1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40 #include "gimple-fold.h"
45 /* Type of value ranges. See value_range_d for a description of these
47 enum value_range_type
{ VR_UNDEFINED
, VR_RANGE
, VR_ANTI_RANGE
, VR_VARYING
};
49 /* Range of values that can be associated with an SSA_NAME after VRP
53 /* Lattice value represented by this range. */
54 enum value_range_type type
;
56 /* Minimum and maximum values represented by this range. These
57 values should be interpreted as follows:
59 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 - If TYPE == VR_RANGE then MIN holds the minimum value and
63 MAX holds the maximum value of the range [MIN, MAX].
65 - If TYPE == ANTI_RANGE the variable is known to NOT
66 take any values in the range [MIN, MAX]. */
70 /* Set of SSA names whose value ranges are equivalent to this one.
71 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
75 typedef struct value_range_d value_range_t
;
77 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
83 /* Return true if the SSA name NAME is live on the edge E. */
86 live_on_edge (edge e
, tree name
)
88 return (live
[e
->dest
->index
]
89 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
92 /* Local functions. */
93 static int compare_values (tree val1
, tree val2
);
94 static int compare_values_warnv (tree val1
, tree val2
, bool *);
95 static void vrp_meet (value_range_t
*, value_range_t
*);
96 static void vrp_intersect_ranges (value_range_t
*, value_range_t
*);
97 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
98 tree
, tree
, bool, bool *,
101 /* Location information for ASSERT_EXPRs. Each instance of this
102 structure describes an ASSERT_EXPR for an SSA name. Since a single
103 SSA name may have more than one assertion associated with it, these
104 locations are kept in a linked list attached to the corresponding
106 struct assert_locus_d
108 /* Basic block where the assertion would be inserted. */
111 /* Some assertions need to be inserted on an edge (e.g., assertions
112 generated by COND_EXPRs). In those cases, BB will be NULL. */
115 /* Pointer to the statement that generated this assertion. */
116 gimple_stmt_iterator si
;
118 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
119 enum tree_code comp_code
;
121 /* Value being compared against. */
124 /* Expression to compare. */
127 /* Next node in the linked list. */
128 struct assert_locus_d
*next
;
131 typedef struct assert_locus_d
*assert_locus_t
;
133 /* If bit I is present, it means that SSA name N_i has a list of
134 assertions that should be inserted in the IL. */
135 static bitmap need_assert_for
;
137 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
138 holds a list of ASSERT_LOCUS_T nodes that describe where
139 ASSERT_EXPRs for SSA name N_I should be inserted. */
140 static assert_locus_t
*asserts_for
;
142 /* Value range array. After propagation, VR_VALUE[I] holds the range
143 of values that SSA name N_I may take. */
144 static unsigned num_vr_values
;
145 static value_range_t
**vr_value
;
146 static bool values_propagated
;
148 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
149 number of executable edges we saw the last time we visited the
151 static int *vr_phi_edge_counts
;
158 static VEC (edge
, heap
) *to_remove_edges
;
159 DEF_VEC_O(switch_update
);
160 DEF_VEC_ALLOC_O(switch_update
, heap
);
161 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
164 /* Return the maximum value for TYPE. */
167 vrp_val_max (const_tree type
)
169 if (!INTEGRAL_TYPE_P (type
))
172 return TYPE_MAX_VALUE (type
);
175 /* Return the minimum value for TYPE. */
178 vrp_val_min (const_tree type
)
180 if (!INTEGRAL_TYPE_P (type
))
183 return TYPE_MIN_VALUE (type
);
186 /* Return whether VAL is equal to the maximum value of its type. This
187 will be true for a positive overflow infinity. We can't do a
188 simple equality comparison with TYPE_MAX_VALUE because C typedefs
189 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
190 to the integer constant with the same value in the type. */
193 vrp_val_is_max (const_tree val
)
195 tree type_max
= vrp_val_max (TREE_TYPE (val
));
196 return (val
== type_max
197 || (type_max
!= NULL_TREE
198 && operand_equal_p (val
, type_max
, 0)));
201 /* Return whether VAL is equal to the minimum value of its type. This
202 will be true for a negative overflow infinity. */
205 vrp_val_is_min (const_tree val
)
207 tree type_min
= vrp_val_min (TREE_TYPE (val
));
208 return (val
== type_min
209 || (type_min
!= NULL_TREE
210 && operand_equal_p (val
, type_min
, 0)));
214 /* Return whether TYPE should use an overflow infinity distinct from
215 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
216 represent a signed overflow during VRP computations. An infinity
217 is distinct from a half-range, which will go from some number to
218 TYPE_{MIN,MAX}_VALUE. */
221 needs_overflow_infinity (const_tree type
)
223 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
226 /* Return whether TYPE can support our overflow infinity
227 representation: we use the TREE_OVERFLOW flag, which only exists
228 for constants. If TYPE doesn't support this, we don't optimize
229 cases which would require signed overflow--we drop them to
233 supports_overflow_infinity (const_tree type
)
235 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
236 #ifdef ENABLE_CHECKING
237 gcc_assert (needs_overflow_infinity (type
));
239 return (min
!= NULL_TREE
240 && CONSTANT_CLASS_P (min
)
242 && CONSTANT_CLASS_P (max
));
245 /* VAL is the maximum or minimum value of a type. Return a
246 corresponding overflow infinity. */
249 make_overflow_infinity (tree val
)
251 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
252 val
= copy_node (val
);
253 TREE_OVERFLOW (val
) = 1;
257 /* Return a negative overflow infinity for TYPE. */
260 negative_overflow_infinity (tree type
)
262 gcc_checking_assert (supports_overflow_infinity (type
));
263 return make_overflow_infinity (vrp_val_min (type
));
266 /* Return a positive overflow infinity for TYPE. */
269 positive_overflow_infinity (tree type
)
271 gcc_checking_assert (supports_overflow_infinity (type
));
272 return make_overflow_infinity (vrp_val_max (type
));
275 /* Return whether VAL is a negative overflow infinity. */
278 is_negative_overflow_infinity (const_tree val
)
280 return (needs_overflow_infinity (TREE_TYPE (val
))
281 && CONSTANT_CLASS_P (val
)
282 && TREE_OVERFLOW (val
)
283 && vrp_val_is_min (val
));
286 /* Return whether VAL is a positive overflow infinity. */
289 is_positive_overflow_infinity (const_tree val
)
291 return (needs_overflow_infinity (TREE_TYPE (val
))
292 && CONSTANT_CLASS_P (val
)
293 && TREE_OVERFLOW (val
)
294 && vrp_val_is_max (val
));
297 /* Return whether VAL is a positive or negative overflow infinity. */
300 is_overflow_infinity (const_tree val
)
302 return (needs_overflow_infinity (TREE_TYPE (val
))
303 && CONSTANT_CLASS_P (val
)
304 && TREE_OVERFLOW (val
)
305 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
308 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
311 stmt_overflow_infinity (gimple stmt
)
313 if (is_gimple_assign (stmt
)
314 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
316 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
320 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
321 the same value with TREE_OVERFLOW clear. This can be used to avoid
322 confusing a regular value with an overflow value. */
325 avoid_overflow_infinity (tree val
)
327 if (!is_overflow_infinity (val
))
330 if (vrp_val_is_max (val
))
331 return vrp_val_max (TREE_TYPE (val
));
334 gcc_checking_assert (vrp_val_is_min (val
));
335 return vrp_val_min (TREE_TYPE (val
));
340 /* Return true if ARG is marked with the nonnull attribute in the
341 current function signature. */
344 nonnull_arg_p (const_tree arg
)
346 tree t
, attrs
, fntype
;
347 unsigned HOST_WIDE_INT arg_num
;
349 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
351 /* The static chain decl is always non null. */
352 if (arg
== cfun
->static_chain_decl
)
355 fntype
= TREE_TYPE (current_function_decl
);
356 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
358 attrs
= lookup_attribute ("nonnull", attrs
);
360 /* If "nonnull" wasn't specified, we know nothing about the argument. */
361 if (attrs
== NULL_TREE
)
364 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
365 if (TREE_VALUE (attrs
) == NULL_TREE
)
368 /* Get the position number for ARG in the function signature. */
369 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
371 t
= DECL_CHAIN (t
), arg_num
++)
377 gcc_assert (t
== arg
);
379 /* Now see if ARG_NUM is mentioned in the nonnull list. */
380 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
382 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
391 /* Set value range VR to VR_UNDEFINED. */
394 set_value_range_to_undefined (value_range_t
*vr
)
396 vr
->type
= VR_UNDEFINED
;
397 vr
->min
= vr
->max
= NULL_TREE
;
399 bitmap_clear (vr
->equiv
);
403 /* Set value range VR to VR_VARYING. */
406 set_value_range_to_varying (value_range_t
*vr
)
408 vr
->type
= VR_VARYING
;
409 vr
->min
= vr
->max
= NULL_TREE
;
411 bitmap_clear (vr
->equiv
);
415 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
418 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
419 tree max
, bitmap equiv
)
421 #if defined ENABLE_CHECKING
422 /* Check the validity of the range. */
423 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
427 gcc_assert (min
&& max
);
429 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
430 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
432 cmp
= compare_values (min
, max
);
433 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
435 if (needs_overflow_infinity (TREE_TYPE (min
)))
436 gcc_assert (!is_overflow_infinity (min
)
437 || !is_overflow_infinity (max
));
440 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
441 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
443 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
444 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
451 /* Since updating the equivalence set involves deep copying the
452 bitmaps, only do it if absolutely necessary. */
453 if (vr
->equiv
== NULL
455 vr
->equiv
= BITMAP_ALLOC (NULL
);
457 if (equiv
!= vr
->equiv
)
459 if (equiv
&& !bitmap_empty_p (equiv
))
460 bitmap_copy (vr
->equiv
, equiv
);
462 bitmap_clear (vr
->equiv
);
467 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
468 This means adjusting T, MIN and MAX representing the case of a
469 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
470 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
471 In corner cases where MAX+1 or MIN-1 wraps this will fall back
473 This routine exists to ease canonicalization in the case where we
474 extract ranges from var + CST op limit. */
477 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
478 tree min
, tree max
, bitmap equiv
)
480 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
481 if (t
== VR_UNDEFINED
)
483 set_value_range_to_undefined (vr
);
486 else if (t
== VR_VARYING
)
488 set_value_range_to_varying (vr
);
492 /* Nothing to canonicalize for symbolic ranges. */
493 if (TREE_CODE (min
) != INTEGER_CST
494 || TREE_CODE (max
) != INTEGER_CST
)
496 set_value_range (vr
, t
, min
, max
, equiv
);
500 /* Wrong order for min and max, to swap them and the VR type we need
502 if (tree_int_cst_lt (max
, min
))
506 /* For one bit precision if max < min, then the swapped
507 range covers all values, so for VR_RANGE it is varying and
508 for VR_ANTI_RANGE empty range, so drop to varying as well. */
509 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
511 set_value_range_to_varying (vr
);
515 one
= build_int_cst (TREE_TYPE (min
), 1);
516 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
517 max
= int_const_binop (MINUS_EXPR
, min
, one
);
520 /* There's one corner case, if we had [C+1, C] before we now have
521 that again. But this represents an empty value range, so drop
522 to varying in this case. */
523 if (tree_int_cst_lt (max
, min
))
525 set_value_range_to_varying (vr
);
529 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
532 /* Anti-ranges that can be represented as ranges should be so. */
533 if (t
== VR_ANTI_RANGE
)
535 bool is_min
= vrp_val_is_min (min
);
536 bool is_max
= vrp_val_is_max (max
);
538 if (is_min
&& is_max
)
540 /* We cannot deal with empty ranges, drop to varying.
541 ??? This could be VR_UNDEFINED instead. */
542 set_value_range_to_varying (vr
);
545 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
546 && !TYPE_UNSIGNED (TREE_TYPE (min
))
547 && (is_min
|| is_max
))
549 /* For signed 1-bit precision, one is not in-range and
550 thus adding/subtracting it would result in overflows. */
551 if (operand_equal_p (min
, max
, 0))
553 min
= max
= is_min
? vrp_val_max (TREE_TYPE (min
))
554 : vrp_val_min (TREE_TYPE (min
));
559 set_value_range_to_varying (vr
);
564 /* As a special exception preserve non-null ranges. */
565 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
566 && integer_zerop (max
)))
568 tree one
= build_int_cst (TREE_TYPE (max
), 1);
569 min
= int_const_binop (PLUS_EXPR
, max
, one
);
570 max
= vrp_val_max (TREE_TYPE (max
));
575 tree one
= build_int_cst (TREE_TYPE (min
), 1);
576 max
= int_const_binop (MINUS_EXPR
, min
, one
);
577 min
= vrp_val_min (TREE_TYPE (min
));
582 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
583 if (needs_overflow_infinity (TREE_TYPE (min
))
584 && is_overflow_infinity (min
)
585 && is_overflow_infinity (max
))
587 set_value_range_to_varying (vr
);
591 set_value_range (vr
, t
, min
, max
, equiv
);
594 /* Copy value range FROM into value range TO. */
597 copy_value_range (value_range_t
*to
, value_range_t
*from
)
599 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
602 /* Set value range VR to a single value. This function is only called
603 with values we get from statements, and exists to clear the
604 TREE_OVERFLOW flag so that we don't think we have an overflow
605 infinity when we shouldn't. */
608 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
610 gcc_assert (is_gimple_min_invariant (val
));
611 val
= avoid_overflow_infinity (val
);
612 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
615 /* Set value range VR to a non-negative range of type TYPE.
616 OVERFLOW_INFINITY indicates whether to use an overflow infinity
617 rather than TYPE_MAX_VALUE; this should be true if we determine
618 that the range is nonnegative based on the assumption that signed
619 overflow does not occur. */
622 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
623 bool overflow_infinity
)
627 if (overflow_infinity
&& !supports_overflow_infinity (type
))
629 set_value_range_to_varying (vr
);
633 zero
= build_int_cst (type
, 0);
634 set_value_range (vr
, VR_RANGE
, zero
,
636 ? positive_overflow_infinity (type
)
637 : TYPE_MAX_VALUE (type
)),
641 /* Set value range VR to a non-NULL range of type TYPE. */
644 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
646 tree zero
= build_int_cst (type
, 0);
647 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
651 /* Set value range VR to a NULL range of type TYPE. */
654 set_value_range_to_null (value_range_t
*vr
, tree type
)
656 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
660 /* Set value range VR to a range of a truthvalue of type TYPE. */
663 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
665 if (TYPE_PRECISION (type
) == 1)
666 set_value_range_to_varying (vr
);
668 set_value_range (vr
, VR_RANGE
,
669 build_int_cst (type
, 0), build_int_cst (type
, 1),
674 /* If abs (min) < abs (max), set VR to [-max, max], if
675 abs (min) >= abs (max), set VR to [-min, min]. */
678 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
682 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
683 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
684 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
685 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
686 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
687 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
688 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
690 set_value_range_to_varying (vr
);
693 cmp
= compare_values (min
, max
);
695 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
696 else if (cmp
== 0 || cmp
== 1)
699 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
703 set_value_range_to_varying (vr
);
706 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
710 /* Return value range information for VAR.
712 If we have no values ranges recorded (ie, VRP is not running), then
713 return NULL. Otherwise create an empty range if none existed for VAR. */
715 static value_range_t
*
716 get_value_range (const_tree var
)
718 static const struct value_range_d vr_const_varying
719 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
722 unsigned ver
= SSA_NAME_VERSION (var
);
724 /* If we have no recorded ranges, then return NULL. */
728 /* If we query the range for a new SSA name return an unmodifiable VARYING.
729 We should get here at most from the substitute-and-fold stage which
730 will never try to change values. */
731 if (ver
>= num_vr_values
)
732 return CONST_CAST (value_range_t
*, &vr_const_varying
);
738 /* After propagation finished do not allocate new value-ranges. */
739 if (values_propagated
)
740 return CONST_CAST (value_range_t
*, &vr_const_varying
);
742 /* Create a default value range. */
743 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
745 /* Defer allocating the equivalence set. */
748 /* If VAR is a default definition of a parameter, the variable can
749 take any value in VAR's type. */
750 if (SSA_NAME_IS_DEFAULT_DEF (var
))
752 sym
= SSA_NAME_VAR (var
);
753 if (TREE_CODE (sym
) == PARM_DECL
)
755 /* Try to use the "nonnull" attribute to create ~[0, 0]
756 anti-ranges for pointers. Note that this is only valid with
757 default definitions of PARM_DECLs. */
758 if (POINTER_TYPE_P (TREE_TYPE (sym
))
759 && nonnull_arg_p (sym
))
760 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
762 set_value_range_to_varying (vr
);
764 else if (TREE_CODE (sym
) == RESULT_DECL
765 && DECL_BY_REFERENCE (sym
))
766 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
772 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
775 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
779 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
781 if (is_overflow_infinity (val1
))
782 return is_overflow_infinity (val2
);
786 /* Return true, if the bitmaps B1 and B2 are equal. */
789 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
792 || ((!b1
|| bitmap_empty_p (b1
))
793 && (!b2
|| bitmap_empty_p (b2
)))
795 && bitmap_equal_p (b1
, b2
)));
798 /* Update the value range and equivalence set for variable VAR to
799 NEW_VR. Return true if NEW_VR is different from VAR's previous
802 NOTE: This function assumes that NEW_VR is a temporary value range
803 object created for the sole purpose of updating VAR's range. The
804 storage used by the equivalence set from NEW_VR will be freed by
805 this function. Do not call update_value_range when NEW_VR
806 is the range object associated with another SSA name. */
809 update_value_range (const_tree var
, value_range_t
*new_vr
)
811 value_range_t
*old_vr
;
814 /* Update the value range, if necessary. */
815 old_vr
= get_value_range (var
);
816 is_new
= old_vr
->type
!= new_vr
->type
817 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
818 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
819 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
823 /* Do not allow transitions up the lattice. The following
824 is slightly more awkward than just new_vr->type < old_vr->type
825 because VR_RANGE and VR_ANTI_RANGE need to be considered
826 the same. We may not have is_new when transitioning to
827 UNDEFINED or from VARYING. */
828 if (new_vr
->type
== VR_UNDEFINED
829 || old_vr
->type
== VR_VARYING
)
830 set_value_range_to_varying (old_vr
);
832 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
836 BITMAP_FREE (new_vr
->equiv
);
842 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
843 point where equivalence processing can be turned on/off. */
846 add_equivalence (bitmap
*equiv
, const_tree var
)
848 unsigned ver
= SSA_NAME_VERSION (var
);
849 value_range_t
*vr
= vr_value
[ver
];
852 *equiv
= BITMAP_ALLOC (NULL
);
853 bitmap_set_bit (*equiv
, ver
);
855 bitmap_ior_into (*equiv
, vr
->equiv
);
859 /* Return true if VR is ~[0, 0]. */
862 range_is_nonnull (value_range_t
*vr
)
864 return vr
->type
== VR_ANTI_RANGE
865 && integer_zerop (vr
->min
)
866 && integer_zerop (vr
->max
);
870 /* Return true if VR is [0, 0]. */
873 range_is_null (value_range_t
*vr
)
875 return vr
->type
== VR_RANGE
876 && integer_zerop (vr
->min
)
877 && integer_zerop (vr
->max
);
880 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
884 range_int_cst_p (value_range_t
*vr
)
886 return (vr
->type
== VR_RANGE
887 && TREE_CODE (vr
->max
) == INTEGER_CST
888 && TREE_CODE (vr
->min
) == INTEGER_CST
);
891 /* Return true if VR is a INTEGER_CST singleton. */
894 range_int_cst_singleton_p (value_range_t
*vr
)
896 return (range_int_cst_p (vr
)
897 && !TREE_OVERFLOW (vr
->min
)
898 && !TREE_OVERFLOW (vr
->max
)
899 && tree_int_cst_equal (vr
->min
, vr
->max
));
902 /* Return true if value range VR involves at least one symbol. */
905 symbolic_range_p (value_range_t
*vr
)
907 return (!is_gimple_min_invariant (vr
->min
)
908 || !is_gimple_min_invariant (vr
->max
));
911 /* Return true if value range VR uses an overflow infinity. */
914 overflow_infinity_range_p (value_range_t
*vr
)
916 return (vr
->type
== VR_RANGE
917 && (is_overflow_infinity (vr
->min
)
918 || is_overflow_infinity (vr
->max
)));
921 /* Return false if we can not make a valid comparison based on VR;
922 this will be the case if it uses an overflow infinity and overflow
923 is not undefined (i.e., -fno-strict-overflow is in effect).
924 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
925 uses an overflow infinity. */
928 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
930 gcc_assert (vr
->type
== VR_RANGE
);
931 if (is_overflow_infinity (vr
->min
))
933 *strict_overflow_p
= true;
934 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
937 if (is_overflow_infinity (vr
->max
))
939 *strict_overflow_p
= true;
940 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
947 /* Return true if the result of assignment STMT is know to be non-negative.
948 If the return value is based on the assumption that signed overflow is
949 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
950 *STRICT_OVERFLOW_P.*/
953 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
955 enum tree_code code
= gimple_assign_rhs_code (stmt
);
956 switch (get_gimple_rhs_class (code
))
958 case GIMPLE_UNARY_RHS
:
959 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
960 gimple_expr_type (stmt
),
961 gimple_assign_rhs1 (stmt
),
963 case GIMPLE_BINARY_RHS
:
964 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
965 gimple_expr_type (stmt
),
966 gimple_assign_rhs1 (stmt
),
967 gimple_assign_rhs2 (stmt
),
969 case GIMPLE_TERNARY_RHS
:
971 case GIMPLE_SINGLE_RHS
:
972 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
974 case GIMPLE_INVALID_RHS
:
981 /* Return true if return value of call STMT is know to be non-negative.
982 If the return value is based on the assumption that signed overflow is
983 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
984 *STRICT_OVERFLOW_P.*/
987 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
989 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
990 gimple_call_arg (stmt
, 0) : NULL_TREE
;
991 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
992 gimple_call_arg (stmt
, 1) : NULL_TREE
;
994 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
995 gimple_call_fndecl (stmt
),
1001 /* Return true if STMT is know to to compute a non-negative value.
1002 If the return value is based on the assumption that signed overflow is
1003 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1004 *STRICT_OVERFLOW_P.*/
1007 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1009 switch (gimple_code (stmt
))
1012 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1014 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1020 /* Return true if the result of assignment STMT is know to be non-zero.
1021 If the return value is based on the assumption that signed overflow is
1022 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1023 *STRICT_OVERFLOW_P.*/
1026 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1028 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1029 switch (get_gimple_rhs_class (code
))
1031 case GIMPLE_UNARY_RHS
:
1032 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1033 gimple_expr_type (stmt
),
1034 gimple_assign_rhs1 (stmt
),
1036 case GIMPLE_BINARY_RHS
:
1037 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1038 gimple_expr_type (stmt
),
1039 gimple_assign_rhs1 (stmt
),
1040 gimple_assign_rhs2 (stmt
),
1042 case GIMPLE_TERNARY_RHS
:
1044 case GIMPLE_SINGLE_RHS
:
1045 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1047 case GIMPLE_INVALID_RHS
:
1054 /* Return true if STMT is know to to compute a non-zero value.
1055 If the return value is based on the assumption that signed overflow is
1056 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1057 *STRICT_OVERFLOW_P.*/
1060 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1062 switch (gimple_code (stmt
))
1065 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1067 return gimple_alloca_call_p (stmt
);
1073 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1077 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1079 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1082 /* If we have an expression of the form &X->a, then the expression
1083 is nonnull if X is nonnull. */
1084 if (is_gimple_assign (stmt
)
1085 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1087 tree expr
= gimple_assign_rhs1 (stmt
);
1088 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1090 if (base
!= NULL_TREE
1091 && TREE_CODE (base
) == MEM_REF
1092 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1094 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1095 if (range_is_nonnull (vr
))
1103 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1104 a gimple invariant, or SSA_NAME +- CST. */
1107 valid_value_p (tree expr
)
1109 if (TREE_CODE (expr
) == SSA_NAME
)
1112 if (TREE_CODE (expr
) == PLUS_EXPR
1113 || TREE_CODE (expr
) == MINUS_EXPR
)
1114 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1115 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1117 return is_gimple_min_invariant (expr
);
1123 -2 if those are incomparable. */
1125 operand_less_p (tree val
, tree val2
)
1127 /* LT is folded faster than GE and others. Inline the common case. */
1128 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1130 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1131 return INT_CST_LT_UNSIGNED (val
, val2
);
1134 if (INT_CST_LT (val
, val2
))
1142 fold_defer_overflow_warnings ();
1144 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1146 fold_undefer_and_ignore_overflow_warnings ();
1149 || TREE_CODE (tcmp
) != INTEGER_CST
)
1152 if (!integer_zerop (tcmp
))
1156 /* val >= val2, not considering overflow infinity. */
1157 if (is_negative_overflow_infinity (val
))
1158 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1159 else if (is_positive_overflow_infinity (val2
))
1160 return is_positive_overflow_infinity (val
) ? 0 : 1;
1165 /* Compare two values VAL1 and VAL2. Return
1167 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1170 +1 if VAL1 > VAL2, and
1173 This is similar to tree_int_cst_compare but supports pointer values
1174 and values that cannot be compared at compile time.
1176 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1177 true if the return value is only valid if we assume that signed
1178 overflow is undefined. */
1181 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1186 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1188 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1189 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1190 /* Convert the two values into the same type. This is needed because
1191 sizetype causes sign extension even for unsigned types. */
1192 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1193 STRIP_USELESS_TYPE_CONVERSION (val2
);
1195 if ((TREE_CODE (val1
) == SSA_NAME
1196 || TREE_CODE (val1
) == PLUS_EXPR
1197 || TREE_CODE (val1
) == MINUS_EXPR
)
1198 && (TREE_CODE (val2
) == SSA_NAME
1199 || TREE_CODE (val2
) == PLUS_EXPR
1200 || TREE_CODE (val2
) == MINUS_EXPR
))
1202 tree n1
, c1
, n2
, c2
;
1203 enum tree_code code1
, code2
;
1205 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1206 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1207 same name, return -2. */
1208 if (TREE_CODE (val1
) == SSA_NAME
)
1216 code1
= TREE_CODE (val1
);
1217 n1
= TREE_OPERAND (val1
, 0);
1218 c1
= TREE_OPERAND (val1
, 1);
1219 if (tree_int_cst_sgn (c1
) == -1)
1221 if (is_negative_overflow_infinity (c1
))
1223 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1226 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1230 if (TREE_CODE (val2
) == SSA_NAME
)
1238 code2
= TREE_CODE (val2
);
1239 n2
= TREE_OPERAND (val2
, 0);
1240 c2
= TREE_OPERAND (val2
, 1);
1241 if (tree_int_cst_sgn (c2
) == -1)
1243 if (is_negative_overflow_infinity (c2
))
1245 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1248 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1252 /* Both values must use the same name. */
1256 if (code1
== SSA_NAME
1257 && code2
== SSA_NAME
)
1261 /* If overflow is defined we cannot simplify more. */
1262 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1265 if (strict_overflow_p
!= NULL
1266 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1267 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1268 *strict_overflow_p
= true;
1270 if (code1
== SSA_NAME
)
1272 if (code2
== PLUS_EXPR
)
1273 /* NAME < NAME + CST */
1275 else if (code2
== MINUS_EXPR
)
1276 /* NAME > NAME - CST */
1279 else if (code1
== PLUS_EXPR
)
1281 if (code2
== SSA_NAME
)
1282 /* NAME + CST > NAME */
1284 else if (code2
== PLUS_EXPR
)
1285 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1286 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1287 else if (code2
== MINUS_EXPR
)
1288 /* NAME + CST1 > NAME - CST2 */
1291 else if (code1
== MINUS_EXPR
)
1293 if (code2
== SSA_NAME
)
1294 /* NAME - CST < NAME */
1296 else if (code2
== PLUS_EXPR
)
1297 /* NAME - CST1 < NAME + CST2 */
1299 else if (code2
== MINUS_EXPR
)
1300 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1301 C1 and C2 are swapped in the call to compare_values. */
1302 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1308 /* We cannot compare non-constants. */
1309 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1312 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1314 /* We cannot compare overflowed values, except for overflow
1316 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1318 if (strict_overflow_p
!= NULL
)
1319 *strict_overflow_p
= true;
1320 if (is_negative_overflow_infinity (val1
))
1321 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1322 else if (is_negative_overflow_infinity (val2
))
1324 else if (is_positive_overflow_infinity (val1
))
1325 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1326 else if (is_positive_overflow_infinity (val2
))
1331 return tree_int_cst_compare (val1
, val2
);
1337 /* First see if VAL1 and VAL2 are not the same. */
1338 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1341 /* If VAL1 is a lower address than VAL2, return -1. */
1342 if (operand_less_p (val1
, val2
) == 1)
1345 /* If VAL1 is a higher address than VAL2, return +1. */
1346 if (operand_less_p (val2
, val1
) == 1)
1349 /* If VAL1 is different than VAL2, return +2.
