PR target/16201
[official-gcc.git] / gcc / ada / uintp.adb
blob7b4e71396408073a7528704232904ac40cb56b6a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- U I N T P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with Output; use Output;
35 with Tree_IO; use Tree_IO;
37 with GNAT.HTable; use GNAT.HTable;
39 package body Uintp is
41 ------------------------
42 -- Local Declarations --
43 ------------------------
45 Uint_Int_First : Uint := Uint_0;
46 -- Uint value containing Int'First value, set by Initialize. The initial
47 -- value of Uint_0 is used for an assertion check that ensures that this
48 -- value is not used before it is initialized. This value is used in the
49 -- UI_Is_In_Int_Range predicate, and it is right that this is a host
50 -- value, since the issue is host representation of integer values.
52 Uint_Int_Last : Uint;
53 -- Uint value containing Int'Last value set by Initialize.
55 UI_Power_2 : array (Int range 0 .. 64) of Uint;
56 -- This table is used to memoize exponentiations by powers of 2. The Nth
57 -- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
58 -- is zero and only the 0'th entry is set, the invariant being that all
59 -- entries in the range 0 .. UI_Power_2_Set are initialized.
61 UI_Power_2_Set : Nat;
62 -- Number of entries set in UI_Power_2;
64 UI_Power_10 : array (Int range 0 .. 64) of Uint;
65 -- This table is used to memoize exponentiations by powers of 10 in the
66 -- same manner as described above for UI_Power_2.
68 UI_Power_10_Set : Nat;
69 -- Number of entries set in UI_Power_10;
71 Uints_Min : Uint;
72 Udigits_Min : Int;
73 -- These values are used to make sure that the mark/release mechanism
74 -- does not destroy values saved in the U_Power tables or in the hash
75 -- table used by UI_From_Int. Whenever an entry is made in either of
76 -- these tabls, Uints_Min and Udigits_Min are updated to protect the
77 -- entry, and Release never cuts back beyond these minimum values.
79 Int_0 : constant Int := 0;
80 Int_1 : constant Int := 1;
81 Int_2 : constant Int := 2;
82 -- These values are used in some cases where the use of numeric literals
83 -- would cause ambiguities (integer vs Uint).
85 ----------------------------
86 -- UI_From_Int Hash Table --
87 ----------------------------
89 -- UI_From_Int uses a hash table to avoid duplicating entries and
90 -- wasting storage. This is particularly important for complex cases
91 -- of back annotation.
93 subtype Hnum is Nat range 0 .. 1022;
95 function Hash_Num (F : Int) return Hnum;
96 -- Hashing function
98 package UI_Ints is new Simple_HTable (
99 Header_Num => Hnum,
100 Element => Uint,
101 No_Element => No_Uint,
102 Key => Int,
103 Hash => Hash_Num,
104 Equal => "=");
106 -----------------------
107 -- Local Subprograms --
108 -----------------------
110 function Direct (U : Uint) return Boolean;
111 pragma Inline (Direct);
112 -- Returns True if U is represented directly
114 function Direct_Val (U : Uint) return Int;
115 -- U is a Uint for is represented directly. The returned result
116 -- is the value represented.
118 function GCD (Jin, Kin : Int) return Int;
119 -- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
121 procedure Image_Out
122 (Input : Uint;
123 To_Buffer : Boolean;
124 Format : UI_Format);
125 -- Common processing for UI_Image and UI_Write, To_Buffer is set
126 -- True for UI_Image, and false for UI_Write, and Format is copied
127 -- from the Format parameter to UI_Image or UI_Write.
129 procedure Init_Operand (UI : Uint; Vec : out UI_Vector);
130 pragma Inline (Init_Operand);
131 -- This procedure puts the value of UI into the vector in canonical
132 -- multiple precision format. The parameter should be of the correct
133 -- size as determined by a previous call to N_Digits (UI). The first
134 -- digit of Vec contains the sign, all other digits are always non-
135 -- negative. Note that the input may be directly represented, and in
136 -- this case Vec will contain the corresponding one or two digit value.
138 function Least_Sig_Digit (Arg : Uint) return Int;
139 pragma Inline (Least_Sig_Digit);
140 -- Returns the Least Significant Digit of Arg quickly. When the given
141 -- Uint is less than 2**15, the value returned is the input value, in
142 -- this case the result may be negative. It is expected that any use
143 -- will mask off unnecessary bits. This is used for finding Arg mod B
144 -- where B is a power of two. Hence the actual base is irrelevent as
145 -- long as it is a power of two.
147 procedure Most_Sig_2_Digits
148 (Left : Uint;
149 Right : Uint;
150 Left_Hat : out Int;
151 Right_Hat : out Int);
152 -- Returns leading two significant digits from the given pair of Uint's.
153 -- Mathematically: returns Left / (Base ** K) and Right / (Base ** K)
154 -- where K is as small as possible S.T. Right_Hat < Base * Base.
155 -- It is required that Left > Right for the algorithm to work.
157 function N_Digits (Input : Uint) return Int;
158 pragma Inline (N_Digits);
159 -- Returns number of "digits" in a Uint
161 function Sum_Digits (Left : Uint; Sign : Int) return Int;
162 -- If Sign = 1 return the sum of the "digits" of Abs (Left). If the
163 -- total has more then one digit then return Sum_Digits of total.
165 function Sum_Double_Digits (Left : Uint; Sign : Int) return Int;
166 -- Same as above but work in New_Base = Base * Base
168 function Vector_To_Uint
169 (In_Vec : UI_Vector;
170 Negative : Boolean)
171 return Uint;
172 -- Functions that calculate values in UI_Vectors, call this function
173 -- to create and return the Uint value. In_Vec contains the multiple
174 -- precision (Base) representation of a non-negative value. Leading
175 -- zeroes are permitted. Negative is set if the desired result is
176 -- the negative of the given value. The result will be either the
177 -- appropriate directly represented value, or a table entry in the
178 -- proper canonical format is created and returned.
180 -- Note that Init_Operand puts a signed value in the result vector,
181 -- but Vector_To_Uint is always presented with a non-negative value.
182 -- The processing of signs is something that is done by the caller
183 -- before calling Vector_To_Uint.
185 ------------
186 -- Direct --
187 ------------
189 function Direct (U : Uint) return Boolean is
190 begin
191 return Int (U) <= Int (Uint_Direct_Last);
192 end Direct;
194 ----------------
195 -- Direct_Val --
196 ----------------
198 function Direct_Val (U : Uint) return Int is
199 begin
200 pragma Assert (Direct (U));
201 return Int (U) - Int (Uint_Direct_Bias);
202 end Direct_Val;
204 ---------
205 -- GCD --
206 ---------
208 function GCD (Jin, Kin : Int) return Int is
209 J, K, Tmp : Int;
211 begin
212 pragma Assert (Jin >= Kin);
213 pragma Assert (Kin >= Int_0);
215 J := Jin;
216 K := Kin;
218 while K /= Uint_0 loop
219 Tmp := J mod K;
220 J := K;
221 K := Tmp;
222 end loop;
224 return J;
225 end GCD;
227 --------------
228 -- Hash_Num --
229 --------------
231 function Hash_Num (F : Int) return Hnum is
232 begin
233 return Standard."mod" (F, Hnum'Range_Length);
234 end Hash_Num;
236 ---------------
237 -- Image_Out --
238 ---------------
240 procedure Image_Out
241 (Input : Uint;
242 To_Buffer : Boolean;
243 Format : UI_Format)
245 Marks : constant Uintp.Save_Mark := Uintp.Mark;
246 Base : Uint;
247 Ainput : Uint;
249 Digs_Output : Natural := 0;
250 -- Counts digits output. In hex mode, but not in decimal mode, we
251 -- put an underline after every four hex digits that are output.
253 Exponent : Natural := 0;
254 -- If the number is too long to fit in the buffer, we switch to an
255 -- approximate output format with an exponent. This variable records
256 -- the exponent value.
258 function Better_In_Hex return Boolean;
259 -- Determines if it is better to generate digits in base 16 (result
260 -- is true) or base 10 (result is false). The choice is purely a
261 -- matter of convenience and aesthetics, so it does not matter which
262 -- value is returned from a correctness point of view.
264 procedure Image_Char (C : Character);
265 -- Internal procedure to output one character
267 procedure Image_Exponent (N : Natural);
268 -- Output non-zero exponent. Note that we only use the exponent
269 -- form in the buffer case, so we know that To_Buffer is true.
271 procedure Image_Uint (U : Uint);
272 -- Internal procedure to output characters of non-negative Uint
274 -------------------
275 -- Better_In_Hex --
276 -------------------
278 function Better_In_Hex return Boolean is
279 T16 : constant Uint := Uint_2 ** Int'(16);
280 A : Uint;
282 begin
283 A := UI_Abs (Input);
285 -- Small values up to 2**16 can always be in decimal
287 if A < T16 then
288 return False;
289 end if;
291 -- Otherwise, see if we are a power of 2 or one less than a power
292 -- of 2. For the moment these are the only cases printed in hex.
