2011-04-25 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / ira.c
blob49f3e764ed02bec7d65b50140dae66daa540f081
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
50 of given set.
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
62 pseudo-register number, allocno class, conflicting allocnos and
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
78 - *Hard-register costs*. This is a vector of size equal to the
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
85 by the move cost.
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
96 assigned yet.
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
113 subregion cap.
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
145 IRA major passes are:
147 o Building IRA internal representation which consists of the
148 following subpasses:
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
157 * IRA creates live ranges of each allocno, calulates register
158 pressure for each pressure class in each region, sets up
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
167 ira-build.c).
169 * IRA creates all caps (file ira-build.c).
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
195 the allocation. IRA uses some heuristics to improve the
196 order.
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
208 still free.
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
246 allocation cost.
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
269 algorithm.
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
308 registers.
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
334 Literature is worth to read for better understanding the code:
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
360 #include "config.h"
361 #include "system.h"
362 #include "coretypes.h"
363 #include "tm.h"
364 #include "regs.h"
365 #include "rtl.h"
366 #include "tm_p.h"
367 #include "target.h"
368 #include "flags.h"
369 #include "obstack.h"
370 #include "bitmap.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
373 #include "df.h"
374 #include "expr.h"
375 #include "recog.h"
376 #include "params.h"
377 #include "timevar.h"
378 #include "tree-pass.h"
379 #include "output.h"
380 #include "except.h"
381 #include "reload.h"
382 #include "diagnostic-core.h"
383 #include "integrate.h"
384 #include "ggc.h"
385 #include "ira-int.h"
388 struct target_ira default_target_ira;
389 struct target_ira_int default_target_ira_int;
390 #if SWITCHABLE_TARGET
391 struct target_ira *this_target_ira = &default_target_ira;
392 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
393 #endif
395 /* A modified value of flag `-fira-verbose' used internally. */
396 int internal_flag_ira_verbose;
398 /* Dump file of the allocator if it is not NULL. */
399 FILE *ira_dump_file;
401 /* The number of elements in the following array. */
402 int ira_spilled_reg_stack_slots_num;
404 /* The following array contains info about spilled pseudo-registers
405 stack slots used in current function so far. */
406 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
408 /* Correspondingly overall cost of the allocation, cost of the
409 allocnos assigned to hard-registers, cost of the allocnos assigned
410 to memory, cost of loads, stores and register move insns generated
411 for pseudo-register live range splitting (see ira-emit.c). */
412 int ira_overall_cost;
413 int ira_reg_cost, ira_mem_cost;
414 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
415 int ira_move_loops_num, ira_additional_jumps_num;
417 /* All registers that can be eliminated. */
419 HARD_REG_SET eliminable_regset;
421 /* Temporary hard reg set used for a different calculation. */
422 static HARD_REG_SET temp_hard_regset;
426 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
427 static void
428 setup_reg_mode_hard_regset (void)
430 int i, m, hard_regno;
432 for (m = 0; m < NUM_MACHINE_MODES; m++)
433 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
435 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
436 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
437 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
438 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
439 hard_regno + i);
444 #define no_unit_alloc_regs \
445 (this_target_ira_int->x_no_unit_alloc_regs)
447 /* The function sets up the three arrays declared above. */
448 static void
449 setup_class_hard_regs (void)
451 int cl, i, hard_regno, n;
452 HARD_REG_SET processed_hard_reg_set;
454 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
455 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
457 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
458 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
459 CLEAR_HARD_REG_SET (processed_hard_reg_set);
460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
462 ira_non_ordered_class_hard_regs[cl][i] = -1;
463 ira_class_hard_reg_index[cl][i] = -1;
465 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 #ifdef REG_ALLOC_ORDER
468 hard_regno = reg_alloc_order[i];
469 #else
470 hard_regno = i;
471 #endif
472 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
473 continue;
474 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
475 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
476 ira_class_hard_reg_index[cl][hard_regno] = -1;
477 else
479 ira_class_hard_reg_index[cl][hard_regno] = n;
480 ira_class_hard_regs[cl][n++] = hard_regno;
483 ira_class_hard_regs_num[cl] = n;
484 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
485 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
486 ira_non_ordered_class_hard_regs[cl][n++] = i;
487 ira_assert (ira_class_hard_regs_num[cl] == n);
491 /* Set up IRA_AVAILABLE_CLASS_REGS. */
492 static void
493 setup_available_class_regs (void)
495 int i, j;
497 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
498 for (i = 0; i < N_REG_CLASSES; i++)
500 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
501 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
502 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
503 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
504 ira_available_class_regs[i]++;
508 /* Set up global variables defining info about hard registers for the
509 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
510 that we can use the hard frame pointer for the allocation. */
511 static void
512 setup_alloc_regs (bool use_hard_frame_p)
514 #ifdef ADJUST_REG_ALLOC_ORDER
515 ADJUST_REG_ALLOC_ORDER;
516 #endif
517 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
518 if (! use_hard_frame_p)
519 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521 setup_available_class_regs ();
526 #define alloc_reg_class_subclasses \
527 (this_target_ira_int->x_alloc_reg_class_subclasses)
529 /* Initialize the table of subclasses of each reg class. */
530 static void
531 setup_reg_subclasses (void)
533 int i, j;
534 HARD_REG_SET temp_hard_regset2;
536 for (i = 0; i < N_REG_CLASSES; i++)
537 for (j = 0; j < N_REG_CLASSES; j++)
538 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
540 for (i = 0; i < N_REG_CLASSES; i++)
542 if (i == (int) NO_REGS)
543 continue;
545 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
546 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
547 if (hard_reg_set_empty_p (temp_hard_regset))
548 continue;
549 for (j = 0; j < N_REG_CLASSES; j++)
550 if (i != j)
552 enum reg_class *p;
554 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
555 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
556 if (! hard_reg_set_subset_p (temp_hard_regset,
557 temp_hard_regset2))
558 continue;
559 p = &alloc_reg_class_subclasses[j][0];
560 while (*p != LIM_REG_CLASSES) p++;
561 *p = (enum reg_class) i;
568 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
569 static void
570 setup_class_subset_and_memory_move_costs (void)
572 int cl, cl2, mode, cost;
573 HARD_REG_SET temp_hard_regset2;
575 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
576 ira_memory_move_cost[mode][NO_REGS][0]
577 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
578 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
580 if (cl != (int) NO_REGS)
581 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
583 ira_max_memory_move_cost[mode][cl][0]
584 = ira_memory_move_cost[mode][cl][0]
585 = memory_move_cost ((enum machine_mode) mode,
586 (enum reg_class) cl, false);
587 ira_max_memory_move_cost[mode][cl][1]
588 = ira_memory_move_cost[mode][cl][1]
589 = memory_move_cost ((enum machine_mode) mode,
590 (enum reg_class) cl, true);
591 /* Costs for NO_REGS are used in cost calculation on the
592 1st pass when the preferred register classes are not
593 known yet. In this case we take the best scenario. */
594 if (ira_memory_move_cost[mode][NO_REGS][0]
595 > ira_memory_move_cost[mode][cl][0])
596 ira_max_memory_move_cost[mode][NO_REGS][0]
597 = ira_memory_move_cost[mode][NO_REGS][0]
598 = ira_memory_move_cost[mode][cl][0];
599 if (ira_memory_move_cost[mode][NO_REGS][1]
600 > ira_memory_move_cost[mode][cl][1])
601 ira_max_memory_move_cost[mode][NO_REGS][1]
602 = ira_memory_move_cost[mode][NO_REGS][1]
603 = ira_memory_move_cost[mode][cl][1];
606 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
607 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
609 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
611 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
612 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
613 ira_class_subset_p[cl][cl2]
614 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
615 if (! hard_reg_set_empty_p (temp_hard_regset2)
616 && hard_reg_set_subset_p (reg_class_contents[cl2],
617 reg_class_contents[cl]))
618 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
620 cost = ira_memory_move_cost[mode][cl2][0];
621 if (cost > ira_max_memory_move_cost[mode][cl][0])
622 ira_max_memory_move_cost[mode][cl][0] = cost;
623 cost = ira_memory_move_cost[mode][cl2][1];
624 if (cost > ira_max_memory_move_cost[mode][cl][1])
625 ira_max_memory_move_cost[mode][cl][1] = cost;
628 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
629 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
631 ira_memory_move_cost[mode][cl][0]
632 = ira_max_memory_move_cost[mode][cl][0];
633 ira_memory_move_cost[mode][cl][1]
634 = ira_max_memory_move_cost[mode][cl][1];
636 setup_reg_subclasses ();
641 /* Define the following macro if allocation through malloc if
642 preferable. */
643 #define IRA_NO_OBSTACK
645 #ifndef IRA_NO_OBSTACK
646 /* Obstack used for storing all dynamic data (except bitmaps) of the
647 IRA. */
648 static struct obstack ira_obstack;
649 #endif
651 /* Obstack used for storing all bitmaps of the IRA. */
652 static struct bitmap_obstack ira_bitmap_obstack;
654 /* Allocate memory of size LEN for IRA data. */
655 void *
656 ira_allocate (size_t len)
658 void *res;
660 #ifndef IRA_NO_OBSTACK
661 res = obstack_alloc (&ira_obstack, len);
662 #else
663 res = xmalloc (len);
664 #endif
665 return res;
668 /* Free memory ADDR allocated for IRA data. */
669 void
670 ira_free (void *addr ATTRIBUTE_UNUSED)
672 #ifndef IRA_NO_OBSTACK
673 /* do nothing */
674 #else
675 free (addr);
676 #endif
680 /* Allocate and returns bitmap for IRA. */
681 bitmap
682 ira_allocate_bitmap (void)
684 return BITMAP_ALLOC (&ira_bitmap_obstack);
687 /* Free bitmap B allocated for IRA. */
688 void
689 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
691 /* do nothing */
696 /* Output information about allocation of all allocnos (except for
697 caps) into file F. */
698 void
699 ira_print_disposition (FILE *f)
701 int i, n, max_regno;
702 ira_allocno_t a;
703 basic_block bb;
705 fprintf (f, "Disposition:");
706 max_regno = max_reg_num ();
707 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
708 for (a = ira_regno_allocno_map[i];
709 a != NULL;
710 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
712 if (n % 4 == 0)
713 fprintf (f, "\n");
714 n++;
715 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
716 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
717 fprintf (f, "b%-3d", bb->index);
718 else
719 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
720 if (ALLOCNO_HARD_REGNO (a) >= 0)
721 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
722 else
723 fprintf (f, " mem");
725 fprintf (f, "\n");
728 /* Outputs information about allocation of all allocnos into
729 stderr. */
730 void
731 ira_debug_disposition (void)
733 ira_print_disposition (stderr);
738 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
739 register class containing stack registers or NO_REGS if there are
740 no stack registers. To find this class, we iterate through all
741 register pressure classes and choose the first register pressure
742 class containing all the stack registers and having the biggest
743 size. */
744 static void
745 setup_stack_reg_pressure_class (void)
747 ira_stack_reg_pressure_class = NO_REGS;
748 #ifdef STACK_REGS
750 int i, best, size;
751 enum reg_class cl;
752 HARD_REG_SET temp_hard_regset2;
754 CLEAR_HARD_REG_SET (temp_hard_regset);
755 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
756 SET_HARD_REG_BIT (temp_hard_regset, i);
757 best = 0;
758 for (i = 0; i < ira_pressure_classes_num; i++)
760 cl = ira_pressure_classes[i];
761 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
762 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
763 size = hard_reg_set_size (temp_hard_regset2);
764 if (best < size)
766 best = size;
767 ira_stack_reg_pressure_class = cl;
771 #endif
774 /* Find pressure classes which are register classes for which we
775 calculate register pressure in IRA, register pressure sensitive
776 insn scheduling, and register pressure sensitive loop invariant
777 motion.
