PR c++/81429 - wrong parsing of constructor with C++11 attribute.
[official-gcc.git] / gcc / alias.c
blob2755df729070a8b90743f1a4ae74d86b3cc76cc1
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
44 /* The aliasing API provided here solves related but different problems:
46 Say there exists (in c)
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
53 struct Y y2, *py;
54 struct Z z2, *pz;
57 py = &x1.y1;
58 px2 = &x1;
60 Consider the four questions:
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
67 The answer to these questions can be yes, yes, yes, and maybe.
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
99 struct S { int i; double d; };
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
108 |/_ _\|
109 int double
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
144 struct T { struct S s; float f; }
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
164 static void memory_modified_1 (rtx, const_rtx, void *);
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
180 /* Set up all info needed to perform alias analysis on memory references. */
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288 tree expr = MEM_EXPR (mem);
289 tree base;
291 if (!expr)
292 return false;
294 ao_ref_init (ref, expr);
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
319 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320 drop ref->ref. */
321 if (maybe_lt (MEM_OFFSET (mem), 0)
322 || (ref->max_size_known_p ()
323 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324 ref->max_size)))
325 ref->ref = NULL_TREE;
327 /* Refine size and offset we got from analyzing MEM_EXPR by using
328 MEM_SIZE and MEM_OFFSET. */
330 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
333 /* The MEM may extend into adjacent fields, so adjust max_size if
334 necessary. */
335 if (ref->max_size_known_p ())
336 ref->max_size = upper_bound (ref->max_size, ref->size);
338 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (maybe_lt (ref->offset, 0)
342 || (DECL_P (ref->base)
343 && (DECL_SIZE (ref->base) == NULL_TREE
344 || !poly_int_tree_p (DECL_SIZE (ref->base))
345 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346 ref->offset + ref->size)))))
347 return false;
349 return true;
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359 ao_ref ref1, ref2;
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372 such an entry, or NULL otherwise. */
374 static inline alias_set_entry *
375 get_alias_set_entry (alias_set_type alias_set)
377 return (*alias_sets)[alias_set];
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381 the two MEMs cannot alias each other. */
383 static inline int
384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
386 return (flag_strict_aliasing
387 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
388 MEM_ALIAS_SET (mem2)));
391 /* Return true if the first alias set is a subset of the second. */
393 bool
394 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
396 alias_set_entry *ase2;
398 /* Disable TBAA oracle with !flag_strict_aliasing. */
399 if (!flag_strict_aliasing)
400 return true;
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
406 /* Check if set1 is a subset of set2. */
407 ase2 = get_alias_set_entry (set2);
408 if (ase2 != 0
409 && (ase2->has_zero_child
410 || (ase2->children && ase2->children->get (set1))))
411 return true;
413 /* As a special case we consider alias set of "void *" to be both subset
414 and superset of every alias set of a pointer. This extra symmetry does
415 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
416 to return true on the following testcase:
418 void *ptr;
419 char **ptr2=(char **)&ptr;
420 *ptr2 = ...
422 Additionally if a set contains universal pointer, we consider every pointer
423 to be a subset of it, but we do not represent this explicitely - doing so
424 would require us to update transitive closure each time we introduce new
425 pointer type. This makes aliasing_component_refs_p to return true
426 on the following testcase:
428 struct a {void *ptr;}
429 char **ptr = (char **)&a.ptr;
430 ptr = ...
432 This makes void * truly universal pointer type. See pointer handling in
433 get_alias_set for more details. */
434 if (ase2 && ase2->has_pointer)
436 alias_set_entry *ase1 = get_alias_set_entry (set1);
438 if (ase1 && ase1->is_pointer)
440 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
441 /* If one is ptr_type_node and other is pointer, then we consider
442 them subset of each other. */
443 if (set1 == voidptr_set || set2 == voidptr_set)
444 return true;
445 /* If SET2 contains universal pointer's alias set, then we consdier
446 every (non-universal) pointer. */
447 if (ase2->children && set1 != voidptr_set
448 && ase2->children->get (voidptr_set))
449 return true;
452 return false;
455 /* Return 1 if the two specified alias sets may conflict. */
458 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
460 alias_set_entry *ase1;
461 alias_set_entry *ase2;
463 /* The easy case. */
464 if (alias_sets_must_conflict_p (set1, set2))
465 return 1;
467 /* See if the first alias set is a subset of the second. */
468 ase1 = get_alias_set_entry (set1);
469 if (ase1 != 0
470 && ase1->children && ase1->children->get (set2))
472 ++alias_stats.num_dag;
473 return 1;
476 /* Now do the same, but with the alias sets reversed. */
477 ase2 = get_alias_set_entry (set2);
478 if (ase2 != 0
479 && ase2->children && ase2->children->get (set1))
481 ++alias_stats.num_dag;
482 return 1;
485 /* We want void * to be compatible with any other pointer without
486 really dropping it to alias set 0. Doing so would make it
487 compatible with all non-pointer types too.
489 This is not strictly necessary by the C/C++ language
490 standards, but avoids common type punning mistakes. In
491 addition to that, we need the existence of such universal
492 pointer to implement Fortran's C_PTR type (which is defined as
493 type compatible with all C pointers). */
494 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
496 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
498 /* If one of the sets corresponds to universal pointer,
499 we consider it to conflict with anything that is
500 or contains pointer. */
501 if (set1 == voidptr_set || set2 == voidptr_set)
503 ++alias_stats.num_universal;
504 return true;
506 /* If one of sets is (non-universal) pointer and the other
507 contains universal pointer, we also get conflict. */
508 if (ase1->is_pointer && set2 != voidptr_set
509 && ase2->children && ase2->children->get (voidptr_set))
511 ++alias_stats.num_universal;
512 return true;
514 if (ase2->is_pointer && set1 != voidptr_set
515 && ase1->children && ase1->children->get (voidptr_set))
517 ++alias_stats.num_universal;
518 return true;
522 ++alias_stats.num_disambiguated;
524 /* The two alias sets are distinct and neither one is the
525 child of the other. Therefore, they cannot conflict. */
526 return 0;
529 /* Return 1 if the two specified alias sets will always conflict. */
532 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
534 /* Disable TBAA oracle with !flag_strict_aliasing. */
535 if (!flag_strict_aliasing)
536 return 1;
537 if (set1 == 0 || set2 == 0)
539 ++alias_stats.num_alias_zero;
540 return 1;
542 if (set1 == set2)
544 ++alias_stats.num_same_alias_set;
545 return 1;
548 return 0;
551 /* Return 1 if any MEM object of type T1 will always conflict (using the
552 dependency routines in this file) with any MEM object of type T2.
553 This is used when allocating temporary storage. If T1 and/or T2 are
554 NULL_TREE, it means we know nothing about the storage. */
557 objects_must_conflict_p (tree t1, tree t2)
559 alias_set_type set1, set2;
561 /* If neither has a type specified, we don't know if they'll conflict
562 because we may be using them to store objects of various types, for
563 example the argument and local variables areas of inlined functions. */
564 if (t1 == 0 && t2 == 0)
565 return 0;
567 /* If they are the same type, they must conflict. */
568 if (t1 == t2)
570 ++alias_stats.num_same_objects;
571 return 1;
573 /* Likewise if both are volatile. */
574 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
576 ++alias_stats.num_volatile;
577 return 1;
580 set1 = t1 ? get_alias_set (t1) : 0;
581 set2 = t2 ? get_alias_set (t2) : 0;
583 /* We can't use alias_sets_conflict_p because we must make sure
584 that every subtype of t1 will conflict with every subtype of
585 t2 for which a pair of subobjects of these respective subtypes
586 overlaps on the stack. */
587 return alias_sets_must_conflict_p (set1, set2);
590 /* Return the outermost parent of component present in the chain of
591 component references handled by get_inner_reference in T with the
592 following property:
593 - the component is non-addressable
594 or NULL_TREE if no such parent exists. In the former cases, the alias
595 set of this parent is the alias set that must be used for T itself. */
597 tree
598 component_uses_parent_alias_set_from (const_tree t)
600 const_tree found = NULL_TREE;
602 while (handled_component_p (t))
604 switch (TREE_CODE (t))
606 case COMPONENT_REF:
607 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
608 found = t;
609 /* Permit type-punning when accessing a union, provided the access
610 is directly through the union. For example, this code does not
611 permit taking the address of a union member and then storing
612 through it. Even the type-punning allowed here is a GCC
613 extension, albeit a common and useful one; the C standard says
614 that such accesses have implementation-defined behavior. */
615 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
616 found = t;
617 break;
619 case ARRAY_REF:
620 case ARRAY_RANGE_REF:
621 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
622 found = t;
623 break;
625 case REALPART_EXPR:
626 case IMAGPART_EXPR:
627 break;
629 case BIT_FIELD_REF:
630 case VIEW_CONVERT_EXPR:
631 /* Bitfields and casts are never addressable. */
632 found = t;
633 break;
635 default:
636 gcc_unreachable ();
639 t = TREE_OPERAND (t, 0);
642 if (found)
643 return TREE_OPERAND (found, 0);
645 return NULL_TREE;
649 /* Return whether the pointer-type T effective for aliasing may
650 access everything and thus the reference has to be assigned
651 alias-set zero. */
653 static bool
654 ref_all_alias_ptr_type_p (const_tree t)
656 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
657 || TYPE_REF_CAN_ALIAS_ALL (t));
660 /* Return the alias set for the memory pointed to by T, which may be
661 either a type or an expression. Return -1 if there is nothing
662 special about dereferencing T. */
664 static alias_set_type
665 get_deref_alias_set_1 (tree t)
667 /* All we care about is the type. */
668 if (! TYPE_P (t))
669 t = TREE_TYPE (t);
671 /* If we have an INDIRECT_REF via a void pointer, we don't
672 know anything about what that might alias. Likewise if the
673 pointer is marked that way. */
674 if (ref_all_alias_ptr_type_p (t))
675 return 0;
677 return -1;
680 /* Return the alias set for the memory pointed to by T, which may be
681 either a type or an expression. */
683 alias_set_type
684 get_deref_alias_set (tree t)
686 /* If we're not doing any alias analysis, just assume everything
687 aliases everything else. */
688 if (!flag_strict_aliasing)
689 return 0;
691 alias_set_type set = get_deref_alias_set_1 (t);
693 /* Fall back to the alias-set of the pointed-to type. */
694 if (set == -1)
696 if (! TYPE_P (t))
697 t = TREE_TYPE (t);
698 set = get_alias_set (TREE_TYPE (t));
701 return set;
704 /* Return the pointer-type relevant for TBAA purposes from the
705 memory reference tree *T or NULL_TREE in which case *T is
706 adjusted to point to the outermost component reference that
707 can be used for assigning an alias set. */
709 static tree
710 reference_alias_ptr_type_1 (tree *t)
712 tree inner;
714 /* Get the base object of the reference. */
715 inner = *t;
716 while (handled_component_p (inner))
718 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
719 the type of any component references that wrap it to