294 if A mod Uint_2 = Uint_1 then
295 A := A + Uint_1;
296 end if;
298 loop
299 if A mod T16 /= Uint_0 then
300 return False;
302 else
303 A := A / T16;
304 end if;
306 exit when A < T16;
307 end loop;
309 while A > Uint_2 loop
310 if A mod Uint_2 /= Uint_0 then
311 return False;
313 else
314 A := A / Uint_2;
315 end if;
316 end loop;
318 return True;
319 end Better_In_Hex;
321 ----------------
322 -- Image_Char --
323 ----------------
325 procedure Image_Char (C : Character) is
326 begin
327 if To_Buffer then
328 if UI_Image_Length + 6 > UI_Image_Max then
329 Exponent := Exponent + 1;
330 else
331 UI_Image_Length := UI_Image_Length + 1;
332 UI_Image_Buffer (UI_Image_Length) := C;
333 end if;
334 else
335 Write_Char (C);
336 end if;
337 end Image_Char;
339 --------------------
340 -- Image_Exponent --
341 --------------------
343 procedure Image_Exponent (N : Natural) is
344 begin
345 if N >= 10 then
346 Image_Exponent (N / 10);
347 end if;
349 UI_Image_Length := UI_Image_Length + 1;
350 UI_Image_Buffer (UI_Image_Length) :=
351 Character'Val (Character'Pos ('0') + N mod 10);
352 end Image_Exponent;
354 ----------------
355 -- Image_Uint --
356 ----------------
358 procedure Image_Uint (U : Uint) is
359 H : constant array (Int range 0 .. 15) of Character :=
360 "0123456789ABCDEF";
362 begin
363 if U >= Base then
364 Image_Uint (U / Base);
365 end if;
367 if Digs_Output = 4 and then Base = Uint_16 then
368 Image_Char ('_');
369 Digs_Output := 0;
370 end if;
372 Image_Char (H (UI_To_Int (U rem Base)));
374 Digs_Output := Digs_Output + 1;
375 end Image_Uint;
377 -- Start of processing for Image_Out
379 begin
380 if Input = No_Uint then
381 Image_Char ('?');
382 return;
383 end if;
385 UI_Image_Length := 0;
387 if Input < Uint_0 then
388 Image_Char ('-');
389 Ainput := -Input;
390 else
391 Ainput := Input;
392 end if;
394 if Format = Hex
395 or else (Format = Auto and then Better_In_Hex)
396 then
397 Base := Uint_16;
398 Image_Char ('1');
399 Image_Char ('6');
400 Image_Char ('#');
401 Image_Uint (Ainput);
402 Image_Char ('#');
404 else
405 Base := Uint_10;
406 Image_Uint (Ainput);
407 end if;
409 if Exponent /= 0 then
410 UI_Image_Length := UI_Image_Length + 1;
411 UI_Image_Buffer (UI_Image_Length) := 'E';
412 Image_Exponent (Exponent);
413 end if;
415 Uintp.Release (Marks);
416 end Image_Out;
418 -------------------
419 -- Init_Operand --
420 -------------------
422 procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
423 Loc : Int;
425 begin
426 if Direct (UI) then
427 Vec (1) := Direct_Val (UI);
429 if Vec (1) >= Base then
430 Vec (2) := Vec (1) rem Base;
431 Vec (1) := Vec (1) / Base;
432 end if;
434 else
435 Loc := Uints.Table (UI).Loc;
437 for J in 1 .. Uints.Table (UI).Length loop
438 Vec (J) := Udigits.Table (Loc + J - 1);
439 end loop;
440 end if;
441 end Init_Operand;
443 ----------------
444 -- Initialize --
445 ----------------
447 procedure Initialize is
448 begin
449 Uints.Init;
450 Udigits.Init;
452 Uint_Int_First := UI_From_Int (Int'First);
453 Uint_Int_Last := UI_From_Int (Int'Last);
455 UI_Power_2 (0) := Uint_1;
456 UI_Power_2_Set := 0;
458 UI_Power_10 (0) := Uint_1;
459 UI_Power_10_Set := 0;
461 Uints_Min := Uints.Last;
462 Udigits_Min := Udigits.Last;
464 UI_Ints.Reset;
465 end Initialize;
467 ---------------------
468 -- Least_Sig_Digit --
469 ---------------------
471 function Least_Sig_Digit (Arg : Uint) return Int is
472 V : Int;
474 begin
475 if Direct (Arg) then
476 V := Direct_Val (Arg);
478 if V >= Base then
479 V := V mod Base;
480 end if;
482 -- Note that this result may be negative
484 return V;
486 else
487 return
488 Udigits.Table
489 (Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
490 end if;
491 end Least_Sig_Digit;
493 ----------
494 -- Mark --
495 ----------
497 function Mark return Save_Mark is
498 begin
499 return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
500 end Mark;
502 -----------------------
503 -- Most_Sig_2_Digits --
504 -----------------------
506 procedure Most_Sig_2_Digits
507 (Left : Uint;
508 Right : Uint;
509 Left_Hat : out Int;
510 Right_Hat : out Int)
512 begin
513 pragma Assert (Left >= Right);
515 if Direct (Left) then
516 Left_Hat := Direct_Val (Left);
517 Right_Hat := Direct_Val (Right);
518 return;
520 else
521 declare
522 L1 : constant Int :=
523 Udigits.Table (Uints.Table (Left).Loc);
524 L2 : constant Int :=
525 Udigits.Table (Uints.Table (Left).Loc + 1);
527 begin
528 -- It is not so clear what to return when Arg is negative???
530 Left_Hat := abs (L1) * Base + L2;
531 end;
532 end if;
534 declare
535 Length_L : constant Int := Uints.Table (Left).Length;
536 Length_R : Int;
537 R1 : Int;
538 R2 : Int;
539 T : Int;
541 begin
542 if Direct (Right) then
543 T := Direct_Val (Left);
544 R1 := abs (T / Base);
545 R2 := T rem Base;
546 Length_R := 2;
548 else
549 R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
550 R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
551 Length_R := Uints.Table (Right).Length;
552 end if;
554 if Length_L = Length_R then
555 Right_Hat := R1 * Base + R2;
556 elsif Length_L = Length_R + Int_1 then
557 Right_Hat := R1;
558 else
559 Right_Hat := 0;
560 end if;
561 end;
562 end Most_Sig_2_Digits;
564 ---------------
565 -- N_Digits --
566 ---------------
568 -- Note: N_Digits returns 1 for No_Uint
570 function N_Digits (Input : Uint) return Int is
571 begin
572 if Direct (Input) then
573 if Direct_Val (Input) >= Base then
574 return 2;
575 else
576 return 1;
577 end if;
579 else
580 return Uints.Table (Input).Length;
581 end if;
582 end N_Digits;
584 --------------
585 -- Num_Bits --
586 --------------
588 function Num_Bits (Input : Uint) return Nat is
589 Bits : Nat;
590 Num : Nat;
592 begin
593 if UI_Is_In_Int_Range (Input) then
594 Num := abs (UI_To_Int (Input));
595 Bits := 0;
597 else
598 Bits := Base_Bits * (Uints.Table (Input).Length - 1);
599 Num := abs (Udigits.Table (Uints.Table (Input).Loc));
600 end if;
602 while Types.">" (Num, 0) loop
603 Num := Num / 2;
604 Bits := Bits + 1;
605 end loop;
607 return Bits;
608 end Num_Bits;
610 ---------
611 -- pid --
612 ---------
614 procedure pid (Input : Uint) is
615 begin
616 UI_Write (Input, Decimal);
617 Write_Eol;
618 end pid;
620 ---------
621 -- pih --
622 ---------
624 procedure pih (Input : Uint) is
625 begin
626 UI_Write (Input, Hex);
627 Write_Eol;
628 end pih;
630 -------------
631 -- Release --
632 -------------
634 procedure Release (M : Save_Mark) is
635 begin
636 Uints.Set_Last (Uint'Max (M.Save_Uint, Uints_Min));
637 Udigits.Set_Last (Int'Max (M.Save_Udigit, Udigits_Min));
638 end Release;
640 ----------------------
641 -- Release_And_Save --
642 ----------------------
644 procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
645 begin
646 if Direct (UI) then
647 Release (M);
649 else
650 declare
651 UE_Len : constant Pos := Uints.Table (UI).Length;
652 UE_Loc : constant Int := Uints.Table (UI).Loc;
654 UD : constant Udigits.Table_Type (1 .. UE_Len) :=
655 Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
657 begin
658 Release (M);
660 Uints.Increment_Last;
661 UI := Uints.Last;
663 Uints.Table (UI) := (UE_Len, Udigits.Last + 1);
665 for J in 1 .. UE_Len loop
666 Udigits.Increment_Last;
667 Udigits.Table (Udigits.Last) := UD (J);
668 end loop;
669 end;
670 end if;
671 end Release_And_Save;
673 procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
674 begin
675 if Direct (UI1) then
676 Release_And_Save (M, UI2);
678 elsif Direct (UI2) then
679 Release_And_Save (M, UI1);
681 else
682 declare
683 UE1_Len : constant Pos := Uints.Table (UI1).Length;
684 UE1_Loc : constant Int := Uints.Table (UI1).Loc;
686 UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
687 Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
689 UE2_Len : constant Pos := Uints.Table (UI2).Length;
690 UE2_Loc : constant Int := Uints.Table (UI2).Loc;
692 UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
693 Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
695 begin
696 Release (M);
698 Uints.Increment_Last;
699 UI1 := Uints.Last;
701 Uints.Table (UI1) := (UE1_Len, Udigits.Last + 1);
703 for J in 1 .. UE1_Len loop
704 Udigits.Increment_Last;
705 Udigits.Table (Udigits.Last) := UD1 (J);
706 end loop;
708 Uints.Increment_Last;
709 UI2 := Uints.Last;
711 Uints.Table (UI2) := (UE2_Len, Udigits.Last + 1);
713 for J in 1 .. UE2_Len loop
714 Udigits.Increment_Last;
715 Udigits.Table (Udigits.Last) := UD2 (J);
716 end loop;
717 end;
718 end if;
719 end Release_And_Save;
721 ----------------
722 -- Sum_Digits --
723 ----------------
725 -- This is done in one pass
727 -- Mathematically: assume base congruent to 1 and compute an equivelent
728 -- integer to Left.