779 To make register pressure calculation easy, we always use
780 non-intersected register pressure classes. A move of hard
781 registers from one register pressure class is not more expensive
782 than load and store of the hard registers. Most likely an allocno
783 class will be a subset of a register pressure class and in many
784 cases a register pressure class. That makes usage of register
785 pressure classes a good approximation to find a high register
786 pressure. */
787 static void
788 setup_pressure_classes (void)
790 int cost, i, n, curr;
791 int cl, cl2;
792 enum reg_class pressure_classes[N_REG_CLASSES];
793 int m;
794 HARD_REG_SET temp_hard_regset2;
795 bool insert_p;
797 n = 0;
798 for (cl = 0; cl < N_REG_CLASSES; cl++)
800 if (ira_available_class_regs[cl] == 0)
801 continue;
802 /* Check that the moves between any hard registers of the
803 current class are not more expensive for a legal mode than
804 load/store of the hard registers of the current class. Such
805 class is a potential candidate to be a register pressure
806 class. */
807 for (m = 0; m < NUM_MACHINE_MODES; m++)
809 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
810 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
811 AND_COMPL_HARD_REG_SET (temp_hard_regset,
812 ira_prohibited_class_mode_regs[cl][m]);
813 if (hard_reg_set_empty_p (temp_hard_regset))
814 continue;
815 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
816 cost = ira_register_move_cost[m][cl][cl];
817 if (cost <= ira_max_memory_move_cost[m][cl][1]
818 || cost <= ira_max_memory_move_cost[m][cl][0])
819 break;
821 if (m >= NUM_MACHINE_MODES)
822 continue;
823 curr = 0;
824 insert_p = true;
825 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
826 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
827 /* Remove so far added pressure classes which are subset of the
828 current candidate class. Prefer GENERAL_REGS as a pressure
829 register class to another class containing the same
830 allocatable hard registers. We do this because machine
831 dependent cost hooks might give wrong costs for the latter
832 class but always give the right cost for the former class
833 (GENERAL_REGS). */
834 for (i = 0; i < n; i++)
836 cl2 = pressure_classes[i];
837 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
838 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
839 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
840 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
841 || cl2 == (int) GENERAL_REGS))
843 pressure_classes[curr++] = (enum reg_class) cl2;
844 insert_p = false;
845 continue;
847 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
848 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
849 || cl == (int) GENERAL_REGS))
850 continue;
851 pressure_classes[curr++] = (enum reg_class) cl2;
853 /* If the current candidate is a subset of a so far added
854 pressure class, don't add it to the list of the pressure
855 classes. */
856 if (insert_p)
857 pressure_classes[curr++] = (enum reg_class) cl;
858 n = curr;
860 #ifdef ENABLE_IRA_CHECKING
861 /* Check pressure classes correctness: here we check that hard
862 registers from all register pressure classes contains all hard
863 registers available for the allocation. */
864 CLEAR_HARD_REG_SET (temp_hard_regset);
865 CLEAR_HARD_REG_SET (temp_hard_regset2);
866 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
868 for (i = 0; i < n; i++)
869 if ((int) pressure_classes[i] == cl)
870 break;
871 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
872 if (i >= n)
873 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
875 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
876 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
877 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
878 #endif
879 ira_pressure_classes_num = 0;
880 for (i = 0; i < n; i++)
882 cl = (int) pressure_classes[i];
883 ira_reg_pressure_class_p[cl] = true;
884 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
886 setup_stack_reg_pressure_class ();
889 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
890 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
892 Target may have many subtargets and not all target hard regiters can
893 be used for allocation, e.g. x86 port in 32-bit mode can not use
894 hard registers introduced in x86-64 like r8-r15). Some classes
895 might have the same allocatable hard registers, e.g. INDEX_REGS
896 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
897 calculations efforts we introduce allocno classes which contain
898 unique non-empty sets of allocatable hard-registers.
900 Pseudo class cost calculation in ira-costs.c is very expensive.
901 Therefore we are trying to decrease number of classes involved in
902 such calculation. Register classes used in the cost calculation
903 are called important classes. They are allocno classes and other
904 non-empty classes whose allocatable hard register sets are inside
905 of an allocno class hard register set. From the first sight, it
906 looks like that they are just allocno classes. It is not true. In
907 example of x86-port in 32-bit mode, allocno classes will contain
908 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
909 registers are the same for the both classes). The important
910 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
911 because a machine description insn constraint may refers for
912 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
913 of the insn constraints. */
914 static void
915 setup_allocno_and_important_classes (void)
917 int i, j, n, cl;
918 bool set_p;
919 HARD_REG_SET temp_hard_regset2;
920 static enum reg_class classes[LIM_REG_CLASSES + 1];
922 n = 0;
923 /* Collect classes which contain unique sets of allocatable hard
924 registers. Prefer GENERAL_REGS to other classes containing the
925 same set of hard registers. */
926 for (i = 0; i < LIM_REG_CLASSES; i++)
928 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
929 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
930 for (j = 0; j < n; j++)
932 cl = classes[j];
933 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
934 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
935 no_unit_alloc_regs);
936 if (hard_reg_set_equal_p (temp_hard_regset,
937 temp_hard_regset2))
938 break;
940 if (j >= n)
941 classes[n++] = (enum reg_class) i;
942 else if (i == GENERAL_REGS)
943 /* Prefer general regs. For i386 example, it means that
944 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
945 (all of them consists of the same available hard
946 registers). */
947 classes[j] = (enum reg_class) i;
949 classes[n] = LIM_REG_CLASSES;
951 /* Set up classes which can be used for allocnos as classes
952 conatining non-empty unique sets of allocatable hard
953 registers. */
954 ira_allocno_classes_num = 0;
955 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
957 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
958 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
959 if (hard_reg_set_empty_p (temp_hard_regset))
960 continue;
961 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
963 ira_important_classes_num = 0;
964 /* Add non-allocno classes containing to non-empty set of
965 allocatable hard regs. */
966 for (cl = 0; cl < N_REG_CLASSES; cl++)
968 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
969 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
970 if (! hard_reg_set_empty_p (temp_hard_regset))
972 set_p = false;
973 for (j = 0; j < ira_allocno_classes_num; j++)
975 COPY_HARD_REG_SET (temp_hard_regset2,
976 reg_class_contents[ira_allocno_classes[j]]);
977 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
978 if ((enum reg_class) cl == ira_allocno_classes[j])
979 break;
980 else if (hard_reg_set_subset_p (temp_hard_regset,
981 temp_hard_regset2))
982 set_p = true;
984 if (set_p && j >= ira_allocno_classes_num)
985 ira_important_classes[ira_important_classes_num++]
986 = (enum reg_class) cl;
989 /* Now add allocno classes to the important classes. */
990 for (j = 0; j < ira_allocno_classes_num; j++)
991 ira_important_classes[ira_important_classes_num++]
992 = ira_allocno_classes[j];
993 for (cl = 0; cl < N_REG_CLASSES; cl++)
995 ira_reg_allocno_class_p[cl] = false;
996 ira_reg_pressure_class_p[cl] = false;
998 for (j = 0; j < ira_allocno_classes_num; j++)
999 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1000 setup_pressure_classes ();
1003 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1004 given by array CLASSES of length CLASSES_NUM. The function is used
1005 make translation any reg class to an allocno class or to an
1006 pressure class. This translation is necessary for some
1007 calculations when we can use only allocno or pressure classes and
1008 such translation represents an approximate representation of all
1009 classes.
1011 The translation in case when allocatable hard register set of a
1012 given class is subset of allocatable hard register set of a class
1013 in CLASSES is pretty simple. We use smallest classes from CLASSES
1014 containing a given class. If allocatable hard register set of a
1015 given class is not a subset of any corresponding set of a class
1016 from CLASSES, we use the cheapest (with load/store point of view)
1017 class from CLASSES whose set intersects with given class set */
1018 static void
1019 setup_class_translate_array (enum reg_class *class_translate,
1020 int classes_num, enum reg_class *classes)
1022 int cl, mode;
1023 enum reg_class aclass, best_class, *cl_ptr;
1024 int i, cost, min_cost, best_cost;
1026 for (cl = 0; cl < N_REG_CLASSES; cl++)
1027 class_translate[cl] = NO_REGS;
1029 for (i = 0; i < classes_num; i++)
1031 aclass = classes[i];
1032 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1033 (cl = *cl_ptr) != LIM_REG_CLASSES;
1034 cl_ptr++)
1035 if (class_translate[cl] == NO_REGS)
1036 class_translate[cl] = aclass;
1037 class_translate[aclass] = aclass;
1039 /* For classes which are not fully covered by one of given classes
1040 (in other words covered by more one given class), use the
1041 cheapest class. */
1042 for (cl = 0; cl < N_REG_CLASSES; cl++)
1044 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1045 continue;
1046 best_class = NO_REGS;
1047 best_cost = INT_MAX;
1048 for (i = 0; i < classes_num; i++)
1050 aclass = classes[i];
1051 COPY_HARD_REG_SET (temp_hard_regset,
1052 reg_class_contents[aclass]);
1053 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1054 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1055 if (! hard_reg_set_empty_p (temp_hard_regset))
1057 min_cost = INT_MAX;
1058 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1060 cost = (ira_memory_move_cost[mode][cl][0]
1061 + ira_memory_move_cost[mode][cl][1]);
1062 if (min_cost > cost)
1063 min_cost = cost;
1065 if (best_class == NO_REGS || best_cost > min_cost)
1067 best_class = aclass;
1068 best_cost = min_cost;
1072 class_translate[cl] = best_class;
1076 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1077 IRA_PRESSURE_CLASS_TRANSLATE. */
1078 static void
1079 setup_class_translate (void)
1081 setup_class_translate_array (ira_allocno_class_translate,
1082 ira_allocno_classes_num, ira_allocno_classes);
1083 setup_class_translate_array (ira_pressure_class_translate,
1084 ira_pressure_classes_num, ira_pressure_classes);
1087 /* Order numbers of allocno classes in original target allocno class
1088 array, -1 for non-allocno classes. */
1089 static int allocno_class_order[N_REG_CLASSES];
1091 /* The function used to sort the important classes. */
1092 static int
1093 comp_reg_classes_func (const void *v1p, const void *v2p)
1095 enum reg_class cl1 = *(const enum reg_class *) v1p;
1096 enum reg_class cl2 = *(const enum reg_class *) v2p;
1097 enum reg_class tcl1, tcl2;
1098 int diff;
1100 tcl1 = ira_allocno_class_translate[cl1];
1101 tcl2 = ira_allocno_class_translate[cl2];
1102 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1103 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1104 return diff;
1105 return (int) cl1 - (int) cl2;
1108 /* For correct work of function setup_reg_class_relation we need to
1109 reorder important classes according to the order of their allocno
1110 classes. It places important classes containing the same
1111 allocatable hard register set adjacent to each other and allocno
1112 class with the allocatable hard register set right after the other
1113 important classes with the same set.
