d1->test_elt_zero_int && d2->test_elt_zero_int
580 && d1->elt_zero_int != d2->elt_zero_int)
581 || (d1->test_elt_one_int && d2->test_elt_one_int
582 && d1->elt_one_int != d2->elt_one_int)
583 || (d1->test_elt_zero_wide && d2->test_elt_zero_wide
584 && d1->elt_zero_wide != d2->elt_zero_wide)
585 || (d1->veclen && d2->veclen && d1->veclen != d2->veclen))
586 return 1;
588 /* If either is a wild-card MATCH_OPERAND without a predicate, it can match
589 absolutely anything, so we can't say that no intersection is possible.
590 This case is detected by having a zero TESTS field with a code of
591 UNKNOWN. */
593 if ((d1->tests == 0 && d1->code == UNKNOWN)
594 || (d2->tests == 0 && d2->code == UNKNOWN))
595 return 0;
597 /* If either has a predicate that we know something about, set things up so
598 that D1 is the one that always has a known predicate. Then see if they
599 have any codes in common. */
601 if (d1->pred >= 0 || d2->pred >= 0)
603 int i, j;
605 if (d2->pred >= 0)
606 p1 = d1, d1 = d2, d2 = p1;
608 /* If D2 tests an explicit code, see if it is in the list of valid codes
609 for D1's predicate. */
610 if (d2->code != UNKNOWN)
612 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
613 if (preds[d1->pred].codes[i] == d2->code)
614 break;
616 if (preds[d1->pred].codes[i] == 0)
617 return 1;
620 /* Otherwise see if the predicates have any codes in common. */
622 else if (d2->pred >= 0)
624 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
626 for (j = 0; j < NUM_RTX_CODE; j++)
627 if (preds[d2->pred].codes[j] == 0
628 || preds[d2->pred].codes[j] == preds[d1->pred].codes[i])
629 break;
631 if (preds[d2->pred].codes[j] != 0)
632 break;
635 if (preds[d1->pred].codes[i] == 0)
636 return 1;
640 /* If we got here, we can't prove that D1 and D2 cannot both be true.
641 If we are only to check the top level, return 0. Otherwise, see if
642 we can prove that all choices in both successors are mutually
643 exclusive. If either does not have any successors, we can't prove
644 they can't both be true. */
646 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
647 return 0;
649 for (p1 = d1->success.first; p1; p1 = p1->next)
650 for (p2 = d2->success.first; p2; p2 = p2->next)
651 if (! not_both_true (p1, p2, 0))
652 return 0;
654 return 1;
657 /* Assuming that we can reorder all the alternatives at a specific point in
658 the tree (see discussion in merge_trees), we would prefer an ordering of
659 nodes where groups of consecutive nodes test the same mode and, within each
660 mode, groups of nodes test the same code. With this order, we can
661 construct nested switch statements, the inner one to test the code and
662 the outer one to test the mode.
664 We would like to list nodes testing for specific codes before those
665 that test predicates to avoid unnecessary function calls. Similarly,
666 tests for specific modes should precede nodes that allow any mode.
668 This function returns the merit (with 0 being the best) of inserting
669 a test involving the specified MODE and CODE after node P. If P is
670 zero, we are to determine the merit of inserting the test at the front
671 of the list. */
673 static int
674 position_merit (p, mode, code)
675 struct decision *p;
676 enum machine_mode mode;
677 enum rtx_code code;
679 enum machine_mode p_mode;
681 /* The only time the front of the list is anything other than the worst
682 position is if we are testing a mode that isn't VOIDmode. */
683 if (p == 0)
684 return mode == VOIDmode ? 3 : 2;
686 p_mode = p->enforce_mode ? p->mode : VOIDmode;
688 /* The best case is if the codes and modes both match. */
689 if (p_mode == mode && p->code== code)
690 return 0;
692 /* If the codes don't match, the next best case is if the modes match.
693 In that case, the best position for this node depends on whether
694 we are testing for a specific code or not. If we are, the best place
695 is after some other test for an explicit code and our mode or after
696 the last test in the previous mode if every test in our mode is for
697 an unknown code.