730 -- If Sign = -1 return the alternating sum of the "digits".
732 -- D1 - D2 + D3 - D4 + D5 . . .
734 -- (where D1 is Least Significant Digit)
736 -- Mathematically: assume base congruent to -1 and compute an equivelent
737 -- integer to Left.
739 -- This is used in Rem and Base is assumed to be 2 ** 15
741 -- Note: The next two functions are very similar, any style changes made
742 -- to one should be reflected in both. These would be simpler if we
743 -- worked base 2 ** 32.
745 function Sum_Digits (Left : Uint; Sign : Int) return Int is
746 begin
747 pragma Assert (Sign = Int_1 or Sign = Int (-1));
749 -- First try simple case;
751 if Direct (Left) then
752 declare
753 Tmp_Int : Int := Direct_Val (Left);
755 begin
756 if Tmp_Int >= Base then
757 Tmp_Int := (Tmp_Int / Base) +
758 Sign * (Tmp_Int rem Base);
760 -- Now Tmp_Int is in [-(Base - 1) .. 2 * (Base - 1)]
762 if Tmp_Int >= Base then
764 -- Sign must be 1.
766 Tmp_Int := (Tmp_Int / Base) + 1;
768 end if;
770 -- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
772 end if;
774 return Tmp_Int;
775 end;
777 -- Otherwise full circuit is needed
779 else
780 declare
781 L_Length : constant Int := N_Digits (Left);
782 L_Vec : UI_Vector (1 .. L_Length);
783 Tmp_Int : Int;
784 Carry : Int;
785 Alt : Int;
787 begin
788 Init_Operand (Left, L_Vec);
789 L_Vec (1) := abs L_Vec (1);
790 Tmp_Int := 0;
791 Carry := 0;
792 Alt := 1;
794 for J in reverse 1 .. L_Length loop
795 Tmp_Int := Tmp_Int + Alt * (L_Vec (J) + Carry);
797 -- Tmp_Int is now between [-2 * Base + 1 .. 2 * Base - 1],
798 -- since old Tmp_Int is between [-(Base - 1) .. Base - 1]
799 -- and L_Vec is in [0 .. Base - 1] and Carry in [-1 .. 1]
801 if Tmp_Int >= Base then
802 Tmp_Int := Tmp_Int - Base;
803 Carry := 1;
805 elsif Tmp_Int <= -Base then
806 Tmp_Int := Tmp_Int + Base;
807 Carry := -1;
809 else
810 Carry := 0;
811 end if;
813 -- Tmp_Int is now between [-Base + 1 .. Base - 1]
815 Alt := Alt * Sign;
816 end loop;
818 Tmp_Int := Tmp_Int + Alt * Carry;
820 -- Tmp_Int is now between [-Base .. Base]
822 if Tmp_Int >= Base then
823 Tmp_Int := Tmp_Int - Base + Alt * Sign * 1;
825 elsif Tmp_Int <= -Base then
826 Tmp_Int := Tmp_Int + Base + Alt * Sign * (-1);
827 end if;
829 -- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
831 return Tmp_Int;
832 end;
833 end if;
834 end Sum_Digits;
836 -----------------------
837 -- Sum_Double_Digits --
838 -----------------------
840 -- Note: This is used in Rem, Base is assumed to be 2 ** 15
842 function Sum_Double_Digits (Left : Uint; Sign : Int) return Int is
843 begin
844 -- First try simple case;
846 pragma Assert (Sign = Int_1 or Sign = Int (-1));
848 if Direct (Left) then
849 return Direct_Val (Left);
851 -- Otherwise full circuit is needed
853 else
854 declare
855 L_Length : constant Int := N_Digits (Left);
856 L_Vec : UI_Vector (1 .. L_Length);
857 Most_Sig_Int : Int;
858 Least_Sig_Int : Int;
859 Carry : Int;
860 J : Int;
861 Alt : Int;
863 begin
864 Init_Operand (Left, L_Vec);
865 L_Vec (1) := abs L_Vec (1);
866 Most_Sig_Int := 0;
867 Least_Sig_Int := 0;
868 Carry := 0;
869 Alt := 1;
870 J := L_Length;
872 while J > Int_1 loop
873 Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
875 -- Least is in [-2 Base + 1 .. 2 * Base - 1]
876 -- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
877 -- and old Least in [-Base + 1 .. Base - 1]
879 if Least_Sig_Int >= Base then
880 Least_Sig_Int := Least_Sig_Int - Base;
881 Carry := 1;
883 elsif Least_Sig_Int <= -Base then
884 Least_Sig_Int := Least_Sig_Int + Base;
885 Carry := -1;
887 else
888 Carry := 0;
889 end if;
891 -- Least is now in [-Base + 1 .. Base - 1]
893 Most_Sig_Int := Most_Sig_Int + Alt * (L_Vec (J - 1) + Carry);
895 -- Most is in [-2 Base + 1 .. 2 * Base - 1]
896 -- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
897 -- and old Most in [-Base + 1 .. Base - 1]
899 if Most_Sig_Int >= Base then
900 Most_Sig_Int := Most_Sig_Int - Base;
901 Carry := 1;
903 elsif Most_Sig_Int <= -Base then
904 Most_Sig_Int := Most_Sig_Int + Base;
905 Carry := -1;
906 else
907 Carry := 0;
908 end if;
910 -- Most is now in [-Base + 1 .. Base - 1]
912 J := J - 2;
913 Alt := Alt * Sign;
914 end loop;
916 if J = Int_1 then
917 Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
918 else
919 Least_Sig_Int := Least_Sig_Int + Alt * Carry;
920 end if;
922 if Least_Sig_Int >= Base then
923 Least_Sig_Int := Least_Sig_Int - Base;
924 Most_Sig_Int := Most_Sig_Int + Alt * 1;
926 elsif Least_Sig_Int <= -Base then
927 Least_Sig_Int := Least_Sig_Int + Base;
928 Most_Sig_Int := Most_Sig_Int + Alt * (-1);
929 end if;