1115 In example from comments of function
1116 setup_allocno_and_important_classes, it places LEGACY_REGS and
1117 GENERAL_REGS close to each other and GENERAL_REGS is after
1118 LEGACY_REGS. */
1119 static void
1120 reorder_important_classes (void)
1122 int i;
1124 for (i = 0; i < N_REG_CLASSES; i++)
1125 allocno_class_order[i] = -1;
1126 for (i = 0; i < ira_allocno_classes_num; i++)
1127 allocno_class_order[ira_allocno_classes[i]] = i;
1128 qsort (ira_important_classes, ira_important_classes_num,
1129 sizeof (enum reg_class), comp_reg_classes_func);
1130 for (i = 0; i < ira_important_classes_num; i++)
1131 ira_important_class_nums[ira_important_classes[i]] = i;
1134 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1135 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1136 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1137 please see corresponding comments in ira-int.h. */
1138 static void
1139 setup_reg_class_relations (void)
1141 int i, cl1, cl2, cl3;
1142 HARD_REG_SET intersection_set, union_set, temp_set2;
1143 bool important_class_p[N_REG_CLASSES];
1145 memset (important_class_p, 0, sizeof (important_class_p));
1146 for (i = 0; i < ira_important_classes_num; i++)
1147 important_class_p[ira_important_classes[i]] = true;
1148 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1150 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1151 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1153 ira_reg_classes_intersect_p[cl1][cl2] = false;
1154 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1155 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1156 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1157 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1158 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1159 if (hard_reg_set_empty_p (temp_hard_regset)
1160 && hard_reg_set_empty_p (temp_set2))
1162 /* The both classes have no allocatable hard registers
1163 -- take all class hard registers into account and use
1164 reg_class_subunion and reg_class_superunion. */
1165 for (i = 0;; i++)
1167 cl3 = reg_class_subclasses[cl1][i];
1168 if (cl3 == LIM_REG_CLASSES)
1169 break;
1170 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1171 (enum reg_class) cl3))
1172 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1174 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1175 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1176 continue;
1178 ira_reg_classes_intersect_p[cl1][cl2]
1179 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1180 if (important_class_p[cl1] && important_class_p[cl2]
1181 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1183 /* CL1 and CL2 are important classes and CL1 allocatable
1184 hard register set is inside of CL2 allocatable hard
1185 registers -- make CL1 a superset of CL2. */
1186 enum reg_class *p;
1188 p = &ira_reg_class_super_classes[cl1][0];
1189 while (*p != LIM_REG_CLASSES)
1190 p++;
1191 *p++ = (enum reg_class) cl2;
1192 *p = LIM_REG_CLASSES;
1194 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1195 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1196 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1197 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1198 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1199 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1200 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1201 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1202 for (i = 0; i < ira_important_classes_num; i++)
1204 cl3 = ira_important_classes[i];
1205 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1206 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1207 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1209 /* CL3 allocatable hard register set is inside of
1210 intersection of allocatable hard register sets
1211 of CL1 and CL2. */
1212 COPY_HARD_REG_SET
1213 (temp_set2,
1214 reg_class_contents[(int)
1215 ira_reg_class_intersect[cl1][cl2]]);
1216 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1217 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1218 /* If the allocatable hard register sets are the
1219 same, prefer GENERAL_REGS or the smallest
1220 class for debugging purposes. */
1221 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1222 && (cl3 == GENERAL_REGS
1223 || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1224 && hard_reg_set_subset_p
1225 (reg_class_contents[cl3],
1226 reg_class_contents
1227 [(int) ira_reg_class_intersect[cl1][cl2]])))))
1228 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1230 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1232 /* CL3 allocatbale hard register set is inside of
1233 union of allocatable hard register sets of CL1
1234 and CL2. */
1235 COPY_HARD_REG_SET
1236 (temp_set2,
1237 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1238 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1239 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1240 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1242 && (! hard_reg_set_equal_p (temp_set2,
1243 temp_hard_regset)
1244 || cl3 == GENERAL_REGS
1245 /* If the allocatable hard register sets are the
1246 same, prefer GENERAL_REGS or the smallest
1247 class for debugging purposes. */
1248 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1249 && hard_reg_set_subset_p
1250 (reg_class_contents[cl3],
1251 reg_class_contents
1252 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1253 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1255 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1257 /* CL3 allocatable hard register set contains union
1258 of allocatable hard register sets of CL1 and
1259 CL2. */
1260 COPY_HARD_REG_SET
1261 (temp_set2,
1262 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1263 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1264 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1265 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1267 && (! hard_reg_set_equal_p (temp_set2,
1268 temp_hard_regset)
1269 || cl3 == GENERAL_REGS
1270 /* If the allocatable hard register sets are the
1271 same, prefer GENERAL_REGS or the smallest
1272 class for debugging purposes. */
1273 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1274 && hard_reg_set_subset_p
1275 (reg_class_contents[cl3],
1276 reg_class_contents
1277 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1278 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1285 /* Output all possible allocno classes and the translation map into
1286 file F. */
1287 static void
1288 print_classes (FILE *f, bool pressure_p)
1290 int classes_num = (pressure_p
1291 ? ira_pressure_classes_num : ira_allocno_classes_num);
1292 enum reg_class *classes = (pressure_p
1293 ? ira_pressure_classes : ira_allocno_classes);
1294 enum reg_class *class_translate = (pressure_p
1295 ? ira_pressure_class_translate
1296 : ira_allocno_class_translate);
1297 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1298 int i;
1300 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1301 for (i = 0; i < classes_num; i++)
1302 fprintf (f, " %s", reg_class_names[classes[i]]);
1303 fprintf (f, "\nClass translation:\n");
1304 for (i = 0; i < N_REG_CLASSES; i++)
1305 fprintf (f, " %s -> %s\n", reg_class_names[i],
1306 reg_class_names[class_translate[i]]);
1309 /* Output all possible allocno and translation classes and the
1310 translation maps into stderr. */
1311 void
1312 ira_debug_allocno_classes (void)
1314 print_classes (stderr, false);
1315 print_classes (stderr, true);
1318 /* Set up different arrays concerning class subsets, allocno and
1319 important classes. */
1320 static void
1321 find_reg_classes (void)
1323 setup_allocno_and_important_classes ();
1324 setup_class_translate ();
1325 reorder_important_classes ();
1326 setup_reg_class_relations ();
1331 /* Set up the array above. */
1332 static void
1333 setup_hard_regno_aclass (void)
1335 int i;
1337 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1339 #if 1
1340 ira_hard_regno_allocno_class[i]
1341 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1342 ? NO_REGS
1343 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1344 #else
1345 int j;
1346 enum reg_class cl;
1347 ira_hard_regno_allocno_class[i] = NO_REGS;
1348 for (j = 0; j < ira_allocno_classes_num; j++)
1350 cl = ira_allocno_classes[j];
1351 if (ira_class_hard_reg_index[cl][i] >= 0)
1353 ira_hard_regno_allocno_class[i] = cl;
1354 break;
1357 #endif
1363 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1364 static void
1365 setup_reg_class_nregs (void)
1367 int i, cl, cl2, m;
1369 for (m = 0; m < MAX_MACHINE_MODE; m++)
1371 for (cl = 0; cl < N_REG_CLASSES; cl++)
1372 ira_reg_class_max_nregs[cl][m]
1373 = ira_reg_class_min_nregs[cl][m]
1374 = CLASS_MAX_NREGS ((enum reg_class) cl, (enum machine_mode) m);
1375 for (cl = 0; cl < N_REG_CLASSES; cl++)
1376 for (i = 0;
1377 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1378 i++)
1379 if (ira_reg_class_min_nregs[cl2][m]
1380 < ira_reg_class_min_nregs[cl][m])
1381 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1387 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
1388 static void
1389 setup_prohibited_class_mode_regs (void)
1391 int j, k, hard_regno, cl;
1393 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1395 for (j = 0; j < NUM_MACHINE_MODES; j++)
1397 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1398 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1400 hard_regno = ira_class_hard_regs[cl][k];
1401 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1402 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1403 hard_regno);
1409 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1410 spanning from one register pressure class to another one. It is
1411 called after defining the pressure classes. */
1412 static void
1413 clarify_prohibited_class_mode_regs (void)
1415 int j, k, hard_regno, cl, pclass, nregs;
1417 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1418 for (j = 0; j < NUM_MACHINE_MODES; j++)
1419 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1421 hard_regno = ira_class_hard_regs[cl][k];
1422 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1423 continue;
1424 nregs = hard_regno_nregs[hard_regno][j];
1425 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1426 for (nregs-- ;nregs >= 0; nregs--)
1427 if (((enum reg_class) pclass
1428 != ira_pressure_class_translate[REGNO_REG_CLASS
1429 (hard_regno + nregs)]))
1431 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1432 hard_regno);
1433 break;
1440 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1441 IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
1442 IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
1443 IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */
1444 void
1445 ira_init_register_move_cost (enum machine_mode mode)
1447 int cl1, cl2, cl3;
1449 ira_assert (ira_register_move_cost[mode] == NULL
1450 && ira_max_register_move_cost[mode] == NULL
1451 && ira_may_move_in_cost[mode] == NULL
1452 && ira_may_move_out_cost[mode] == NULL
1453 && ira_max_may_move_in_cost[mode] == NULL
1454 && ira_max_may_move_out_cost[mode] == NULL);
1455 if (move_cost[mode] == NULL)
1456 init_move_cost (mode);
1457 ira_register_move_cost[mode] = move_cost[mode];
1458 /* Don't use ira_allocate because the tables exist out of scope of a
1459 IRA call. */
1460 ira_max_register_move_cost[mode]
1461 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1462 memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
1463 sizeof (move_table) * N_REG_CLASSES);
1464 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1466 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1467 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1468 if (hard_reg_set_empty_p (temp_hard_regset))
1469 continue;
1470 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1471 if (hard_reg_set_subset_p (reg_class_contents[cl1],
1472 reg_class_contents[cl2]))
1473 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1475 if (ira_max_register_move_cost[mode][cl2][cl3]
1476 < ira_register_move_cost[mode][cl1][cl3])
1477 ira_max_register_move_cost[mode][cl2][cl3]
1478 = ira_register_move_cost[mode][cl1][cl3];
1479 if (ira_max_register_move_cost[mode][cl3][cl2]
1480 < ira_register_move_cost[mode][cl3][cl1])
1481 ira_max_register_move_cost[mode][cl3][cl2]
1482 = ira_register_move_cost[mode][cl3][cl1];
1485 ira_may_move_in_cost[mode]
1486 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1487 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1488 sizeof (move_table) * N_REG_CLASSES);
1489 ira_may_move_out_cost[mode]
1490 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1491 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1492 sizeof (move_table) * N_REG_CLASSES);
1493 ira_max_may_move_in_cost[mode]
1494 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1495 memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
1496 sizeof (move_table) * N_REG_CLASSES);
1497 ira_max_may_move_out_cost[mode]
1498 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1499 memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
1500 sizeof (move_table) * N_REG_CLASSES);
1501 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1503 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1505 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
1506 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1507 if (hard_reg_set_empty_p (temp_hard_regset))
1508 continue;
1509 if (ira_class_subset_p[cl1][cl2])
1510 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1511 if (ira_class_subset_p[cl2][cl1])
1512 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1513 if (ira_class_subset_p[cl1][cl2])
1514 ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
1515 if (ira_class_subset_p[cl2][cl1])
1516 ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
1517 ira_register_move_cost[mode][cl1][cl2]
1518 = ira_max_register_move_cost[mode][cl1][cl2];
1519 ira_may_move_in_cost[mode][cl1][cl2]
1520 = ira_max_may_move_in_cost[mode][cl1][cl2];
1521 ira_may_move_out_cost[mode][cl1][cl2]
1522 = ira_max_may_move_out_cost[mode][cl1][cl2];
1529 /* This is called once during compiler work. It sets up
1530 different arrays whose values don't depend on the compiled
