2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info
*stmt_vec_info
;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
31 /* Used for naming of new temporaries. */
39 /* Defines type of operation. */
46 /* Define type of available alignment support. */
47 enum dr_alignment_support
{
48 dr_unaligned_unsupported
,
49 dr_unaligned_supported
,
51 dr_explicit_realign_optimized
,
55 /* Define type of def-use cross-iteration cycle. */
57 vect_uninitialized_def
= 0,
58 vect_constant_def
= 1,
63 vect_double_reduction_def
,
68 /* Define type of reduction. */
69 enum vect_reduction_type
{
72 INTEGER_INDUC_COND_REDUCTION
,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION
,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
87 (with no reassocation). */
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost
{
99 enum vect_cost_for_stmt kind
;
100 enum vect_cost_model_location where
;
101 stmt_vec_info stmt_info
;
106 typedef vec
<stmt_info_for_cost
> stmt_vector_for_cost
;
108 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
109 known alignment for that base. */
110 typedef hash_map
<tree_operand_hash
,
111 innermost_loop_behavior
*> vec_base_alignments
;
113 /************************************************************************
115 ************************************************************************/
116 typedef struct _slp_tree
*slp_tree
;
118 /* A computation tree of an SLP instance. Each node corresponds to a group of
119 stmts to be packed in a SIMD stmt. */
124 /* Nodes that contain def-stmts of this node statements operands. */
125 vec
<slp_tree
> children
;
127 /* A group of scalar stmts to be vectorized together. */
128 vec
<stmt_vec_info
> stmts
;
129 /* A group of scalar operands to be vectorized together. */
131 /* The representative that should be used for analysis and
133 stmt_vec_info representative
;
135 /* Load permutation relative to the stores, NULL if there is no
137 vec
<unsigned> load_permutation
;
138 /* Lane permutation of the operands scalar lanes encoded as pairs
139 of { operand number, lane number }. The number of elements
140 denotes the number of output lanes. */
141 vec
<std::pair
<unsigned, unsigned> > lane_permutation
;
144 /* Vectorized stmt/s. */
145 vec
<gimple
*> vec_stmts
;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size
;
153 /* Reference count in the SLP graph. */
155 /* The maximum number of vector elements for the subtree rooted
157 poly_uint64 max_nunits
;
158 /* The DEF type of this node. */
159 enum vect_def_type def_type
;
160 /* The number of scalar lanes produced by this node. */
162 /* The operation of this node. */
167 /* SLP instance is a sequence of stmts in a loop that can be packed into
169 typedef class _slp_instance
{
171 /* The root of SLP tree. */
174 /* For vector constructors, the constructor stmt that the SLP tree is built
175 from, NULL otherwise. */
176 stmt_vec_info root_stmt
;
178 /* The unrolling factor required to vectorized this SLP instance. */
179 poly_uint64 unrolling_factor
;
181 /* The group of nodes that contain loads of this SLP instance. */
184 /* The SLP node containing the reduction PHIs. */
189 /* Access Functions. */
190 #define SLP_INSTANCE_TREE(S) (S)->root
191 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
192 #define SLP_INSTANCE_LOADS(S) (S)->loads
193 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
195 #define SLP_TREE_CHILDREN(S) (S)->children
196 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
197 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
198 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
199 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
200 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
201 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
202 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
203 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
204 #define SLP_TREE_VECTYPE(S) (S)->vectype
205 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
206 #define SLP_TREE_LANES(S) (S)->lanes
207 #define SLP_TREE_CODE(S) (S)->code
209 /* Key for map that records association between
210 scalar conditions and corresponding loop mask, and
211 is populated by vect_record_loop_mask. */
213 struct scalar_cond_masked_key
215 scalar_cond_masked_key (tree t
, unsigned ncopies_
)
218 get_cond_ops_from_tree (t
);
221 void get_cond_ops_from_tree (tree
);
230 struct default_hash_traits
<scalar_cond_masked_key
>
232 typedef scalar_cond_masked_key compare_type
;
233 typedef scalar_cond_masked_key value_type
;
235 static inline hashval_t
240 inchash::add_expr (v
.op0
, h
, 0);
241 inchash::add_expr (v
.op1
, h
, 0);
242 h
.add_int (v
.ncopies
);
247 equal (value_type existing
, value_type candidate
)
249 return (existing
.ncopies
== candidate
.ncopies
250 && existing
.code
== candidate
.code
251 && operand_equal_p (existing
.op0
, candidate
.op0
, 0)
252 && operand_equal_p (existing
.op1
, candidate
.op1
, 0));
255 static const bool empty_zero_p
= true;
258 mark_empty (value_type
&v
)
264 is_empty (value_type v
)
266 return v
.ncopies
== 0;
269 static inline void mark_deleted (value_type
&) {}
271 static inline bool is_deleted (const value_type
&)
276 static inline void remove (value_type
&) {}
279 typedef hash_set
<scalar_cond_masked_key
> scalar_cond_masked_set_type
;
281 /* Describes two objects whose addresses must be unequal for the vectorized
283 typedef std::pair
<tree
, tree
> vec_object_pair
;
285 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
286 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
287 class vec_lower_bound
{
289 vec_lower_bound () {}
290 vec_lower_bound (tree e
, bool u
, poly_uint64 m
)
291 : expr (e
), unsigned_p (u
), min_value (m
) {}
295 poly_uint64 min_value
;
298 /* Vectorizer state shared between different analyses like vector sizes
299 of the same CFG region. */
300 class vec_info_shared
{
305 void save_datarefs();
306 void check_datarefs();
308 /* All data references. Freed by free_data_refs, so not an auto_vec. */
309 vec
<data_reference_p
> datarefs
;
310 vec
<data_reference
> datarefs_copy
;
312 /* The loop nest in which the data dependences are computed. */
313 auto_vec
<loop_p
> loop_nest
;
315 /* All data dependences. Freed by free_dependence_relations, so not
320 /* Vectorizer state common between loop and basic-block vectorization. */
323 typedef hash_set
<int_hash
<machine_mode
, E_VOIDmode
, E_BLKmode
> > mode_set
;
324 enum vec_kind
{ bb
, loop
};
326 vec_info (vec_kind
, void *, vec_info_shared
*);
329 stmt_vec_info
add_stmt (gimple
*);
330 stmt_vec_info
lookup_stmt (gimple
*);
331 stmt_vec_info
lookup_def (tree
);
332 stmt_vec_info
lookup_single_use (tree
);
333 class dr_vec_info
*lookup_dr (data_reference
*);
334 void move_dr (stmt_vec_info
, stmt_vec_info
);
335 void remove_stmt (stmt_vec_info
);
336 void replace_stmt (gimple_stmt_iterator
*, stmt_vec_info
, gimple
*);
337 void insert_on_entry (stmt_vec_info
, gimple
*);
338 void insert_seq_on_entry (stmt_vec_info
, gimple_seq
);
340 /* The type of vectorization. */
343 /* Shared vectorizer state. */
344 vec_info_shared
*shared
;
346 /* The mapping of GIMPLE UID to stmt_vec_info. */
347 vec
<stmt_vec_info
> stmt_vec_infos
;
348 /* Whether the above mapping is complete. */
349 bool stmt_vec_info_ro
;
352 auto_vec
<slp_instance
> slp_instances
;
353 auto_vec
<slp_tree
> slp_loads
;
355 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
356 known alignment for that base. */
357 vec_base_alignments base_alignments
;
359 /* All interleaving chains of stores, represented by the first
360 stmt in the chain. */
361 auto_vec
<stmt_vec_info
> grouped_stores
;
363 /* Cost data used by the target cost model. */
364 void *target_cost_data
;
366 /* The set of vector modes used in the vectorized region. */
367 mode_set used_vector_modes
;
369 /* The argument we should pass to related_vector_mode when looking up
370 the vector mode for a scalar mode, or VOIDmode if we haven't yet
371 made any decisions about which vector modes to use. */
372 machine_mode vector_mode
;
375 stmt_vec_info
new_stmt_vec_info (gimple
*stmt
);
376 void set_vinfo_for_stmt (gimple
*, stmt_vec_info
);
377 void free_stmt_vec_infos ();
378 void free_stmt_vec_info (stmt_vec_info
);
381 class _loop_vec_info
;
387 is_a_helper
<_loop_vec_info
*>::test (vec_info
*i
)
389 return i
->kind
== vec_info::loop
;
395 is_a_helper
<_bb_vec_info
*>::test (vec_info
*i
)
397 return i
->kind
== vec_info::bb
;
400 /* In general, we can divide the vector statements in a vectorized loop
401 into related groups ("rgroups") and say that for each rgroup there is
402 some nS such that the rgroup operates on nS values from one scalar
403 iteration followed by nS values from the next. That is, if VF is the
404 vectorization factor of the loop, the rgroup operates on a sequence:
406 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
408 where (i,j) represents a scalar value with index j in a scalar
409 iteration with index i.