1350 For integer constants we either have already returned -1 or 1
1351 or they are equivalent. We still might succeed in proving
1352 something about non-trivial operands. */
1353 if (TREE_CODE (val1
) != INTEGER_CST
1354 || TREE_CODE (val2
) != INTEGER_CST
)
1356 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1357 if (t
&& integer_onep (t
))
1365 /* Compare values like compare_values_warnv, but treat comparisons of
1366 nonconstants which rely on undefined overflow as incomparable. */
1369 compare_values (tree val1
, tree val2
)
1375 ret
= compare_values_warnv (val1
, val2
, &sop
);
1377 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1383 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1384 0 if VAL is not inside [MIN, MAX],
1385 -2 if we cannot tell either way.
1387 Benchmark compile/20001226-1.c compilation time after changing this
1391 value_inside_range (tree val
, tree min
, tree max
)
1395 cmp1
= operand_less_p (val
, min
);
1401 cmp2
= operand_less_p (max
, val
);
1409 /* Return true if value ranges VR0 and VR1 have a non-empty
1412 Benchmark compile/20001226-1.c compilation time after changing this
1417 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1419 /* The value ranges do not intersect if the maximum of the first range is
1420 less than the minimum of the second range or vice versa.
1421 When those relations are unknown, we can't do any better. */
1422 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1424 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1430 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1431 include the value zero, -2 if we cannot tell. */
1434 range_includes_zero_p (tree min
, tree max
)
1436 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1437 return value_inside_range (zero
, min
, max
);
1440 /* Return true if *VR is know to only contain nonnegative values. */
1443 value_range_nonnegative_p (value_range_t
*vr
)
1445 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1446 which would return a useful value should be encoded as a
1448 if (vr
->type
== VR_RANGE
)
1450 int result
= compare_values (vr
->min
, integer_zero_node
);
1451 return (result
== 0 || result
== 1);
1457 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1458 false otherwise or if no value range information is available. */
1461 ssa_name_nonnegative_p (const_tree t
)
1463 value_range_t
*vr
= get_value_range (t
);
1465 if (INTEGRAL_TYPE_P (t
)
1466 && TYPE_UNSIGNED (t
))
1472 return value_range_nonnegative_p (vr
);
1475 /* If *VR has a value rante that is a single constant value return that,
1476 otherwise return NULL_TREE. */
1479 value_range_constant_singleton (value_range_t
*vr
)
1481 if (vr
->type
== VR_RANGE
1482 && operand_equal_p (vr
->min
, vr
->max
, 0)
1483 && is_gimple_min_invariant (vr
->min
))
1489 /* If OP has a value range with a single constant value return that,
1490 otherwise return NULL_TREE. This returns OP itself if OP is a
1494 op_with_constant_singleton_value_range (tree op
)
1496 if (is_gimple_min_invariant (op
))
1499 if (TREE_CODE (op
) != SSA_NAME
)
1502 return value_range_constant_singleton (get_value_range (op
));
1505 /* Return true if op is in a boolean [0, 1] value-range. */
1508 op_with_boolean_value_range_p (tree op
)
1512 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1515 if (integer_zerop (op
)
1516 || integer_onep (op
))
1519 if (TREE_CODE (op
) != SSA_NAME
)
1522 vr
= get_value_range (op
);
1523 return (vr
->type
== VR_RANGE
1524 && integer_zerop (vr
->min
)
1525 && integer_onep (vr
->max
));
1528 /* Extract value range information from an ASSERT_EXPR EXPR and store
1532 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1534 tree var
, cond
, limit
, min
, max
, type
;
1535 value_range_t
*limit_vr
;
1536 enum tree_code cond_code
;
1538 var
= ASSERT_EXPR_VAR (expr
);
1539 cond
= ASSERT_EXPR_COND (expr
);
1541 gcc_assert (COMPARISON_CLASS_P (cond
));
1543 /* Find VAR in the ASSERT_EXPR conditional. */
1544 if (var
== TREE_OPERAND (cond
, 0)
1545 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1546 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1548 /* If the predicate is of the form VAR COMP LIMIT, then we just
1549 take LIMIT from the RHS and use the same comparison code. */
1550 cond_code
= TREE_CODE (cond
);
1551 limit
= TREE_OPERAND (cond
, 1);
1552 cond
= TREE_OPERAND (cond
, 0);
1556 /* If the predicate is of the form LIMIT COMP VAR, then we need
1557 to flip around the comparison code to create the proper range
1559 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1560 limit
= TREE_OPERAND (cond
, 0);
1561 cond
= TREE_OPERAND (cond
, 1);
1564 limit
= avoid_overflow_infinity (limit
);
1566 type
= TREE_TYPE (var
);
1567 gcc_assert (limit
!= var
);
1569 /* For pointer arithmetic, we only keep track of pointer equality
1571 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1573 set_value_range_to_varying (vr_p
);
1577 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1578 try to use LIMIT's range to avoid creating symbolic ranges
1580 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1582 /* LIMIT's range is only interesting if it has any useful information. */
1584 && (limit_vr
->type
== VR_UNDEFINED
1585 || limit_vr
->type
== VR_VARYING
1586 || symbolic_range_p (limit_vr
)))
1589 /* Initially, the new range has the same set of equivalences of
1590 VAR's range. This will be revised before returning the final
1591 value. Since assertions may be chained via mutually exclusive
1592 predicates, we will need to trim the set of equivalences before
1594 gcc_assert (vr_p
->equiv
== NULL
);
1595 add_equivalence (&vr_p
->equiv
, var
);
1597 /* Extract a new range based on the asserted comparison for VAR and
1598 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1599 will only use it for equality comparisons (EQ_EXPR). For any
1600 other kind of assertion, we cannot derive a range from LIMIT's
1601 anti-range that can be used to describe the new range. For
1602 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1603 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1604 no single range for x_2 that could describe LE_EXPR, so we might
1605 as well build the range [b_4, +INF] for it.
1606 One special case we handle is extracting a range from a
1607 range test encoded as (unsigned)var + CST <= limit. */
1608 if (TREE_CODE (cond
) == NOP_EXPR
1609 || TREE_CODE (cond
) == PLUS_EXPR
)
1611 if (TREE_CODE (cond
) == PLUS_EXPR
)
1613 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1614 TREE_OPERAND (cond
, 1));
1615 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1616 cond
= TREE_OPERAND (cond
, 0);
1620 min
= build_int_cst (TREE_TYPE (var
), 0);
1624 /* Make sure to not set TREE_OVERFLOW on the final type
1625 conversion. We are willingly interpreting large positive
1626 unsigned values as negative singed values here. */
1627 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1629 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1632 /* We can transform a max, min range to an anti-range or
1633 vice-versa. Use set_and_canonicalize_value_range which does
1635 if (cond_code
== LE_EXPR
)
1636 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1637 min
, max
, vr_p
->equiv
);
1638 else if (cond_code
== GT_EXPR
)
1639 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1640 min
, max
, vr_p
->equiv
);
1644 else if (cond_code
== EQ_EXPR
)
1646 enum value_range_type range_type
;
1650 range_type
= limit_vr
->type
;
1651 min
= limit_vr
->min
;
1652 max
= limit_vr
->max
;
1656 range_type
= VR_RANGE
;
1661 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1663 /* When asserting the equality VAR == LIMIT and LIMIT is another
1664 SSA name, the new range will also inherit the equivalence set
1666 if (TREE_CODE (limit
) == SSA_NAME
)
1667 add_equivalence (&vr_p
->equiv
, limit
);
1669 else if (cond_code
== NE_EXPR
)
1671 /* As described above, when LIMIT's range is an anti-range and
1672 this assertion is an inequality (NE_EXPR), then we cannot
1673 derive anything from the anti-range. For instance, if
1674 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1675 not imply that VAR's range is [0, 0]. So, in the case of
1676 anti-ranges, we just assert the inequality using LIMIT and
1679 If LIMIT_VR is a range, we can only use it to build a new
1680 anti-range if LIMIT_VR is a single-valued range. For
1681 instance, if LIMIT_VR is [0, 1], the predicate
1682 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1683 Rather, it means that for value 0 VAR should be ~[0, 0]
1684 and for value 1, VAR should be ~[1, 1]. We cannot
1685 represent these ranges.
1687 The only situation in which we can build a valid
1688 anti-range is when LIMIT_VR is a single-valued range
1689 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1690 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1692 && limit_vr
->type
== VR_RANGE
1693 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1695 min
= limit_vr
->min
;
1696 max
= limit_vr
->max
;
1700 /* In any other case, we cannot use LIMIT's range to build a
1701 valid anti-range. */
1705 /* If MIN and MAX cover the whole range for their type, then
1706 just use the original LIMIT. */
1707 if (INTEGRAL_TYPE_P (type
)
1708 && vrp_val_is_min (min
)
1709 && vrp_val_is_max (max
))
1712 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1714 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1716 min
= TYPE_MIN_VALUE (type
);
1718 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1722 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1723 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1725 max
= limit_vr
->max
;
1728 /* If the maximum value forces us to be out of bounds, simply punt.
1729 It would be pointless to try and do anything more since this
1730 all should be optimized away above us. */
1731 if ((cond_code
== LT_EXPR
1732 && compare_values (max
, min
) == 0)
1733 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1734 set_value_range_to_varying (vr_p
);
1737 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1738 if (cond_code
== LT_EXPR
)
1740 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1741 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1742 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1743 build_int_cst (TREE_TYPE (max
), -1));
1745 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1746 build_int_cst (TREE_TYPE (max
), 1));
1748 TREE_NO_WARNING (max
) = 1;
1751 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1754 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1756 max
= TYPE_MAX_VALUE (type
);
1758 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1762 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1763 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1765 min
= limit_vr
->min
;
1768 /* If the minimum value forces us to be out of bounds, simply punt.
1769 It would be pointless to try and do anything more since this
1770 all should be optimized away above us. */
1771 if ((cond_code
== GT_EXPR
1772 && compare_values (min
, max
) == 0)
1773 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1774 set_value_range_to_varying (vr_p
);
1777 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1778 if (cond_code
== GT_EXPR
)
1780 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1781 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1782 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1783 build_int_cst (TREE_TYPE (min
), -1));
1785 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1786 build_int_cst (TREE_TYPE (min
), 1));
1788 TREE_NO_WARNING (min
) = 1;
1791 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1797 /* Finally intersect the new range with what we already know about var. */
1798 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1802 /* Extract range information from SSA name VAR and store it in VR. If
1803 VAR has an interesting range, use it. Otherwise, create the
1804 range [VAR, VAR] and return it. This is useful in situations where
1805 we may have conditionals testing values of VARYING names. For
1812 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1816 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1818 value_range_t
*var_vr
= get_value_range (var
);
1820 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1821 copy_value_range (vr
, var_vr
);
1823 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1825 add_equivalence (&vr
->equiv
, var
);
1829 /* Wrapper around int_const_binop. If the operation overflows and we
1830 are not using wrapping arithmetic, then adjust the result to be
1831 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1832 NULL_TREE if we need to use an overflow infinity representation but
1833 the type does not support it. */
1836 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1840 res
= int_const_binop (code
, val1
, val2
);
1842 /* If we are using unsigned arithmetic, operate symbolically
1843 on -INF and +INF as int_const_binop only handles signed overflow. */
1844 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1846 int checkz
= compare_values (res
, val1
);
1847 bool overflow
= false;
1849 /* Ensure that res = val1 [+*] val2 >= val1
1850 or that res = val1 - val2 <= val1. */
1851 if ((code
== PLUS_EXPR
1852 && !(checkz
== 1 || checkz
== 0))
1853 || (code
== MINUS_EXPR
1854 && !(checkz
== 0 || checkz
== -1)))
1858 /* Checking for multiplication overflow is done by dividing the
1859 output of the multiplication by the first input of the
1860 multiplication. If the result of that division operation is
1861 not equal to the second input of the multiplication, then the
1862 multiplication overflowed. */
1863 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1865 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1868 int check
= compare_values (tmp
, val2
);
1876 res
= copy_node (res
);
1877 TREE_OVERFLOW (res
) = 1;
1881 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1882 /* If the singed operation wraps then int_const_binop has done
1883 everything we want. */
1885 else if ((TREE_OVERFLOW (res
)
1886 && !TREE_OVERFLOW (val1
)
1887 && !TREE_OVERFLOW (val2
))
1888 || is_overflow_infinity (val1
)
1889 || is_overflow_infinity (val2
))
1891 /* If the operation overflowed but neither VAL1 nor VAL2 are
1892 overflown, return -INF or +INF depending on the operation
1893 and the combination of signs of the operands. */
1894 int sgn1
= tree_int_cst_sgn (val1
);
1895 int sgn2
= tree_int_cst_sgn (val2
);
1897 if (needs_overflow_infinity (TREE_TYPE (res
))
1898 && !supports_overflow_infinity (TREE_TYPE (res
)))
1901 /* We have to punt on adding infinities of different signs,
1902 since we can't tell what the sign of the result should be.
1903 Likewise for subtracting infinities of the same sign. */
1904 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1905 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1906 && is_overflow_infinity (val1
)
1907 && is_overflow_infinity (val2
))
1910 /* Don't try to handle division or shifting of infinities. */
1911 if ((code
== TRUNC_DIV_EXPR
1912 || code
== FLOOR_DIV_EXPR
1913 || code
== CEIL_DIV_EXPR
1914 || code
== EXACT_DIV_EXPR
1915 || code
== ROUND_DIV_EXPR
1916 || code
== RSHIFT_EXPR
)
1917 && (is_overflow_infinity (val1
)
1918 || is_overflow_infinity (val2
)))
1921 /* Notice that we only need to handle the restricted set of
1922 operations handled by extract_range_from_binary_expr.
1923 Among them, only multiplication, addition and subtraction
1924 can yield overflow without overflown operands because we
1925 are working with integral types only... except in the
1926 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1927 for division too. */
1929 /* For multiplication, the sign of the overflow is given
1930 by the comparison of the signs of the operands. */
1931 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1932 /* For addition, the operands must be of the same sign
1933 to yield an overflow. Its sign is therefore that
1934 of one of the operands, for example the first. For
1935 infinite operands X + -INF is negative, not positive. */
1936 || (code
== PLUS_EXPR
1938 ? !is_negative_overflow_infinity (val2
)
1939 : is_positive_overflow_infinity (val2
)))
1940 /* For subtraction, non-infinite operands must be of
1941 different signs to yield an overflow. Its sign is
1942 therefore that of the first operand or the opposite of
1943 that of the second operand. A first operand of 0 counts
1944 as positive here, for the corner case 0 - (-INF), which
1945 overflows, but must yield +INF. For infinite operands 0
1946 - INF is negative, not positive. */
1947 || (code
== MINUS_EXPR
1949 ? !is_positive_overflow_infinity (val2
)
1950 : is_negative_overflow_infinity (val2
)))
1951 /* We only get in here with positive shift count, so the
1952 overflow direction is the same as the sign of val1.
1953 Actually rshift does not overflow at all, but we only
1954 handle the case of shifting overflowed -INF and +INF. */
1955 || (code
== RSHIFT_EXPR
1957 /* For division, the only case is -INF / -1 = +INF. */
1958 || code
== TRUNC_DIV_EXPR
1959 || code
== FLOOR_DIV_EXPR
1960 || code
== CEIL_DIV_EXPR
1961 || code
== EXACT_DIV_EXPR
1962 || code
== ROUND_DIV_EXPR
)
1963 return (needs_overflow_infinity (TREE_TYPE (res
))
1964 ? positive_overflow_infinity (TREE_TYPE (res
))
1965 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
1967 return (needs_overflow_infinity (TREE_TYPE (res
))
1968 ? negative_overflow_infinity (TREE_TYPE (res
))
1969 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
1976 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1977 bitmask if some bit is unset, it means for all numbers in the range
1978 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1979 bitmask if some bit is set, it means for all numbers in the range
1980 the bit is 1, otherwise it might be 0 or 1. */
1983 zero_nonzero_bits_from_vr (value_range_t
*vr
,
1984 double_int
*may_be_nonzero
,
1985 double_int
*must_be_nonzero
)
1987 *may_be_nonzero
= double_int_minus_one
;
1988 *must_be_nonzero
= double_int_zero
;
1989 if (!range_int_cst_p (vr
)
1990 || TREE_OVERFLOW (vr
->min
)
1991 || TREE_OVERFLOW (vr
->max
))
1994 if (range_int_cst_singleton_p (vr
))
1996 *may_be_nonzero
= tree_to_double_int (vr
->min
);
1997 *must_be_nonzero
= *may_be_nonzero
;
1999 else if (tree_int_cst_sgn (vr
->min
) >= 0
2000 || tree_int_cst_sgn (vr
->max
) < 0)
2002 double_int dmin
= tree_to_double_int (vr
->min
);
2003 double_int dmax
= tree_to_double_int (vr
->max
);
2004 double_int xor_mask
= dmin
^ dmax
;
2005 *may_be_nonzero
= dmin
| dmax
;
2006 *must_be_nonzero
= dmin
& dmax
;
2007 if (xor_mask
.high
!= 0)
2009 unsigned HOST_WIDE_INT mask
2010 = ((unsigned HOST_WIDE_INT
) 1
2011 << floor_log2 (xor_mask
.high
)) - 1;
2012 may_be_nonzero
->low
= ALL_ONES
;
2013 may_be_nonzero
->high
|= mask
;
2014 must_be_nonzero
->low
= 0;
2015 must_be_nonzero
->high
&= ~mask
;
2017 else if (xor_mask
.low
!= 0)
2019 unsigned HOST_WIDE_INT mask
2020 = ((unsigned HOST_WIDE_INT
) 1
2021 << floor_log2 (xor_mask
.low
)) - 1;
2022 may_be_nonzero
->low
|= mask
;
2023 must_be_nonzero
->low
&= ~mask
;
2030 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2031 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2032 false otherwise. If *AR can be represented with a single range
2033 *VR1 will be VR_UNDEFINED. */
2036 ranges_from_anti_range (value_range_t
*ar
,
2037 value_range_t
*vr0
, value_range_t
*vr1
)
2039 tree type
= TREE_TYPE (ar
->min
);
2041 vr0
->type
= VR_UNDEFINED
;
2042 vr1
->type
= VR_UNDEFINED
;
2044 if (ar
->type
!= VR_ANTI_RANGE
2045 || TREE_CODE (ar
->min
) != INTEGER_CST
2046 || TREE_CODE (ar
->max
) != INTEGER_CST
2047 || !vrp_val_min (type
)
2048 || !vrp_val_max (type
))
2051 if (!vrp_val_is_min (ar
->min
))
2053 vr0
->type
= VR_RANGE
;
2054 vr0
->min
= vrp_val_min (type
);
2056 = double_int_to_tree (type
,
2057 tree_to_double_int (ar
->min
) - double_int_one
);
2059 if (!vrp_val_is_max (ar
->max
))
2061 vr1
->type
= VR_RANGE
;
2063 = double_int_to_tree (type
,
2064 tree_to_double_int (ar
->max
) + double_int_one
);
2065 vr1
->max
= vrp_val_max (type
);
2067 if (vr0
->type
== VR_UNDEFINED
)
2070 vr1
->type
= VR_UNDEFINED
;
2073 return vr0
->type
!= VR_UNDEFINED
;
2076 /* Helper to extract a value-range *VR for a multiplicative operation
2080 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2081 enum tree_code code
,
2082 value_range_t
*vr0
, value_range_t
*vr1
)
2084 enum value_range_type type
;
2091 /* Multiplications, divisions and shifts are a bit tricky to handle,
2092 depending on the mix of signs we have in the two ranges, we
2093 need to operate on different values to get the minimum and
2094 maximum values for the new range. One approach is to figure
2095 out all the variations of range combinations and do the
2098 However, this involves several calls to compare_values and it
2099 is pretty convoluted. It's simpler to do the 4 operations
2100 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2101 MAX1) and then figure the smallest and largest values to form
2103 gcc_assert (code
== MULT_EXPR
2104 || code
== TRUNC_DIV_EXPR
2105 || code
== FLOOR_DIV_EXPR
2106 || code
== CEIL_DIV_EXPR
2107 || code
== EXACT_DIV_EXPR
2108 || code
== ROUND_DIV_EXPR
2109 || code
== RSHIFT_EXPR
2110 || code
== LSHIFT_EXPR
);
2111 gcc_assert ((vr0
->type
== VR_RANGE
2112 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2113 && vr0
->type
== vr1
->type
);
2117 /* Compute the 4 cross operations. */
2119 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2120 if (val
[0] == NULL_TREE
)
2123 if (vr1
->max
== vr1
->min
)
2127 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2128 if (val
[1] == NULL_TREE
)
2132 if (vr0
->max
== vr0
->min
)
2136 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2137 if (val
[2] == NULL_TREE
)
2141 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2145 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2146 if (val
[3] == NULL_TREE
)
2152 set_value_range_to_varying (vr
);
2156 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2160 for (i
= 1; i
< 4; i
++)
2162 if (!is_gimple_min_invariant (min
)
2163 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2164 || !is_gimple_min_invariant (max
)
2165 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2170 if (!is_gimple_min_invariant (val
[i
])
2171 || (TREE_OVERFLOW (val
[i
])
2172 && !is_overflow_infinity (val
[i
])))
2174 /* If we found an overflowed value, set MIN and MAX
2175 to it so that we set the resulting range to
2181 if (compare_values (val
[i
], min
) == -1)
2184 if (compare_values (val
[i
], max
) == 1)
2189 /* If either MIN or MAX overflowed, then set the resulting range to
2190 VARYING. But we do accept an overflow infinity
2192 if (min
== NULL_TREE
2193 || !is_gimple_min_invariant (min
)
2194 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2196 || !is_gimple_min_invariant (max
)
2197 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2199 set_value_range_to_varying (vr
);
2205 2) [-INF, +-INF(OVF)]
2206 3) [+-INF(OVF), +INF]
2207 4) [+-INF(OVF), +-INF(OVF)]
2208 We learn nothing when we have INF and INF(OVF) on both sides.
2209 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2211 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2212 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2214 set_value_range_to_varying (vr
);
2218 cmp
= compare_values (min
, max
);
2219 if (cmp
== -2 || cmp
== 1)
2221 /* If the new range has its limits swapped around (MIN > MAX),
2222 then the operation caused one of them to wrap around, mark
2223 the new range VARYING. */
2224 set_value_range_to_varying (vr
);
2227 set_value_range (vr
, type
, min
, max
, NULL
);
2230 /* Some quadruple precision helpers. */
2232 quad_int_cmp (double_int l0
, double_int h0
,
2233 double_int l1
, double_int h1
, bool uns
)
2235 int c
= h0
.cmp (h1
, uns
);
2236 if (c
!= 0) return c
;
2237 return l0
.ucmp (l1
);
2241 quad_int_pair_sort (double_int
*l0
, double_int
*h0
,
2242 double_int
*l1
, double_int
*h1
, bool uns
)
2244 if (quad_int_cmp (*l0
, *h0
, *l1
, *h1
, uns
) > 0)
2247 tmp
= *l0
; *l0
= *l1
; *l1
= tmp
;
2248 tmp
= *h0
; *h0
= *h1
; *h1
= tmp
;
2252 /* Extract range information from a binary operation CODE based on
2253 the ranges of each of its operands, *VR0 and *VR1 with resulting
2254 type EXPR_TYPE. The resulting range is stored in *VR. */
2257 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2258 enum tree_code code
, tree expr_type
,
2259 value_range_t
*vr0_
, value_range_t
*vr1_
)
2261 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2262 value_range_t vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2263 enum value_range_type type
;
2264 tree min
= NULL_TREE
, max
= NULL_TREE
;
2267 if (!INTEGRAL_TYPE_P (expr_type
)
2268 && !POINTER_TYPE_P (expr_type
))
2270 set_value_range_to_varying (vr
);
2274 /* Not all binary expressions can be applied to ranges in a
2275 meaningful way. Handle only arithmetic operations. */
2276 if (code
!= PLUS_EXPR
2277 && code
!= MINUS_EXPR
2278 && code
!= POINTER_PLUS_EXPR
2279 && code
!= MULT_EXPR
2280 && code
!= TRUNC_DIV_EXPR
2281 && code
!= FLOOR_DIV_EXPR
2282 && code
!= CEIL_DIV_EXPR
2283 && code
!= EXACT_DIV_EXPR
2284 && code
!= ROUND_DIV_EXPR
2285 && code
!= TRUNC_MOD_EXPR
2286 && code
!= RSHIFT_EXPR
2287 && code
!= LSHIFT_EXPR
2290 && code
!= BIT_AND_EXPR
2291 && code
!= BIT_IOR_EXPR
2292 && code
!= BIT_XOR_EXPR
)
2294 set_value_range_to_varying (vr
);
2298 /* If both ranges are UNDEFINED, so is the result. */
2299 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2301 set_value_range_to_undefined (vr
);
2304 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2305 code. At some point we may want to special-case operations that
2306 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2308 else if (vr0
.type
== VR_UNDEFINED
)
2309 set_value_range_to_varying (&vr0
);
2310 else if (vr1
.type
== VR_UNDEFINED
)
2311 set_value_range_to_varying (&vr1
);
2313 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2314 and express ~[] op X as ([]' op X) U ([]'' op X). */
2315 if (vr0
.type
== VR_ANTI_RANGE
2316 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2318 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2319 if (vrtem1
.type
!= VR_UNDEFINED
)
2321 value_range_t vrres
= VR_INITIALIZER
;
2322 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2324 vrp_meet (vr
, &vrres
);
2328 /* Likewise for X op ~[]. */
2329 if (vr1
.type
== VR_ANTI_RANGE
2330 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2332 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2333 if (vrtem1
.type
!= VR_UNDEFINED
)
2335 value_range_t vrres
= VR_INITIALIZER
;
2336 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2338 vrp_meet (vr
, &vrres
);
2343 /* The type of the resulting value range defaults to VR0.TYPE. */
2346 /* Refuse to operate on VARYING ranges, ranges of different kinds
2347 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2348 because we may be able to derive a useful range even if one of
2349 the operands is VR_VARYING or symbolic range. Similarly for
2350 divisions. TODO, we may be able to derive anti-ranges in
2352 if (code
!= BIT_AND_EXPR
2353 && code
!= BIT_IOR_EXPR
2354 && code
!= TRUNC_DIV_EXPR
2355 && code
!= FLOOR_DIV_EXPR
2356 && code
!= CEIL_DIV_EXPR
2357 && code
!= EXACT_DIV_EXPR
2358 && code
!= ROUND_DIV_EXPR
2359 && code
!= TRUNC_MOD_EXPR
2360 && (vr0
.type
== VR_VARYING
2361 || vr1
.type
== VR_VARYING
2362 || vr0
.type
!= vr1
.type
2363 || symbolic_range_p (&vr0
)
2364 || symbolic_range_p (&vr1
)))
2366 set_value_range_to_varying (vr
);
2370 /* Now evaluate the expression to determine the new range. */
2371 if (POINTER_TYPE_P (expr_type
))
2373 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2375 /* For MIN/MAX expressions with pointers, we only care about
2376 nullness, if both are non null, then the result is nonnull.