1531 function. */
1532 void
1533 ira_init_once (void)
1535 int mode;
1537 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1539 ira_register_move_cost[mode] = NULL;
1540 ira_max_register_move_cost[mode] = NULL;
1541 ira_may_move_in_cost[mode] = NULL;
1542 ira_may_move_out_cost[mode] = NULL;
1543 ira_max_may_move_in_cost[mode] = NULL;
1544 ira_max_may_move_out_cost[mode] = NULL;
1546 ira_init_costs_once ();
1549 /* Free ira_max_register_move_cost, ira_may_move_in_cost,
1550 ira_may_move_out_cost, ira_max_may_move_in_cost, and
1551 ira_max_may_move_out_cost for each mode. */
1552 static void
1553 free_register_move_costs (void)
1555 int mode;
1557 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1559 free (ira_max_register_move_cost[mode]);
1560 free (ira_may_move_in_cost[mode]);
1561 free (ira_may_move_out_cost[mode]);
1562 free (ira_max_may_move_in_cost[mode]);
1563 free (ira_max_may_move_out_cost[mode]);
1564 ira_register_move_cost[mode] = NULL;
1565 ira_max_register_move_cost[mode] = NULL;
1566 ira_may_move_in_cost[mode] = NULL;
1567 ira_may_move_out_cost[mode] = NULL;
1568 ira_max_may_move_in_cost[mode] = NULL;
1569 ira_max_may_move_out_cost[mode] = NULL;
1573 /* This is called every time when register related information is
1574 changed. */
1575 void
1576 ira_init (void)
1578 free_register_move_costs ();
1579 setup_reg_mode_hard_regset ();
1580 setup_alloc_regs (flag_omit_frame_pointer != 0);
1581 setup_class_subset_and_memory_move_costs ();
1582 setup_reg_class_nregs ();
1583 setup_prohibited_class_mode_regs ();
1584 find_reg_classes ();
1585 clarify_prohibited_class_mode_regs ();
1586 setup_hard_regno_aclass ();
1587 ira_init_costs ();
1590 /* Function called once at the end of compiler work. */
1591 void
1592 ira_finish_once (void)
1594 ira_finish_costs_once ();
1595 free_register_move_costs ();
1599 #define ira_prohibited_mode_move_regs_initialized_p \
1600 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1602 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1603 static void
1604 setup_prohibited_mode_move_regs (void)
1606 int i, j;
1607 rtx test_reg1, test_reg2, move_pat, move_insn;
1609 if (ira_prohibited_mode_move_regs_initialized_p)
1610 return;
1611 ira_prohibited_mode_move_regs_initialized_p = true;
1612 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1613 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1614 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1615 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1616 for (i = 0; i < NUM_MACHINE_MODES; i++)
1618 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1619 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1621 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1622 continue;
1623 SET_REGNO_RAW (test_reg1, j);
1624 PUT_MODE (test_reg1, (enum machine_mode) i);
1625 SET_REGNO_RAW (test_reg2, j);
1626 PUT_MODE (test_reg2, (enum machine_mode) i);
1627 INSN_CODE (move_insn) = -1;
1628 recog_memoized (move_insn);
1629 if (INSN_CODE (move_insn) < 0)
1630 continue;
1631 extract_insn (move_insn);
1632 if (! constrain_operands (1))
1633 continue;
1634 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1641 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1642 static bool
1643 ira_bad_reload_regno_1 (int regno, rtx x)
1645 int x_regno, n, i;
1646 ira_allocno_t a;
1647 enum reg_class pref;
1649 /* We only deal with pseudo regs. */
1650 if (! x || GET_CODE (x) != REG)
1651 return false;
1653 x_regno = REGNO (x);
1654 if (x_regno < FIRST_PSEUDO_REGISTER)
1655 return false;
1657 /* If the pseudo prefers REGNO explicitly, then do not consider
1658 REGNO a bad spill choice. */
1659 pref = reg_preferred_class (x_regno);
1660 if (reg_class_size[pref] == 1)
1661 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1663 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1664 poor choice for a reload regno. */
1665 a = ira_regno_allocno_map[x_regno];
1666 n = ALLOCNO_NUM_OBJECTS (a);
1667 for (i = 0; i < n; i++)
1669 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1670 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1671 return true;
1673 return false;
1676 /* Return nonzero if REGNO is a particularly bad choice for reloading
1677 IN or OUT. */
1678 bool
1679 ira_bad_reload_regno (int regno, rtx in, rtx out)
1681 return (ira_bad_reload_regno_1 (regno, in)
1682 || ira_bad_reload_regno_1 (regno, out));
1685 /* Return TRUE if *LOC contains an asm. */
1686 static int
1687 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1689 if ( !*loc)
1690 return FALSE;
1691 if (GET_CODE (*loc) == ASM_OPERANDS)
1692 return TRUE;
1693 return FALSE;
1697 /* Return TRUE if INSN contains an ASM. */
1698 static bool
1699 insn_contains_asm (rtx insn)
1701 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1704 /* Add register clobbers from asm statements. */
1705 static void
1706 compute_regs_asm_clobbered (void)
1708 basic_block bb;
1710 FOR_EACH_BB (bb)
1712 rtx insn;
1713 FOR_BB_INSNS_REVERSE (bb, insn)
1715 df_ref *def_rec;
1717 if (insn_contains_asm (insn))
1718 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1720 df_ref def = *def_rec;
1721 unsigned int dregno = DF_REF_REGNO (def);
1722 if (HARD_REGISTER_NUM_P (dregno))
1723 add_to_hard_reg_set (&crtl->asm_clobbers,
1724 GET_MODE (DF_REF_REAL_REG (def)),
1725 dregno);
1732 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1733 void
1734 ira_setup_eliminable_regset (void)
1736 #ifdef ELIMINABLE_REGS
1737 int i;
1738 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1739 #endif
1740 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1741 sp for alloca. So we can't eliminate the frame pointer in that
1742 case. At some point, we should improve this by emitting the
1743 sp-adjusting insns for this case. */
1744 int need_fp
1745 = (! flag_omit_frame_pointer
1746 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1747 /* We need the frame pointer to catch stack overflow exceptions
1748 if the stack pointer is moving. */
1749 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1750 || crtl->accesses_prior_frames
1751 || crtl->stack_realign_needed
1752 || targetm.frame_pointer_required ());
1754 frame_pointer_needed = need_fp;
1756 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1757 CLEAR_HARD_REG_SET (eliminable_regset);
1759 compute_regs_asm_clobbered ();
1761 /* Build the regset of all eliminable registers and show we can't
1762 use those that we already know won't be eliminated. */
1763 #ifdef ELIMINABLE_REGS
1764 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1766 bool cannot_elim
1767 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1768 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1770 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1772 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1774 if (cannot_elim)
1775 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1777 else if (cannot_elim)
1778 error ("%s cannot be used in asm here",
1779 reg_names[eliminables[i].from]);
1780 else
1781 df_set_regs_ever_live (eliminables[i].from, true);
1783 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1784 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1786 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1787 if (need_fp)
1788 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1790 else if (need_fp)
1791 error ("%s cannot be used in asm here",
1792 reg_names[HARD_FRAME_POINTER_REGNUM]);
1793 else
1794 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1795 #endif
1797 #else
1798 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1800 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1801 if (need_fp)
1802 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1804 else if (need_fp)
1805 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1806 else
1807 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1808 #endif
1813 /* The length of the following two arrays. */
1814 int ira_reg_equiv_len;
1816 /* The element value is TRUE if the corresponding regno value is
1817 invariant. */
1818 bool *ira_reg_equiv_invariant_p;
1820 /* The element value is equiv constant of given pseudo-register or
1821 NULL_RTX. */
1822 rtx *ira_reg_equiv_const;
1824 /* Set up the two arrays declared above. */
1825 static void
1826 find_reg_equiv_invariant_const (void)
1828 unsigned int i;
1829 bool invariant_p;
1830 rtx list, insn, note, constant, x;
1832 for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
1834 constant = NULL_RTX;
1835 invariant_p = false;
1836 for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
1838 insn = XEXP (list, 0);
1839 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1841 if (note == NULL_RTX)
1842 continue;
1844 x = XEXP (note, 0);
1846 if (! CONSTANT_P (x)
1847 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1849 /* It can happen that a REG_EQUIV note contains a MEM
1850 that is not a legitimate memory operand. As later
1851 stages of the reload assume that all addresses found
1852 in the reg_equiv_* arrays were originally legitimate,
1853 we ignore such REG_EQUIV notes. */
1854 if (memory_operand (x, VOIDmode))
1855 invariant_p = MEM_READONLY_P (x);
1856 else if (function_invariant_p (x))
1858 if (GET_CODE (x) == PLUS
1859 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1860 invariant_p = true;
1861 else
1862 constant = x;
1866 ira_reg_equiv_invariant_p[i] = invariant_p;
1867 ira_reg_equiv_const[i] = constant;
1873 /* Vector of substitutions of register numbers,
1874 used to map pseudo regs into hardware regs.
1875 This is set up as a result of register allocation.
1876 Element N is the hard reg assigned to pseudo reg N,
1877 or is -1 if no hard reg was assigned.
1878 If N is a hard reg number, element N is N. */
1879 short *reg_renumber;
1881 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1882 the allocation found by IRA. */
1883 static void
1884 setup_reg_renumber (void)
1886 int regno, hard_regno;
1887 ira_allocno_t a;
1888 ira_allocno_iterator ai;
1890 caller_save_needed = 0;
1891 FOR_EACH_ALLOCNO (a, ai)
1893 /* There are no caps at this point. */
1894 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1895 if (! ALLOCNO_ASSIGNED_P (a))
1896 /* It can happen if A is not referenced but partially anticipated
1897 somewhere in a region. */
1898 ALLOCNO_ASSIGNED_P (a) = true;
1899 ira_free_allocno_updated_costs (a);
1900 hard_regno = ALLOCNO_HARD_REGNO (a);
1901 regno = ALLOCNO_REGNO (a);
1902 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1903 if (hard_regno >= 0)
1905 int i, nwords;
1906 enum reg_class pclass;
1907 ira_object_t obj;
1909 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1910 nwords = ALLOCNO_NUM_OBJECTS (a);
1911 for (i = 0; i < nwords; i++)
1913 obj = ALLOCNO_OBJECT (a, i);
1914 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1915 reg_class_contents[pclass]);
1917 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1918 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1919 call_used_reg_set))
1921 ira_assert (!optimize || flag_caller_saves
1922 || regno >= ira_reg_equiv_len
1923 || ira_reg_equiv_const[regno]
1924 || ira_reg_equiv_invariant_p[regno]);
1925 caller_save_needed = 1;
1931 /* Set up allocno assignment flags for further allocation
1932 improvements. */
1933 static void
1934 setup_allocno_assignment_flags (void)
1936 int hard_regno;
1937 ira_allocno_t a;
1938 ira_allocno_iterator ai;
1940 FOR_EACH_ALLOCNO (a, ai)
1942 if (! ALLOCNO_ASSIGNED_P (a))
1943 /* It can happen if A is not referenced but partially anticipated
1944 somewhere in a region. */
1945 ira_free_allocno_updated_costs (a);
1946 hard_regno = ALLOCNO_HARD_REGNO (a);
1947 /* Don't assign hard registers to allocnos which are destination
1948 of removed store at the end of loop. It has no sense to keep
1949 the same value in different hard registers. It is also
1950 impossible to assign hard registers correctly to such
1951 allocnos because the cost info and info about intersected
1952 calls are incorrect for them. */
1953 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1954 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
1955 || (ALLOCNO_MEMORY_COST (a)
1956 - ALLOCNO_CLASS_COST (a)) < 0);
1957 ira_assert (hard_regno < 0
1958 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1959 reg_class_contents
1960 [ALLOCNO_CLASS (a)]));
1964 /* Evaluate overall allocation cost and the costs for using hard
1965 registers and memory for allocnos. */
1966 static void
1967 calculate_allocation_cost (void)
1969 int hard_regno, cost;
1970 ira_allocno_t a;
1971 ira_allocno_iterator ai;
1973 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1974 FOR_EACH_ALLOCNO (a, ai)
1976 hard_regno = ALLOCNO_HARD_REGNO (a);
1977 ira_assert (hard_regno < 0
1978 || ! ira_hard_reg_not_in_set_p
1979 (hard_regno, ALLOCNO_MODE (a),
1980 reg_class_contents[ALLOCNO_CLASS (a)]));
1981 if (hard_regno < 0)
1983 cost = ALLOCNO_MEMORY_COST (a);
1984 ira_mem_cost += cost;
1986 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1988 cost = (ALLOCNO_HARD_REG_COSTS (a)
1989 [ira_class_hard_reg_index
1990 [ALLOCNO_CLASS (a)][hard_regno]]);
1991 ira_reg_cost += cost;
1993 else
1995 cost = ALLOCNO_CLASS_COST (a);
1996 ira_reg_cost += cost;
1998 ira_overall_cost += cost;
2001 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2003 fprintf (ira_dump_file,
2004 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2005 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2006 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2007 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2008 ira_move_loops_num, ira_additional_jumps_num);
2013 #ifdef ENABLE_IRA_CHECKING
2014 /* Check the correctness of the allocation. We do need this because
2015 of complicated code to transform more one region internal
2016 representation into one region representation. */
2017 static void
2018 check_allocation (void)
2020 ira_allocno_t a;
2021 int hard_regno, nregs, conflict_nregs;
2022 ira_allocno_iterator ai;
2024 FOR_EACH_ALLOCNO (a, ai)
2026 int n = ALLOCNO_NUM_OBJECTS (a);
2027 int i;
2029 if (ALLOCNO_CAP_MEMBER (a) != NULL
2030 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2031 continue;
2032 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2033 if (nregs == 1)
2034 /* We allocated a single hard register. */