411 [ We use the term "rgroup" to emphasise that this grouping isn't
412 necessarily the same as the grouping of statements used elsewhere.
413 For example, if we implement a group of scalar loads using gather
414 loads, we'll use a separate gather load for each scalar load, and
415 thus each gather load will belong to its own rgroup. ]
417 In general this sequence will occupy nV vectors concatenated
418 together. If these vectors have nL lanes each, the total number
419 of scalar values N is given by:
421 N = nS * VF = nV * nL
423 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
424 are compile-time constants but VF and nL can be variable (if the target
425 supports variable-length vectors).
427 In classical vectorization, each iteration of the vector loop would
428 handle exactly VF iterations of the original scalar loop. However,
429 in vector loops that are able to operate on partial vectors, a
430 particular iteration of the vector loop might handle fewer than VF
431 iterations of the scalar loop. The vector lanes that correspond to
432 iterations of the scalar loop are said to be "active" and the other
433 lanes are said to be "inactive".
435 In such vector loops, many rgroups need to be controlled to ensure
436 that they have no effect for the inactive lanes. Conceptually, each
437 such rgroup needs a sequence of booleans in the same order as above,
438 but with each (i,j) replaced by a boolean that indicates whether
439 iteration i is active. This sequence occupies nV vector controls
440 that again have nL lanes each. Thus the control sequence as a whole
441 consists of VF independent booleans that are each repeated nS times.
443 Taking mask-based approach as a partially-populated vectors example.
444 We make the simplifying assumption that if a sequence of nV masks is
445 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
446 VIEW_CONVERTing it. This holds for all current targets that support
447 fully-masked loops. For example, suppose the scalar loop is:
451 for (int i = 0; i < n; ++i)
453 f[i * 2 + 0] += 1.0f;
454 f[i * 2 + 1] += 2.0f;
458 and suppose that vectors have 256 bits. The vectorized f accesses
459 will belong to one rgroup and the vectorized d access to another:
461 f rgroup: nS = 2, nV = 1, nL = 8
462 d rgroup: nS = 1, nV = 1, nL = 4
465 [ In this simple example the rgroups do correspond to the normal
466 SLP grouping scheme. ]
468 If only the first three lanes are active, the masks we need are:
470 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
471 d rgroup: 1 | 1 | 1 | 0
473 Here we can use a mask calculated for f's rgroup for d's, but not
476 Thus for each value of nV, it is enough to provide nV masks, with the
477 mask being calculated based on the highest nL (or, equivalently, based
478 on the highest nS) required by any rgroup with that nV. We therefore
479 represent the entire collection of masks as a two-level table, with the
480 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
481 the second being indexed by the mask index 0 <= i < nV. */
483 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
484 according to the description above. */
485 struct rgroup_controls
{
486 /* The largest nS for all rgroups that use these controls. */
487 unsigned int max_nscalars_per_iter
;
489 /* For the largest nS recorded above, the loop controls divide each scalar
490 into FACTOR equal-sized pieces. This is useful if we need to split
491 element-based accesses into byte-based accesses. */
494 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
495 For mask-based controls, it is the type of the masks in CONTROLS.
496 For length-based controls, it can be any vector type that has the
497 specified number of elements; the type of the elements doesn't matter. */
500 /* A vector of nV controls, in iteration order. */
504 typedef auto_vec
<rgroup_controls
> vec_loop_masks
;
506 typedef auto_vec
<rgroup_controls
> vec_loop_lens
;
508 typedef auto_vec
<std::pair
<data_reference
*, tree
> > drs_init_vec
;
510 /*-----------------------------------------------------------------*/
511 /* Info on vectorized loops. */
512 /*-----------------------------------------------------------------*/
513 typedef class _loop_vec_info
: public vec_info
{
515 _loop_vec_info (class loop
*, vec_info_shared
*);
518 /* The loop to which this info struct refers to. */
521 /* The loop basic blocks. */
524 /* Number of latch executions. */
526 /* Number of iterations. */
528 /* Number of iterations of the original loop. */
529 tree num_iters_unchanged
;
530 /* Condition under which this loop is analyzed and versioned. */
531 tree num_iters_assumptions
;
533 /* Threshold of number of iterations below which vectorization will not be
534 performed. It is calculated from MIN_PROFITABLE_ITERS and
535 param_min_vect_loop_bound. */
538 /* When applying loop versioning, the vector form should only be used
539 if the number of scalar iterations is >= this value, on top of all
540 the other requirements. Ignored when loop versioning is not being
542 poly_uint64 versioning_threshold
;
544 /* Unrolling factor */
545 poly_uint64 vectorization_factor
;
547 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
548 if there is no particular limit. */
549 unsigned HOST_WIDE_INT max_vectorization_factor
;
551 /* The masks that a fully-masked loop should use to avoid operating
552 on inactive scalars. */
553 vec_loop_masks masks
;
555 /* The lengths that a loop with length should use to avoid operating
556 on inactive scalars. */
559 /* Set of scalar conditions that have loop mask applied. */
560 scalar_cond_masked_set_type scalar_cond_masked_set
;
562 /* If we are using a loop mask to align memory addresses, this variable
563 contains the number of vector elements that we should skip in the
564 first iteration of the vector loop (i.e. the number of leading
565 elements that should be false in the first mask). */
566 tree mask_skip_niters
;
568 /* The type that the loop control IV should be converted to before
569 testing which of the VF scalars are active and inactive.
570 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
571 tree rgroup_compare_type
;
573 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
574 the loop should not be vectorized, if constant non-zero, simd_if_cond
575 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
576 should be versioned on that condition, using scalar loop if the condition
577 is false and vectorized loop otherwise. */
580 /* The type that the vector loop control IV should have when
581 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
584 /* Unknown DRs according to which loop was peeled. */
585 class dr_vec_info
*unaligned_dr
;
587 /* peeling_for_alignment indicates whether peeling for alignment will take
588 place, and what the peeling factor should be:
589 peeling_for_alignment = X means:
590 If X=0: Peeling for alignment will not be applied.
591 If X>0: Peel first X iterations.
592 If X=-1: Generate a runtime test to calculate the number of iterations
593 to be peeled, using the dataref recorded in the field
595 int peeling_for_alignment
;
597 /* The mask used to check the alignment of pointers or arrays. */
600 /* Data Dependence Relations defining address ranges that are candidates
601 for a run-time aliasing check. */
602 auto_vec
<ddr_p
> may_alias_ddrs
;
604 /* Data Dependence Relations defining address ranges together with segment
605 lengths from which the run-time aliasing check is built. */
606 auto_vec
<dr_with_seg_len_pair_t
> comp_alias_ddrs
;
608 /* Check that the addresses of each pair of objects is unequal. */
609 auto_vec
<vec_object_pair
> check_unequal_addrs
;
611 /* List of values that are required to be nonzero. This is used to check
612 whether things like "x[i * n] += 1;" are safe and eventually gets added
613 to the checks for lower bounds below. */
614 auto_vec
<tree
> check_nonzero
;
616 /* List of values that need to be checked for a minimum value. */
617 auto_vec
<vec_lower_bound
> lower_bounds
;
619 /* Statements in the loop that have data references that are candidates for a
620 runtime (loop versioning) misalignment check. */
621 auto_vec
<stmt_vec_info
> may_misalign_stmts
;
623 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
624 auto_vec
<stmt_vec_info
> reductions
;
626 /* All reduction chains in the loop, represented by the first
627 stmt in the chain. */
628 auto_vec
<stmt_vec_info
> reduction_chains
;
630 /* Cost vector for a single scalar iteration. */
631 auto_vec
<stmt_info_for_cost
> scalar_cost_vec
;
633 /* Map of IV base/step expressions to inserted name in the preheader. */
634 hash_map
<tree_operand_hash
, tree
> *ivexpr_map
;
636 /* Map of OpenMP "omp simd array" scan variables to corresponding
637 rhs of the store of the initializer. */
638 hash_map
<tree
, tree
> *scan_map
;
640 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
641 applied to the loop, i.e., no unrolling is needed, this is 1. */
642 poly_uint64 slp_unrolling_factor
;
644 /* Cost of a single scalar iteration. */
645 int single_scalar_iteration_cost
;
647 /* The cost of the vector prologue and epilogue, including peeled
648 iterations and set-up code. */
649 int vec_outside_cost
;
651 /* The cost of the vector loop body. */
654 /* Is the loop vectorizable? */
657 /* Records whether we still have the option of vectorizing this loop
658 using partially-populated vectors; in other words, whether it is
659 still possible for one iteration of the vector loop to handle
660 fewer than VF scalars. */
661 bool can_use_partial_vectors_p
;
663 /* True if we've decided to use partially-populated vectors, so that
664 the vector loop can handle fewer than VF scalars. */
665 bool using_partial_vectors_p
;
667 /* True if we've decided to use partially-populated vectors for the
669 bool epil_using_partial_vectors_p
;
671 /* When we have grouped data accesses with gaps, we may introduce invalid
672 memory accesses. We peel the last iteration of the loop to prevent
674 bool peeling_for_gaps
;
676 /* When the number of iterations is not a multiple of the vector size
677 we need to peel off iterations at the end to form an epilogue loop. */
678 bool peeling_for_niter
;
680 /* True if there are no loop carried data dependencies in the loop.
681 If loop->safelen <= 1, then this is always true, either the loop
682 didn't have any loop carried data dependencies, or the loop is being
683 vectorized guarded with some runtime alias checks, or couldn't
684 be vectorized at all, but then this field shouldn't be used.
685 For loop->safelen >= 2, the user has asserted that there are no
686 backward dependencies, but there still could be loop carried forward
687 dependencies in such loops. This flag will be false if normal
688 vectorizer data dependency analysis would fail or require versioning
689 for alias, but because of loop->safelen >= 2 it has been vectorized
690 even without versioning for alias. E.g. in:
692 for (int i = 0; i < m; i++)
694 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
695 DTRT even for k > 0 && k < m, but without safelen we would not
696 vectorize this, so this field would be false. */
697 bool no_data_dependencies
;
699 /* Mark loops having masked stores. */
702 /* Queued scaling factor for the scalar loop. */
703 profile_probability scalar_loop_scaling
;
705 /* If if-conversion versioned this loop before conversion, this is the
706 loop version without if-conversion. */
707 class loop
*scalar_loop
;
709 /* For loops being epilogues of already vectorized loops
710 this points to the original vectorized loop. Otherwise NULL. */
711 _loop_vec_info
*orig_loop_info
;
713 /* Used to store loop_vec_infos of epilogues of this loop during
715 vec
<_loop_vec_info
*> epilogue_vinfos
;
719 /* Access Functions. */
720 #define LOOP_VINFO_LOOP(L) (L)->loop
721 #define LOOP_VINFO_BBS(L) (L)->bbs
722 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
723 #define LOOP_VINFO_NITERS(L) (L)->num_iters
724 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
725 prologue peeling retain total unchanged scalar loop iterations for
727 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
728 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
729 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
730 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
731 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
732 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
733 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
734 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
735 (L)->epil_using_partial_vectors_p
736 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
737 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
738 #define LOOP_VINFO_MASKS(L) (L)->masks
739 #define LOOP_VINFO_LENS(L) (L)->lens
740 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
741 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
742 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
743 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
744 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
745 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
746 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
747 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
748 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
749 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
750 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
751 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
752 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
753 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
754 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
755 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
756 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
757 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
758 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
759 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
760 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
761 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
762 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
763 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
764 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
765 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
766 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
767 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
768 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
769 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
770 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
771 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
773 #define LOOP_VINFO_FULLY_MASKED_P(L) \
774 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
775 && !LOOP_VINFO_MASKS (L).is_empty ())
777 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
778 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
779 && !LOOP_VINFO_LENS (L).is_empty ())
781 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
782 ((L)->may_misalign_stmts.length () > 0)
783 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
784 ((L)->comp_alias_ddrs.length () > 0 \
785 || (L)->check_unequal_addrs.length () > 0 \
786 || (L)->lower_bounds.length () > 0)
787 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
788 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
789 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
790 (LOOP_VINFO_SIMD_IF_COND (L))
791 #define LOOP_REQUIRES_VERSIONING(L) \
792 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
793 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
794 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
795 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
797 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
798 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
800 #define LOOP_VINFO_EPILOGUE_P(L) \
801 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
803 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
804 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
806 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
807 value signifies success, and a NULL value signifies failure, supporting
808 propagating an opt_problem * describing the failure back up the call
810 typedef opt_pointer_wrapper
<loop_vec_info
> opt_loop_vec_info
;
812 static inline loop_vec_info
813 loop_vec_info_for_loop (class loop
*loop
)
815 return (loop_vec_info
) loop
->aux
;
818 typedef class _bb_vec_info
: public vec_info
822 /* GIMPLE statement iterator going from region_begin to region_end. */
824 struct const_iterator
826 const_iterator (gimple_stmt_iterator _gsi
) : gsi (_gsi
) {}
828 const const_iterator
&
831 gsi_next (&gsi
); return *this;
834 gimple
*operator* () const { return gsi_stmt (gsi
); }
837 operator== (const const_iterator
&other
) const
839 return gsi_stmt (gsi
) == gsi_stmt (other
.gsi
);
843 operator!= (const const_iterator
&other
) const
845 return !(*this == other
);
848 gimple_stmt_iterator gsi
;
851 /* GIMPLE statement iterator going from region_end to region_begin. */
853 struct const_reverse_iterator
855 const_reverse_iterator (gimple_stmt_iterator _gsi
) : gsi (_gsi
) {}
857 const const_reverse_iterator
&
860 gsi_prev (&gsi
); return *this;
863 gimple
*operator* () const { return gsi_stmt (gsi
); }
866 operator== (const const_reverse_iterator
&other
) const
868 return gsi_stmt (gsi
) == gsi_stmt (other
.gsi
);
872 operator!= (const const_reverse_iterator
&other
) const
874 return !(*this == other
);
877 gimple_stmt_iterator gsi
;
880 _bb_vec_info (gimple_stmt_iterator
, gimple_stmt_iterator
, vec_info_shared
*);
883 /* Returns iterator_range for range-based loop. */
885 iterator_range
<const_iterator
>
888 return iterator_range
<const_iterator
> (region_begin
, region_end
);
891 /* Returns iterator_range for range-based loop in a reverse order. */
893 iterator_range
<const_reverse_iterator
>
894 reverse_region_stmts ()
896 const_reverse_iterator begin
= region_end
;
898 begin
= const_reverse_iterator (gsi_last_bb (gsi_bb (region_end
)));
902 const_reverse_iterator end
= region_begin
;
903 return iterator_range
<const_reverse_iterator
> (begin
, ++end
);
907 gimple_stmt_iterator region_begin
;
908 gimple_stmt_iterator region_end
;
911 #define BB_VINFO_BB(B) (B)->bb
912 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
913 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
914 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
915 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
916 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
918 static inline bb_vec_info
919 vec_info_for_bb (basic_block bb
)
921 return (bb_vec_info
) bb
->aux
;
924 /*-----------------------------------------------------------------*/
925 /* Info on vectorized defs. */
926 /*-----------------------------------------------------------------*/
927 enum stmt_vec_info_type
{
928 undef_vec_info_type
= 0,
934 call_simd_clone_vec_info_type
,
935 assignment_vec_info_type
,
936 condition_vec_info_type
,
937 comparison_vec_info_type
,
940 type_promotion_vec_info_type
,
941 type_demotion_vec_info_type
,
942 type_conversion_vec_info_type
,
945 loop_exit_ctrl_vec_info_type
948 /* Indicates whether/how a variable is used in the scope of loop/basic
951 vect_unused_in_scope
= 0,
953 /* The def is only used outside the loop. */
955 /* The def is in the inner loop, and the use is in the outer loop, and the
956 use is a reduction stmt. */
957 vect_used_in_outer_by_reduction
,
958 /* The def is in the inner loop, and the use is in the outer loop (and is
959 not part of reduction). */
962 /* defs that feed computations that end up (only) in a reduction. These
963 defs may be used by non-reduction stmts, but eventually, any
964 computations/values that are affected by these defs are used to compute
965 a reduction (i.e. don't get stored to memory, for example). We use this
966 to identify computations that we can change the order in which they are
968 vect_used_by_reduction
,
973 /* The type of vectorization that can be applied to the stmt: regular loop-based
974 vectorization; pure SLP - the stmt is a part of SLP instances and does not
975 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
976 a part of SLP instance and also must be loop-based vectorized, since it has
977 uses outside SLP sequences.