699 If we are testing for UNKNOWN, then the next best case is at the end of
700 our mode. */
702 if ((code != UNKNOWN
703 && ((p_mode == mode && p->code != UNKNOWN)
704 || (p_mode != mode && p->next
705 && (p->next->enforce_mode ? p->next->mode : VOIDmode) == mode
706 && (p->next->code == UNKNOWN))))
707 || (code == UNKNOWN && p_mode == mode
708 && (p->next == 0
709 || (p->next->enforce_mode ? p->next->mode : VOIDmode) != mode)))
710 return 1;
712 /* The third best case occurs when nothing is testing MODE. If MODE
713 is not VOIDmode, then the third best case is after something of any
714 mode that is not VOIDmode. If we are testing VOIDmode, the third best
715 place is the end of the list. */
717 if (p_mode != mode
718 && ((mode != VOIDmode && p_mode != VOIDmode)
719 || (mode == VOIDmode && p->next == 0)))
720 return 2;
722 /* Otherwise, we have the worst case. */
723 return 3;
726 /* Merge two decision tree listheads OLDH and ADDH,
727 modifying OLDH destructively, and return the merged tree. */
729 static struct decision_head
730 merge_trees (oldh, addh)
731 register struct decision_head oldh, addh;
733 struct decision *add, *next;
735 if (oldh.first == 0)
736 return addh;
738 if (addh.first == 0)
739 return oldh;
741 /* If we are adding things at different positions, something is wrong. */
742 if (strcmp (oldh.first->position, addh.first->position))
743 abort ();
745 for (add = addh.first; add; add = next)
747 enum machine_mode add_mode = add->enforce_mode ? add->mode : VOIDmode;
748 struct decision *best_position = 0;
749 int best_merit = 4;
750 struct decision *old;
752 next = add->next;
754 /* The semantics of pattern matching state that the tests are done in
755 the order given in the MD file so that if an insn matches two
756 patterns, the first one will be used. However, in practice, most,
757 if not all, patterns are unambiguous so that their order is
758 independent. In that case, we can merge identical tests and
759 group all similar modes and codes together.
761 Scan starting from the end of OLDH until we reach a point
762 where we reach the head of the list or where we pass a pattern
763 that could also be true if NEW is true. If we find an identical
764 pattern, we can merge them. Also, record the last node that tests
765 the same code and mode and the last one that tests just the same mode.
767 If we have no match, place NEW after the closest match we found. */
769 for (old = oldh.last; old; old = old->prev)
771 int our_merit;
773 /* If we don't have anything to test except an additional test,
774 do not consider the two nodes equal. If we did, the test below
775 would cause an infinite recursion. */
776 if (old->tests == 0 && old->test_elt_zero_int == 0
777 && old->test_elt_one_int == 0 && old->veclen == 0
778 && old->test_elt_zero_wide == 0
779 && old->dupno == -1 && old->mode == VOIDmode
780 && old->code == UNKNOWN
781 && (old->c_test != 0 || add->c_test != 0))
784 else if ((old->tests == add->tests
785 || (old->pred >= 0 && old->pred == add->pred)
786 || (old->tests && add->tests
787 && !strcmp (old->tests, add->tests)))
788 && old->test_elt_zero_int == add->test_elt_zero_int
789 && old->elt_zero_int == add->elt_zero_int
790 && old->test_elt_one_int == add->test_elt_one_int
791 && old->elt_one_int == add->elt_one_int
792 && old->test_elt_zero_wide == add->test_elt_zero_wide
793 && old->elt_zero_wide == add->elt_zero_wide
794 && old->veclen == add->veclen
795 && old->dupno == add->dupno
796 && old->opno == add->opno
797 && old->code == add->code
798 && old->enforce_mode == add->enforce_mode
799 && old->mode == add->mode)
801 /* If the additional test is not the same, split both nodes
802 into nodes that just contain all things tested before the
803 additional test and nodes that contain the additional test
804 and actions when it is true. This optimization is important
805 because of the case where we have almost identical patterns
806 with different tests on target flags. */
808 if (old->c_test != add->c_test
809 && ! (old->c_test && add->c_test
810 && !strcmp (old->c_test, add->c_test)))
812 if (old->insn_code_number >= 0 || old->opno >= 0)
814 struct decision *split
815 = (struct decision *) xmalloc (sizeof (struct decision));
817 mybcopy ((char *) old, (char *) split,
818 sizeof (struct decision));
820 old->success.first = old->success.last = split;
821 old->c_test = 0;
822 old->opno = -1;
823 old->insn_code_number = -1;
824 old->num_clobbers_to_add = 0;
826 split->number = next_number++;
827 split->next = split->prev = 0;
828 split->mode = VOIDmode;
829 split->code = UNKNOWN;
830 split->veclen = 0;
831 split->test_elt_zero_int = 0;
832 split->test_elt_one_int = 0;
833 split->test_elt_zero_wide = 0;
834 split->tests = 0;
835 split->pred = -1;
836 split->dupno = -1;
839 if (add->insn_code_number >= 0 || add->opno >= 0)
841 struct decision *split