720 determine the alias-set. */
721 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
722 *t = TREE_OPERAND (inner, 0);
723 inner = TREE_OPERAND (inner, 0);
726 /* Handle pointer dereferences here, they can override the
727 alias-set. */
728 if (INDIRECT_REF_P (inner)
729 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
730 return TREE_TYPE (TREE_OPERAND (inner, 0));
731 else if (TREE_CODE (inner) == TARGET_MEM_REF)
732 return TREE_TYPE (TMR_OFFSET (inner));
733 else if (TREE_CODE (inner) == MEM_REF
734 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
735 return TREE_TYPE (TREE_OPERAND (inner, 1));
737 /* If the innermost reference is a MEM_REF that has a
738 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
739 using the memory access type for determining the alias-set. */
740 if (TREE_CODE (inner) == MEM_REF
741 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
742 != TYPE_MAIN_VARIANT
743 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
744 return TREE_TYPE (TREE_OPERAND (inner, 1));
746 /* Otherwise, pick up the outermost object that we could have
747 a pointer to. */
748 tree tem = component_uses_parent_alias_set_from (*t);
749 if (tem)
750 *t = tem;
752 return NULL_TREE;
755 /* Return the pointer-type relevant for TBAA purposes from the
756 gimple memory reference tree T. This is the type to be used for
757 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
758 and guarantees that get_alias_set will return the same alias
759 set for T and the replacement. */
761 tree
762 reference_alias_ptr_type (tree t)
764 /* If the frontend assigns this alias-set zero, preserve that. */
765 if (lang_hooks.get_alias_set (t) == 0)
766 return ptr_type_node;
768 tree ptype = reference_alias_ptr_type_1 (&t);
769 /* If there is a given pointer type for aliasing purposes, return it. */
770 if (ptype != NULL_TREE)
771 return ptype;
773 /* Otherwise build one from the outermost component reference we
774 may use. */
775 if (TREE_CODE (t) == MEM_REF
776 || TREE_CODE (t) == TARGET_MEM_REF)
777 return TREE_TYPE (TREE_OPERAND (t, 1));
778 else
779 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
782 /* Return whether the pointer-types T1 and T2 used to determine
783 two alias sets of two references will yield the same answer
784 from get_deref_alias_set. */
786 bool
787 alias_ptr_types_compatible_p (tree t1, tree t2)
789 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
790 return true;
792 if (ref_all_alias_ptr_type_p (t1)
793 || ref_all_alias_ptr_type_p (t2))
794 return false;
796 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
797 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
800 /* Create emptry alias set entry. */
802 alias_set_entry *
803 init_alias_set_entry (alias_set_type set)
805 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
806 ase->alias_set = set;
807 ase->children = NULL;
808 ase->has_zero_child = false;
809 ase->is_pointer = false;
810 ase->has_pointer = false;
811 gcc_checking_assert (!get_alias_set_entry (set));
812 (*alias_sets)[set] = ase;
813 return ase;
816 /* Return the alias set for T, which may be either a type or an
817 expression. Call language-specific routine for help, if needed. */
819 alias_set_type
820 get_alias_set (tree t)
822 alias_set_type set;
824 /* We cannot give up with -fno-strict-aliasing because we need to build
825 proper type representation for possible functions which are build with
826 -fstrict-aliasing. */
828 /* return 0 if this or its type is an error. */
829 if (t == error_mark_node
830 || (! TYPE_P (t)
831 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
832 return 0;
834 /* We can be passed either an expression or a type. This and the
835 language-specific routine may make mutually-recursive calls to each other
836 to figure out what to do. At each juncture, we see if this is a tree
837 that the language may need to handle specially. First handle things that
838 aren't types. */
839 if (! TYPE_P (t))
841 /* Give the language a chance to do something with this tree
842 before we look at it. */
843 STRIP_NOPS (t);
844 set = lang_hooks.get_alias_set (t);
845 if (set != -1)
846 return set;
848 /* Get the alias pointer-type to use or the outermost object
849 that we could have a pointer to. */
850 tree ptype = reference_alias_ptr_type_1 (&t);
851 if (ptype != NULL)
852 return get_deref_alias_set (ptype);
854 /* If we've already determined the alias set for a decl, just return
855 it. This is necessary for C++ anonymous unions, whose component
856 variables don't look like union members (boo!). */
857 if (VAR_P (t)
858 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
859 return MEM_ALIAS_SET (DECL_RTL (t));
861 /* Now all we care about is the type. */
862 t = TREE_TYPE (t);
865 /* Variant qualifiers don't affect the alias set, so get the main
866 variant. */
867 t = TYPE_MAIN_VARIANT (t);
869 if (AGGREGATE_TYPE_P (t)
870 && TYPE_TYPELESS_STORAGE (t))
871 return 0;
873 /* Always use the canonical type as well. If this is a type that
874 requires structural comparisons to identify compatible types
875 use alias set zero. */
876 if (TYPE_STRUCTURAL_EQUALITY_P (t))
878 /* Allow the language to specify another alias set for this
879 type. */
880 set = lang_hooks.get_alias_set (t);
881 if (set != -1)
882 return set;
883 /* Handle structure type equality for pointer types, arrays and vectors.
884 This is easy to do, because the code bellow ignore canonical types on
885 these anyway. This is important for LTO, where TYPE_CANONICAL for
886 pointers cannot be meaningfuly computed by the frotnend. */
887 if (canonical_type_used_p (t))
889 /* In LTO we set canonical types for all types where it makes
890 sense to do so. Double check we did not miss some type. */
891 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
892 return 0;
895 else
897 t = TYPE_CANONICAL (t);
898 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
901 /* If this is a type with a known alias set, return it. */
902 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
903 if (TYPE_ALIAS_SET_KNOWN_P (t))
904 return TYPE_ALIAS_SET (t);
906 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
907 if (!COMPLETE_TYPE_P (t))
909 /* For arrays with unknown size the conservative answer is the
910 alias set of the element type. */
911 if (TREE_CODE (t) == ARRAY_TYPE)
912 return get_alias_set (TREE_TYPE (t));
914 /* But return zero as a conservative answer for incomplete types. */
915 return 0;
918 /* See if the language has special handling for this type. */
919 set = lang_hooks.get_alias_set (t);
920 if (set != -1)
921 return set;
923 /* There are no objects of FUNCTION_TYPE, so there's no point in
924 using up an alias set for them. (There are, of course, pointers
925 and references to functions, but that's different.) */
926 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
927 set = 0;
929 /* Unless the language specifies otherwise, let vector types alias
930 their components. This avoids some nasty type punning issues in
931 normal usage. And indeed lets vectors be treated more like an
932 array slice. */
933 else if (TREE_CODE (t) == VECTOR_TYPE)
934 set = get_alias_set (TREE_TYPE (t));
936 /* Unless the language specifies otherwise, treat array types the
937 same as their components. This avoids the asymmetry we get
938 through recording the components. Consider accessing a
939 character(kind=1) through a reference to a character(kind=1)[1:1].
940 Or consider if we want to assign integer(kind=4)[0:D.1387] and
941 integer(kind=4)[4] the same alias set or not.
942 Just be pragmatic here and make sure the array and its element
943 type get the same alias set assigned. */
944 else if (TREE_CODE (t) == ARRAY_TYPE
945 && (!TYPE_NONALIASED_COMPONENT (t)
946 || TYPE_STRUCTURAL_EQUALITY_P (t)))
947 set = get_alias_set (TREE_TYPE (t));
949 /* From the former common C and C++ langhook implementation:
951 Unfortunately, there is no canonical form of a pointer type.
952 In particular, if we have `typedef int I', then `int *', and
953 `I *' are different types. So, we have to pick a canonical
954 representative. We do this below.
956 Technically, this approach is actually more conservative that
957 it needs to be. In particular, `const int *' and `int *'
958 should be in different alias sets, according to the C and C++
959 standard, since their types are not the same, and so,
960 technically, an `int **' and `const int **' cannot point at
961 the same thing.
963 But, the standard is wrong. In particular, this code is
964 legal C++:
966 int *ip;
967 int **ipp = &ip;
968 const int* const* cipp = ipp;
969 And, it doesn't make sense for that to be legal unless you
970 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
971 the pointed-to types. This issue has been reported to the
972 C++ committee.
974 For this reason go to canonical type of the unqalified pointer type.
975 Until GCC 6 this code set all pointers sets to have alias set of
976 ptr_type_node but that is a bad idea, because it prevents disabiguations
977 in between pointers. For Firefox this accounts about 20% of all
978 disambiguations in the program. */
979 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
981 tree p;
982 auto_vec <bool, 8> reference;
984 /* Unnest all pointers and references.
985 We also want to make pointer to array/vector equivalent to pointer to
986 its element (see the reasoning above). Skip all those types, too. */
987 for (p = t; POINTER_TYPE_P (p)
988 || (TREE_CODE (p) == ARRAY_TYPE
989 && (!TYPE_NONALIASED_COMPONENT (p)
990 || !COMPLETE_TYPE_P (p)
991 || TYPE_STRUCTURAL_EQUALITY_P (p)))
992 || TREE_CODE (p) == VECTOR_TYPE;
993 p = TREE_TYPE (p))
995 /* Ada supports recusive pointers. Instead of doing recrusion check
996 just give up once the preallocated space of 8 elements is up.
997 In this case just punt to void * alias set. */
998 if (reference.length () == 8)
1000 p = ptr_type_node;
1001 break;
1003 if (TREE_CODE (p) == REFERENCE_TYPE)
1004 /* In LTO we want languages that use references to be compatible
1005 with languages that use pointers. */
1006 reference.safe_push (true && !in_lto_p);
1007 if (TREE_CODE (p) == POINTER_TYPE)
1008 reference.safe_push (false);
1010 p = TYPE_MAIN_VARIANT (p);
1012 /* In LTO for C++ programs we can turn in complete types to complete
1013 using ODR name lookup. */
1014 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1016 p = prevailing_odr_type (p);
1017 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1020 /* Make void * compatible with char * and also void **.
1021 Programs are commonly violating TBAA by this.
1023 We also make void * to conflict with every pointer
1024 (see record_component_aliases) and thus it is safe it to use it for
1025 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1026 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1027 set = get_alias_set (ptr_type_node);
1028 else
1030 /* Rebuild pointer type starting from canonical types using
1031 unqualified pointers and references only. This way all such
1032 pointers will have the same alias set and will conflict with
1033 each other.
1035 Most of time we already have pointers or references of a given type.
1036 If not we build new one just to be sure that if someone later
1037 (probably only middle-end can, as we should assign all alias
1038 classes only after finishing translation unit) builds the pointer
1039 type, the canonical type will match. */
1040 p = TYPE_CANONICAL (p);
1041 while (!reference.is_empty ())
1043 if (reference.pop ())
1044 p = build_reference_type (p);
1045 else
1046 p = build_pointer_type (p);
1047 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1048 /* build_pointer_type should always return the canonical type.
1049 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1050 them. Be sure that frontends do not glob canonical types of
1051 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1052 in all other cases. */
1053 gcc_checking_assert (!TYPE_CANONICAL (p)
1054 || p == TYPE_CANONICAL (p));
1057 /* Assign the alias set to both p and t.