979 In the loop context the meanings of pure and hybrid SLP are slightly
980 different. By saying that pure SLP is applied to the loop, we mean that we
981 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
982 vectorized without doing any conceptual unrolling, cause we don't pack
983 together stmts from different iterations, only within a single iteration.
984 Loop hybrid SLP means that we exploit both intra-iteration and
985 inter-iteration parallelism (e.g., number of elements in the vector is 4
986 and the slp-group-size is 2, in which case we don't have enough parallelism
987 within an iteration, so we obtain the rest of the parallelism from subsequent
988 iterations by unrolling the loop by 2). */
995 /* Says whether a statement is a load, a store of a vectorized statement
996 result, or a store of an invariant value. */
997 enum vec_load_store_type
{
1003 /* Describes how we're going to vectorize an individual load or store,
1004 or a group of loads or stores. */
1005 enum vect_memory_access_type
{
1006 /* An access to an invariant address. This is used only for loads. */
1009 /* A simple contiguous access. */
1012 /* A contiguous access that goes down in memory rather than up,
1013 with no additional permutation. This is used only for stores
1015 VMAT_CONTIGUOUS_DOWN
,
1017 /* A simple contiguous access in which the elements need to be permuted
1018 after loading or before storing. Only used for loop vectorization;
1019 SLP uses separate permutes. */
1020 VMAT_CONTIGUOUS_PERMUTE
,
1022 /* A simple contiguous access in which the elements need to be reversed
1023 after loading or before storing. */
1024 VMAT_CONTIGUOUS_REVERSE
,
1026 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1027 VMAT_LOAD_STORE_LANES
,
1029 /* An access in which each scalar element is loaded or stored
1033 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1034 SLP accesses. Each unrolled iteration uses a contiguous load
1035 or store for the whole group, but the groups from separate iterations
1036 are combined in the same way as for VMAT_ELEMENTWISE. */
1039 /* The access uses gather loads or scatter stores. */
1045 /* The data reference itself. */
1047 /* The statement that contains the data reference. */
1049 /* The misalignment in bytes of the reference, or -1 if not known. */
1051 /* The byte alignment that we'd ideally like the reference to have,
1052 and the value that misalignment is measured against. */
1053 poly_uint64 target_alignment
;
1054 /* If true the alignment of base_decl needs to be increased. */
1055 bool base_misaligned
;
1058 /* Stores current vectorized loop's offset. To be added to the DR's
1059 offset to calculate current offset of data reference. */
1063 typedef struct data_reference
*dr_p
;
1065 class _stmt_vec_info
{
1068 enum stmt_vec_info_type type
;
1070 /* Indicates whether this stmts is part of a computation whose result is
1071 used outside the loop. */
1074 /* Stmt is part of some pattern (computation idiom) */
1077 /* True if the statement was created during pattern recognition as
1078 part of the replacement for RELATED_STMT. This implies that the
1079 statement isn't part of any basic block, although for convenience
1080 its gimple_bb is the same as for RELATED_STMT. */
1081 bool pattern_stmt_p
;
1083 /* Is this statement vectorizable or should it be skipped in (partial)
1087 /* The stmt to which this info struct refers to. */
1090 /* The vector type to be used for the LHS of this statement. */
1093 /* The vectorized stmts. */
1094 vec
<gimple
*> vec_stmts
;
1096 /* The following is relevant only for stmts that contain a non-scalar
1097 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1098 at most one such data-ref. */
1102 /* Information about the data-ref relative to this loop
1103 nest (the loop that is being considered for vectorization). */
1104 innermost_loop_behavior dr_wrt_vec_loop
;
1106 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1107 this information is still available in vect_update_ivs_after_vectorizer
1108 where we may not be able to re-analyze the PHI nodes evolution as
1109 peeling for the prologue loop can make it unanalyzable. The evolution
1110 part is still correct after peeling, but the base may have changed from
1111 the version here. */
1112 tree loop_phi_evolution_base_unchanged
;
1113 tree loop_phi_evolution_part
;
1115 /* Used for various bookkeeping purposes, generally holding a pointer to
1116 some other stmt S that is in some way "related" to this stmt.
1117 Current use of this field is:
1118 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1119 true): S is the "pattern stmt" that represents (and replaces) the
1120 sequence of stmts that constitutes the pattern. Similarly, the
1121 related_stmt of the "pattern stmt" points back to this stmt (which is
1122 the last stmt in the original sequence of stmts that constitutes the
1124 stmt_vec_info related_stmt
;
1126 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1127 The sequence is attached to the original statement rather than the
1128 pattern statement. */
1129 gimple_seq pattern_def_seq
;
1131 /* List of datarefs that are known to have the same alignment as the dataref
1133 vec
<dr_p
> same_align_refs
;
1135 /* Selected SIMD clone's function info. First vector element
1136 is SIMD clone's function decl, followed by a pair of trees (base + step)
1137 for linear arguments (pair of NULLs for other arguments). */
1138 vec
<tree
> simd_clone_info
;
1140 /* Classify the def of this stmt. */
1141 enum vect_def_type def_type
;
1143 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1144 enum slp_vect_type slp_type
;
1146 /* Interleaving and reduction chains info. */
1147 /* First element in the group. */
1148 stmt_vec_info first_element
;
1149 /* Pointer to the next element in the group. */
1150 stmt_vec_info next_element
;
1151 /* The size of the group. */
1153 /* For stores, number of stores from this group seen. We vectorize the last
1155 unsigned int store_count
;
1156 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1160 /* The minimum negative dependence distance this stmt participates in
1162 unsigned int min_neg_dist
;
1164 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1165 of the loop induction variable and computation of array indexes. relevant
1166 indicates whether the stmt needs to be vectorized. */
1167 enum vect_relevant relevant
;
1169 /* For loads if this is a gather, for stores if this is a scatter. */
1170 bool gather_scatter_p
;
1172 /* True if this is an access with loop-invariant stride. */
1175 /* For both loads and stores. */
1176 unsigned simd_lane_access_p
: 3;
1178 /* Classifies how the load or store is going to be implemented
1179 for loop vectorization. */
1180 vect_memory_access_type memory_access_type
;
1182 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1183 tree induc_cond_initial_val
;
1185 /* If not NULL the value to be added to compute final reduction value. */
1186 tree reduc_epilogue_adjustment
;
1188 /* On a reduction PHI the reduction type as detected by
1189 vect_is_simple_reduction and vectorizable_reduction. */
1190 enum vect_reduction_type reduc_type
;
1192 /* The original reduction code, to be used in the epilogue. */
1193 enum tree_code reduc_code
;
1194 /* An internal function we should use in the epilogue. */
1195 internal_fn reduc_fn
;
1197 /* On a stmt participating in the reduction the index of the operand
1198 on the reduction SSA cycle. */
1201 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1202 On the def returned by vect_force_simple_reduction the
1203 corresponding PHI. */
1204 stmt_vec_info reduc_def
;
1206 /* The vector input type relevant for reduction vectorization. */
1207 tree reduc_vectype_in
;
1209 /* The vector type for performing the actual reduction. */
1212 /* Whether we force a single cycle PHI during reduction vectorization. */
1213 bool force_single_cycle
;
1215 /* Whether on this stmt reduction meta is recorded. */
1218 /* The number of scalar stmt references from active SLP instances. */
1219 unsigned int num_slp_uses
;
1221 /* If nonzero, the lhs of the statement could be truncated to this
1222 many bits without affecting any users of the result. */
1223 unsigned int min_output_precision
;
1225 /* If nonzero, all non-boolean input operands have the same precision,
1226 and they could each be truncated to this many bits without changing
1228 unsigned int min_input_precision
;
1230 /* If OPERATION_BITS is nonzero, the statement could be performed on
1231 an integer with the sign and number of bits given by OPERATION_SIGN
1232 and OPERATION_BITS without changing the result. */
1233 unsigned int operation_precision
;
1234 signop operation_sign
;
1236 /* If the statement produces a boolean result, this value describes
1237 how we should choose the associated vector type. The possible
1240 - an integer precision N if we should use the vector mask type
1241 associated with N-bit integers. This is only used if all relevant
1242 input booleans also want the vector mask type for N-bit integers,
1243 or if we can convert them into that form by pattern-matching.