2035 n = 1;
2036 else if (n > 1)
2037 /* We allocated multiple hard registers, and we will test
2038 conflicts in a granularity of single hard regs. */
2039 nregs = 1;
2041 for (i = 0; i < n; i++)
2043 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2044 ira_object_t conflict_obj;
2045 ira_object_conflict_iterator oci;
2046 int this_regno = hard_regno;
2047 if (n > 1)
2049 if (WORDS_BIG_ENDIAN)
2050 this_regno += n - i - 1;
2051 else
2052 this_regno += i;
2054 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2056 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2057 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2058 if (conflict_hard_regno < 0)
2059 continue;
2061 conflict_nregs
2062 = (hard_regno_nregs
2063 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2065 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2066 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2068 if (WORDS_BIG_ENDIAN)
2069 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2070 - OBJECT_SUBWORD (conflict_obj) - 1);
2071 else
2072 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2073 conflict_nregs = 1;
2076 if ((conflict_hard_regno <= this_regno
2077 && this_regno < conflict_hard_regno + conflict_nregs)
2078 || (this_regno <= conflict_hard_regno
2079 && conflict_hard_regno < this_regno + nregs))
2081 fprintf (stderr, "bad allocation for %d and %d\n",
2082 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2083 gcc_unreachable ();
2089 #endif
2091 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2092 by IRA. */
2093 static void
2094 fix_reg_equiv_init (void)
2096 unsigned int max_regno = max_reg_num ();
2097 int i, new_regno, max;
2098 rtx x, prev, next, insn, set;
2100 if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
2102 max = VEC_length (reg_equivs_t, reg_equivs);
2103 grow_reg_equivs ();
2104 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2105 for (prev = NULL_RTX, x = reg_equiv_init (i);
2106 x != NULL_RTX;
2107 x = next)
2109 next = XEXP (x, 1);
2110 insn = XEXP (x, 0);
2111 set = single_set (insn);
2112 ira_assert (set != NULL_RTX
2113 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2114 if (REG_P (SET_DEST (set))
2115 && ((int) REGNO (SET_DEST (set)) == i
2116 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2117 new_regno = REGNO (SET_DEST (set));
2118 else if (REG_P (SET_SRC (set))
2119 && ((int) REGNO (SET_SRC (set)) == i
2120 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2121 new_regno = REGNO (SET_SRC (set));
2122 else
2123 gcc_unreachable ();
2124 if (new_regno == i)
2125 prev = x;
2126 else
2128 if (prev == NULL_RTX)
2129 reg_equiv_init (i) = next;
2130 else
2131 XEXP (prev, 1) = next;
2132 XEXP (x, 1) = reg_equiv_init (new_regno);
2133 reg_equiv_init (new_regno) = x;
2139 #ifdef ENABLE_IRA_CHECKING
2140 /* Print redundant memory-memory copies. */
2141 static void
2142 print_redundant_copies (void)
2144 int hard_regno;
2145 ira_allocno_t a;
2146 ira_copy_t cp, next_cp;
2147 ira_allocno_iterator ai;
2149 FOR_EACH_ALLOCNO (a, ai)
2151 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2152 /* It is a cap. */
2153 continue;
2154 hard_regno = ALLOCNO_HARD_REGNO (a);
2155 if (hard_regno >= 0)
2156 continue;
2157 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2158 if (cp->first == a)
2159 next_cp = cp->next_first_allocno_copy;
2160 else
2162 next_cp = cp->next_second_allocno_copy;
2163 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2164 && cp->insn != NULL_RTX
2165 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2166 fprintf (ira_dump_file,
2167 " Redundant move from %d(freq %d):%d\n",
2168 INSN_UID (cp->insn), cp->freq, hard_regno);
2172 #endif
2174 /* Setup preferred and alternative classes for new pseudo-registers
2175 created by IRA starting with START. */
2176 static void
2177 setup_preferred_alternate_classes_for_new_pseudos (int start)
2179 int i, old_regno;
2180 int max_regno = max_reg_num ();
2182 for (i = start; i < max_regno; i++)
2184 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2185 ira_assert (i != old_regno);
2186 setup_reg_classes (i, reg_preferred_class (old_regno),
2187 reg_alternate_class (old_regno),
2188 reg_allocno_class (old_regno));
2189 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2190 fprintf (ira_dump_file,
2191 " New r%d: setting preferred %s, alternative %s\n",
2192 i, reg_class_names[reg_preferred_class (old_regno)],
2193 reg_class_names[reg_alternate_class (old_regno)]);
2199 /* Regional allocation can create new pseudo-registers. This function
2200 expands some arrays for pseudo-registers. */
2201 static void
2202 expand_reg_info (int old_size)
2204 int i;
2205 int size = max_reg_num ();
2207 resize_reg_info ();
2208 for (i = old_size; i < size; i++)
2209 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2212 /* Return TRUE if there is too high register pressure in the function.
2213 It is used to decide when stack slot sharing is worth to do. */
2214 static bool
2215 too_high_register_pressure_p (void)
2217 int i;
2218 enum reg_class pclass;
2220 for (i = 0; i < ira_pressure_classes_num; i++)
2222 pclass = ira_pressure_classes[i];
2223 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2224 return true;
2226 return false;
2231 /* Indicate that hard register number FROM was eliminated and replaced with
2232 an offset from hard register number TO. The status of hard registers live
2233 at the start of a basic block is updated by replacing a use of FROM with
2234 a use of TO. */
2236 void
2237 mark_elimination (int from, int to)
2239 basic_block bb;
2241 FOR_EACH_BB (bb)
2243 /* We don't use LIVE info in IRA. */
2244 bitmap r = DF_LR_IN (bb);
2246 if (REGNO_REG_SET_P (r, from))
2248 CLEAR_REGNO_REG_SET (r, from);
2249 SET_REGNO_REG_SET (r, to);
2256 struct equivalence
2258 /* Set when a REG_EQUIV note is found or created. Use to
2259 keep track of what memory accesses might be created later,
2260 e.g. by reload. */
2261 rtx replacement;
2262 rtx *src_p;
2263 /* The list of each instruction which initializes this register. */
2264 rtx init_insns;
2265 /* Loop depth is used to recognize equivalences which appear
2266 to be present within the same loop (or in an inner loop). */
2267 int loop_depth;
2268 /* Nonzero if this had a preexisting REG_EQUIV note. */
2269 int is_arg_equivalence;
2270 /* Set when an attempt should be made to replace a register
2271 with the associated src_p entry. */
2272 char replace;
2275 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2276 structure for that register. */
2277 static struct equivalence *reg_equiv;
2279 /* Used for communication between the following two functions: contains
2280 a MEM that we wish to ensure remains unchanged. */
2281 static rtx equiv_mem;
2283 /* Set nonzero if EQUIV_MEM is modified. */
2284 static int equiv_mem_modified;
2286 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2287 Called via note_stores. */
2288 static void
2289 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2290 void *data ATTRIBUTE_UNUSED)
2292 if ((REG_P (dest)
2293 && reg_overlap_mentioned_p (dest, equiv_mem))
2294 || (MEM_P (dest)
2295 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
2296 equiv_mem_modified = 1;
2299 /* Verify that no store between START and the death of REG invalidates
2300 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2301 by storing into an overlapping memory location, or with a non-const
2302 CALL_INSN.
2304 Return 1 if MEMREF remains valid. */
2305 static int
2306 validate_equiv_mem (rtx start, rtx reg, rtx memref)
2308 rtx insn;
2309 rtx note;
2311 equiv_mem = memref;
2312 equiv_mem_modified = 0;
2314 /* If the memory reference has side effects or is volatile, it isn't a
2315 valid equivalence. */
2316 if (side_effects_p (memref))
2317 return 0;
2319 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2321 if (! INSN_P (insn))
2322 continue;
2324 if (find_reg_note (insn, REG_DEAD, reg))
2325 return 1;
2327 /* This used to ignore readonly memory and const/pure calls. The problem
2328 is the equivalent form may reference a pseudo which gets assigned a
2329 call clobbered hard reg. When we later replace REG with its
2330 equivalent form, the value in the call-clobbered reg has been
2331 changed and all hell breaks loose. */
2332 if (CALL_P (insn))
2333 return 0;
2335 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2337 /* If a register mentioned in MEMREF is modified via an
2338 auto-increment, we lose the equivalence. Do the same if one
2339 dies; although we could extend the life, it doesn't seem worth
2340 the trouble. */
2342 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2343 if ((REG_NOTE_KIND (note) == REG_INC
2344 || REG_NOTE_KIND (note) == REG_DEAD)
2345 && REG_P (XEXP (note, 0))
2346 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2347 return 0;
2350 return 0;
2353 /* Returns zero if X is known to be invariant. */
2354 static int
2355 equiv_init_varies_p (rtx x)
2357 RTX_CODE code = GET_CODE (x);
2358 int i;
2359 const char *fmt;
2361 switch (code)
2363 case MEM:
2364 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2366 case CONST:
2367 case CONST_INT:
2368 case CONST_DOUBLE:
2369 case CONST_FIXED:
2370 case CONST_VECTOR:
2371 case SYMBOL_REF:
2372 case LABEL_REF:
2373 return 0;
2375 case REG:
2376 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2378 case ASM_OPERANDS:
2379 if (MEM_VOLATILE_P (x))
2380 return 1;
2382 /* Fall through. */
2384 default:
2385 break;
2388 fmt = GET_RTX_FORMAT (code);
2389 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2390 if (fmt[i] == 'e')
2392 if (equiv_init_varies_p (XEXP (x, i)))
2393 return 1;
2395 else if (fmt[i] == 'E')
2397 int j;
2398 for (j = 0; j < XVECLEN (x, i); j++)
2399 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2400 return 1;
2403 return 0;
2406 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2407 X is only movable if the registers it uses have equivalent initializations
2408 which appear to be within the same loop (or in an inner loop) and movable
2409 or if they are not candidates for local_alloc and don't vary. */
2410 static int
2411 equiv_init_movable_p (rtx x, int regno)
2413 int i, j;
2414 const char *fmt;
2415 enum rtx_code code = GET_CODE (x);
2417 switch (code)
2419 case SET:
2420 return equiv_init_movable_p (SET_SRC (x), regno);
2422 case CC0:
2423 case CLOBBER:
2424 return 0;
2426 case PRE_INC:
2427 case PRE_DEC:
2428 case POST_INC:
2429 case POST_DEC:
2430 case PRE_MODIFY:
2431 case POST_MODIFY:
2432 return 0;
2434 case REG:
2435 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2436 && reg_equiv[REGNO (x)].replace)
2437 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2438 && ! rtx_varies_p (x, 0)));
2440 case UNSPEC_VOLATILE:
2441 return 0;
2443 case ASM_OPERANDS:
2444 if (MEM_VOLATILE_P (x))
2445 return 0;
2447 /* Fall through. */
2449 default:
2450 break;
2453 fmt = GET_RTX_FORMAT (code);
2454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2455 switch (fmt[i])
2457 case 'e':
2458 if (! equiv_init_movable_p (XEXP (x, i), regno))
2459 return 0;
2460 break;
2461 case 'E':
2462 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2463 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2464 return 0;
2465 break;
2468 return 1;
2471 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2472 true. */
2473 static int
2474 contains_replace_regs (rtx x)
2476 int i, j;
2477 const char *fmt;
2478 enum rtx_code code = GET_CODE (x);
2480 switch (code)
2482 case CONST_INT:
2483 case CONST:
2484 case LABEL_REF:
2485 case SYMBOL_REF:
2486 case CONST_DOUBLE:
2487 case CONST_FIXED:
2488 case CONST_VECTOR:
2489 case PC:
2490 case CC0:
2491 case HIGH:
2492 return 0;
2494 case REG:
2495 return reg_equiv[REGNO (x)].replace;
2497 default:
2498 break;
2501 fmt = GET_RTX_FORMAT (code);
2502 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2503 switch (fmt[i])
2505 case 'e':
2506 if (contains_replace_regs (XEXP (x, i)))
2507 return 1;
2508 break;
2509 case 'E':
2510 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2511 if (contains_replace_regs (XVECEXP (x, i, j)))
2512 return 1;
2513 break;
2516 return 0;
2519 /* TRUE if X references a memory location that would be affected by a store
2520 to MEMREF. */
2521 static int
2522 memref_referenced_p (rtx memref, rtx x)
2524 int i, j;
2525 const char *fmt;
2526 enum rtx_code code = GET_CODE (x);
2528 switch (code)
2530 case CONST_INT:
2531 case CONST:
2532 case LABEL_REF:
2533 case SYMBOL_REF:
2534 case CONST_DOUBLE:
2535 case CONST_FIXED:
2536 case CONST_VECTOR:
2537 case PC:
2538 case CC0:
2539 case HIGH:
2540 case LO_SUM:
2541 return 0;
2543 case REG:
2544 return (reg_equiv[REGNO (x)].replacement
2545 && memref_referenced_p (memref,
2546 reg_equiv[REGNO (x)].replacement));
2548 case MEM:
2549 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2550 return 1;
2551 break;
2553 case SET:
2554 /* If we are setting a MEM, it doesn't count (its address does), but any
2555 other SET_DEST that has a MEM in it is referencing the MEM. */
2556 if (MEM_P (SET_DEST (x)))
2558 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2559 return 1;
2561 else if (memref_referenced_p (memref, SET_DEST (x)))
2562 return 1;
2564 return memref_referenced_p (memref, SET_SRC (x));
2566 default:
2567 break;
2570 fmt = GET_RTX_FORMAT (code);
2571 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2572 switch (fmt[i])
2574 case 'e':
2575 if (memref_referenced_p (memref, XEXP (x, i)))
2576 return 1;
2577 break;
2578 case 'E':
2579 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2580 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2581 return 1;
2582 break;
2585 return 0;
2588 /* TRUE if some insn in the range (START, END] references a memory location
2589 that would be affected by a store to MEMREF. */
2590 static int
2591 memref_used_between_p (rtx memref, rtx start, rtx end)
2593 rtx insn;
2595 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2596 insn = NEXT_INSN (insn))
2598 if (!NONDEBUG_INSN_P (insn))
2599 continue;
2601 if (memref_referenced_p (memref, PATTERN (insn)))
2602 return 1;
2604 /* Nonconst functions may access memory. */
2605 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2606 return 1;
2609 return 0;
2612 /* Mark REG as having no known equivalence.