842 = (struct decision *) xmalloc (sizeof (struct decision));
844 mybcopy ((char *) add, (char *) split,
845 sizeof (struct decision));
847 add->success.first = add->success.last = split;
848 add->c_test = 0;
849 add->opno = -1;
850 add->insn_code_number = -1;
851 add->num_clobbers_to_add = 0;
853 split->number = next_number++;
854 split->next = split->prev = 0;
855 split->mode = VOIDmode;
856 split->code = UNKNOWN;
857 split->veclen = 0;
858 split->test_elt_zero_int = 0;
859 split->test_elt_one_int = 0;
860 split->test_elt_zero_wide = 0;
861 split->tests = 0;
862 split->pred = -1;
863 split->dupno = -1;
867 if (old->insn_code_number >= 0 && add->insn_code_number >= 0)
869 /* If one node is for a normal insn and the second is
870 for the base insn with clobbers stripped off, the
871 second node should be ignored. */
873 if (old->num_clobbers_to_add == 0
874 && add->num_clobbers_to_add > 0)
875 /* Nothing to do here. */
877 else if (old->num_clobbers_to_add > 0
878 && add->num_clobbers_to_add == 0)
880 /* In this case, replace OLD with ADD. */
881 old->insn_code_number = add->insn_code_number;
882 old->num_clobbers_to_add = 0;
884 else
885 fatal ("Two actions at one point in tree");
888 if (old->insn_code_number == -1)
889 old->insn_code_number = add->insn_code_number;
890 old->success = merge_trees (old->success, add->success);
891 add = 0;
892 break;
895 /* Unless we have already found the best possible insert point,
896 see if this position is better. If so, record it. */
898 if (best_merit != 0
899 && ((our_merit = position_merit (old, add_mode, add->code))
900 < best_merit))
901 best_merit = our_merit, best_position = old;
903 if (! not_both_true (old, add, 0))
904 break;
907 /* If ADD was duplicate, we are done. */
908 if (add == 0)
909 continue;
911 /* Otherwise, find the best place to insert ADD. Normally this is
912 BEST_POSITION. However, if we went all the way to the top of
913 the list, it might be better to insert at the top. */
915 if (best_position == 0)
916 abort ();
918 if (old == 0
919 && position_merit (NULL_PTR, add_mode, add->code) < best_merit)
921 add->prev = 0;
922 add->next = oldh.first;
923 oldh.first->prev = add;
924 oldh.first = add;
927 else
929 add->prev = best_position;
930 add->next = best_position->next;
931 best_position->next = add;
932 if (best_position == oldh.last)
933 oldh.last = add;
934 else
935 add->next->prev = add;
939 return oldh;
942 /* Count the number of subnodes of HEAD. If the number is high enough,
943 make the first node in HEAD start a separate subroutine in the C code
944 that is generated.
946 TYPE gives the type of routine we are writing.
948 INITIAL is non-zero if this is the highest-level node. We never write
949 it out here. */
951 static int
952 break_out_subroutines (head, type, initial)
953 struct decision_head head;
954 enum routine_type type;
955 int initial;
957 int size = 0;
958 struct decision *sub;
960 for (sub = head.first; sub; sub = sub->next)
961 size += 1 + break_out_subroutines (sub->success, type, 0);
963 if (size > SUBROUTINE_THRESHOLD && ! initial)
965 head.first->subroutine_number = ++next_subroutine_number;
966 write_subroutine (head.first, type);
967 size = 1;
969 return size;
972 /* Write out a subroutine of type TYPE to do comparisons starting at node
973 TREE. */
975 static void
976 write_subroutine (tree, type)
977 struct decision *tree;
978 enum routine_type type;
980 int i;
982 if (type == SPLIT)
983 printf ("rtx\nsplit");
984 else
985 printf ("int\nrecog");
987 if (tree != 0 && tree->subroutine_number > 0)
988 printf ("_%d", tree->subroutine_number);
989 else if (type == SPLIT)
990 printf ("_insns");
992 printf (" (x0, insn");
993 if (type == RECOG)
994 printf (", pnum_clobbers");
996 printf (")\n");
997 printf (" register rtx x0;\n rtx insn;\n");
998 if (type == RECOG)
999 printf (" int *pnum_clobbers;\n");
1001 printf ("{\n");
1002 printf (" register rtx *ro = &recog_operand[0];\n");
1004 printf (" register rtx ");
1005 for (i = 1; i < max_depth; i++)
1006 printf ("x%d, ", i);
1008 printf ("x%d;\n", max_depth);
1009 printf (" %s tem;\n", type == SPLIT ? "rtx" : "int");
1010 write_tree (tree, "", NULL_PTR, 1, type);
1011 printf (" ret0: return %d;\n}\n\n", type == SPLIT ? 0 : -1);
1014 /* This table is used to indent the recog_* functions when we are inside
1015 conditions or switch statements. We only support small indentations
1016 and always indent at least two spaces. */
1018 static char *indents[]
1019 = {" ", " ", " ", " ", " ", " ", " ", " ",
1020 "\t", "\t ", "\t ", "\t ", "\t ", "\t ", "\t ",
1021 "\t\t", "\t\t ", "\t\t ", "\t\t ", "\t\t ", "\t\t "};
1023 /* Write out C code to perform the decisions in TREE for a subroutine of
1024 type TYPE. If all of the choices fail, branch to node AFTERWARD, if
1025 non-zero, otherwise return. PREVPOS is the position of the node that
1026 branched to this test.