2377 If both are null, then the result is null. Otherwise they
2379 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2380 set_value_range_to_nonnull (vr
, expr_type
);
2381 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2382 set_value_range_to_null (vr
, expr_type
);
2384 set_value_range_to_varying (vr
);
2386 else if (code
== POINTER_PLUS_EXPR
)
2388 /* For pointer types, we are really only interested in asserting
2389 whether the expression evaluates to non-NULL. */
2390 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2391 set_value_range_to_nonnull (vr
, expr_type
);
2392 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2393 set_value_range_to_null (vr
, expr_type
);
2395 set_value_range_to_varying (vr
);
2397 else if (code
== BIT_AND_EXPR
)
2399 /* For pointer types, we are really only interested in asserting
2400 whether the expression evaluates to non-NULL. */
2401 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2402 set_value_range_to_nonnull (vr
, expr_type
);
2403 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2404 set_value_range_to_null (vr
, expr_type
);
2406 set_value_range_to_varying (vr
);
2409 set_value_range_to_varying (vr
);
2414 /* For integer ranges, apply the operation to each end of the
2415 range and see what we end up with. */
2416 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2418 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2419 ranges compute the precise range for such case if possible. */
2420 if (range_int_cst_p (&vr0
)
2421 && range_int_cst_p (&vr1
)
2422 /* We need as many bits as the possibly unsigned inputs. */
2423 && TYPE_PRECISION (expr_type
) <= HOST_BITS_PER_DOUBLE_INT
)
2425 double_int min0
= tree_to_double_int (vr0
.min
);
2426 double_int max0
= tree_to_double_int (vr0
.max
);
2427 double_int min1
= tree_to_double_int (vr1
.min
);
2428 double_int max1
= tree_to_double_int (vr1
.max
);
2429 bool uns
= TYPE_UNSIGNED (expr_type
);
2431 = double_int::min_value (TYPE_PRECISION (expr_type
), uns
);
2433 = double_int::max_value (TYPE_PRECISION (expr_type
), uns
);
2434 double_int dmin
, dmax
;
2438 if (code
== PLUS_EXPR
)
2443 /* Check for overflow in double_int. */
2444 if (min1
.cmp (double_int_zero
, uns
) != dmin
.cmp (min0
, uns
))
2445 min_ovf
= min0
.cmp (dmin
, uns
);
2446 if (max1
.cmp (double_int_zero
, uns
) != dmax
.cmp (max0
, uns
))
2447 max_ovf
= max0
.cmp (dmax
, uns
);
2449 else /* if (code == MINUS_EXPR) */
2454 if (double_int_zero
.cmp (max1
, uns
) != dmin
.cmp (min0
, uns
))
2455 min_ovf
= min0
.cmp (max1
, uns
);
2456 if (double_int_zero
.cmp (min1
, uns
) != dmax
.cmp (max0
, uns
))
2457 max_ovf
= max0
.cmp (min1
, uns
);
2460 /* For non-wrapping arithmetic look at possibly smaller
2461 value-ranges of the type. */
2462 if (!TYPE_OVERFLOW_WRAPS (expr_type
))
2464 if (vrp_val_min (expr_type
))
2465 type_min
= tree_to_double_int (vrp_val_min (expr_type
));
2466 if (vrp_val_max (expr_type
))
2467 type_max
= tree_to_double_int (vrp_val_max (expr_type
));
2470 /* Check for type overflow. */
2473 if (dmin
.cmp (type_min
, uns
) == -1)
2475 else if (dmin
.cmp (type_max
, uns
) == 1)
2480 if (dmax
.cmp (type_min
, uns
) == -1)
2482 else if (dmax
.cmp (type_max
, uns
) == 1)
2486 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2488 /* If overflow wraps, truncate the values and adjust the
2489 range kind and bounds appropriately. */
2491 = dmin
.ext (TYPE_PRECISION (expr_type
), uns
);
2493 = dmax
.ext (TYPE_PRECISION (expr_type
), uns
);
2494 if (min_ovf
== max_ovf
)
2496 /* No overflow or both overflow or underflow. The
2497 range kind stays VR_RANGE. */
2498 min
= double_int_to_tree (expr_type
, tmin
);
2499 max
= double_int_to_tree (expr_type
, tmax
);
2501 else if (min_ovf
== -1
2504 /* Underflow and overflow, drop to VR_VARYING. */
2505 set_value_range_to_varying (vr
);
2510 /* Min underflow or max overflow. The range kind
2511 changes to VR_ANTI_RANGE. */
2512 bool covers
= false;
2513 double_int tem
= tmin
;
2514 gcc_assert ((min_ovf
== -1 && max_ovf
== 0)
2515 || (max_ovf
== 1 && min_ovf
== 0));
2516 type
= VR_ANTI_RANGE
;
2517 tmin
= tmax
+ double_int_one
;
2518 if (tmin
.cmp (tmax
, uns
) < 0)
2520 tmax
= tem
+ double_int_minus_one
;
2521 if (tmax
.cmp (tem
, uns
) > 0)
2523 /* If the anti-range would cover nothing, drop to varying.
2524 Likewise if the anti-range bounds are outside of the
2526 if (covers
|| tmin
.cmp (tmax
, uns
) > 0)
2528 set_value_range_to_varying (vr
);
2531 min
= double_int_to_tree (expr_type
, tmin
);
2532 max
= double_int_to_tree (expr_type
, tmax
);
2537 /* If overflow does not wrap, saturate to the types min/max
2541 if (needs_overflow_infinity (expr_type
)
2542 && supports_overflow_infinity (expr_type
))
2543 min
= negative_overflow_infinity (expr_type
);
2545 min
= double_int_to_tree (expr_type
, type_min
);
2547 else if (min_ovf
== 1)
2549 if (needs_overflow_infinity (expr_type
)
2550 && supports_overflow_infinity (expr_type
))
2551 min
= positive_overflow_infinity (expr_type
);
2553 min
= double_int_to_tree (expr_type
, type_max
);
2556 min
= double_int_to_tree (expr_type
, dmin
);
2560 if (needs_overflow_infinity (expr_type
)
2561 && supports_overflow_infinity (expr_type
))
2562 max
= negative_overflow_infinity (expr_type
);
2564 max
= double_int_to_tree (expr_type
, type_min
);
2566 else if (max_ovf
== 1)
2568 if (needs_overflow_infinity (expr_type
)
2569 && supports_overflow_infinity (expr_type
))
2570 max
= positive_overflow_infinity (expr_type
);
2572 max
= double_int_to_tree (expr_type
, type_max
);
2575 max
= double_int_to_tree (expr_type
, dmax
);
2577 if (needs_overflow_infinity (expr_type
)
2578 && supports_overflow_infinity (expr_type
))
2580 if (is_negative_overflow_infinity (vr0
.min
)
2581 || (code
== PLUS_EXPR
2582 ? is_negative_overflow_infinity (vr1
.min
)
2583 : is_positive_overflow_infinity (vr1
.max
)))
2584 min
= negative_overflow_infinity (expr_type
);
2585 if (is_positive_overflow_infinity (vr0
.max
)
2586 || (code
== PLUS_EXPR
2587 ? is_positive_overflow_infinity (vr1
.max
)
2588 : is_negative_overflow_infinity (vr1
.min
)))
2589 max
= positive_overflow_infinity (expr_type
);
2594 /* For other cases, for example if we have a PLUS_EXPR with two
2595 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2596 to compute a precise range for such a case.
2597 ??? General even mixed range kind operations can be expressed
2598 by for example transforming ~[3, 5] + [1, 2] to range-only
2599 operations and a union primitive:
2600 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2601 [-INF+1, 4] U [6, +INF(OVF)]
2602 though usually the union is not exactly representable with
2603 a single range or anti-range as the above is
2604 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2605 but one could use a scheme similar to equivalences for this. */
2606 set_value_range_to_varying (vr
);
2610 else if (code
== MIN_EXPR
2611 || code
== MAX_EXPR
)
2613 if (vr0
.type
== VR_ANTI_RANGE
)
2615 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2616 the resulting VR_ANTI_RANGE is the same - intersection
2617 of the two ranges. */
2618 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2619 max
= vrp_int_const_binop (MIN_EXPR
, vr0
.max
, vr1
.max
);
2623 /* For operations that make the resulting range directly
2624 proportional to the original ranges, apply the operation to
2625 the same end of each range. */
2626 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2627 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2630 else if (code
== MULT_EXPR
)
2632 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2634 if (range_int_cst_p (&vr0
)
2635 && range_int_cst_p (&vr1
)
2636 && TYPE_OVERFLOW_WRAPS (expr_type
))
2638 double_int min0
, max0
, min1
, max1
, sizem1
, size
;
2639 double_int prod0l
, prod0h
, prod1l
, prod1h
,
2640 prod2l
, prod2h
, prod3l
, prod3h
;
2641 bool uns0
, uns1
, uns
;
2643 sizem1
= double_int::max_value (TYPE_PRECISION (expr_type
), true);
2644 size
= sizem1
+ double_int_one
;
2646 min0
= tree_to_double_int (vr0
.min
);
2647 max0
= tree_to_double_int (vr0
.max
);
2648 min1
= tree_to_double_int (vr1
.min
);
2649 max1
= tree_to_double_int (vr1
.max
);
2651 uns0
= TYPE_UNSIGNED (expr_type
);
2654 /* Canonicalize the intervals. */
2655 if (TYPE_UNSIGNED (expr_type
))
2657 double_int min2
= size
- min0
;
2658 if (min2
.cmp (max0
, true) < 0)
2666 if (min2
.cmp (max1
, true) < 0)
2676 prod0l
= min0
.wide_mul_with_sign (min1
, true, &prod0h
, &overflow
);
2677 if (!uns0
&& min0
.is_negative ())
2679 if (!uns1
&& min1
.is_negative ())
2682 prod1l
= min0
.wide_mul_with_sign (max1
, true, &prod1h
, &overflow
);
2683 if (!uns0
&& min0
.is_negative ())
2685 if (!uns1
&& max1
.is_negative ())
2688 prod2l
= max0
.wide_mul_with_sign (min1
, true, &prod2h
, &overflow
);
2689 if (!uns0
&& max0
.is_negative ())
2691 if (!uns1
&& min1
.is_negative ())
2694 prod3l
= max0
.wide_mul_with_sign (max1
, true, &prod3h
, &overflow
);
2695 if (!uns0
&& max0
.is_negative ())
2697 if (!uns1
&& max1
.is_negative ())
2700 /* Sort the 4 products. */
2701 quad_int_pair_sort (&prod0l
, &prod0h
, &prod3l
, &prod3h
, uns
);
2702 quad_int_pair_sort (&prod1l
, &prod1h
, &prod2l
, &prod2h
, uns
);
2703 quad_int_pair_sort (&prod0l
, &prod0h
, &prod1l
, &prod1h
, uns
);
2704 quad_int_pair_sort (&prod2l
, &prod2h
, &prod3l
, &prod3h
, uns
);
2707 if (prod0l
.is_zero ())
2709 prod1l
= double_int_zero
;
2717 prod2l
= prod3l
+ prod1l
;
2718 prod2h
= prod3h
+ prod1h
;
2719 if (prod2l
.ult (prod3l
))
2720 prod2h
+= double_int_one
; /* carry */
2722 if (!prod2h
.is_zero ()
2723 || prod2l
.cmp (sizem1
, true) >= 0)
2725 /* the range covers all values. */
2726 set_value_range_to_varying (vr
);
2730 /* The following should handle the wrapping and selecting
2731 VR_ANTI_RANGE for us. */
2732 min
= double_int_to_tree (expr_type
, prod0l
);
2733 max
= double_int_to_tree (expr_type
, prod3l
);
2734 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2738 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2739 drop to VR_VARYING. It would take more effort to compute a
2740 precise range for such a case. For example, if we have
2741 op0 == 65536 and op1 == 65536 with their ranges both being
2742 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2743 we cannot claim that the product is in ~[0,0]. Note that we
2744 are guaranteed to have vr0.type == vr1.type at this
2746 if (vr0
.type
== VR_ANTI_RANGE
2747 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2749 set_value_range_to_varying (vr
);
2753 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2756 else if (code
== RSHIFT_EXPR
2757 || code
== LSHIFT_EXPR
)
2759 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2760 then drop to VR_VARYING. Outside of this range we get undefined
2761 behavior from the shift operation. We cannot even trust
2762 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2763 shifts, and the operation at the tree level may be widened. */
2764 if (range_int_cst_p (&vr1
)
2765 && compare_tree_int (vr1
.min
, 0) >= 0
2766 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2768 if (code
== RSHIFT_EXPR
)
2770 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2773 /* We can map lshifts by constants to MULT_EXPR handling. */
2774 else if (code
== LSHIFT_EXPR
2775 && range_int_cst_singleton_p (&vr1
))
2777 bool saved_flag_wrapv
;
2778 value_range_t vr1p
= VR_INITIALIZER
;
2779 vr1p
.type
= VR_RANGE
;
2781 = double_int_to_tree (expr_type
,
2783 .llshift (TREE_INT_CST_LOW (vr1
.min
),
2784 TYPE_PRECISION (expr_type
)));
2785 vr1p
.max
= vr1p
.min
;
2786 /* We have to use a wrapping multiply though as signed overflow
2787 on lshifts is implementation defined in C89. */
2788 saved_flag_wrapv
= flag_wrapv
;
2790 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
2792 flag_wrapv
= saved_flag_wrapv
;
2795 else if (code
== LSHIFT_EXPR
2796 && range_int_cst_p (&vr0
))
2798 int prec
= TYPE_PRECISION (expr_type
);
2799 int overflow_pos
= prec
;
2801 double_int bound
, complement
, low_bound
, high_bound
;
2802 bool uns
= TYPE_UNSIGNED (expr_type
);
2803 bool in_bounds
= false;
2808 bound_shift
= overflow_pos
- TREE_INT_CST_LOW (vr1
.max
);
2809 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2810 overflow. However, for that to happen, vr1.max needs to be
2811 zero, which means vr1 is a singleton range of zero, which
2812 means it should be handled by the previous LSHIFT_EXPR
2814 bound
= double_int_one
.llshift (bound_shift
, prec
);
2815 complement
= ~(bound
- double_int_one
);
2820 high_bound
= complement
.zext (prec
);
2821 if (tree_to_double_int (vr0
.max
).ult (low_bound
))
2823 /* [5, 6] << [1, 2] == [10, 24]. */
2824 /* We're shifting out only zeroes, the value increases
2828 else if (high_bound
.ult (tree_to_double_int (vr0
.min
)))
2830 /* [0xffffff00, 0xffffffff] << [1, 2]
2831 == [0xfffffc00, 0xfffffffe]. */
2832 /* We're shifting out only ones, the value decreases
2839 /* [-1, 1] << [1, 2] == [-4, 4]. */
2840 low_bound
= complement
.sext (prec
);
2842 if (tree_to_double_int (vr0
.max
).slt (high_bound
)
2843 && low_bound
.slt (tree_to_double_int (vr0
.min
)))
2845 /* For non-negative numbers, we're shifting out only
2846 zeroes, the value increases monotonically.
2847 For negative numbers, we're shifting out only ones, the
2848 value decreases monotomically. */
2855 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2860 set_value_range_to_varying (vr
);
2863 else if (code
== TRUNC_DIV_EXPR
2864 || code
== FLOOR_DIV_EXPR
2865 || code
== CEIL_DIV_EXPR
2866 || code
== EXACT_DIV_EXPR
2867 || code
== ROUND_DIV_EXPR
)
2869 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2871 /* For division, if op1 has VR_RANGE but op0 does not, something
2872 can be deduced just from that range. Say [min, max] / [4, max]
2873 gives [min / 4, max / 4] range. */
2874 if (vr1
.type
== VR_RANGE
2875 && !symbolic_range_p (&vr1
)
2876 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
2878 vr0
.type
= type
= VR_RANGE
;
2879 vr0
.min
= vrp_val_min (expr_type
);
2880 vr0
.max
= vrp_val_max (expr_type
);
2884 set_value_range_to_varying (vr
);
2889 /* For divisions, if flag_non_call_exceptions is true, we must
2890 not eliminate a division by zero. */
2891 if (cfun
->can_throw_non_call_exceptions
2892 && (vr1
.type
!= VR_RANGE
2893 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2895 set_value_range_to_varying (vr
);
2899 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2900 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2902 if (vr0
.type
== VR_RANGE
2903 && (vr1
.type
!= VR_RANGE
2904 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2906 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2911 if (TYPE_UNSIGNED (expr_type
)
2912 || value_range_nonnegative_p (&vr1
))
2914 /* For unsigned division or when divisor is known
2915 to be non-negative, the range has to cover
2916 all numbers from 0 to max for positive max
2917 and all numbers from min to 0 for negative min. */
2918 cmp
= compare_values (vr0
.max
, zero
);
2921 else if (cmp
== 0 || cmp
== 1)
2925 cmp
= compare_values (vr0
.min
, zero
);
2928 else if (cmp
== 0 || cmp
== -1)
2935 /* Otherwise the range is -max .. max or min .. -min
2936 depending on which bound is bigger in absolute value,
2937 as the division can change the sign. */
2938 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2941 if (type
== VR_VARYING
)
2943 set_value_range_to_varying (vr
);
2949 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2953 else if (code
== TRUNC_MOD_EXPR
)
2955 if (vr1
.type
!= VR_RANGE
2956 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0
2957 || vrp_val_is_min (vr1
.min
))
2959 set_value_range_to_varying (vr
);
2963 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2964 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
2965 if (tree_int_cst_lt (max
, vr1
.max
))
2967 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
);
2968 /* If the dividend is non-negative the modulus will be
2969 non-negative as well. */
2970 if (TYPE_UNSIGNED (expr_type
)
2971 || value_range_nonnegative_p (&vr0
))
2972 min
= build_int_cst (TREE_TYPE (max
), 0);
2974 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
2976 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
2978 bool int_cst_range0
, int_cst_range1
;
2979 double_int may_be_nonzero0
, may_be_nonzero1
;
2980 double_int must_be_nonzero0
, must_be_nonzero1
;
2982 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
2984 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
2988 if (code
== BIT_AND_EXPR
)
2991 min
= double_int_to_tree (expr_type
,
2992 must_be_nonzero0
& must_be_nonzero1
);
2993 dmax
= may_be_nonzero0
& may_be_nonzero1
;
2994 /* If both input ranges contain only negative values we can
2995 truncate the result range maximum to the minimum of the
2996 input range maxima. */
2997 if (int_cst_range0
&& int_cst_range1
2998 && tree_int_cst_sgn (vr0
.max
) < 0
2999 && tree_int_cst_sgn (vr1
.max
) < 0)
3001 dmax
= dmax
.min (tree_to_double_int (vr0
.max
),
3002 TYPE_UNSIGNED (expr_type
));
3003 dmax
= dmax
.min (tree_to_double_int (vr1
.max
),
3004 TYPE_UNSIGNED (expr_type
));
3006 /* If either input range contains only non-negative values
3007 we can truncate the result range maximum to the respective
3008 maximum of the input range. */
3009 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3010 dmax
= dmax
.min (tree_to_double_int (vr0
.max
),
3011 TYPE_UNSIGNED (expr_type
));
3012 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3013 dmax
= dmax
.min (tree_to_double_int (vr1
.max
),
3014 TYPE_UNSIGNED (expr_type
));
3015 max
= double_int_to_tree (expr_type
, dmax
);
3017 else if (code
== BIT_IOR_EXPR
)
3020 max
= double_int_to_tree (expr_type
,
3021 may_be_nonzero0
| may_be_nonzero1
);
3022 dmin
= must_be_nonzero0
| must_be_nonzero1
;
3023 /* If the input ranges contain only positive values we can
3024 truncate the minimum of the result range to the maximum
3025 of the input range minima. */
3026 if (int_cst_range0
&& int_cst_range1
3027 && tree_int_cst_sgn (vr0
.min
) >= 0
3028 && tree_int_cst_sgn (vr1
.min
) >= 0)
3030 dmin
= dmin
.max (tree_to_double_int (vr0
.min
),
3031 TYPE_UNSIGNED (expr_type
));
3032 dmin
= dmin
.max (tree_to_double_int (vr1
.min
),
3033 TYPE_UNSIGNED (expr_type
));
3035 /* If either input range contains only negative values
3036 we can truncate the minimum of the result range to the
3037 respective minimum range. */
3038 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3039 dmin
= dmin
.max (tree_to_double_int (vr0
.min
),
3040 TYPE_UNSIGNED (expr_type
));
3041 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3042 dmin
= dmin
.max (tree_to_double_int (vr1
.min
),
3043 TYPE_UNSIGNED (expr_type
));
3044 min
= double_int_to_tree (expr_type
, dmin
);
3046 else if (code
== BIT_XOR_EXPR
)
3048 double_int result_zero_bits
, result_one_bits
;
3049 result_zero_bits
= (must_be_nonzero0
& must_be_nonzero1
)
3050 | ~(may_be_nonzero0
| may_be_nonzero1
);
3051 result_one_bits
= must_be_nonzero0
.and_not (may_be_nonzero1
)
3052 | must_be_nonzero1
.and_not (may_be_nonzero0
);
3053 max
= double_int_to_tree (expr_type
, ~result_zero_bits
);
3054 min
= double_int_to_tree (expr_type
, result_one_bits
);
3055 /* If the range has all positive or all negative values the
3056 result is better than VARYING. */
3057 if (tree_int_cst_sgn (min
) < 0
3058 || tree_int_cst_sgn (max
) >= 0)
3061 max
= min
= NULL_TREE
;
3067 /* If either MIN or MAX overflowed, then set the resulting range to
3068 VARYING. But we do accept an overflow infinity
3070 if (min
== NULL_TREE
3071 || !is_gimple_min_invariant (min
)
3072 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
3074 || !is_gimple_min_invariant (max
)
3075 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
3077 set_value_range_to_varying (vr
);
3083 2) [-INF, +-INF(OVF)]
3084 3) [+-INF(OVF), +INF]
3085 4) [+-INF(OVF), +-INF(OVF)]
3086 We learn nothing when we have INF and INF(OVF) on both sides.
3087 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3089 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3090 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3092 set_value_range_to_varying (vr
);
3096 cmp
= compare_values (min
, max
);
3097 if (cmp
== -2 || cmp
== 1)
3099 /* If the new range has its limits swapped around (MIN > MAX),
3100 then the operation caused one of them to wrap around, mark
3101 the new range VARYING. */
3102 set_value_range_to_varying (vr
);
3105 set_value_range (vr
, type
, min
, max
, NULL
);
3108 /* Extract range information from a binary expression OP0 CODE OP1 based on
3109 the ranges of each of its operands with resulting type EXPR_TYPE.
3110 The resulting range is stored in *VR. */
3113 extract_range_from_binary_expr (value_range_t
*vr
,
3114 enum tree_code code
,
3115 tree expr_type
, tree op0
, tree op1
)
3117 value_range_t vr0
= VR_INITIALIZER
;
3118 value_range_t vr1
= VR_INITIALIZER
;
3120 /* Get value ranges for each operand. For constant operands, create
3121 a new value range with the operand to simplify processing. */
3122 if (TREE_CODE (op0
) == SSA_NAME
)
3123 vr0
= *(get_value_range (op0
));
3124 else if (is_gimple_min_invariant (op0
))
3125 set_value_range_to_value (&vr0
, op0
, NULL
);
3127 set_value_range_to_varying (&vr0
);
3129 if (TREE_CODE (op1
) == SSA_NAME
)
3130 vr1
= *(get_value_range (op1
));
3131 else if (is_gimple_min_invariant (op1
))
3132 set_value_range_to_value (&vr1
, op1
, NULL
);
3134 set_value_range_to_varying (&vr1
);
3136 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3139 /* Extract range information from a unary operation CODE based on
3140 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3141 The The resulting range is stored in *VR. */
3144 extract_range_from_unary_expr_1 (value_range_t
*vr
,
3145 enum tree_code code
, tree type
,
3146 value_range_t
*vr0_
, tree op0_type
)
3148 value_range_t vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3150 /* VRP only operates on integral and pointer types. */
3151 if (!(INTEGRAL_TYPE_P (op0_type
)
3152 || POINTER_TYPE_P (op0_type
))
3153 || !(INTEGRAL_TYPE_P (type
)
3154 || POINTER_TYPE_P (type
)))
3156 set_value_range_to_varying (vr
);
3160 /* If VR0 is UNDEFINED, so is the result. */
3161 if (vr0
.type
== VR_UNDEFINED
)
3163 set_value_range_to_undefined (vr
);
3167 /* Handle operations that we express in terms of others. */
3168 if (code
== PAREN_EXPR
)
3170 /* PAREN_EXPR is a simple copy. */
3171 copy_value_range (vr
, &vr0
);
3174 else if (code
== NEGATE_EXPR
)
3176 /* -X is simply 0 - X, so re-use existing code that also handles
3177 anti-ranges fine. */
3178 value_range_t zero
= VR_INITIALIZER
;
3179 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3180 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3183 else if (code
== BIT_NOT_EXPR
)
3185 /* ~X is simply -1 - X, so re-use existing code that also handles
3186 anti-ranges fine. */
3187 value_range_t minusone
= VR_INITIALIZER
;
3188 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3189 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3190 type
, &minusone
, &vr0
);
3194 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3195 and express op ~[] as (op []') U (op []''). */
3196 if (vr0
.type
== VR_ANTI_RANGE
3197 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3199 extract_range_from_unary_expr_1 (vr
, code
, type
, &vrtem0
, op0_type
);
3200 if (vrtem1
.type
!= VR_UNDEFINED
)
3202 value_range_t vrres
= VR_INITIALIZER
;
3203 extract_range_from_unary_expr_1 (&vrres
, code
, type
,
3205 vrp_meet (vr
, &vrres
);
3210 if (CONVERT_EXPR_CODE_P (code
))
3212 tree inner_type
= op0_type
;
3213 tree outer_type
= type
;
3215 /* If the expression evaluates to a pointer, we are only interested in
3216 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3217 if (POINTER_TYPE_P (type
))
3219 if (range_is_nonnull (&vr0
))
3220 set_value_range_to_nonnull (vr
, type
);
3221 else if (range_is_null (&vr0
))
3222 set_value_range_to_null (vr
, type
);
3224 set_value_range_to_varying (vr
);
3228 /* If VR0 is varying and we increase the type precision, assume
3229 a full range for the following transformation. */
3230 if (vr0
.type
== VR_VARYING
3231 && INTEGRAL_TYPE_P (inner_type
)
3232 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3234 vr0
.type
= VR_RANGE
;
3235 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3236 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3239 /* If VR0 is a constant range or anti-range and the conversion is
3240 not truncating we can convert the min and max values and
3241 canonicalize the resulting range. Otherwise we can do the
3242 conversion if the size of the range is less than what the
3243 precision of the target type can represent and the range is
3244 not an anti-range. */
3245 if ((vr0
.type
== VR_RANGE
3246 || vr0
.type
== VR_ANTI_RANGE
)
3247 && TREE_CODE (vr0
.min
) == INTEGER_CST
3248 && TREE_CODE (vr0
.max
) == INTEGER_CST
3249 && (!is_overflow_infinity (vr0
.min
)
3250 || (vr0
.type
== VR_RANGE
3251 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3252 && needs_overflow_infinity (outer_type
)
3253 && supports_overflow_infinity (outer_type
)))
3254 && (!is_overflow_infinity (vr0
.max
)
3255 || (vr0
.type
== VR_RANGE
3256 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3257 && needs_overflow_infinity (outer_type
)
3258 && supports_overflow_infinity (outer_type
)))
3259 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3260 || (vr0
.type
== VR_RANGE
3261 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3262 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3263 size_int (TYPE_PRECISION (outer_type
)))))))
3265 tree new_min
, new_max
;
3266 if (is_overflow_infinity (vr0
.min
))
3267 new_min
= negative_overflow_infinity (outer_type
);
3269 new_min
= force_fit_type_double (outer_type
,
3270 tree_to_double_int (vr0
.min
),
3272 if (is_overflow_infinity (vr0
.max
))
3273 new_max
= positive_overflow_infinity (outer_type
);
3275 new_max
= force_fit_type_double (outer_type
,
3276 tree_to_double_int (vr0
.max
),
3278 set_and_canonicalize_value_range (vr
, vr0
.type
,
3279 new_min
, new_max
, NULL
);
3283 set_value_range_to_varying (vr
);
3286 else if (code
== ABS_EXPR
)
3291 /* Pass through vr0 in the easy cases. */
3292 if (TYPE_UNSIGNED (type
)
3293 || value_range_nonnegative_p (&vr0
))
3295 copy_value_range (vr
, &vr0
);
3299 /* For the remaining varying or symbolic ranges we can't do anything
3301 if (vr0
.type
== VR_VARYING
3302 || symbolic_range_p (&vr0
))
3304 set_value_range_to_varying (vr
);
3308 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3310 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3311 && ((vr0
.type
== VR_RANGE
3312 && vrp_val_is_min (vr0
.min
))
3313 || (vr0
.type
== VR_ANTI_RANGE
3314 && !vrp_val_is_min (vr0
.min
))))
3316 set_value_range_to_varying (vr
);
3320 /* ABS_EXPR may flip the range around, if the original range
3321 included negative values. */
3322 if (is_overflow_infinity (vr0
.min
))
3323 min
= positive_overflow_infinity (type
);
3324 else if (!vrp_val_is_min (vr0
.min
))
3325 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3326 else if (!needs_overflow_infinity (type
))
3327 min
= TYPE_MAX_VALUE (type
);
3328 else if (supports_overflow_infinity (type
))
3329 min
= positive_overflow_infinity (type
);
3332 set_value_range_to_varying (vr
);
3336 if (is_overflow_infinity (vr0
.max
))
3337 max
= positive_overflow_infinity (type
);
3338 else if (!vrp_val_is_min (vr0
.max
))
3339 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3340 else if (!needs_overflow_infinity (type
))
3341 max
= TYPE_MAX_VALUE (type
);
3342 else if (supports_overflow_infinity (type
)
3343 /* We shouldn't generate [+INF, +INF] as set_value_range
3344 doesn't like this and ICEs. */
3345 && !is_positive_overflow_infinity (min
))
3346 max
= positive_overflow_infinity (type
);
3349 set_value_range_to_varying (vr
);
3353 cmp
= compare_values (min
, max
);
3355 /* If a VR_ANTI_RANGEs contains zero, then we have
3356 ~[-INF, min(MIN, MAX)]. */
3357 if (vr0
.type
== VR_ANTI_RANGE
)
3359 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3361 /* Take the lower of the two values. */
3365 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3366 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3367 flag_wrapv is set and the original anti-range doesn't include
3368 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3369 if (TYPE_OVERFLOW_WRAPS (type
))
3371 tree type_min_value
= TYPE_MIN_VALUE (type
);
3373 min
= (vr0
.min
!= type_min_value
3374 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3380 if (overflow_infinity_range_p (&vr0
))
3381 min
= negative_overflow_infinity (type
);
3383 min
= TYPE_MIN_VALUE (type
);
3388 /* All else has failed, so create the range [0, INF], even for
3389 flag_wrapv since TYPE_MIN_VALUE is in the original
3391 vr0
.type
= VR_RANGE
;
3392 min
= build_int_cst (type
, 0);
3393 if (needs_overflow_infinity (type
))
3395 if (supports_overflow_infinity (type
))
3396 max
= positive_overflow_infinity (type
);
3399 set_value_range_to_varying (vr
);
3404 max
= TYPE_MAX_VALUE (type
);
3408 /* If the range contains zero then we know that the minimum value in the
3409 range will be zero. */
3410 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3414 min
= build_int_cst (type
, 0);
3418 /* If the range was reversed, swap MIN and MAX. */
3427 cmp
= compare_values (min
, max
);
3428 if (cmp
== -2 || cmp
== 1)
3430 /* If the new range has its limits swapped around (MIN > MAX),
3431 then the operation caused one of them to wrap around, mark
3432 the new range VARYING. */
3433 set_value_range_to_varying (vr
);
3436 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3440 /* For unhandled operations fall back to varying. */
3441 set_value_range_to_varying (vr
);
3446 /* Extract range information from a unary expression CODE OP0 based on
3447 the range of its operand with resulting type TYPE.