1245 - ~0U if we considered choosing a vector mask type but decided
1246 to treat the boolean as a normal integer type instead.
1248 - 0 otherwise. This means either that the operation isn't one that
1249 could have a vector mask type (and so should have a normal vector
1250 type instead) or that we simply haven't made a choice either way. */
1251 unsigned int mask_precision
;
1253 /* True if this is only suitable for SLP vectorization. */
1254 bool slp_vect_only_p
;
1257 /* Information about a gather/scatter call. */
1258 struct gather_scatter_info
{
1259 /* The internal function to use for the gather/scatter operation,
1260 or IFN_LAST if a built-in function should be used instead. */
1263 /* The FUNCTION_DECL for the built-in gather/scatter function,
1264 or null if an internal function should be used instead. */
1267 /* The loop-invariant base value. */
1270 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1273 /* Each offset element should be multiplied by this amount before
1274 being added to the base. */
1277 /* The definition type for the vectorized offset. */
1278 enum vect_def_type offset_dt
;
1280 /* The type of the vectorized offset. */
1281 tree offset_vectype
;
1283 /* The type of the scalar elements after loading or before storing. */
1286 /* The type of the scalar elements being loaded or stored. */
1290 /* Access Functions. */
1291 #define STMT_VINFO_TYPE(S) (S)->type
1292 #define STMT_VINFO_STMT(S) (S)->stmt
1293 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1294 #define STMT_VINFO_LIVE_P(S) (S)->live
1295 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1296 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1297 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1298 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1299 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1300 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1301 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1302 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1303 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1304 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1305 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1306 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1308 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1309 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1310 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1311 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1312 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1313 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1314 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1315 (S)->dr_wrt_vec_loop.base_misalignment
1316 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1317 (S)->dr_wrt_vec_loop.offset_alignment
1318 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1319 (S)->dr_wrt_vec_loop.step_alignment
1321 #define STMT_VINFO_DR_INFO(S) \
1322 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1324 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1325 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1326 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1327 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1328 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1329 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1330 #define STMT_VINFO_GROUPED_ACCESS(S) \
1331 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1332 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1333 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1334 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1335 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1336 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1337 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1338 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1339 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1340 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1341 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1342 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1344 #define DR_GROUP_FIRST_ELEMENT(S) \
1345 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1346 #define DR_GROUP_NEXT_ELEMENT(S) \
1347 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1348 #define DR_GROUP_SIZE(S) \
1349 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1350 #define DR_GROUP_STORE_COUNT(S) \
1351 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1352 #define DR_GROUP_GAP(S) \
1353 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1355 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1356 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1357 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1358 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1359 #define REDUC_GROUP_SIZE(S) \
1360 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1362 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1364 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1365 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1366 #define STMT_SLP_TYPE(S) (S)->slp_type
1368 #define VECT_MAX_COST 1000
1370 /* The maximum number of intermediate steps required in multi-step type
1372 #define MAX_INTERM_CVT_STEPS 3
1374 #define MAX_VECTORIZATION_FACTOR INT_MAX
1376 /* Nonzero if TYPE represents a (scalar) boolean type or type
1377 in the middle-end compatible with it (unsigned precision 1 integral
1378 types). Used to determine which types should be vectorized as
1379 VECTOR_BOOLEAN_TYPE_P. */
1381 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1382 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1383 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1384 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1385 && TYPE_PRECISION (TYPE) == 1 \
1386 && TYPE_UNSIGNED (TYPE)))
1389 nested_in_vect_loop_p (class loop
*loop
, stmt_vec_info stmt_info
)
1392 && (loop
->inner
== (gimple_bb (stmt_info
->stmt
))->loop_father
));
1395 /* Return true if STMT_INFO should produce a vector mask type rather than
1396 a normal nonmask type. */
1399 vect_use_mask_type_p (stmt_vec_info stmt_info
)
1401 return stmt_info
->mask_precision
&& stmt_info
->mask_precision
!= ~0U;
1404 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1408 is_pattern_stmt_p (stmt_vec_info stmt_info
)
1410 return stmt_info
->pattern_stmt_p
;
1413 /* If STMT_INFO is a pattern statement, return the statement that it
1414 replaces, otherwise return STMT_INFO itself. */
1416 inline stmt_vec_info
1417 vect_orig_stmt (stmt_vec_info stmt_info
)
1419 if (is_pattern_stmt_p (stmt_info
))
1420 return STMT_VINFO_RELATED_STMT (stmt_info
);
1424 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1426 static inline stmt_vec_info
1427 get_later_stmt (stmt_vec_info stmt1_info
, stmt_vec_info stmt2_info
)
1429 if (gimple_uid (vect_orig_stmt (stmt1_info
)->stmt
)
1430 > gimple_uid (vect_orig_stmt (stmt2_info
)->stmt
))
1436 /* If STMT_INFO has been replaced by a pattern statement, return the
1437 replacement statement, otherwise return STMT_INFO itself. */
1439 inline stmt_vec_info
1440 vect_stmt_to_vectorize (stmt_vec_info stmt_info
)
1442 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
1443 return STMT_VINFO_RELATED_STMT (stmt_info
);
1447 /* Return true if BB is a loop header. */
1450 is_loop_header_bb_p (basic_block bb
)
1452 if (bb
== (bb
->loop_father
)->header
)
1454 gcc_checking_assert (EDGE_COUNT (bb
->preds
) == 1);
1458 /* Return pow2 (X). */
1465 for (i
= 0; i
< x
; i
++)
1471 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1474 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost
,
1475 tree vectype
, int misalign
)
1477 return targetm
.vectorize
.builtin_vectorization_cost (type_of_cost
,
1481 /* Get cost by calling cost target builtin. */
1484 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost
)
1486 return builtin_vectorization_cost (type_of_cost
, NULL
, 0);
1489 /* Alias targetm.vectorize.init_cost. */
1491 static inline void *
1492 init_cost (class loop
*loop_info
)
1494 return targetm
.vectorize
.init_cost (loop_info
);
1497 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt
,
1498 stmt_vec_info
, tree
, int, unsigned,
1499 enum vect_cost_model_location
);
1501 /* Alias targetm.vectorize.add_stmt_cost. */
1503 static inline unsigned
1504 add_stmt_cost (vec_info
*vinfo
, void *data
, int count
,
1505 enum vect_cost_for_stmt kind
,
1506 stmt_vec_info stmt_info
, tree vectype
, int misalign
,
1507 enum vect_cost_model_location where
)
1509 unsigned cost
= targetm
.vectorize
.add_stmt_cost (vinfo
, data
, count
, kind
,
1512 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1513 dump_stmt_cost (dump_file
, data
, count
, kind
, stmt_info
, vectype
, misalign
,
1518 /* Alias targetm.vectorize.finish_cost. */