1028 When we merged all alternatives, we tried to set up a convenient order.
1029 Specifically, tests involving the same mode are all grouped together,
1030 followed by a group that does not contain a mode test. Within each group
1031 of the same mode, we also group tests with the same code, followed by a
1032 group that does not test a code.
1034 Occasionally, we cannot arbitrarily reorder the tests so that multiple
1035 sequence of groups as described above are present.
1037 We generate two nested switch statements, the outer statement for
1038 testing modes, and the inner switch for testing RTX codes. It is
1039 not worth optimizing cases when only a small number of modes or
1040 codes is tested, since the compiler can do that when compiling the
1041 resulting function. We do check for when every test is the same mode
1042 or code. */
1044 static void
1045 write_tree_1 (tree, prevpos, afterward, type)
1046 struct decision *tree;
1047 char *prevpos;
1048 struct decision *afterward;
1049 enum routine_type type;
1051 register struct decision *p, *p1;
1052 register int depth = tree ? strlen (tree->position) : 0;
1053 enum machine_mode switch_mode = VOIDmode;
1054 RTX_CODE switch_code = UNKNOWN;
1055 int uncond = 0;
1056 char modemap[NUM_MACHINE_MODES];
1057 char codemap[NUM_RTX_CODE];
1058 int indent = 2;
1059 int i;
1061 /* One tricky area is what is the exact state when we branch to a
1062 node's label. There are two cases where we branch: when looking at
1063 successors to a node, or when a set of tests fails.
1065 In the former case, we are always branching to the first node in a
1066 decision list and we want all required tests to be performed. We
1067 put the labels for such nodes in front of any switch or test statements.
1068 These branches are done without updating the position to that of the
1069 target node.
1071 In the latter case, we are branching to a node that is not the first
1072 node in a decision list. We have already checked that it is possible
1073 for both the node we originally tested at this level and the node we
1074 are branching to to be both match some pattern. That means that they
1075 usually will be testing the same mode and code. So it is normally safe
1076 for such labels to be inside switch statements, since the tests done
1077 by virtue of arriving at that label will usually already have been
1078 done. The exception is a branch from a node that does not test a
1079 mode or code to one that does. In such cases, we set the `retest_mode'
1080 or `retest_code' flags. That will ensure that we start a new switch
1081 at that position and put the label before the switch.
1083 The branches in the latter case must set the position to that of the
1084 target node. */
1087 printf ("\n");
1088 if (tree && tree->subroutine_number == 0)
1090 printf (" L%d:\n", tree->number);
1091 tree->label_needed = 0;
1094 if (tree)
1096 change_state (prevpos, tree->position, 2);
1097 prevpos = tree->position;
1100 for (p = tree; p; p = p->next)
1102 enum machine_mode mode = p->enforce_mode ? p->mode : VOIDmode;
1103 int need_bracket;
1104 int wrote_bracket = 0;
1105 int inner_indent;
1107 if (p->success.first == 0 && p->insn_code_number < 0)
1108 abort ();
1110 /* Find the next alternative to p that might be true when p is true.
1111 Test that one next if p's successors fail. */
1113 for (p1 = p->next; p1 && not_both_true (p, p1, 1); p1 = p1->next)
1115 p->afterward = p1;
1117 if (p1)
1119 if (mode == VOIDmode && p1->enforce_mode && p1->mode != VOIDmode)
1120 p1->retest_mode = 1;
1121 if (p->code == UNKNOWN && p1->code != UNKNOWN)
1122 p1->retest_code = 1;
1123 p1->label_needed = 1;
1126 /* If we have a different code or mode than the last node and
1127 are in a switch on codes, we must either end the switch or
1128 go to another case. We must also end the switch if this
1129 node needs a label and to retest either the mode or code. */
1131 if (switch_code != UNKNOWN
1132 && (switch_code != p->code || switch_mode != mode
1133 || (p->label_needed && (p->retest_mode || p->retest_code))))
1135 enum rtx_code code = p->code;
1137 /* If P is testing a predicate that we know about and we haven't
1138 seen any of the codes that are valid for the predicate, we
1139 can write a series of "case" statement, one for each possible
1140 code. Since we are already in a switch, these redundant tests
1141 are very cheap and will reduce the number of predicate called. */
1143 if (p->pred >= 0)
1145 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1146 if (codemap[(int) preds[p->pred].codes[i]])
1147 break;
1149 if (preds[p->pred].codes[i] == 0)
1150 code = MATCH_OPERAND;