931 if Most_Sig_Int >= Base then
932 Most_Sig_Int := Most_Sig_Int - Base;
933 Alt := Alt * Sign;
934 Least_Sig_Int :=
935 Least_Sig_Int + Alt * 1; -- cannot overflow again
937 elsif Most_Sig_Int <= -Base then
938 Most_Sig_Int := Most_Sig_Int + Base;
939 Alt := Alt * Sign;
940 Least_Sig_Int :=
941 Least_Sig_Int + Alt * (-1); -- cannot overflow again.
942 end if;
944 return Most_Sig_Int * Base + Least_Sig_Int;
945 end;
946 end if;
947 end Sum_Double_Digits;
949 ---------------
950 -- Tree_Read --
951 ---------------
953 procedure Tree_Read is
954 begin
955 Uints.Tree_Read;
956 Udigits.Tree_Read;
958 Tree_Read_Int (Int (Uint_Int_First));
959 Tree_Read_Int (Int (Uint_Int_Last));
960 Tree_Read_Int (UI_Power_2_Set);
961 Tree_Read_Int (UI_Power_10_Set);
962 Tree_Read_Int (Int (Uints_Min));
963 Tree_Read_Int (Udigits_Min);
965 for J in 0 .. UI_Power_2_Set loop
966 Tree_Read_Int (Int (UI_Power_2 (J)));
967 end loop;
969 for J in 0 .. UI_Power_10_Set loop
970 Tree_Read_Int (Int (UI_Power_10 (J)));
971 end loop;
973 end Tree_Read;
975 ----------------
976 -- Tree_Write --
977 ----------------
979 procedure Tree_Write is
980 begin
981 Uints.Tree_Write;
982 Udigits.Tree_Write;
984 Tree_Write_Int (Int (Uint_Int_First));
985 Tree_Write_Int (Int (Uint_Int_Last));
986 Tree_Write_Int (UI_Power_2_Set);
987 Tree_Write_Int (UI_Power_10_Set);
988 Tree_Write_Int (Int (Uints_Min));
989 Tree_Write_Int (Udigits_Min);
991 for J in 0 .. UI_Power_2_Set loop
992 Tree_Write_Int (Int (UI_Power_2 (J)));
993 end loop;
995 for J in 0 .. UI_Power_10_Set loop
996 Tree_Write_Int (Int (UI_Power_10 (J)));
997 end loop;
999 end Tree_Write;
1001 -------------
1002 -- UI_Abs --
1003 -------------
1005 function UI_Abs (Right : Uint) return Uint is
1006 begin
1007 if Right < Uint_0 then
1008 return -Right;
1009 else
1010 return Right;
1011 end if;
1012 end UI_Abs;
1014 -------------
1015 -- UI_Add --
1016 -------------
1018 function UI_Add (Left : Int; Right : Uint) return Uint is
1019 begin
1020 return UI_Add (UI_From_Int (Left), Right);
1021 end UI_Add;
1023 function UI_Add (Left : Uint; Right : Int) return Uint is
1024 begin
1025 return UI_Add (Left, UI_From_Int (Right));
1026 end UI_Add;
1028 function UI_Add (Left : Uint; Right : Uint) return Uint is
1029 begin
1030 -- Simple cases of direct operands and addition of zero
1032 if Direct (Left) then
1033 if Direct (Right) then
1034 return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
1036 elsif Int (Left) = Int (Uint_0) then
1037 return Right;
1038 end if;
1040 elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
1041 return Left;
1042 end if;
1044 -- Otherwise full circuit is needed
1046 declare
1047 L_Length : constant Int := N_Digits (Left);
1048 R_Length : constant Int := N_Digits (Right);
1049 L_Vec : UI_Vector (1 .. L_Length);
1050 R_Vec : UI_Vector (1 .. R_Length);
1051 Sum_Length : Int;
1052 Tmp_Int : Int;
1053 Carry : Int;
1054 Borrow : Int;
1055 X_Bigger : Boolean := False;
1056 Y_Bigger : Boolean := False;
1057 Result_Neg : Boolean := False;
1059 begin
1060 Init_Operand (Left, L_Vec);
1061 Init_Operand (Right, R_Vec);
1063 -- At least one of the two operands is in multi-digit form.
1064 -- Calculate the number of digits sufficient to hold result.
1066 if L_Length > R_Length then
1067 Sum_Length := L_Length + 1;
1068 X_Bigger := True;
1069 else
1070 Sum_Length := R_Length + 1;
1071 if R_Length > L_Length then Y_Bigger := True; end if;
1072 end if;
1074 -- Make copies of the absolute values of L_Vec and R_Vec into
1075 -- X and Y both with lengths equal to the maximum possibly
1076 -- needed. This makes looping over the digits much simpler.
1078 declare
1079 X : UI_Vector (1 .. Sum_Length);
1080 Y : UI_Vector (1 .. Sum_Length);
1081 Tmp_UI : UI_Vector (1 .. Sum_Length);
1083 begin
1084 for J in 1 .. Sum_Length - L_Length loop
1085 X (J) := 0;
1086 end loop;
1088 X (Sum_Length - L_Length + 1) := abs L_Vec (1);
1090 for J in 2 .. L_Length loop
1091 X (J + (Sum_Length - L_Length)) := L_Vec (J);
1092 end loop;
1094 for J in 1 .. Sum_Length - R_Length loop
1095 Y (J) := 0;
1096 end loop;
1098 Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
1100 for J in 2 .. R_Length loop
1101 Y (J + (Sum_Length - R_Length)) := R_Vec (J);
1102 end loop;
1104 if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
1106 -- Same sign so just add
1108 Carry := 0;
1109 for J in reverse 1 .. Sum_Length loop
1110 Tmp_Int := X (J) + Y (J) + Carry;
1112 if Tmp_Int >= Base then
1113 Tmp_Int := Tmp_Int - Base;
1114 Carry := 1;
1115 else
1116 Carry := 0;
1117 end if;
1119 X (J) := Tmp_Int;
1120 end loop;
1122 return Vector_To_Uint (X, L_Vec (1) < Int_0);
1124 else
1125 -- Find which one has bigger magnitude
1127 if not (X_Bigger or Y_Bigger) then
1128 for J in L_Vec'Range loop
1129 if abs L_Vec (J) > abs R_Vec (J) then
1130 X_Bigger := True;
1131 exit;
1132 elsif abs R_Vec (J) > abs L_Vec (J) then
1133 Y_Bigger := True;
1134 exit;
1135 end if;
1136 end loop;
1137 end if;
1139 -- If they have identical magnitude, just return 0, else
1140 -- swap if necessary so that X had the bigger magnitude.
1141 -- Determine if result is negative at this time.
1143 Result_Neg := False;
1145 if not (X_Bigger or Y_Bigger) then
1146 return Uint_0;
1148 elsif Y_Bigger then
1149 if R_Vec (1) < Int_0 then
1150 Result_Neg := True;
1151 end if;
1153 Tmp_UI := X;
1154 X := Y;
1155 Y := Tmp_UI;
1157 else
1158 if L_Vec (1) < Int_0 then
1159 Result_Neg := True;
1160 end if;
1161 end if;
1163 -- Subtract Y from the bigger X
1165 Borrow := 0;
1167 for J in reverse 1 .. Sum_Length loop
1168 Tmp_Int := X (J) - Y (J) + Borrow;
1170 if Tmp_Int < Int_0 then
1171 Tmp_Int := Tmp_Int + Base;
1172 Borrow := -1;
1173 else
1174 Borrow := 0;
1175 end if;
1177 X (J) := Tmp_Int;
1178 end loop;
1180 return Vector_To_Uint (X, Result_Neg);
1182 end if;
1183 end;
1184 end;
1185 end UI_Add;
1187 --------------------------
1188 -- UI_Decimal_Digits_Hi --
1189 --------------------------
1191 function UI_Decimal_Digits_Hi (U : Uint) return Nat is
1192 begin
1193 -- The maximum value of a "digit" is 32767, which is 5 decimal
1194 -- digits, so an N_Digit number could take up to 5 times this
1195 -- number of digits. This is certainly too high for large
1196 -- numbers but it is not worth worrying about.
1198 return 5 * N_Digits (U);
1199 end UI_Decimal_Digits_Hi;
1201 --------------------------
1202 -- UI_Decimal_Digits_Lo --
1203 --------------------------
1205 function UI_Decimal_Digits_Lo (U : Uint) return Nat is
1206 begin
1207 -- The maximum value of a "digit" is 32767, which is more than four
1208 -- decimal digits, but not a full five digits. The easily computed
1209 -- minimum number of decimal digits is thus 1 + 4 * the number of
1210 -- digits. This is certainly too low for large numbers but it is
1211 -- not worth worrying about.
1213 return 1 + 4 * (N_Digits (U) - 1);
1214 end UI_Decimal_Digits_Lo;
1216 ------------
1217 -- UI_Div --
1218 ------------
1220 function UI_Div (Left : Int; Right : Uint) return Uint is
1221 begin
1222 return UI_Div (UI_From_Int (Left), Right);
1223 end UI_Div;
1225 function UI_Div (Left : Uint; Right : Int) return Uint is
1226 begin
1227 return UI_Div (Left, UI_From_Int (Right));
1228 end UI_Div;
1230 function UI_Div (Left, Right : Uint) return Uint is
1231 begin
1232 pragma Assert (Right /= Uint_0);
1234 -- Cases where both operands are represented directly
1236 if Direct (Left) and then Direct (Right) then
1237 return UI_From_Int (Direct_Val (Left) / Direct_Val (Right));
1238 end if;
1240 declare
1241 L_Length : constant Int := N_Digits (Left);
1242 R_Length : constant Int := N_Digits (Right);
1243 Q_Length : constant Int := L_Length - R_Length + 1;
1244 L_Vec : UI_Vector (1 .. L_Length);
1245 R_Vec : UI_Vector (1 .. R_Length);
1246 D : Int;
1247 Remainder : Int;
1248 Tmp_Divisor : Int;
1249 Carry : Int;
1250 Tmp_Int : Int;
1251 Tmp_Dig : Int;
1253 begin
1254 -- Result is zero if left operand is shorter than right
1256 if L_Length < R_Length then
1257 return Uint_0;
1258 end if;
1260 Init_Operand (Left, L_Vec);
1261 Init_Operand (Right, R_Vec);
1263 -- Case of right operand is single digit. Here we can simply divide
1264 -- each digit of the left operand by the divisor, from most to least
1265 -- significant, carrying the remainder to the next digit (just like
1266 -- ordinary long division by hand).
1268 if R_Length = Int_1 then
1269 Remainder := 0;
1270 Tmp_Divisor := abs R_Vec (1);
1272 declare
1273 Quotient : UI_Vector (1 .. L_Length);
1275 begin
1276 for J in L_Vec'Range loop
1277 Tmp_Int := Remainder * Base + abs L_Vec (J);
1278 Quotient (J) := Tmp_Int / Tmp_Divisor;
1279 Remainder := Tmp_Int rem Tmp_Divisor;
1280 end loop;
1282 return
1283 Vector_To_Uint
1284 (Quotient, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1285 end;
1286 end if;
1288 -- The possible simple cases have been exhausted. Now turn to the
1289 -- algorithm D from the section of Knuth mentioned at the top of
1290 -- this package.