3448 The resulting range is stored in *VR. */
3451 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3452 tree type
, tree op0
)
3454 value_range_t vr0
= VR_INITIALIZER
;
3456 /* Get value ranges for the operand. For constant operands, create
3457 a new value range with the operand to simplify processing. */
3458 if (TREE_CODE (op0
) == SSA_NAME
)
3459 vr0
= *(get_value_range (op0
));
3460 else if (is_gimple_min_invariant (op0
))
3461 set_value_range_to_value (&vr0
, op0
, NULL
);
3463 set_value_range_to_varying (&vr0
);
3465 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3469 /* Extract range information from a conditional expression STMT based on
3470 the ranges of each of its operands and the expression code. */
3473 extract_range_from_cond_expr (value_range_t
*vr
, gimple stmt
)
3476 value_range_t vr0
= VR_INITIALIZER
;
3477 value_range_t vr1
= VR_INITIALIZER
;
3479 /* Get value ranges for each operand. For constant operands, create
3480 a new value range with the operand to simplify processing. */
3481 op0
= gimple_assign_rhs2 (stmt
);
3482 if (TREE_CODE (op0
) == SSA_NAME
)
3483 vr0
= *(get_value_range (op0
));
3484 else if (is_gimple_min_invariant (op0
))
3485 set_value_range_to_value (&vr0
, op0
, NULL
);
3487 set_value_range_to_varying (&vr0
);
3489 op1
= gimple_assign_rhs3 (stmt
);
3490 if (TREE_CODE (op1
) == SSA_NAME
)
3491 vr1
= *(get_value_range (op1
));
3492 else if (is_gimple_min_invariant (op1
))
3493 set_value_range_to_value (&vr1
, op1
, NULL
);
3495 set_value_range_to_varying (&vr1
);
3497 /* The resulting value range is the union of the operand ranges */
3498 copy_value_range (vr
, &vr0
);
3499 vrp_meet (vr
, &vr1
);
3503 /* Extract range information from a comparison expression EXPR based
3504 on the range of its operand and the expression code. */
3507 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3508 tree type
, tree op0
, tree op1
)
3513 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3516 /* A disadvantage of using a special infinity as an overflow
3517 representation is that we lose the ability to record overflow
3518 when we don't have an infinity. So we have to ignore a result
3519 which relies on overflow. */
3521 if (val
&& !is_overflow_infinity (val
) && !sop
)
3523 /* Since this expression was found on the RHS of an assignment,
3524 its type may be different from _Bool. Convert VAL to EXPR's
3526 val
= fold_convert (type
, val
);
3527 if (is_gimple_min_invariant (val
))
3528 set_value_range_to_value (vr
, val
, vr
->equiv
);
3530 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3533 /* The result of a comparison is always true or false. */
3534 set_value_range_to_truthvalue (vr
, type
);
3537 /* Try to derive a nonnegative or nonzero range out of STMT relying
3538 primarily on generic routines in fold in conjunction with range data.
3539 Store the result in *VR */
3542 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3545 tree type
= gimple_expr_type (stmt
);
3547 if (INTEGRAL_TYPE_P (type
)
3548 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3549 set_value_range_to_nonnegative (vr
, type
,
3550 sop
|| stmt_overflow_infinity (stmt
));
3551 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3553 set_value_range_to_nonnull (vr
, type
);
3555 set_value_range_to_varying (vr
);
3559 /* Try to compute a useful range out of assignment STMT and store it
3563 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3565 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3567 if (code
== ASSERT_EXPR
)
3568 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3569 else if (code
== SSA_NAME
)
3570 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3571 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
3572 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3573 gimple_expr_type (stmt
),
3574 gimple_assign_rhs1 (stmt
),
3575 gimple_assign_rhs2 (stmt
));
3576 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3577 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3578 gimple_expr_type (stmt
),
3579 gimple_assign_rhs1 (stmt
));
3580 else if (code
== COND_EXPR
)
3581 extract_range_from_cond_expr (vr
, stmt
);
3582 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3583 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3584 gimple_expr_type (stmt
),
3585 gimple_assign_rhs1 (stmt
),
3586 gimple_assign_rhs2 (stmt
));
3587 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3588 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3589 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3591 set_value_range_to_varying (vr
);
3593 if (vr
->type
== VR_VARYING
)
3594 extract_range_basic (vr
, stmt
);
3597 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3598 would be profitable to adjust VR using scalar evolution information
3599 for VAR. If so, update VR with the new limits. */
3602 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3603 gimple stmt
, tree var
)
3605 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3606 enum ev_direction dir
;
3608 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3609 better opportunities than a regular range, but I'm not sure. */
3610 if (vr
->type
== VR_ANTI_RANGE
)
3613 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3615 /* Like in PR19590, scev can return a constant function. */
3616 if (is_gimple_min_invariant (chrec
))
3618 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3622 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3625 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3626 tem
= op_with_constant_singleton_value_range (init
);
3629 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3630 tem
= op_with_constant_singleton_value_range (step
);
3634 /* If STEP is symbolic, we can't know whether INIT will be the
3635 minimum or maximum value in the range. Also, unless INIT is
3636 a simple expression, compare_values and possibly other functions
3637 in tree-vrp won't be able to handle it. */
3638 if (step
== NULL_TREE
3639 || !is_gimple_min_invariant (step
)
3640 || !valid_value_p (init
))
3643 dir
= scev_direction (chrec
);
3644 if (/* Do not adjust ranges if we do not know whether the iv increases
3645 or decreases, ... */
3646 dir
== EV_DIR_UNKNOWN
3647 /* ... or if it may wrap. */
3648 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3652 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3653 negative_overflow_infinity and positive_overflow_infinity,
3654 because we have concluded that the loop probably does not
3657 type
= TREE_TYPE (var
);
3658 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3659 tmin
= lower_bound_in_type (type
, type
);
3661 tmin
= TYPE_MIN_VALUE (type
);
3662 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3663 tmax
= upper_bound_in_type (type
, type
);
3665 tmax
= TYPE_MAX_VALUE (type
);
3667 /* Try to use estimated number of iterations for the loop to constrain the
3668 final value in the evolution. */
3669 if (TREE_CODE (step
) == INTEGER_CST
3670 && is_gimple_val (init
)
3671 && (TREE_CODE (init
) != SSA_NAME
3672 || get_value_range (init
)->type
== VR_RANGE
))
3676 /* We are only entering here for loop header PHI nodes, so using
3677 the number of latch executions is the correct thing to use. */
3678 if (max_loop_iterations (loop
, &nit
))
3680 value_range_t maxvr
= VR_INITIALIZER
;
3682 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3683 bool overflow
= false;
3685 dtmp
= tree_to_double_int (step
)
3686 .mul_with_sign (nit
, unsigned_p
, &overflow
);
3687 /* If the multiplication overflowed we can't do a meaningful
3688 adjustment. Likewise if the result doesn't fit in the type
3689 of the induction variable. For a signed type we have to
3690 check whether the result has the expected signedness which
3691 is that of the step as number of iterations is unsigned. */
3693 && double_int_fits_to_tree_p (TREE_TYPE (init
), dtmp
)
3695 || ((dtmp
.high
^ TREE_INT_CST_HIGH (step
)) >= 0)))
3697 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3698 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3699 TREE_TYPE (init
), init
, tem
);
3700 /* Likewise if the addition did. */
3701 if (maxvr
.type
== VR_RANGE
)
3710 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3715 /* For VARYING or UNDEFINED ranges, just about anything we get
3716 from scalar evolutions should be better. */
3718 if (dir
== EV_DIR_DECREASES
)
3723 /* If we would create an invalid range, then just assume we
3724 know absolutely nothing. This may be over-conservative,
3725 but it's clearly safe, and should happen only in unreachable
3726 parts of code, or for invalid programs. */
3727 if (compare_values (min
, max
) == 1)
3730 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3732 else if (vr
->type
== VR_RANGE
)
3737 if (dir
== EV_DIR_DECREASES
)
3739 /* INIT is the maximum value. If INIT is lower than VR->MAX
3740 but no smaller than VR->MIN, set VR->MAX to INIT. */
3741 if (compare_values (init
, max
) == -1)
3744 /* According to the loop information, the variable does not
3745 overflow. If we think it does, probably because of an
3746 overflow due to arithmetic on a different INF value,
3748 if (is_negative_overflow_infinity (min
)
3749 || compare_values (min
, tmin
) == -1)
3755 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3756 if (compare_values (init
, min
) == 1)
3759 if (is_positive_overflow_infinity (max
)
3760 || compare_values (tmax
, max
) == -1)
3764 /* If we just created an invalid range with the minimum
3765 greater than the maximum, we fail conservatively.
3766 This should happen only in unreachable
3767 parts of code, or for invalid programs. */
3768 if (compare_values (min
, max
) == 1)
3771 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3775 /* Return true if VAR may overflow at STMT. This checks any available
3776 loop information to see if we can determine that VAR does not
3780 vrp_var_may_overflow (tree var
, gimple stmt
)
3783 tree chrec
, init
, step
;
3785 if (current_loops
== NULL
)
3788 l
= loop_containing_stmt (stmt
);
3793 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3794 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3797 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3798 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3800 if (step
== NULL_TREE
3801 || !is_gimple_min_invariant (step
)
3802 || !valid_value_p (init
))
3805 /* If we get here, we know something useful about VAR based on the
3806 loop information. If it wraps, it may overflow. */
3808 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3812 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3814 print_generic_expr (dump_file
, var
, 0);
3815 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3822 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3824 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3825 all the values in the ranges.
3827 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3829 - Return NULL_TREE if it is not always possible to determine the
3830 value of the comparison.
3832 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3833 overflow infinity was used in the test. */
3837 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3838 bool *strict_overflow_p
)
3840 /* VARYING or UNDEFINED ranges cannot be compared. */
3841 if (vr0
->type
== VR_VARYING
3842 || vr0
->type
== VR_UNDEFINED
3843 || vr1
->type
== VR_VARYING
3844 || vr1
->type
== VR_UNDEFINED
)
3847 /* Anti-ranges need to be handled separately. */
3848 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3850 /* If both are anti-ranges, then we cannot compute any
3852 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3855 /* These comparisons are never statically computable. */
3862 /* Equality can be computed only between a range and an
3863 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3864 if (vr0
->type
== VR_RANGE
)
3866 /* To simplify processing, make VR0 the anti-range. */
3867 value_range_t
*tmp
= vr0
;
3872 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3874 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3875 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3876 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3881 if (!usable_range_p (vr0
, strict_overflow_p
)
3882 || !usable_range_p (vr1
, strict_overflow_p
))
3885 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3886 operands around and change the comparison code. */
3887 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3890 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3896 if (comp
== EQ_EXPR
)
3898 /* Equality may only be computed if both ranges represent
3899 exactly one value. */
3900 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3901 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3903 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3905 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3907 if (cmp_min
== 0 && cmp_max
== 0)
3908 return boolean_true_node
;
3909 else if (cmp_min
!= -2 && cmp_max
!= -2)
3910 return boolean_false_node
;
3912 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3913 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3914 strict_overflow_p
) == 1
3915 || compare_values_warnv (vr1
->min
, vr0
->max
,
3916 strict_overflow_p
) == 1)
3917 return boolean_false_node
;
3921 else if (comp
== NE_EXPR
)
3925 /* If VR0 is completely to the left or completely to the right
3926 of VR1, they are always different. Notice that we need to
3927 make sure that both comparisons yield similar results to
3928 avoid comparing values that cannot be compared at
3930 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3931 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3932 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3933 return boolean_true_node
;
3935 /* If VR0 and VR1 represent a single value and are identical,
3937 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3938 strict_overflow_p
) == 0
3939 && compare_values_warnv (vr1
->min
, vr1
->max
,
3940 strict_overflow_p
) == 0
3941 && compare_values_warnv (vr0
->min
, vr1
->min
,
3942 strict_overflow_p
) == 0
3943 && compare_values_warnv (vr0
->max
, vr1
->max
,
3944 strict_overflow_p
) == 0)
3945 return boolean_false_node
;
3947 /* Otherwise, they may or may not be different. */
3951 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3955 /* If VR0 is to the left of VR1, return true. */
3956 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3957 if ((comp
== LT_EXPR
&& tst
== -1)
3958 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3960 if (overflow_infinity_range_p (vr0
)
3961 || overflow_infinity_range_p (vr1
))
3962 *strict_overflow_p
= true;
3963 return boolean_true_node
;
3966 /* If VR0 is to the right of VR1, return false. */
3967 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3968 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3969 || (comp
== LE_EXPR
&& tst
== 1))
3971 if (overflow_infinity_range_p (vr0
)
3972 || overflow_infinity_range_p (vr1
))
3973 *strict_overflow_p
= true;
3974 return boolean_false_node
;
3977 /* Otherwise, we don't know. */
3985 /* Given a value range VR, a value VAL and a comparison code COMP, return
3986 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3987 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3988 always returns false. Return NULL_TREE if it is not always
3989 possible to determine the value of the comparison. Also set
3990 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3991 infinity was used in the test. */
3994 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3995 bool *strict_overflow_p
)
3997 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4000 /* Anti-ranges need to be handled separately. */
4001 if (vr
->type
== VR_ANTI_RANGE
)
4003 /* For anti-ranges, the only predicates that we can compute at
4004 compile time are equality and inequality. */
4011 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4012 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4013 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4018 if (!usable_range_p (vr
, strict_overflow_p
))
4021 if (comp
== EQ_EXPR
)
4023 /* EQ_EXPR may only be computed if VR represents exactly
4025 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4027 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4029 return boolean_true_node
;
4030 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4031 return boolean_false_node
;
4033 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4034 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4035 return boolean_false_node
;
4039 else if (comp
== NE_EXPR
)
4041 /* If VAL is not inside VR, then they are always different. */
4042 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4043 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4044 return boolean_true_node
;
4046 /* If VR represents exactly one value equal to VAL, then return
4048 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4049 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4050 return boolean_false_node
;
4052 /* Otherwise, they may or may not be different. */
4055 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4059 /* If VR is to the left of VAL, return true. */
4060 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4061 if ((comp
== LT_EXPR
&& tst
== -1)
4062 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4064 if (overflow_infinity_range_p (vr
))
4065 *strict_overflow_p
= true;
4066 return boolean_true_node
;
4069 /* If VR is to the right of VAL, return false. */
4070 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4071 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4072 || (comp
== LE_EXPR
&& tst
== 1))
4074 if (overflow_infinity_range_p (vr
))
4075 *strict_overflow_p
= true;
4076 return boolean_false_node
;
4079 /* Otherwise, we don't know. */
4082 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4086 /* If VR is to the right of VAL, return true. */
4087 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4088 if ((comp
== GT_EXPR
&& tst
== 1)
4089 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4091 if (overflow_infinity_range_p (vr
))
4092 *strict_overflow_p
= true;
4093 return boolean_true_node
;
4096 /* If VR is to the left of VAL, return false. */
4097 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4098 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4099 || (comp
== GE_EXPR
&& tst
== -1))
4101 if (overflow_infinity_range_p (vr
))
4102 *strict_overflow_p
= true;
4103 return boolean_false_node
;
4106 /* Otherwise, we don't know. */
4114 /* Debugging dumps. */
4116 void dump_value_range (FILE *, value_range_t
*);
4117 void debug_value_range (value_range_t
*);
4118 void dump_all_value_ranges (FILE *);
4119 void debug_all_value_ranges (void);
4120 void dump_vr_equiv (FILE *, bitmap
);
4121 void debug_vr_equiv (bitmap
);
4124 /* Dump value range VR to FILE. */
4127 dump_value_range (FILE *file
, value_range_t
*vr
)
4130 fprintf (file
, "[]");
4131 else if (vr
->type
== VR_UNDEFINED
)
4132 fprintf (file
, "UNDEFINED");
4133 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4135 tree type
= TREE_TYPE (vr
->min
);
4137 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4139 if (is_negative_overflow_infinity (vr
->min
))
4140 fprintf (file
, "-INF(OVF)");
4141 else if (INTEGRAL_TYPE_P (type
)
4142 && !TYPE_UNSIGNED (type
)
4143 && vrp_val_is_min (vr
->min
))
4144 fprintf (file
, "-INF");
4146 print_generic_expr (file
, vr
->min
, 0);
4148 fprintf (file
, ", ");
4150 if (is_positive_overflow_infinity (vr
->max
))
4151 fprintf (file
, "+INF(OVF)");
4152 else if (INTEGRAL_TYPE_P (type
)
4153 && vrp_val_is_max (vr
->max
))
4154 fprintf (file
, "+INF");
4156 print_generic_expr (file
, vr
->max
, 0);
4158 fprintf (file
, "]");
4165 fprintf (file
, " EQUIVALENCES: { ");
4167 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4169 print_generic_expr (file
, ssa_name (i
), 0);
4170 fprintf (file
, " ");
4174 fprintf (file
, "} (%u elements)", c
);
4177 else if (vr
->type
== VR_VARYING
)
4178 fprintf (file
, "VARYING");
4180 fprintf (file
, "INVALID RANGE");
4184 /* Dump value range VR to stderr. */
4187 debug_value_range (value_range_t
*vr
)
4189 dump_value_range (stderr
, vr
);
4190 fprintf (stderr
, "\n");
4194 /* Dump value ranges of all SSA_NAMEs to FILE. */
4197 dump_all_value_ranges (FILE *file
)
4201 for (i
= 0; i
< num_vr_values
; i
++)
4205 print_generic_expr (file
, ssa_name (i
), 0);
4206 fprintf (file
, ": ");
4207 dump_value_range (file
, vr_value
[i
]);
4208 fprintf (file
, "\n");
4212 fprintf (file
, "\n");
4216 /* Dump all value ranges to stderr. */
4219 debug_all_value_ranges (void)
4221 dump_all_value_ranges (stderr
);
4225 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4226 create a new SSA name N and return the assertion assignment
4227 'V = ASSERT_EXPR <V, V OP W>'. */
4230 build_assert_expr_for (tree cond
, tree v
)
4235 gcc_assert (TREE_CODE (v
) == SSA_NAME
4236 && COMPARISON_CLASS_P (cond
));
4238 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4239 assertion
= gimple_build_assign (NULL_TREE
, a
);
4241 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4242 operand of the ASSERT_EXPR. Create it so the new name and the old one
4243 are registered in the replacement table so that we can fix the SSA web
4244 after adding all the ASSERT_EXPRs. */
4245 create_new_def_for (v
, assertion
, NULL
);
4251 /* Return false if EXPR is a predicate expression involving floating
4255 fp_predicate (gimple stmt
)
4257 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4259 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4263 /* If the range of values taken by OP can be inferred after STMT executes,
4264 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4265 describes the inferred range. Return true if a range could be
4269 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4272 *comp_code_p
= ERROR_MARK
;
4274 /* Do not attempt to infer anything in names that flow through
4276 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4279 /* Similarly, don't infer anything from statements that may throw
4281 if (stmt_could_throw_p (stmt
))
4284 /* If STMT is the last statement of a basic block with no
4285 successors, there is no point inferring anything about any of its
4286 operands. We would not be able to find a proper insertion point
4287 for the assertion, anyway. */
4288 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4291 /* We can only assume that a pointer dereference will yield
4292 non-NULL if -fdelete-null-pointer-checks is enabled. */
4293 if (flag_delete_null_pointer_checks
4294 && POINTER_TYPE_P (TREE_TYPE (op
))
4295 && gimple_code (stmt
) != GIMPLE_ASM
)
4297 unsigned num_uses
, num_loads
, num_stores
;
4299 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
4300 if (num_loads
+ num_stores
> 0)
4302 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4303 *comp_code_p
= NE_EXPR
;
4312 void dump_asserts_for (FILE *, tree
);
4313 void debug_asserts_for (tree
);
4314 void dump_all_asserts (FILE *);
4315 void debug_all_asserts (void);
4317 /* Dump all the registered assertions for NAME to FILE. */
4320 dump_asserts_for (FILE *file
, tree name
)
4324 fprintf (file
, "Assertions to be inserted for ");
4325 print_generic_expr (file
, name
, 0);
4326 fprintf (file
, "\n");
4328 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4331 fprintf (file
, "\t");
4332 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4333 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4336 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4337 loc
->e
->dest
->index
);
4338 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4340 fprintf (file
, "\n\tPREDICATE: ");
4341 print_generic_expr (file
, name
, 0);
4342 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
4343 print_generic_expr (file
, loc
->val
, 0);
4344 fprintf (file
, "\n\n");
4348 fprintf (file
, "\n");
4352 /* Dump all the registered assertions for NAME to stderr. */
4355 debug_asserts_for (tree name
)
4357 dump_asserts_for (stderr
, name
);
4361 /* Dump all the registered assertions for all the names to FILE. */
4364 dump_all_asserts (FILE *file
)
4369 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4370 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4371 dump_asserts_for (file
, ssa_name (i
));
4372 fprintf (file
, "\n");
4376 /* Dump all the registered assertions for all the names to stderr. */
4379 debug_all_asserts (void)
4381 dump_all_asserts (stderr
);
4385 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4386 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4387 E->DEST, then register this location as a possible insertion point
4388 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4390 BB, E and SI provide the exact insertion point for the new
4391 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4392 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4393 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4394 must not be NULL. */
4397 register_new_assert_for (tree name
, tree expr
,
4398 enum tree_code comp_code
,
4402 gimple_stmt_iterator si
)
4404 assert_locus_t n
, loc
, last_loc
;
4405 basic_block dest_bb
;
4407 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4410 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4411 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4413 /* Never build an assert comparing against an integer constant with
4414 TREE_OVERFLOW set. This confuses our undefined overflow warning
4416 if (TREE_CODE (val
) == INTEGER_CST
4417 && TREE_OVERFLOW (val
))
4418 val
= build_int_cst_wide (TREE_TYPE (val
),
4419 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
4421 /* The new assertion A will be inserted at BB or E. We need to
4422 determine if the new location is dominated by a previously
4423 registered location for A. If we are doing an edge insertion,
4424 assume that A will be inserted at E->DEST. Note that this is not
4427 If E is a critical edge, it will be split. But even if E is
4428 split, the new block will dominate the same set of blocks that
4431 The reverse, however, is not true, blocks dominated by E->DEST
4432 will not be dominated by the new block created to split E. So,
4433 if the insertion location is on a critical edge, we will not use
4434 the new location to move another assertion previously registered
4435 at a block dominated by E->DEST. */
4436 dest_bb
= (bb
) ? bb
: e
->dest
;
4438 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4439 VAL at a block dominating DEST_BB, then we don't need to insert a new
4440 one. Similarly, if the same assertion already exists at a block
4441 dominated by DEST_BB and the new location is not on a critical
4442 edge, then update the existing location for the assertion (i.e.,
4443 move the assertion up in the dominance tree).
4445 Note, this is implemented as a simple linked list because there
4446 should not be more than a handful of assertions registered per
4447 name. If this becomes a performance problem, a table hashed by
4448 COMP_CODE and VAL could be implemented. */
4449 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4453 if (loc
->comp_code
== comp_code
4455 || operand_equal_p (loc
->val
, val
, 0))
4456 && (loc
->expr
== expr
4457 || operand_equal_p (loc
->expr
, expr
, 0)))
4459 /* If E is not a critical edge and DEST_BB
4460 dominates the existing location for the assertion, move
4461 the assertion up in the dominance tree by updating its
4462 location information. */
4463 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4464 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4473 /* Update the last node of the list and move to the next one. */
4478 /* If we didn't find an assertion already registered for
4479 NAME COMP_CODE VAL, add a new one at the end of the list of
4480 assertions associated with NAME. */
4481 n
= XNEW (struct assert_locus_d
);
4485 n
->comp_code
= comp_code
;
4493 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4495 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4498 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4499 Extract a suitable test code and value and store them into *CODE_P and
4500 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4502 If no extraction was possible, return FALSE, otherwise return TRUE.