1153 if (code == UNKNOWN || codemap[(int) code]
1154 || switch_mode != mode
1155 || (p->label_needed && (p->retest_mode || p->retest_code)))
1157 printf ("%s}\n", indents[indent - 2]);
1158 switch_code = UNKNOWN;
1159 indent -= 4;
1161 else
1163 if (! uncond)
1164 printf ("%sbreak;\n", indents[indent]);
1166 if (code == MATCH_OPERAND)
1168 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1170 printf ("%scase ", indents[indent - 2]);
1171 print_code (preds[p->pred].codes[i]);
1172 printf (":\n");
1173 codemap[(int) preds[p->pred].codes[i]] = 1;
1176 else
1178 printf ("%scase ", indents[indent - 2]);
1179 print_code (code);
1180 printf (":\n");
1181 codemap[(int) p->code] = 1;
1184 switch_code = code;
1187 uncond = 0;
1190 /* If we were previously in a switch on modes and now have a different
1191 mode, end at least the case, and maybe end the switch if we are
1192 not testing a mode or testing a mode whose case we already saw. */
1194 if (switch_mode != VOIDmode
1195 && (switch_mode != mode || (p->label_needed && p->retest_mode)))
1197 if (mode == VOIDmode || modemap[(int) mode]
1198 || (p->label_needed && p->retest_mode))
1200 printf ("%s}\n", indents[indent - 2]);
1201 switch_mode = VOIDmode;
1202 indent -= 4;
1204 else
1206 if (! uncond)
1207 printf (" break;\n");
1208 printf (" case %smode:\n", GET_MODE_NAME (mode));
1209 switch_mode = mode;
1210 modemap[(int) mode] = 1;
1213 uncond = 0;
1216 /* If we are about to write dead code, something went wrong. */
1217 if (! p->label_needed && uncond)
1218 abort ();
1220 /* If we need a label and we will want to retest the mode or code at
1221 that label, write the label now. We have already ensured that
1222 things will be valid for the test. */
1224 if (p->label_needed && (p->retest_mode || p->retest_code))
1226 printf ("%sL%d:\n", indents[indent - 2], p->number);
1227 p->label_needed = 0;
1230 uncond = 0;
1232 /* If we are not in any switches, see if we can shortcut things
1233 by checking for identical modes and codes. */
1235 if (switch_mode == VOIDmode && switch_code == UNKNOWN)
1237 /* If p and its alternatives all want the same mode,
1238 reject all others at once, first, then ignore the mode. */
1240 if (mode != VOIDmode && p->next && same_modes (p, mode))
1242 printf (" if (GET_MODE (x%d) != %smode)\n",
1243 depth, GET_MODE_NAME (p->mode));
1244 if (afterward)
1246 printf (" {\n");
1247 change_state (p->position, afterward->position, 6);
1248 printf (" goto L%d;\n }\n", afterward->number);
1250 else
1251 printf (" goto ret0;\n");
1252 clear_modes (p);
1253 mode = VOIDmode;
1256 /* If p and its alternatives all want the same code,
1257 reject all others at once, first, then ignore the code. */
1259 if (p->code != UNKNOWN && p->next && same_codes (p, p->code))
1261 printf (" if (GET_CODE (x%d) != ", depth);
1262 print_code (p->code);
1263 printf (")\n");
1264 if (afterward)
1266 printf (" {\n");
1267 change_state (p->position, afterward->position, indent + 4);
1268 printf (" goto L%d;\n }\n", afterward->number);
1270 else
1271 printf (" goto ret0;\n");
1272 clear_codes (p);
1276 /* If we are not in a mode switch and we are testing for a specific
1277 mode, start a mode switch unless we have just one node or the next
1278 node is not testing a mode (we have already tested for the case of
1279 more than one mode, but all of the same mode). */
1281 if (switch_mode == VOIDmode && mode != VOIDmode && p->next != 0
1282 && p->next->enforce_mode && p->next->mode != VOIDmode)
1284 mybzero (modemap, sizeof modemap);
1285 printf ("%sswitch (GET_MODE (x%d))\n", indents[indent], depth);
1286 printf ("%s{\n", indents[indent + 2]);
1287 indent += 4;
1288 printf ("%scase %smode:\n", indents[indent - 2],
1289 GET_MODE_NAME (mode));
1290 modemap[(int) mode] = 1;
1291 switch_mode = mode;
1294 /* Similarly for testing codes. */
1296 if (switch_code == UNKNOWN && p->code != UNKNOWN && ! p->ignore_code
1297 && p->next != 0 && p->next->code != UNKNOWN)
1299 mybzero (codemap, sizeof codemap);
1300 printf ("%sswitch (GET_CODE (x%d))\n", indents[indent], depth);
1301 printf ("%s{\n", indents[indent + 2]);
1302 indent += 4;
1303 printf ("%scase ", indents[indent - 2]);
1304 print_code (p->code);
1305 printf (":\n");
1306 codemap[(int) p->code] = 1;
1307 switch_code = p->code;
1310 /* Now that most mode and code tests have been done, we can write out
1311 a label for an inner node, if we haven't already. */
1312 if (p->label_needed)
1313 printf ("%sL%d:\n", indents[indent - 2], p->number);
1315 inner_indent = indent;
1317 /* The only way we can have to do a mode or code test here is if
1318 this node needs such a test but is the only node to be tested.