1058 We cannot call get_alias_set (p) here as that would trigger
1059 infinite recursion when p == t. In other cases it would just
1060 trigger unnecesary legwork of rebuilding the pointer again. */
1061 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1062 if (TYPE_ALIAS_SET_KNOWN_P (p))
1063 set = TYPE_ALIAS_SET (p);
1064 else
1066 set = new_alias_set ();
1067 TYPE_ALIAS_SET (p) = set;
1071 /* Alias set of ptr_type_node is special and serve as universal pointer which
1072 is TBAA compatible with every other pointer type. Be sure we have the
1073 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1074 of pointer types NULL. */
1075 else if (t == ptr_type_node)
1076 set = new_alias_set ();
1078 /* Otherwise make a new alias set for this type. */
1079 else
1081 /* Each canonical type gets its own alias set, so canonical types
1082 shouldn't form a tree. It doesn't really matter for types
1083 we handle specially above, so only check it where it possibly
1084 would result in a bogus alias set. */
1085 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1087 set = new_alias_set ();
1090 TYPE_ALIAS_SET (t) = set;
1092 /* If this is an aggregate type or a complex type, we must record any
1093 component aliasing information. */
1094 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1095 record_component_aliases (t);
1097 /* We treat pointer types specially in alias_set_subset_of. */
1098 if (POINTER_TYPE_P (t) && set)
1100 alias_set_entry *ase = get_alias_set_entry (set);
1101 if (!ase)
1102 ase = init_alias_set_entry (set);
1103 ase->is_pointer = true;
1104 ase->has_pointer = true;
1107 return set;
1110 /* Return a brand-new alias set. */
1112 alias_set_type
1113 new_alias_set (void)
1115 if (alias_sets == 0)
1116 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1117 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1118 return alias_sets->length () - 1;
1121 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1122 not everything that aliases SUPERSET also aliases SUBSET. For example,
1123 in C, a store to an `int' can alias a load of a structure containing an
1124 `int', and vice versa. But it can't alias a load of a 'double' member
1125 of the same structure. Here, the structure would be the SUPERSET and
1126 `int' the SUBSET. This relationship is also described in the comment at
1127 the beginning of this file.
1129 This function should be called only once per SUPERSET/SUBSET pair.
1131 It is illegal for SUPERSET to be zero; everything is implicitly a
1132 subset of alias set zero. */
1134 void
1135 record_alias_subset (alias_set_type superset, alias_set_type subset)
1137 alias_set_entry *superset_entry;
1138 alias_set_entry *subset_entry;
1140 /* It is possible in complex type situations for both sets to be the same,
1141 in which case we can ignore this operation. */
1142 if (superset == subset)
1143 return;
1145 gcc_assert (superset);
1147 superset_entry = get_alias_set_entry (superset);
1148 if (superset_entry == 0)
1150 /* Create an entry for the SUPERSET, so that we have a place to
1151 attach the SUBSET. */
1152 superset_entry = init_alias_set_entry (superset);
1155 if (subset == 0)
1156 superset_entry->has_zero_child = 1;
1157 else
1159 subset_entry = get_alias_set_entry (subset);
1160 if (!superset_entry->children)
1161 superset_entry->children
1162 = hash_map<alias_set_hash, int>::create_ggc (64);
1163 /* If there is an entry for the subset, enter all of its children
1164 (if they are not already present) as children of the SUPERSET. */
1165 if (subset_entry)
1167 if (subset_entry->has_zero_child)
1168 superset_entry->has_zero_child = true;
1169 if (subset_entry->has_pointer)
1170 superset_entry->has_pointer = true;
1172 if (subset_entry->children)
1174 hash_map<alias_set_hash, int>::iterator iter
1175 = subset_entry->children->begin ();
1176 for (; iter != subset_entry->children->end (); ++iter)
1177 superset_entry->children->put ((*iter).first, (*iter).second);
1181 /* Enter the SUBSET itself as a child of the SUPERSET. */
1182 superset_entry->children->put (subset, 0);
1186 /* Record that component types of TYPE, if any, are part of that type for
1187 aliasing purposes. For record types, we only record component types
1188 for fields that are not marked non-addressable. For array types, we
1189 only record the component type if it is not marked non-aliased. */
1191 void
1192 record_component_aliases (tree type)
1194 alias_set_type superset = get_alias_set (type);
1195 tree field;
1197 if (superset == 0)
1198 return;
1200 switch (TREE_CODE (type))
1202 case RECORD_TYPE:
1203 case UNION_TYPE:
1204 case QUAL_UNION_TYPE:
1206 /* LTO non-ODR type merging does not make any difference between
1207 component pointer types. We may have
1209 struct foo {int *a;};
1211 as TYPE_CANONICAL of
1213 struct bar {float *a;};
1215 Because accesses to int * and float * do not alias, we would get
1216 false negative when accessing the same memory location by
1217 float ** and bar *. We thus record the canonical type as:
1219 struct {void *a;};
1221 void * is special cased and works as a universal pointer type.
1222 Accesses to it conflicts with accesses to any other pointer
1223 type. */
1224 bool void_pointers = in_lto_p
1225 && (!odr_type_p (type)
1226 || !odr_based_tbaa_p (type));
1227 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1228 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1230 tree t = TREE_TYPE (field);
1231 if (void_pointers)
1233 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1234 element type and that type has to be normalized to void *,
1235 too, in the case it is a pointer. */
1236 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1238 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1239 t = TREE_TYPE (t);
1241 if (POINTER_TYPE_P (t))
1242 t = ptr_type_node;
1243 else if (flag_checking)
1244 gcc_checking_assert (get_alias_set (t)
1245 == get_alias_set (TREE_TYPE (field)));
1248 record_alias_subset (superset, get_alias_set (t));
1251 break;
1253 case COMPLEX_TYPE:
1254 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1255 break;
1257 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1258 element type. */
1260 default:
1261 break;
1265 /* Allocate an alias set for use in storing and reading from the varargs
1266 spill area. */
1268 static GTY(()) alias_set_type varargs_set = -1;
1270 alias_set_type
1271 get_varargs_alias_set (void)
1273 #if 1
1274 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1275 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1276 consistently use the varargs alias set for loads from the varargs
1277 area. So don't use it anywhere. */
1278 return 0;
1279 #else
1280 if (varargs_set == -1)
1281 varargs_set = new_alias_set ();
1283 return varargs_set;
1284 #endif
1287 /* Likewise, but used for the fixed portions of the frame, e.g., register
1288 save areas. */
1290 static GTY(()) alias_set_type frame_set = -1;
1292 alias_set_type
1293 get_frame_alias_set (void)
1295 if (frame_set == -1)
1296 frame_set = new_alias_set ();
1298 return frame_set;
1301 /* Create a new, unique base with id ID. */
1303 static rtx
1304 unique_base_value (HOST_WIDE_INT id)
1306 return gen_rtx_ADDRESS (Pmode, id);
1309 /* Return true if accesses based on any other base value cannot alias
1310 those based on X. */
1312 static bool
1313 unique_base_value_p (rtx x)
1315 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1318 /* Return true if X is known to be a base value. */
1320 static bool
1321 known_base_value_p (rtx x)
1323 switch (GET_CODE (x))
1325 case LABEL_REF:
1326 case SYMBOL_REF:
1327 return true;
1329 case ADDRESS:
1330 /* Arguments may or may not be bases; we don't know for sure. */
1331 return GET_MODE (x) != VOIDmode;
1333 default:
1334 return false;
1338 /* Inside SRC, the source of a SET, find a base address. */
1340 static rtx
1341 find_base_value (rtx src)
1343 unsigned int regno;
1344 scalar_int_mode int_mode;
1346 #if defined (FIND_BASE_TERM)
1347 /* Try machine-dependent ways to find the base term. */
1348 src = FIND_BASE_TERM (src);
1349 #endif
1351 switch (GET_CODE (src))
1353 case SYMBOL_REF:
1354 case LABEL_REF:
1355 return src;
1357 case REG:
1358 regno = REGNO (src);
1359 /* At the start of a function, argument registers have known base
1360 values which may be lost later. Returning an ADDRESS
1361 expression here allows optimization based on argument values
1362 even when the argument registers are used for other purposes. */
1363 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1364 return new_reg_base_value[regno];
1366 /* If a pseudo has a known base value, return it. Do not do this
1367 for non-fixed hard regs since it can result in a circular
1368 dependency chain for registers which have values at function entry.
1370 The test above is not sufficient because the scheduler may move
1371 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1372 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1373 && regno < vec_safe_length (reg_base_value))
1375 /* If we're inside init_alias_analysis, use new_reg_base_value
1376 to reduce the number of relaxation iterations. */
1377 if (new_reg_base_value && new_reg_base_value[regno]
1378 && DF_REG_DEF_COUNT (regno) == 1)
1379 return new_reg_base_value[regno];
1381 if ((*reg_base_value)[regno])
1382 return (*reg_base_value)[regno];
1385 return 0;
1387 case MEM:
1388 /* Check for an argument passed in memory. Only record in the
1389 copying-arguments block; it is too hard to track changes
1390 otherwise. */
1391 if (copying_arguments
1392 && (XEXP (src, 0) == arg_pointer_rtx
1393 || (GET_CODE (XEXP (src, 0)) == PLUS
1394 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1395 return arg_base_value;
1396 return 0;
1398 case CONST:
1399 src = XEXP (src, 0);
1400 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1401 break;
1403 /* fall through */
1405 case PLUS:
1406 case MINUS:
1408 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1410 /* If either operand is a REG that is a known pointer, then it
1411 is the base. */
1412 if (REG_P (src_0) && REG_POINTER (src_0))
1413 return find_base_value (src_0);
1414 if (REG_P (src_1) && REG_POINTER (src_1))
1415 return find_base_value (src_1);
1417 /* If either operand is a REG, then see if we already have
1418 a known value for it. */
1419 if (REG_P (src_0))
1421 temp = find_base_value (src_0);
1422 if (temp != 0)
1423 src_0 = temp;
1426 if (REG_P (src_1))
1428 temp = find_base_value (src_1);
1429 if (temp!= 0)
1430 src_1 = temp;
1433 /* If either base is named object or a special address
1434 (like an argument or stack reference), then use it for the
1435 base term. */
1436 if (src_0 != 0 && known_base_value_p (src_0))
1437 return src_0;
1439 if (src_1 != 0 && known_base_value_p (src_1))
1440 return src_1;
1442 /* Guess which operand is the base address:
1443 If either operand is a symbol, then it is the base. If
1444 either operand is a CONST_INT, then the other is the base. */
1445 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1446 return find_base_value (src_0);
1447 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1448 return find_base_value (src_1);
1450 return 0;
1453 case LO_SUM:
1454 /* The standard form is (lo_sum reg sym) so look only at the
1455 second operand. */
1456 return find_base_value (XEXP (src, 1));
1458 case AND:
1459 /* If the second operand is constant set the base
1460 address to the first operand. */
1461 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1462 return find_base_value (XEXP (src, 0));
1463 return 0;
1465 case TRUNCATE:
1466 /* As we do not know which address space the pointer is referring to, we can
1467 handle this only if the target does not support different pointer or
1468 address modes depending on the address space. */
1469 if (!target_default_pointer_address_modes_p ())
1470 break;
1471 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1472 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1473 break;
1474 /* Fall through. */
1475 case HIGH:
1476 case PRE_INC:
1477 case PRE_DEC:
1478 case POST_INC:
1479 case POST_DEC:
1480 case PRE_MODIFY:
1481 case POST_MODIFY:
1482 return find_base_value (XEXP (src, 0));
1484 case ZERO_EXTEND:
1485 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1486 /* As we do not know which address space the pointer is referring to, we can
1487 handle this only if the target does not support different pointer or
1488 address modes depending on the address space. */
1489 if (!target_default_pointer_address_modes_p ())
1490 break;
1493 rtx temp = find_base_value (XEXP (src, 0));
1495 if (temp != 0 && CONSTANT_P (temp))
1496 temp = convert_memory_address (Pmode, temp);
1498 return temp;
1501 default:
1502 break;
1505 return 0;
1508 /* Called from init_alias_analysis indirectly through note_stores,
1509 or directly if DEST is a register with a REG_NOALIAS note attached.