4504 If INVERT is true, then we invert the result stored into *CODE_P. */
4507 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4508 tree cond_op0
, tree cond_op1
,
4509 bool invert
, enum tree_code
*code_p
,
4512 enum tree_code comp_code
;
4515 /* Otherwise, we have a comparison of the form NAME COMP VAL
4516 or VAL COMP NAME. */
4517 if (name
== cond_op1
)
4519 /* If the predicate is of the form VAL COMP NAME, flip
4520 COMP around because we need to register NAME as the
4521 first operand in the predicate. */
4522 comp_code
= swap_tree_comparison (cond_code
);
4527 /* The comparison is of the form NAME COMP VAL, so the
4528 comparison code remains unchanged. */
4529 comp_code
= cond_code
;
4533 /* Invert the comparison code as necessary. */
4535 comp_code
= invert_tree_comparison (comp_code
, 0);
4537 /* VRP does not handle float types. */
4538 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4541 /* Do not register always-false predicates.
4542 FIXME: this works around a limitation in fold() when dealing with
4543 enumerations. Given 'enum { N1, N2 } x;', fold will not
4544 fold 'if (x > N2)' to 'if (0)'. */
4545 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4546 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4548 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4549 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4551 if (comp_code
== GT_EXPR
4553 || compare_values (val
, max
) == 0))
4556 if (comp_code
== LT_EXPR
4558 || compare_values (val
, min
) == 0))
4561 *code_p
= comp_code
;
4566 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4567 (otherwise return VAL). VAL and MASK must be zero-extended for
4568 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4569 (to transform signed values into unsigned) and at the end xor
4573 masked_increment (double_int val
, double_int mask
, double_int sgnbit
,
4576 double_int bit
= double_int_one
, res
;
4580 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
4583 if ((res
& bit
).is_zero ())
4585 res
= bit
- double_int_one
;
4586 res
= (val
+ bit
).and_not (res
);
4589 return res
^ sgnbit
;
4591 return val
^ sgnbit
;
4594 /* Try to register an edge assertion for SSA name NAME on edge E for
4595 the condition COND contributing to the conditional jump pointed to by BSI.
4596 Invert the condition COND if INVERT is true.
4597 Return true if an assertion for NAME could be registered. */
4600 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4601 enum tree_code cond_code
,
4602 tree cond_op0
, tree cond_op1
, bool invert
)
4605 enum tree_code comp_code
;
4606 bool retval
= false;
4608 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4611 invert
, &comp_code
, &val
))
4614 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4615 reachable from E. */
4616 if (live_on_edge (e
, name
)
4617 && !has_single_use (name
))
4619 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4623 /* In the case of NAME <= CST and NAME being defined as
4624 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4625 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4626 This catches range and anti-range tests. */
4627 if ((comp_code
== LE_EXPR
4628 || comp_code
== GT_EXPR
)
4629 && TREE_CODE (val
) == INTEGER_CST
4630 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4632 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4633 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4635 /* Extract CST2 from the (optional) addition. */
4636 if (is_gimple_assign (def_stmt
)
4637 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4639 name2
= gimple_assign_rhs1 (def_stmt
);
4640 cst2
= gimple_assign_rhs2 (def_stmt
);
4641 if (TREE_CODE (name2
) == SSA_NAME
4642 && TREE_CODE (cst2
) == INTEGER_CST
)
4643 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4646 /* Extract NAME2 from the (optional) sign-changing cast. */
4647 if (gimple_assign_cast_p (def_stmt
))
4649 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4650 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4651 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4652 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4653 name3
= gimple_assign_rhs1 (def_stmt
);
4656 /* If name3 is used later, create an ASSERT_EXPR for it. */
4657 if (name3
!= NULL_TREE
4658 && TREE_CODE (name3
) == SSA_NAME
4659 && (cst2
== NULL_TREE
4660 || TREE_CODE (cst2
) == INTEGER_CST
)
4661 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4662 && live_on_edge (e
, name3
)
4663 && !has_single_use (name3
))
4667 /* Build an expression for the range test. */
4668 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4669 if (cst2
!= NULL_TREE
)
4670 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4674 fprintf (dump_file
, "Adding assert for ");
4675 print_generic_expr (dump_file
, name3
, 0);
4676 fprintf (dump_file
, " from ");
4677 print_generic_expr (dump_file
, tmp
, 0);
4678 fprintf (dump_file
, "\n");
4681 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4686 /* If name2 is used later, create an ASSERT_EXPR for it. */
4687 if (name2
!= NULL_TREE
4688 && TREE_CODE (name2
) == SSA_NAME
4689 && TREE_CODE (cst2
) == INTEGER_CST
4690 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4691 && live_on_edge (e
, name2
)
4692 && !has_single_use (name2
))
4696 /* Build an expression for the range test. */
4698 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4699 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4700 if (cst2
!= NULL_TREE
)
4701 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4705 fprintf (dump_file
, "Adding assert for ");
4706 print_generic_expr (dump_file
, name2
, 0);
4707 fprintf (dump_file
, " from ");
4708 print_generic_expr (dump_file
, tmp
, 0);
4709 fprintf (dump_file
, "\n");
4712 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4718 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
4719 && TREE_CODE (val
) == INTEGER_CST
)
4721 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4722 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
4723 tree val2
= NULL_TREE
;
4724 double_int mask
= double_int_zero
;
4725 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
4726 unsigned int nprec
= prec
;
4727 enum tree_code rhs_code
= ERROR_MARK
;
4729 if (is_gimple_assign (def_stmt
))
4730 rhs_code
= gimple_assign_rhs_code (def_stmt
);
4732 /* Add asserts for NAME cmp CST and NAME being defined
4733 as NAME = (int) NAME2. */
4734 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
4735 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
4736 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
4737 && gimple_assign_cast_p (def_stmt
))
4739 name2
= gimple_assign_rhs1 (def_stmt
);
4740 if (CONVERT_EXPR_CODE_P (rhs_code
)
4741 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4742 && TYPE_UNSIGNED (TREE_TYPE (name2
))
4743 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
4744 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
4745 || !tree_int_cst_equal (val
,
4746 TYPE_MIN_VALUE (TREE_TYPE (val
))))
4747 && live_on_edge (e
, name2
)
4748 && !has_single_use (name2
))
4751 enum tree_code new_comp_code
= comp_code
;
4753 cst
= fold_convert (TREE_TYPE (name2
),
4754 TYPE_MIN_VALUE (TREE_TYPE (val
)));
4755 /* Build an expression for the range test. */
4756 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
4757 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
4758 fold_convert (TREE_TYPE (name2
), val
));
4759 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
4761 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
4762 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
4763 build_int_cst (TREE_TYPE (name2
), 1));
4768 fprintf (dump_file
, "Adding assert for ");
4769 print_generic_expr (dump_file
, name2
, 0);
4770 fprintf (dump_file
, " from ");
4771 print_generic_expr (dump_file
, tmp
, 0);
4772 fprintf (dump_file
, "\n");
4775 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
4782 /* Add asserts for NAME cmp CST and NAME being defined as
4783 NAME = NAME2 >> CST2.
4785 Extract CST2 from the right shift. */
4786 if (rhs_code
== RSHIFT_EXPR
)
4788 name2
= gimple_assign_rhs1 (def_stmt
);
4789 cst2
= gimple_assign_rhs2 (def_stmt
);
4790 if (TREE_CODE (name2
) == SSA_NAME
4791 && host_integerp (cst2
, 1)
4792 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4793 && IN_RANGE (tree_low_cst (cst2
, 1), 1, prec
- 1)
4794 && prec
<= HOST_BITS_PER_DOUBLE_INT
4795 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
4796 && live_on_edge (e
, name2
)
4797 && !has_single_use (name2
))
4799 mask
= double_int::mask (tree_low_cst (cst2
, 1));
4800 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
4803 if (val2
!= NULL_TREE
4804 && TREE_CODE (val2
) == INTEGER_CST
4805 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
4809 enum tree_code new_comp_code
= comp_code
;
4813 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
4815 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
4817 tree type
= build_nonstandard_integer_type (prec
, 1);
4818 tmp
= build1 (NOP_EXPR
, type
, name2
);
4819 val2
= fold_convert (type
, val2
);
4821 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
4822 new_val
= double_int_to_tree (TREE_TYPE (tmp
), mask
);
4823 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
4825 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
4830 = double_int::max_value (prec
, TYPE_UNSIGNED (TREE_TYPE (val
)));
4831 mask
|= tree_to_double_int (val2
);
4833 new_val
= NULL_TREE
;
4835 new_val
= double_int_to_tree (TREE_TYPE (val2
), mask
);
4842 fprintf (dump_file
, "Adding assert for ");
4843 print_generic_expr (dump_file
, name2
, 0);
4844 fprintf (dump_file
, " from ");
4845 print_generic_expr (dump_file
, tmp
, 0);
4846 fprintf (dump_file
, "\n");
4849 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
4855 /* Add asserts for NAME cmp CST and NAME being defined as
4856 NAME = NAME2 & CST2.
4858 Extract CST2 from the and.
4861 NAME = (unsigned) NAME2;
4862 casts where NAME's type is unsigned and has smaller precision
4863 than NAME2's type as if it was NAME = NAME2 & MASK. */
4864 names
[0] = NULL_TREE
;
4865 names
[1] = NULL_TREE
;
4867 if (rhs_code
== BIT_AND_EXPR
4868 || (CONVERT_EXPR_CODE_P (rhs_code
)
4869 && TREE_CODE (TREE_TYPE (val
)) == INTEGER_TYPE
4870 && TYPE_UNSIGNED (TREE_TYPE (val
))
4871 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4875 name2
= gimple_assign_rhs1 (def_stmt
);
4876 if (rhs_code
== BIT_AND_EXPR
)
4877 cst2
= gimple_assign_rhs2 (def_stmt
);
4880 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4881 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
4883 if (TREE_CODE (name2
) == SSA_NAME
4884 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4885 && TREE_CODE (cst2
) == INTEGER_CST
4886 && !integer_zerop (cst2
)
4887 && nprec
<= HOST_BITS_PER_DOUBLE_INT
4889 || TYPE_UNSIGNED (TREE_TYPE (val
))))
4891 gimple def_stmt2
= SSA_NAME_DEF_STMT (name2
);
4892 if (gimple_assign_cast_p (def_stmt2
))
4894 names
[1] = gimple_assign_rhs1 (def_stmt2
);
4895 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
4896 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
4897 || (TYPE_PRECISION (TREE_TYPE (name2
))
4898 != TYPE_PRECISION (TREE_TYPE (names
[1])))
4899 || !live_on_edge (e
, names
[1])
4900 || has_single_use (names
[1]))
4901 names
[1] = NULL_TREE
;
4903 if (live_on_edge (e
, name2
)
4904 && !has_single_use (name2
))
4908 if (names
[0] || names
[1])
4910 double_int minv
, maxv
= double_int_zero
, valv
, cst2v
;
4911 double_int tem
, sgnbit
;
4912 bool valid_p
= false, valn
= false, cst2n
= false;
4913 enum tree_code ccode
= comp_code
;
4915 valv
= tree_to_double_int (val
).zext (nprec
);
4916 cst2v
= tree_to_double_int (cst2
).zext (nprec
);
4917 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
4919 valn
= valv
.sext (nprec
).is_negative ();
4920 cst2n
= cst2v
.sext (nprec
).is_negative ();
4922 /* If CST2 doesn't have most significant bit set,
4923 but VAL is negative, we have comparison like
4924 if ((x & 0x123) > -4) (always true). Just give up. */
4928 sgnbit
= double_int_one
.llshift (nprec
- 1, nprec
).zext (nprec
);
4930 sgnbit
= double_int_zero
;
4931 minv
= valv
& cst2v
;
4935 /* Minimum unsigned value for equality is VAL & CST2
4936 (should be equal to VAL, otherwise we probably should
4937 have folded the comparison into false) and
4938 maximum unsigned value is VAL | ~CST2. */
4939 maxv
= valv
| ~cst2v
;
4940 maxv
= maxv
.zext (nprec
);
4944 tem
= valv
| ~cst2v
;
4945 tem
= tem
.zext (nprec
);
4946 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
4947 if (valv
.is_zero ())
4950 sgnbit
= double_int_zero
;
4953 /* If (VAL | ~CST2) is all ones, handle it as
4954 (X & CST2) < VAL. */
4955 if (tem
== double_int::mask (nprec
))
4959 sgnbit
= double_int_zero
;
4963 && cst2v
.sext (nprec
).is_negative ())
4965 = double_int_one
.llshift (nprec
- 1, nprec
).zext (nprec
);
4966 if (!sgnbit
.is_zero ())
4974 if (tem
== double_int::mask (nprec
- 1))
4980 sgnbit
= double_int_zero
;
4984 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
4985 is VAL and maximum unsigned value is ~0. For signed
4986 comparison, if CST2 doesn't have most significant bit
4987 set, handle it similarly. If CST2 has MSB set,
4988 the minimum is the same, and maximum is ~0U/2. */
4991 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
4993 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
4997 maxv
= double_int::mask (nprec
- (cst2n
? 1 : 0));
5002 /* Find out smallest MINV where MINV > VAL
5003 && (MINV & CST2) == MINV, if any. If VAL is signed and
5004 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5005 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5008 maxv
= double_int::mask (nprec
- (cst2n
? 1 : 0));
5012 /* Minimum unsigned value for <= is 0 and maximum
5013 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5014 Otherwise, find smallest VAL2 where VAL2 > VAL
5015 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5017 For signed comparison, if CST2 doesn't have most
5018 significant bit set, handle it similarly. If CST2 has
5019 MSB set, the maximum is the same and minimum is INT_MIN. */
5024 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5027 maxv
-= double_int_one
;
5030 maxv
= maxv
.zext (nprec
);
5036 /* Minimum unsigned value for < is 0 and maximum
5037 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5038 Otherwise, find smallest VAL2 where VAL2 > VAL
5039 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5041 For signed comparison, if CST2 doesn't have most
5042 significant bit set, handle it similarly. If CST2 has
5043 MSB set, the maximum is the same and minimum is INT_MIN. */
5052 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5056 maxv
-= double_int_one
;
5058 maxv
= maxv
.zext (nprec
);
5066 && (maxv
- minv
).zext (nprec
) != double_int::mask (nprec
))
5068 tree tmp
, new_val
, type
;
5071 for (i
= 0; i
< 2; i
++)
5074 double_int maxv2
= maxv
;
5076 type
= TREE_TYPE (names
[i
]);
5077 if (!TYPE_UNSIGNED (type
))
5079 type
= build_nonstandard_integer_type (nprec
, 1);
5080 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5082 if (!minv
.is_zero ())
5084 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5085 double_int_to_tree (type
, -minv
));
5086 maxv2
= maxv
- minv
;
5088 new_val
= double_int_to_tree (type
, maxv2
);
5092 fprintf (dump_file
, "Adding assert for ");
5093 print_generic_expr (dump_file
, names
[i
], 0);
5094 fprintf (dump_file
, " from ");
5095 print_generic_expr (dump_file
, tmp
, 0);
5096 fprintf (dump_file
, "\n");
5099 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5100 new_val
, NULL
, e
, bsi
);
5110 /* OP is an operand of a truth value expression which is known to have
5111 a particular value. Register any asserts for OP and for any
5112 operands in OP's defining statement.
5114 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5115 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5118 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5119 edge e
, gimple_stmt_iterator bsi
)
5121 bool retval
= false;
5124 enum tree_code rhs_code
;
5126 /* We only care about SSA_NAMEs. */
5127 if (TREE_CODE (op
) != SSA_NAME
)
5130 /* We know that OP will have a zero or nonzero value. If OP is used
5131 more than once go ahead and register an assert for OP.
5133 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5134 it will always be set for OP (because OP is used in a COND_EXPR in
5136 if (!has_single_use (op
))
5138 val
= build_int_cst (TREE_TYPE (op
), 0);
5139 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5143 /* Now look at how OP is set. If it's set from a comparison,
5144 a truth operation or some bit operations, then we may be able
5145 to register information about the operands of that assignment. */
5146 op_def
= SSA_NAME_DEF_STMT (op
);
5147 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5150 rhs_code
= gimple_assign_rhs_code (op_def
);
5152 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5154 bool invert
= (code
== EQ_EXPR
? true : false);
5155 tree op0
= gimple_assign_rhs1 (op_def
);
5156 tree op1
= gimple_assign_rhs2 (op_def
);
5158 if (TREE_CODE (op0
) == SSA_NAME
)
5159 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
5161 if (TREE_CODE (op1
) == SSA_NAME
)
5162 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
5165 else if ((code
== NE_EXPR
5166 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5168 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5170 /* Recurse on each operand. */
5171 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5173 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
5176 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5177 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5179 /* Recurse, flipping CODE. */
5180 code
= invert_tree_comparison (code
, false);
5181 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5184 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5186 /* Recurse through the copy. */
5187 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5190 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5192 /* Recurse through the type conversion. */
5193 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5200 /* Try to register an edge assertion for SSA name NAME on edge E for
5201 the condition COND contributing to the conditional jump pointed to by SI.
5202 Return true if an assertion for NAME could be registered. */
5205 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5206 enum tree_code cond_code
, tree cond_op0
,
5210 enum tree_code comp_code
;
5211 bool retval
= false;
5212 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5214 /* Do not attempt to infer anything in names that flow through
5216 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5219 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5225 /* Register ASSERT_EXPRs for name. */
5226 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5227 cond_op1
, is_else_edge
);
5230 /* If COND is effectively an equality test of an SSA_NAME against
5231 the value zero or one, then we may be able to assert values
5232 for SSA_NAMEs which flow into COND. */
5234 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5235 statement of NAME we can assert both operands of the BIT_AND_EXPR
5236 have nonzero value. */
5237 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5238 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5240 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5242 if (is_gimple_assign (def_stmt
)
5243 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5245 tree op0
= gimple_assign_rhs1 (def_stmt
);
5246 tree op1
= gimple_assign_rhs2 (def_stmt
);
5247 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5248 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5252 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5253 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5255 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5256 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5258 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5260 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5261 necessarily zero value, or if type-precision is one. */
5262 if (is_gimple_assign (def_stmt
)
5263 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5264 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5265 || comp_code
== EQ_EXPR
)))
5267 tree op0
= gimple_assign_rhs1 (def_stmt
);
5268 tree op1
= gimple_assign_rhs2 (def_stmt
);
5269 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5270 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5278 /* Determine whether the outgoing edges of BB should receive an
5279 ASSERT_EXPR for each of the operands of BB's LAST statement.
5280 The last statement of BB must be a COND_EXPR.
5282 If any of the sub-graphs rooted at BB have an interesting use of
5283 the predicate operands, an assert location node is added to the
5284 list of assertions for the corresponding operands. */
5287 find_conditional_asserts (basic_block bb
, gimple last
)
5290 gimple_stmt_iterator bsi
;
5296 need_assert
= false;
5297 bsi
= gsi_for_stmt (last
);
5299 /* Look for uses of the operands in each of the sub-graphs
5300 rooted at BB. We need to check each of the outgoing edges
5301 separately, so that we know what kind of ASSERT_EXPR to
5303 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5308 /* Register the necessary assertions for each operand in the
5309 conditional predicate. */
5310 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5312 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
5313 gimple_cond_code (last
),
5314 gimple_cond_lhs (last
),
5315 gimple_cond_rhs (last
));
5328 /* Compare two case labels sorting first by the destination bb index
5329 and then by the case value. */
5332 compare_case_labels (const void *p1
, const void *p2
)
5334 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5335 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5336 int idx1
= ci1
->bb
->index
;
5337 int idx2
= ci2
->bb
->index
;
5341 else if (idx1
== idx2
)
5343 /* Make sure the default label is first in a group. */
5344 if (!CASE_LOW (ci1
->expr
))
5346 else if (!CASE_LOW (ci2
->expr
))
5349 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5350 CASE_LOW (ci2
->expr
));
5356 /* Determine whether the outgoing edges of BB should receive an
5357 ASSERT_EXPR for each of the operands of BB's LAST statement.
5358 The last statement of BB must be a SWITCH_EXPR.
5360 If any of the sub-graphs rooted at BB have an interesting use of
5361 the predicate operands, an assert location node is added to the
5362 list of assertions for the corresponding operands. */
5365 find_switch_asserts (basic_block bb
, gimple last
)
5368 gimple_stmt_iterator bsi
;
5371 struct case_info
*ci
;
5372 size_t n
= gimple_switch_num_labels (last
);
5373 #if GCC_VERSION >= 4000
5376 /* Work around GCC 3.4 bug (PR 37086). */
5377 volatile unsigned int idx
;
5380 need_assert
= false;
5381 bsi
= gsi_for_stmt (last
);
5382 op
= gimple_switch_index (last
);
5383 if (TREE_CODE (op
) != SSA_NAME
)
5386 /* Build a vector of case labels sorted by destination label. */
5387 ci
= XNEWVEC (struct case_info
, n
);
5388 for (idx
= 0; idx
< n
; ++idx
)
5390 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
5391 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
5393 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
5395 for (idx
= 0; idx
< n
; ++idx
)
5398 tree cl
= ci
[idx
].expr
;
5399 basic_block cbb
= ci
[idx
].bb
;
5401 min
= CASE_LOW (cl
);
5402 max
= CASE_HIGH (cl
);
5404 /* If there are multiple case labels with the same destination
5405 we need to combine them to a single value range for the edge. */
5406 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
5408 /* Skip labels until the last of the group. */
5411 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
5414 /* Pick up the maximum of the case label range. */
5415 if (CASE_HIGH (ci
[idx
].expr
))
5416 max
= CASE_HIGH (ci
[idx
].expr
);
5418 max
= CASE_LOW (ci
[idx
].expr
);
5421 /* Nothing to do if the range includes the default label until we
5422 can register anti-ranges. */
5423 if (min
== NULL_TREE
)
5426 /* Find the edge to register the assert expr on. */
5427 e
= find_edge (bb
, cbb
);
5429 /* Register the necessary assertions for the operand in the
5431 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
5432 max
? GE_EXPR
: EQ_EXPR
,
5434 fold_convert (TREE_TYPE (op
),
5438 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
5440 fold_convert (TREE_TYPE (op
),
5450 /* Traverse all the statements in block BB looking for statements that
5451 may generate useful assertions for the SSA names in their operand.
5452 If a statement produces a useful assertion A for name N_i, then the
5453 list of assertions already generated for N_i is scanned to
5454 determine if A is actually needed.
5456 If N_i already had the assertion A at a location dominating the
5457 current location, then nothing needs to be done. Otherwise, the
5458 new location for A is recorded instead.
5460 1- For every statement S in BB, all the variables used by S are
5461 added to bitmap FOUND_IN_SUBGRAPH.
5463 2- If statement S uses an operand N in a way that exposes a known
5464 value range for N, then if N was not already generated by an
5465 ASSERT_EXPR, create a new assert location for N. For instance,
5466 if N is a pointer and the statement dereferences it, we can
5467 assume that N is not NULL.
5469 3- COND_EXPRs are a special case of #2. We can derive range
5470 information from the predicate but need to insert different
5471 ASSERT_EXPRs for each of the sub-graphs rooted at the
5472 conditional block. If the last statement of BB is a conditional
5473 expression of the form 'X op Y', then
5475 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5477 b) If the conditional is the only entry point to the sub-graph
5478 corresponding to the THEN_CLAUSE, recurse into it. On
5479 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5480 an ASSERT_EXPR is added for the corresponding variable.
5482 c) Repeat step (b) on the ELSE_CLAUSE.
5484 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5493 In this case, an assertion on the THEN clause is useful to
5494 determine that 'a' is always 9 on that edge. However, an assertion
5495 on the ELSE clause would be unnecessary.
5497 4- If BB does not end in a conditional expression, then we recurse
5498 into BB's dominator children.
5500 At the end of the recursive traversal, every SSA name will have a
5501 list of locations where ASSERT_EXPRs should be added. When a new
5502 location for name N is found, it is registered by calling
5503 register_new_assert_for. That function keeps track of all the
5504 registered assertions to prevent adding unnecessary assertions.
5505 For instance, if a pointer P_4 is dereferenced more than once in a
5506 dominator tree, only the location dominating all the dereference of
5507 P_4 will receive an ASSERT_EXPR.
5509 If this function returns true, then it means that there are names
5510 for which we need to generate ASSERT_EXPRs. Those assertions are
5511 inserted by process_assert_insertions. */
5514 find_assert_locations_1 (basic_block bb
, sbitmap live
)
5516 gimple_stmt_iterator si
;
5520 need_assert
= false;
5521 last
= last_stmt (bb
);
5523 /* If BB's last statement is a conditional statement involving integer
5524 operands, determine if we need to add ASSERT_EXPRs. */
5526 && gimple_code (last
) == GIMPLE_COND
5527 && !fp_predicate (last
)
5528 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
5529 need_assert
|= find_conditional_asserts (bb
, last
);
5531 /* If BB's last statement is a switch statement involving integer
5532 operands, determine if we need to add ASSERT_EXPRs. */
5534 && gimple_code (last
) == GIMPLE_SWITCH
5535 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
5536 need_assert
|= find_switch_asserts (bb
, last
);
5538 /* Traverse all the statements in BB marking used names and looking
5539 for statements that may infer assertions for their used operands. */
5540 for (si
= gsi_last_bb (bb
); !gsi_end_p (si
); gsi_prev (&si
))
5546 stmt
= gsi_stmt (si
);
5548 if (is_gimple_debug (stmt
))
5551 /* See if we can derive an assertion for any of STMT's operands. */
5552 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
5555 enum tree_code comp_code
;
5557 /* If op is not live beyond this stmt, do not bother to insert
5559 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
5562 /* If OP is used in such a way that we can infer a value
5563 range for it, and we don't find a previous assertion for
5564 it, create a new assertion location node for OP. */
5565 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
5567 /* If we are able to infer a nonzero value range for OP,
5568 then walk backwards through the use-def chain to see if OP
5569 was set via a typecast.
5571 If so, then we can also infer a nonzero value range
5572 for the operand of the NOP_EXPR. */
5573 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
5576 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
5578 while (is_gimple_assign (def_stmt
)
5579 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
5581 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
5583 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
5585 t
= gimple_assign_rhs1 (def_stmt
);
5586 def_stmt
= SSA_NAME_DEF_STMT (t
);
5588 /* Note we want to register the assert for the
5589 operand of the NOP_EXPR after SI, not after the
5591 if (! has_single_use (t
))
5593 register_new_assert_for (t
, t
, comp_code
, value
,
5600 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
5606 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
5607 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
5608 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
5609 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
5612 /* Traverse all PHI nodes in BB, updating live. */
5613 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
5615 use_operand_p arg_p
;
5617 gimple phi
= gsi_stmt (si
);
5618 tree res
= gimple_phi_result (phi
);
5620 if (virtual_operand_p (res
))
5623 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
5625 tree arg
= USE_FROM_PTR (arg_p
);
5626 if (TREE_CODE (arg
) == SSA_NAME
)
5627 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
5630 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
5636 /* Do an RPO walk over the function computing SSA name liveness
5637 on-the-fly and deciding on assert expressions to insert.