1319 In that case, we won't have started a switch. Note that this is
1320 the only way the switch and test modes can disagree. */
1322 if ((mode != switch_mode && ! p->ignore_mode)
1323 || (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1324 || p->test_elt_zero_int || p->test_elt_one_int
1325 || p->test_elt_zero_wide || p->veclen
1326 || p->dupno >= 0 || p->tests || p->num_clobbers_to_add)
1328 printf ("%sif (", indents[indent]);
1330 if (mode != switch_mode && ! p->ignore_mode)
1331 printf ("GET_MODE (x%d) == %smode && ",
1332 depth, GET_MODE_NAME (mode));
1333 if (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1335 printf ("GET_CODE (x%d) == ", depth);
1336 print_code (p->code);
1337 printf (" && ");
1340 if (p->test_elt_zero_int)
1341 printf ("XINT (x%d, 0) == %d && ", depth, p->elt_zero_int);
1342 if (p->test_elt_one_int)
1343 printf ("XINT (x%d, 1) == %d && ", depth, p->elt_one_int);
1344 if (p->test_elt_zero_wide)
1345 printf (
1346 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
1347 "XWINT (x%d, 0) == %d && ",
1348 #else
1349 "XWINT (x%d, 0) == %ld && ",
1350 #endif
1351 depth, p->elt_zero_wide);
1352 if (p->veclen)
1353 printf ("XVECLEN (x%d, 0) == %d && ", depth, p->veclen);
1354 if (p->dupno >= 0)
1355 printf ("rtx_equal_p (x%d, ro[%d]) && ", depth, p->dupno);
1356 if (p->num_clobbers_to_add)
1357 printf ("pnum_clobbers != 0 && ");
1358 if (p->tests)
1359 printf ("%s (x%d, %smode)", p->tests, depth,
1360 GET_MODE_NAME (p->mode));
1361 else
1362 printf ("1");
1364 printf (")\n");
1365 inner_indent += 2;
1367 else
1368 uncond = 1;
1370 need_bracket = ! uncond;
1372 if (p->opno >= 0)
1374 if (need_bracket)
1376 printf ("%s{\n", indents[inner_indent]);
1377 inner_indent += 2;
1378 wrote_bracket = 1;
1379 need_bracket = 0;
1382 printf ("%sro[%d] = x%d;\n", indents[inner_indent], p->opno, depth);
1385 if (p->c_test)
1387 printf ("%sif (%s)\n", indents[inner_indent], p->c_test);
1388 inner_indent += 2;
1389 uncond = 0;
1390 need_bracket = 1;
1393 if (p->insn_code_number >= 0)
1395 if (type == SPLIT)
1396 printf ("%sreturn gen_split_%d (operands);\n",
1397 indents[inner_indent], p->insn_code_number);
1398 else
1400 if (p->num_clobbers_to_add)
1402 if (need_bracket)
1404 printf ("%s{\n", indents[inner_indent]);
1405 inner_indent += 2;
1408 printf ("%s*pnum_clobbers = %d;\n",
1409 indents[inner_indent], p->num_clobbers_to_add);
1410 printf ("%sreturn %d;\n",
1411 indents[inner_indent], p->insn_code_number);
1413 if (need_bracket)
1415 inner_indent -= 2;
1416 printf ("%s}\n", indents[inner_indent]);
1419 else
1420 printf ("%sreturn %d;\n",
1421 indents[inner_indent], p->insn_code_number);
1424 else
1425 printf ("%sgoto L%d;\n", indents[inner_indent],
1426 p->success.first->number);
1428 if (wrote_bracket)
1429 printf ("%s}\n", indents[inner_indent - 2]);
1432 /* We have now tested all alternatives. End any switches we have open
1433 and branch to the alternative node unless we know that we can't fall
1434 through to the branch. */
1436 if (switch_code != UNKNOWN)
1438 printf ("%s}\n", indents[indent - 2]);
1439 indent -= 4;
1440 uncond = 0;
1443 if (switch_mode != VOIDmode)
1445 printf ("%s}\n", indents[indent - 2]);
1446 indent -= 4;
1447 uncond = 0;
1450 if (indent != 2)
1451 abort ();
1453 if (uncond)
1454 return;
1456 if (afterward)
1458 change_state (prevpos, afterward->position, 2);
1459 printf (" goto L%d;\n", afterward->number);
1461 else
1462 printf (" goto ret0;\n");
1465 static void
1466 print_code (code)
1467 enum rtx_code code;
1469 register char *p1;
1470 for (p1 = GET_RTX_NAME (code); *p1; p1++)
1472 if (*p1 >= 'a' && *p1 <= 'z')
1473 putchar (*p1 + 'A' - 'a');
1474 else
1475 putchar (*p1);
1479 static int
1480 same_codes (p, code)
1481 register struct decision *p;
1482 register enum rtx_code code;
1484 for (; p; p = p->next)
1485 if (p->code != code)
1486 return 0;
1488 return 1;
1491 static void
1492 clear_codes (p)
1493 register struct decision *p;
1495 for (; p; p = p->next)
1496 p->ignore_code = 1;
1499 static int
1500 same_modes (p, mode)
1501 register struct decision *p;
1502 register enum machine_mode mode;
1504 for (; p; p = p->next)
1505 if ((p->enforce_mode ? p->mode : VOIDmode) != mode)
1506 return 0;
1508 return 1;
1511 static void
1512 clear_modes (p)
1513 register struct decision *p;
1515 for (; p; p = p->next)
1516 p->enforce_mode = 0;
1519 /* Write out the decision tree starting at TREE for a subroutine of type TYPE.