1521 finish_cost (void *data
, unsigned *prologue_cost
,
1522 unsigned *body_cost
, unsigned *epilogue_cost
)
1524 targetm
.vectorize
.finish_cost (data
, prologue_cost
, body_cost
, epilogue_cost
);
1527 /* Alias targetm.vectorize.destroy_cost_data. */
1530 destroy_cost_data (void *data
)
1532 targetm
.vectorize
.destroy_cost_data (data
);
1536 add_stmt_costs (vec_info
*vinfo
, void *data
, stmt_vector_for_cost
*cost_vec
)
1538 stmt_info_for_cost
*cost
;
1540 FOR_EACH_VEC_ELT (*cost_vec
, i
, cost
)
1541 add_stmt_cost (vinfo
, data
, cost
->count
, cost
->kind
, cost
->stmt_info
,
1542 cost
->vectype
, cost
->misalign
, cost
->where
);
1545 /*-----------------------------------------------------------------*/
1546 /* Info on data references alignment. */
1547 /*-----------------------------------------------------------------*/
1548 #define DR_MISALIGNMENT_UNKNOWN (-1)
1549 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1552 set_dr_misalignment (dr_vec_info
*dr_info
, int val
)
1554 dr_info
->misalignment
= val
;
1558 dr_misalignment (dr_vec_info
*dr_info
)
1560 int misalign
= dr_info
->misalignment
;
1561 gcc_assert (misalign
!= DR_MISALIGNMENT_UNINITIALIZED
);
1565 /* Reflects actual alignment of first access in the vectorized loop,
1566 taking into account peeling/versioning if applied. */
1567 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1568 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1570 /* Only defined once DR_MISALIGNMENT is defined. */
1571 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1573 /* Return true if data access DR_INFO is aligned to its target alignment
1574 (which may be less than a full vector). */
1577 aligned_access_p (dr_vec_info
*dr_info
)
1579 return (DR_MISALIGNMENT (dr_info
) == 0);
1582 /* Return TRUE if the alignment of the data access is known, and FALSE
1586 known_alignment_for_access_p (dr_vec_info
*dr_info
)
1588 return (DR_MISALIGNMENT (dr_info
) != DR_MISALIGNMENT_UNKNOWN
);
1591 /* Return the minimum alignment in bytes that the vectorized version
1592 of DR_INFO is guaranteed to have. */
1594 static inline unsigned int
1595 vect_known_alignment_in_bytes (dr_vec_info
*dr_info
)
1597 if (DR_MISALIGNMENT (dr_info
) == DR_MISALIGNMENT_UNKNOWN
)
1598 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info
->dr
)));
1599 if (DR_MISALIGNMENT (dr_info
) == 0)
1600 return known_alignment (DR_TARGET_ALIGNMENT (dr_info
));
1601 return DR_MISALIGNMENT (dr_info
) & -DR_MISALIGNMENT (dr_info
);
1604 /* Return the behavior of DR_INFO with respect to the vectorization context
1605 (which for outer loop vectorization might not be the behavior recorded
1606 in DR_INFO itself). */
1608 static inline innermost_loop_behavior
*
1609 vect_dr_behavior (vec_info
*vinfo
, dr_vec_info
*dr_info
)
1611 stmt_vec_info stmt_info
= dr_info
->stmt
;
1612 loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
);
1613 if (loop_vinfo
== NULL
1614 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo
), stmt_info
))
1615 return &DR_INNERMOST (dr_info
->dr
);
1617 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info
);
1620 /* Return the offset calculated by adding the offset of this DR_INFO to the
1621 corresponding data_reference's offset. If CHECK_OUTER then use
1622 vect_dr_behavior to select the appropriate data_reference to use. */
1625 get_dr_vinfo_offset (vec_info
*vinfo
,
1626 dr_vec_info
*dr_info
, bool check_outer
= false)
1628 innermost_loop_behavior
*base
;
1630 base
= vect_dr_behavior (vinfo
, dr_info
);
1632 base
= &dr_info
->dr
->innermost
;
1634 tree offset
= base
->offset
;
1636 if (!dr_info
->offset
)
1639 offset
= fold_convert (sizetype
, offset
);
1640 return fold_build2 (PLUS_EXPR
, TREE_TYPE (dr_info
->offset
), offset
,
1645 /* Return true if the vect cost model is unlimited. */
1647 unlimited_cost_model (loop_p loop
)
1649 if (loop
!= NULL
&& loop
->force_vectorize
1650 && flag_simd_cost_model
!= VECT_COST_MODEL_DEFAULT
)
1651 return flag_simd_cost_model
== VECT_COST_MODEL_UNLIMITED
;
1652 return (flag_vect_cost_model
== VECT_COST_MODEL_UNLIMITED
);
1655 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1656 if the first iteration should use a partial mask in order to achieve
1660 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo
)
1662 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
1663 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
));
1666 /* Return the number of vectors of type VECTYPE that are needed to get
1667 NUNITS elements. NUNITS should be based on the vectorization factor,
1668 so it is always a known multiple of the number of elements in VECTYPE. */
1670 static inline unsigned int
1671 vect_get_num_vectors (poly_uint64 nunits
, tree vectype
)
1673 return exact_div (nunits
, TYPE_VECTOR_SUBPARTS (vectype
)).to_constant ();
1676 /* Return the number of copies needed for loop vectorization when
1677 a statement operates on vectors of type VECTYPE. This is the
1678 vectorization factor divided by the number of elements in
1679 VECTYPE and is always known at compile time. */
1681 static inline unsigned int
1682 vect_get_num_copies (loop_vec_info loop_vinfo
, tree vectype
)
1684 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo
), vectype
);
1687 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1688 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1691 vect_update_max_nunits (poly_uint64
*max_nunits
, poly_uint64 nunits
)
1693 /* All unit counts have the form vec_info::vector_size * X for some
1694 rational X, so two unit sizes must have a common multiple.
1695 Everything is a multiple of the initial value of 1. */
1696 *max_nunits
= force_common_multiple (*max_nunits
, nunits
);
1699 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1700 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1701 if we haven't yet recorded any vector types. */
1704 vect_update_max_nunits (poly_uint64
*max_nunits
, tree vectype
)
1706 vect_update_max_nunits (max_nunits
, TYPE_VECTOR_SUBPARTS (vectype
));
1709 /* Return the vectorization factor that should be used for costing
1710 purposes while vectorizing the loop described by LOOP_VINFO.
1711 Pick a reasonable estimate if the vectorization factor isn't
1712 known at compile time. */
1714 static inline unsigned int
1715 vect_vf_for_cost (loop_vec_info loop_vinfo
)
1717 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
1720 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1721 Pick a reasonable estimate if the exact number isn't known at
1724 static inline unsigned int
1725 vect_nunits_for_cost (tree vec_type
)
1727 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type
));
1730 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1732 static inline unsigned HOST_WIDE_INT
1733 vect_max_vf (loop_vec_info loop_vinfo
)
1735 unsigned HOST_WIDE_INT vf
;
1736 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo
).is_constant (&vf
))
1738 return MAX_VECTORIZATION_FACTOR
;
1741 /* Return the size of the value accessed by unvectorized data reference
1742 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1743 for the associated gimple statement, since that guarantees that DR_INFO
1744 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1745 here includes things like V1SI, which can be vectorized in the same way
1749 vect_get_scalar_dr_size (dr_vec_info
*dr_info
)
1751 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info
->dr
))));
1754 /* Return true if LOOP_VINFO requires a runtime check for whether the
1755 vector loop is profitable. */
1758 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo
)
1760 unsigned int th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
1761 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1762 && th
>= vect_vf_for_cost (loop_vinfo
));
1765 /* Source location + hotness information. */
1766 extern dump_user_location_t vect_location
;
1768 /* A macro for calling:
1769 dump_begin_scope (MSG, vect_location);
1770 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1773 once the object goes out of scope, thus capturing the nesting of
1776 These scopes affect dump messages within them: dump messages at the
1777 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1778 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1780 #define DUMP_VECT_SCOPE(MSG) \
1781 AUTO_DUMP_SCOPE (MSG, vect_location)
1783 /* A sentinel class for ensuring that the "vect_location" global gets
1784 reset at the end of a scope.
1786 The "vect_location" global is used during dumping and contains a
1787 location_t, which could contain references to a tree block via the
1788 ad-hoc data. This data is used for tracking inlining information,
1789 but it's not a GC root; it's simply assumed that such locations never
1790 get accessed if the blocks are optimized away.