1510 SET is null in the latter case. */
1512 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1513 register N has been set in this function. */
1514 static sbitmap reg_seen;
1516 static void
1517 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1519 unsigned regno;
1520 rtx src;
1521 int n;
1523 if (!REG_P (dest))
1524 return;
1526 regno = REGNO (dest);
1528 gcc_checking_assert (regno < reg_base_value->length ());
1530 n = REG_NREGS (dest);
1531 if (n != 1)
1533 while (--n >= 0)
1535 bitmap_set_bit (reg_seen, regno + n);
1536 new_reg_base_value[regno + n] = 0;
1538 return;
1541 if (set)
1543 /* A CLOBBER wipes out any old value but does not prevent a previously
1544 unset register from acquiring a base address (i.e. reg_seen is not
1545 set). */
1546 if (GET_CODE (set) == CLOBBER)
1548 new_reg_base_value[regno] = 0;
1549 return;
1551 /* A CLOBBER_HIGH only wipes out the old value if the mode of the old
1552 value is greater than that of the clobber. */
1553 else if (GET_CODE (set) == CLOBBER_HIGH)
1555 if (new_reg_base_value[regno] != 0
1556 && reg_is_clobbered_by_clobber_high (
1557 regno, GET_MODE (new_reg_base_value[regno]), XEXP (set, 0)))
1558 new_reg_base_value[regno] = 0;
1559 return;
1562 src = SET_SRC (set);
1564 else
1566 /* There's a REG_NOALIAS note against DEST. */
1567 if (bitmap_bit_p (reg_seen, regno))
1569 new_reg_base_value[regno] = 0;
1570 return;
1572 bitmap_set_bit (reg_seen, regno);
1573 new_reg_base_value[regno] = unique_base_value (unique_id++);
1574 return;
1577 /* If this is not the first set of REGNO, see whether the new value
1578 is related to the old one. There are two cases of interest:
1580 (1) The register might be assigned an entirely new value
1581 that has the same base term as the original set.
1583 (2) The set might be a simple self-modification that
1584 cannot change REGNO's base value.
1586 If neither case holds, reject the original base value as invalid.
1587 Note that the following situation is not detected:
1589 extern int x, y; int *p = &x; p += (&y-&x);
1591 ANSI C does not allow computing the difference of addresses
1592 of distinct top level objects. */
1593 if (new_reg_base_value[regno] != 0
1594 && find_base_value (src) != new_reg_base_value[regno])
1595 switch (GET_CODE (src))
1597 case LO_SUM:
1598 case MINUS:
1599 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1600 new_reg_base_value[regno] = 0;
1601 break;
1602 case PLUS:
1603 /* If the value we add in the PLUS is also a valid base value,
1604 this might be the actual base value, and the original value
1605 an index. */
1607 rtx other = NULL_RTX;
1609 if (XEXP (src, 0) == dest)
1610 other = XEXP (src, 1);
1611 else if (XEXP (src, 1) == dest)
1612 other = XEXP (src, 0);
1614 if (! other || find_base_value (other))
1615 new_reg_base_value[regno] = 0;
1616 break;
1618 case AND:
1619 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1620 new_reg_base_value[regno] = 0;
1621 break;
1622 default:
1623 new_reg_base_value[regno] = 0;
1624 break;
1626 /* If this is the first set of a register, record the value. */
1627 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1628 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1629 new_reg_base_value[regno] = find_base_value (src);
1631 bitmap_set_bit (reg_seen, regno);
1634 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1635 using hard registers with non-null REG_BASE_VALUE for renaming. */
1637 get_reg_base_value (unsigned int regno)
1639 return (*reg_base_value)[regno];
1642 /* If a value is known for REGNO, return it. */
1645 get_reg_known_value (unsigned int regno)
1647 if (regno >= FIRST_PSEUDO_REGISTER)
1649 regno -= FIRST_PSEUDO_REGISTER;
1650 if (regno < vec_safe_length (reg_known_value))
1651 return (*reg_known_value)[regno];
1653 return NULL;
1656 /* Set it. */
1658 static void
1659 set_reg_known_value (unsigned int regno, rtx val)
1661 if (regno >= FIRST_PSEUDO_REGISTER)
1663 regno -= FIRST_PSEUDO_REGISTER;
1664 if (regno < vec_safe_length (reg_known_value))
1665 (*reg_known_value)[regno] = val;
1669 /* Similarly for reg_known_equiv_p. */
1671 bool
1672 get_reg_known_equiv_p (unsigned int regno)
1674 if (regno >= FIRST_PSEUDO_REGISTER)
1676 regno -= FIRST_PSEUDO_REGISTER;
1677 if (regno < vec_safe_length (reg_known_value))
1678 return bitmap_bit_p (reg_known_equiv_p, regno);
1680 return false;
1683 static void
1684 set_reg_known_equiv_p (unsigned int regno, bool val)
1686 if (regno >= FIRST_PSEUDO_REGISTER)
1688 regno -= FIRST_PSEUDO_REGISTER;
1689 if (regno < vec_safe_length (reg_known_value))
1691 if (val)
1692 bitmap_set_bit (reg_known_equiv_p, regno);
1693 else
1694 bitmap_clear_bit (reg_known_equiv_p, regno);
1700 /* Returns a canonical version of X, from the point of view alias
1701 analysis. (For example, if X is a MEM whose address is a register,
1702 and the register has a known value (say a SYMBOL_REF), then a MEM
1703 whose address is the SYMBOL_REF is returned.) */
1706 canon_rtx (rtx x)
1708 /* Recursively look for equivalences. */
1709 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1711 rtx t = get_reg_known_value (REGNO (x));
1712 if (t == x)
1713 return x;
1714 if (t)
1715 return canon_rtx (t);
1718 if (GET_CODE (x) == PLUS)
1720 rtx x0 = canon_rtx (XEXP (x, 0));
1721 rtx x1 = canon_rtx (XEXP (x, 1));
1723 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1724 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1727 /* This gives us much better alias analysis when called from
1728 the loop optimizer. Note we want to leave the original
1729 MEM alone, but need to return the canonicalized MEM with
1730 all the flags with their original values. */
1731 else if (MEM_P (x))
1732 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1734 return x;
1737 /* Return 1 if X and Y are identical-looking rtx's.
1738 Expect that X and Y has been already canonicalized.
1740 We use the data in reg_known_value above to see if two registers with
1741 different numbers are, in fact, equivalent. */
1743 static int
1744 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1746 int i;
1747 int j;
1748 enum rtx_code code;
1749 const char *fmt;
1751 if (x == 0 && y == 0)
1752 return 1;
1753 if (x == 0 || y == 0)
1754 return 0;
1756 if (x == y)
1757 return 1;
1759 code = GET_CODE (x);
1760 /* Rtx's of different codes cannot be equal. */
1761 if (code != GET_CODE (y))
1762 return 0;
1764 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1765 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1767 if (GET_MODE (x) != GET_MODE (y))
1768 return 0;
1770 /* Some RTL can be compared without a recursive examination. */
1771 switch (code)
1773 case REG:
1774 return REGNO (x) == REGNO (y);
1776 case LABEL_REF:
1777 return label_ref_label (x) == label_ref_label (y);
1779 case SYMBOL_REF:
1780 return compare_base_symbol_refs (x, y) == 1;
1782 case ENTRY_VALUE:
1783 /* This is magic, don't go through canonicalization et al. */
1784 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1786 case VALUE:
1787 CASE_CONST_UNIQUE:
1788 /* Pointer equality guarantees equality for these nodes. */
1789 return 0;
1791 default:
1792 break;
1795 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1796 if (code == PLUS)
1797 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1798 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1799 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1800 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1801 /* For commutative operations, the RTX match if the operand match in any
1802 order. Also handle the simple binary and unary cases without a loop. */
1803 if (COMMUTATIVE_P (x))
1805 rtx xop0 = canon_rtx (XEXP (x, 0));
1806 rtx yop0 = canon_rtx (XEXP (y, 0));
1807 rtx yop1 = canon_rtx (XEXP (y, 1));
1809 return ((rtx_equal_for_memref_p (xop0, yop0)
1810 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1811 || (rtx_equal_for_memref_p (xop0, yop1)
1812 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1814 else if (NON_COMMUTATIVE_P (x))
1816 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1817 canon_rtx (XEXP (y, 0)))
1818 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1819 canon_rtx (XEXP (y, 1))));
1821 else if (UNARY_P (x))
1822 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1823 canon_rtx (XEXP (y, 0)));
1825 /* Compare the elements. If any pair of corresponding elements
1826 fail to match, return 0 for the whole things.
1828 Limit cases to types which actually appear in addresses. */
1830 fmt = GET_RTX_FORMAT (code);
1831 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1833 switch (fmt[i])
1835 case 'i':
1836 if (XINT (x, i) != XINT (y, i))
1837 return 0;
1838 break;
1840 case 'p':
1841 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1842 return 0;
1843 break;
1845 case 'E':
1846 /* Two vectors must have the same length. */
1847 if (XVECLEN (x, i) != XVECLEN (y, i))
1848 return 0;
1850 /* And the corresponding elements must match. */
1851 for (j = 0; j < XVECLEN (x, i); j++)
1852 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1853 canon_rtx (XVECEXP (y, i, j))) == 0)
1854 return 0;
1855 break;
1857 case 'e':
1858 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1859 canon_rtx (XEXP (y, i))) == 0)
1860 return 0;
1861 break;
1863 /* This can happen for asm operands. */
1864 case 's':
1865 if (strcmp (XSTR (x, i), XSTR (y, i)))
1866 return 0;
1867 break;
1869 /* This can happen for an asm which clobbers memory. */
1870 case '0':
1871 break;
1873 /* It is believed that rtx's at this level will never
1874 contain anything but integers and other rtx's,
1875 except for within LABEL_REFs and SYMBOL_REFs. */
1876 default:
1877 gcc_unreachable ();
1880 return 1;
1883 static rtx
1884 find_base_term (rtx x, vec<std::pair<cselib_val *,
1885 struct elt_loc_list *> > &visited_vals)
1887 cselib_val *val;
1888 struct elt_loc_list *l, *f;
1889 rtx ret;
1890 scalar_int_mode int_mode;
1892 #if defined (FIND_BASE_TERM)
1893 /* Try machine-dependent ways to find the base term. */
1894 x = FIND_BASE_TERM (x);
1895 #endif
1897 switch (GET_CODE (x))
1899 case REG:
1900 return REG_BASE_VALUE (x);
1902 case TRUNCATE:
1903 /* As we do not know which address space the pointer is referring to, we can
1904 handle this only if the target does not support different pointer or
1905 address modes depending on the address space. */
1906 if (!target_default_pointer_address_modes_p ())
1907 return 0;
1908 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1909 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1910 return 0;
1911 /* Fall through. */
1912 case HIGH:
1913 case PRE_INC:
1914 case PRE_DEC:
1915 case POST_INC:
1916 case POST_DEC:
1917 case PRE_MODIFY:
1918 case POST_MODIFY:
1919 return find_base_term (XEXP (x, 0), visited_vals);
1921 case ZERO_EXTEND:
1922 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1923 /* As we do not know which address space the pointer is referring to, we can
1924 handle this only if the target does not support different pointer or
1925 address modes depending on the address space. */
1926 if (!target_default_pointer_address_modes_p ())
1927 return 0;
1930 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1932 if (temp != 0 && CONSTANT_P (temp))
1933 temp = convert_memory_address (Pmode, temp);
1935 return temp;
1938 case VALUE:
1939 val = CSELIB_VAL_PTR (x);
1940 ret = NULL_RTX;
1942 if (!val)
1943 return ret;
1945 if (cselib_sp_based_value_p (val))
1946 return static_reg_base_value[STACK_POINTER_REGNUM];
1948 f = val->locs;
1949 /* Reset val->locs to avoid infinite recursion. */
1950 if (f)
1951 visited_vals.safe_push (std::make_pair (val, f));
1952 val->locs = NULL;
1954 for (l = f; l; l = l->next)
1955 if (GET_CODE (l->loc) == VALUE
1956 && CSELIB_VAL_PTR (l->loc)->locs
1957 && !CSELIB_VAL_PTR (l->loc)->locs->next
1958 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1959 continue;
1960 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1961 break;
1963 return ret;
1965 case LO_SUM:
1966 /* The standard form is (lo_sum reg sym) so look only at the
1967 second operand. */
1968 return find_base_term (XEXP (x, 1), visited_vals);
1970 case CONST:
1971 x = XEXP (x, 0);
1972 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1973 return 0;
1974 /* Fall through. */
1975 case PLUS:
1976 case MINUS:
1978 rtx tmp1 = XEXP (x, 0);
1979 rtx tmp2 = XEXP (x, 1);
1981 /* This is a little bit tricky since we have to determine which of
1982 the two operands represents the real base address. Otherwise this
1983 routine may return the index register instead of the base register.