1521 PREVPOS is the position at the node that branched to this node.
1523 INITIAL is nonzero if this is the first node we are writing in a subroutine.
1525 If all nodes are false, branch to the node AFTERWARD. */
1527 static void
1528 write_tree (tree, prevpos, afterward, initial, type)
1529 struct decision *tree;
1530 char *prevpos;
1531 struct decision *afterward;
1532 int initial;
1533 enum routine_type type;
1535 register struct decision *p;
1536 char *name_prefix = (type == SPLIT ? "split" : "recog");
1537 char *call_suffix = (type == SPLIT ? "" : ", pnum_clobbers");
1539 if (! initial && tree->subroutine_number > 0)
1541 printf (" L%d:\n", tree->number);
1543 if (afterward)
1545 printf (" tem = %s_%d (x0, insn%s);\n",
1546 name_prefix, tree->subroutine_number, call_suffix);
1547 if (type == SPLIT)
1548 printf (" if (tem != 0) return tem;\n");
1549 else
1550 printf (" if (tem >= 0) return tem;\n");
1551 change_state (tree->position, afterward->position, 2);
1552 printf (" goto L%d;\n", afterward->number);
1554 else
1555 printf (" return %s_%d (x0, insn%s);\n",
1556 name_prefix, tree->subroutine_number, call_suffix);
1557 return;
1560 write_tree_1 (tree, prevpos, afterward, type);
1562 for (p = tree; p; p = p->next)
1563 if (p->success.first)
1564 write_tree (p->success.first, p->position,
1565 p->afterward ? p->afterward : afterward, 0, type);
1569 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1570 actions are necessary to move to NEWPOS.
1572 INDENT says how many blanks to place at the front of lines. */
1574 static void
1575 change_state (oldpos, newpos, indent)
1576 char *oldpos;
1577 char *newpos;
1578 int indent;
1580 int odepth = strlen (oldpos);
1581 int depth = odepth;
1582 int ndepth = strlen (newpos);
1584 /* Pop up as many levels as necessary. */
1586 while (strncmp (oldpos, newpos, depth))
1587 --depth;
1589 /* Go down to desired level. */
1591 while (depth < ndepth)
1593 if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1594 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1595 indents[indent], depth + 1, depth, newpos[depth] - 'a');
1596 else
1597 printf ("%sx%d = XEXP (x%d, %c);\n",
1598 indents[indent], depth + 1, depth, newpos[depth]);
1599 ++depth;
1603 static char *
1604 copystr (s1)
1605 char *s1;
1607 register char *tem;
1609 if (s1 == 0)
1610 return 0;
1612 tem = (char *) xmalloc (strlen (s1) + 1);
1613 strcpy (tem, s1);
1615 return tem;
1618 static void
1619 mybzero (b, length)
1620 register char *b;
1621 register unsigned length;
1623 while (length-- > 0)
1624 *b++ = 0;
1627 static void
1628 mybcopy (in, out, length)
1629 register char *in, *out;
1630 register unsigned length;
1632 while (length-- > 0)
1633 *out++ = *in++;
1636 static char *
1637 concat (s1, s2)
1638 char *s1, *s2;
1640 register char *tem;
1642 if (s1 == 0)
1643 return s2;
1644 if (s2 == 0)
1645 return s1;
1647 tem = (char *) xmalloc (strlen (s1) + strlen (s2) + 2);
1648 strcpy (tem, s1);
1649 strcat (tem, " ");
1650 strcat (tem, s2);
1652 return tem;
1655 char *
1656 xrealloc (ptr, size)
1657 char *ptr;
1658 unsigned size;
1660 char *result = (char *) realloc (ptr, size);
1661 if (!result)
1662 fatal ("virtual memory exhausted");
1663 return result;
1666 char *
1667 xmalloc (size)
1668 unsigned size;
1670 register char *val = (char *) malloc (size);
1672 if (val == 0)
1673 fatal ("virtual memory exhausted");
1674 return val;
1677 static void
1678 fatal (s)
1679 char *s;
1681 fprintf (stderr, "genrecog: ");
1682 fprintf (stderr, s);
1683 fprintf (stderr, "\n");
1684 fprintf (stderr, "after %d definitions\n", next_index);
1685 exit (FATAL_EXIT_CODE);
1688 /* More 'friendly' abort that prints the line and file.