1792 Hence we need to ensure that such locations are purged at the end
1793 of any operations using them (e.g. via this class). */
1795 class auto_purge_vect_location
1798 ~auto_purge_vect_location ();
1801 /*-----------------------------------------------------------------*/
1802 /* Function prototypes. */
1803 /*-----------------------------------------------------------------*/
1805 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1806 in tree-vect-loop-manip.c. */
1807 extern void vect_set_loop_condition (class loop
*, loop_vec_info
,
1808 tree
, tree
, tree
, bool);
1809 extern bool slpeel_can_duplicate_loop_p (const class loop
*, const_edge
);
1810 class loop
*slpeel_tree_duplicate_loop_to_edge_cfg (class loop
*,
1811 class loop
*, edge
);
1812 class loop
*vect_loop_versioning (loop_vec_info
, gimple
*);
1813 extern class loop
*vect_do_peeling (loop_vec_info
, tree
, tree
,
1814 tree
*, tree
*, tree
*, int, bool, bool,
1816 extern void vect_prepare_for_masked_peels (loop_vec_info
);
1817 extern dump_user_location_t
find_loop_location (class loop
*);
1818 extern bool vect_can_advance_ivs_p (loop_vec_info
);
1819 extern void vect_update_inits_of_drs (loop_vec_info
, tree
, tree_code
);
1821 /* In tree-vect-stmts.c. */
1822 extern tree
get_related_vectype_for_scalar_type (machine_mode
, tree
,
1824 extern tree
get_vectype_for_scalar_type (vec_info
*, tree
, unsigned int = 0);
1825 extern tree
get_vectype_for_scalar_type (vec_info
*, tree
, slp_tree
);
1826 extern tree
get_mask_type_for_scalar_type (vec_info
*, tree
, unsigned int = 0);
1827 extern tree
get_same_sized_vectype (tree
, tree
);
1828 extern bool vect_chooses_same_modes_p (vec_info
*, machine_mode
);
1829 extern bool vect_get_loop_mask_type (loop_vec_info
);
1830 extern bool vect_is_simple_use (tree
, vec_info
*, enum vect_def_type
*,
1831 stmt_vec_info
* = NULL
, gimple
** = NULL
);
1832 extern bool vect_is_simple_use (tree
, vec_info
*, enum vect_def_type
*,
1833 tree
*, stmt_vec_info
* = NULL
,
1835 extern bool vect_is_simple_use (vec_info
*, stmt_vec_info
, slp_tree
,
1836 unsigned, tree
*, slp_tree
*,
1837 enum vect_def_type
*,
1838 tree
*, stmt_vec_info
* = NULL
);
1839 extern bool vect_maybe_update_slp_op_vectype (slp_tree
, tree
);
1840 extern bool supportable_widening_operation (vec_info
*,
1841 enum tree_code
, stmt_vec_info
,
1842 tree
, tree
, enum tree_code
*,
1843 enum tree_code
*, int *,
1845 extern bool supportable_narrowing_operation (enum tree_code
, tree
, tree
,
1846 enum tree_code
*, int *,
1849 extern unsigned record_stmt_cost (stmt_vector_for_cost
*, int,
1850 enum vect_cost_for_stmt
, stmt_vec_info
,
1851 tree
, int, enum vect_cost_model_location
);
1853 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1855 static inline unsigned
1856 record_stmt_cost (stmt_vector_for_cost
*body_cost_vec
, int count
,
1857 enum vect_cost_for_stmt kind
, stmt_vec_info stmt_info
,
1858 int misalign
, enum vect_cost_model_location where
)
1860 return record_stmt_cost (body_cost_vec
, count
, kind
, stmt_info
,
1861 STMT_VINFO_VECTYPE (stmt_info
), misalign
, where
);
1864 extern void vect_finish_replace_stmt (vec_info
*, stmt_vec_info
, gimple
*);
1865 extern void vect_finish_stmt_generation (vec_info
*, stmt_vec_info
, gimple
*,
1866 gimple_stmt_iterator
*);
1867 extern opt_result
vect_mark_stmts_to_be_vectorized (loop_vec_info
, bool *);
1868 extern tree
vect_get_store_rhs (stmt_vec_info
);
1869 void vect_get_vec_defs_for_operand (vec_info
*vinfo
, stmt_vec_info
, unsigned,
1870 tree op
, vec
<tree
> *, tree
= NULL
);
1871 void vect_get_vec_defs (vec_info
*, stmt_vec_info
, slp_tree
, unsigned,
1873 tree
= NULL
, vec
<tree
> * = NULL
,
1874 tree
= NULL
, vec
<tree
> * = NULL
,
1875 tree
= NULL
, vec
<tree
> * = NULL
);
1876 void vect_get_vec_defs (vec_info
*, stmt_vec_info
, slp_tree
, unsigned,
1877 tree
, vec
<tree
> *, tree
,
1878 tree
= NULL
, vec
<tree
> * = NULL
, tree
= NULL
,
1879 tree
= NULL
, vec
<tree
> * = NULL
, tree
= NULL
,
1880 tree
= NULL
, vec
<tree
> * = NULL
, tree
= NULL
);
1881 extern tree
vect_init_vector (vec_info
*, stmt_vec_info
, tree
, tree
,
1882 gimple_stmt_iterator
*);
1883 extern tree
vect_get_slp_vect_def (slp_tree
, unsigned);
1884 extern bool vect_transform_stmt (vec_info
*, stmt_vec_info
,
1885 gimple_stmt_iterator
*,
1886 slp_tree
, slp_instance
);
1887 extern void vect_remove_stores (vec_info
*, stmt_vec_info
);
1888 extern bool vect_nop_conversion_p (stmt_vec_info
);
1889 extern opt_result
vect_analyze_stmt (vec_info
*, stmt_vec_info
, bool *,
1891 slp_instance
, stmt_vector_for_cost
*);
1892 extern void vect_get_load_cost (vec_info
*, stmt_vec_info
, int, bool,
1893 unsigned int *, unsigned int *,
1894 stmt_vector_for_cost
*,
1895 stmt_vector_for_cost
*, bool);
1896 extern void vect_get_store_cost (vec_info
*, stmt_vec_info
, int,
1897 unsigned int *, stmt_vector_for_cost
*);
1898 extern bool vect_supportable_shift (vec_info
*, enum tree_code
, tree
);
1899 extern tree
vect_gen_perm_mask_any (tree
, const vec_perm_indices
&);
1900 extern tree
vect_gen_perm_mask_checked (tree
, const vec_perm_indices
&);
1901 extern void optimize_mask_stores (class loop
*);
1902 extern gcall
*vect_gen_while (tree
, tree
, tree
);
1903 extern tree
vect_gen_while_not (gimple_seq
*, tree
, tree
, tree
);
1904 extern opt_result
vect_get_vector_types_for_stmt (vec_info
*,
1905 stmt_vec_info
, tree
*,
1906 tree
*, unsigned int = 0);
1907 extern opt_tree
vect_get_mask_type_for_stmt (stmt_vec_info
, unsigned int = 0);
1909 /* In tree-vect-data-refs.c. */
1910 extern bool vect_can_force_dr_alignment_p (const_tree
, poly_uint64
);
1911 extern enum dr_alignment_support vect_supportable_dr_alignment
1912 (vec_info
*, dr_vec_info
*, bool);
1913 extern tree
vect_get_smallest_scalar_type (stmt_vec_info
, HOST_WIDE_INT
*,
1915 extern opt_result
vect_analyze_data_ref_dependences (loop_vec_info
, unsigned int *);
1916 extern bool vect_slp_analyze_instance_dependence (vec_info
*, slp_instance
);
1917 extern opt_result
vect_enhance_data_refs_alignment (loop_vec_info
);
1918 extern opt_result
vect_analyze_data_refs_alignment (loop_vec_info
);
1919 extern bool vect_slp_analyze_instance_alignment (vec_info
*, slp_instance
);
1920 extern opt_result
vect_analyze_data_ref_accesses (vec_info
*);
1921 extern opt_result
vect_prune_runtime_alias_test_list (loop_vec_info
);
1922 extern bool vect_gather_scatter_fn_p (vec_info
*, bool, bool, tree
, tree
,
1923 tree
, int, internal_fn
*, tree
*);