2613 Some instructions might have been processed before and furnished
2614 with REG_EQUIV notes for this register; these notes will have to be
2615 removed.
2616 STORE is the piece of RTL that does the non-constant / conflicting
2617 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2618 but needs to be there because this function is called from note_stores. */
2619 static void
2620 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2621 void *data ATTRIBUTE_UNUSED)
2623 int regno;
2624 rtx list;
2626 if (!REG_P (reg))
2627 return;
2628 regno = REGNO (reg);
2629 list = reg_equiv[regno].init_insns;
2630 if (list == const0_rtx)
2631 return;
2632 reg_equiv[regno].init_insns = const0_rtx;
2633 reg_equiv[regno].replacement = NULL_RTX;
2634 /* This doesn't matter for equivalences made for argument registers, we
2635 should keep their initialization insns. */
2636 if (reg_equiv[regno].is_arg_equivalence)
2637 return;
2638 reg_equiv_init (regno) = NULL_RTX;
2639 for (; list; list = XEXP (list, 1))
2641 rtx insn = XEXP (list, 0);
2642 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2646 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2647 equivalent replacement. */
2649 static rtx
2650 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2652 if (REG_P (loc))
2654 bitmap cleared_regs = (bitmap) data;
2655 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2656 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2657 NULL_RTX, adjust_cleared_regs, data);
2659 return NULL_RTX;
2662 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2663 static int recorded_label_ref;
2665 /* Find registers that are equivalent to a single value throughout the
2666 compilation (either because they can be referenced in memory or are
2667 set once from a single constant). Lower their priority for a
2668 register.
2670 If such a register is only referenced once, try substituting its
2671 value into the using insn. If it succeeds, we can eliminate the
2672 register completely.
2674 Initialize the REG_EQUIV_INIT array of initializing insns.
2676 Return non-zero if jump label rebuilding should be done. */
2677 static int
2678 update_equiv_regs (void)
2680 rtx insn;
2681 basic_block bb;
2682 int loop_depth;
2683 bitmap cleared_regs;
2685 /* We need to keep track of whether or not we recorded a LABEL_REF so
2686 that we know if the jump optimizer needs to be rerun. */
2687 recorded_label_ref = 0;
2689 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2690 grow_reg_equivs ();
2692 init_alias_analysis ();
2694 /* Scan the insns and find which registers have equivalences. Do this
2695 in a separate scan of the insns because (due to -fcse-follow-jumps)
2696 a register can be set below its use. */
2697 FOR_EACH_BB (bb)
2699 loop_depth = bb->loop_depth;
2701 for (insn = BB_HEAD (bb);
2702 insn != NEXT_INSN (BB_END (bb));
2703 insn = NEXT_INSN (insn))
2705 rtx note;
2706 rtx set;
2707 rtx dest, src;
2708 int regno;
2710 if (! INSN_P (insn))
2711 continue;
2713 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2714 if (REG_NOTE_KIND (note) == REG_INC)
2715 no_equiv (XEXP (note, 0), note, NULL);
2717 set = single_set (insn);
2719 /* If this insn contains more (or less) than a single SET,
2720 only mark all destinations as having no known equivalence. */
2721 if (set == 0)
2723 note_stores (PATTERN (insn), no_equiv, NULL);
2724 continue;
2726 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2728 int i;
2730 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2732 rtx part = XVECEXP (PATTERN (insn), 0, i);
2733 if (part != set)
2734 note_stores (part, no_equiv, NULL);
2738 dest = SET_DEST (set);
2739 src = SET_SRC (set);
2741 /* See if this is setting up the equivalence between an argument
2742 register and its stack slot. */
2743 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2744 if (note)
2746 gcc_assert (REG_P (dest));
2747 regno = REGNO (dest);
2749 /* Note that we don't want to clear reg_equiv_init even if there
2750 are multiple sets of this register. */
2751 reg_equiv[regno].is_arg_equivalence = 1;
2753 /* Record for reload that this is an equivalencing insn. */
2754 if (rtx_equal_p (src, XEXP (note, 0)))
2755 reg_equiv_init (regno)
2756 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2758 /* Continue normally in case this is a candidate for
2759 replacements. */
2762 if (!optimize)
2763 continue;
2765 /* We only handle the case of a pseudo register being set
2766 once, or always to the same value. */
2767 /* ??? The mn10200 port breaks if we add equivalences for
2768 values that need an ADDRESS_REGS register and set them equivalent
2769 to a MEM of a pseudo. The actual problem is in the over-conservative
2770 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2771 calculate_needs, but we traditionally work around this problem
2772 here by rejecting equivalences when the destination is in a register
2773 that's likely spilled. This is fragile, of course, since the
2774 preferred class of a pseudo depends on all instructions that set
2775 or use it. */
2777 if (!REG_P (dest)
2778 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2779 || reg_equiv[regno].init_insns == const0_rtx
2780 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2781 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2783 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2784 also set somewhere else to a constant. */
2785 note_stores (set, no_equiv, NULL);
2786 continue;
2789 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2791 /* cse sometimes generates function invariants, but doesn't put a
2792 REG_EQUAL note on the insn. Since this note would be redundant,
2793 there's no point creating it earlier than here. */
2794 if (! note && ! rtx_varies_p (src, 0))
2795 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2797 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2798 since it represents a function call */
2799 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2800 note = NULL_RTX;
2802 if (DF_REG_DEF_COUNT (regno) != 1
2803 && (! note
2804 || rtx_varies_p (XEXP (note, 0), 0)
2805 || (reg_equiv[regno].replacement
2806 && ! rtx_equal_p (XEXP (note, 0),
2807 reg_equiv[regno].replacement))))
2809 no_equiv (dest, set, NULL);
2810 continue;
2812 /* Record this insn as initializing this register. */
2813 reg_equiv[regno].init_insns
2814 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2816 /* If this register is known to be equal to a constant, record that
2817 it is always equivalent to the constant. */
2818 if (DF_REG_DEF_COUNT (regno) == 1
2819 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2821 rtx note_value = XEXP (note, 0);
2822 remove_note (insn, note);
2823 set_unique_reg_note (insn, REG_EQUIV, note_value);
2826 /* If this insn introduces a "constant" register, decrease the priority
2827 of that register. Record this insn if the register is only used once
2828 more and the equivalence value is the same as our source.
2830 The latter condition is checked for two reasons: First, it is an
2831 indication that it may be more efficient to actually emit the insn
2832 as written (if no registers are available, reload will substitute
2833 the equivalence). Secondly, it avoids problems with any registers
2834 dying in this insn whose death notes would be missed.
2836 If we don't have a REG_EQUIV note, see if this insn is loading
2837 a register used only in one basic block from a MEM. If so, and the
2838 MEM remains unchanged for the life of the register, add a REG_EQUIV
2839 note. */
2841 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2843 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2844 && MEM_P (SET_SRC (set))
2845 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2846 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2848 if (note)
2850 int regno = REGNO (dest);
2851 rtx x = XEXP (note, 0);
2853 /* If we haven't done so, record for reload that this is an
2854 equivalencing insn. */
2855 if (!reg_equiv[regno].is_arg_equivalence)
2856 reg_equiv_init (regno)
2857 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2859 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2860 We might end up substituting the LABEL_REF for uses of the
2861 pseudo here or later. That kind of transformation may turn an
2862 indirect jump into a direct jump, in which case we must rerun the
2863 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2864 if (GET_CODE (x) == LABEL_REF
2865 || (GET_CODE (x) == CONST
2866 && GET_CODE (XEXP (x, 0)) == PLUS
2867 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2868 recorded_label_ref = 1;
2870 reg_equiv[regno].replacement = x;
2871 reg_equiv[regno].src_p = &SET_SRC (set);
2872 reg_equiv[regno].loop_depth = loop_depth;
2874 /* Don't mess with things live during setjmp. */
2875 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2877 /* Note that the statement below does not affect the priority
2878 in local-alloc! */
2879 REG_LIVE_LENGTH (regno) *= 2;
2881 /* If the register is referenced exactly twice, meaning it is
2882 set once and used once, indicate that the reference may be
2883 replaced by the equivalence we computed above. Do this
2884 even if the register is only used in one block so that
2885 dependencies can be handled where the last register is
2886 used in a different block (i.e. HIGH / LO_SUM sequences)
2887 and to reduce the number of registers alive across
2888 calls. */
2890 if (REG_N_REFS (regno) == 2
2891 && (rtx_equal_p (x, src)
2892 || ! equiv_init_varies_p (src))
2893 && NONJUMP_INSN_P (insn)
2894 && equiv_init_movable_p (PATTERN (insn), regno))
2895 reg_equiv[regno].replace = 1;
2901 if (!optimize)
2902 goto out;
2904 /* A second pass, to gather additional equivalences with memory. This needs
2905 to be done after we know which registers we are going to replace. */
2907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2909 rtx set, src, dest;
2910 unsigned regno;
2912 if (! INSN_P (insn))
2913 continue;
2915 set = single_set (insn);
2916 if (! set)
2917 continue;
2919 dest = SET_DEST (set);
2920 src = SET_SRC (set);
2922 /* If this sets a MEM to the contents of a REG that is only used
2923 in a single basic block, see if the register is always equivalent
2924 to that memory location and if moving the store from INSN to the
2925 insn that set REG is safe. If so, put a REG_EQUIV note on the
2926 initializing insn.