1292 Algorithm_D : declare
1293 Dividend : UI_Vector (1 .. L_Length + 1);
1294 Divisor : UI_Vector (1 .. R_Length);
1295 Quotient : UI_Vector (1 .. Q_Length);
1296 Divisor_Dig1 : Int;
1297 Divisor_Dig2 : Int;
1298 Q_Guess : Int;
1300 begin
1301 -- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1302 -- scale d, and then multiply Left and Right (u and v in the book)
1303 -- by d to get the dividend and divisor to work with.
1305 D := Base / (abs R_Vec (1) + 1);
1307 Dividend (1) := 0;
1308 Dividend (2) := abs L_Vec (1);
1310 for J in 3 .. L_Length + Int_1 loop
1311 Dividend (J) := L_Vec (J - 1);
1312 end loop;
1314 Divisor (1) := abs R_Vec (1);
1316 for J in Int_2 .. R_Length loop
1317 Divisor (J) := R_Vec (J);
1318 end loop;
1320 if D > Int_1 then
1322 -- Multiply Dividend by D
1324 Carry := 0;
1325 for J in reverse Dividend'Range loop
1326 Tmp_Int := Dividend (J) * D + Carry;
1327 Dividend (J) := Tmp_Int rem Base;
1328 Carry := Tmp_Int / Base;
1329 end loop;
1331 -- Multiply Divisor by d.
1333 Carry := 0;
1334 for J in reverse Divisor'Range loop
1335 Tmp_Int := Divisor (J) * D + Carry;
1336 Divisor (J) := Tmp_Int rem Base;
1337 Carry := Tmp_Int / Base;
1338 end loop;
1339 end if;
1341 -- Main loop of long division algorithm.
1343 Divisor_Dig1 := Divisor (1);
1344 Divisor_Dig2 := Divisor (2);
1346 for J in Quotient'Range loop
1348 -- [ CALCULATE Q (hat) ] (step D3 in the algorithm).
1350 Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
1352 -- Initial guess
1354 if Dividend (J) = Divisor_Dig1 then
1355 Q_Guess := Base - 1;
1356 else
1357 Q_Guess := Tmp_Int / Divisor_Dig1;
1358 end if;
1360 -- Refine the guess
1362 while Divisor_Dig2 * Q_Guess >
1363 (Tmp_Int - Q_Guess * Divisor_Dig1) * Base +
1364 Dividend (J + 2)
1365 loop
1366 Q_Guess := Q_Guess - 1;
1367 end loop;
1369 -- [ MULTIPLY & SUBTRACT] (step D4). Q_Guess * Divisor is
1370 -- subtracted from the remaining dividend.
1372 Carry := 0;
1373 for K in reverse Divisor'Range loop
1374 Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
1375 Tmp_Dig := Tmp_Int rem Base;
1376 Carry := Tmp_Int / Base;
1378 if Tmp_Dig < Int_0 then
1379 Tmp_Dig := Tmp_Dig + Base;
1380 Carry := Carry - 1;
1381 end if;
1383 Dividend (J + K) := Tmp_Dig;
1384 end loop;
1386 Dividend (J) := Dividend (J) + Carry;
1388 -- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1389 -- Here there is a slight difference from the book: the last
1390 -- carry is always added in above and below (cancelling each
1391 -- other). In fact the dividend going negative is used as
1392 -- the test.
1394 -- If the Dividend went negative, then Q_Guess was off by
1395 -- one, so it is decremented, and the divisor is added back
1396 -- into the relevant portion of the dividend.
1398 if Dividend (J) < Int_0 then
1399 Q_Guess := Q_Guess - 1;
1401 Carry := 0;
1402 for K in reverse Divisor'Range loop
1403 Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
1405 if Tmp_Int >= Base then
1406 Tmp_Int := Tmp_Int - Base;
1407 Carry := 1;
1408 else
1409 Carry := 0;
1410 end if;
1412 Dividend (J + K) := Tmp_Int;
1413 end loop;
1415 Dividend (J) := Dividend (J) + Carry;
1416 end if;
1418 -- Finally we can get the next quotient digit
1420 Quotient (J) := Q_Guess;
1421 end loop;
1423 return Vector_To_Uint
1424 (Quotient, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1426 end Algorithm_D;
1427 end;
1428 end UI_Div;
1430 ------------
1431 -- UI_Eq --
1432 ------------
1434 function UI_Eq (Left : Int; Right : Uint) return Boolean is
1435 begin
1436 return not UI_Ne (UI_From_Int (Left), Right);
1437 end UI_Eq;
1439 function UI_Eq (Left : Uint; Right : Int) return Boolean is
1440 begin
1441 return not UI_Ne (Left, UI_From_Int (Right));
1442 end UI_Eq;
1444 function UI_Eq (Left : Uint; Right : Uint) return Boolean is
1445 begin
1446 return not UI_Ne (Left, Right);
1447 end UI_Eq;
1449 --------------
1450 -- UI_Expon --
1451 --------------
1453 function UI_Expon (Left : Int; Right : Uint) return Uint is
1454 begin
1455 return UI_Expon (UI_From_Int (Left), Right);
1456 end UI_Expon;
1458 function UI_Expon (Left : Uint; Right : Int) return Uint is
1459 begin
1460 return UI_Expon (Left, UI_From_Int (Right));
1461 end UI_Expon;
1463 function UI_Expon (Left : Int; Right : Int) return Uint is
1464 begin
1465 return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
1466 end UI_Expon;
1468 function UI_Expon (Left : Uint; Right : Uint) return Uint is
1469 begin
1470 pragma Assert (Right >= Uint_0);
1472 -- Any value raised to power of 0 is 1
1474 if Right = Uint_0 then
1475 return Uint_1;
1477 -- 0 to any positive power is 0.
1479 elsif Left = Uint_0 then
1480 return Uint_0;
1482 -- 1 to any power is 1
1484 elsif Left = Uint_1 then
1485 return Uint_1;
1487 -- Any value raised to power of 1 is that value
1489 elsif Right = Uint_1 then
1490 return Left;
1492 -- Cases which can be done by table lookup
1494 elsif Right <= Uint_64 then
1496 -- 2 ** N for N in 2 .. 64
1498 if Left = Uint_2 then
1499 declare
1500 Right_Int : constant Int := Direct_Val (Right);
1502 begin
1503 if Right_Int > UI_Power_2_Set then
1504 for J in UI_Power_2_Set + Int_1 .. Right_Int loop
1505 UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
1506 Uints_Min := Uints.Last;
1507 Udigits_Min := Udigits.Last;
1508 end loop;
1510 UI_Power_2_Set := Right_Int;
1511 end if;
1513 return UI_Power_2 (Right_Int);
1514 end;
1516 -- 10 ** N for N in 2 .. 64
1518 elsif Left = Uint_10 then
1519 declare
1520 Right_Int : constant Int := Direct_Val (Right);
1522 begin
1523 if Right_Int > UI_Power_10_Set then
1524 for J in UI_Power_10_Set + Int_1 .. Right_Int loop
1525 UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
1526 Uints_Min := Uints.Last;
1527 Udigits_Min := Udigits.Last;
1528 end loop;
1530 UI_Power_10_Set := Right_Int;
1531 end if;
1533 return UI_Power_10 (Right_Int);
1534 end;
1535 end if;
1536 end if;
1538 -- If we fall through, then we have the general case (see Knuth 4.6.3)
1540 declare
1541 N : Uint := Right;
1542 Squares : Uint := Left;
1543 Result : Uint := Uint_1;
1544 M : constant Uintp.Save_Mark := Uintp.Mark;
1546 begin
1547 loop
1548 if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
1549 Result := Result * Squares;
1550 end if;
1552 N := N / Uint_2;
1553 exit when N = Uint_0;
1554 Squares := Squares * Squares;
1555 end loop;
1557 Uintp.Release_And_Save (M, Result);
1558 return Result;
1559 end;
1560 end UI_Expon;
1562 ------------------
1563 -- UI_From_Dint --
1564 ------------------
1566 function UI_From_Dint (Input : Dint) return Uint is
1567 begin
1569 if Dint (Min_Direct) <= Input and then Input <= Dint (Max_Direct) then
1570 return Uint (Dint (Uint_Direct_Bias) + Input);
1572 -- For values of larger magnitude, compute digits into a vector and
1573 -- call Vector_To_Uint.
1575 else
1576 declare
1577 Max_For_Dint : constant := 5;
1578 -- Base is defined so that 5 Uint digits is sufficient
1579 -- to hold the largest possible Dint value.