1689 config.h can #define abort fancy_abort if you like that sort of thing. */
1691 void
1692 fancy_abort ()
1694 fatal ("Internal gcc abort.");
1698 main (argc, argv)
1699 int argc;
1700 char **argv;
1702 rtx desc;
1703 struct decision_head recog_tree;
1704 struct decision_head split_tree;
1705 FILE *infile;
1706 register int c;
1708 obstack_init (rtl_obstack);
1709 recog_tree.first = recog_tree.last = split_tree.first = split_tree.last = 0;
1711 if (argc <= 1)
1712 fatal ("No input file name.");
1714 infile = fopen (argv[1], "r");
1715 if (infile == 0)
1717 perror (argv[1]);
1718 exit (FATAL_EXIT_CODE);
1721 init_rtl ();
1722 next_insn_code = 0;
1723 next_index = 0;
1725 printf ("/* Generated automatically by the program `genrecog'\n\
1726 from the machine description file `md'. */\n\n");
1728 printf ("#include \"config.h\"\n");
1729 printf ("#include \"rtl.h\"\n");
1730 printf ("#include \"insn-config.h\"\n");
1731 printf ("#include \"recog.h\"\n");
1732 printf ("#include \"real.h\"\n");
1733 printf ("#include \"output.h\"\n");
1734 printf ("#include \"flags.h\"\n");
1735 printf ("\n");
1737 /* Read the machine description. */
1739 while (1)
1741 c = read_skip_spaces (infile);
1742 if (c == EOF)
1743 break;
1744 ungetc (c, infile);
1746 desc = read_rtx (infile);
1747 if (GET_CODE (desc) == DEFINE_INSN)
1748 recog_tree = merge_trees (recog_tree,
1749 make_insn_sequence (desc, RECOG));
1750 else if (GET_CODE (desc) == DEFINE_SPLIT)
1751 split_tree = merge_trees (split_tree,
1752 make_insn_sequence (desc, SPLIT));
1753 if (GET_CODE (desc) == DEFINE_PEEPHOLE
1754 || GET_CODE (desc) == DEFINE_EXPAND)
1755 next_insn_code++;
1756 next_index++;
1759 printf ("\n\
1760 /* `recog' contains a decision tree\n\
1761 that recognizes whether the rtx X0 is a valid instruction.\n\
1763 recog returns -1 if the rtx is not valid.\n\
1764 If the rtx is valid, recog returns a nonnegative number\n\
1765 which is the insn code number for the pattern that matched.\n");
1766 printf (" This is the same as the order in the machine description of\n\
1767 the entry that matched. This number can be used as an index into\n\
1768 entry that matched. This number can be used as an index into various\n\
1769 insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands\n\
1770 (found in insn-output.c).\n\n");
1771 printf (" The third argument to recog is an optional pointer to an int.\n\
1772 If present, recog will accept a pattern if it matches except for\n\
1773 missing CLOBBER expressions at the end. In that case, the value\n\
1774 pointed to by the optional pointer will be set to the number of\n\
1775 CLOBBERs that need to be added (it should be initialized to zero by\n\
1776 the caller). If it is set nonzero, the caller should allocate a\n\
1777 PARALLEL of the appropriate size, copy the initial entries, and call\n\
1778 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.");
1780 if (split_tree.first)
1781 printf ("\n\n The function split_insns returns 0 if the rtl could not\n\
1782 be split or the split rtl in a SEQUENCE if it can be.");
1784 printf ("*/\n\n");
1786 printf ("rtx recog_operand[MAX_RECOG_OPERANDS];\n\n");
1787 printf ("rtx *recog_operand_loc[MAX_RECOG_OPERANDS];\n\n");
1788 printf ("rtx *recog_dup_loc[MAX_DUP_OPERANDS];\n\n");
1789 printf ("char recog_dup_num[MAX_DUP_OPERANDS];\n\n");
1790 printf ("#define operands recog_operand\n\n");
1792 next_subroutine_number = 0;
1793 break_out_subroutines (recog_tree, RECOG, 1);
1794 write_subroutine (recog_tree.first, RECOG);
1796 next_subroutine_number = 0;
1797 break_out_subroutines (split_tree, SPLIT, 1);
1798 write_subroutine (split_tree.first, SPLIT);
1800 fflush (stdout);
1801 exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
1802 /* NOTREACHED */
1803 return 0;