2928 Don't add a REG_EQUIV note if the insn already has one. The existing
2929 REG_EQUIV is likely more useful than the one we are adding.
2931 If one of the regs in the address has reg_equiv[REGNO].replace set,
2932 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2933 optimization may move the set of this register immediately before
2934 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2935 the mention in the REG_EQUIV note would be to an uninitialized
2936 pseudo. */
2938 if (MEM_P (dest) && REG_P (src)
2939 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2940 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2941 && DF_REG_DEF_COUNT (regno) == 1
2942 && reg_equiv[regno].init_insns != 0
2943 && reg_equiv[regno].init_insns != const0_rtx
2944 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2945 REG_EQUIV, NULL_RTX)
2946 && ! contains_replace_regs (XEXP (dest, 0)))
2948 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2949 if (validate_equiv_mem (init_insn, src, dest)
2950 && ! memref_used_between_p (dest, init_insn, insn)
2951 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2952 multiple sets. */
2953 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2955 /* This insn makes the equivalence, not the one initializing
2956 the register. */
2957 reg_equiv_init (regno)
2958 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2959 df_notes_rescan (init_insn);
2964 cleared_regs = BITMAP_ALLOC (NULL);
2965 /* Now scan all regs killed in an insn to see if any of them are
2966 registers only used that once. If so, see if we can replace the
2967 reference with the equivalent form. If we can, delete the
2968 initializing reference and this register will go away. If we
2969 can't replace the reference, and the initializing reference is
2970 within the same loop (or in an inner loop), then move the register
2971 initialization just before the use, so that they are in the same
2972 basic block. */
2973 FOR_EACH_BB_REVERSE (bb)
2975 loop_depth = bb->loop_depth;
2976 for (insn = BB_END (bb);
2977 insn != PREV_INSN (BB_HEAD (bb));
2978 insn = PREV_INSN (insn))
2980 rtx link;
2982 if (! INSN_P (insn))
2983 continue;
2985 /* Don't substitute into a non-local goto, this confuses CFG. */
2986 if (JUMP_P (insn)
2987 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2988 continue;
2990 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2992 if (REG_NOTE_KIND (link) == REG_DEAD
2993 /* Make sure this insn still refers to the register. */
2994 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2996 int regno = REGNO (XEXP (link, 0));
2997 rtx equiv_insn;
2999 if (! reg_equiv[regno].replace
3000 || reg_equiv[regno].loop_depth < loop_depth
3001 /* There is no sense to move insns if we did
3002 register pressure-sensitive scheduling was
3003 done because it will not improve allocation
3004 but worsen insn schedule with a big
3005 probability. */
3006 || (flag_sched_pressure && flag_schedule_insns))
3007 continue;
3009 /* reg_equiv[REGNO].replace gets set only when
3010 REG_N_REFS[REGNO] is 2, i.e. the register is set
3011 once and used once. (If it were only set, but not used,
3012 flow would have deleted the setting insns.) Hence
3013 there can only be one insn in reg_equiv[REGNO].init_insns. */
3014 gcc_assert (reg_equiv[regno].init_insns
3015 && !XEXP (reg_equiv[regno].init_insns, 1));
3016 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3018 /* We may not move instructions that can throw, since
3019 that changes basic block boundaries and we are not
3020 prepared to adjust the CFG to match. */
3021 if (can_throw_internal (equiv_insn))
3022 continue;
3024 if (asm_noperands (PATTERN (equiv_insn)) < 0
3025 && validate_replace_rtx (regno_reg_rtx[regno],
3026 *(reg_equiv[regno].src_p), insn))
3028 rtx equiv_link;
3029 rtx last_link;
3030 rtx note;
3032 /* Find the last note. */
3033 for (last_link = link; XEXP (last_link, 1);
3034 last_link = XEXP (last_link, 1))
3037 /* Append the REG_DEAD notes from equiv_insn. */
3038 equiv_link = REG_NOTES (equiv_insn);
3039 while (equiv_link)
3041 note = equiv_link;
3042 equiv_link = XEXP (equiv_link, 1);
3043 if (REG_NOTE_KIND (note) == REG_DEAD)
3045 remove_note (equiv_insn, note);
3046 XEXP (last_link, 1) = note;
3047 XEXP (note, 1) = NULL_RTX;
3048 last_link = note;
3052 remove_death (regno, insn);
3053 SET_REG_N_REFS (regno, 0);
3054 REG_FREQ (regno) = 0;
3055 delete_insn (equiv_insn);
3057 reg_equiv[regno].init_insns
3058 = XEXP (reg_equiv[regno].init_insns, 1);
3060 reg_equiv_init (regno) = NULL_RTX;
3061 bitmap_set_bit (cleared_regs, regno);
3063 /* Move the initialization of the register to just before
3064 INSN. Update the flow information. */
3065 else if (prev_nondebug_insn (insn) != equiv_insn)
3067 rtx new_insn;
3069 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3070 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3071 REG_NOTES (equiv_insn) = 0;
3072 /* Rescan it to process the notes. */
3073 df_insn_rescan (new_insn);
3075 /* Make sure this insn is recognized before
3076 reload begins, otherwise
3077 eliminate_regs_in_insn will die. */
3078 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3080 delete_insn (equiv_insn);
3082 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3084 REG_BASIC_BLOCK (regno) = bb->index;
3085 REG_N_CALLS_CROSSED (regno) = 0;
3086 REG_FREQ_CALLS_CROSSED (regno) = 0;
3087 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3088 REG_LIVE_LENGTH (regno) = 2;
3090 if (insn == BB_HEAD (bb))
3091 BB_HEAD (bb) = PREV_INSN (insn);
3093 reg_equiv_init (regno)
3094 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3095 bitmap_set_bit (cleared_regs, regno);
3102 if (!bitmap_empty_p (cleared_regs))
3104 FOR_EACH_BB (bb)
3106 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3107 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3108 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3109 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3112 /* Last pass - adjust debug insns referencing cleared regs. */
3113 if (MAY_HAVE_DEBUG_INSNS)
3114 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3115 if (DEBUG_INSN_P (insn))
3117 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3118 INSN_VAR_LOCATION_LOC (insn)
3119 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3120 adjust_cleared_regs,
3121 (void *) cleared_regs);
3122 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3123 df_insn_rescan (insn);
3127 BITMAP_FREE (cleared_regs);
3129 out:
3130 /* Clean up. */
3132 end_alias_analysis ();
3133 free (reg_equiv);
3134 return recorded_label_ref;
3139 /* Print chain C to FILE. */
3140 static void
3141 print_insn_chain (FILE *file, struct insn_chain *c)
3143 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3144 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3145 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3149 /* Print all reload_insn_chains to FILE. */
3150 static void
3151 print_insn_chains (FILE *file)
3153 struct insn_chain *c;
3154 for (c = reload_insn_chain; c ; c = c->next)
3155 print_insn_chain (file, c);
3158 /* Return true if pseudo REGNO should be added to set live_throughout
3159 or dead_or_set of the insn chains for reload consideration. */
3160 static bool
3161 pseudo_for_reload_consideration_p (int regno)
3163 /* Consider spilled pseudos too for IRA because they still have a
3164 chance to get hard-registers in the reload when IRA is used. */
3165 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3168 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3169 REG to the number of nregs, and INIT_VALUE to get the
3170 initialization. ALLOCNUM need not be the regno of REG. */
3171 static void
3172 init_live_subregs (bool init_value, sbitmap *live_subregs,
3173 int *live_subregs_used, int allocnum, rtx reg)
3175 unsigned int regno = REGNO (SUBREG_REG (reg));
3176 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3178 gcc_assert (size > 0);
3180 /* Been there, done that. */
3181 if (live_subregs_used[allocnum])
3182 return;
3184 /* Create a new one with zeros. */
3185 if (live_subregs[allocnum] == NULL)
3186 live_subregs[allocnum] = sbitmap_alloc (size);
3188 /* If the entire reg was live before blasting into subregs, we need
3189 to init all of the subregs to ones else init to 0. */
3190 if (init_value)
3191 sbitmap_ones (live_subregs[allocnum]);
3192 else
3193 sbitmap_zero (live_subregs[allocnum]);
3195 /* Set the number of bits that we really want. */
3196 live_subregs_used[allocnum] = size;
3199 /* Walk the insns of the current function and build reload_insn_chain,
3200 and record register life information. */
3201 static void
3202 build_insn_chain (void)
3204 unsigned int i;
3205 struct insn_chain **p = &reload_insn_chain;
3206 basic_block bb;
3207 struct insn_chain *c = NULL;
3208 struct insn_chain *next = NULL;
3209 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3210 bitmap elim_regset = BITMAP_ALLOC (NULL);
3211 /* live_subregs is a vector used to keep accurate information about
3212 which hardregs are live in multiword pseudos. live_subregs and
3213 live_subregs_used are indexed by pseudo number. The live_subreg
3214 entry for a particular pseudo is only used if the corresponding
3215 element is non zero in live_subregs_used. The value in
3216 live_subregs_used is number of bytes that the pseudo can
3217 occupy. */
3218 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3219 int *live_subregs_used = XNEWVEC (int, max_regno);
3221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3222 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3223 bitmap_set_bit (elim_regset, i);
3224 FOR_EACH_BB_REVERSE (bb)
3226 bitmap_iterator bi;
3227 rtx insn;
3229 CLEAR_REG_SET (live_relevant_regs);
3230 memset (live_subregs_used, 0, max_regno * sizeof (int));
3232 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
3234 if (i >= FIRST_PSEUDO_REGISTER)
3235 break;
3236 bitmap_set_bit (live_relevant_regs, i);
3239 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
3240 FIRST_PSEUDO_REGISTER, i, bi)
3242 if (pseudo_for_reload_consideration_p (i))
3243 bitmap_set_bit (live_relevant_regs, i);
3246 FOR_BB_INSNS_REVERSE (bb, insn)
3248 if (!NOTE_P (insn) && !BARRIER_P (insn))
3250 unsigned int uid = INSN_UID (insn);
3251 df_ref *def_rec;
3252 df_ref *use_rec;
3254 c = new_insn_chain ();
3255 c->next = next;
3256 next = c;
3257 *p = c;
3258 p = &c->prev;
3260 c->insn = insn;
3261 c->block = bb->index;
3263 if (INSN_P (insn))
3264 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3266 df_ref def = *def_rec;
3267 unsigned int regno = DF_REF_REGNO (def);
3269 /* Ignore may clobbers because these are generated
3270 from calls. However, every other kind of def is
3271 added to dead_or_set. */
3272 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3274 if (regno < FIRST_PSEUDO_REGISTER)
3276 if (!fixed_regs[regno])
3277 bitmap_set_bit (&c->dead_or_set, regno);
3279 else if (pseudo_for_reload_consideration_p (regno))
3280 bitmap_set_bit (&c->dead_or_set, regno);
3283 if ((regno < FIRST_PSEUDO_REGISTER
3284 || reg_renumber[regno] >= 0
3285 || ira_conflicts_p)
3286 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3288 rtx reg = DF_REF_REG (def);
3290 /* We can model subregs, but not if they are
3291 wrapped in ZERO_EXTRACTS. */
3292 if (GET_CODE (reg) == SUBREG
3293 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3295 unsigned int start = SUBREG_BYTE (reg);
3296 unsigned int last = start
3297 + GET_MODE_SIZE (GET_MODE (reg));
3299 init_live_subregs
3300 (bitmap_bit_p (live_relevant_regs, regno),
3301 live_subregs, live_subregs_used, regno, reg);
3303 if (!DF_REF_FLAGS_IS_SET
3304 (def, DF_REF_STRICT_LOW_PART))
3306 /* Expand the range to cover entire words.