1581 V : UI_Vector (1 .. Max_For_Dint);
1583 Temp_Integer : Dint;
1585 begin
1586 for J in V'Range loop
1587 V (J) := 0;
1588 end loop;
1590 Temp_Integer := Input;
1592 for J in reverse V'Range loop
1593 V (J) := Int (abs (Temp_Integer rem Dint (Base)));
1594 Temp_Integer := Temp_Integer / Dint (Base);
1595 end loop;
1597 return Vector_To_Uint (V, Input < Dint'(0));
1598 end;
1599 end if;
1600 end UI_From_Dint;
1602 -----------------
1603 -- UI_From_Int --
1604 -----------------
1606 function UI_From_Int (Input : Int) return Uint is
1607 U : Uint;
1609 begin
1610 if Min_Direct <= Input and then Input <= Max_Direct then
1611 return Uint (Int (Uint_Direct_Bias) + Input);
1612 end if;
1614 -- If already in the hash table, return entry
1616 U := UI_Ints.Get (Input);
1618 if U /= No_Uint then
1619 return U;
1620 end if;
1622 -- For values of larger magnitude, compute digits into a vector and
1623 -- call Vector_To_Uint.
1625 declare
1626 Max_For_Int : constant := 3;
1627 -- Base is defined so that 3 Uint digits is sufficient
1628 -- to hold the largest possible Int value.
1630 V : UI_Vector (1 .. Max_For_Int);
1632 Temp_Integer : Int;
1634 begin
1635 for J in V'Range loop
1636 V (J) := 0;
1637 end loop;
1639 Temp_Integer := Input;
1641 for J in reverse V'Range loop
1642 V (J) := abs (Temp_Integer rem Base);
1643 Temp_Integer := Temp_Integer / Base;
1644 end loop;
1646 U := Vector_To_Uint (V, Input < Int_0);
1647 UI_Ints.Set (Input, U);
1648 Uints_Min := Uints.Last;
1649 Udigits_Min := Udigits.Last;
1650 return U;
1651 end;
1652 end UI_From_Int;
1654 ------------
1655 -- UI_GCD --
1656 ------------
1658 -- Lehmer's algorithm for GCD.
1660 -- The idea is to avoid using multiple precision arithmetic wherever
1661 -- possible, substituting Int arithmetic instead. See Knuth volume II,
1662 -- Algorithm L (page 329).
1664 -- We use the same notation as Knuth (U_Hat standing for the obvious!)
1666 function UI_GCD (Uin, Vin : Uint) return Uint is
1667 U, V : Uint;
1668 -- Copies of Uin and Vin
1670 U_Hat, V_Hat : Int;
1671 -- The most Significant digits of U,V
1673 A, B, C, D, T, Q, Den1, Den2 : Int;
1675 Tmp_UI : Uint;
1676 Marks : constant Uintp.Save_Mark := Uintp.Mark;
1677 Iterations : Integer := 0;
1679 begin
1680 pragma Assert (Uin >= Vin);
1681 pragma Assert (Vin >= Uint_0);
1683 U := Uin;
1684 V := Vin;
1686 loop
1687 Iterations := Iterations + 1;
1689 if Direct (V) then
1690 if V = Uint_0 then
1691 return U;
1692 else
1693 return
1694 UI_From_Int (GCD (Direct_Val (V), UI_To_Int (U rem V)));
1695 end if;
1696 end if;
1698 Most_Sig_2_Digits (U, V, U_Hat, V_Hat);
1699 A := 1;
1700 B := 0;
1701 C := 0;
1702 D := 1;
1704 loop
1705 -- We might overflow and get division by zero here. This just
1706 -- means we can not take the single precision step
1708 Den1 := V_Hat + C;
1709 Den2 := V_Hat + D;
1710 exit when (Den1 * Den2) = Int_0;
1712 -- Compute Q, the trial quotient
1714 Q := (U_Hat + A) / Den1;
1716 exit when Q /= ((U_Hat + B) / Den2);
1718 -- A single precision step Euclid step will give same answer as
1719 -- a multiprecision one.
1721 T := A - (Q * C);
1722 A := C;
1723 C := T;
1725 T := B - (Q * D);
1726 B := D;
1727 D := T;
1729 T := U_Hat - (Q * V_Hat);
1730 U_Hat := V_Hat;
1731 V_Hat := T;
1733 end loop;
1735 -- Take a multiprecision Euclid step
1737 if B = Int_0 then
1739 -- No single precision steps take a regular Euclid step.
1741 Tmp_UI := U rem V;
1742 U := V;
1743 V := Tmp_UI;
1745 else
1746 -- Use prior single precision steps to compute this Euclid step.
1748 -- Fixed bug 1415-008 spends 80% of its time working on this
1749 -- step. Perhaps we need a special case Int / Uint dot
1750 -- product to speed things up. ???
1752 -- Alternatively we could increase the single precision
1753 -- iterations to handle Uint's of some small size ( <5
1754 -- digits?). Then we would have more iterations on small Uint.
1755 -- Fixed bug 1415-008 only gets 5 (on average) single
1756 -- precision iterations per large iteration. ???
1758 Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
1759 V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
1760 U := Tmp_UI;
1761 end if;
1763 -- If the operands are very different in magnitude, the loop
1764 -- will generate large amounts of short-lived data, which it is
1765 -- worth removing periodically.
1767 if Iterations > 100 then
1768 Release_And_Save (Marks, U, V);
1769 Iterations := 0;
1770 end if;
1771 end loop;
1772 end UI_GCD;
1774 ------------
1775 -- UI_Ge --
1776 ------------
1778 function UI_Ge (Left : Int; Right : Uint) return Boolean is
1779 begin
1780 return not UI_Lt (UI_From_Int (Left), Right);
1781 end UI_Ge;
1783 function UI_Ge (Left : Uint; Right : Int) return Boolean is
1784 begin
1785 return not UI_Lt (Left, UI_From_Int (Right));
1786 end UI_Ge;
1788 function UI_Ge (Left : Uint; Right : Uint) return Boolean is
1789 begin
1790 return not UI_Lt (Left, Right);
1791 end UI_Ge;
1793 ------------
1794 -- UI_Gt --
1795 ------------
1797 function UI_Gt (Left : Int; Right : Uint) return Boolean is
1798 begin
1799 return UI_Lt (Right, UI_From_Int (Left));
1800 end UI_Gt;
1802 function UI_Gt (Left : Uint; Right : Int) return Boolean is
1803 begin
1804 return UI_Lt (UI_From_Int (Right), Left);
1805 end UI_Gt;
1807 function UI_Gt (Left : Uint; Right : Uint) return Boolean is
1808 begin
1809 return UI_Lt (Right, Left);
1810 end UI_Gt;
1812 ---------------
1813 -- UI_Image --
1814 ---------------
1816 procedure UI_Image (Input : Uint; Format : UI_Format := Auto) is
1817 begin
1818 Image_Out (Input, True, Format);
1819 end UI_Image;
1821 -------------------------
1822 -- UI_Is_In_Int_Range --
1823 -------------------------
1825 function UI_Is_In_Int_Range (Input : Uint) return Boolean is
1826 begin
1827 -- Make sure we don't get called before Initialize
1829 pragma Assert (Uint_Int_First /= Uint_0);
1831 if Direct (Input) then
1832 return True;
1833 else
1834 return Input >= Uint_Int_First
1835 and then Input <= Uint_Int_Last;
1836 end if;
1837 end UI_Is_In_Int_Range;
1839 ------------
1840 -- UI_Le --
1841 ------------
1843 function UI_Le (Left : Int; Right : Uint) return Boolean is
1844 begin
1845 return not UI_Lt (Right, UI_From_Int (Left));
1846 end UI_Le;
1848 function UI_Le (Left : Uint; Right : Int) return Boolean is
1849 begin
1850 return not UI_Lt (UI_From_Int (Right), Left);
1851 end UI_Le;
1853 function UI_Le (Left : Uint; Right : Uint) return Boolean is
1854 begin
1855 return not UI_Lt (Right, Left);
1856 end UI_Le;
1858 ------------
1859 -- UI_Lt --
1860 ------------
1862 function UI_Lt (Left : Int; Right : Uint) return Boolean is
1863 begin
1864 return UI_Lt (UI_From_Int (Left), Right);
1865 end UI_Lt;
1867 function UI_Lt (Left : Uint; Right : Int) return Boolean is
1868 begin
1869 return UI_Lt (Left, UI_From_Int (Right));
1870 end UI_Lt;
1872 function UI_Lt (Left : Uint; Right : Uint) return Boolean is
1873 begin
1874 -- Quick processing for identical arguments
1876 if Int (Left) = Int (Right) then
1877 return False;
1879 -- Quick processing for both arguments directly represented
1881 elsif Direct (Left) and then Direct (Right) then
1882 return Int (Left) < Int (Right);
1884 -- At least one argument is more than one digit long
1886 else
1887 declare
1888 L_Length : constant Int := N_Digits (Left);
1889 R_Length : constant Int := N_Digits (Right);
1891 L_Vec : UI_Vector (1 .. L_Length);
1892 R_Vec : UI_Vector (1 .. R_Length);
1894 begin
1895 Init_Operand (Left, L_Vec);
1896 Init_Operand (Right, R_Vec);
1898 if L_Vec (1) < Int_0 then
1900 -- First argument negative, second argument non-negative
1902 if R_Vec (1) >= Int_0 then
1903 return True;
1905 -- Both arguments negative
1907 else
1908 if L_Length /= R_Length then
1909 return L_Length > R_Length;
1911 elsif L_Vec (1) /= R_Vec (1) then
1912 return L_Vec (1) < R_Vec (1);
1914 else