1985 That may cause us to believe no aliasing was possible, when in
1986 fact aliasing is possible.
1988 We use a few simple tests to guess the base register. Additional
1989 tests can certainly be added. For example, if one of the operands
1990 is a shift or multiply, then it must be the index register and the
1991 other operand is the base register. */
1993 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1994 return find_base_term (tmp2, visited_vals);
1996 /* If either operand is known to be a pointer, then prefer it
1997 to determine the base term. */
1998 if (REG_P (tmp1) && REG_POINTER (tmp1))
2000 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2001 std::swap (tmp1, tmp2);
2002 /* If second argument is constant which has base term, prefer it
2003 over variable tmp1. See PR64025. */
2004 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2005 std::swap (tmp1, tmp2);
2007 /* Go ahead and find the base term for both operands. If either base
2008 term is from a pointer or is a named object or a special address
2009 (like an argument or stack reference), then use it for the
2010 base term. */
2011 rtx base = find_base_term (tmp1, visited_vals);
2012 if (base != NULL_RTX
2013 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2014 || known_base_value_p (base)))
2015 return base;
2016 base = find_base_term (tmp2, visited_vals);
2017 if (base != NULL_RTX
2018 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2019 || known_base_value_p (base)))
2020 return base;
2022 /* We could not determine which of the two operands was the
2023 base register and which was the index. So we can determine
2024 nothing from the base alias check. */
2025 return 0;
2028 case AND:
2029 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2030 return find_base_term (XEXP (x, 0), visited_vals);
2031 return 0;
2033 case SYMBOL_REF:
2034 case LABEL_REF:
2035 return x;
2037 default:
2038 return 0;
2042 /* Wrapper around the worker above which removes locs from visited VALUEs
2043 to avoid visiting them multiple times. We unwind that changes here. */
2045 static rtx
2046 find_base_term (rtx x)
2048 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2049 rtx res = find_base_term (x, visited_vals);
2050 for (unsigned i = 0; i < visited_vals.length (); ++i)
2051 visited_vals[i].first->locs = visited_vals[i].second;
2052 return res;
2055 /* Return true if accesses to address X may alias accesses based
2056 on the stack pointer. */
2058 bool
2059 may_be_sp_based_p (rtx x)
2061 rtx base = find_base_term (x);
2062 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2065 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2066 if they refer to different objects and -1 if we cannot decide. */
2069 compare_base_decls (tree base1, tree base2)
2071 int ret;
2072 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2073 if (base1 == base2)
2074 return 1;
2076 /* If we have two register decls with register specification we
2077 cannot decide unless their assembler names are the same. */
2078 if (DECL_REGISTER (base1)
2079 && DECL_REGISTER (base2)
2080 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2081 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2082 && DECL_ASSEMBLER_NAME_SET_P (base1)
2083 && DECL_ASSEMBLER_NAME_SET_P (base2))
2085 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2086 return 1;
2087 return -1;
2090 /* Declarations of non-automatic variables may have aliases. All other
2091 decls are unique. */
2092 if (!decl_in_symtab_p (base1)
2093 || !decl_in_symtab_p (base2))
2094 return 0;
2096 /* Don't cause symbols to be inserted by the act of checking. */
2097 symtab_node *node1 = symtab_node::get (base1);
2098 if (!node1)
2099 return 0;
2100 symtab_node *node2 = symtab_node::get (base2);
2101 if (!node2)
2102 return 0;
2104 ret = node1->equal_address_to (node2, true);
2105 return ret;
2108 /* Same as compare_base_decls but for SYMBOL_REF. */
2110 static int
2111 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2113 tree x_decl = SYMBOL_REF_DECL (x_base);
2114 tree y_decl = SYMBOL_REF_DECL (y_base);
2115 bool binds_def = true;
2117 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2118 return 1;
2119 if (x_decl && y_decl)
2120 return compare_base_decls (x_decl, y_decl);
2121 if (x_decl || y_decl)
2123 if (!x_decl)
2125 std::swap (x_decl, y_decl);
2126 std::swap (x_base, y_base);
2128 /* We handle specially only section anchors and assume that other
2129 labels may overlap with user variables in an arbitrary way. */
2130 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2131 return -1;
2132 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2133 to ignore CONST_DECLs because they are readonly. */
2134 if (!VAR_P (x_decl)
2135 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2136 return 0;
2138 symtab_node *x_node = symtab_node::get_create (x_decl)
2139 ->ultimate_alias_target ();
2140 /* External variable cannot be in section anchor. */
2141 if (!x_node->definition)
2142 return 0;
2143 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2144 /* If not in anchor, we can disambiguate. */
2145 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2146 return 0;
2148 /* We have an alias of anchored variable. If it can be interposed;
2149 we must assume it may or may not alias its anchor. */
2150 binds_def = decl_binds_to_current_def_p (x_decl);
2152 /* If we have variable in section anchor, we can compare by offset. */
2153 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2154 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2156 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2157 return 0;
2158 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2159 return binds_def ? 1 : -1;
2160 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2161 return -1;
2162 return 0;
2164 /* In general we assume that memory locations pointed to by different labels
2165 may overlap in undefined ways. */
2166 return -1;
2169 /* Return 0 if the addresses X and Y are known to point to different
2170 objects, 1 if they might be pointers to the same object. */
2172 static int
2173 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2174 machine_mode x_mode, machine_mode y_mode)
2176 /* If the address itself has no known base see if a known equivalent
2177 value has one. If either address still has no known base, nothing
2178 is known about aliasing. */
2179 if (x_base == 0)
2181 rtx x_c;
2183 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2184 return 1;
2186 x_base = find_base_term (x_c);
2187 if (x_base == 0)
2188 return 1;
2191 if (y_base == 0)
2193 rtx y_c;
2194 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2195 return 1;
2197 y_base = find_base_term (y_c);
2198 if (y_base == 0)
2199 return 1;
2202 /* If the base addresses are equal nothing is known about aliasing. */
2203 if (rtx_equal_p (x_base, y_base))
2204 return 1;
2206 /* The base addresses are different expressions. If they are not accessed
2207 via AND, there is no conflict. We can bring knowledge of object
2208 alignment into play here. For example, on alpha, "char a, b;" can
2209 alias one another, though "char a; long b;" cannot. AND addresses may
2210 implicitly alias surrounding objects; i.e. unaligned access in DImode
2211 via AND address can alias all surrounding object types except those
2212 with aligment 8 or higher. */
2213 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2214 return 1;
2215 if (GET_CODE (x) == AND
2216 && (!CONST_INT_P (XEXP (x, 1))
2217 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2218 return 1;
2219 if (GET_CODE (y) == AND
2220 && (!CONST_INT_P (XEXP (y, 1))
2221 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2222 return 1;
2224 /* Differing symbols not accessed via AND never alias. */
2225 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2226 return compare_base_symbol_refs (x_base, y_base) != 0;
2228 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2229 return 0;
2231 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2232 return 0;
2234 return 1;
2237 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2238 (or equal to) that of V. */
2240 static bool
2241 refs_newer_value_p (const_rtx expr, rtx v)
2243 int minuid = CSELIB_VAL_PTR (v)->uid;
2244 subrtx_iterator::array_type array;
2245 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2246 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2247 return true;
2248 return false;
2251 /* Convert the address X into something we can use. This is done by returning
2252 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2253 we call cselib to get a more useful rtx. */
2256 get_addr (rtx x)
2258 cselib_val *v;
2259 struct elt_loc_list *l;
2261 if (GET_CODE (x) != VALUE)
2263 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2264 && GET_CODE (XEXP (x, 0)) == VALUE
2265 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2267 rtx op0 = get_addr (XEXP (x, 0));
2268 if (op0 != XEXP (x, 0))
2270 poly_int64 c;
2271 if (GET_CODE (x) == PLUS
2272 && poly_int_rtx_p (XEXP (x, 1), &c))
2273 return plus_constant (GET_MODE (x), op0, c);
2274 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2275 op0, XEXP (x, 1));
2278 return x;
2280 v = CSELIB_VAL_PTR (x);
2281 if (v)
2283 bool have_equivs = cselib_have_permanent_equivalences ();
2284 if (have_equivs)
2285 v = canonical_cselib_val (v);
2286 for (l = v->locs; l; l = l->next)
2287 if (CONSTANT_P (l->loc))
2288 return l->loc;
2289 for (l = v->locs; l; l = l->next)
2290 if (!REG_P (l->loc) && !MEM_P (l->loc)
2291 /* Avoid infinite recursion when potentially dealing with
2292 var-tracking artificial equivalences, by skipping the
2293 equivalences themselves, and not choosing expressions
2294 that refer to newer VALUEs. */
2295 && (!have_equivs
2296 || (GET_CODE (l->loc) != VALUE
2297 && !refs_newer_value_p (l->loc, x))))
2298 return l->loc;
2299 if (have_equivs)
2301 for (l = v->locs; l; l = l->next)
2302 if (REG_P (l->loc)
2303 || (GET_CODE (l->loc) != VALUE
2304 && !refs_newer_value_p (l->loc, x)))
2305 return l->loc;
2306 /* Return the canonical value. */
2307 return v->val_rtx;
2309 if (v->locs)
2310 return v->locs->loc;
2312 return x;
2315 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2316 where SIZE is the size in bytes of the memory reference. If ADDR
2317 is not modified by the memory reference then ADDR is returned. */
2319 static rtx
2320 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2322 poly_int64 offset = 0;
2324 switch (GET_CODE (addr))
2326 case PRE_INC:
2327 offset = (n_refs + 1) * size;
2328 break;
2329 case PRE_DEC:
2330 offset = -(n_refs + 1) * size;
2331 break;
2332 case POST_INC:
2333 offset = n_refs * size;
2334 break;
2335 case POST_DEC:
2336 offset = -n_refs * size;
2337 break;
2339 default:
2340 return addr;
2343 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2344 addr = canon_rtx (addr);
2346 return addr;
2349 /* Return TRUE if an object X sized at XSIZE bytes and another object
2350 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2351 any of the sizes is zero, assume an overlap, otherwise use the
2352 absolute value of the sizes as the actual sizes. */
2354 static inline bool
2355 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2357 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2358 return true;
2360 if (maybe_ge (c, 0))
2361 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2362 else
2363 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2366 /* Return one if X and Y (memory addresses) reference the
2367 same location in memory or if the references overlap.