1924 extern bool vect_check_gather_scatter (stmt_vec_info
, loop_vec_info
,
1925 gather_scatter_info
*);
1926 extern opt_result
vect_find_stmt_data_reference (loop_p
, gimple
*,
1927 vec
<data_reference_p
> *);
1928 extern opt_result
vect_analyze_data_refs (vec_info
*, poly_uint64
*, bool *);
1929 extern void vect_record_base_alignments (vec_info
*);
1930 extern tree
vect_create_data_ref_ptr (vec_info
*,
1931 stmt_vec_info
, tree
, class loop
*, tree
,
1932 tree
*, gimple_stmt_iterator
*,
1934 tree
= NULL_TREE
, tree
= NULL_TREE
);
1935 extern tree
bump_vector_ptr (vec_info
*, tree
, gimple
*, gimple_stmt_iterator
*,
1936 stmt_vec_info
, tree
);
1937 extern void vect_copy_ref_info (tree
, tree
);
1938 extern tree
vect_create_destination_var (tree
, tree
);
1939 extern bool vect_grouped_store_supported (tree
, unsigned HOST_WIDE_INT
);
1940 extern bool vect_store_lanes_supported (tree
, unsigned HOST_WIDE_INT
, bool);
1941 extern bool vect_grouped_load_supported (tree
, bool, unsigned HOST_WIDE_INT
);
1942 extern bool vect_load_lanes_supported (tree
, unsigned HOST_WIDE_INT
, bool);
1943 extern void vect_permute_store_chain (vec_info
*,
1944 vec
<tree
> ,unsigned int, stmt_vec_info
,
1945 gimple_stmt_iterator
*, vec
<tree
> *);
1946 extern tree
vect_setup_realignment (vec_info
*,
1947 stmt_vec_info
, gimple_stmt_iterator
*,
1948 tree
*, enum dr_alignment_support
, tree
,
1950 extern void vect_transform_grouped_load (vec_info
*, stmt_vec_info
, vec
<tree
>,
1951 int, gimple_stmt_iterator
*);
1952 extern void vect_record_grouped_load_vectors (vec_info
*,
1953 stmt_vec_info
, vec
<tree
>);
1954 extern tree
vect_get_new_vect_var (tree
, enum vect_var_kind
, const char *);
1955 extern tree
vect_get_new_ssa_name (tree
, enum vect_var_kind
,
1956 const char * = NULL
);
1957 extern tree
vect_create_addr_base_for_vector_ref (vec_info
*,
1958 stmt_vec_info
, gimple_seq
*,
1959 tree
, tree
= NULL_TREE
);
1961 /* In tree-vect-loop.c. */
1962 extern widest_int
vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo
);
1963 bool vect_rgroup_iv_might_wrap_p (loop_vec_info
, rgroup_controls
*);
1964 /* Used in tree-vect-loop-manip.c */
1965 extern void determine_peel_for_niter (loop_vec_info
);
1966 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1967 extern bool check_reduction_path (dump_user_location_t
, loop_p
, gphi
*, tree
,
1969 extern bool needs_fold_left_reduction_p (tree
, tree_code
);
1970 /* Drive for loop analysis stage. */
1971 extern opt_loop_vec_info
vect_analyze_loop (class loop
*, vec_info_shared
*);
1972 extern tree
vect_build_loop_niters (loop_vec_info
, bool * = NULL
);
1973 extern void vect_gen_vector_loop_niters (loop_vec_info
, tree
, tree
*,
1975 extern tree
vect_halve_mask_nunits (tree
, machine_mode
);
1976 extern tree
vect_double_mask_nunits (tree
, machine_mode
);
1977 extern void vect_record_loop_mask (loop_vec_info
, vec_loop_masks
*,
1978 unsigned int, tree
, tree
);
1979 extern tree
vect_get_loop_mask (gimple_stmt_iterator
*, vec_loop_masks
*,
1980 unsigned int, tree
, unsigned int);
1981 extern void vect_record_loop_len (loop_vec_info
, vec_loop_lens
*, unsigned int,
1982 tree
, unsigned int);
1983 extern tree
vect_get_loop_len (loop_vec_info
, vec_loop_lens
*, unsigned int,
1985 extern gimple_seq
vect_gen_len (tree
, tree
, tree
, tree
);
1986 extern stmt_vec_info
info_for_reduction (vec_info
*, stmt_vec_info
);
1988 /* Drive for loop transformation stage. */
1989 extern class loop
*vect_transform_loop (loop_vec_info
, gimple
*);
1990 extern opt_loop_vec_info
vect_analyze_loop_form (class loop
*,
1992 extern bool vectorizable_live_operation (loop_vec_info
,
1993 stmt_vec_info
, gimple_stmt_iterator
*,
1994 slp_tree
, slp_instance
, int,
1995 bool, stmt_vector_for_cost
*);
1996 extern bool vectorizable_reduction (loop_vec_info
, stmt_vec_info
,
1997 slp_tree
, slp_instance
,
1998 stmt_vector_for_cost
*);
1999 extern bool vectorizable_induction (loop_vec_info
, stmt_vec_info
,
2000 gimple
**, slp_tree
,
2001 stmt_vector_for_cost
*);
2002 extern bool vect_transform_reduction (loop_vec_info
, stmt_vec_info
,
2003 gimple_stmt_iterator
*,
2004 gimple
**, slp_tree
);
2005 extern bool vect_transform_cycle_phi (loop_vec_info
, stmt_vec_info
,
2007 slp_tree
, slp_instance
);
2008 extern bool vectorizable_lc_phi (loop_vec_info
, stmt_vec_info
,
2009 gimple
**, slp_tree
);
2010 extern bool vect_worthwhile_without_simd_p (vec_info
*, tree_code
);
2011 extern int vect_get_known_peeling_cost (loop_vec_info
, int, int *,
2012 stmt_vector_for_cost
*,
2013 stmt_vector_for_cost
*,
2014 stmt_vector_for_cost
*);
2015 extern tree
cse_and_gimplify_to_preheader (loop_vec_info
, tree
);
2017 /* In tree-vect-slp.c. */
2018 extern void vect_free_slp_instance (slp_instance
, bool);
2019 extern bool vect_transform_slp_perm_load (vec_info
*, slp_tree
, vec
<tree
>,
2020 gimple_stmt_iterator
*, poly_uint64
,
2022 extern bool vect_slp_analyze_operations (vec_info
*);
2023 extern void vect_schedule_slp (vec_info
*);
2024 extern opt_result
vect_analyze_slp (vec_info
*, unsigned);
2025 extern bool vect_make_slp_decision (loop_vec_info
);
2026 extern void vect_detect_hybrid_slp (loop_vec_info
);
2027 extern void vect_optimize_slp (vec_info
*);
2028 extern void vect_get_slp_defs (slp_tree
, vec
<tree
> *);
2029 extern void vect_get_slp_defs (vec_info
*, slp_tree
, vec
<vec
<tree
> > *,
2031 extern bool vect_slp_bb (basic_block
);
2032 extern stmt_vec_info
vect_find_last_scalar_stmt_in_slp (slp_tree
);
2033 extern stmt_vec_info
vect_find_first_scalar_stmt_in_slp (slp_tree
);
2034 extern bool is_simple_and_all_uses_invariant (stmt_vec_info
, loop_vec_info
);
2035 extern bool can_duplicate_and_interleave_p (vec_info
*, unsigned int, tree
,
2036 unsigned int * = NULL
,
2037 tree
* = NULL
, tree
* = NULL
);
2038 extern void duplicate_and_interleave (vec_info
*, gimple_seq
*, tree
,
2039 vec
<tree
>, unsigned int, vec
<tree
> &);
2040 extern int vect_get_place_in_interleaving_chain (stmt_vec_info
, stmt_vec_info
);
2042 /* In tree-vect-patterns.c. */
2043 /* Pattern recognition functions.
2044 Additional pattern recognition functions can (and will) be added
2046 void vect_pattern_recog (vec_info
*);
2048 /* In tree-vectorizer.c. */
2049 unsigned vectorize_loops (void);
2050 void vect_free_loop_info_assumptions (class loop
*);
2051 gimple
*vect_loop_vectorized_call (class loop
*, gcond
**cond
= NULL
);
2052 bool vect_stmt_dominates_stmt_p (gimple
*, gimple
*);
2054 #endif /* GCC_TREE_VECTORIZER_H */