5638 Returns true if there are assert expressions to be inserted. */
5641 find_assert_locations (void)
5643 int *rpo
= XNEWVEC (int, last_basic_block
);
5644 int *bb_rpo
= XNEWVEC (int, last_basic_block
);
5645 int *last_rpo
= XCNEWVEC (int, last_basic_block
);
5649 live
= XCNEWVEC (sbitmap
, last_basic_block
);
5650 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
5651 for (i
= 0; i
< rpo_cnt
; ++i
)
5654 need_asserts
= false;
5655 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
5657 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
5663 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
5664 bitmap_clear (live
[rpo
[i
]]);
5667 /* Process BB and update the live information with uses in
5669 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
5671 /* Merge liveness into the predecessor blocks and free it. */
5672 if (!bitmap_empty_p (live
[rpo
[i
]]))
5675 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5677 int pred
= e
->src
->index
;
5678 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
5683 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5684 bitmap_clear (live
[pred
]);
5686 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5688 if (bb_rpo
[pred
] < pred_rpo
)
5689 pred_rpo
= bb_rpo
[pred
];
5692 /* Record the RPO number of the last visited block that needs
5693 live information from this block. */
5694 last_rpo
[rpo
[i
]] = pred_rpo
;
5698 sbitmap_free (live
[rpo
[i
]]);
5699 live
[rpo
[i
]] = NULL
;
5702 /* We can free all successors live bitmaps if all their
5703 predecessors have been visited already. */
5704 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5705 if (last_rpo
[e
->dest
->index
] == i
5706 && live
[e
->dest
->index
])
5708 sbitmap_free (live
[e
->dest
->index
]);
5709 live
[e
->dest
->index
] = NULL
;
5714 XDELETEVEC (bb_rpo
);
5715 XDELETEVEC (last_rpo
);
5716 for (i
= 0; i
< last_basic_block
; ++i
)
5718 sbitmap_free (live
[i
]);
5721 return need_asserts
;
5724 /* Create an ASSERT_EXPR for NAME and insert it in the location
5725 indicated by LOC. Return true if we made any edge insertions. */
5728 process_assert_insertions_for (tree name
, assert_locus_t loc
)
5730 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5737 /* If we have X <=> X do not insert an assert expr for that. */
5738 if (loc
->expr
== loc
->val
)
5741 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
5742 assert_stmt
= build_assert_expr_for (cond
, name
);
5745 /* We have been asked to insert the assertion on an edge. This
5746 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5747 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
5748 || (gimple_code (gsi_stmt (loc
->si
))
5751 gsi_insert_on_edge (loc
->e
, assert_stmt
);
5755 /* Otherwise, we can insert right after LOC->SI iff the
5756 statement must not be the last statement in the block. */
5757 stmt
= gsi_stmt (loc
->si
);
5758 if (!stmt_ends_bb_p (stmt
))
5760 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
5764 /* If STMT must be the last statement in BB, we can only insert new
5765 assertions on the non-abnormal edge out of BB. Note that since
5766 STMT is not control flow, there may only be one non-abnormal edge
5768 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
5769 if (!(e
->flags
& EDGE_ABNORMAL
))
5771 gsi_insert_on_edge (e
, assert_stmt
);
5779 /* Process all the insertions registered for every name N_i registered
5780 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5781 found in ASSERTS_FOR[i]. */
5784 process_assert_insertions (void)
5788 bool update_edges_p
= false;
5789 int num_asserts
= 0;
5791 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5792 dump_all_asserts (dump_file
);
5794 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5796 assert_locus_t loc
= asserts_for
[i
];
5801 assert_locus_t next
= loc
->next
;
5802 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
5810 gsi_commit_edge_inserts ();
5812 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
5817 /* Traverse the flowgraph looking for conditional jumps to insert range
5818 expressions. These range expressions are meant to provide information
5819 to optimizations that need to reason in terms of value ranges. They
5820 will not be expanded into RTL. For instance, given:
5829 this pass will transform the code into:
5835 x = ASSERT_EXPR <x, x < y>
5840 y = ASSERT_EXPR <y, x <= y>
5844 The idea is that once copy and constant propagation have run, other
5845 optimizations will be able to determine what ranges of values can 'x'
5846 take in different paths of the code, simply by checking the reaching
5847 definition of 'x'. */
5850 insert_range_assertions (void)
5852 need_assert_for
= BITMAP_ALLOC (NULL
);
5853 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
5855 calculate_dominance_info (CDI_DOMINATORS
);
5857 if (find_assert_locations ())
5859 process_assert_insertions ();
5860 update_ssa (TODO_update_ssa_no_phi
);
5863 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5865 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
5866 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
5870 BITMAP_FREE (need_assert_for
);
5873 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5874 and "struct" hacks. If VRP can determine that the
5875 array subscript is a constant, check if it is outside valid
5876 range. If the array subscript is a RANGE, warn if it is
5877 non-overlapping with valid range.
5878 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5881 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
5883 value_range_t
* vr
= NULL
;
5884 tree low_sub
, up_sub
;
5885 tree low_bound
, up_bound
, up_bound_p1
;
5888 if (TREE_NO_WARNING (ref
))
5891 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5892 up_bound
= array_ref_up_bound (ref
);
5894 /* Can not check flexible arrays. */
5896 || TREE_CODE (up_bound
) != INTEGER_CST
)
5899 /* Accesses to trailing arrays via pointers may access storage
5900 beyond the types array bounds. */
5901 base
= get_base_address (ref
);
5902 if (base
&& TREE_CODE (base
) == MEM_REF
)
5904 tree cref
, next
= NULL_TREE
;
5906 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
5909 cref
= TREE_OPERAND (ref
, 0);
5910 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
5911 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
5912 next
&& TREE_CODE (next
) != FIELD_DECL
;
5913 next
= DECL_CHAIN (next
))
5916 /* If this is the last field in a struct type or a field in a
5917 union type do not warn. */
5922 low_bound
= array_ref_low_bound (ref
);
5923 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
);
5925 if (TREE_CODE (low_sub
) == SSA_NAME
)
5927 vr
= get_value_range (low_sub
);
5928 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5930 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5931 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5935 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5937 if (TREE_CODE (up_sub
) == INTEGER_CST
5938 && tree_int_cst_lt (up_bound
, up_sub
)
5939 && TREE_CODE (low_sub
) == INTEGER_CST
5940 && tree_int_cst_lt (low_sub
, low_bound
))
5942 warning_at (location
, OPT_Warray_bounds
,
5943 "array subscript is outside array bounds");
5944 TREE_NO_WARNING (ref
) = 1;
5947 else if (TREE_CODE (up_sub
) == INTEGER_CST
5948 && (ignore_off_by_one
5949 ? (tree_int_cst_lt (up_bound
, up_sub
)
5950 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
5951 : (tree_int_cst_lt (up_bound
, up_sub
)
5952 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
5954 warning_at (location
, OPT_Warray_bounds
,
5955 "array subscript is above array bounds");
5956 TREE_NO_WARNING (ref
) = 1;
5958 else if (TREE_CODE (low_sub
) == INTEGER_CST
5959 && tree_int_cst_lt (low_sub
, low_bound
))
5961 warning_at (location
, OPT_Warray_bounds
,
5962 "array subscript is below array bounds");
5963 TREE_NO_WARNING (ref
) = 1;
5967 /* Searches if the expr T, located at LOCATION computes
5968 address of an ARRAY_REF, and call check_array_ref on it. */
5971 search_for_addr_array (tree t
, location_t location
)
5973 while (TREE_CODE (t
) == SSA_NAME
)
5975 gimple g
= SSA_NAME_DEF_STMT (t
);
5977 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5980 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5981 != GIMPLE_SINGLE_RHS
)
5984 t
= gimple_assign_rhs1 (g
);
5988 /* We are only interested in addresses of ARRAY_REF's. */
5989 if (TREE_CODE (t
) != ADDR_EXPR
)
5992 /* Check each ARRAY_REFs in the reference chain. */
5995 if (TREE_CODE (t
) == ARRAY_REF
)
5996 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5998 t
= TREE_OPERAND (t
, 0);
6000 while (handled_component_p (t
));
6002 if (TREE_CODE (t
) == MEM_REF
6003 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
6004 && !TREE_NO_WARNING (t
))
6006 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
6007 tree low_bound
, up_bound
, el_sz
;
6009 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6010 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6011 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6014 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6015 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6016 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6018 || TREE_CODE (low_bound
) != INTEGER_CST
6020 || TREE_CODE (up_bound
) != INTEGER_CST
6022 || TREE_CODE (el_sz
) != INTEGER_CST
)
6025 idx
= mem_ref_offset (t
);
6026 idx
= idx
.sdiv (tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
6027 if (idx
.slt (double_int_zero
))
6029 warning_at (location
, OPT_Warray_bounds
,
6030 "array subscript is below array bounds");
6031 TREE_NO_WARNING (t
) = 1;
6033 else if (idx
.sgt (tree_to_double_int (up_bound
)
6034 - tree_to_double_int (low_bound
)
6037 warning_at (location
, OPT_Warray_bounds
,
6038 "array subscript is above array bounds");
6039 TREE_NO_WARNING (t
) = 1;
6044 /* walk_tree() callback that checks if *TP is
6045 an ARRAY_REF inside an ADDR_EXPR (in which an array
6046 subscript one outside the valid range is allowed). Call
6047 check_array_ref for each ARRAY_REF found. The location is
6051 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6054 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6055 location_t location
;
6057 if (EXPR_HAS_LOCATION (t
))
6058 location
= EXPR_LOCATION (t
);
6061 location_t
*locp
= (location_t
*) wi
->info
;
6065 *walk_subtree
= TRUE
;
6067 if (TREE_CODE (t
) == ARRAY_REF
)
6068 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6070 if (TREE_CODE (t
) == MEM_REF
6071 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
6072 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
6074 if (TREE_CODE (t
) == ADDR_EXPR
)
6075 *walk_subtree
= FALSE
;
6080 /* Walk over all statements of all reachable BBs and call check_array_bounds
6084 check_all_array_refs (void)
6087 gimple_stmt_iterator si
;
6093 bool executable
= false;
6095 /* Skip blocks that were found to be unreachable. */
6096 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6097 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6101 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6103 gimple stmt
= gsi_stmt (si
);
6104 struct walk_stmt_info wi
;
6105 if (!gimple_has_location (stmt
))
6108 if (is_gimple_call (stmt
))
6111 size_t n
= gimple_call_num_args (stmt
);
6112 for (i
= 0; i
< n
; i
++)
6114 tree arg
= gimple_call_arg (stmt
, i
);
6115 search_for_addr_array (arg
, gimple_location (stmt
));
6120 memset (&wi
, 0, sizeof (wi
));
6121 wi
.info
= CONST_CAST (void *, (const void *)
6122 gimple_location_ptr (stmt
));
6124 walk_gimple_op (gsi_stmt (si
),
6132 /* Convert range assertion expressions into the implied copies and
6133 copy propagate away the copies. Doing the trivial copy propagation
6134 here avoids the need to run the full copy propagation pass after
6137 FIXME, this will eventually lead to copy propagation removing the
6138 names that had useful range information attached to them. For
6139 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6140 then N_i will have the range [3, +INF].
6142 However, by converting the assertion into the implied copy
6143 operation N_i = N_j, we will then copy-propagate N_j into the uses
6144 of N_i and lose the range information. We may want to hold on to
6145 ASSERT_EXPRs a little while longer as the ranges could be used in
6146 things like jump threading.
6148 The problem with keeping ASSERT_EXPRs around is that passes after
6149 VRP need to handle them appropriately.
6151 Another approach would be to make the range information a first
6152 class property of the SSA_NAME so that it can be queried from
6153 any pass. This is made somewhat more complex by the need for
6154 multiple ranges to be associated with one SSA_NAME. */
6157 remove_range_assertions (void)
6160 gimple_stmt_iterator si
;
6162 /* Note that the BSI iterator bump happens at the bottom of the
6163 loop and no bump is necessary if we're removing the statement
6164 referenced by the current BSI. */
6166 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
6168 gimple stmt
= gsi_stmt (si
);
6171 if (is_gimple_assign (stmt
)
6172 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
6174 tree rhs
= gimple_assign_rhs1 (stmt
);
6176 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
6177 use_operand_p use_p
;
6178 imm_use_iterator iter
;
6180 gcc_assert (cond
!= boolean_false_node
);
6182 /* Propagate the RHS into every use of the LHS. */
6183 var
= ASSERT_EXPR_VAR (rhs
);
6184 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
6185 gimple_assign_lhs (stmt
))
6186 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
6188 SET_USE (use_p
, var
);
6189 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
6192 /* And finally, remove the copy, it is not needed. */
6193 gsi_remove (&si
, true);
6194 release_defs (stmt
);
6202 /* Return true if STMT is interesting for VRP. */
6205 stmt_interesting_for_vrp (gimple stmt
)
6207 if (gimple_code (stmt
) == GIMPLE_PHI
)
6209 tree res
= gimple_phi_result (stmt
);
6210 return (!virtual_operand_p (res
)
6211 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
6212 || POINTER_TYPE_P (TREE_TYPE (res
))));
6214 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6216 tree lhs
= gimple_get_lhs (stmt
);
6218 /* In general, assignments with virtual operands are not useful
6219 for deriving ranges, with the obvious exception of calls to
6220 builtin functions. */
6221 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
6222 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6223 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6224 && ((is_gimple_call (stmt
)
6225 && gimple_call_fndecl (stmt
) != NULL_TREE
6226 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
6227 || !gimple_vuse (stmt
)))
6230 else if (gimple_code (stmt
) == GIMPLE_COND
6231 || gimple_code (stmt
) == GIMPLE_SWITCH
)
6238 /* Initialize local data structures for VRP. */
6241 vrp_initialize (void)
6245 values_propagated
= false;
6246 num_vr_values
= num_ssa_names
;
6247 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
6248 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
6252 gimple_stmt_iterator si
;
6254 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
6256 gimple phi
= gsi_stmt (si
);
6257 if (!stmt_interesting_for_vrp (phi
))
6259 tree lhs
= PHI_RESULT (phi
);
6260 set_value_range_to_varying (get_value_range (lhs
));
6261 prop_set_simulate_again (phi
, false);
6264 prop_set_simulate_again (phi
, true);
6267 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6269 gimple stmt
= gsi_stmt (si
);
6271 /* If the statement is a control insn, then we do not
6272 want to avoid simulating the statement once. Failure
6273 to do so means that those edges will never get added. */
6274 if (stmt_ends_bb_p (stmt
))
6275 prop_set_simulate_again (stmt
, true);
6276 else if (!stmt_interesting_for_vrp (stmt
))
6280 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
6281 set_value_range_to_varying (get_value_range (def
));
6282 prop_set_simulate_again (stmt
, false);
6285 prop_set_simulate_again (stmt
, true);
6290 /* Return the singleton value-range for NAME or NAME. */
6293 vrp_valueize (tree name
)
6295 if (TREE_CODE (name
) == SSA_NAME
)
6297 value_range_t
*vr
= get_value_range (name
);
6298 if (vr
->type
== VR_RANGE
6299 && (vr
->min
== vr
->max
6300 || operand_equal_p (vr
->min
, vr
->max
, 0)))
6306 /* Visit assignment STMT. If it produces an interesting range, record
6307 the SSA name in *OUTPUT_P. */
6309 static enum ssa_prop_result
6310 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
6314 enum gimple_code code
= gimple_code (stmt
);
6315 lhs
= gimple_get_lhs (stmt
);
6317 /* We only keep track of ranges in integral and pointer types. */
6318 if (TREE_CODE (lhs
) == SSA_NAME
6319 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6320 /* It is valid to have NULL MIN/MAX values on a type. See
6321 build_range_type. */
6322 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
6323 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
6324 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
6326 value_range_t new_vr
= VR_INITIALIZER
;
6328 /* Try folding the statement to a constant first. */
6329 tree tem
= gimple_fold_stmt_to_constant (stmt
, vrp_valueize
);
6330 if (tem
&& !is_overflow_infinity (tem
))
6331 set_value_range (&new_vr
, VR_RANGE
, tem
, tem
, NULL
);
6332 /* Then dispatch to value-range extracting functions. */
6333 else if (code
== GIMPLE_CALL
)
6334 extract_range_basic (&new_vr
, stmt
);
6336 extract_range_from_assignment (&new_vr
, stmt
);
6338 if (update_value_range (lhs
, &new_vr
))
6342 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6344 fprintf (dump_file
, "Found new range for ");
6345 print_generic_expr (dump_file
, lhs
, 0);
6346 fprintf (dump_file
, ": ");
6347 dump_value_range (dump_file
, &new_vr
);
6348 fprintf (dump_file
, "\n\n");
6351 if (new_vr
.type
== VR_VARYING
)
6352 return SSA_PROP_VARYING
;
6354 return SSA_PROP_INTERESTING
;
6357 return SSA_PROP_NOT_INTERESTING
;
6360 /* Every other statement produces no useful ranges. */
6361 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6362 set_value_range_to_varying (get_value_range (def
));
6364 return SSA_PROP_VARYING
;
6367 /* Helper that gets the value range of the SSA_NAME with version I
6368 or a symbolic range containing the SSA_NAME only if the value range
6369 is varying or undefined. */
6371 static inline value_range_t
6372 get_vr_for_comparison (int i
)
6374 value_range_t vr
= *get_value_range (ssa_name (i
));
6376 /* If name N_i does not have a valid range, use N_i as its own
6377 range. This allows us to compare against names that may
6378 have N_i in their ranges. */
6379 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
6382 vr
.min
= ssa_name (i
);
6383 vr
.max
= ssa_name (i
);
6389 /* Compare all the value ranges for names equivalent to VAR with VAL
6390 using comparison code COMP. Return the same value returned by
6391 compare_range_with_value, including the setting of
6392 *STRICT_OVERFLOW_P. */
6395 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
6396 bool *strict_overflow_p
)
6402 int used_strict_overflow
;
6404 value_range_t equiv_vr
;
6406 /* Get the set of equivalences for VAR. */
6407 e
= get_value_range (var
)->equiv
;
6409 /* Start at -1. Set it to 0 if we do a comparison without relying
6410 on overflow, or 1 if all comparisons rely on overflow. */
6411 used_strict_overflow
= -1;
6413 /* Compare vars' value range with val. */
6414 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
6416 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
6418 used_strict_overflow
= sop
? 1 : 0;
6420 /* If the equiv set is empty we have done all work we need to do. */
6424 && used_strict_overflow
> 0)
6425 *strict_overflow_p
= true;
6429 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
6431 equiv_vr
= get_vr_for_comparison (i
);
6433 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
6436 /* If we get different answers from different members
6437 of the equivalence set this check must be in a dead
6438 code region. Folding it to a trap representation
6439 would be correct here. For now just return don't-know. */
6449 used_strict_overflow
= 0;
6450 else if (used_strict_overflow
< 0)
6451 used_strict_overflow
= 1;
6456 && used_strict_overflow
> 0)
6457 *strict_overflow_p
= true;
6463 /* Given a comparison code COMP and names N1 and N2, compare all the
6464 ranges equivalent to N1 against all the ranges equivalent to N2
6465 to determine the value of N1 COMP N2. Return the same value
6466 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6467 whether we relied on an overflow infinity in the comparison. */
6471 compare_names (enum tree_code comp
, tree n1
, tree n2
,
6472 bool *strict_overflow_p
)
6476 bitmap_iterator bi1
, bi2
;
6478 int used_strict_overflow
;
6479 static bitmap_obstack
*s_obstack
= NULL
;
6480 static bitmap s_e1
= NULL
, s_e2
= NULL
;
6482 /* Compare the ranges of every name equivalent to N1 against the
6483 ranges of every name equivalent to N2. */
6484 e1
= get_value_range (n1
)->equiv
;
6485 e2
= get_value_range (n2
)->equiv
;
6487 /* Use the fake bitmaps if e1 or e2 are not available. */
6488 if (s_obstack
== NULL
)
6490 s_obstack
= XNEW (bitmap_obstack
);
6491 bitmap_obstack_initialize (s_obstack
);
6492 s_e1
= BITMAP_ALLOC (s_obstack
);
6493 s_e2
= BITMAP_ALLOC (s_obstack
);
6500 /* Add N1 and N2 to their own set of equivalences to avoid
6501 duplicating the body of the loop just to check N1 and N2
6503 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
6504 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
6506 /* If the equivalence sets have a common intersection, then the two
6507 names can be compared without checking their ranges. */
6508 if (bitmap_intersect_p (e1
, e2
))
6510 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6511 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6513 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
6515 : boolean_false_node
;
6518 /* Start at -1. Set it to 0 if we do a comparison without relying
6519 on overflow, or 1 if all comparisons rely on overflow. */
6520 used_strict_overflow
= -1;
6522 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6523 N2 to their own set of equivalences to avoid duplicating the body
6524 of the loop just to check N1 and N2 ranges. */
6525 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
6527 value_range_t vr1
= get_vr_for_comparison (i1
);
6529 t
= retval
= NULL_TREE
;
6530 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
6534 value_range_t vr2
= get_vr_for_comparison (i2
);
6536 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
6539 /* If we get different answers from different members
6540 of the equivalence set this check must be in a dead
6541 code region. Folding it to a trap representation
6542 would be correct here. For now just return don't-know. */
6546 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6547 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6553 used_strict_overflow
= 0;
6554 else if (used_strict_overflow
< 0)
6555 used_strict_overflow
= 1;
6561 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6562 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6563 if (used_strict_overflow
> 0)
6564 *strict_overflow_p
= true;
6569 /* None of the equivalent ranges are useful in computing this
6571 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6572 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6576 /* Helper function for vrp_evaluate_conditional_warnv. */
6579 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
6581 bool * strict_overflow_p
)
6583 value_range_t
*vr0
, *vr1
;
6585 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
6586 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
6589 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
6590 else if (vr0
&& vr1
== NULL
)
6591 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
6592 else if (vr0
== NULL
&& vr1
)
6593 return (compare_range_with_value
6594 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
6598 /* Helper function for vrp_evaluate_conditional_warnv. */
6601 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
6602 tree op1
, bool use_equiv_p
,
6603 bool *strict_overflow_p
, bool *only_ranges
)
6607 *only_ranges
= true;
6609 /* We only deal with integral and pointer types. */
6610 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6611 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
6617 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
6618 (code
, op0
, op1
, strict_overflow_p
)))
6620 *only_ranges
= false;
6621 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
6622 return compare_names (code
, op0
, op1
, strict_overflow_p
);
6623 else if (TREE_CODE (op0
) == SSA_NAME
)
6624 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
6625 else if (TREE_CODE (op1
) == SSA_NAME
)
6626 return (compare_name_with_value
6627 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
6630 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
6635 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6636 information. Return NULL if the conditional can not be evaluated.
6637 The ranges of all the names equivalent with the operands in COND
6638 will be used when trying to compute the value. If the result is
6639 based on undefined signed overflow, issue a warning if
6643 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
6649 /* Some passes and foldings leak constants with overflow flag set
6650 into the IL. Avoid doing wrong things with these and bail out. */
6651 if ((TREE_CODE (op0
) == INTEGER_CST
6652 && TREE_OVERFLOW (op0
))
6653 || (TREE_CODE (op1
) == INTEGER_CST
6654 && TREE_OVERFLOW (op1
)))
6658 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
6663 enum warn_strict_overflow_code wc
;
6664 const char* warnmsg
;
6666 if (is_gimple_min_invariant (ret
))
6668 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
6669 warnmsg
= G_("assuming signed overflow does not occur when "
6670 "simplifying conditional to constant");
6674 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
6675 warnmsg
= G_("assuming signed overflow does not occur when "
6676 "simplifying conditional");
6679 if (issue_strict_overflow_warning (wc
))
6681 location_t location
;
6683 if (!gimple_has_location (stmt
))
6684 location
= input_location
;
6686 location
= gimple_location (stmt
);
6687 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
6691 if (warn_type_limits
6692 && ret
&& only_ranges
6693 && TREE_CODE_CLASS (code
) == tcc_comparison
6694 && TREE_CODE (op0
) == SSA_NAME
)
6696 /* If the comparison is being folded and the operand on the LHS
6697 is being compared against a constant value that is outside of
6698 the natural range of OP0's type, then the predicate will
6699 always fold regardless of the value of OP0. If -Wtype-limits
6700 was specified, emit a warning. */
6701 tree type
= TREE_TYPE (op0
);
6702 value_range_t
*vr0
= get_value_range (op0
);
6704 if (vr0
->type
!= VR_VARYING
6705 && INTEGRAL_TYPE_P (type
)
6706 && vrp_val_is_min (vr0
->min
)
6707 && vrp_val_is_max (vr0
->max
)
6708 && is_gimple_min_invariant (op1
))
6710 location_t location
;
6712 if (!gimple_has_location (stmt
))
6713 location
= input_location
;
6715 location
= gimple_location (stmt
);
6717 warning_at (location
, OPT_Wtype_limits
,
6719 ? G_("comparison always false "
6720 "due to limited range of data type")
6721 : G_("comparison always true "
6722 "due to limited range of data type"));
6730 /* Visit conditional statement STMT. If we can determine which edge
6731 will be taken out of STMT's basic block, record it in
6732 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6733 SSA_PROP_VARYING. */
6735 static enum ssa_prop_result
6736 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
6741 *taken_edge_p
= NULL
;
6743 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6748 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
6749 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6750 fprintf (dump_file
, "\nWith known ranges\n");
6752 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
6754 fprintf (dump_file
, "\t");
6755 print_generic_expr (dump_file
, use
, 0);
6756 fprintf (dump_file
, ": ");
6757 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
6760 fprintf (dump_file
, "\n");
6763 /* Compute the value of the predicate COND by checking the known
6764 ranges of each of its operands.
6766 Note that we cannot evaluate all the equivalent ranges here
6767 because those ranges may not yet be final and with the current
6768 propagation strategy, we cannot determine when the value ranges
6769 of the names in the equivalence set have changed.
6771 For instance, given the following code fragment
6775 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6779 Assume that on the first visit to i_14, i_5 has the temporary
6780 range [8, 8] because the second argument to the PHI function is
6781 not yet executable. We derive the range ~[0, 0] for i_14 and the
6782 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6783 the first time, since i_14 is equivalent to the range [8, 8], we
6784 determine that the predicate is always false.
6786 On the next round of propagation, i_13 is determined to be
6787 VARYING, which causes i_5 to drop down to VARYING. So, another
6788 visit to i_14 is scheduled. In this second visit, we compute the
6789 exact same range and equivalence set for i_14, namely ~[0, 0] and
6790 { i_5 }. But we did not have the previous range for i_5
6791 registered, so vrp_visit_assignment thinks that the range for
6792 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6793 is not visited again, which stops propagation from visiting
6794 statements in the THEN clause of that if().
6796 To properly fix this we would need to keep the previous range
6797 value for the names in the equivalence set. This way we would've
6798 discovered that from one visit to the other i_5 changed from
6799 range [8, 8] to VR_VARYING.
6801 However, fixing this apparent limitation may not be worth the
6802 additional checking. Testing on several code bases (GCC, DLV,
6803 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6804 4 more predicates folded in SPEC. */
6807 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
6808 gimple_cond_lhs (stmt
),
6809 gimple_cond_rhs (stmt
),
6814 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
6817 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6819 "\nIgnoring predicate evaluation because "
6820 "it assumes that signed overflow is undefined");
6825 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6827 fprintf (dump_file
, "\nPredicate evaluates to: ");
6828 if (val
== NULL_TREE
)
6829 fprintf (dump_file
, "DON'T KNOW\n");
6831 print_generic_stmt (dump_file
, val
, 0);
6834 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
6837 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6838 that includes the value VAL. The search is restricted to the range
6839 [START_IDX, n - 1] where n is the size of VEC.
6841 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6844 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6845 it is placed in IDX and false is returned.
6847 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6851 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
6853 size_t n
= gimple_switch_num_labels (stmt
);
6856 /* Find case label for minimum of the value range or the next one.
6857 At each iteration we are searching in [low, high - 1]. */
6859 for (low
= start_idx
, high
= n
; high
!= low
; )
6863 /* Note that i != high, so we never ask for n. */
6864 size_t i
= (high
+ low
) / 2;
6865 t
= gimple_switch_label (stmt
, i
);
6867 /* Cache the result of comparing CASE_LOW and val. */
6868 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
6872 /* Ranges cannot be empty. */
6881 if (CASE_HIGH (t
) != NULL
6882 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
6894 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6895 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6896 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6897 then MAX_IDX < MIN_IDX.
6898 Returns true if the default label is not needed. */
6901 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
6905 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
6906 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
6910 && max_take_default
)
6912 /* Only the default case label reached.