2368 Return zero if they do not overlap, else return
2369 minus one in which case they still might reference the same location.
2371 C is an offset accumulator. When
2372 C is nonzero, we are testing aliases between X and Y + C.
2373 XSIZE is the size in bytes of the X reference,
2374 similarly YSIZE is the size in bytes for Y.
2375 Expect that canon_rtx has been already called for X and Y.
2377 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2378 referenced (the reference was BLKmode), so make the most pessimistic
2379 assumptions.
2381 If XSIZE or YSIZE is negative, we may access memory outside the object
2382 being referenced as a side effect. This can happen when using AND to
2383 align memory references, as is done on the Alpha.
2385 Nice to notice that varying addresses cannot conflict with fp if no
2386 local variables had their addresses taken, but that's too hard now.
2388 ??? Contrary to the tree alias oracle this does not return
2389 one for X + non-constant and Y + non-constant when X and Y are equal.
2390 If that is fixed the TBAA hack for union type-punning can be removed. */
2392 static int
2393 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2394 poly_int64 c)
2396 if (GET_CODE (x) == VALUE)
2398 if (REG_P (y))
2400 struct elt_loc_list *l = NULL;
2401 if (CSELIB_VAL_PTR (x))
2402 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2403 l; l = l->next)
2404 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2405 break;
2406 if (l)
2407 x = y;
2408 else
2409 x = get_addr (x);
2411 /* Don't call get_addr if y is the same VALUE. */
2412 else if (x != y)
2413 x = get_addr (x);
2415 if (GET_CODE (y) == VALUE)
2417 if (REG_P (x))
2419 struct elt_loc_list *l = NULL;
2420 if (CSELIB_VAL_PTR (y))
2421 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2422 l; l = l->next)
2423 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2424 break;
2425 if (l)
2426 y = x;
2427 else
2428 y = get_addr (y);
2430 /* Don't call get_addr if x is the same VALUE. */
2431 else if (y != x)
2432 y = get_addr (y);
2434 if (GET_CODE (x) == HIGH)
2435 x = XEXP (x, 0);
2436 else if (GET_CODE (x) == LO_SUM)
2437 x = XEXP (x, 1);
2438 else
2439 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2440 if (GET_CODE (y) == HIGH)
2441 y = XEXP (y, 0);
2442 else if (GET_CODE (y) == LO_SUM)
2443 y = XEXP (y, 1);
2444 else
2445 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2447 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2449 int cmp = compare_base_symbol_refs (x,y);
2451 /* If both decls are the same, decide by offsets. */
2452 if (cmp == 1)
2453 return offset_overlap_p (c, xsize, ysize);
2454 /* Assume a potential overlap for symbolic addresses that went
2455 through alignment adjustments (i.e., that have negative
2456 sizes), because we can't know how far they are from each
2457 other. */
2458 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2459 return -1;
2460 /* If decls are different or we know by offsets that there is no overlap,
2461 we win. */
2462 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2463 return 0;
2464 /* Decls may or may not be different and offsets overlap....*/
2465 return -1;
2467 else if (rtx_equal_for_memref_p (x, y))
2469 return offset_overlap_p (c, xsize, ysize);
2472 /* This code used to check for conflicts involving stack references and
2473 globals but the base address alias code now handles these cases. */
2475 if (GET_CODE (x) == PLUS)
2477 /* The fact that X is canonicalized means that this
2478 PLUS rtx is canonicalized. */
2479 rtx x0 = XEXP (x, 0);
2480 rtx x1 = XEXP (x, 1);
2482 /* However, VALUEs might end up in different positions even in
2483 canonical PLUSes. Comparing their addresses is enough. */
2484 if (x0 == y)
2485 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2486 else if (x1 == y)
2487 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2489 poly_int64 cx1, cy1;
2490 if (GET_CODE (y) == PLUS)
2492 /* The fact that Y is canonicalized means that this
2493 PLUS rtx is canonicalized. */
2494 rtx y0 = XEXP (y, 0);
2495 rtx y1 = XEXP (y, 1);
2497 if (x0 == y1)
2498 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2499 if (x1 == y0)
2500 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2502 if (rtx_equal_for_memref_p (x1, y1))
2503 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2504 if (rtx_equal_for_memref_p (x0, y0))
2505 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2506 if (poly_int_rtx_p (x1, &cx1))
2508 if (poly_int_rtx_p (y1, &cy1))
2509 return memrefs_conflict_p (xsize, x0, ysize, y0,
2510 c - cx1 + cy1);
2511 else
2512 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2514 else if (poly_int_rtx_p (y1, &cy1))
2515 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2517 return -1;
2519 else if (poly_int_rtx_p (x1, &cx1))
2520 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2522 else if (GET_CODE (y) == PLUS)
2524 /* The fact that Y is canonicalized means that this
2525 PLUS rtx is canonicalized. */
2526 rtx y0 = XEXP (y, 0);
2527 rtx y1 = XEXP (y, 1);
2529 if (x == y0)
2530 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2531 if (x == y1)
2532 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2534 poly_int64 cy1;
2535 if (poly_int_rtx_p (y1, &cy1))
2536 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2537 else
2538 return -1;
2541 if (GET_CODE (x) == GET_CODE (y))
2542 switch (GET_CODE (x))
2544 case MULT:
2546 /* Handle cases where we expect the second operands to be the
2547 same, and check only whether the first operand would conflict
2548 or not. */
2549 rtx x0, y0;
2550 rtx x1 = canon_rtx (XEXP (x, 1));
2551 rtx y1 = canon_rtx (XEXP (y, 1));
2552 if (! rtx_equal_for_memref_p (x1, y1))
2553 return -1;
2554 x0 = canon_rtx (XEXP (x, 0));
2555 y0 = canon_rtx (XEXP (y, 0));
2556 if (rtx_equal_for_memref_p (x0, y0))
2557 return offset_overlap_p (c, xsize, ysize);
2559 /* Can't properly adjust our sizes. */
2560 poly_int64 c1;
2561 if (!poly_int_rtx_p (x1, &c1)
2562 || !can_div_trunc_p (xsize, c1, &xsize)
2563 || !can_div_trunc_p (ysize, c1, &ysize)
2564 || !can_div_trunc_p (c, c1, &c))
2565 return -1;
2566 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2569 default:
2570 break;
2573 /* Deal with alignment ANDs by adjusting offset and size so as to
2574 cover the maximum range, without taking any previously known
2575 alignment into account. Make a size negative after such an
2576 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2577 assume a potential overlap, because they may end up in contiguous
2578 memory locations and the stricter-alignment access may span over
2579 part of both. */
2580 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2582 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2583 unsigned HOST_WIDE_INT uc = sc;
2584 if (sc < 0 && pow2_or_zerop (-uc))
2586 if (maybe_gt (xsize, 0))
2587 xsize = -xsize;
2588 if (maybe_ne (xsize, 0))
2589 xsize += sc + 1;
2590 c -= sc + 1;
2591 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2592 ysize, y, c);
2595 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2597 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2598 unsigned HOST_WIDE_INT uc = sc;
2599 if (sc < 0 && pow2_or_zerop (-uc))
2601 if (maybe_gt (ysize, 0))
2602 ysize = -ysize;
2603 if (maybe_ne (ysize, 0))
2604 ysize += sc + 1;
2605 c += sc + 1;
2606 return memrefs_conflict_p (xsize, x,
2607 ysize, canon_rtx (XEXP (y, 0)), c);
2611 if (CONSTANT_P (x))
2613 poly_int64 cx, cy;
2614 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2616 c += cy - cx;
2617 return offset_overlap_p (c, xsize, ysize);
2620 if (GET_CODE (x) == CONST)
2622 if (GET_CODE (y) == CONST)
2623 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2624 ysize, canon_rtx (XEXP (y, 0)), c);
2625 else
2626 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2627 ysize, y, c);
2629 if (GET_CODE (y) == CONST)
2630 return memrefs_conflict_p (xsize, x, ysize,
2631 canon_rtx (XEXP (y, 0)), c);
2633 /* Assume a potential overlap for symbolic addresses that went
2634 through alignment adjustments (i.e., that have negative
2635 sizes), because we can't know how far they are from each
2636 other. */
2637 if (CONSTANT_P (y))
2638 return (maybe_lt (xsize, 0)
2639 || maybe_lt (ysize, 0)
2640 || offset_overlap_p (c, xsize, ysize));
2642 return -1;
2645 return -1;
2648 /* Functions to compute memory dependencies.
2650 Since we process the insns in execution order, we can build tables
2651 to keep track of what registers are fixed (and not aliased), what registers
2652 are varying in known ways, and what registers are varying in unknown
2653 ways.
2655 If both memory references are volatile, then there must always be a
2656 dependence between the two references, since their order cannot be
2657 changed. A volatile and non-volatile reference can be interchanged
2658 though.
2660 We also must allow AND addresses, because they may generate accesses
2661 outside the object being referenced. This is used to generate aligned
2662 addresses from unaligned addresses, for instance, the alpha
2663 storeqi_unaligned pattern. */
2665 /* Read dependence: X is read after read in MEM takes place. There can
2666 only be a dependence here if both reads are volatile, or if either is
2667 an explicit barrier. */
2670 read_dependence (const_rtx mem, const_rtx x)
2672 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2673 return true;
2674 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2675 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2676 return true;
2677 return false;
2680 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2682 static tree
2683 decl_for_component_ref (tree x)
2687 x = TREE_OPERAND (x, 0);
2689 while (x && TREE_CODE (x) == COMPONENT_REF);
2691 return x && DECL_P (x) ? x : NULL_TREE;
2694 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2695 for the offset of the field reference. *KNOWN_P says whether the
2696 offset is known. */
2698 static void
2699 adjust_offset_for_component_ref (tree x, bool *known_p,
2700 poly_int64 *offset)
2702 if (!*known_p)
2703 return;
2706 tree xoffset = component_ref_field_offset (x);
2707 tree field = TREE_OPERAND (x, 1);
2708 if (!poly_int_tree_p (xoffset))
2710 *known_p = false;
2711 return;
2714 poly_offset_int woffset
2715 = (wi::to_poly_offset (xoffset)
2716 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2717 >> LOG2_BITS_PER_UNIT)
2718 + *offset);
2719 if (!woffset.to_shwi (offset))
2721 *known_p = false;
2722 return;
2725 x = TREE_OPERAND (x, 0);
2727 while (x && TREE_CODE (x) == COMPONENT_REF);
2730 /* Return nonzero if we can determine the exprs corresponding to memrefs
2731 X and Y and they do not overlap.
2732 If LOOP_VARIANT is set, skip offset-based disambiguation */
2735 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2737 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2738 rtx rtlx, rtly;
2739 rtx basex, basey;
2740 bool moffsetx_known_p, moffsety_known_p;
2741 poly_int64 moffsetx = 0, moffsety = 0;
2742 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2744 /* Unless both have exprs, we can't tell anything. */
2745 if (exprx == 0 || expry == 0)
2746 return 0;
2748 /* For spill-slot accesses make sure we have valid offsets. */
2749 if ((exprx == get_spill_slot_decl (false)
2750 && ! MEM_OFFSET_KNOWN_P (x))
2751 || (expry == get_spill_slot_decl (false)
2752 && ! MEM_OFFSET_KNOWN_P (y)))
2753 return 0;
2755 /* If the field reference test failed, look at the DECLs involved. */
2756 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2757 if (moffsetx_known_p)
2758 moffsetx = MEM_OFFSET (x);
2759 if (TREE_CODE (exprx) == COMPONENT_REF)
2761 tree t = decl_for_component_ref (exprx);
2762 if (! t)
2763 return 0;
2764 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2765 exprx = t;
2768 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2769 if (moffsety_known_p)
2770 moffsety = MEM_OFFSET (y);
2771 if (TREE_CODE (expry) == COMPONENT_REF)
2773 tree t = decl_for_component_ref (expry);
2774 if (! t)
2775 return 0;
2776 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2777 expry = t;
2780 if (! DECL_P (exprx) || ! DECL_P (expry))
2781 return 0;
2783 /* If we refer to different gimple registers, or one gimple register
2784 and one non-gimple-register, we know they can't overlap. First,
2785 gimple registers don't have their addresses taken. Now, there
2786 could be more than one stack slot for (different versions of) the
2787 same gimple register, but we can presumably tell they don't
2788 overlap based on offsets from stack base addresses elsewhere.