1915 for J in 2 .. L_Vec'Last loop
1916 if L_Vec (J) /= R_Vec (J) then
1917 return L_Vec (J) > R_Vec (J);
1918 end if;
1919 end loop;
1921 return False;
1922 end if;
1923 end if;
1925 else
1926 -- First argument non-negative, second argument negative
1928 if R_Vec (1) < Int_0 then
1929 return False;
1931 -- Both arguments non-negative
1933 else
1934 if L_Length /= R_Length then
1935 return L_Length < R_Length;
1936 else
1937 for J in L_Vec'Range loop
1938 if L_Vec (J) /= R_Vec (J) then
1939 return L_Vec (J) < R_Vec (J);
1940 end if;
1941 end loop;
1943 return False;
1944 end if;
1945 end if;
1946 end if;
1947 end;
1948 end if;
1949 end UI_Lt;
1951 ------------
1952 -- UI_Max --
1953 ------------
1955 function UI_Max (Left : Int; Right : Uint) return Uint is
1956 begin
1957 return UI_Max (UI_From_Int (Left), Right);
1958 end UI_Max;
1960 function UI_Max (Left : Uint; Right : Int) return Uint is
1961 begin
1962 return UI_Max (Left, UI_From_Int (Right));
1963 end UI_Max;
1965 function UI_Max (Left : Uint; Right : Uint) return Uint is
1966 begin
1967 if Left >= Right then
1968 return Left;
1969 else
1970 return Right;
1971 end if;
1972 end UI_Max;
1974 ------------
1975 -- UI_Min --
1976 ------------
1978 function UI_Min (Left : Int; Right : Uint) return Uint is
1979 begin
1980 return UI_Min (UI_From_Int (Left), Right);
1981 end UI_Min;
1983 function UI_Min (Left : Uint; Right : Int) return Uint is
1984 begin
1985 return UI_Min (Left, UI_From_Int (Right));
1986 end UI_Min;
1988 function UI_Min (Left : Uint; Right : Uint) return Uint is
1989 begin
1990 if Left <= Right then
1991 return Left;
1992 else
1993 return Right;
1994 end if;
1995 end UI_Min;
1997 -------------
1998 -- UI_Mod --
1999 -------------
2001 function UI_Mod (Left : Int; Right : Uint) return Uint is
2002 begin
2003 return UI_Mod (UI_From_Int (Left), Right);
2004 end UI_Mod;
2006 function UI_Mod (Left : Uint; Right : Int) return Uint is
2007 begin
2008 return UI_Mod (Left, UI_From_Int (Right));
2009 end UI_Mod;
2011 function UI_Mod (Left : Uint; Right : Uint) return Uint is
2012 Urem : constant Uint := Left rem Right;
2014 begin
2015 if (Left < Uint_0) = (Right < Uint_0)
2016 or else Urem = Uint_0
2017 then
2018 return Urem;
2019 else
2020 return Right + Urem;
2021 end if;
2022 end UI_Mod;
2024 ------------
2025 -- UI_Mul --
2026 ------------
2028 function UI_Mul (Left : Int; Right : Uint) return Uint is
2029 begin
2030 return UI_Mul (UI_From_Int (Left), Right);
2031 end UI_Mul;
2033 function UI_Mul (Left : Uint; Right : Int) return Uint is
2034 begin
2035 return UI_Mul (Left, UI_From_Int (Right));
2036 end UI_Mul;
2038 function UI_Mul (Left : Uint; Right : Uint) return Uint is
2039 begin
2040 -- Simple case of single length operands
2042 if Direct (Left) and then Direct (Right) then
2043 return
2044 UI_From_Dint
2045 (Dint (Direct_Val (Left)) * Dint (Direct_Val (Right)));
2046 end if;
2048 -- Otherwise we have the general case (Algorithm M in Knuth)
2050 declare
2051 L_Length : constant Int := N_Digits (Left);
2052 R_Length : constant Int := N_Digits (Right);
2053 L_Vec : UI_Vector (1 .. L_Length);
2054 R_Vec : UI_Vector (1 .. R_Length);
2055 Neg : Boolean;
2057 begin
2058 Init_Operand (Left, L_Vec);
2059 Init_Operand (Right, R_Vec);
2060 Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
2061 L_Vec (1) := abs (L_Vec (1));
2062 R_Vec (1) := abs (R_Vec (1));
2064 Algorithm_M : declare
2065 Product : UI_Vector (1 .. L_Length + R_Length);
2066 Tmp_Sum : Int;
2067 Carry : Int;
2069 begin
2070 for J in Product'Range loop
2071 Product (J) := 0;
2072 end loop;
2074 for J in reverse R_Vec'Range loop
2075 Carry := 0;
2076 for K in reverse L_Vec'Range loop
2077 Tmp_Sum :=
2078 L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
2079 Product (J + K) := Tmp_Sum rem Base;
2080 Carry := Tmp_Sum / Base;
2081 end loop;
2083 Product (J) := Carry;
2084 end loop;
2086 return Vector_To_Uint (Product, Neg);
2087 end Algorithm_M;
2088 end;
2089 end UI_Mul;
2091 ------------
2092 -- UI_Ne --
2093 ------------
2095 function UI_Ne (Left : Int; Right : Uint) return Boolean is
2096 begin
2097 return UI_Ne (UI_From_Int (Left), Right);
2098 end UI_Ne;
2100 function UI_Ne (Left : Uint; Right : Int) return Boolean is
2101 begin
2102 return UI_Ne (Left, UI_From_Int (Right));
2103 end UI_Ne;
2105 function UI_Ne (Left : Uint; Right : Uint) return Boolean is
2106 begin
2107 -- Quick processing for identical arguments. Note that this takes
2108 -- care of the case of two No_Uint arguments.
2110 if Int (Left) = Int (Right) then
2111 return False;
2112 end if;
2114 -- See if left operand directly represented
2116 if Direct (Left) then
2118 -- If right operand directly represented then compare
2120 if Direct (Right) then
2121 return Int (Left) /= Int (Right);
2123 -- Left operand directly represented, right not, must be unequal
2125 else
2126 return True;
2127 end if;
2129 -- Right operand directly represented, left not, must be unequal
2131 elsif Direct (Right) then
2132 return True;
2133 end if;
2135 -- Otherwise both multi-word, do comparison
2137 declare
2138 Size : constant Int := N_Digits (Left);
2139 Left_Loc : Int;
2140 Right_Loc : Int;
2142 begin
2143 if Size /= N_Digits (Right) then
2144 return True;
2145 end if;
2147 Left_Loc := Uints.Table (Left).Loc;
2148 Right_Loc := Uints.Table (Right).Loc;
2150 for J in Int_0 .. Size - Int_1 loop
2151 if Udigits.Table (Left_Loc + J) /=
2152 Udigits.Table (Right_Loc + J)
2153 then
2154 return True;
2155 end if;
2156 end loop;
2158 return False;
2159 end;
2160 end UI_Ne;
2162 ----------------
2163 -- UI_Negate --
2164 ----------------
2166 function UI_Negate (Right : Uint) return Uint is
2167 begin
2168 -- Case where input is directly represented. Note that since the
2169 -- range of Direct values is non-symmetrical, the result may not
2170 -- be directly represented, this is taken care of in UI_From_Int.
2172 if Direct (Right) then
2173 return UI_From_Int (-Direct_Val (Right));
2175 -- Full processing for multi-digit case. Note that we cannot just
2176 -- copy the value to the end of the table negating the first digit,
2177 -- since the range of Direct values is non-symmetrical, so we can
2178 -- have a negative value that is not Direct whose negation can be
2179 -- represented directly.
2181 else
2182 declare
2183 R_Length : constant Int := N_Digits (Right);
2184 R_Vec : UI_Vector (1 .. R_Length);
2185 Neg : Boolean;
2187 begin
2188 Init_Operand (Right, R_Vec);
2189 Neg := R_Vec (1) > Int_0;
2190 R_Vec (1) := abs R_Vec (1);
2191 return Vector_To_Uint (R_Vec, Neg);
2192 end;
2193 end if;
2194 end UI_Negate;
2196 -------------
2197 -- UI_Rem --
2198 -------------
2200 function UI_Rem (Left : Int; Right : Uint) return Uint is
2201 begin
2202 return UI_Rem (UI_From_Int (Left), Right);
2203 end UI_Rem;
2205 function UI_Rem (Left : Uint; Right : Int) return Uint is
2206 begin
2207 return UI_Rem (Left, UI_From_Int (Right));
2208 end UI_Rem;
2210 function UI_Rem (Left, Right : Uint) return Uint is
2211 Sign : Int;
2212 Tmp : Int;
2214 subtype Int1_12 is Integer range 1 .. 12;
2216 begin
2217 pragma Assert (Right /= Uint_0);
2219 if Direct (Right) then
2220 if Direct (Left) then
2221 return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
2223 else
2224 -- Special cases when Right is less than 13 and Left is larger
2225 -- larger than one digit. All of these algorithms depend on the
2226 -- base being 2 ** 15 We work with Abs (Left) and Abs(Right)
2227 -- then multiply result by Sign (Left)
2229 if (Right <= Uint_12) and then (Right >= Uint_Minus_12) then
2231 if Left < Uint_0 then
2232 Sign := -1;
2233 else
2234 Sign := 1;
2235 end if;
2237 -- All cases are listed, grouped by mathematical method
2238 -- It is not inefficient to do have this case list out
2239 -- of order since GCC sorts the cases we list.