6913 Return an empty range. */
6920 bool take_default
= min_take_default
|| max_take_default
;
6924 if (max_take_default
)
6927 /* If the case label range is continuous, we do not need
6928 the default case label. Verify that. */
6929 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
6930 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
6931 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
6932 for (k
= i
+ 1; k
<= j
; ++k
)
6934 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
6935 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
6937 take_default
= true;
6941 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
6942 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
6947 return !take_default
;
6951 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
6952 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
6953 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
6954 Returns true if the default label is not needed. */
6957 find_case_label_ranges (gimple stmt
, value_range_t
*vr
, size_t *min_idx1
,
6958 size_t *max_idx1
, size_t *min_idx2
,
6962 unsigned int n
= gimple_switch_num_labels (stmt
);
6964 tree case_low
, case_high
;
6965 tree min
= vr
->min
, max
= vr
->max
;
6967 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
6969 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
6971 /* Set second range to emtpy. */
6975 if (vr
->type
== VR_RANGE
)
6979 return !take_default
;
6982 /* Set first range to all case labels. */
6989 /* Make sure all the values of case labels [i , j] are contained in
6990 range [MIN, MAX]. */
6991 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
6992 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
6993 if (tree_int_cst_compare (case_low
, min
) < 0)
6995 if (case_high
!= NULL_TREE
6996 && tree_int_cst_compare (max
, case_high
) < 0)
7002 /* If the range spans case labels [i, j], the corresponding anti-range spans
7003 the labels [1, i - 1] and [j + 1, n - 1]. */
7029 /* Visit switch statement STMT. If we can determine which edge
7030 will be taken out of STMT's basic block, record it in
7031 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7032 SSA_PROP_VARYING. */
7034 static enum ssa_prop_result
7035 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
7039 size_t i
= 0, j
= 0, k
, l
;
7042 *taken_edge_p
= NULL
;
7043 op
= gimple_switch_index (stmt
);
7044 if (TREE_CODE (op
) != SSA_NAME
)
7045 return SSA_PROP_VARYING
;
7047 vr
= get_value_range (op
);
7048 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7050 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7051 print_generic_expr (dump_file
, op
, 0);
7052 fprintf (dump_file
, " with known range ");
7053 dump_value_range (dump_file
, vr
);
7054 fprintf (dump_file
, "\n");
7057 if ((vr
->type
!= VR_RANGE
7058 && vr
->type
!= VR_ANTI_RANGE
)
7059 || symbolic_range_p (vr
))
7060 return SSA_PROP_VARYING
;
7062 /* Find the single edge that is taken from the switch expression. */
7063 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7065 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7069 gcc_assert (take_default
);
7070 val
= gimple_switch_default_label (stmt
);
7074 /* Check if labels with index i to j and maybe the default label
7075 are all reaching the same label. */
7077 val
= gimple_switch_label (stmt
, i
);
7079 && CASE_LABEL (gimple_switch_default_label (stmt
))
7080 != CASE_LABEL (val
))
7082 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7083 fprintf (dump_file
, " not a single destination for this "
7085 return SSA_PROP_VARYING
;
7087 for (++i
; i
<= j
; ++i
)
7089 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
7091 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7092 fprintf (dump_file
, " not a single destination for this "
7094 return SSA_PROP_VARYING
;
7099 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
7101 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7102 fprintf (dump_file
, " not a single destination for this "
7104 return SSA_PROP_VARYING
;
7109 *taken_edge_p
= find_edge (gimple_bb (stmt
),
7110 label_to_block (CASE_LABEL (val
)));
7112 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7114 fprintf (dump_file
, " will take edge to ");
7115 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
7118 return SSA_PROP_INTERESTING
;
7122 /* Evaluate statement STMT. If the statement produces a useful range,
7123 return SSA_PROP_INTERESTING and record the SSA name with the
7124 interesting range into *OUTPUT_P.
7126 If STMT is a conditional branch and we can determine its truth
7127 value, the taken edge is recorded in *TAKEN_EDGE_P.
7129 If STMT produces a varying value, return SSA_PROP_VARYING. */
7131 static enum ssa_prop_result
7132 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
7137 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7139 fprintf (dump_file
, "\nVisiting statement:\n");
7140 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
7141 fprintf (dump_file
, "\n");
7144 if (!stmt_interesting_for_vrp (stmt
))
7145 gcc_assert (stmt_ends_bb_p (stmt
));
7146 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
7148 /* In general, assignments with virtual operands are not useful
7149 for deriving ranges, with the obvious exception of calls to
7150 builtin functions. */
7151 if ((is_gimple_call (stmt
)
7152 && gimple_call_fndecl (stmt
) != NULL_TREE
7153 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
7154 || !gimple_vuse (stmt
))
7155 return vrp_visit_assignment_or_call (stmt
, output_p
);
7157 else if (gimple_code (stmt
) == GIMPLE_COND
)
7158 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
7159 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7160 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
7162 /* All other statements produce nothing of interest for VRP, so mark
7163 their outputs varying and prevent further simulation. */
7164 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
7165 set_value_range_to_varying (get_value_range (def
));
7167 return SSA_PROP_VARYING
;
7170 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7171 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7172 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7173 possible such range. The resulting range is not canonicalized. */
7176 union_ranges (enum value_range_type
*vr0type
,
7177 tree
*vr0min
, tree
*vr0max
,
7178 enum value_range_type vr1type
,
7179 tree vr1min
, tree vr1max
)
7181 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
7182 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
7184 /* [] is vr0, () is vr1 in the following classification comments. */
7188 if (*vr0type
== vr1type
)
7189 /* Nothing to do for equal ranges. */
7191 else if ((*vr0type
== VR_RANGE
7192 && vr1type
== VR_ANTI_RANGE
)
7193 || (*vr0type
== VR_ANTI_RANGE
7194 && vr1type
== VR_RANGE
))
7196 /* For anti-range with range union the result is varying. */
7202 else if (operand_less_p (*vr0max
, vr1min
) == 1
7203 || operand_less_p (vr1max
, *vr0min
) == 1)
7205 /* [ ] ( ) or ( ) [ ]
7206 If the ranges have an empty intersection, result of the union
7207 operation is the anti-range or if both are anti-ranges
7209 if (*vr0type
== VR_ANTI_RANGE
7210 && vr1type
== VR_ANTI_RANGE
)
7212 else if (*vr0type
== VR_ANTI_RANGE
7213 && vr1type
== VR_RANGE
)
7215 else if (*vr0type
== VR_RANGE
7216 && vr1type
== VR_ANTI_RANGE
)
7222 else if (*vr0type
== VR_RANGE
7223 && vr1type
== VR_RANGE
)
7225 /* The result is the convex hull of both ranges. */
7226 if (operand_less_p (*vr0max
, vr1min
) == 1)
7228 /* If the result can be an anti-range, create one. */
7229 if (TREE_CODE (*vr0max
) == INTEGER_CST
7230 && TREE_CODE (vr1min
) == INTEGER_CST
7231 && vrp_val_is_min (*vr0min
)
7232 && vrp_val_is_max (vr1max
))
7234 tree min
= int_const_binop (PLUS_EXPR
,
7235 *vr0max
, integer_one_node
);
7236 tree max
= int_const_binop (MINUS_EXPR
,
7237 vr1min
, integer_one_node
);
7238 if (!operand_less_p (max
, min
))
7240 *vr0type
= VR_ANTI_RANGE
;
7252 /* If the result can be an anti-range, create one. */
7253 if (TREE_CODE (vr1max
) == INTEGER_CST
7254 && TREE_CODE (*vr0min
) == INTEGER_CST
7255 && vrp_val_is_min (vr1min
)
7256 && vrp_val_is_max (*vr0max
))
7258 tree min
= int_const_binop (PLUS_EXPR
,
7259 vr1max
, integer_one_node
);
7260 tree max
= int_const_binop (MINUS_EXPR
,
7261 *vr0min
, integer_one_node
);
7262 if (!operand_less_p (max
, min
))
7264 *vr0type
= VR_ANTI_RANGE
;
7278 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
7279 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
7281 /* [ ( ) ] or [( ) ] or [ ( )] */
7282 if (*vr0type
== VR_RANGE
7283 && vr1type
== VR_RANGE
)
7285 else if (*vr0type
== VR_ANTI_RANGE
7286 && vr1type
== VR_ANTI_RANGE
)
7292 else if (*vr0type
== VR_ANTI_RANGE
7293 && vr1type
== VR_RANGE
)
7295 /* Arbitrarily choose the right or left gap. */
7296 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
7297 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
, integer_one_node
);
7298 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
7299 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7303 else if (*vr0type
== VR_RANGE
7304 && vr1type
== VR_ANTI_RANGE
)
7305 /* The result covers everything. */
7310 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
7311 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
7313 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7314 if (*vr0type
== VR_RANGE
7315 && vr1type
== VR_RANGE
)
7321 else if (*vr0type
== VR_ANTI_RANGE
7322 && vr1type
== VR_ANTI_RANGE
)
7324 else if (*vr0type
== VR_RANGE
7325 && vr1type
== VR_ANTI_RANGE
)
7327 *vr0type
= VR_ANTI_RANGE
;
7328 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
7330 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
, integer_one_node
);
7333 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
7335 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
, integer_one_node
);
7341 else if (*vr0type
== VR_ANTI_RANGE
7342 && vr1type
== VR_RANGE
)
7343 /* The result covers everything. */
7348 else if ((operand_less_p (vr1min
, *vr0max
) == 1
7349 || operand_equal_p (vr1min
, *vr0max
, 0))
7350 && operand_less_p (*vr0min
, vr1min
) == 1)
7352 /* [ ( ] ) or [ ]( ) */
7353 if (*vr0type
== VR_RANGE
7354 && vr1type
== VR_RANGE
)
7356 else if (*vr0type
== VR_ANTI_RANGE
7357 && vr1type
== VR_ANTI_RANGE
)
7359 else if (*vr0type
== VR_ANTI_RANGE
7360 && vr1type
== VR_RANGE
)
7362 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7363 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
, integer_one_node
);
7367 else if (*vr0type
== VR_RANGE
7368 && vr1type
== VR_ANTI_RANGE
)
7370 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7373 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
, integer_one_node
);
7382 else if ((operand_less_p (*vr0min
, vr1max
) == 1
7383 || operand_equal_p (*vr0min
, vr1max
, 0))
7384 && operand_less_p (vr1min
, *vr0min
) == 1)
7386 /* ( [ ) ] or ( )[ ] */
7387 if (*vr0type
== VR_RANGE
7388 && vr1type
== VR_RANGE
)
7390 else if (*vr0type
== VR_ANTI_RANGE
7391 && vr1type
== VR_ANTI_RANGE
)
7393 else if (*vr0type
== VR_ANTI_RANGE
7394 && vr1type
== VR_RANGE
)
7396 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7397 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7401 else if (*vr0type
== VR_RANGE
7402 && vr1type
== VR_ANTI_RANGE
)
7404 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7408 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
, integer_one_node
);
7422 *vr0type
= VR_VARYING
;
7423 *vr0min
= NULL_TREE
;
7424 *vr0max
= NULL_TREE
;
7427 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7428 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7429 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7430 possible such range. The resulting range is not canonicalized. */
7433 intersect_ranges (enum value_range_type
*vr0type
,
7434 tree
*vr0min
, tree
*vr0max
,
7435 enum value_range_type vr1type
,
7436 tree vr1min
, tree vr1max
)
7438 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
7439 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
7441 /* [] is vr0, () is vr1 in the following classification comments. */
7445 if (*vr0type
== vr1type
)
7446 /* Nothing to do for equal ranges. */
7448 else if ((*vr0type
== VR_RANGE
7449 && vr1type
== VR_ANTI_RANGE
)
7450 || (*vr0type
== VR_ANTI_RANGE
7451 && vr1type
== VR_RANGE
))
7453 /* For anti-range with range intersection the result is empty. */
7454 *vr0type
= VR_UNDEFINED
;
7455 *vr0min
= NULL_TREE
;
7456 *vr0max
= NULL_TREE
;
7461 else if (operand_less_p (*vr0max
, vr1min
) == 1
7462 || operand_less_p (vr1max
, *vr0min
) == 1)
7464 /* [ ] ( ) or ( ) [ ]
7465 If the ranges have an empty intersection, the result of the
7466 intersect operation is the range for intersecting an
7467 anti-range with a range or empty when intersecting two ranges. */
7468 if (*vr0type
== VR_RANGE
7469 && vr1type
== VR_ANTI_RANGE
)
7471 else if (*vr0type
== VR_ANTI_RANGE
7472 && vr1type
== VR_RANGE
)
7478 else if (*vr0type
== VR_RANGE
7479 && vr1type
== VR_RANGE
)
7481 *vr0type
= VR_UNDEFINED
;
7482 *vr0min
= NULL_TREE
;
7483 *vr0max
= NULL_TREE
;
7485 else if (*vr0type
== VR_ANTI_RANGE
7486 && vr1type
== VR_ANTI_RANGE
)
7488 /* If the anti-ranges are adjacent to each other merge them. */
7489 if (TREE_CODE (*vr0max
) == INTEGER_CST
7490 && TREE_CODE (vr1min
) == INTEGER_CST
7491 && operand_less_p (*vr0max
, vr1min
) == 1
7492 && integer_onep (int_const_binop (MINUS_EXPR
,
7495 else if (TREE_CODE (vr1max
) == INTEGER_CST
7496 && TREE_CODE (*vr0min
) == INTEGER_CST
7497 && operand_less_p (vr1max
, *vr0min
) == 1
7498 && integer_onep (int_const_binop (MINUS_EXPR
,
7501 /* Else arbitrarily take VR0. */
7504 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
7505 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
7507 /* [ ( ) ] or [( ) ] or [ ( )] */
7508 if (*vr0type
== VR_RANGE
7509 && vr1type
== VR_RANGE
)
7511 /* If both are ranges the result is the inner one. */
7516 else if (*vr0type
== VR_RANGE
7517 && vr1type
== VR_ANTI_RANGE
)
7519 /* Choose the right gap if the left one is empty. */
7522 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7523 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7527 /* Choose the left gap if the right one is empty. */
7530 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7531 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
7536 /* Choose the anti-range if the range is effectively varying. */
7537 else if (vrp_val_is_min (*vr0min
)
7538 && vrp_val_is_max (*vr0max
))
7544 /* Else choose the range. */
7546 else if (*vr0type
== VR_ANTI_RANGE
7547 && vr1type
== VR_ANTI_RANGE
)
7548 /* If both are anti-ranges the result is the outer one. */
7550 else if (*vr0type
== VR_ANTI_RANGE
7551 && vr1type
== VR_RANGE
)
7553 /* The intersection is empty. */
7554 *vr0type
= VR_UNDEFINED
;
7555 *vr0min
= NULL_TREE
;
7556 *vr0max
= NULL_TREE
;
7561 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
7562 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
7564 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7565 if (*vr0type
== VR_RANGE
7566 && vr1type
== VR_RANGE
)
7567 /* Choose the inner range. */
7569 else if (*vr0type
== VR_ANTI_RANGE
7570 && vr1type
== VR_RANGE
)
7572 /* Choose the right gap if the left is empty. */
7575 *vr0type
= VR_RANGE
;
7576 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7577 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
7583 /* Choose the left gap if the right is empty. */
7586 *vr0type
= VR_RANGE
;
7587 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7588 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
7594 /* Choose the anti-range if the range is effectively varying. */
7595 else if (vrp_val_is_min (vr1min
)
7596 && vrp_val_is_max (vr1max
))
7598 /* Else choose the range. */
7606 else if (*vr0type
== VR_ANTI_RANGE
7607 && vr1type
== VR_ANTI_RANGE
)
7609 /* If both are anti-ranges the result is the outer one. */
7614 else if (vr1type
== VR_ANTI_RANGE
7615 && *vr0type
== VR_RANGE
)
7617 /* The intersection is empty. */
7618 *vr0type
= VR_UNDEFINED
;
7619 *vr0min
= NULL_TREE
;
7620 *vr0max
= NULL_TREE
;
7625 else if ((operand_less_p (vr1min
, *vr0max
) == 1
7626 || operand_equal_p (vr1min
, *vr0max
, 0))
7627 && operand_less_p (*vr0min
, vr1min
) == 1)
7629 /* [ ( ] ) or [ ]( ) */
7630 if (*vr0type
== VR_ANTI_RANGE
7631 && vr1type
== VR_ANTI_RANGE
)
7633 else if (*vr0type
== VR_RANGE
7634 && vr1type
== VR_RANGE
)
7636 else if (*vr0type
== VR_RANGE
7637 && vr1type
== VR_ANTI_RANGE
)
7639 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7640 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
7645 else if (*vr0type
== VR_ANTI_RANGE
7646 && vr1type
== VR_RANGE
)
7648 *vr0type
= VR_RANGE
;
7649 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7650 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
7659 else if ((operand_less_p (*vr0min
, vr1max
) == 1
7660 || operand_equal_p (*vr0min
, vr1max
, 0))
7661 && operand_less_p (vr1min
, *vr0min
) == 1)
7663 /* ( [ ) ] or ( )[ ] */
7664 if (*vr0type
== VR_ANTI_RANGE
7665 && vr1type
== VR_ANTI_RANGE
)
7667 else if (*vr0type
== VR_RANGE
7668 && vr1type
== VR_RANGE
)
7670 else if (*vr0type
== VR_RANGE
7671 && vr1type
== VR_ANTI_RANGE
)
7673 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7674 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
7679 else if (*vr0type
== VR_ANTI_RANGE
7680 && vr1type
== VR_RANGE
)
7682 *vr0type
= VR_RANGE
;
7683 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7684 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
7694 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
7695 result for the intersection. That's always a conservative
7696 correct estimate. */
7702 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
7703 in *VR0. This may not be the smallest possible such range. */
7706 vrp_intersect_ranges_1 (value_range_t
*vr0
, value_range_t
*vr1
)
7708 value_range_t saved
;
7710 /* If either range is VR_VARYING the other one wins. */
7711 if (vr1
->type
== VR_VARYING
)
7713 if (vr0
->type
== VR_VARYING
)
7715 copy_value_range (vr0
, vr1
);
7719 /* When either range is VR_UNDEFINED the resulting range is
7720 VR_UNDEFINED, too. */
7721 if (vr0
->type
== VR_UNDEFINED
)
7723 if (vr1
->type
== VR_UNDEFINED
)
7725 set_value_range_to_undefined (vr0
);
7729 /* Save the original vr0 so we can return it as conservative intersection
7730 result when our worker turns things to varying. */
7732 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
7733 vr1
->type
, vr1
->min
, vr1
->max
);
7734 /* Make sure to canonicalize the result though as the inversion of a
7735 VR_RANGE can still be a VR_RANGE. */
7736 set_and_canonicalize_value_range (vr0
, vr0
->type
,
7737 vr0
->min
, vr0
->max
, vr0
->equiv
);
7738 /* If that failed, use the saved original VR0. */
7739 if (vr0
->type
== VR_VARYING
)
7744 /* If the result is VR_UNDEFINED there is no need to mess with
7745 the equivalencies. */
7746 if (vr0
->type
== VR_UNDEFINED
)
7749 /* The resulting set of equivalences for range intersection is the union of
7751 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
7752 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
7753 else if (vr1
->equiv
&& !vr0
->equiv
)
7754 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
7758 vrp_intersect_ranges (value_range_t
*vr0
, value_range_t
*vr1
)
7760 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7762 fprintf (dump_file
, "Intersecting\n ");
7763 dump_value_range (dump_file
, vr0
);
7764 fprintf (dump_file
, "\nand\n ");
7765 dump_value_range (dump_file
, vr1
);
7766 fprintf (dump_file
, "\n");
7768 vrp_intersect_ranges_1 (vr0
, vr1
);
7769 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7771 fprintf (dump_file
, "to\n ");
7772 dump_value_range (dump_file
, vr0
);
7773 fprintf (dump_file
, "\n");
7777 /* Meet operation for value ranges. Given two value ranges VR0 and
7778 VR1, store in VR0 a range that contains both VR0 and VR1. This
7779 may not be the smallest possible such range. */
7782 vrp_meet_1 (value_range_t
*vr0
, value_range_t
*vr1
)
7784 value_range_t saved
;
7786 if (vr0
->type
== VR_UNDEFINED
)
7788 /* Drop equivalences. See PR53465. */
7789 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, NULL
);
7793 if (vr1
->type
== VR_UNDEFINED
)
7795 /* VR0 already has the resulting range, just drop equivalences.
7798 bitmap_clear (vr0
->equiv
);
7802 if (vr0
->type
== VR_VARYING
)
7804 /* Nothing to do. VR0 already has the resulting range. */
7808 if (vr1
->type
== VR_VARYING
)
7810 set_value_range_to_varying (vr0
);
7815 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
7816 vr1
->type
, vr1
->min
, vr1
->max
);
7817 if (vr0
->type
== VR_VARYING
)
7819 /* Failed to find an efficient meet. Before giving up and setting
7820 the result to VARYING, see if we can at least derive a useful
7821 anti-range. FIXME, all this nonsense about distinguishing
7822 anti-ranges from ranges is necessary because of the odd
7823 semantics of range_includes_zero_p and friends. */
7824 if (((saved
.type
== VR_RANGE
7825 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
7826 || (saved
.type
== VR_ANTI_RANGE
7827 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
7828 && ((vr1
->type
== VR_RANGE
7829 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
7830 || (vr1
->type
== VR_ANTI_RANGE
7831 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
7833 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
7835 /* Since this meet operation did not result from the meeting of
7836 two equivalent names, VR0 cannot have any equivalences. */
7838 bitmap_clear (vr0
->equiv
);
7842 set_value_range_to_varying (vr0
);
7845 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
7847 if (vr0
->type
== VR_VARYING
)
7850 /* The resulting set of equivalences is always the intersection of
7852 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
7853 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
7854 else if (vr0
->equiv
&& !vr1
->equiv
)
7855 bitmap_clear (vr0
->equiv
);
7859 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
7861 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7863 fprintf (dump_file
, "Meeting\n ");
7864 dump_value_range (dump_file
, vr0
);
7865 fprintf (dump_file
, "\nand\n ");
7866 dump_value_range (dump_file
, vr1
);
7867 fprintf (dump_file
, "\n");
7869 vrp_meet_1 (vr0
, vr1
);
7870 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7872 fprintf (dump_file
, "to\n ");
7873 dump_value_range (dump_file
, vr0
);
7874 fprintf (dump_file
, "\n");
7879 /* Visit all arguments for PHI node PHI that flow through executable
7880 edges. If a valid value range can be derived from all the incoming
7881 value ranges, set a new range for the LHS of PHI. */
7883 static enum ssa_prop_result
7884 vrp_visit_phi_node (gimple phi
)
7887 tree lhs
= PHI_RESULT (phi
);
7888 value_range_t
*lhs_vr
= get_value_range (lhs
);
7889 value_range_t vr_result
= VR_INITIALIZER
;
7891 int edges
, old_edges
;
7894 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7896 fprintf (dump_file
, "\nVisiting PHI node: ");
7897 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
7901 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
7903 edge e
= gimple_phi_arg_edge (phi
, i
);
7905 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7908 "\n Argument #%d (%d -> %d %sexecutable)\n",
7909 (int) i
, e
->src
->index
, e
->dest
->index
,
7910 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
7913 if (e
->flags
& EDGE_EXECUTABLE
)
7915 tree arg
= PHI_ARG_DEF (phi
, i
);
7916 value_range_t vr_arg
;
7920 if (TREE_CODE (arg
) == SSA_NAME
)
7922 vr_arg
= *(get_value_range (arg
));
7926 if (is_overflow_infinity (arg
))
7928 arg
= copy_node (arg
);
7929 TREE_OVERFLOW (arg
) = 0;
7932 vr_arg
.type
= VR_RANGE
;
7935 vr_arg
.equiv
= NULL
;
7938 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7940 fprintf (dump_file
, "\t");
7941 print_generic_expr (dump_file
, arg
, dump_flags
);
7942 fprintf (dump_file
, "\n\tValue: ");
7943 dump_value_range (dump_file
, &vr_arg
);
7944 fprintf (dump_file
, "\n");
7948 copy_value_range (&vr_result
, &vr_arg
);
7950 vrp_meet (&vr_result
, &vr_arg
);
7953 if (vr_result
.type
== VR_VARYING
)
7958 if (vr_result
.type
== VR_VARYING
)
7960 else if (vr_result
.type
== VR_UNDEFINED
)
7963 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
7964 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
7966 /* To prevent infinite iterations in the algorithm, derive ranges
7967 when the new value is slightly bigger or smaller than the
7968 previous one. We don't do this if we have seen a new executable
7969 edge; this helps us avoid an overflow infinity for conditionals
7970 which are not in a loop. If the old value-range was VR_UNDEFINED
7971 use the updated range and iterate one more time. */
7973 && gimple_phi_num_args (phi
) > 1
7974 && edges
== old_edges
7975 && lhs_vr
->type
!= VR_UNDEFINED
)
7977 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
7978 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
7980 /* For non VR_RANGE or for pointers fall back to varying if
7981 the range changed. */
7982 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
7983 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
7984 && (cmp_min
!= 0 || cmp_max
!= 0))
7987 /* If the new minimum is smaller or larger than the previous
7988 one, go all the way to -INF. In the first case, to avoid
7989 iterating millions of times to reach -INF, and in the
7990 other case to avoid infinite bouncing between different
7992 if (cmp_min
> 0 || cmp_min
< 0)
7994 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
7995 || !vrp_var_may_overflow (lhs
, phi
))
7996 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
7997 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
7999 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
8002 /* Similarly, if the new maximum is smaller or larger than
8003 the previous one, go all the way to +INF. */
8004 if (cmp_max
< 0 || cmp_max
> 0)
8006 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
8007 || !vrp_var_may_overflow (lhs
, phi
))
8008 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
8009 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
8011 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
8014 /* If we dropped either bound to +-INF then if this is a loop
8015 PHI node SCEV may known more about its value-range. */
8016 if ((cmp_min
> 0 || cmp_min
< 0
8017 || cmp_max
< 0 || cmp_max
> 0)
8019 && (l
= loop_containing_stmt (phi
))
8020 && l
->header
== gimple_bb (phi
))
8021 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
8023 /* If we will end up with a (-INF, +INF) range, set it to
8024 VARYING. Same if the previous max value was invalid for
8025 the type and we end up with vr_result.min > vr_result.max. */
8026 if ((vrp_val_is_max (vr_result
.max
)
8027 && vrp_val_is_min (vr_result
.min
))
8028 || compare_values (vr_result
.min
,
8033 /* If the new range is different than the previous value, keep
8036 if (update_value_range (lhs
, &vr_result
))
8038 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8040 fprintf (dump_file
, "Found new range for ");
8041 print_generic_expr (dump_file
, lhs
, 0);
8042 fprintf (dump_file
, ": ");
8043 dump_value_range (dump_file
, &vr_result
);
8044 fprintf (dump_file
, "\n\n");
8047 return SSA_PROP_INTERESTING
;
8050 /* Nothing changed, don't add outgoing edges. */
8051 return SSA_PROP_NOT_INTERESTING
;
8053 /* No match found. Set the LHS to VARYING. */
8055 set_value_range_to_varying (lhs_vr
);
8056 return SSA_PROP_VARYING
;
8059 /* Simplify boolean operations if the source is known
8060 to be already a boolean. */
8062 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8064 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8066 bool need_conversion
;
8068 /* We handle only !=/== case here. */
8069 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
8071 op0
= gimple_assign_rhs1 (stmt
);
8072 if (!op_with_boolean_value_range_p (op0
))
8075 op1
= gimple_assign_rhs2 (stmt
);
8076 if (!op_with_boolean_value_range_p (op1
))
8079 /* Reduce number of cases to handle to NE_EXPR. As there is no
8080 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8081 if (rhs_code
== EQ_EXPR
)
8083 if (TREE_CODE (op1
) == INTEGER_CST
)
8084 op1
= int_const_binop (BIT_XOR_EXPR
, op1
, integer_one_node
);
8089 lhs
= gimple_assign_lhs (stmt
);
8091 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
8093 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8095 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
8096 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
8097 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
8100 /* For A != 0 we can substitute A itself. */
8101 if (integer_zerop (op1
))
8102 gimple_assign_set_rhs_with_ops (gsi
,
8104 ? NOP_EXPR
: TREE_CODE (op0
),
8106 /* For A != B we substitute A ^ B. Either with conversion. */
8107 else if (need_conversion
)
8109 tree tem
= make_ssa_name (TREE_TYPE (op0
), NULL
);
8110 gimple newop
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tem
, op0
, op1
);
8111 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
8112 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
, NULL_TREE
);
8116 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
8117 update_stmt (gsi_stmt (*gsi
));
8122 /* Simplify a division or modulo operator to a right shift or
8123 bitwise and if the first operand is unsigned or is greater
8124 than zero and the second operand is an exact power of two. */
8127 simplify_div_or_mod_using_ranges (gimple stmt
)
8129 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8131 tree op0
= gimple_assign_rhs1 (stmt
);
8132 tree op1
= gimple_assign_rhs2 (stmt
);
8133 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
8135 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
8137 val
= integer_one_node
;
8143 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
8147 && integer_onep (val
)
8148 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
8150 location_t location
;
8152 if (!gimple_has_location (stmt
))
8153 location
= input_location
;
8155 location
= gimple_location (stmt
);
8156 warning_at (location
, OPT_Wstrict_overflow
,
8157 "assuming signed overflow does not occur when "
8158 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8162 if (val
&& integer_onep (val
))
8166 if (rhs_code
== TRUNC_DIV_EXPR
)
8168 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
8169 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
8170 gimple_assign_set_rhs1 (stmt
, op0
);
8171 gimple_assign_set_rhs2 (stmt
, t
);
8175 t
= build_int_cst (TREE_TYPE (op1
), 1);
8176 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
8177 t
= fold_convert (TREE_TYPE (op0
), t
);
8179 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
8180 gimple_assign_set_rhs1 (stmt
, op0
);
8181 gimple_assign_set_rhs2 (stmt
, t
);
8191 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8192 ABS_EXPR. If the operand is <= 0, then simplify the
8193 ABS_EXPR into a NEGATE_EXPR. */
8196 simplify_abs_using_ranges (gimple stmt
)
8199 tree op
= gimple_assign_rhs1 (stmt
);
8200 tree type
= TREE_TYPE (op
);
8201 value_range_t
*vr
= get_value_range (op
);
8203 if (TYPE_UNSIGNED (type
))
8205 val
= integer_zero_node
;
8211 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
8215 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
8220 if (integer_zerop (val
))
8221 val
= integer_one_node
;
8222 else if (integer_onep (val
))
8223 val
= integer_zero_node
;
8228 && (integer_onep (val
) || integer_zerop (val
)))
8230 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
8232 location_t location
;
8234 if (!gimple_has_location (stmt
))
8235 location
= input_location
;
8237 location
= gimple_location (stmt
);
8238 warning_at (location
, OPT_Wstrict_overflow
,
8239 "assuming signed overflow does not occur when "
8240 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8243 gimple_assign_set_rhs1 (stmt
, op
);
8244 if (integer_onep (val
))
8245 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
8247 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
8256 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8257 If all the bits that are being cleared by & are already
8258 known to be zero from VR, or all the bits that are being
8259 set by | are already known to be one from VR, the bit
8260 operation is redundant. */
8263 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8265 tree op0
= gimple_assign_rhs1 (stmt
);
8266 tree op1
= gimple_assign_rhs2 (stmt
);
8267 tree op
= NULL_TREE
;
8268 value_range_t vr0
= VR_INITIALIZER
;
8269 value_range_t vr1
= VR_INITIALIZER
;
8270 double_int may_be_nonzero0
, may_be_nonzero1
;
8271 double_int must_be_nonzero0
, must_be_nonzero1
;
8274 if (TREE_CODE (op0
) == SSA_NAME
)
8275 vr0
= *(get_value_range (op0
));
8276 else if (is_gimple_min_invariant (op0
))
8277 set_value_range_to_value (&vr0
, op0
, NULL
);
8281 if (TREE_CODE (op1
) == SSA_NAME
)
8282 vr1
= *(get_value_range (op1
));
8283 else if (is_gimple_min_invariant (op1
))
8284 set_value_range_to_value (&vr1
, op1
, NULL
);
8288 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
8290 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
8293 switch (gimple_assign_rhs_code (stmt
))
8296 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
8297 if (mask
.is_zero ())
8302 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
8303 if (mask
.is_zero ())
8310 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
8311 if (mask
.is_zero ())
8316 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
8317 if (mask
.is_zero ())
8327 if (op
== NULL_TREE
)
8330 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
8331 update_stmt (gsi_stmt (*gsi
));
8335 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8336 a known value range VR.