2789 It's important that we don't proceed to DECL_RTL, because gimple
2790 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2791 able to do anything about them since no SSA information will have
2792 remained to guide it. */
2793 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2794 return exprx != expry
2795 || (moffsetx_known_p && moffsety_known_p
2796 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2797 && !offset_overlap_p (moffsety - moffsetx,
2798 MEM_SIZE (x), MEM_SIZE (y)));
2800 /* With invalid code we can end up storing into the constant pool.
2801 Bail out to avoid ICEing when creating RTL for this.
2802 See gfortran.dg/lto/20091028-2_0.f90. */
2803 if (TREE_CODE (exprx) == CONST_DECL
2804 || TREE_CODE (expry) == CONST_DECL)
2805 return 1;
2807 /* If one decl is known to be a function or label in a function and
2808 the other is some kind of data, they can't overlap. */
2809 if ((TREE_CODE (exprx) == FUNCTION_DECL
2810 || TREE_CODE (exprx) == LABEL_DECL)
2811 != (TREE_CODE (expry) == FUNCTION_DECL
2812 || TREE_CODE (expry) == LABEL_DECL))
2813 return 1;
2815 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2816 living in multiple places), we can't tell anything. Exception
2817 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2818 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2819 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2820 return 0;
2822 rtlx = DECL_RTL (exprx);
2823 rtly = DECL_RTL (expry);
2825 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2826 can't overlap unless they are the same because we never reuse that part
2827 of the stack frame used for locals for spilled pseudos. */
2828 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2829 && ! rtx_equal_p (rtlx, rtly))
2830 return 1;
2832 /* If we have MEMs referring to different address spaces (which can
2833 potentially overlap), we cannot easily tell from the addresses
2834 whether the references overlap. */
2835 if (MEM_P (rtlx) && MEM_P (rtly)
2836 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2837 return 0;
2839 /* Get the base and offsets of both decls. If either is a register, we
2840 know both are and are the same, so use that as the base. The only
2841 we can avoid overlap is if we can deduce that they are nonoverlapping
2842 pieces of that decl, which is very rare. */
2843 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2844 basex = strip_offset_and_add (basex, &offsetx);
2846 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2847 basey = strip_offset_and_add (basey, &offsety);
2849 /* If the bases are different, we know they do not overlap if both
2850 are constants or if one is a constant and the other a pointer into the
2851 stack frame. Otherwise a different base means we can't tell if they
2852 overlap or not. */
2853 if (compare_base_decls (exprx, expry) == 0)
2854 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2855 || (CONSTANT_P (basex) && REG_P (basey)
2856 && REGNO_PTR_FRAME_P (REGNO (basey)))
2857 || (CONSTANT_P (basey) && REG_P (basex)
2858 && REGNO_PTR_FRAME_P (REGNO (basex))));
2860 /* Offset based disambiguation not appropriate for loop invariant */
2861 if (loop_invariant)
2862 return 0;
2864 /* Offset based disambiguation is OK even if we do not know that the
2865 declarations are necessarily different
2866 (i.e. compare_base_decls (exprx, expry) == -1) */
2868 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2869 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2870 : -1);
2871 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2872 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2873 : -1);
2875 /* If we have an offset for either memref, it can update the values computed
2876 above. */
2877 if (moffsetx_known_p)
2878 offsetx += moffsetx, sizex -= moffsetx;
2879 if (moffsety_known_p)
2880 offsety += moffsety, sizey -= moffsety;
2882 /* If a memref has both a size and an offset, we can use the smaller size.
2883 We can't do this if the offset isn't known because we must view this
2884 memref as being anywhere inside the DECL's MEM. */
2885 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2886 sizex = MEM_SIZE (x);
2887 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2888 sizey = MEM_SIZE (y);
2890 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2893 /* Helper for true_dependence and canon_true_dependence.
2894 Checks for true dependence: X is read after store in MEM takes place.
2896 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2897 NULL_RTX, and the canonical addresses of MEM and X are both computed
2898 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2900 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2902 Returns 1 if there is a true dependence, 0 otherwise. */
2904 static int
2905 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2906 const_rtx x, rtx x_addr, bool mem_canonicalized)
2908 rtx true_mem_addr;
2909 rtx base;
2910 int ret;
2912 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2913 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2915 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2916 return 1;
2918 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2919 This is used in epilogue deallocation functions, and in cselib. */
2920 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2921 return 1;
2922 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2923 return 1;
2924 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2925 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2926 return 1;
2928 if (! x_addr)
2929 x_addr = XEXP (x, 0);
2930 x_addr = get_addr (x_addr);
2932 if (! mem_addr)
2934 mem_addr = XEXP (mem, 0);
2935 if (mem_mode == VOIDmode)
2936 mem_mode = GET_MODE (mem);
2938 true_mem_addr = get_addr (mem_addr);
2940 /* Read-only memory is by definition never modified, and therefore can't
2941 conflict with anything. However, don't assume anything when AND
2942 addresses are involved and leave to the code below to determine
2943 dependence. We don't expect to find read-only set on MEM, but
2944 stupid user tricks can produce them, so don't die. */
2945 if (MEM_READONLY_P (x)
2946 && GET_CODE (x_addr) != AND
2947 && GET_CODE (true_mem_addr) != AND)
2948 return 0;
2950 /* If we have MEMs referring to different address spaces (which can
2951 potentially overlap), we cannot easily tell from the addresses
2952 whether the references overlap. */
2953 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2954 return 1;
2956 base = find_base_term (x_addr);
2957 if (base && (GET_CODE (base) == LABEL_REF
2958 || (GET_CODE (base) == SYMBOL_REF
2959 && CONSTANT_POOL_ADDRESS_P (base))))
2960 return 0;
2962 rtx mem_base = find_base_term (true_mem_addr);
2963 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2964 GET_MODE (x), mem_mode))
2965 return 0;
2967 x_addr = canon_rtx (x_addr);
2968 if (!mem_canonicalized)
2969 mem_addr = canon_rtx (true_mem_addr);
2971 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2972 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2973 return ret;
2975 if (mems_in_disjoint_alias_sets_p (x, mem))
2976 return 0;
2978 if (nonoverlapping_memrefs_p (mem, x, false))
2979 return 0;
2981 return rtx_refs_may_alias_p (x, mem, true);
2984 /* True dependence: X is read after store in MEM takes place. */
2987 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2989 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2990 x, NULL_RTX, /*mem_canonicalized=*/false);
2993 /* Canonical true dependence: X is read after store in MEM takes place.
2994 Variant of true_dependence which assumes MEM has already been
2995 canonicalized (hence we no longer do that here).
2996 The mem_addr argument has been added, since true_dependence_1 computed
2997 this value prior to canonicalizing. */
3000 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3001 const_rtx x, rtx x_addr)
3003 return true_dependence_1 (mem, mem_mode, mem_addr,
3004 x, x_addr, /*mem_canonicalized=*/true);
3007 /* Returns nonzero if a write to X might alias a previous read from
3008 (or, if WRITEP is true, a write to) MEM.
3009 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3010 and X_MODE the mode for that access.
3011 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3013 static int
3014 write_dependence_p (const_rtx mem,
3015 const_rtx x, machine_mode x_mode, rtx x_addr,
3016 bool mem_canonicalized, bool x_canonicalized, bool writep)
3018 rtx mem_addr;
3019 rtx true_mem_addr, true_x_addr;
3020 rtx base;
3021 int ret;
3023 gcc_checking_assert (x_canonicalized
3024 ? (x_addr != NULL_RTX
3025 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3026 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3028 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3029 return 1;
3031 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3032 This is used in epilogue deallocation functions. */
3033 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3034 return 1;
3035 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3036 return 1;
3037 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3038 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3039 return 1;
3041 if (!x_addr)
3042 x_addr = XEXP (x, 0);
3043 true_x_addr = get_addr (x_addr);
3045 mem_addr = XEXP (mem, 0);
3046 true_mem_addr = get_addr (mem_addr);
3048 /* A read from read-only memory can't conflict with read-write memory.
3049 Don't assume anything when AND addresses are involved and leave to
3050 the code below to determine dependence. */
3051 if (!writep
3052 && MEM_READONLY_P (mem)
3053 && GET_CODE (true_x_addr) != AND
3054 && GET_CODE (true_mem_addr) != AND)
3055 return 0;
3057 /* If we have MEMs referring to different address spaces (which can
3058 potentially overlap), we cannot easily tell from the addresses
3059 whether the references overlap. */
3060 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3061 return 1;
3063 base = find_base_term (true_mem_addr);
3064 if (! writep
3065 && base
3066 && (GET_CODE (base) == LABEL_REF
3067 || (GET_CODE (base) == SYMBOL_REF
3068 && CONSTANT_POOL_ADDRESS_P (base))))
3069 return 0;
3071 rtx x_base = find_base_term (true_x_addr);
3072 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3073 GET_MODE (x), GET_MODE (mem)))
3074 return 0;
3076 if (!x_canonicalized)
3078 x_addr = canon_rtx (true_x_addr);
3079 x_mode = GET_MODE (x);
3081 if (!mem_canonicalized)
3082 mem_addr = canon_rtx (true_mem_addr);
3084 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3085 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3086 return ret;
3088 if (nonoverlapping_memrefs_p (x, mem, false))
3089 return 0;
3091 return rtx_refs_may_alias_p (x, mem, false);
3094 /* Anti dependence: X is written after read in MEM takes place. */
3097 anti_dependence (const_rtx mem, const_rtx x)
3099 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3100 /*mem_canonicalized=*/false,
3101 /*x_canonicalized*/false, /*writep=*/false);
3104 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3105 Also, consider X in X_MODE (which might be from an enclosing