3307 Bytes added here are "don't care". */
3308 start
3309 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3310 last = ((last + UNITS_PER_WORD - 1)
3311 / UNITS_PER_WORD * UNITS_PER_WORD);
3314 /* Ignore the paradoxical bits. */
3315 if ((int)last > live_subregs_used[regno])
3316 last = live_subregs_used[regno];
3318 while (start < last)
3320 RESET_BIT (live_subregs[regno], start);
3321 start++;
3324 if (sbitmap_empty_p (live_subregs[regno]))
3326 live_subregs_used[regno] = 0;
3327 bitmap_clear_bit (live_relevant_regs, regno);
3329 else
3330 /* Set live_relevant_regs here because
3331 that bit has to be true to get us to
3332 look at the live_subregs fields. */
3333 bitmap_set_bit (live_relevant_regs, regno);
3335 else
3337 /* DF_REF_PARTIAL is generated for
3338 subregs, STRICT_LOW_PART, and
3339 ZERO_EXTRACT. We handle the subreg
3340 case above so here we have to keep from
3341 modeling the def as a killing def. */
3342 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3344 bitmap_clear_bit (live_relevant_regs, regno);
3345 live_subregs_used[regno] = 0;
3351 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3352 bitmap_copy (&c->live_throughout, live_relevant_regs);
3354 if (INSN_P (insn))
3355 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3357 df_ref use = *use_rec;
3358 unsigned int regno = DF_REF_REGNO (use);
3359 rtx reg = DF_REF_REG (use);
3361 /* DF_REF_READ_WRITE on a use means that this use
3362 is fabricated from a def that is a partial set
3363 to a multiword reg. Here, we only model the
3364 subreg case that is not wrapped in ZERO_EXTRACT
3365 precisely so we do not need to look at the
3366 fabricated use. */
3367 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3368 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3369 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3370 continue;
3372 /* Add the last use of each var to dead_or_set. */
3373 if (!bitmap_bit_p (live_relevant_regs, regno))
3375 if (regno < FIRST_PSEUDO_REGISTER)
3377 if (!fixed_regs[regno])
3378 bitmap_set_bit (&c->dead_or_set, regno);
3380 else if (pseudo_for_reload_consideration_p (regno))
3381 bitmap_set_bit (&c->dead_or_set, regno);
3384 if (regno < FIRST_PSEUDO_REGISTER
3385 || pseudo_for_reload_consideration_p (regno))
3387 if (GET_CODE (reg) == SUBREG
3388 && !DF_REF_FLAGS_IS_SET (use,
3389 DF_REF_SIGN_EXTRACT
3390 | DF_REF_ZERO_EXTRACT))
3392 unsigned int start = SUBREG_BYTE (reg);
3393 unsigned int last = start
3394 + GET_MODE_SIZE (GET_MODE (reg));
3396 init_live_subregs
3397 (bitmap_bit_p (live_relevant_regs, regno),
3398 live_subregs, live_subregs_used, regno, reg);
3400 /* Ignore the paradoxical bits. */
3401 if ((int)last > live_subregs_used[regno])
3402 last = live_subregs_used[regno];
3404 while (start < last)
3406 SET_BIT (live_subregs[regno], start);
3407 start++;
3410 else
3411 /* Resetting the live_subregs_used is
3412 effectively saying do not use the subregs
3413 because we are reading the whole
3414 pseudo. */
3415 live_subregs_used[regno] = 0;
3416 bitmap_set_bit (live_relevant_regs, regno);
3422 /* FIXME!! The following code is a disaster. Reload needs to see the
3423 labels and jump tables that are just hanging out in between
3424 the basic blocks. See pr33676. */
3425 insn = BB_HEAD (bb);
3427 /* Skip over the barriers and cruft. */
3428 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3429 || BLOCK_FOR_INSN (insn) == bb))
3430 insn = PREV_INSN (insn);
3432 /* While we add anything except barriers and notes, the focus is
3433 to get the labels and jump tables into the
3434 reload_insn_chain. */
3435 while (insn)
3437 if (!NOTE_P (insn) && !BARRIER_P (insn))
3439 if (BLOCK_FOR_INSN (insn))
3440 break;
3442 c = new_insn_chain ();
3443 c->next = next;
3444 next = c;
3445 *p = c;
3446 p = &c->prev;
3448 /* The block makes no sense here, but it is what the old
3449 code did. */
3450 c->block = bb->index;
3451 c->insn = insn;
3452 bitmap_copy (&c->live_throughout, live_relevant_regs);
3454 insn = PREV_INSN (insn);
3458 for (i = 0; i < (unsigned int) max_regno; i++)
3459 free (live_subregs[i]);
3461 reload_insn_chain = c;
3462 *p = NULL;
3464 free (live_subregs);
3465 free (live_subregs_used);
3466 BITMAP_FREE (live_relevant_regs);
3467 BITMAP_FREE (elim_regset);
3469 if (dump_file)
3470 print_insn_chains (dump_file);
3475 /* All natural loops. */
3476 struct loops ira_loops;
3478 /* True if we have allocno conflicts. It is false for non-optimized
3479 mode or when the conflict table is too big. */
3480 bool ira_conflicts_p;
3482 /* This is the main entry of IRA. */
3483 static void
3484 ira (FILE *f)
3486 int overall_cost_before, allocated_reg_info_size;
3487 bool loops_p;
3488 int max_regno_before_ira, ira_max_point_before_emit;
3489 int rebuild_p;
3490 int saved_flag_ira_share_spill_slots;
3491 basic_block bb;
3493 timevar_push (TV_IRA);
3495 if (flag_caller_saves)
3496 init_caller_save ();
3498 if (flag_ira_verbose < 10)
3500 internal_flag_ira_verbose = flag_ira_verbose;
3501 ira_dump_file = f;
3503 else
3505 internal_flag_ira_verbose = flag_ira_verbose - 10;
3506 ira_dump_file = stderr;
3509 ira_conflicts_p = optimize > 0;
3510 setup_prohibited_mode_move_regs ();
3512 df_note_add_problem ();
3514 if (optimize == 1)
3516 df_live_add_problem ();
3517 df_live_set_all_dirty ();
3519 #ifdef ENABLE_CHECKING
3520 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3521 #endif
3522 df_analyze ();
3523 df_clear_flags (DF_NO_INSN_RESCAN);
3524 regstat_init_n_sets_and_refs ();
3525 regstat_compute_ri ();
3527 /* If we are not optimizing, then this is the only place before
3528 register allocation where dataflow is done. And that is needed
3529 to generate these warnings. */
3530 if (warn_clobbered)
3531 generate_setjmp_warnings ();
3533 /* Determine if the current function is a leaf before running IRA
3534 since this can impact optimizations done by the prologue and
3535 epilogue thus changing register elimination offsets. */
3536 current_function_is_leaf = leaf_function_p ();
3538 if (resize_reg_info () && flag_ira_loop_pressure)
3539 ira_set_pseudo_classes (ira_dump_file);
3541 rebuild_p = update_equiv_regs ();
3543 #ifndef IRA_NO_OBSTACK
3544 gcc_obstack_init (&ira_obstack);
3545 #endif
3546 bitmap_obstack_initialize (&ira_bitmap_obstack);
3547 if (optimize)
3549 max_regno = max_reg_num ();
3550 ira_reg_equiv_len = max_regno;
3551 ira_reg_equiv_invariant_p
3552 = (bool *) ira_allocate (max_regno * sizeof (bool));
3553 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3554 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3555 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3556 find_reg_equiv_invariant_const ();
3557 if (rebuild_p)
3559 timevar_push (TV_JUMP);
3560 rebuild_jump_labels (get_insns ());
3561 if (purge_all_dead_edges ())
3562 delete_unreachable_blocks ();
3563 timevar_pop (TV_JUMP);
3567 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3568 ira_setup_eliminable_regset ();
3570 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3571 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3572 ira_move_loops_num = ira_additional_jumps_num = 0;
3574 ira_assert (current_loops == NULL);
3575 flow_loops_find (&ira_loops);
3576 record_loop_exits ();
3577 current_loops = &ira_loops;
3579 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3580 fprintf (ira_dump_file, "Building IRA IR\n");
3581 loops_p = ira_build (optimize
3582 && (flag_ira_region == IRA_REGION_ALL
3583 || flag_ira_region == IRA_REGION_MIXED));
3585 ira_assert (ira_conflicts_p || !loops_p);
3587 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3588 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3589 /* It is just wasting compiler's time to pack spilled pseudos into
3590 stack slots in this case -- prohibit it. We also do this if
3591 there is setjmp call because a variable not modified between
3592 setjmp and longjmp the compiler is required to preserve its
3593 value and sharing slots does not guarantee it. */
3594 flag_ira_share_spill_slots = FALSE;
3596 ira_color ();
3598 ira_max_point_before_emit = ira_max_point;
3600 ira_initiate_emit_data ();
3602 ira_emit (loops_p);
3604 if (ira_conflicts_p)
3606 max_regno = max_reg_num ();
3608 if (! loops_p)
3609 ira_initiate_assign ();
3610 else
3612 expand_reg_info (allocated_reg_info_size);
3613 setup_preferred_alternate_classes_for_new_pseudos
3614 (allocated_reg_info_size);
3615 allocated_reg_info_size = max_regno;
3617 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3618 fprintf (ira_dump_file, "Flattening IR\n");
3619 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3620 /* New insns were generated: add notes and recalculate live
3621 info. */
3622 df_analyze ();
3624 flow_loops_find (&ira_loops);
3625 record_loop_exits ();
3626 current_loops = &ira_loops;
3628 setup_allocno_assignment_flags ();
3629 ira_initiate_assign ();
3630 ira_reassign_conflict_allocnos (max_regno);
3634 ira_finish_emit_data ();
3636 setup_reg_renumber ();
3638 calculate_allocation_cost ();
3640 #ifdef ENABLE_IRA_CHECKING
3641 if (ira_conflicts_p)
3642 check_allocation ();
3643 #endif
3645 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3646 df_analyze ();
3648 if (max_regno != max_regno_before_ira)
3650 regstat_free_n_sets_and_refs ();
3651 regstat_free_ri ();
3652 regstat_init_n_sets_and_refs ();
3653 regstat_compute_ri ();
3656 overall_cost_before = ira_overall_cost;
3657 if (! ira_conflicts_p)
3658 grow_reg_equivs ();
3659 else
3661 fix_reg_equiv_init ();
3663 #ifdef ENABLE_IRA_CHECKING
3664 print_redundant_copies ();
3665 #endif
3667 ira_spilled_reg_stack_slots_num = 0;
3668 ira_spilled_reg_stack_slots
3669 = ((struct ira_spilled_reg_stack_slot *)
3670 ira_allocate (max_regno
3671 * sizeof (struct ira_spilled_reg_stack_slot)));
3672 memset (ira_spilled_reg_stack_slots, 0,
3673 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3675 allocate_initial_values (reg_equivs);
3677 timevar_pop (TV_IRA);
3679 timevar_push (TV_RELOAD);
3680 df_set_flags (DF_NO_INSN_RESCAN);
3681 build_insn_chain ();
3683 reload_completed = !reload (get_insns (), ira_conflicts_p);
3685 timevar_pop (TV_RELOAD);
3687 timevar_push (TV_IRA);
3689 if (ira_conflicts_p)
3691 ira_free (ira_spilled_reg_stack_slots);
3693 ira_finish_assign ();
3696 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3697 && overall_cost_before != ira_overall_cost)
3698 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3699 ira_destroy ();
3701 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3703 flow_loops_free (&ira_loops);
3704 free_dominance_info (CDI_DOMINATORS);
3705 FOR_ALL_BB (bb)
3706 bb->loop_father = NULL;
3707 current_loops = NULL;
3709 regstat_free_ri ();
3710 regstat_free_n_sets_and_refs ();
3712 if (optimize)
3714 cleanup_cfg (CLEANUP_EXPENSIVE);
3716 ira_free (ira_reg_equiv_invariant_p);
3717 ira_free (ira_reg_equiv_const);
3720 bitmap_obstack_release (&ira_bitmap_obstack);
3721 #ifndef IRA_NO_OBSTACK
3722 obstack_free (&ira_obstack, NULL);
3723 #endif
3725 /* The code after the reload has changed so much that at this point
3726 we might as well just rescan everything. Not that
3727 df_rescan_all_insns is not going to help here because it does not
3728 touch the artificial uses and defs. */
3729 df_finish_pass (true);
3730 if (optimize > 1)
3731 df_live_add_problem ();
3732 df_scan_alloc (NULL);
3733 df_scan_blocks ();
3735 if (optimize)
3736 df_analyze ();
3738 timevar_pop (TV_IRA);
3743 static bool
3744 gate_ira (void)
3746 return true;
3749 /* Run the integrated register allocator. */
3750 static unsigned int
3751 rest_of_handle_ira (void)
3753 ira (dump_file);
3754 return 0;
3757 struct rtl_opt_pass pass_ira =
3760 RTL_PASS,
3761 "ira", /* name */
3762 gate_ira, /* gate */
3763 rest_of_handle_ira, /* execute */
3764 NULL, /* sub */
3765 NULL, /* next */
3766 0, /* static_pass_number */
3767 TV_NONE, /* tv_id */
3768 0, /* properties_required */
3769 0, /* properties_provided */
3770 0, /* properties_destroyed */
3771 0, /* todo_flags_start */
3772 TODO_dump_func |
3773 TODO_ggc_collect /* todo_flags_finish */