8338 If there is one and only one value which will satisfy the
8339 conditional, then return that value. Else return NULL. */
8342 test_for_singularity (enum tree_code cond_code
, tree op0
,
8343 tree op1
, value_range_t
*vr
)
8348 /* Extract minimum/maximum values which satisfy the
8349 the conditional as it was written. */
8350 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
8352 /* This should not be negative infinity; there is no overflow
8354 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
8357 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
8359 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
8360 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
8362 TREE_NO_WARNING (max
) = 1;
8365 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
8367 /* This should not be positive infinity; there is no overflow
8369 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
8372 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
8374 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
8375 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
8377 TREE_NO_WARNING (min
) = 1;
8381 /* Now refine the minimum and maximum values using any
8382 value range information we have for op0. */
8385 if (compare_values (vr
->min
, min
) == 1)
8387 if (compare_values (vr
->max
, max
) == -1)
8390 /* If the new min/max values have converged to a single value,
8391 then there is only one value which can satisfy the condition,
8392 return that value. */
8393 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
8399 /* Simplify a conditional using a relational operator to an equality
8400 test if the range information indicates only one value can satisfy
8401 the original conditional. */
8404 simplify_cond_using_ranges (gimple stmt
)
8406 tree op0
= gimple_cond_lhs (stmt
);
8407 tree op1
= gimple_cond_rhs (stmt
);
8408 enum tree_code cond_code
= gimple_cond_code (stmt
);
8410 if (cond_code
!= NE_EXPR
8411 && cond_code
!= EQ_EXPR
8412 && TREE_CODE (op0
) == SSA_NAME
8413 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8414 && is_gimple_min_invariant (op1
))
8416 value_range_t
*vr
= get_value_range (op0
);
8418 /* If we have range information for OP0, then we might be
8419 able to simplify this conditional. */
8420 if (vr
->type
== VR_RANGE
)
8422 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
8428 fprintf (dump_file
, "Simplified relational ");
8429 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8430 fprintf (dump_file
, " into ");
8433 gimple_cond_set_code (stmt
, EQ_EXPR
);
8434 gimple_cond_set_lhs (stmt
, op0
);
8435 gimple_cond_set_rhs (stmt
, new_tree
);
8441 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8442 fprintf (dump_file
, "\n");
8448 /* Try again after inverting the condition. We only deal
8449 with integral types here, so no need to worry about
8450 issues with inverting FP comparisons. */
8451 cond_code
= invert_tree_comparison (cond_code
, false);
8452 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
8458 fprintf (dump_file
, "Simplified relational ");
8459 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8460 fprintf (dump_file
, " into ");
8463 gimple_cond_set_code (stmt
, NE_EXPR
);
8464 gimple_cond_set_lhs (stmt
, op0
);
8465 gimple_cond_set_rhs (stmt
, new_tree
);
8471 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8472 fprintf (dump_file
, "\n");
8483 /* Simplify a switch statement using the value range of the switch
8487 simplify_switch_using_ranges (gimple stmt
)
8489 tree op
= gimple_switch_index (stmt
);
8494 size_t i
= 0, j
= 0, n
, n2
;
8497 size_t k
= 1, l
= 0;
8499 if (TREE_CODE (op
) == SSA_NAME
)
8501 vr
= get_value_range (op
);
8503 /* We can only handle integer ranges. */
8504 if ((vr
->type
!= VR_RANGE
8505 && vr
->type
!= VR_ANTI_RANGE
)
8506 || symbolic_range_p (vr
))
8509 /* Find case label for min/max of the value range. */
8510 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
8512 else if (TREE_CODE (op
) == INTEGER_CST
)
8514 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
8528 n
= gimple_switch_num_labels (stmt
);
8530 /* Bail out if this is just all edges taken. */
8536 /* Build a new vector of taken case labels. */
8537 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
8540 /* Add the default edge, if necessary. */
8542 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
8544 for (; i
<= j
; ++i
, ++n2
)
8545 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
8547 for (; k
<= l
; ++k
, ++n2
)
8548 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
8550 /* Mark needed edges. */
8551 for (i
= 0; i
< n2
; ++i
)
8553 e
= find_edge (gimple_bb (stmt
),
8554 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
8555 e
->aux
= (void *)-1;
8558 /* Queue not needed edges for later removal. */
8559 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
8561 if (e
->aux
== (void *)-1)
8567 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8569 fprintf (dump_file
, "removing unreachable case label\n");
8571 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
8572 e
->flags
&= ~EDGE_EXECUTABLE
;
8575 /* And queue an update for the stmt. */
8578 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, su
);
8582 /* Simplify an integral conversion from an SSA name in STMT. */
8585 simplify_conversion_using_ranges (gimple stmt
)
8587 tree innerop
, middleop
, finaltype
;
8589 value_range_t
*innervr
;
8590 bool inner_unsigned_p
, middle_unsigned_p
, final_unsigned_p
;
8591 unsigned inner_prec
, middle_prec
, final_prec
;
8592 double_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
8594 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
8595 if (!INTEGRAL_TYPE_P (finaltype
))
8597 middleop
= gimple_assign_rhs1 (stmt
);
8598 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
8599 if (!is_gimple_assign (def_stmt
)
8600 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
8602 innerop
= gimple_assign_rhs1 (def_stmt
);
8603 if (TREE_CODE (innerop
) != SSA_NAME
)
8606 /* Get the value-range of the inner operand. */
8607 innervr
= get_value_range (innerop
);
8608 if (innervr
->type
!= VR_RANGE
8609 || TREE_CODE (innervr
->min
) != INTEGER_CST
8610 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
8613 /* Simulate the conversion chain to check if the result is equal if
8614 the middle conversion is removed. */
8615 innermin
= tree_to_double_int (innervr
->min
);
8616 innermax
= tree_to_double_int (innervr
->max
);
8618 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
8619 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
8620 final_prec
= TYPE_PRECISION (finaltype
);
8622 /* If the first conversion is not injective, the second must not
8624 if ((innermax
- innermin
).ugt (double_int::mask (middle_prec
))
8625 && middle_prec
< final_prec
)
8627 /* We also want a medium value so that we can track the effect that
8628 narrowing conversions with sign change have. */
8629 inner_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (innerop
));
8630 if (inner_unsigned_p
)
8631 innermed
= double_int::mask (inner_prec
).lrshift (1, inner_prec
);
8633 innermed
= double_int_zero
;
8634 if (innermin
.cmp (innermed
, inner_unsigned_p
) >= 0
8635 || innermed
.cmp (innermax
, inner_unsigned_p
) >= 0)
8636 innermed
= innermin
;
8638 middle_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (middleop
));
8639 middlemin
= innermin
.ext (middle_prec
, middle_unsigned_p
);
8640 middlemed
= innermed
.ext (middle_prec
, middle_unsigned_p
);
8641 middlemax
= innermax
.ext (middle_prec
, middle_unsigned_p
);
8643 /* Require that the final conversion applied to both the original
8644 and the intermediate range produces the same result. */
8645 final_unsigned_p
= TYPE_UNSIGNED (finaltype
);
8646 if (middlemin
.ext (final_prec
, final_unsigned_p
)
8647 != innermin
.ext (final_prec
, final_unsigned_p
)
8648 || middlemed
.ext (final_prec
, final_unsigned_p
)
8649 != innermed
.ext (final_prec
, final_unsigned_p
)
8650 || middlemax
.ext (final_prec
, final_unsigned_p
)
8651 != innermax
.ext (final_prec
, final_unsigned_p
))
8654 gimple_assign_set_rhs1 (stmt
, innerop
);
8659 /* Return whether the value range *VR fits in an integer type specified
8660 by PRECISION and UNSIGNED_P. */
8663 range_fits_type_p (value_range_t
*vr
, unsigned precision
, bool unsigned_p
)
8666 unsigned src_precision
;
8669 /* We can only handle integral and pointer types. */
8670 src_type
= TREE_TYPE (vr
->min
);
8671 if (!INTEGRAL_TYPE_P (src_type
)
8672 && !POINTER_TYPE_P (src_type
))
8675 /* An extension is always fine, so is an identity transform. */
8676 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
8677 if (src_precision
< precision
8678 || (src_precision
== precision
8679 && TYPE_UNSIGNED (src_type
) == unsigned_p
))
8682 /* Now we can only handle ranges with constant bounds. */
8683 if (vr
->type
!= VR_RANGE
8684 || TREE_CODE (vr
->min
) != INTEGER_CST
8685 || TREE_CODE (vr
->max
) != INTEGER_CST
)
8688 /* For precision-preserving sign-changes the MSB of the double-int
8690 if (src_precision
== precision
8691 && (TREE_INT_CST_HIGH (vr
->min
) | TREE_INT_CST_HIGH (vr
->max
)) < 0)
8694 /* Then we can perform the conversion on both ends and compare
8695 the result for equality. */
8696 tem
= tree_to_double_int (vr
->min
).ext (precision
, unsigned_p
);
8697 if (tree_to_double_int (vr
->min
) != tem
)
8699 tem
= tree_to_double_int (vr
->max
).ext (precision
, unsigned_p
);
8700 if (tree_to_double_int (vr
->max
) != tem
)
8706 /* Simplify a conversion from integral SSA name to float in STMT. */
8709 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8711 tree rhs1
= gimple_assign_rhs1 (stmt
);
8712 value_range_t
*vr
= get_value_range (rhs1
);
8713 enum machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
8714 enum machine_mode mode
;
8718 /* We can only handle constant ranges. */
8719 if (vr
->type
!= VR_RANGE
8720 || TREE_CODE (vr
->min
) != INTEGER_CST
8721 || TREE_CODE (vr
->max
) != INTEGER_CST
)
8724 /* First check if we can use a signed type in place of an unsigned. */
8725 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
8726 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
8727 != CODE_FOR_nothing
)
8728 && range_fits_type_p (vr
, GET_MODE_PRECISION
8729 (TYPE_MODE (TREE_TYPE (rhs1
))), 0))
8730 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
8731 /* If we can do the conversion in the current input mode do nothing. */
8732 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
8733 TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
8735 /* Otherwise search for a mode we can use, starting from the narrowest
8736 integer mode available. */
8739 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
8742 /* If we cannot do a signed conversion to float from mode
8743 or if the value-range does not fit in the signed type
8744 try with a wider mode. */
8745 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
8746 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), 0))
8749 mode
= GET_MODE_WIDER_MODE (mode
);
8750 /* But do not widen the input. Instead leave that to the
8751 optabs expansion code. */
8752 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
8755 while (mode
!= VOIDmode
);
8756 if (mode
== VOIDmode
)
8760 /* It works, insert a truncation or sign-change before the
8761 float conversion. */
8762 tem
= make_ssa_name (build_nonstandard_integer_type
8763 (GET_MODE_PRECISION (mode
), 0), NULL
);
8764 conv
= gimple_build_assign_with_ops (NOP_EXPR
, tem
, rhs1
, NULL_TREE
);
8765 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
8766 gimple_assign_set_rhs1 (stmt
, tem
);
8772 /* Simplify STMT using ranges if possible. */
8775 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
8777 gimple stmt
= gsi_stmt (*gsi
);
8778 if (is_gimple_assign (stmt
))
8780 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8781 tree rhs1
= gimple_assign_rhs1 (stmt
);
8787 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
8788 if the RHS is zero or one, and the LHS are known to be boolean
8790 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8791 return simplify_truth_ops_using_ranges (gsi
, stmt
);
8794 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
8795 and BIT_AND_EXPR respectively if the first operand is greater
8796 than zero and the second operand is an exact power of two. */
8797 case TRUNC_DIV_EXPR
:
8798 case TRUNC_MOD_EXPR
:
8799 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
8800 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
8801 return simplify_div_or_mod_using_ranges (stmt
);
8804 /* Transform ABS (X) into X or -X as appropriate. */
8806 if (TREE_CODE (rhs1
) == SSA_NAME
8807 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8808 return simplify_abs_using_ranges (stmt
);
8813 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
8814 if all the bits being cleared are already cleared or
8815 all the bits being set are already set. */
8816 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8817 return simplify_bit_ops_using_ranges (gsi
, stmt
);
8821 if (TREE_CODE (rhs1
) == SSA_NAME
8822 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8823 return simplify_conversion_using_ranges (stmt
);
8827 if (TREE_CODE (rhs1
) == SSA_NAME
8828 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8829 return simplify_float_conversion_using_ranges (gsi
, stmt
);
8836 else if (gimple_code (stmt
) == GIMPLE_COND
)
8837 return simplify_cond_using_ranges (stmt
);
8838 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
8839 return simplify_switch_using_ranges (stmt
);
8844 /* If the statement pointed by SI has a predicate whose value can be
8845 computed using the value range information computed by VRP, compute
8846 its value and return true. Otherwise, return false. */
8849 fold_predicate_in (gimple_stmt_iterator
*si
)
8851 bool assignment_p
= false;
8853 gimple stmt
= gsi_stmt (*si
);
8855 if (is_gimple_assign (stmt
)
8856 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
8858 assignment_p
= true;
8859 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
8860 gimple_assign_rhs1 (stmt
),
8861 gimple_assign_rhs2 (stmt
),
8864 else if (gimple_code (stmt
) == GIMPLE_COND
)
8865 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
8866 gimple_cond_lhs (stmt
),
8867 gimple_cond_rhs (stmt
),
8875 val
= fold_convert (gimple_expr_type (stmt
), val
);
8879 fprintf (dump_file
, "Folding predicate ");
8880 print_gimple_expr (dump_file
, stmt
, 0, 0);
8881 fprintf (dump_file
, " to ");
8882 print_generic_expr (dump_file
, val
, 0);
8883 fprintf (dump_file
, "\n");
8886 if (is_gimple_assign (stmt
))
8887 gimple_assign_set_rhs_from_tree (si
, val
);
8890 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
8891 if (integer_zerop (val
))
8892 gimple_cond_make_false (stmt
);
8893 else if (integer_onep (val
))
8894 gimple_cond_make_true (stmt
);
8905 /* Callback for substitute_and_fold folding the stmt at *SI. */
8908 vrp_fold_stmt (gimple_stmt_iterator
*si
)
8910 if (fold_predicate_in (si
))
8913 return simplify_stmt_using_ranges (si
);
8916 /* Stack of dest,src equivalency pairs that need to be restored after
8917 each attempt to thread a block's incoming edge to an outgoing edge.
8919 A NULL entry is used to mark the end of pairs which need to be
8921 static VEC(tree
,heap
) *equiv_stack
;
8923 /* A trivial wrapper so that we can present the generic jump threading
8924 code with a simple API for simplifying statements. STMT is the
8925 statement we want to simplify, WITHIN_STMT provides the location
8926 for any overflow warnings. */
8929 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
8931 /* We only use VRP information to simplify conditionals. This is
8932 overly conservative, but it's unclear if doing more would be
8933 worth the compile time cost. */
8934 if (gimple_code (stmt
) != GIMPLE_COND
)
8937 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
8938 gimple_cond_lhs (stmt
),
8939 gimple_cond_rhs (stmt
), within_stmt
);
8942 /* Blocks which have more than one predecessor and more than
8943 one successor present jump threading opportunities, i.e.,
8944 when the block is reached from a specific predecessor, we
8945 may be able to determine which of the outgoing edges will
8946 be traversed. When this optimization applies, we are able
8947 to avoid conditionals at runtime and we may expose secondary
8948 optimization opportunities.
8950 This routine is effectively a driver for the generic jump
8951 threading code. It basically just presents the generic code
8952 with edges that may be suitable for jump threading.
8954 Unlike DOM, we do not iterate VRP if jump threading was successful.
8955 While iterating may expose new opportunities for VRP, it is expected
8956 those opportunities would be very limited and the compile time cost
8957 to expose those opportunities would be significant.
8959 As jump threading opportunities are discovered, they are registered
8960 for later realization. */
8963 identify_jump_threads (void)
8970 /* Ugh. When substituting values earlier in this pass we can
8971 wipe the dominance information. So rebuild the dominator
8972 information as we need it within the jump threading code. */
8973 calculate_dominance_info (CDI_DOMINATORS
);
8975 /* We do not allow VRP information to be used for jump threading
8976 across a back edge in the CFG. Otherwise it becomes too
8977 difficult to avoid eliminating loop exit tests. Of course
8978 EDGE_DFS_BACK is not accurate at this time so we have to
8980 mark_dfs_back_edges ();
8982 /* Do not thread across edges we are about to remove. Just marking
8983 them as EDGE_DFS_BACK will do. */
8984 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
8985 e
->flags
|= EDGE_DFS_BACK
;
8987 /* Allocate our unwinder stack to unwind any temporary equivalences
8988 that might be recorded. */
8989 equiv_stack
= VEC_alloc (tree
, heap
, 20);
8991 /* To avoid lots of silly node creation, we create a single
8992 conditional and just modify it in-place when attempting to
8994 dummy
= gimple_build_cond (EQ_EXPR
,
8995 integer_zero_node
, integer_zero_node
,
8998 /* Walk through all the blocks finding those which present a
8999 potential jump threading opportunity. We could set this up
9000 as a dominator walker and record data during the walk, but
9001 I doubt it's worth the effort for the classes of jump
9002 threading opportunities we are trying to identify at this
9003 point in compilation. */
9008 /* If the generic jump threading code does not find this block
9009 interesting, then there is nothing to do. */
9010 if (! potentially_threadable_block (bb
))
9013 /* We only care about blocks ending in a COND_EXPR. While there
9014 may be some value in handling SWITCH_EXPR here, I doubt it's
9015 terribly important. */
9016 last
= gsi_stmt (gsi_last_bb (bb
));
9018 /* We're basically looking for a switch or any kind of conditional with
9019 integral or pointer type arguments. Note the type of the second
9020 argument will be the same as the first argument, so no need to
9021 check it explicitly. */
9022 if (gimple_code (last
) == GIMPLE_SWITCH
9023 || (gimple_code (last
) == GIMPLE_COND
9024 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
9025 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
9026 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
9027 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
9028 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
9032 /* We've got a block with multiple predecessors and multiple
9033 successors which also ends in a suitable conditional or
9034 switch statement. For each predecessor, see if we can thread
9035 it to a specific successor. */
9036 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
9038 /* Do not thread across back edges or abnormal edges
9040 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
9043 thread_across_edge (dummy
, e
, true, &equiv_stack
,
9044 simplify_stmt_for_jump_threading
);
9049 /* We do not actually update the CFG or SSA graphs at this point as
9050 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9051 handle ASSERT_EXPRs gracefully. */
9054 /* We identified all the jump threading opportunities earlier, but could
9055 not transform the CFG at that time. This routine transforms the
9056 CFG and arranges for the dominator tree to be rebuilt if necessary.
9058 Note the SSA graph update will occur during the normal TODO
9059 processing by the pass manager. */
9061 finalize_jump_threads (void)
9063 thread_through_all_blocks (false);
9064 VEC_free (tree
, heap
, equiv_stack
);
9068 /* Traverse all the blocks folding conditionals with known ranges. */
9075 values_propagated
= true;
9079 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
9080 dump_all_value_ranges (dump_file
);
9081 fprintf (dump_file
, "\n");
9084 substitute_and_fold (op_with_constant_singleton_value_range
,
9085 vrp_fold_stmt
, false);
9087 if (warn_array_bounds
)
9088 check_all_array_refs ();
9090 /* We must identify jump threading opportunities before we release
9091 the datastructures built by VRP. */
9092 identify_jump_threads ();
9094 /* Free allocated memory. */
9095 for (i
= 0; i
< num_vr_values
; i
++)
9098 BITMAP_FREE (vr_value
[i
]->equiv
);
9103 free (vr_phi_edge_counts
);
9105 /* So that we can distinguish between VRP data being available
9106 and not available. */
9108 vr_phi_edge_counts
= NULL
;
9112 /* Main entry point to VRP (Value Range Propagation). This pass is
9113 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9114 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9115 Programming Language Design and Implementation, pp. 67-78, 1995.
9116 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9118 This is essentially an SSA-CCP pass modified to deal with ranges
9119 instead of constants.
9121 While propagating ranges, we may find that two or more SSA name
9122 have equivalent, though distinct ranges. For instance,
9125 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9127 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9131 In the code above, pointer p_5 has range [q_2, q_2], but from the
9132 code we can also determine that p_5 cannot be NULL and, if q_2 had
9133 a non-varying range, p_5's range should also be compatible with it.
9135 These equivalences are created by two expressions: ASSERT_EXPR and
9136 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9137 result of another assertion, then we can use the fact that p_5 and
9138 p_4 are equivalent when evaluating p_5's range.
9140 Together with value ranges, we also propagate these equivalences
9141 between names so that we can take advantage of information from
9142 multiple ranges when doing final replacement. Note that this
9143 equivalency relation is transitive but not symmetric.
9145 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9146 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9147 in contexts where that assertion does not hold (e.g., in line 6).
9149 TODO, the main difference between this pass and Patterson's is that
9150 we do not propagate edge probabilities. We only compute whether
9151 edges can be taken or not. That is, instead of having a spectrum
9152 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9153 DON'T KNOW. In the future, it may be worthwhile to propagate
9154 probabilities to aid branch prediction. */
9163 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
9164 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
9167 insert_range_assertions ();
9169 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
9170 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
9171 threadedge_initialize_values ();
9174 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
9177 free_numbers_of_iterations_estimates ();
9179 /* ASSERT_EXPRs must be removed before finalizing jump threads
9180 as finalizing jump threads calls the CFG cleanup code which
9181 does not properly handle ASSERT_EXPRs. */
9182 remove_range_assertions ();
9184 /* If we exposed any new variables, go ahead and put them into
9185 SSA form now, before we handle jump threading. This simplifies
9186 interactions between rewriting of _DECL nodes into SSA form
9187 and rewriting SSA_NAME nodes into SSA form after block
9188 duplication and CFG manipulation. */
9189 update_ssa (TODO_update_ssa
);
9191 finalize_jump_threads ();
9193 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9194 CFG in a broken state and requires a cfg_cleanup run. */
9195 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
9197 /* Update SWITCH_EXPR case label vector. */
9198 FOR_EACH_VEC_ELT (switch_update
, to_update_switch_stmts
, i
, su
)
9201 size_t n
= TREE_VEC_LENGTH (su
->vec
);
9203 gimple_switch_set_num_labels (su
->stmt
, n
);
9204 for (j
= 0; j
< n
; j
++)
9205 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
9206 /* As we may have replaced the default label with a regular one
9207 make sure to make it a real default label again. This ensures
9208 optimal expansion. */
9209 label
= gimple_switch_label (su
->stmt
, 0);
9210 CASE_LOW (label
) = NULL_TREE
;
9211 CASE_HIGH (label
) = NULL_TREE
;
9214 if (VEC_length (edge
, to_remove_edges
) > 0)
9215 free_dominance_info (CDI_DOMINATORS
);
9217 VEC_free (edge
, heap
, to_remove_edges
);
9218 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
9219 threadedge_finalize_values ();
9222 loop_optimizer_finalize ();
9229 return flag_tree_vrp
!= 0;
9232 struct gimple_opt_pass pass_vrp
=
9237 OPTGROUP_NONE
, /* optinfo_flags */
9238 gate_vrp
, /* gate */
9239 execute_vrp
, /* execute */
9242 0, /* static_pass_number */
9243 TV_TREE_VRP
, /* tv_id */
9244 PROP_ssa
, /* properties_required */
9245 0, /* properties_provided */
9246 0, /* properties_destroyed */
9247 0, /* todo_flags_start */
9252 | TODO_ggc_collect
/* todo_flags_finish */