3106 STRICT_LOW_PART / ZERO_EXTRACT).
3107 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3110 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3111 const_rtx x, machine_mode x_mode, rtx x_addr)
3113 return write_dependence_p (mem, x, x_mode, x_addr,
3114 mem_canonicalized, /*x_canonicalized=*/true,
3115 /*writep=*/false);
3118 /* Output dependence: X is written after store in MEM takes place. */
3121 output_dependence (const_rtx mem, const_rtx x)
3123 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3124 /*mem_canonicalized=*/false,
3125 /*x_canonicalized*/false, /*writep=*/true);
3128 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3129 Also, consider X in X_MODE (which might be from an enclosing
3130 STRICT_LOW_PART / ZERO_EXTRACT).
3131 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3134 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3135 const_rtx x, machine_mode x_mode, rtx x_addr)
3137 return write_dependence_p (mem, x, x_mode, x_addr,
3138 mem_canonicalized, /*x_canonicalized=*/true,
3139 /*writep=*/true);
3144 /* Check whether X may be aliased with MEM. Don't do offset-based
3145 memory disambiguation & TBAA. */
3147 may_alias_p (const_rtx mem, const_rtx x)
3149 rtx x_addr, mem_addr;
3151 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3152 return 1;
3154 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3155 This is used in epilogue deallocation functions. */
3156 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3157 return 1;
3158 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3159 return 1;
3160 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3161 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3162 return 1;
3164 x_addr = XEXP (x, 0);
3165 x_addr = get_addr (x_addr);
3167 mem_addr = XEXP (mem, 0);
3168 mem_addr = get_addr (mem_addr);
3170 /* Read-only memory is by definition never modified, and therefore can't
3171 conflict with anything. However, don't assume anything when AND
3172 addresses are involved and leave to the code below to determine
3173 dependence. We don't expect to find read-only set on MEM, but
3174 stupid user tricks can produce them, so don't die. */
3175 if (MEM_READONLY_P (x)
3176 && GET_CODE (x_addr) != AND
3177 && GET_CODE (mem_addr) != AND)
3178 return 0;
3180 /* If we have MEMs referring to different address spaces (which can
3181 potentially overlap), we cannot easily tell from the addresses
3182 whether the references overlap. */
3183 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3184 return 1;
3186 rtx x_base = find_base_term (x_addr);
3187 rtx mem_base = find_base_term (mem_addr);
3188 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3189 GET_MODE (x), GET_MODE (mem_addr)))
3190 return 0;
3192 if (nonoverlapping_memrefs_p (mem, x, true))
3193 return 0;
3195 /* TBAA not valid for loop_invarint */
3196 return rtx_refs_may_alias_p (x, mem, false);
3199 void
3200 init_alias_target (void)
3202 int i;
3204 if (!arg_base_value)
3205 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3207 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3209 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3210 /* Check whether this register can hold an incoming pointer
3211 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3212 numbers, so translate if necessary due to register windows. */
3213 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3214 && targetm.hard_regno_mode_ok (i, Pmode))
3215 static_reg_base_value[i] = arg_base_value;
3217 /* RTL code is required to be consistent about whether it uses the
3218 stack pointer, the frame pointer or the argument pointer to
3219 access a given area of the frame. We can therefore use the
3220 base address to distinguish between the different areas. */
3221 static_reg_base_value[STACK_POINTER_REGNUM]
3222 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3223 static_reg_base_value[ARG_POINTER_REGNUM]
3224 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3225 static_reg_base_value[FRAME_POINTER_REGNUM]
3226 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3228 /* The above rules extend post-reload, with eliminations applying
3229 consistently to each of the three pointers. Cope with cases in
3230 which the frame pointer is eliminated to the hard frame pointer
3231 rather than the stack pointer. */
3232 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3233 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3234 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3237 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3238 to be memory reference. */
3239 static bool memory_modified;
3240 static void
3241 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3243 if (MEM_P (x))
3245 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3246 memory_modified = true;
3251 /* Return true when INSN possibly modify memory contents of MEM
3252 (i.e. address can be modified). */
3253 bool
3254 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3256 if (!INSN_P (insn))
3257 return false;
3258 /* Conservatively assume all non-readonly MEMs might be modified in
3259 calls. */
3260 if (CALL_P (insn))
3261 return true;
3262 memory_modified = false;
3263 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3264 return memory_modified;
3267 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3268 array. */
3270 void
3271 init_alias_analysis (void)
3273 unsigned int maxreg = max_reg_num ();
3274 int changed, pass;
3275 int i;
3276 unsigned int ui;
3277 rtx_insn *insn;
3278 rtx val;
3279 int rpo_cnt;
3280 int *rpo;
3282 timevar_push (TV_ALIAS_ANALYSIS);
3284 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3285 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3286 bitmap_clear (reg_known_equiv_p);
3288 /* If we have memory allocated from the previous run, use it. */
3289 if (old_reg_base_value)
3290 reg_base_value = old_reg_base_value;
3292 if (reg_base_value)
3293 reg_base_value->truncate (0);
3295 vec_safe_grow_cleared (reg_base_value, maxreg);
3297 new_reg_base_value = XNEWVEC (rtx, maxreg);
3298 reg_seen = sbitmap_alloc (maxreg);
3300 /* The basic idea is that each pass through this loop will use the
3301 "constant" information from the previous pass to propagate alias
3302 information through another level of assignments.
3304 The propagation is done on the CFG in reverse post-order, to propagate
3305 things forward as far as possible in each iteration.
3307 This could get expensive if the assignment chains are long. Maybe
3308 we should throttle the number of iterations, possibly based on
3309 the optimization level or flag_expensive_optimizations.
3311 We could propagate more information in the first pass by making use
3312 of DF_REG_DEF_COUNT to determine immediately that the alias information
3313 for a pseudo is "constant".
3315 A program with an uninitialized variable can cause an infinite loop
3316 here. Instead of doing a full dataflow analysis to detect such problems
3317 we just cap the number of iterations for the loop.
3319 The state of the arrays for the set chain in question does not matter
3320 since the program has undefined behavior. */
3322 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3323 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3325 /* The prologue/epilogue insns are not threaded onto the
3326 insn chain until after reload has completed. Thus,
3327 there is no sense wasting time checking if INSN is in
3328 the prologue/epilogue until after reload has completed. */
3329 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3330 || targetm.have_epilogue ())
3331 && reload_completed);
3333 pass = 0;
3336 /* Assume nothing will change this iteration of the loop. */
3337 changed = 0;
3339 /* We want to assign the same IDs each iteration of this loop, so
3340 start counting from one each iteration of the loop. */
3341 unique_id = 1;
3343 /* We're at the start of the function each iteration through the
3344 loop, so we're copying arguments. */
3345 copying_arguments = true;
3347 /* Wipe the potential alias information clean for this pass. */
3348 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3350 /* Wipe the reg_seen array clean. */
3351 bitmap_clear (reg_seen);
3353 /* Initialize the alias information for this pass. */
3354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3355 if (static_reg_base_value[i]
3356 /* Don't treat the hard frame pointer as special if we
3357 eliminated the frame pointer to the stack pointer instead. */
3358 && !(i == HARD_FRAME_POINTER_REGNUM
3359 && reload_completed
3360 && !frame_pointer_needed
3361 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3362 STACK_POINTER_REGNUM)))
3364 new_reg_base_value[i] = static_reg_base_value[i];
3365 bitmap_set_bit (reg_seen, i);
3368 /* Walk the insns adding values to the new_reg_base_value array. */
3369 for (i = 0; i < rpo_cnt; i++)
3371 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3372 FOR_BB_INSNS (bb, insn)
3374 if (NONDEBUG_INSN_P (insn))
3376 rtx note, set;
3378 if (could_be_prologue_epilogue
3379 && prologue_epilogue_contains (insn))
3380 continue;
3382 /* If this insn has a noalias note, process it, Otherwise,
3383 scan for sets. A simple set will have no side effects
3384 which could change the base value of any other register. */
3386 if (GET_CODE (PATTERN (insn)) == SET
3387 && REG_NOTES (insn) != 0
3388 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3389 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3390 else
3391 note_stores (PATTERN (insn), record_set, NULL);
3393 set = single_set (insn);
3395 if (set != 0
3396 && REG_P (SET_DEST (set))
3397 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3399 unsigned int regno = REGNO (SET_DEST (set));
3400 rtx src = SET_SRC (set);
3401 rtx t;
3403 note = find_reg_equal_equiv_note (insn);
3404 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3405 && DF_REG_DEF_COUNT (regno) != 1)
3406 note = NULL_RTX;
3408 poly_int64 offset;
3409 if (note != NULL_RTX
3410 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3411 && ! rtx_varies_p (XEXP (note, 0), 1)
3412 && ! reg_overlap_mentioned_p (SET_DEST (set),
3413 XEXP (note, 0)))
3415 set_reg_known_value (regno, XEXP (note, 0));
3416 set_reg_known_equiv_p (regno,
3417 REG_NOTE_KIND (note) == REG_EQUIV);
3419 else if (DF_REG_DEF_COUNT (regno) == 1
3420 && GET_CODE (src) == PLUS
3421 && REG_P (XEXP (src, 0))
3422 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3423 && poly_int_rtx_p (XEXP (src, 1), &offset))
3425 t = plus_constant (GET_MODE (src), t, offset);
3426 set_reg_known_value (regno, t);
3427 set_reg_known_equiv_p (regno, false);
3429 else if (DF_REG_DEF_COUNT (regno) == 1
3430 && ! rtx_varies_p (src, 1))
3432 set_reg_known_value (regno, src);
3433 set_reg_known_equiv_p (regno, false);
3437 else if (NOTE_P (insn)
3438 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3439 copying_arguments = false;
3443 /* Now propagate values from new_reg_base_value to reg_base_value. */
3444 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3446 for (ui = 0; ui < maxreg; ui++)
3448 if (new_reg_base_value[ui]
3449 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3450 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3452 (*reg_base_value)[ui] = new_reg_base_value[ui];
3453 changed = 1;
3457 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3458 XDELETEVEC (rpo);
3460 /* Fill in the remaining entries. */
3461 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3463 int regno = i + FIRST_PSEUDO_REGISTER;
3464 if (! val)
3465 set_reg_known_value (regno, regno_reg_rtx[regno]);
3468 /* Clean up. */
3469 free (new_reg_base_value);
3470 new_reg_base_value = 0;
3471 sbitmap_free (reg_seen);
3472 reg_seen = 0;
3473 timevar_pop (TV_ALIAS_ANALYSIS);
3476 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3477 Special API for var-tracking pass purposes. */
3479 void
3480 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3482 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3485 void
3486 end_alias_analysis (void)
3488 old_reg_base_value = reg_base_value;
3489 vec_free (reg_known_value);
3490 sbitmap_free (reg_known_equiv_p);
3493 void
3494 dump_alias_stats_in_alias_c (FILE *s)
3496 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3497 " %llu are in alias set 0\n"
3498 " %llu queries asked about the same object\n"
3499 " %llu queries asked about the same alias set\n"
3500 " %llu access volatile\n"
3501 " %llu are dependent in the DAG\n"
3502 " %llu are aritificially in conflict with void *\n",
3503 alias_stats.num_disambiguated,
3504 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3505 + alias_stats.num_same_objects + alias_stats.num_volatile
3506 + alias_stats.num_dag + alias_stats.num_disambiguated
3507 + alias_stats.num_universal,
3508 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3509 alias_stats.num_same_objects, alias_stats.num_volatile,
3510 alias_stats.num_dag, alias_stats.num_universal);
3512 #include "gt-alias.h"