2241 case Int1_12 (abs (Direct_Val (Right))) is
2243 when 1 =>
2244 return Uint_0;
2246 -- Powers of two are simple AND's with LS Left Digit
2247 -- GCC will recognise these constants as powers of 2
2248 -- and replace the rem with simpler operations where
2249 -- possible.
2251 -- Least_Sig_Digit might return Negative numbers.
2253 when 2 =>
2254 return UI_From_Int (
2255 Sign * (Least_Sig_Digit (Left) mod 2));
2257 when 4 =>
2258 return UI_From_Int (
2259 Sign * (Least_Sig_Digit (Left) mod 4));
2261 when 8 =>
2262 return UI_From_Int (
2263 Sign * (Least_Sig_Digit (Left) mod 8));
2265 -- Some number theoretical tricks:
2267 -- If B Rem Right = 1 then
2268 -- Left Rem Right = Sum_Of_Digits_Base_B (Left) Rem Right
2270 -- Note: 2^32 mod 3 = 1
2272 when 3 =>
2273 return UI_From_Int (
2274 Sign * (Sum_Double_Digits (Left, 1) rem Int (3)));
2276 -- Note: 2^15 mod 7 = 1
2278 when 7 =>
2279 return UI_From_Int (
2280 Sign * (Sum_Digits (Left, 1) rem Int (7)));
2282 -- Note: 2^32 mod 5 = -1
2283 -- Alternating sums might be negative, but rem is always
2284 -- positive hence we must use mod here.
2286 when 5 =>
2287 Tmp := Sum_Double_Digits (Left, -1) mod Int (5);
2288 return UI_From_Int (Sign * Tmp);
2290 -- Note: 2^15 mod 9 = -1
2291 -- Alternating sums might be negative, but rem is always
2292 -- positive hence we must use mod here.
2294 when 9 =>
2295 Tmp := Sum_Digits (Left, -1) mod Int (9);
2296 return UI_From_Int (Sign * Tmp);
2298 -- Note: 2^15 mod 11 = -1
2299 -- Alternating sums might be negative, but rem is always
2300 -- positive hence we must use mod here.
2302 when 11 =>
2303 Tmp := Sum_Digits (Left, -1) mod Int (11);
2304 return UI_From_Int (Sign * Tmp);
2306 -- Now resort to Chinese Remainder theorem
2307 -- to reduce 6, 10, 12 to previous special cases
2309 -- There is no reason we could not add more cases
2310 -- like these if it proves useful.
2312 -- Perhaps we should go up to 16, however
2313 -- I have no "trick" for 13.
2315 -- To find u mod m we:
2316 -- Pick m1, m2 S.T.
2317 -- GCD(m1, m2) = 1 AND m = (m1 * m2).
2318 -- Next we pick (Basis) M1, M2 small S.T.
2319 -- (M1 mod m1) = (M2 mod m2) = 1 AND
2320 -- (M1 mod m2) = (M2 mod m1) = 0
2322 -- So u mod m = (u1 * M1 + u2 * M2) mod m
2323 -- Where u1 = (u mod m1) AND u2 = (u mod m2);
2324 -- Under typical circumstances the last mod m
2325 -- can be done with a (possible) single subtraction.
2327 -- m1 = 2; m2 = 3; M1 = 3; M2 = 4;
2329 when 6 =>
2330 Tmp := 3 * (Least_Sig_Digit (Left) rem 2) +
2331 4 * (Sum_Double_Digits (Left, 1) rem 3);
2332 return UI_From_Int (Sign * (Tmp rem 6));
2334 -- m1 = 2; m2 = 5; M1 = 5; M2 = 6;
2336 when 10 =>
2337 Tmp := 5 * (Least_Sig_Digit (Left) rem 2) +
2338 6 * (Sum_Double_Digits (Left, -1) mod 5);
2339 return UI_From_Int (Sign * (Tmp rem 10));
2341 -- m1 = 3; m2 = 4; M1 = 4; M2 = 9;
2343 when 12 =>
2344 Tmp := 4 * (Sum_Double_Digits (Left, 1) rem 3) +
2345 9 * (Least_Sig_Digit (Left) rem 4);
2346 return UI_From_Int (Sign * (Tmp rem 12));
2347 end case;
2349 end if;
2351 -- Else fall through to general case.
2353 -- ???This needs to be improved. We have the Rem when we do the
2354 -- Div. Div throws it away!
2356 -- The special case Length (Left) = Length(right) = 1 in Div
2357 -- looks slow. It uses UI_To_Int when Int should suffice. ???
2358 end if;
2359 end if;
2361 return Left - (Left / Right) * Right;
2362 end UI_Rem;
2364 ------------
2365 -- UI_Sub --
2366 ------------
2368 function UI_Sub (Left : Int; Right : Uint) return Uint is
2369 begin
2370 return UI_Add (Left, -Right);
2371 end UI_Sub;
2373 function UI_Sub (Left : Uint; Right : Int) return Uint is
2374 begin
2375 return UI_Add (Left, -Right);
2376 end UI_Sub;
2378 function UI_Sub (Left : Uint; Right : Uint) return Uint is
2379 begin
2380 if Direct (Left) and then Direct (Right) then
2381 return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
2382 else
2383 return UI_Add (Left, -Right);
2384 end if;
2385 end UI_Sub;
2387 ----------------
2388 -- UI_To_Int --
2389 ----------------
2391 function UI_To_Int (Input : Uint) return Int is
2392 begin
2393 if Direct (Input) then
2394 return Direct_Val (Input);
2396 -- Case of input is more than one digit
2398 else
2399 declare
2400 In_Length : constant Int := N_Digits (Input);
2401 In_Vec : UI_Vector (1 .. In_Length);
2402 Ret_Int : Int;
2404 begin
2405 -- Uints of more than one digit could be outside the range for
2406 -- Ints. Caller should have checked for this if not certain.
2407 -- Fatal error to attempt to convert from value outside Int'Range.
2409 pragma Assert (UI_Is_In_Int_Range (Input));
2411 -- Otherwise, proceed ahead, we are OK
2413 Init_Operand (Input, In_Vec);
2414 Ret_Int := 0;
2416 -- Calculate -|Input| and then negates if value is positive.
2417 -- This handles our current definition of Int (based on
2418 -- 2s complement). Is it secure enough?
2420 for Idx in In_Vec'Range loop
2421 Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
2422 end loop;
2424 if In_Vec (1) < Int_0 then
2425 return Ret_Int;
2426 else
2427 return -Ret_Int;
2428 end if;
2429 end;
2430 end if;
2431 end UI_To_Int;
2433 --------------
2434 -- UI_Write --
2435 --------------
2437 procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
2438 begin
2439 Image_Out (Input, False, Format);
2440 end UI_Write;
2442 ---------------------
2443 -- Vector_To_Uint --
2444 ---------------------
2446 function Vector_To_Uint
2447 (In_Vec : UI_Vector;
2448 Negative : Boolean)
2449 return Uint
2451 Size : Int;
2452 Val : Int;
2454 begin
2455 -- The vector can contain leading zeros. These are not stored in the
2456 -- table, so loop through the vector looking for first non-zero digit
2458 for J in In_Vec'Range loop
2459 if In_Vec (J) /= Int_0 then
2461 -- The length of the value is the length of the rest of the vector
2463 Size := In_Vec'Last - J + 1;
2465 -- One digit value can always be represented directly
2467 if Size = Int_1 then
2468 if Negative then
2469 return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
2470 else
2471 return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
2472 end if;
2474 -- Positive two digit values may be in direct representation range
2476 elsif Size = Int_2 and then not Negative then
2477 Val := In_Vec (J) * Base + In_Vec (J + 1);
2479 if Val <= Max_Direct then
2480 return Uint (Int (Uint_Direct_Bias) + Val);
2481 end if;
2482 end if;
2484 -- The value is outside the direct representation range and
2485 -- must therefore be stored in the table. Expand the table
2486 -- to contain the count and tigis. The index of the new table
2487 -- entry will be returned as the result.
2489 Uints.Increment_Last;
2490 Uints.Table (Uints.Last).Length := Size;
2491 Uints.Table (Uints.Last).Loc := Udigits.Last + 1;
2493 Udigits.Increment_Last;
2495 if Negative then
2496 Udigits.Table (Udigits.Last) := -In_Vec (J);
2497 else
2498 Udigits.Table (Udigits.Last) := +In_Vec (J);
2499 end if;
2501 for K in 2 .. Size loop
2502 Udigits.Increment_Last;
2503 Udigits.Table (Udigits.Last) := In_Vec (J + K - 1);
2504 end loop;
2506 return Uints.Last;
2507 end if;
2508 end loop;
2510 -- Dropped through loop only if vector contained all zeros
2512 return Uint_0;
2513 end Vector_To_Uint;
2515 end Uintp;